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CHAPTER 1 

INTRODUCTION 
 

1.1 Introduction 

The heart is one of the most critical organs in the human body, thus the development of 

methods for monitoring its functionality is crucial. Electrocardiography is considered to be 

one of the most powerful diagnostic tools in medicine that is routinely used for the assessment 

of the functionality of the heart. The Electrocardiogram (ECG) is the conventional method for 

non-invasive interpretation of the electrical activity of the heart in real-time. The electrical 

cardiac signals are recorded by an external device, by attaching electrodes to the outer surface 

of the skin of the patient’s thorax. These currents stimulate the cardiac muscle and cause the 

contractions and relaxations of the heart1.The electrical signals travel through the electrodes 

to the ECG device, which records them as characteristic waves. Different waves reflect the 

activity of different areas of the heart which generate the respective flowing electrical 

currents. Figure 1 shows a schematic representation of a normal ECG and its various waves. 

 

1.1.1 Characteristics of normal Electrocardiogram 

A normal ECG consists of a P wave, a QRS complex, and a T wave. The P wave is caused by 

electric currents produced by the depolarization of the atria before their contraction, while the 

QRS complex is caused by electric currents produced by the depolarization of the ventricles 

prior to their contraction, during the extending of the depolarization in the ventricular 

myocardium. The QRS complex usually consists of three different waves, the Q, R, and S 

waves. Note that both the P‐wave, and the waves that form the QRS complex, are 

depolarization waves. The T wave is caused by the electric currents produced during recovery 

of the ventricles from the state of depolarization. This process is takes place in the ventricular 

myocardium0.25s to 0.35s after the depolarization. The T wave is characterized as the wave 

of repolarization. The Figure 1 shows a representation of an ECG with the waves and 

complexes annotated 

                                                            
1 http://en.wikipedia.org/wiki/Electrocardiography 
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Figure 1: Normal ECG with the waves that is consisted noted.  

 

 

 

 

1.1.2 Why is the ECG important?  

The ECG has been established as the most common, easiest, way for and rapid diagnosis and 

management of numerous cardiovascular incidents. A significant number of patients treated in 

the emergency room (ER) and in the intensive care unit (ICU), present with cardiovascular 

complaints. In those cases, they need early, accurate diagnosis as well as rapid, appropriate 

therapy, reinforce the importance of electrocardiography. Some examples of incidents that are 

ideally managed with an ECG are chest pain (presenting ST‐segment elevation), acute 

myocardial infarction, acute coronary syndrome, arrhythmias, and even suspected pulmonary 

embolism.2 

 

 
 
 
1.2 Principal Methods for ECG Analysis 
 
1.2.1 Introduction 

                                                            
2 Amal Mattu, William Brady, “ECGs for the Emergency Physician”, BMJ Books, BMA House, Tavistock  Square, London 
WC1H 9JR, pp. ix, 2003. 

 



Since digital electrocardiography has been established as the fundamental way for ECG data 

acquisition, algorithms or automatic ECG analysis, and more specifically automatic 

QRS complex detection has been the focus of intense research activity 3.The QRS complex is 

perhaps the most significant waveform within the ECG and thus its detection is the crucial 

first step in every automated algorithm for ECG analysis. Due to their characteristic shape, the 

QRS complexes serve as the reference point for the automated heart rate determination4 . 

After detection, analysis and feature extraction, provide useful information about the current 

state of the heart. Software QRS detection has been a research topic for more than thirty 

years. Within the last decade, numerous new approaches have been proposed and compared, 

in order to find the optimum automatic QRS detection method 5. 

 

1.2.2 QRS Detection‐Brief Review 

Algorithms, which have been developed for the purpose of QRS detection and analysis, have 

been derived from Artificial Neural Networks, genetic algorithms, wavelet transforms and 

filter banks. Neural Networks have been used for QRS detection, by training adaptive, non-

linear ECG signal predictors. In another method, an estimate of the ECG samples was derived 

by a number of adaptive filters. That estimate was given as a weighted summation of previous 

samples, with the weights adapting according to the statistics of the signal. Other approaches 

included signal derivatives, for detection of the steep slope of the QRS complex, 

cross‐correlation methods, where an initial template was aligned to the current ECG signal, 

and syntactic approaches, where the ECG signal was represented as a piecewise linear 

approximation and was analyzed using  syntactic rules. Almost all of the proposed algorithms 

so far, share a common algorithmic structure, that is, a preprocessing stage, including 

filtering, a feature extraction stage, and a decision stage in which peak detection and decision 

logic are included. 

                                                            
3 Carsten Meyer, Jose Fernadez Gavela, Matthew Harris,“CombiningAlgorithms in Automatic Detection of QRS Complexes 

in ECG Signals”, IEEE transactions on Information Technology in Medicine, Vol. 10, No.3, July 2003. 
 
4 Franco Chiarugi, “New Developments in the Automatic Analysis of the Surface ECG: The Case of Atrial Fibrillation”, 

Hellenic Journal of Cardiology 49, pp.207‐‐‐ 221, 2008. 

 
5 Bert‐Uwe Kohler, Carsten Hennig, Reinhold Orglmeister, “The Principles of Software QRS Detection: Reviewing and 

Comparing Algorithms for Detecting this Important ECG Waveform”, IEEE Engineering in Medicine and Biology, February, 

2002. 
 



 

1.3 Purpose and Motivation 
1.3.1 Introduction 

The purpose of this project was to analyze the ECG and more specifically to find the heart 

beat rate contained in the ECG through reliable detection of the QRS complexes. To avoid 

erroneous results, QRS identification should be preceded by artifact detection and removal 

from the ECG signal, so that the QRS detection would be more reliable. The ECG data used 

for this work was found in the PhysioNetlibrary (www.physionet.org)in the MIMICII 

database. MIMIC II database’s recordings are taken from ICU patients and, since it is a real-

life database, it contains lots of artifacts, which interfere with the normal and abnormal ECG 

signals. 
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CHAPTEER 3 
BLOCKK DIAGRAMM OF THEE SYSTEM
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web tool only 1 minute long sections of each record is extracted as .m files that can be readily 

used in Matlab.  As a result 6 recordings (3 for training and 3 for testing) each containing 

21600 samples and approximately 60-80 waveforms depending on heart rate and class 

(normal, rbbb or paced) is obtained and loaded into Matlab environment. After loading the 

data into Matlab one of the channels is removed and only one channel for each recording is 

used for the rest of the program(channel MLII).  

In the end of the Data acquisition, a total of 214 waveforms (as 3 separate recordings, each 

representing a ECG 1, ECG 2 and ECG 3 waveforms) for heart beat calculation are prepared 

ready for next step which is signal pre-processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 4 
SIGNAL PREPROCESSING 

 

4.1 Introduction  

In general, the aim of preprocessing steps is to improve the general quality of the ECG for 

more accurate analysis and measurement. Noises may disturb the ECG to such an extent that 

measurements from the original signals are unreliable. The main categories of noise are: low 

frequency base line wander (BW) caused by respiration and body movements, high frequency 

random noises caused by mains interference (50 or 60Hz) and muscular activity and random 

shifts of the ECG signal amplitude caused by poor electrode contact and body movements, 

DC noise.  

This project, at signal pre-processing step is focused on noise removal and after this step 

processing of the signal will continue with QRS detection. A number linear and non-linear 

technique has been developed to eliminate these artifacts. The preprocessing comprises of 

four steps: removal of DC noise, removal of base line wander (elimination of very low 

frequencies) removal of high frequency noise and QRS detection 6. 

 

Typical ECG signal with noise 

 

                                                            
6 http://en.wikipedia.org/wiki/Electrocardiography 
 

http://en.wikipedia.org/wiki/Electrocardiography


Sample Raw Noisy ECG Record Before Pre-processing  

 

 

 

 

 

 

 
 

4.2 Types of Filters 

In this project, we have used the following types of filters to remove the unwanted noise from 

the ECG signal; 

1. Low Pass Filter 

2. High Pass Filter 

3. Comb Filter (Band Stop Filter) 

 

 

 



4.2.1 Low Pass Filter: 

A low-pass filter is a filter that passes low-frequency signals and attenuates (reduces the 

amplitude of) signals with frequencies higher than the cutoff frequency. The actual amount of 

attenuation for each frequency varies depending on specific filter design. It is sometimes 

called a high-cut filter, or treble cut filter in audio applications. A low-pass filter is the 

opposite of a high-pass filter. 

The low pass filter has the property that low-frequency excitation signal components down to 

and including direct current, are transmitted, while high-frequency components, up to and 

including infinite ones are blocked. The range of low frequencies, which are passed, is called 

the pass band or the bandwidth of the filter. It extends from ω=0 to ω= ωc rad/sec (fc in Hz). 

The highest frequency to be transmitted is ωc, which is also called the cutoff frequency. 

Frequencies above cutoff are prevented from passing through the filter and they constitute the 

filter stopband. 

 

LPF 

- Passes all low-frequency 

components below fp and 

blocks all higher frequency 

components above fs  

 

- In reality, you can’t design 

‘square’ type of filters so, 

there needs to be transition 

between the bands.                                        

An ideal low pass filter 

requires an infinite impulse response. Truncating (or windowing) the impulse response results 

in the so-called window method of FIR filter design. Consider a simple design of a low pass 

filter with a cutoff frequency of 0.4*pi radians per sample 

LPF: 
 Passband:  0≤f ≤fp  

Stopband: fs≤f ≤fs/2 

http://en.wikipedia.org/wiki/Filter_%28signal_processing%29
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Signal_%28electrical_engineering%29
http://en.wikipedia.org/wiki/Attenuate
http://en.wikipedia.org/wiki/Amplitude
http://en.wikipedia.org/wiki/Cutoff_frequency
http://en.wikipedia.org/wiki/High-pass_filter


 

 

 

 

 

 

 
 
 
 
 
 
 
 
4.2.2 High Pass Filter: 
 
A high-pass filter (HPF) is an electronic filter that passes high-frequency signals but 

attenuates (reduces the amplitude of) signals with frequencies lower than the cutoff frequency. 

The actual amount of attenuation for each frequency varies from filter to filter. A high-pass 

filter is usually modeled as a linear time-invariant system. It is sometimes called a low-cut 

filter or bass-cut filter. High-pass filters have many uses, such as blocking DC from circuitry 

sensitive to non-zero average voltages or RF devices. They can also be used in conjunction 

with a low-pass filter to make a bandpass filter. 

 

 

 
 
 
 

 
 
 
Passes all high‐frequency components above the 
cut‐off frequency, fc and blocks all lower 
frequency components below fc.  
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http://en.wikipedia.org/wiki/Filter_%28signal_processing%29
http://en.wikipedia.org/wiki/Linear_time-invariant_system
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4.2.3 Comb Filter (Band-stop Filter): 

A comb filter is a filter that has a series of very deep notches in its frequency response with 

the spacing of all of the notches at multiples of the frequency of the lowest notch (they are all 

harmonically related). It got its name from looking like a comb when plotted on a frequency 

response graph. Comb filters are produced when a signal is time delayed and added back to 

itself. Some frequencies will cancel and others will be reinforced, which can dramatically 

change the tonal color of the sound. In practice this is common problem that occurs when a 

stereo mix is collapsed to mono because many stereo effects, such as chorus and flanging, 

achieve their stereo imaging by using some form of the Haas effect. A static comb filter will 

make its audio sound kind of hollow or “phasey” depending upon how severe it is. Add some 

modulation and you have a flanger. Comb filtering is one of the main ingredients in the 

distinctive sound of a jet aircraft passing overhead. The difference in the time arrival to your 

ears of the direct sound versus the sound reflected off of the ground causes various 

frequencies to be cancelled or reinforced. As the plane moves these distances are all changing, 

thus causing the coloration of the sound to change. Again, it’s the same principle used in a 

flanger7. 

 Gain

Passband

Passband 
ripple

Stopband

Transition
band

Stopband 
ripple

Passband

Transition
band

1

freq

Passband 
ripple

Fs/2fp1 fp2fs1 fs2

 Passes all frequency  

components lower and 

higher  than edge passband 

frequencies, freq(allow)<fp1;  

freq(allow)>fp2 and blocks all 

frequencies between 

fs1<freq(block)<fs2  

 

                                                            
7 http://www.mathworks.com/help/signal/ref/fdesign.lowpass.html 
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http://www.sweetwater.com/insync/frequency-response-frequency-range-2/
http://www.sweetwater.com/insync/haas-effect/
http://www.sweetwater.com/insync/modulation/
http://www.mathworks.com/help/signal/ref/fdesign.lowpass.html


 

4.3 The Preprocessing Steps  

1. Removing DC Components of the ECG Signal 

2. Removing Low Frequency and High Frequency Noise 

3. Removing 60 Hz Power Line Interference   

 

4.3.1 Removing DC Components of the ECG Signal 
 
As it can be clearly seen from Figure 3.4, ECG signals taken from MIT-BIH database contain 

baseline (sections of ECG where there is no electrical activity of heart) amplitudes higher than 

zero (around 950 in Figure 3.4). In this step by subtracting the mean of the signal from itself, 

the unwanted dc component is removed and the signal baseline amplitude is pulled back to 

level zero. 

                                ECGSignal=ECGSignal-mean(ECGSignal) 

 

 

 
4.2.2 

Baseline 

Wandering 

Baseline wander (BW) is an extrageneous low-frequency activity in the ECG which may 

interfere with the signal analysis, rendering clinical interpretation inaccurate and misleading

ST-T changes in the ECG are measured with reference to the isoelectric line. When B

present the isoelectric line is no longer well defined and hence ST analysis becomes 

inaccurate.BW may result from various noise sources including perspiration, respiration, bo

movements, and poor electrode contact. Its spectral contact is usually well below 1Hz, but 

may contain higher frequencies during strenuous exercise. Two major techniques are usuall

employed for BW removal, namely linear filtering and polynomial fitting. Linear filtering 

involves the design of an LTI high pass filter with cut off so that the clinical information in 

the ECG is preserved and as much as possible and the BW is removed. This cut off is based 

. 

W is 

dy 

y 

on the lowest heart rate which is around 40beats/min during bradycardia, which implies that, 



the lowest 8Hz frequency component in the ECG 0.67Hz . Therefore the cut off chosen is 

around 0.5 Hz. 8 

4.2.3 Removing Low Frequency and High Frequency Noise 

De-noising is the primary processing to remove all the high frequency as well as power 

supply interference from the ECG signal. ECG data used for the system contains low and high 

frequency noise components that may be caused by the sources explained in the previous 

chapter. Before the design of the software both frequency domain and time domain filters 

were tested for noise removal. It is observed that time domain filters provide better noise 

removal on the signals obtained from MIT-BIH database than frequency domain filters 

(butterworth filters in our case). Because of this and since the most of the noise present in the 

database are random noise time domain filters were chosen to filter unwanted high and low 

frequency noise. 

To remove high frequency random noise, mostly caused by patients muscle contractions 

during recording,from the ECG signals a 10 point moving average (low pass)  filter  which 

passes low frequencies but attenuates high frequencies chosen and the signals are filtered by 

using Matlab’s filter function 

                                                     B=(1/10)*ones(1,10); 

                                                     A=1; 

                                                     ECGSignal=filter(B,A,ECGSignal) 

After the removal of high frequency noise from the signal next step is to remove low 

frequency noise components. This low frequency noise shows itself as baseline wandering 

that is caused mostly by the respiration of the patient. To remove this low frequency noise, a 

derivative based (high pass) filter (Figure 3.6) that passes high frequencies but attenuates low 

frequencies used.9 

 

   B=(1/1.0025)*[1 -1]; 

   A=[1 -0.995]; 

                                                            
8 http://www.ece.uic.edu/~jmorisak/blpf.html 

 
9 http://www.electronics-tutorials.ws/filter/filter_3.html 

 

http://www.ece.uic.edu/%7Ejmorisak/blpf.html
http://www.electronics-tutorials.ws/filter/filter_3.html


   ECGSignal=filter(B,A,ECGSignal) 

 

 

 

 

 

 

 

 

 

 

 

 

4.2.4 Removing 60Hz Powerline Interference 
 
Powerline interference is a noise caused by the electricity current flowing in wires and power 

lines. Powerline interference that is present in our ECG signals consists of 60Hz pickup and 

harmonics. Since frequency of 60Hz overlaps with our ECG signal frequency range we have 

to suppress only 60Hz frequency components and its harmonics without disturbing the 

frequencies around. To achieve this, comb filter is used and 60Hz powerline interference with 

its harmonics is removed from the ECG signals. Comb filter is a band-stop filter which 

attenuates a certain band of frequencies and their harmonics.10 

 

                                                            
10 http://www.sweetwater.com/insync/comb-filter/ 

 

http://www.sweetwater.com/insync/comb-filter/


 

 

B=conv([1 1],[0.6310 -0.2149 0.1512 -0.1288 0.1227 -0.1288 0.1512 -0.2149 0.6310]); 
A=1; 
ECGSignal=filter(B,A,ECGSignal)    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



CHAPTER 5 
QRS DETECTION 
 

5.1 Introduction 
The main tasks of a QRS complex detector include detecting QRS complexes of heartbeats 

and generating a stable fiducial point for each individual heartbeat. The fiducial point and its 

placement should be robust and insensitive to subtle morphological variability in the QRS 

complex. In the literature, there are some excellent QRS complex detectors present [6,7] In 

this project however the real time QRS detector proposed by Pan and Tomkins has been used 

for its intrinsic simplicity and low computational complexity.  

 

5.2 Pan-Tompkins QRS Detection Algorithm  

Pan and Tompkins proposed a real-time QRS detection algorithm based on slope, amplitude, 

and width of QRS complexes.The algorithm includes differentiation followed by squaring and 

then moving window integration. The information about the slope is obtained in the derivative 

stage. The squaring process intensifies the slope of the frequency response curve of the 

derivative and helps restrict the false positive waves caused by the T waves with higher than 

usual spectral energies. The moving window integrator produces a signal that includes 

information about both the width and slope of the QRS complex. Then a simple threshold is 

applied to detect the peaks. 

 

 
 
 
 
 
 

 

Integration  
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Derivative  

 

Thresholding 

 

 



5.2.1 Differentiation  

The derivative procedure suppresses the low-frequency components of the P and T waves, 

and provides a large gain to the high-frequency components arising from the high slopes of 

the QRS complex. Derivative operation is implemented in Matlab by using diff function 

which finds the differences between the adjacent values in the signal. 

Derivative=diff(ECGSignal)      

 

 

 
 

 

 

 

 

 

 

 

 

 

 



5.2.2 Squaring: 

The squaring operation makes the result positive and emphasizes large differences resulting 

from QRS complexes; the small differences arising from P and T waves are suppressed. QRS 

complex is further enhanced. Squaring operation is implemented simply by multiplying the 

signal by itself in Matlab.  

                     Squaring=derivative.*derivative       

 

  

 

 

 

 

 

 

 



5.2.3 Integration 

The output of a derivative based operation may contain multiple peaks within the duration of 

a single QRS complex. A moving window integrator is applied to perform smoothing of the 

output of the preceding operations so that multiple peaks are avoided. This step is performed 

in Matlab by using medfilt1 function and a window width of 54 is found to be suitable for 

sampling frequency 360Hz. 

 

window=ones[1,54]; 

Integration=medfilt1(filter(window,1,squaring),10);        

 

 

 
 

 

 

 



5.2.4 Thresholding: 

Maximum value of the signal that had passed from above steps is taken and multiplied by a 

threshold percentage value. This is done because the output of preceding operations may 

contain noise peaks. These noise peaks do not have as large amplitude as R peaks but if we 

take all the peaks present in the output of above steps as R peaks then noise peaks will also be 

classified as R peaks (QRS complexes). So by taking a certain percentage of the highest peak 

amplitude as a threshold we avoid this. Different values for threshold percentage were tested 

and value 0.2 found to be suitable for removing noise peaks in our signals. This threshold 

value is used for searching R peak in search procedures.  

 

             maxvalue=max(integration) 

                       threshold=maxvalue*0.2  
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CHAPTER 6 
SEARCH PROCEDURES FOR QRS   

6.1 Location of R Peaks 

In the last step of QRS detection, regions of the output signal, of the preceding steps, that is 

above the threshold value is found. Starting and ending locations of each region is recorded. 

Then each specific region is again searched on the original ECG signal for a maximum value 

which represents the exact R peak of that wave. Locations of all R peaks are then recorded 

and the QRS searching algorithm is finalized . 

 position_region=integration>threshold 

  left=find(diff([0 position_region])==1) 

  right=find(diff([position_region 0])==-1) 

 

  for i=1:length(left) 

            [maxvalue(i) maxlocation(i)]=max(ECGSignal(left(i):right(i))) 

 end                       

 

 

6.2 Calculation of Hear Beat Rate 
At this stage in the project, we have been able to process the ECG signals and are left with the 

determination of the heart beat rate. The number of R peaks have also been calculated which 

corresponds to the number of “Left Leg” of each QRS complex as detected by the Pan-

Tompkins Algorithm since no two QRS complex had two “left legs”. 

 

 

 

 



The matlab code below counts the number of left legs of the ECG signals  

   

for i=1:length(left) 

  [maxvalue(i)   maxlocation(i)]=max(ECGSignal(left(i):right(i))) 

end  

 

6.3 Result  
• The Heart Beat Rate of SIG1 is 74 

 

•  The Heart Beat Rate of SIG2 is 72  

 

• The Heart Beat Rate of SIG3 is 71 

 

6.4 Discussion 
In this project, three ECG signals were taken from the MIT data base, they were processed 

and the heart beat rates are determined in a very effective manner. These heart beats rates 

were evaluated using Matlab codes which has proven to be simple intelligent and cost 

effective  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER 7 
CONCLUSION & FUTURE WORK 

 

In conclusion, a method based on QRS detection algorithm was used in order to process the 

signal and identify the QRS complex. This algorithm is called Pan-Tompkins algorithm and is 

made up of the following procedures: 

a) Differentiation 

b) Squaring 

c) Integration 

d) Thresholding. 

This algorithm processes the signal and is then followed by QRS searching procedure which 

produces the number of R-peaks contained in the signal and this number corresponds to the 

heart beat rate of the individual ECG signals. 

 

In the future this work could be extended as an ECG‐based, automated diagnostic tool for 

various diseases of the cardiovascular system. More work is necessary in order to detect the P 

and T waves as well, which provide additional information about specific functionalities of 

the heart. Of course, additional research leading to successful detection and classification of 

the various types of abnormal beats will be the hallmark of the success of this algorithm as a 

diagnostic tool.   

Real-time patient data acquisition can be added and more advanced filters can be designed to 

remove real-time dynamic noises. More complex feature extraction methods can be applied 

System can be adapted to classify most of the cardiac conditions that can be faced in a clinical 

environment  
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APPENDIX  
Matlab Codes For The Project 
 
  
%Loading ECG DATA  
%www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm 
%Each 1 min record contains approximately 60-80 waveforms 
%sample rate of the signals=360Hz 
%loading ECG SIG1,SIG2 and SIG3 waveform recordings  
  
disp('Loading ECG Records That Will Be Used In Heart Beat Rate Calculation') 
SIG1=load('C:\Users\USER\Desktop\100m.mat'); %1min record containing SIG1 beat 
waveforms 
SIG2=load('C:\Users\USER\Desktop\118m.mat'); %1min record containing SIG2 beat 
waveforms 
SIG3=load('C:\Users\USER\Desktop\217m.mat'); %1min record containing SIG3 beat 
waveforms  
  
%above ecg .mat files contains 2 channel ECG records. 
%we only need one channel so extracting only one of the channels 
%(channel MLII) 
  
SIG1=SIG1.val(1,:); 
SIG2=SIG2.val(1,:); 
SIG3=SIG3.val(1,:); 
  
  
%%%%optional plot%%%%    
subplot(3,1,1);plot(SIG1) 
title('Raw ECG Data (SIG1)') 
subplot(3,1,2);plot(SIG2) 
title('Raw ECG Data (SIG2)') 
subplot(3,1,3);plot(SIG3) 
title('Raw ECG Data (SIG3)') 
figure 
  
%mean filter code to remove DC Components noise 
SIG1=SIG1-mean(SIG1); 
plot(SIG1); 
title('Mean-filtered SIG1 ecg') 
figure 
  
SIG2=SIG2-mean(SIG2); 
plot(SIG2); 
title('Mean-filtered SIG2 ecg') 
figure 
  



SIG3=SIG3-mean(SIG3);  
plot(SIG3); 
title('Mean-filtered SIG3 ecg') 
figure 
  
subplot(3,1,1);plot(SIG1) 
title('DC-filtered SIG1 (SIG1)') 
subplot(3,1,2);plot(SIG2) 
title('DC-filtered SIG1 (SIG2)') 
subplot(3,1,3);plot(SIG3) 
title('DC-filtered SIG1 (SIG3)') 
figure 
  
%Removing Low and High Frequency Noise 
%Low Frequency 
B=(1/10)*ones(1,10); 
A=1; 
SIG1=filter(B,A,SIG1); 
  
B=(1/10)*ones(1,10); 
A=1; 
SIG2=filter(B,A,SIG2); 
  
B=(1/10)*ones(1,10); 
A=1; 
SIG3=filter(B,A,SIG3); 
  
%High Frequency 
B=(1/1.0025)*[1 -1]; 
A=[1 -0.995]; 
SIG1=filter(B,A,SIG1); 
  
B=(1/1.0025)*[1 -1]; 
A=[1 -0.995]; 
SIG2=filter(B,A,SIG2); 
  
B=(1/1.0025)*[1 -1]; 
A=[1 -0.995]; 
SIG3=filter(B,A,SIG3); 
  
subplot(3,1,1);plot(SIG1) 
title('Low and High Frequencies Filtered (SIG1)') 
subplot(3,1,2);plot(SIG2) 
title('Low and High Frequencies Filtered (SIG2)') 
subplot(3,1,3);plot(SIG3) 
title('Low and High Frequencies Filtered (SIG3)') 
figure 
  
%60Hz Powerline interference Removal 
B=conv([1 1],[0.6310 -0.2149 0.1512 -0.1288 0.1227 -0.1288 0.1512 -0.2149 0.6310]); 



A=1; 
SIG1=filter(B,A,SIG1); 
  
B=conv([1 1],[0.6310 -0.2149 0.1512 -0.1288 0.1227 -0.1288 0.1512 -0.2149 0.6310]); 
A=1; 
SIG2=filter(B,A,SIG2); 
  
B=conv([1 1],[0.6310 -0.2149 0.1512 -0.1288 0.1227 -0.1288 0.1512 -0.2149 0.6310]); 
A=1; 
SIG3=filter(B,A,SIG3); 
  
subplot(3,1,1);plot(SIG1) 
title('60Hz Powerline Filtered (SIG1)') 
subplot(3,1,2);plot(SIG2) 
title('60Hz Powerline Filtered (SIG2)') 
subplot(3,1,3);plot(SIG3) 
title('60Hz Powerline Filtered (SIG3)') 
figure 
  
%QRS Detection Using Pan-Tompkins Algorithm 
  
%Differentiation 
Derivative_SIG1=diff(SIG1);      
  
Derivative_SIG2=diff(SIG2);      
  
Derivative_SIG3=diff(SIG3);  
  
subplot(3,1,1);plot(Derivative_SIG1) 
title('Differentiated (SIG1)') 
subplot(3,1,2);plot(Derivative_SIG2) 
title('Differentiated (SIG2)') 
subplot(3,1,3);plot(Derivative_SIG3) 
title('Differentiated (SIG3)') 
figure 
  
%Squaring 
Squaring_SIG1=(Derivative_SIG1.*Derivative_SIG1); 
  
Squaring_SIG2=(Derivative_SIG2.*Derivative_SIG2); 
  
Squaring_SIG3=(Derivative_SIG3.*Derivative_SIG3); 
  
subplot(3,1,1);plot(Squaring_SIG1) 
title('Squared (SIG1)') 
subplot(3,1,2);plot(Squaring_SIG2) 
title('Squared (SIG2)') 
subplot(3,1,3);plot(Squaring_SIG3) 
title('Squared (SIG3)') 
figure 



  
  
%Integration 
window=ones(1,54); 
  
Integration_SIG1=medfilt1(filter(window,1,Squaring_SIG1),10); 
  
Integration_SIG2=medfilt1(filter(window,1,Squaring_SIG2),10); 
  
Integration_SIG3=medfilt1(filter(window,1,Squaring_SIG3),10); 
  
subplot(3,1,1);plot(Integration_SIG1) 
title('Integrated (SIG1)') 
subplot(3,1,2);plot(Integration_SIG2) 
title('Integrated (SIG2)') 
subplot(3,1,3);plot(Integration_SIG3) 
title('Integrated (SIG3)') 
figure 
  
%Thresholding 
maxvalue=max(Integration_SIG1); 
Threshold_SIG1=maxvalue*0.2;     
  
maxvalue=max(Integration_SIG2); 
Threshold_SIG2=maxvalue*0.2;     
  
maxvalue=max(Integration_SIG3); 
Threshold_SIG3=maxvalue*0.2;     
  
subplot(3,1,1);plot(Threshold_SIG1) 
title('Threshold (SIG1)') 
subplot(3,1,2);plot(Threshold_SIG2) 
title('Threshold (SIG2)') 
subplot(3,1,3);plot(Threshold_SIG3) 
title('Threshold (SIG3)') 
figure 
  
%QRS Searching 
position_region_SIG1=Integration_SIG1>Threshold_SIG1; 
left=find(diff([0 position_region_SIG1])==1); 
right=find(diff([position_region_SIG1 0])==-1); 
  
for i=1:length(left) 
[maxvalue_SIG1(i) maxlocation_SIG1(i)]=max(Integration_SIG1(left(i):right(i))); 
end 
  
%plot(maxvalue_SIG1); 
%title('maxvalue_SIG1 ecg') 
%figure 
  



plot(maxlocation_SIG1); 
title('maxlocation_SIG1') 
figure 
  
  
  
position_region_SIG2=Integration_SIG2>Threshold_SIG2; 
left=find(diff([0 position_region_SIG2])==1); 
right=find(diff([position_region_SIG2 0])==-1); 
  
for i=1:length(left) 
[maxvalue_SIG2(i) maxlocation_SIG2(i)]=max(Integration_SIG2(left(i):right(i))); 
end      
  
%plot(maxvalue_SIG2); 
%title('maxvalue_SIG2 ecg') 
%figure 
  
plot(maxlocation_SIG2); 
title('maxlocation_SIG2') 
figure 
  
  
position_region_SIG3=Integration_SIG3>Threshold_SIG3; 
left=find(diff([0 position_region_SIG3])==1); 
right=find(diff([position_region_SIG3 0])==-1); 
  
for i=1:length(left) 
[maxvalue_SIG3(i) maxlocation_SIG3(i)]=max(Integration_SIG3(left(i):right(i))); 
end      
  
%plot(maxvalue_SIG3); 
%title('maxvalue_SIG3 ecg') 
%figure 
  
plot(maxlocation_SIG3); 
title('maxlocation_SIG3') 
figure 
  
%subplot(3,1,1);plot(position_region_SIG1) 
%title('position_region (SIG1)') 
%subplot(3,1,2);plot(position_region_SIG2) 
%title('position_region (SIG2)') 
%subplot(3,1,3);plot(position_region_SIG3) 
%title('position_region (SIG3)') 
%figure 
  
disp('The Heart Beat Rate of SIG1 is ')  
disp(length(maxlocation_SIG1)); 
  



disp('The Heart Beat Rate of SIG2 is ')  
disp(length(maxlocation_SIG2)); 
  
disp('The Heart Beat Rate of SIG3 is ') 
disp(length(maxlocation_SIG3)); 
  
  
  
%%%%optional plot%%%%  
maxposition_SIG1=ones(1,21600)*(-max(SIG1)); %putting 
  
%%%%max value to R locations inorder to plot R locations  
  
maxposition_SIG1(1,maxlocation_SIG1)=max(SIG1);  
  
maxposition_SIG2=ones(1,21600)*(-max(SIG2));  
  
maxposition_SIG2(1,maxlocation_SIG2)=max(SIG2);  
  
maxposition_SIG3=ones(1,21600)*(-max(SIG3));  
  
maxposition_SIG3(1,maxlocation_SIG3)=max(SIG3);  
figure  
  
subplot(3,1,1); 
plot(SIG1)  
title('Signal with detected R waves');  
  
hold on  
plot(maxposition_SIG1,'r')  
legend('Filtered Signal','r'); 
  
subplot(3,1,2);plot(SIG2)  
hold on  
plot(maxposition_SIG2,'r') 
  
subplot(3,1,3);plot(SIG3)  
hold on  
plot(maxposition_SIG3,'r') 
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