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ABSTRACT 

Taking into account all possible factors and create a model of given object on

the base of traditional methods is very difficult and impossible for its practical use. Such

as in the deterministic models the consideration of all factors is impossible, the use of

these models leads to ineffective determination of control parameters. In such case for

operative control of the processes, man-operator makes decision using his long-term

experiences. Taking into consideration all these it is important to develop an intelligent

system on the base of knowledge of the experienced specialists. For such cases one of

effectivemeans for informationprocessing is the use of fuzzy logic [1,2].
In the thesis the implementation of a fuzzy system for modeling nonlinear

systems and predicting exchange rate using parallel architecture and learning

capabilities of adaptive neural network based fuzzy system in MATLAB programming

package is considered.
To solve these problems the state of application problem neuro-fuzzy system for

solving different problems is given. The fuzzy rule base systems have been introduced.

Fuzzy variables, fuzzy membership functions, structure of fuzzy inference system are

given, the functions of main blocks of fuzzy inference system and its operational

principles are described. Also structures and learning algorithms of neural network are

given. mathematical model of neuron, neural network structures such as feedforword,

feedback and different neural network's learning algorithms are described. The fuzzy

inference system structure and neural network's learning associated with matlab tool

box are used for modelling nonlinear systems and predicting exchange rate. The

simulation for modelling of nonlinear objects and predicting exchange rate problems is

carried out on the base of neuro-fuzzy system. Simulation is realized in MATLAB

package, the results of simulation are analyzed. In conclusion the obtained important

results and contributionfrom the thesis are presented.
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INTRODUCTION 

The traditional artificial intelligence systems mainly based on the symbolic

information processing. Despite successes of traditional artificial intelligence systems

in developing of different systems for solving problems, automatically proving

theorems, recognizing patterns as well as in constructing game systems, expert systems,

natural language understanding systems, the expectations have not been approved. All

traditional artificial intelligent systems widely used in various areas of human activity

have been realized on the base of hard computing, often using computers. In the last

years the significant improvement can be noticed in number of applied artificial

intelligence systems based on neural networks, fuzzy logic, evolutionary programming.

There are number of research works, publications, which are devoted to fuzzy logic,

genetic algorithms, neural computing etc. This allows the scientists to focus their

investigations on artificial intelligence systems that make a shift nearer to Soft

Computing [2].
Soft Computing (SC) methodology includes new computational approaches as

fuzzy logic (NN), neural networks (NN), evolutionary computation, probabilistic

reasoning (PR) and so on. These approaches allow solving many important real-world

problems, where their solutions were impossible using traditional artificial intelligence

methods.
In soft computing fuzzy logic is concerned in the main with imprecision and

approximate reasoning, neural network with learning, probabilistic reasoning with

uncertainty, and genetic algorithm with global optimization and searching and chaos

theory with nonlinear dynamics. SC methodology considers the development of the

system which combines of the above mentioned components. In this thesis we will

considertwo of them fuzzy logic and neural networks and their combination.

Fuzzy set theory was found to be a very effective mathematical tool for dealing

with the modeling and control aspects of complex industrial and not industrial processes

as an alternative to other, much more sophisticated mathematical models. Further, the

latter circumstance led to the appearance at the beginning of the 1970's of fuzzy logic

computer controllers which became a powerfully tool for coping with the complexity

and uncertainty with which we are faced in many real world problems of industrial

process control. The first investigations in this field had to answer the question: Is it

I
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possible to realize a process controller which deals like a man with the involved

linguistic information? The result of these inquires led to the design of the first fuzzy

control systems which implemented in hardware and software a linguistic control

algorithm. A control engineer can formulate such a control algorithm on the base of the

interviews and with human experts who currently work as process operators. But fuzzy

system has such disadvantage as knowledge acquisition, learning properties. To avoid

from this problem the combination of fuzzy logic and neural network is considered.

Neural networks called connectionist systems are designed to model certain

aspects of the human brain. They consist of simple processing elements (neurons) that

exchange signals along weighted connections. By modeling the operation principle of

neural structures one can get adequate mathematical models. Neural networks have such

characteristics as: vitality, parallelism of computations, learning and generalization

abilities, analytic description of linear and non-linear problems etc. Due to these

characteristics neural network becomes of great importance for application in such areas

such as artificial behavior, artificial intelligence, theory of control and decision making,

identification, optimal control, robotics etc. [22].
Neuro-fuzzy combinations are considered for several years already. However,

the term neuro-juzzy still lacks of proper definition.Neuro-Juzzy means the employment

of heuristic learning strategies derived from the domain of neural network theory to

support the development of a fuzzy system.Neuro-fuzzy approaches provide simple and

efficient learning algorithms to derive fuzzy systems from data. Where neuro-fuzzy

methods are useful for small problem sizes, graphical models can be used to model less

simple interdependencies of variables for larger problems. Like Bayesian networks in

probabilistic modeling, probabilistic networks can be learned from data to discover and

to describe complex relationships [3-7].
In chapter one the state of application problem neuro-fuzzy system for solving

different problems is given. The importance and advantages of used methodology have

been clarified.
In chapter two fuzzy rule base has been introduced. Fuzzy variables, fuzzy

membership functions, structure of fuzzy inference system are given, the functions of

mainblocks of fuzzy inference system and its operational principles are described.

'
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In chapter three structures and learning algorithms of neural network are given.

Mathematical model of neuron, neural network structures such as feedforword,

feedback and different neural network's learning algorithms are described.

In chapter four development of neural network based fuzzy inference system

(NFIS) is given. Structure, operation principles and algorithms ofNFIS are presented.

In chapter five development and simulation of neuro fuzzy system for modeling

of nonlinear objects and predicting exchange rate problems is carried out. Simulation is

realized by using MATLAB package, the results of simulation are analyzed. In

conclusion the obtained important results and contribution from the thesis are presented.

Due to the advantages of neuro-fuzzy systems they began widely used in

different areas. The aims of the work presented with this thesis are:

1. To obtain neural network learning of fuzzy inference systems (neuro-fuzzy

system) to solve two different dynamic and statistic problems.

2. Modeling of nonlinear object.

3. Predicting exchange rate of Turkish Lira versus US Dollar.

4. To prove the efficiency of the solved different problems.

'



CHAPTER 1: NEURAL LEARINING OF FUZZY SYSTEM AND 

ITS APPLICATION FOR SOLVING INDUSTRIAL PROBLEMS 

ı\a\e \\t a~~\ka\\\\\\ ~T\\b\em~ \\t n.euTo-tu'l..~ ~~~tem~ 

1.1. Overview 

In this chapter state of applicationproblems of neuro-iuzzy systems for solving

•an industrial problems are corısıdered. Tfıe marn ôttuıctıes of tfıe development of

ork and fuzzy systems in addition to their advantages are described.

Fuzzy logic and Neural networks have been successfully applied to many of

industrial spheres, in robotics, in complex decision-making and diagnostic system, for

data compression, in TV and others. Fuzzy sets can be used as a universal approximator,

which is very important for modeling unknown objects. Fuzzy technology has such

characteristics as interpretability, transparency, plausibility, graduality, modeling,

reasoning, imprecision tolerance. Neural networks have such capabilities as parallel

processing, learning characteristics, and description of nonlinear function. In spite of

these characteristics they have some disadvantages. Weakness of fuzzy logic is

knowledgeacquisition, learning,neuralnetworks-blackbox, interpretability

To increase the quality of the control system the development of them on the

base of combination of soft computing components are preferable. These combinations

allow creating hybrid systems for helping to overcome these disadvantages.
I

Hybrid systems are defined in many different ways. In a simple way, hybrid

systems are those composed by more than one intelligent system. Hybrid systems are

expected to be more powerful due to the combining advantages of different intelligent

techniques. Among the most popular hybrid models are the Neuro-Fuzzy systems,

Neuro-Genetic systems,Neural-Statistic systems and Fuzzy-Genetic systems.

The complexity and dynamics of real-world problems, especially in engineering

and manufacturing, require sophisticated methods and tools for building on-line,

adaptive intelligent systems. Such systems should be able to grow as they operate, to

4
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update their knowledge and refine the model through interaction with the environment,

that is the systems should have an ability of learning [26].

Among the different approaches to intelligent computation, fuzzy logic provides

a strong framework for achieving robust and yet simple solutions. Fuzzy logic can be

further strengthened by the introduction of learning capabilities, such as those of

artificial neural networks. A large number of adaptive fuzzy or neuro-fuzzy models

have been reported in the literature, which aim at amalgamating the benefits of both

computational approaches, namely the learning capabilities of neural networks and the

representation power and transparency of fuzzy logic systems [12].

A Neuro-Fuzzy system combine the learning capabilities of neural networks

with the linguistic rule interpretation of Fuzzy inference systems. The basic idea of a

neuro-Fuzzy system is the implementation of a Fuzzy Inference System under the

distributed parallel architecture of a neural net, thus taking advantage of the learning

capabilities of the neural networks. There are many research works in the world about

applicationof neuro-fuzzy system for solving different problems.
Classical control theory usually requires a mathematical model for designing the

controller [27]. The inaccuracy of mathematical modelling of the plants usually

degrades the performance of the controller, especially for nonlinear and complex,

control problems. Recently, the advent of the fuzzy logic controllers (FLC's) and the

neural controllers based on multilayered back-propagation neural networks (BPNN's)

has inspired new resources for the possible realization of better and more efficient

control [31]. They offer a key advantage over traditional adaptive control systems. That

is, they do not require mathematical models of the plants. The concept of fuzzy logic

has been applied successfullyto the control of industrial /processes. Conventionally, the

selection of fuzzy if-then rules often relies on a substantial amount of heuristic

observation to express proper strategy knowledge. Obviously, it is difficult for human

experts to examine all of the input-output data from a complex system to find a number

of proper rules for the FLC. For a BPNN, its nonlinear mapping and self-learning

abilities have been the motivating factors for its use in developing intelligent control

systems. Although (BPNNs) here demonstrated high potential in the non-conventional

branch of adaptive control, their long training time usually discourages their

applications in industry. Moreover, when they are trained on-line to adapt to plant

5



variations, the over-tuned phenomenon usually occurs. To overcome the weakness of

the BPNN, in this a neural fuzzy inference network (NFIN) is proposed to be suitable

for adaptive control of practical plant systems in general. The NFIN is inherently a

modified Takagi-Sugeno-Kang (TSK) type fuzzy rule-based model possessing a neural

network's learning ability. In contrast to the general adaptive neural fuzzy networks,

where the rules should be decided in advance before parameter learning is performed,

there are no rules initiallyin the NFIN- The rules in the NFIN are created and adapted

as on-line learning proceeds via simultaneous structure and parameter identification.

The NFIN has been applied to a practical control system. As compared to the BPNN

under the same training procedure, the simulated results show that not only can the

NFIN greatly reduce the training time and avoid the over-tuned phenomenon, but the

NFIN also has perfect regulation ability. The performance of the NFIN is also compared

to that of the traditional, controller and fuzzy logic controller (FLC) on the control

system [ 13]. The three control schemes are compared through experimental studies with

respect to set-points regulation, ramp-points tracking, and the influence of unknown

impulse noise and large parameter variation in the control system. It is found that the

NFIN control schemehas the best control performance of the other control schemes.

The architecture and learning procedure underlying ANFIS (adaptive network

fuzzy system), which is a fuzzy inference system implemented in the framework of

adaptive networks by using a hybrid learning procedure.
When the design of fuzzy controller is considered, the main inconvenient of

Fuzzy Controller Systems is to determine the rule base, due to the complexity of the

plant. Sometimes it is also very difficult to create an appropriate rule base when using

the aid of an expert-man. The Neuro-Fuzzy Controller system offers the possibility to

create this rule base automatically through a learning phase, evaluating the error

response of the system.
A neural fuzzy inference network is proposed to overcome the disadvantages of

the BPNN and FLC. The NFIN is a fuzzy rule-based network possessing a neural

network's learning ability. Compared to other existing neural fuzzy networks [12], a

major characteristic of the network is that no pre-assignment and design of the rules is

required. The rules are constructed automatically during the on-line operation. The

structure-learning phase and the parameter-learning phase, are adopted on-line for the

construction task.

6



One important task in the structure identification of the NFIN is the partition of

the input space, which influences the number of fuzzy rules generated. On-line input

space-partition methods reduce not only the number of rules generated but also the

number of fuzzy sets in each dimension. Another feature of the NFIN is that it can

optimally determine the consequent part of fuzzy if-then rules during the structure-

learning phase.
There are different ways of creating a neuro-fuzzy system. One in the ANN-

fuzzy controller structure proposed in[Lin 94]. This structure has five layers. Layer 1 is a

transparent layer; it just transmits input values directly to the next level. Layer2

calculates the membership degrees. Layer3 find the matching degrees of any rule.

Layer4 integrates the rules strengths and Layer5 calculates the output.

The idea of using neural networks to design membership functions was proposed

by Takagi and Hayashi, and it involved the design of multidimensional membership

functions. Many models with this approach have been used. Lin and Lee proposed a

neural-network-based model for fuzzy logic control/decision systems. The model

represents a feed-forward neural network. Input nodes represent input signals and

output nodes represent output decisions or signals. Nodes in the hidden layers

implement membership functions and fuzzy logic rules. The system is a fuzzy inference

system; however, it uses distributed representation and learning algorithms of a neural

network. Parameters representing membership functions are determined using a back­

propagation learning algorithm or a gradient-descent technique.

Pal and Mitra [16] proposed a similar model. In their model, inputs are fed to a

preprocessor block, which performs the same functions as that of the fuzzifier block in a

fuzzy inference system. The output of the preprocessor represents fuzzy membership

values. For each input variable term, variables such as low, medium, and high are used.

If input consists of n variables, then the preprocessor block yield m x n outputs, where

m represents the number of term values used in the model. The output of the

preprocessor block is then fed to a multilayer perceptron model. The perceptron model

implements the inference engine. Pal and Mitra have used the model for classifying

vowels. Kulkarni has developed a similar model and has used it for multispectral image

analysis[ 16].

'
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Kasko suggested models for fuzzy associative memory. In unsupervised

classification, the application of fuzzy logic to classical clustering algorithms has

resulted in a number of models [4].

An algorithm called the adaptive fuzzy leader clustering has been suggested

[18]. The algorithm is similar to the fuzzy adaptive resonance theory. Also, models for

fuzzy competitive learning have been developed. In classical clustering methods, a

sample is assigned to one class only. However, with fuzzy clustering, for any given

input sample, membership values for all output classes are evaluated. The cluster

centers or weights representing the centers are updated using these membership values.

In [15] the constructing of neuro-fuzzy system for controlling water distribution

network. This system is characterized by two types of faults or uncertainties in such a

system: measurement errors caused by equipments and topological errors caused by

faults due to the leakage and wrong valve status. Measurement errors are not correlated

and thus the measurements with error can be discarded. But the detection and

identification of topological errors are still not studied comprehensively. The

Generalized Fuzzy Min-Max Neural Networks (GF:rv1N.1 NN) approach for clustering

and classification is applied for this purpose. This is a fully integrated hybrid structure.

The neuro-fuzzy recognition system is used to identify and detect a leakage in

the system. The training data set is generated by the system state estimation procedure

combined with the Confidence Limit Algorithm (CLA) for the quantification of

inaccuracies of system state estimation due to uncertainties in input data. The state

estimation procedure is based on the mass balances in each node and the specific

measurements taken on the node. The neuro-fuzzy recognition considered here is based

on the hyperbox fuzzy sets. The hyperbox defines a region of n-dimensional pattern

space and is defined by its min-max points. The hyperbox created during the training

can represent a distinctive state of the system such as the normal operating state, a

leakage between two nodes etc.

A neural network that implements the GF:rv1N.1 clustering/classification algorithm

is a three- layered feedforward network. The input layer has 2*n number of nodes, two

for each of the n-dimensions of the input pattern. Each node in the second layer

represents a hyperbox fuzzy set. The connections in the 1 st and 2"d layer are min-max

points and the transfer function is the hyperbox membership function. Each node in the

third layer represents a class. The connections between znd and 3rd layer are binary

'
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values: I if the second layer hyperbox fuzzy set is a part of the class represented by the

output layer node and O otherwise. They are stored in a matrix form. The output can be

either fuzzy or crisp.
Generation of the training data set of the networks is done in 3 stages:

simulation of the state, estimation of accurate measurements and the CLA. Leakage of

the system is simulated as a demand between two nodes and not as a pressure

difference. Reservoir inflows and the other network consumption are adjusted to

compensate the additional demand. The wrong operation of a valve is simulated in a

way that the valves those are usually open, remain as closed.
The recognition system developed is a two-level system where the first level is

to distinguishthe typical behavior of the system (such as night load, peak load etc.) and

the second level is to detect the anomalies. The result of this approach shows that the

neuro-fuzzy system can be trained successfully for the estimated system-state as well as

the residuals with their confidence limit. Both have advantages and disadvantages,

however, the simulation of a system based on the estimated system state gives better

results in terms of accuracy.
The stand alone structure of the hybrid system is applied for controlling the tank

level in solvent dewaxing (oil refinery) plant. The controlling purpose is to keep the

tank level stable and to change the outflow rate from the tank as smoothly as possible in

order to keep the whole process normal and continuous. The whole dewaxing process

itself is difficult to be controlled because of uncertainties and complexities, therefore,

usually is controlled by the experts. The difficulty occurs due to the following reasons:

the inflow rate to the tank varies with oil filter plugging, feed oil is switched on

frequently, the heater has a limit in the change of the flow rate, two different states to

control (steady and transient) etc. The steady state is when the tank level goes down and

up periodicallyby stopping and washing one of the oil filters. A transient state occurs

when in addition to the above, the feed oil is changed completely, which results the tank

level to drop down rapidly.
In order to deal with these states, the neuro-fuzzy controller is built with the

followingthree components:
1. a statistical component to calculate long time tendencies of the flow rate from

the historical operational data.



2. a correction component (fuzzy logic) for compensating the flow rate from

statistical component to stabilize the tank level. The rule base is built on the

basis of the experts' knowledge.

3. a prediction component (neural networks) to predict the inflow rate when the oil

is being changed. That is the target of the fuzzy logic controller.

Application of the neuro-fuzzy controller smoothes the tank levels not only in a

steady state, but also in transient state when the feed oil is changing. For example,

applying the neuro-fuzzy system the tank level ranges between 35%-75%, while on the

basis of experts' knowledge it ranges between 30%-80% [15].

Detection of faults in anaerobic process using the fuzzy-neural network has been

considered in [13]. The process is very complex as well as unstable and depends on the

incoming flow rate, influent organic load etc. There are problems that are less

predictable such as pipe clogging which causes an increase in valve opening, foam

forming which changes gas flow rate etc. Besides, there are local controllers used to

control the individual processes. But there is no technique using on-line measurements

and handling an ill-defined process as a whole.

The structure of the neuro-fuzzy system is as follows: The measured signals are

transferred into fuzzy variables depending on whether the variable is deviated from the

mean value or not. By using additional fuzzy rules, the occurrence of a faulty situation

in the system is determined.

Another loosely coupled hybrid model of an ANN and fuzzy logic has been

applied for diagnosis of anaerobic treatment plant [13]. The raw data has been

processed by fuzzy logic to build a pattern vector (training data), where training data set

is classified into pre-specified categories indicating the state of the system. An ANN is

then used to classify the process states and to identify the faulty and dangerous states.

The hybrid model recognizes the situations caused by pipe clogging, foam forming and

bad temperature regulation. The approach can be seen as a tool able to handle with large

number of problems in a simple frame.

The neuro-fuzzy system has been found to be a suitable approach for a multi­

purpose reservoir system operation. The study concentrates on the application of a fuzzy

neural network (stand-alone hybrid structure) and a fuzzy system for reservoir operation

and presents a comparison of results obtained. The mathematical expression of dam

operations [17] is difficult and somewhat vague because of the presence of many

'
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different constraints which need to be considered. On the other hand the inflow can be

predicted on the basis of abundantly available hydrological information within the

catchments. The composed system is applied for determining the operation of a

reservoir for irrigation and flood control purposes.
The operation line is determined on the basis of the water level in the reservoir,

changing inflow, inflow and precipitation coupled with actual historical operation. The

neural network used 7 input variables (rainfall, river discharge, predicted flow,

changing inflow, water level and release discharge), one hidden layer with three nodes

(response to dam basin, discharge and the state of the reservoir) and an output layer

with one neuron (describing release of discharge, storage volume or conservation of

water level in the reservoir).
For irrigation purposes, the fuzzy control and neuro-fuzzy control give smoother

release of discharge. The fuzzy control gives better result in terms of storage volume.

For flood control purpose during the typhoon both the controllers give the maximum

release, however, the fuzzy neural networks give higher peak value than the fuzzy

controller.
The above principle was investigated with a six-layered neural network, in

which each layer performs specific actions to represent the fuzzy inference mechanism.

The six layers are the input layer, a fuzzification layer, two layers for fuzzy inferences, a

defuzzification layer and an output layer. The designed controller is applied for

experimental fluid beam balancing system, which balances an unstable beam contained

in two tanks, one at each end pumping back or forward from the tanks. The problem

was formulated as Multiple Input and Single Output (MISO) problem and the real-time

control was evaluated against a PID controller. After a short simulation, the algorithm

gave reasonable results compared to thePlf) controller and further investigation ofRTC

was suggested.

1.3. Implementation ofNeuro-Fuzzy Systems Through Interval Mathematics

Neural network performance is dependent on the quality and quantity of training

samples presented to the network. In cases where training data is sparse or not fully

representative of the range of values possible, incorporation of fuzzy techniques

optimizes performance. That is, while neural networks are excellent classifiers,



introducing fuzzy techniques allow the classification of imprecise data. The neuro-fuzzy

system presented here is a neural network that processes fuzzy numbers. It uses interval

mathematics in its implementation (20].

The neuro-fuzzy system uses a standard feed-forward network as its basis. The

novelty lies in the fact that it processes fuzzy numbers. Specifically, a-cuts of the fuzzy

numbers are represented by interval vectors. The back-propagation with momentum

learning rule is derived for interval variables. The resulting equations are then employed

for training of the system. Thus, the input and output vectors are interval vectors, and

the neuronal operations are modified to deal with the interval numbers. Summation of

the resultant o-cuts (interval numbers) provide the final fuzzy valued output.

Results of the antecedent mentioned Experiments [ 12, 13, 15, 16, 17] show that

the neuro-fuzzy system's performance is vastly improved over a standard neural

network and other existing methods for speaker-independent speech recognition, an

extremely difficult classification problem.

Processing fuzzy numbers can be accomplished in a variety of ways. One of the

most elegant, because of its simplicity, is by using interval methods.

1.4. Summary 

The online self construction and organization property of neuro-fuzzy systems

reduces the design efforts and error as compared to other existing intelligent systems

such as Neural Network and Fuzzy System, also this property makes it able to deal with

problems of a changing environment or plant, which can not be handled perfectly by

conventional systems or controllers. The advantages of neuro-fuzzy systems have been

verified.
'

In this chapter the applications of combination of neural networks and fuzzy

system for solving different problems are considered. The types of neuro-fuzzy system

are described. The obtained results from solving identification, control, classification,

optimization, forecasting, ete, problems satisfy the efficiency of application of neuro­

fuzzy systemto differentareas [ 13, 15, 17].

;o,.
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CHAPTER 2: FUZZY RULE BASED SYSTEMS 

2.1. Overview 

The fuzzy method differs significantly from conventional ones. Usually a control

strategy and a controller itself is synthesized on the base of mathematical models of the

object under control involve quantitative, numeric calculations and commonly are

constructed in advance, before realization.

There is a different method where, instructions are comprehend and strategies

are generated based on a priori verbal communication. Most engineers would accept

intuitively that mathematical modelling, which they perform in translating their concept

of a control strategy into an automatic controller, is completely different from their own

approach to a manual performance of the same task. On the other hand, linguistic

description of control seems to be similar to its manual implementation.

Fuzzy systems mainly based on knowledge of experts, this knowledge is often

formulated through fuzzy rule-based format. In the fuzzy rule-based input and output

variables are often characterized by linguistic values. These linguistic values are

describedby membershipfunctions.

In this chapter the main elements of fuzzy rule-based system, its structure, main

blocks, and their operation principles are presented.

2.2. Fuzzy IF-THEN Rules 

Fuzzy if-then rules or fuzzy conditional statements are expressions for the form

IF A THENB,

where A and B are labels of fuzzy sets characterized by appropriate membership

functions. A is premise, B is consequent parts of fuzzy rule. Due to their concise form,

fuzzy if-then rules are often employed to capture the imprecise modes of reasoning that

play an essential role in the human ability to make decisions in an environment of

uncertainty and imprecision.

Usually, the inputs of the fuzzy systems are associated with the premise, and the outputs

are associated with the consequence. These If-Then rules can be represented in many

forms. Its simpleform is Single Input Single Output (SISO). This form has the format

13



If u is A Theny is B (2.1)

Other standard forms, Multi-Input Multi-Output (MIMO) and Multi-Input

Single-Output (MISO), are considered here. The MISO form of a linguisticrule is

If u1 is A/ and u2 is ~and, ..... , and un is A! Then Yq is s: (2.2)

It is an entire set of linguistic rules of this form that the expert specifies on how

to control the system. Note that if u1 ="velocity error" and A(= "positive large", then

"u1 is A/", a single term in the premise of the rule, means "velocity error is positive

large". It can be easily shown that the MIMO form for a rule (i.e. one with consequents

that have terms MISO rules using simple rules from logic. For instance, the MIMO rule

with n inputs and m =2 outputs

If Uı is A/ and U2 is ~and, ..... , and un is A! Then Yı is s; and Y2 is s; (2.3)

Is linguistically(logically)equivalent to the two rules

If Uı is A/ and U2 is ~and, , and unis A! Then Yı is s;
If Uı is A( and Uz is ~and' , and un is A:, Then Yı is s;

This is the case since the logical "and" in the consequent of the MIMO rule is

still represented in the two MISO rules since it still assert that the both the first "and"

second rule are valid. For implementation, then two fuzzy systems should be specified,

one with output y1 and the other with the output y, . The logical "and" in the

consequent of the MIMO rule is still represented in the MISO case since by

implementation two fuzzy systems asserting that the ones set of rules is true "and"

another is true. An example that describes a simple fuzzy rule is

#

If pressure is high, then volume is small

Wherepressure and volume are linguistic variables, high and small are linguistic values
~,..

or labels that are characterized by membershipfunctions.

14
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Figure 2.1 Examples of membership functions. Read from top to bottom, left to right:

(a) s-function, (b) 1t- function, (c) z-function, (d-f) triangular versions, (g-i)

trapezoidal versions, (j) flat 1t- function. (k) rectangle. (I) singleton.

Membership functions can be flat on the top, piece-wise linear and triangle

shaped, rectangular, or ramps with horizontal shoulders. Figure.2.1 shows some typical

shapes of membership functions.

A common example of a function that produces a bell curve is based on the

exponential function,

,

µ(x)= exp [-(x- Xo)ıl
Z a 2 (2.4)

This is a standard Gaussian curve with a maximum value of 1 ,x is the independent

variable on the universe, x to is the position of the peak relative to the universe, and o is

the standard deviation. Another definition which does not use the exponential is

µ (x) = [ı+(x~x, rr (2.5)
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Triangle membership function is described by

µ (x)=

x-x 1---
X-Xı

x-x l---
xr-x X <X<Xr

X1 <X <X

(2.6)

Another form of fuzzy if-then rule, proposed by Takagi and Sugeno, has fuzzy

sets involved only in the premise part. In this method, the consequent part is just a

mathematicalfunction of the input variables. The format of the method is:

ifAı(xıJ, A2(x2J, ... , An(xn) then Y= f(xıı Xz, ... 1 xn). (2.7)

The antecedent (premise) part is fuzzy. The functionfin the consequent part is
usuallya simplemathematicalfunction, linear or quadratic:

j = ao + al * Xı + a2 * Xı +···+an* Xn (2.8)

By using Takagi and Sugeno's fuzzy if-then rule, the resistant force on a moving
object can be described as follows:

Ifvelocity is high, thenforce= k * (velocity/

Here, again, high in the premise part is linguistic label characterized by an

appropriate membership function. However, the consequent part is described by a

nonfuzzy equation of the input variable, velocity.

Both types of fuzzy if-then rules have been used extensively in both modelling

and control. Through the use of linguistic labels and membership functions, a fuzzy if­

then rule can easily capture the spirit of a 'rule of thumb' used by humans. From

another point of view, due to the qualifiers on the premise parts, each fuzzy if-then rule

can be viewed as a local description of the system under consideration. Fuzzy if-then

rules form a core part of the fuzzy inference system to be introduced below.
Op
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2.3. Fuzzy Inference Systems 

Fuzzy inference systems are also known as fuzzy-rule-based systems, fuzzy

associative memories (FAM) [ 14], or fuzzy controllers when used as controllers.

Basically a fuzzy inference system is composed of five functional blocks (see
figure.2.2);

• a rule base containing a number of fuzzy if-then rules;

• a database which defines the membership functions of the fuzzy sets used in the
fuzzy rules;

• a decision-makingunit which performs the inference operations on the rules;

• a fuzzification inference which transform the crisp inputs into degrees of match
with linguisticvalues;

• a defuzzification inference which transform the fuzzy results of the inference
into crisp output.

Usually, the rule base and the database are jointly referred to as knowledge base.

The steps of fuzzy reasoning (inference operations upon fuzzy if-then rules)

performed by fuzzy inference systems are:

1. Compare the input variable with the membership functions on the premise part

to obtain the membership values (or compatibility measures) of each linguistic

label. (This step is often called fuzzification).

2. Combine (through a specific T-norm operator [14], usually multiplication or

min.) the membership values on the premise part to get firing strength (weight)
of each rule.

3. Generate the qualified consequent (either fuzzy or crisp) of each rule depending
on the firing strength.

4. Aggregate the qualified consequent to produce a crisp output. (This step is called
defuzzification.)



I Wpu')

Knowledge Base

c=J ~
Fuzificatio Defuzification
n Interface Interface

~ -

Decision-making
unit

futpu')

Figure.2.2 Structure of fuzzy inference system

2.4. Defuzzfication Methods 

There are many defuzzification methods that can be used in fuzzy inference

system and the followingare the most known ones.

Centre Of Gravity (COG): The crisp output value u is the abscissa under the centre of

gravity of the fuzzy set,

L µ (x;)xi
u=-'--

Liµ (x)
(2.9)

Here X,· is a running point in a discrete universe, and µ(xJ is its membership value in the

membership function. The expression can be interpreted as the weighted average of the

elements in the support set. For the continuous case, replace the summations by

integrals. It is a much used method although its computational complexity is relatively

high. This method is also called centroid of area (27].

,

Centre of gravity method for singletons (COGS): If the membership functions of the

conclusions are singletons,the output value is

I:.µ(s;)s;
U=-'--

Liµ(sJ
(2.10)
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Here sı is the position of singleton i in the universe. and µ (sJ is equal to the firing

strength a i of rule i. This method has a relativelygood computational complexity and u
is differentiablewith respect to the singletons sı, which is useful in neuro-fuzzy systems.

Bisector Of Area (BOA): This method picks the abscissa of the vertical line that

dividesthe area under the curve in two equal halves. In the continuous case,

u ={JIµ (x)dx =Mrµ (x)dx}
""~ın X

(2.11)

Here x is the running point in the universe, µ (x) is its membership.Min is the leftmost

value of the universe, and Max is the rightmost value. Its computational complexity is

relatively high, and it can be ambiguous. For example, if the fuzzy set consists of two

singletons any point between the two would divide the area in two halves; consequently

it is safer to say that in the discrete case. BOA is not defined.

Center Of Average (COA): A crisp output y;rlsp is chosen using the centers of each of

the output membership functions and the maximumcertainty of each of the conclusions

represented with the impliedfuzzy sets, and is given by

Crisp L,:=ı b;q supyq {µ B~ (yq)}
Yq =

L:ı supyq {µ B~(yq)}

where "sup" denotes the "supermum [27]" (i.e., the least upper bound which can often

(2.12)

be thought of as maximum value). Hence, sup, {µ(x)} can be simply thought as the

highestvalue of µ(x). '
Max Criterion: A crisp output y;rlsp is chosen as the point on the output universe of

discourse y q for which the overall impliedfuzzy set Bq achieves a maximum-that is,

yı'"' +rgs~p\µB,(y,)}} (2.13)

Here, "argsup-~{µ(x)}" returns the value of x that results in the supermum of the

function ,Lt(x)being achieved. For example, suppose that µaveraıı(u) denotes the
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membership function for the overall implied fuzzy set that is obtained by taking the

maximum of the certainty values of µ(1) and µ(2) over all u.

Mean Of Maxima (MOM): An intuitive approach is to choose the point with the

strongest possibility i. e. maximal membership. It may happen. Though, that several

such points exist, and a common practice is to take the mean of maxima (MOM). This

method disregards the shape of the fuzzy set, but the computational complexity is

relativelygood.

Leftmost Maximum (LM), and Rightmost Maximum (RM): Another possibility is to

choose the leftmost maximum (LM), or the rightmost maximum (RM). In the case of a

robot, for instance, it must choose between left and right to avoid an obstacle in front of

it. The defuzzifier must then choose one or the other, not something in between. These

methods are indifferent to the shape of the fuzzy set, but the computational complexity

is relativelysmall.

2.5. Types of Fuzzy Systems

Several types of fuzzy reasoning have been proposed in the literature [ 1 I].

Depending on the types of fuzzy reasoning and fuzzy if-then rules employed, most

fuzzy inference systems can be classifiedinto three types (see figure.2.3)

'Type 1: the overall output is the weighted average of each rule's crisp output

introduced by rule's firing strength (the product or minimum of the degrees of match

with the premise part) and the output membership functions. The output membership

functions used in this scheme must be monotonic functions.

Type 2: the overall fuzzy output is derived by applying 'max' operation to the

qualified fuzzy outputs (each of which is equal to the minimum of firing strength and

the output membership function of each rule). The above mentioned schemes are used

to choose the final crisp output based on the overall fuzzy output; for example, centroid

of area, bisector of area, mean of maxima, maximumcriterion, etc.
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Type 3: Takagi and Sugeno's fuzzy if-then rules are used. The output of each

rule is linear combination of input variables plus a constant term, and the output is the

weighted average of each rule's output. Figure 2.3 utilizes a two-rule two-input fuzzy

inference system to show different types of fuzzy rules and fuzzy reasoning mentioned

above. Be aware that most of the differences come from the specification of the

consequent part (monotonically non-decreasing or bell-shaped membership functions,

or crisp function) and thus the defuzzification schemes (weighted average, centroid of

area, ete) are also different.

Premise Consequent

A(---- -----'\
Type3 Typel Type2 

~~~~( /'- \

r· 
CıBı

c, Wı

zl=ax+by+c
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#

z2=px+qy+r

y Zı z z

J}
maX

J} J}Multiplication
Ormin

z=[wıxı+W2X2]/Wı+W2 z=[wıxı+w2x2]/wı+w,

Figure.2.3. Types of fuzzy reasoning mechanisms
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2.6. Summary 

Fuzzy systems mainlybased on knowledge of experts, or generated form sample

data points, this knowledge is often formulated through fuzzy rule-based to fuzzy sets.

Fuzzy sets allow partial memberships. Commonly used membership functions are

triangular, trapezoidal, bell shaped, and Gaussian curves In this chapter the different

forms of fuzzy rules, structure of fuzzy inference system, its main blocks and operation

principle are discussed. The main types of fuzzy rule base and its reasoning mechanism

have been described.

Here we can summarize,why fuzzy system?

• Abilityto translate imprecise/vagueknowledge of human experts.

• Simple,easy to implementtechnology.

• software design and hardware implementation support.

• results are easy to transfer from product to product.

• smooth controller behavior.

I
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CHAPTER 3: NEURAL NETWORKS AND LEARNING 

ALGORITHMS 

3.1. Overview 

A neural network is a massively parallel-distributed processor that has a natural

propensity for storing experiential knowledge and making it available for use. It

resemblesthe brain in two respects:

1. Knowledge is acquired by the network through a learning process.

2. Neuron inter neuron connection strengths known as synaptic weights are used to

store the knowledge.

The procedure used to perform the learning process is called learning algorithm,

the function of which is to modify the synaptic weights of the network in an orderly

fashion so as to attain a desired design objective. The modification of synaptic weights

provides the traditional method for the design of neural networks .

. In this chapter the different mathematical models of neurons, neural networks

structure are considered. The different learning algorithms of neural networks are

presented.

3.2. Models of a neuron 

A neuron is an information-processing unit that is fundamental to the operation

of a neural network.

'
XI activation function

Uk

p(•) Yk output

input

signal

X2

Xp

Synapticweights

summıng

junction ek threshold

Figure 3 .1 Non-linear model of neuron.
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Vk =Uk-ek (3.3)

Three basic elements of neuron can be identified:

1. A set of synapses or connecting links, each of which is characterized by a weight

or strength of its own. Specifically,a signalXj at the input of synapsej connected

to neuron k is multiplied by the synaptic weight WkJ- It is important to make a

note of the manner in which of which of the subscript of the synaptic weight w1c1

is written. The first subscript refers to the neuron in question and the second

subscript refers to the input end of the synapse to which the weight refers; the

reverse of this notation is also used in the literature. The weight wki is positive if

the associated synapse is excitatory and negative if the synapse is inhibitory.

2. An adder for summing the input signals, weighted by the respective synapses of

the neuron; the operation described here constitutes a linear combiner.

3. An activation function for limiting the amplitude of the output of a neuron. The

activation function is also referred in the literature as a "squashing function" in

that it squashes (limits) the permissible amplitude range of the output signal to

some finite value. Typically the normalized amplitude range of the output of a

neuron is written as the closed unit interval [O, 1] or alternatively [-1,1].

The model of a neuron shown in the figure above includes an externally applied

threshold ek, that has the effect of lowering the net input of the activation function. On

the other hand, employing a bias term rather than a threshold may increase the net input

of the activation function; the bias is negative of the threshold.

In mathematicalterms a neuron k may be described by writing the following equations
p

Uk= LWkfXJ
J=I

(3.1)

Yk = p(uk -e") (3.2)

where x1,xı, ,xp are the input signals, wkı,wk2, ,wıcp are the synaptic weights of

neuron k, Uk is the linear combiner, ~ is the threshold, p( •) is the activation function,

andYk is the output signalof the neuron.

The use of threshold ~ has the effect of applying an affine transformation to the output

Uk ofthe linear combiner in the model shown above as follow:

,J;!-
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In particular, depending on whether the threshold ek is positive or negative, the

relationship between the effective internal activity level or activation potential vK of

neuron k and the linear combiner output Uk is modified in manner illustrated in the

figure below, note that as a result of this affine transformation, the graph of vk versus Uk

no longer passes through the origin.

Total internal activity level

Vk 

Threshold 0k<O

...··' 0k=O...........•..

•....../·

(..,

0k>O

Uklinearcombiner'soutput

Figure 3.2 Affinetransformation produced by the presence of a threshold.

3.2.1. Types Of Activation Function

The activation function denoted by p(•), defines the output of a neuron in terms

of the activity level at its input. There are three basic types of activation functions:

a) Hard Activation Function, for this type of activation functions described in the

figure below, the output of neuron k employing such a threshold function is expressed

as:

{
1,

Yk = O,
if vk ~ O
if vk < O

Where vk is the internal activity level of the neuron; that is
p

vk = LW.kJXj -ek
j=I

(3.4)
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Figure 3 .3 Hard activation function.

b) Piecewise-Linear Function, for this type described in the figure below. This form of

activation function may be viewed as an approximation to a non-linear amplifier. The

following two situations may be viewed as special forms of the piecewise-linear

function:

1- A linear combinerarises if the linear region of operation is maintainedwithout

running into saturation.

2- The piecewise-linearfunction reduces to a threshold function if the

amplificationfactor of the linear region is made infinitelylarger.

. p(•)

Figure 3.4 Piecewise linear function.

{

l '
p(v) = ~

v z 1/2
+112>v>-112

V s -1/2

c) Sigmoid Function, is the most common form of activation functions used in the

construction of artificial neural network. It is defined as strictly increasing function that

exhibitssmoothness and asymptotic properties, an example of sigmoid function is the

logistic function, definedby:

1
p(v) = 1 + exp(-av)
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where a is the slope parameter of the sigmoid function. By varying the parameter a
sigmoidfunction of different slopes can be obtained, as illustrated in the figure below.

In fact, the slope at the origin equals a/4. In the limit, as the slope parameter approaches

infinity,the sigmoidfunction becomes simplythreshold function.

p(•)

6

Figure 3.5 Sigmoid functions.

Whereas a threshold function assumes the value of O or 1, a sigmoid function

assumes a continuous range of values from O to 1.

It is noted that the sigmoid function is differentiable whereas the threshold

function is not. It is some times desirable to have activation function of range from -1 to

+ 1, in which case the activation function assumes an antisymmetric form with respect to

the origin.

{

1 '
p(v) = ~

v>O 
v=O 
v<O 

Which is commonlyreferred to as the signumjunction [9].

'
d) Gaussian Activation Function. The Gaussian activation function is a radial function

(symmetric about the origin) that requires a variance value, v>O, to shape the Gaussian

function. In some networks is used

in conjunction a dual set of connections.

(e)_ııı .......-:::: y I ::::::,.,,, lııı x

Figure 3.6 Gaussian Activation Function
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e) Linear Activation Function. A linear function produces a linearly modulated output

from the input.

p(v) =av+b

p(x

X

Figure 3.7 Linear Activation Function

3.2.2. Communication and Types Of Connections 

Neurons are connected via a network of paths carrying the output of one neuron

as input to another neuron. These paths is normally unidirectional, there might however

be a two-way connection between two neurons, because there may be another path in

reverse direction. A neuron receives input from many neurons, but produces a single

output, which is communicated to other neurons.

The neuron in a layer may communicate with each other, or they may not have any

connections. The neurons of one layer are always connected to the neurons of at least

another layer.

3.2.2.1. Inter-Layer Connections 

There are different types of connections used between layers; these connections

between layers are called inter-layer connections.

• Fully connected; each neuron on the first layer is connected to every neuron on

the second layer.

• Partially connected; a neuron of the first layer does not have to be connected to

all neurons on the second layer.

• Feed forward; the neurons on the first layer send their output to the neurons on

the second layer, but they do not receive any input back form the neurons on the

second layer.

• Bi-directional; there is another set of connections carrying the output of the

neurons of the second layer into the neurons of the first layer.
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Feed forward and bi-directional connections could be fully or partially

connected.

• Hierarchical; if a neural network has a hierarchical structure, the neurons of a

lower layer may only communicate with neurons on the next level of layer.

• Resonance; the layers have bi-directional connections, and they can continue

sending messages across the connections a number of times until a certain

condition is achieved.

3.2.2.2. Intra-Layer Connections 

In more complex structures the neurons communicate among themselves within

a layer, this is known as intra-layer connections. There are two types of intra-layer

connections.

• Recurrent; The neurons within a layer are fully- or partially connected to one

another. After these neurons receive input form another layer, they communicate

their outputs with one another a number of times before they are allowed to

send their outputs to another layer. Generally some conditions among the

neurons of the layer should be achieved before they communicate their outputs

to another layer.

• On-center/off surround; A neuron within a layer has excitatory connections to

itself and its immediate neighbours, and has inhibitory connections to other

neurons. One can imagine this type of connection as a competitive gang of

neurons. Each gang excites itself and its gang members and inhibits all members

of other gangs. After a few rounds of signal interchange, the neurons with an

active output value will win, and is allowed to update its and its gang members

weights. (There are two types of connections between two neurons, excitatory or

inhibitory. In the excitatory connection, the output of one neuron increases the

action potential of the neuron to which it is connected. When the connection

type between two neurons is inhibitory, then the output of the neuron sending a

message would reduce the activity or action potential of the receiving neuron.

One causes the summing mechanism of the next neuron to add while the other

causes it to subtract. One excites while the other inhibits.)
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Output layer

3.3. Neural Network's Architectures 

Often, it is convenient to visualize neurons as arranged in layers. Typically, neu­

rons in the same layer behave in the same manner. Key factors in determining the

behavior of a neuron are its activation function and the pattern of weighted connections

over which it sends and receives signals. Within each layer, neurons usually have the

same activation function and the same pattern of connections to other neurons. To be

more specific, in many neural networks, the neurons within a layer are either fully

interconnected or not interconnected at all. If any neuron in a layer (for instance, the

layer of hidden units) is connected to a neuron in another layer (say, the output layer),

then each hidden unit is connected to every output neuron.

The arrangement of neurons into layers and the connection patterns within and

between layers is called the net architecture. Many neural nets have an input layer in

which the activation of each unit is equal to an external input signal. The net illustrated

in figure 3. 8 consists of input units, output units, and two hidden units (the units that are

neither an input unit nor an output unit).

Input layer first hidden
layer

second hidden
layer

Figure 3.8 Architectural graph of a feed-forward neural network with two hidden layers.
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Neural nets are often classified as single layer or multilayer. In determining the

number of layers, the input units are not counted as a layer, because they perform no

computation. Equivalently, the number of layers in the net can be defined to be the

number of layers of weighted interconnect links between the slabs of neurons. This

view is motivated by the fact that the weights in a net contain extremely important

information. The net shown in Figure 2.8 has three layers of weights. The multilayer net

illustrated in Figures 2.8 is example of feedforward net-net in which the signals flow

from the input units to the output units, in a forward direction.
The fully interconnected competitive net in figure 3. 9 is an example of a

recurrent net, in which there are closed-loop signal paths from a unit back to itself

Input
layer

Hidden
layerl

Hidden
layer2

Input
layer

Figure 3.9 Recurrent neural network

3.3.1. Single-Layer Net 

A single-layer net has one layer of connection weights. Often, the units can be

distinguished as input units, which receive signals from the outside world, and output

units, from which the response of the net can be read. In the typical single layer net

shown in Figure 3 .1 O, the input units are fully connected to output units but are not

connected to other input units, and the output units are not connected to other output

units. By contrast, the Hopfield net architecture, shown in Figure 3 .1 O, is an example of

a single-layernet in which all units function as both input and output units. For pattern

classification, each output unit corresponds to a particular category to which an input

vector may or may not belong.
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Figure 3. 1 O a single layered

For a single layer net, the weights for one output unit do not influence the

weights for other output units. For pattern association, the same architecture can be

used, but now the overall pattern of output signals gives the response pattern associated

with the input signal, that caused it to be produced. These two examples illustrate the

fact that the same type of net can be used for different problems, depending on the

interpretation of the response of the net.

3.3.2. Multilayer Net 

A multilayer net is a net with one or more layers (or levels) of nodes (the so -

called hidden units) between the input units and the output units. Typically, there is a

layer of weights between two adjacent levels of units, (input, hidden, or output). As

shown in figure 3.8. Multilayer nets can solve more complicated problems than, can

single-layernets, but training may be more difficult. However, in some cases, training

may be more successful, because it is possible to solve a problem that a single-layernet

cannot, be trained to perform correctly at all.

3.4. Learning Process 

Among the many interesting properties of neural network, the property that is of

a primary significanceis the ability of the network to learn from its environment, and to

improve its performance through learning; the improvement of performance takes place

over time in accordance with some prescribed measure.

The neural network learns through an iterative process of adjustments applied to

its synaptic weightsand thresholds. Ideally, after each iteration of the learning process-
the network becomes more knowledgeable about the environment.

32



Learning is a process by which the free parameters of a neural network are

updated through a continuing process of stimulation by the environment in which the

network is embedded. The type of learning is determined by the manner in which the

parameter changes take place.

This definition of the learning process implies the following sequence of events:

1- The neural network is stimulated by an environment.

2- The neural network undergoes changes as a result of this stimulation.

3- The neural network responds in a new way to the environment, because of the

changes that have carried in its internal structure.

To be specific, a pair of node signals x1 and vk connected by a synaptic weight

wk1, are considered as shown in the figure below. Signal x1 represents the output of

neuron j, and signal vk represents the internal activity of neuron k. In the context of

synaptic weight Wkf, the signals x1 and vk are commonly referred to as pre-synaptic and

postsynaptic activities, respectively. Let wkı(n) denotes the value of the synaptic weight

Wkf at a time n. at time n an adjustment Ltwkı(n) is applied to the synaptic weight w1q{n),

yielding the updated value w1q(n+ 1), where

wkJ(n + 1) = w,q(n) + AwkJ(n) (3.5)

Where Wkf(n) and Wkf(n+ 1) may be viewed as old and new values of the synaptic weight

wkJ, respectively.

p(vı) p(vk)

Xj Yk
\... .,)

V
neuron) neuron k

Figure 3. 11 Signal-flow graph depicting a pair of neurons j and k

embedded in a neural network; both neurons are assumed to have

the same activity function p(•).
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The above mentioned equation sums up the overall effect of events 1 and 2

implicit in the definition of the learning process presented above. In particular, the

adjustment Llw1g{n) is computed as a result of stimulation by the environment (event 1 ),

and the updated value w1q(n+ 1) defines the changes made in the network as a result of

this stimulation (event 2). Event 3 takes place when the response of the new network,

operating with updated set of parameters {w1g{n+ 1)}, is revaluated.

A prescribed set of well-defined rules for the solution of a learning problem is called a

learning algorithm [30].

3.5. Learning Algorithms 

There is no unique learning algorithm for the design of the neural networks.

Rather, a "kit of tools" are represented by a diverse variety of learning algorithms, each

of which efforts advantages of its own. Basically, learning algorithms differ from each

other in the way in which the adjustment Llwk; to the synaptic weight wk; is formulated.

Another factor to be considered is the manner in which the neural network relates to its

environment.

3.5.1. Supervised Learning 

An essential ingredient of supervised or active learning is the availabilityof an

external teacher (supervisor) as indicated in the figure below

desired response
Teaclıer

(supervisor)environment

Learning
system

.--Error signal

Figure 3 .12 Block diagram of supervised learning system
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Conceptually, it is thought that the supervisor or the teacher as having

knowledge of the environment that is represented by a set of input-output examples.

The environment is, however, unknown to the neural network. Suppose that the teacher

and the N.N are both exposed to a training vector drown from the environment.

By virtue of built in knowledge, the teacher is able to provide the neural network

with a desired or target response for that training vector. Indeed the desired response

represents the optimum action to be performed by the N.N. The network parameters are

adjusted under the combined influence of the training vector and the error signal; the

error signal is defined as the difference between the actual response of the network and

the desired response. This adjustment is carried out iteratively in a step-by-step fashion

with the aim of eventually making the neural network emulate the teacher, the

emulation is presumed to be optimal in some statistical sense. In other words,

knowledge of the environment available to the teacher is transferred to the neural

network as fully as possible. When this condition is reached then the teacher may be

dispensed and the neural network deals with the environment completely by it self (i.e.

in an unsupervised fashion).
The supervised learning is a closed-loop feedback system. The mean-squared

error defined as a function of the free parameters may be used as a performance

measure of the system. This function may be visualized as a multidimensional error­

performance surface. The true error surface is averaged over all possible input-output

examples. Any given operation of the system under the teacher's supervision is

represented as a point on the error surface. For the system to improve performance over

time and therefore learn from the teacher, the operating point has to move down

successivelytoward a minimumpoint of the error surface. A supervised learning system

is able to do this by virtue of some useful information it has about the gradient of the

error surface corresponding to the current behavior of the system. The gradient of an

error surface at any point is a vector that points in the direction of the steepest descent.

In fact in the case of supervised learning from example; the system uses an

instantaneous estimate of the gradient vector, with the example indices presumed to be

those of time.
The use of such an estimate results in a motion of operating point on the error

surface that is typically in the form of a "random walk." Nevertheless, given an

algorithm designed to minimize the cost function of interest, and given an adequate set



environment

of input-output examples and enough time permitted to do the training, a supervised

learning system is usually able to perform such tasks as pattern classification and

function approximation satisfactorily.

An example of supervised learning algorithms is the back-propagation learning

algorithm. Supervised learning algorithm can be performed in an off-line or on-line

manner. In the off-line case, a separate computational facility is used to design the

supervised learning system. Once the desired performance is accomplished, the design

is "frozen", which means that the N.N operates in a static manner.

On the other hand in on-line learning, the learning procedure is implemented

solely within the system it self, not requiring a separate computational facility. In other

words, learning is accomplished in real time, with the result that the neural network is

dynamic.

An advantage of supervised learning, regardless of whether it is performed off­

line or on-line, is the fact that without the teacher, a neural network can not learn new

strategies for particular situation that are not covered by the set of examples used to

train the network. This limitation can be over come, by the use of reinforcement

learning.

3.5.2. Unsupervised Learning 

In an unsupervised learning or self-organized learning there is no external

teacher or critic to oversee the learning process, as indicated in the figure below. In

other words, there are no specific examples of the function to be learned by the network.

Rather, provision is made for a task-independent measure of the quality of

representation that the network is required to learn, and the free parameters of the

network are optimizedwith respect to that measure.

Vector describing ı
Leaming•..i

environment •..
L systemstate of the

-

Figure 3 .13 Block diagram of unsupervised learning.
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Once the network has become tuned to the statistical regularities of the input

data, it develops the ability to form internal representations for encoding·features of the

input by creating new classes automatically (28]. To perform unsupervised leaning, a

competitive leaning rule may be used, for example, a N.N that consists of two layers

may be used, namely an input layer and a competitive layer. The input layer receives the

available data. The competitive layer consists of neurons that compete with each other

for the opportunity to respond to features contained in the input data. In its simplest

form, the network operates in accordance with a "winner-takes-all" strategy. In such a

strategy the neurons with greatest total input wins the competition and turns on; all the

other neurons then switch off

3.5.3. Supervised Verses Unsupervised Learning 

Among the algorithm used to perform supervised learning, the back-propagation

algorithm has emerged as the most widely used and successful algorithm for the design

to multilayer feedforward networks. There are two distinct phases to the operation of

back-propagation learning: the forward phase and the backward phase. In the forward

phase the input signals propagate through the network layer-by-layer, eventually

proceeding some response of the output of the network. The actual response so

produced is compared with a desired (target) response, generating error signals that are

then propagated in a backward direction through the network. In this backward phase of

operation, the free parameters of the network are adjusted so as to minimize the sum of

squared errors. Back-propagation learning has been applied successfully to solve some

difficult problems such as speech recognition from text, handwriting digit recognition,

and adaptive control. Unfortunately, back-propagation and other supervised learning

algorithms may be limited by their poor scaling behavior. To understand this limitation,

an example of multilayer feedforward network consisting of L computation layer is

considered. The effect of a synaptic weight in the first layer on the output of the

network depends on its interaction with approximately F; to the power L other synaptic

weights, where F; is the fan-in, defined as the average number of incoming links of

neurons in the network. Hence, as the size of the network increases, the network

becomes more computationally intensive, and so the time required to train the network

grows exponentiallyand the learning process becomes unacceptable slow.
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One possible solution to the scaling problem described here is to use an

unsupervised learning procedure. In particular, if a self-organizing process is able to be

apply in a sequential manner, one layer of a time; it is feasible to train deep networks in

time that is linear in the number of layers. Moreover, with the ability of the self­

organizing network to form internal representations that model the underlying structure

of the input data in a more explicit or simple form, it is hoped that the transformed

version of the sensory input would be easier to interpret, so that correct responses could

be associated with the network's internal representations of the environment more

quickly. In other words, the use of supervised learning procedures may provide a more

acceptable solution than unsupervised learning alone [29].

3.6. Back-Propagation Learning Algorithm 

The most common supervised learning algorithm is the back-propagation (BP)

algorithm, which is also called generalized delta rule. It is a gradient descent algorithm

that is normallyused to train the MultilayerPerceptron (MLP) network.
Basically the error back-propagation process consists of two passes through the

different layers of the network: a forward pass and a backward pass. In the forwardpass

an activity pattern (input vector) is applied to the sensory nodes of the network, and its

effect propagates layer by layer. Finally a set of outputs is produced as the actual

response of the network. During the forward pass the synaptic weights of the network

are all fixed. During the backward pass on the other hand the synaptic weights are all

adjusted in accordance with the error-correction rule. Specifically, the actual response

of the network is subtracted from a desired (target) response to produce an error signal.

This error signal is then propagated backward through the network against the direction

of synaptic connections, hence the name "error back-propagation". The synaptic

weights are adjusted so as to make the actual response of the network move closer to the

desired response.
The error signal at the output of neuron) at iteration n (i.e. presentation of the nth

training pattern) is definedby [21]

e i (n) = d , (n)- y 1 (n) neuron) is an output node. (3.6)

The instantaneous value of the squared error for neuron j as Y2e2(n). Correspondingly,

the instantaneous value ,;(n) of the sum of squared errors is obtained by summıng
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Yıe2(n) over all neurons in the output layer; these are the only "visible" neurons for

which error signals can be calculated. The instantaneous sum of squared errors of the

network is thus written as

ı;(n) = YıLeı(n)
Jee

(3.7)

where the set c includes all the neurons in the output layer of the network. Let N denote

the total number of patterns (examples) contained in the training set. The average

squared error is obtained by summing ç(n) over all n and then normalizing with respect

to the set sizeN, as shown by

ç(n) = YNLı;(n)
ır-1

(3.8)

The instantaneous sum of error squares ç(n), and therefore the average squared error Çav,

is a function of all the free parameters (i.e. synaptic weights and thresholds) of the

network. For a given training set, Çav represents the cost function as the measure of

training set learning performance. The objective of the learning process is to adjust the

free parameters of the network so as to minimize Çav, to do this a simple method of

training is considered in which the weights are updated on a pattern-by-pattern basis.

The adjustments to the weights are made in accordance with the respective errors

computed for each pattern presented to the network. The arithmetic average of these

individual weight changes over the training set is therefore an estimate of the true

change that would result from modifying the weights based on minimizing the cost

function Çav over the entire training set.

Then figure 3 .14 can be considered which depicts neuronj being fed by a set of

function signals produced by a layer of neurons to its left. The net internal activity level

vj(n) produced at the input of the non-linearity associated with neuron) is therefore
p

v;(n) = LwJl(n)y;(n)
i=O

(3.9)

wherep is the total number of inputs (excluding the threshold) applied to neuron j. The

synaptic weight w1o (corresponding to the fixed input yo = -1) equals the threshold e1

applied to neuronj. Hence the function signalyj(n) appearing at the output of neuron j at

iteration n is

y;(n) = p1(v;(n)) (3.10)
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where the local gradient öı(n) is defined by [30]

8/n) = eİ(n) p'(v(n)) (3. 14)

neuron}

yu=-1
' wotn)= 0J(n) c4{n)

vı(n) ı?(•) y;(n) -1

eJ(n)

.:
Figure 3. 14 Signal-flow graph, highlighting the details of output neuron j.

The back-propagation algorithm applies a correction AwJi(n) to the synaptic

weight wJi(n), which is proportional to the instantaneous gradient ôç(n)lô,ıı1i(n).

According to the chain rule, this gradient can be expressed as follows:

ôç(n) _ ôç(n) ôej(n) ôy/n) ôv/n)
ôw , (n) ôe/n) ôy/n) ôv/n) ôwji(n)

The gradient ôç(n)/ &1;(n) represents a sensitivity factor, determining the direction of

(3.11)

search in weight space for the synaptic weight wfi. The correction !ıwJi(n) applied to

wJi(n) is defined by the delta rule [2 l]:

W ( ) = _ ôç(n).. n 17
fi ôw1;(n)

(3.12)

where 17, is a constant that determines the rate of learning; it is called the learning-rate

parameter of the back-propagation algorithm.

The use of the minus sign in Eq. (3.12) accounts for gradient descent in weight

space. The use ofEq. (3.11) in (3.12) yields

!ıw1;(n)=1781(n)y1(n) (3.13)

The local gradient .points to required changes in synaptic weights. According to Eq.

(3.14), the local gradient 0(n) for output neuron j is equal to the product of the
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corresponding error signal e/n) and the derivative p'(v(n)) of the associated activation

function.
From Eqs. (3.13) and (3.14) a key factor involved in the calculation of the

weight adjustment Llwji{n) is the error signal e;(n) at the output of neuron j. In this

context, two distinct cases can be identified, depending on where is neuron j located in

the network.

Case I; neuron j İs an output node. This case is simple to handle, because each output

node of the network is supplied with a desired response of its own, making it a

straightforward matter to calculate the associated error signal. Having determined e/n),

it is a straightforward matter to compute the local gradient S;(n) using Eq. (3.14).

ç(n) = ,YıLe;(n)
· kec

neuron k İs an output node (3.16)

Case II; neuron j is a hidden node. Even though hidden neurons are not directly

accessible, they share responsibility for any error made at the output of the network.

The question is to know how to penalize or reward hidden neurons for their share of the

responsibility.This problem is indeed the credit-assignment problem (21]. It is solved

in an elegant fashion by back-propagating the error signals through the network. i.e.,

when neuron j is located in a hidden layer of the network, there is no specified desired

response for that neuron. Accordingly, the error signal for a hidden neuron would have

to be determined recursively in terms of the error signalsof all the neurons to which that

hidden neuron is directly connected; this is where the development of the back­

propagation algorithm gets complicated. The figure below depicts neuron j as a hidden

node of the network. According to Eq. (3.14), the local gradient ô;(n) for hidden neuron

j may be redefined as

ôç(n) , ( )
ôln) = - ôy

1
(n) p 1 v1 (n) neuronj is hidden (3 .15)

the followingprocedure is used to calculate the partial derivative
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[

weight J [learning ] [local J [input signal]
correction = rate parameter • gradient • of neuron j

Llwii (n) 7] ôi (n) y /n)

(3.18)

neuron} neuron k

yun)

dJ(n)

p( •) yk(n) - 1

eJ(n)

Figure 3. 15 Signal-flowgraph, highlightingthe details of output neuron k

connected to hidden neuron}.

Finally,the local gradient 5;(n) for hidden neuron} is given by:

s, (n) = p'(v/n))L>5k(n) wkf (n) neuron} is hidden (3.17)

The factor p'j(v/n)) involved in the computation of the local gradient ô/n) in Eq.(3.17)

depends solely on the activation function associated with hidden neuron j. The

remaining factor involved in this computation, namely, the summation over k, depends

on two sets of terms. The first set of terms, the Ôk(n), requires knowledge of the error

signals ek(n), for all those neurons that lie in the layer to the immediate right of hidden

neuron}, and that are directly connected to neuron}. The second set of terms, the wkJ(n),

consists of the synapticweights associated with these connections.

Now the relations that have been derived for the back-propagation algorithm can

be summarized.

First, the correction LlwJi(n) applied to the synaptic weight connecting neuron i to

neuron} is definedby the delta rule [30]:

Second, the loc!l gradient ôj(n) depends on whether neuronj js an output node

or a hidden node:
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1. If neuronj is an output node, ôJ(n) equals the product of the derivative p'lvı(n))

and the error signal eln), both of which are associated with neuron j; see Eq.

(3.14).

2. If neuronj is a hidden node, ôln) equals the product of the associated derivative

p1(vı(n) and the weighted sum of the 8s computed for the neurons in the next

hidden or output layer that are connected to neuronj; see Eq. (3 .17).

3.6.1. The Two Passes of Computation 

In the application of the back-propagation algorithm, two distinct passes of

computation may be distinguished. The first pass is referred to as the forward pass, and

the second one as the backward pass.
In the forward pass the synaptic weights remain unaltered throughout the network,

and the function signals of the network are computed on a neuron-by-neuron basis.

Specifically,the function signal appearing at the output of neuron) is computed as [29]

yı(n) = p'(vj(n)) (3.19)

where vı(n) is the net internal activity level of neuronj, defined by
p

v/n) = 2:wj;(n) Yi(n)
i=O

(3.20)

where p is the total number of inputs (excluding the threshold) applied to neuron j, wfi

and is the synaptic weight connecting neuron i to neuron j, and y;(n) is the input signal

of neuron j or, equivalently, the function signal appearing at the output of neuron i. If

neuronj is in the first hidden layer of the network, then the index i refers to the l11 input

terminalof the network, for which the following equation is written

y/n) = xi(n) (3.21)

where x;(n) is the l11 element of the input vector (pattern). If, on the other hand, neuron)

is in the output layer of the network, the indexj refers to ther output temıinal of the

network, for which

y/n) = oj(n) (3.22)

where o/n) is the/1 element of the output vector (pattern). This output is compared with
~

the desired response dı(n) obtaining the error signal eln) for ther output neuron. Thus
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~he forward phase of computation begins at the :first hidden layer by presenting it with

the input vector, and terminates at the output layer by computing the error signal for

each neuron of this layer.

The backward pass, on the other hand, starts at the output layer by passing the

error signals leftward through the network, layer-by-layer, and recursively computing

the ô (i. e. the local gradient) for each neuron. This recursive process permits the

synaptic weights of the network to undergo changes in accordance with the delta rule.

For a neuron located in the output layer, ô is simply equal to the error signal of that

neuron multipliedby the first derivative of its non-linearity. Hence Eq.(3 .18) was used

to compute the changes to the weights of all the connections feeding into the output

layer. Given the 8s for the neurons of the output layer, next Eq.(3 .17) is used to

compute the ô's for all the neurons in the penultimate layer and therefore the changes to

the weights of all connections feeding into it. The recursive computation is continued,

layer by layer, by propagating the changes to all synaptic weights made. Note that for

the presentation of . each training example, the input pattern is fixed throughout the

round-trip process, encompassingthe forward pass followed by the backward pass.

3.6.2. Rate Of Learning 

The back-propagation algorithm provides an approximation to the trajectory in

weight space computed by the method of steepest descent. The smaller we make the

learning-rate parameter 17, the smaller will the changes to the synaptic weights in the

network be from one iteration to the next and the smoother will be the trajectory in

weight space. This improvement, however, is attained at the cost of a slower rate of

learning. If, on the other hand, the learning-rate parameter 1J is made too large so as to

speed up the rate of learning, the resulting large changes·in the synaptic weights assume

such a form that the network may become unstable (i.e. oscillatory). A simple method

of increasing the rate of learning and yet avoiding the danger of instability is to modify

the delta rule ofEq.(3.13) by including a momentum term [29], as shown by

Llw1; (n) = a Llw1; (n-1)+ 178/n)y/n) (3.23)

where a is usually a positive number called the momentum constant. It controls the

feedback loop acting around Llwp(n). In deriving the back-propagation algorithm, it was
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assumed that the learning-rate parameter is a constant denoted by 17. In reality, it should

be definedas 17.ı1; that is, the learning-rate parameter should be connection-dependent.

It is also noteworthy that in the application of the back-propagation algorithm all

the synaptic weights in the network may be chosen to be adjustable, or any number of

weights in the network may be constrained to remain fixed during the adaptation

process. In the latter case, the error signals are back propagated through the network in

the usual manner; however, the fixed synaptic weights are left unaltered. This can be

done simply by making the learning-rate parameter 17.Jı for synaptic weight wp equal to

zero.

Another point of interest is the manner in which the various layers of the back­

propagation network are interconnected. In the development of the back-propagation

algorithm presented here, the neurons in each layer of the network receive their inputs

from other units in the previous layer. In fact, there is no reason why a neuron in a

certain layer may not receive inputs from other units in earlier layers of the network. In

handlingsuch a neuron, there are two kinds of error signals to be considered:

1. An error signal that results from the direct comparison of the output signal of that

neuron with a desired response;

2. An error signal that is passed through the other units whose activating it affects. In

this situation, the correct procedure to deal with the network is simply to add the

changes in synaptic weights dictated by the direct comparison to those propagated

back from the other units.

In a practical application of the back-propagation algorithm, one complete

presentation of the entire training set during the learning process is called an epoch [30].

The learning process is maintained on an epoch-by-epoch basis until the

synaptic weights and threshold levels of the network stabilize and the average squared

error over the entire training set converges to some minimumvalue. It is good practice

to randomize the order of presentation of training examples from one epoch to the next.

This randomization tends to make the search in weight space stochastic over the

learning cycles, thus avoiding the possibility of limit cycles in the evolution of the

synaptic weight vectors. For a given training set, back-propagation learning may thus

proceed in one of two-basic ways; pattern mode or batch mode.
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3.6.3. Stopping Criteria And Convergence 

The back-propagation algorithm, in general, has some reasonable criteria, each

with its own practical merit, which may be used to terminate the weight adjustments. To

forınulate such a criterion, the logical thing to do is to think in terıns of the unique

properties of a local or global minimum of the error surface. Let the weight vector w *
denote a minimum,be it local or global. A necessary condition for w* to be a minimum

is that the gradient vector g(w) (i.e. first-order partial derivative) of the error surface

with respect to the weight vector w be zero at w = w*. Accordingly, a sensible

convergence criterion for back-propagation learning may be forınulated as follow [29]:

• The back-propagation algorithm is considered to have converged when the

Euclidean norın of the gradient vector reaches a sufficiently small gradient

threshold.

The drawback of this convergence criterion is that, for successful trials, learning

times may be long. Also, it requires the computation of the gradient vector g(w).

Another unique property of a minimumthat can be used is the fact that the cost function

or error measure (av(w) is stationary at the point w = w*. Therefore, a different criterion

of convergence can be suggested:

• The back-propagation algorithm is considered to have converged when the

absolute rate of change in the average squared error per epoch is sufficiently

small.

Typically, the rate of change in the average squared error is considered to be

small enough if it lies in the range of O. I to 1 percent per epoch; sometimes, a value as

smallas O. O 1 percent per epoch is used.

A variation of this second criterion for convergence of the algorithm is to require

that the maximum value of the average squared error ;0v(w) be equal to or less than a

sufficiently small threshold. Kramer and Sangiovanni-Vincentelli suggest a hybrid

criterion of convergence consisting of this latter threshold and a gradient threshold, as

stated here[20 ] :

• The back-propagation algorithm is terminated at the weight vector Wfinaı

when II g(wfinaıJ II s e, where e is a sufficiently small gradient threshold, or
•...

(av{Wfinad ~'t where t is a sufficientlysmall error energy threshold.

Another useful criterion for convergence is as follows:



• After each learning iteration, the network is tested for its generalization

performance. The learning process is stopped when the generalization

performance is adequate, or when it is apparent that the generalization

performance has peaked.

The back-propagation algorithm is first-order approximation of the steepest­

descent technique in the sense that it depends on the gradient of instantaneous error

surface in weight space. The algorithm is therefore stochastic in nature. Indeed, the

back-propagation algorithm is an application of a statistical method known as stochastic

approximation [30]. Consequently, it suffer from a slow convergence property, where
two fundamentalcauses of this property can be defined:

1. The error surface is fairly flat along the weight dimension, which means that the

derivative of the error surface with respect to that weight is small in magnitude.

In such a situation, the adjustment applied to the weight is small and many

iteration for the algorithm may be required to produce a significance reduction

in the error performance of the network. The error surface is highly curved along

a weight dimension, where the derivative of the error surface with respect to the

weight is large in magnitude. In this second situation, the adjustment applied to

the weight is large, which may cause the algorithm to overshoot the minimumof
the error surface.

2. The direction of the negative gradient vector may point away from the minimum

of the error surface; hence the adjustment applied to the algorithm may induce
the algorithmto move in the wrong direction.

3.6.4. Disadvantages Of Back-Propagation Learning 

Consequently, the rate of convergence in back-propagation algorithm tends to be

relatively slow, which in tum makes it computationally expensive. The local

convergence rate of the back-propagation algorithm is linear, which justify the rank­

deficient in the Jacobian and Hessian matrices; these are the consequences of the.

intrinsically ill-conditioned nature of neural network training problems. Saarinen
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interpret the linear local convergence rates of the back-propagation learning on two
ways:

1. It is a vindication of back-propagation in the sense that higher order methods

maynot converge much faster while requiring more computational effort.

2. Large-scale neural network training problems are so inherently difficult to

perform that no supervised learning strategy is feasible, and other approaches
such as the use of processing may be necessary.

Another peculiarity of the error surface that impacts the performance of back­

propagation algorithm is the presence of local minima in addition of global minima [9].

Since the back-propagation is a hill-climbingtechnique, it runs the risk of being trapped

in a local minimum. It is undesirable to have the learning process terminate at a local

minimum,especially if it is located far above a global minimum. But stacking in a local

minimumis rarely a practical problem for back-propagation learning.

Another problem of learning by back-propagation that has to be overcome is

scaling, which addresses the issue of how well the network behaves as the

computational task increase in size and complexity. One way of alleviating the scaling

problem is to develop insight into the problem at hand and use it to put ingenuity into

the architectural design. Another way to deal with scaling problem is to reformulate the

back-propagation learning process with modularity built into the network architecture.

A computational system is said to have modular architecture if it can be broken down

into two or more subsystems that perform computation on distinct input in the absence
of communicationwith each other.

3.6.5. Advantages Of Back-Propagation Learning

The back-propagation algorithm is an example of a connectionist paradigm that

relies on local computations to discover the information-processing capabilities of

neural networks. This form of computational restriction is referred to as the locality

constraint, in this sense the computation performed by a neuron is influenced solely by

those neurons that are in physical contact with it. The use of local computations in the

design of artificialneural networks is usually advocated for three principal reasons:



I. Artificial neural networks that peıform local computations are often held up

metaphors for biological neural networks

2. The use of local computations permits a graceful degradation in peıformance

due to hardware errors, and therefore a fault-tolerant network design.

3. Local computations favour the use of parallel architectures as an efficient

method for the implementation of artificial neural networks.

Taking a lock at these points it is obvious that, the third point is peıfectly

justified in the case of back-propagation learning, where it has successfully

implemented on parallel computers by many investigators, and VLSI architecture has

been for the hardware realization of multilayer perceptrons. The second point is justified

so as certain precaution are taken in the application of back-propagation algorithm, such

as injecting small numbers of "transient faults" at each step. For the first point, relating

to the biological plausibility of back-propagation learning, it has indeed questioned as

follow:

I. The reciprocal synaptic connections between neurons of a multilayer perceptron

may assume weights that are excitatory or inhibitory.

2. In a multilayer perceptron, hormonal and other types of global communication

are ignored.

3. In back propagation learning, a synaptic weight is modified by a pre-synaptic

activity and an error signal independent of postsynaptic activity.

4. The implementation of back-propagation learning requires the rapid

transmission of information backward along the axon.

5. Back-propagation learning implies the existence of a "teacher," which in the

context of the brain would presumably be another set of neurons with novel

properties.

3.6.6. Accelerating Convergence Of Back-Propagation Through Learning 

Rate Adaptation 

The procedures for increasing the rate of convergence while maintaining the

locality constrains that is inherent characteristic of back-propagation learning are

describedhere:
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1. Every adjustable network parameter should have its own individual learning rate

parameter.
2. Every learning rate parameter should be allowed to vary from one iteration to

the next.

• When the derivative of the cost function with respect to the synaptic weight has

the same algebraic sign for several consecutive iterations of the algorithm, the

learningparameter for that particular weight should be increased.

• When the algebraic sign of the derivative of the cost function with respect to

particular synaptic weight alternates for several consecutive iterations of the

algorithm, the learning rate for that weight should be decreased.

3.7. Summary 

In summary of this chapter we can say that neural networks consist of set of

neurons or processing units, and are suitable for many tasks. NN can modify its

behavior in response to their environments. In other words they are capable of learning,

and once they are trained they can make their decisions. The learning can be supervised

or unsupervised. In supervised learning input-output vectors are presented to the

network, whereas in unsupervised learning the network detects similarities between

inputs and group them accordingly. This chapter has presented an over view of NN,

well known NN architecture, their operational principles, and their learning algorithms

such as Back-propagation which is the most commonly used, its advantages and

disadvantages are listed. Different mathematical models of neurons, neural networks

structures are considered.

50



Chapter 4: NEURAL NETWORK-BASED FUZZY 

INFERENCE SYSTEM 

4.1. Overview 

In this chapter the power of learning and parallelism of neural network is

combined with the reasoning mechanism of fuzzy logic to build up a more powerful

system referred in the literature as neuro-fuzzy system. So here we will take about the

combination models, learning mechanism, hybrid systems architecture, then the

discussion is expanded to cover ANFIS, its learning algorithm, and its structure for the

differenttypes of fuzzy, i.e. Mamadani and Takagi-Sugeno types of fuzzy.

4.2. Models ofNeuro-Fuzzy System 

There are many ways to synthesize neural networks and fuzzy logic. Neural

networks provide algorithms for numeric classification, optimization, and associative

storage and recall. Working at the semantic level, fuzzy logic provides a tool to process

inexact or approximate data. By incorporating fuzzy logic techniques into a neural

network, we can obtain more flexibility. Fuzzy neural networks provide greater

representation power, have higher processing speeds, and are more robust than

conventional neural networks. Fuzzy neural networks are in fact "fuzzified" neural

networks.

4.2.1. Input-Output Approach 

The first approach is to use input-output signals or weights in neural networks as

fuzzy sets along with fuzzy neurons. Several authors have proposed models for Neuro­

Fuzzy. Gupta presented two possible models for fuzzy neural systems (22]. The first

model, shown in Figure 4.1, consists of a fuzzy inference block followed by-a neural

network block. The neural network block represents a multilayer feed-forward neural

network. The fuzzy inference block provides input to the neural network. The neural

network can be adapted to yield desired outputs or decisions. The model can be trained
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In the second model, shown in Figure 4.2, the neural network block drives the

fuzzy inference system. The neural network can be adapted to produce desired outputs

or decisions. The first model takes linguistic inputs, whereas the second model takes

numeric inputs. The computational process for these models includes the development

of fuzzy neural models motivated by biological neurons, models of synaptic

connections, which incorporate fuzziness into a neural network, and learning algorithms

for these models.
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Figure 4.1 Input/Output model of'Neuro-Fuzzy System

Figure 4.2 Input/Output Model of Neuro-fuzzy System
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4.2.2. Preprocess/postprocess Approach 

The second approach is to use fuzzy membership functions to preprocess or

postprocess signals with neural networks. Figures 4.3 shows these models. A fuzzy

inference system can encode an expert's knowledge directly and easily using rules with

linguistic labels. It usually takes a lot of time to design and tune membership functions,

which quantitatively define linguistic labels. Neural network learning techniques can

automate this process and subsequently reduce the development time and cost, at the

same time improving performance.

F.S
N.N

Figure 4.3 Neuro fuzzy system with neural network in pre-processing role.

The idea of using neural networks to design membership functions was proposed

by Takagi and Hayashi (6], and it involved the design of multidimensional membership

functions. Many models with this approach have been used. Lin and Lee proposed a

neural-network-based model for fuzzy logic control/decision systems (12]. The model

represents a feed-forward neural network. Input nodes represent input signals and

output nodes represent output decisions or signals. Nodes in the hidden layers

implement membership functions and fuzzy logic rules. The system is a fuzzy inference

system; however, it uses distributed representation and learning algorithms of a neural

network. Parameters representing membership functions are determined using a back­

propagation learning algorithm or a gradient-descent technique.

Pal and Mitra proposed a similar model. In their model, inputs are fed to a

preprocessor block, which performs the same functions as that of the fuzzifier block in a

fuzzy inference system. The output of the preprocessor represents fuzzy membership

values. For each input variable term, variables such as law, medium, and high are used.

If input consists of n variables, then the preprocessor block yields m x n outputs, where
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m represents the number of term values used in the model. The output of the

preprocessor block is then fed to a multilayer perceptron model. The perceptron model

implements the inference engine. Pal and Mitra have used the model for classifying

vowels [16]. Kulkarni has developed a similar model and has used it for multispectral

image analysis[16].

4.2.3. Fuzzy Associative Memories (FAMs)

In a simple implementation, a Fuzzy Associative Memoıy (FAM) is a fuzzy

logic rule with an associated weight. A mathematical framework exists that can map a

FAM to a neural network; a fuzzy logic decision system can then be built using a back­

propagation learningalgorithm.

4.2.4. Hybrid System Approach

Yet another way to combine neural networks with fuzzy logic is to design a

hybrid system wherein some processing stages are implemented with neural networks

and some with a fuzzy inference system [24]. An example of such a system would be a

tree classifier in which classification at some node can be carried out with a fuzzy

inference system and classification at some other node can be performed using a neural

network. The main advantage of such a hybrid system is that when the classification is

based on experts' rules we can use the fuzzy inference system, and when the

classificationis based on training samples we can use a neural network.

Hybrid systems are defined in many different ways. In a simple way, hybrid

systems are those composed by more than one intelligent system. Hybrid systems are

expected to be more powerful due to the combining advantages of different intelligent

techniques. Two or more intelligent systems can be combined to create a unique hybrid

system.The most popular hybrid systems are:

Sequentialhybrid system.

Auxiliaıyhybrid system.

Incorporated hybrid system.
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4.2.4.1. Sequential hybrid system

This model represents the weakest degree of integration and it is composed of

two intelligent systems connected in serial (figure 4.4). One example of this type of

systemmay be a pre-processor Fuzzy System activating a Neural Net

Input Subsystem 1 Subsystem2

Figure 4.4 Sequential Hybrid System

4.2.4.2. Auxiliary hybrid system

This model is composed of a sub-system added by another intelligent sub­

system. The integration degree is greater than in the previous case (figure 4.5). An

exampleof this kind of systems is a Genetic Algorithmused to determine the weights of

a Neural Network.

Input OutputSubsystem 1

Subsystem2

Figure 4.5 AuxiliaryHybrid System

4.2.4.3. Incorporated hybrid system

Incorporated hybrid systems represent the greatest degree of integration (figure

4.6). There is no possible differentiation between the different intelligent systems. We

can say that the first system contains the second one or vice-versa. An example is a

Neuro-Fuzzy system, where a Fuzzy inference system is implemented using a Neural

Network Structure.

Among the most popular hybrid models are the Neuro-Fuzzy systems, Neuro­

Genetic systems,Neural-Statistic systems and Fuzzy-Genetic systems.
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+
Subsystem 2

OutputInput -• ...•.

Figure 4.6 Incorporated Hybrid System

Neural networks are used to implement a fuzzy inference system. A fuzzy

inference system consists of three components. Firstly, a rule base contains a selection

of fuzzy rules. Secondly, a database defines the membership functions used in the rules

and, finally, a reasoning mechanism carries out the inference procedure on the rules and

given facts.
Jang and Sun[l 1] presented an adaptive network model for a fuzzy inference

system. The model represents adaptive network-based fuzzy inference systems

(ANFISs). The ANFIS model is a generic model, and neural networks and fuzzy

inference systems can be considered as special instances of an adaptive network when

proper node functions are assigned.

4.3. Adaptive Neuro-Fuzzy Inference System(ANFIS) 

4.3.1. ANFIS Architecture 

In this section, a class of adaptive networks which are functionallyequivalent to

fuzzy inference systems is proposed. The proposed architecture is referred to as ANFIS,

standing for Adaptive-Network-Based Fuzzy Inference System. It can use as back­

propagation as the hybrid learning rule.

The ANFIS can construct input-output mapping based on both human

knowledge (in the form of fuzzy if-then rules) and stipulated input-output data pairs.

The ANFIS architecture is employed to modal nonlinear functions, identify nonlinear

components on-linelyi.e., a control system, and predict a chaotic time series [7].

When the design of fuzzy controller is considered, the main inconvenient of

Fuzzy Controller Systems is to determine the rule base, due to the complexity of the

plant. Sometimes it is also very difficult to create an appropriate rule base when using
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wi = µai(x) * µhi(y), i = 1,2 (4.4)

the aid of an expert-man. The Neuro-Fuzzy Controller system offers the possibility to

create this rule base automatically through a learning phase, evaluating the error

response of the system.

For simplicity, assume the fuzzy inference system under consideration has two

inputs x and y and one output z. suppose that the rule base contains two fuzzy if-then

rules of Takagi and Sugeno's type [11].

Rule 1: ifx is Aı andy is Bı, thenfı = p1x + q1y +rı,

Rule 2: if x is A2 andy is B2, then/2 = p2x + q7.Y + rı.

Then type-3 fuzzy reasoning is illustrated in figure 4.7.(a), and the corresponding

equivalent ANFIS architecture (type-3 ANFIS) is shown in figure 4.7.(b). The node .

functions in the same layer are of the same function familyas described below:

Layer 1: every lump i in this layer·is a square node with a node function

o; = ı.ıA;(x) (4.1)

Where x is the input to node i, and A; is the linguistic label (small, large, etc.) associated

with this node function. In other words, O/ is the membership function of A; and it

specifies the degree to which the given x satisfies the quantifier A;. Usually we choose

µA;(x) to be bell-shapedwith maximum equal to 1 and minimumequal to O, such as

1
µA;(X)= X-C;)ıb.

l+( - '
ai

(4.2)

or x=c.µA; (x) = exp[-(--' )2)
a;

(4.3)

where {a; b; cJ is the parameter set. As the values of these parameters change, the bell­

shaped functions vary accordingly, thus exhibiting various forms of membership

functions on linguistic label A;. In fact, any continuous and piecewise differentiable

functions, such as commonly used trapezoidal or triangular-shaped membership

functions, are also qualified candidates from node functions in this layer. Parameters in

this layer are referred to as premise parameters.

Layer 2: every node in this layer a circle node labeled II which multiplies the incoming

signalsand sends the product out. For instance,
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Figure 4.7.(a) type 3 Fuzzy reasoning
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.Figure.4.7. (b) Equivalent ANFIS (type 3)
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05 = "- "w . .(ı L.ı W;/; = L.ı, ,J;

i Iiwi
(4.7)

Each node output represents the firing strength rule. (in fact, other T-nonn operators

that parameter generalized AND can be used as the node function in this layer).

Layer 3: every node in this layer is a circle node labelled N. the lh node calculates the

ratio of the lh rule's firing strength to the sum of all rules firing strengths:

w.
W; = ' , İ = J,2

Wı +W2
(4.5)

for convenience, outputs of this layer will be called normalized firing strengths.

Layer 4: Every node i in this layer is a square node with a node function

Ot = wi/; = wı p,» + q;y + r;) (4.6)

where w i is the output of layer 3, and {p;, qi, r;} is the parameter set. Parameters in this

layer will be referred to as consequent parameters.

Layer 5: The single node in this layer is a circle node labeled L that computes the

overall output as the summation of all incoming signals, i.e.,

Thus we have constructed an adaptive network which is functionally equivalent

to a type-3 fuzzy inference system. For type-I fuzzy inference systems, the extension is

quite straightforward and type- I ANFIS is shown in figure 4. 8, where the output of each

rule is induced jointly by the output membership function and the firing strength. For

type-2 fuzzy inference systems. If we replace the centroid defuzzification operator with

a discrete version which calculates the approximate centroid of area, then type-3 ANFIS

can still be constructed accordingly. However, it will be more complicated than its type-

3 and type- I versions and thus not worth the efforts to do so.

Figure 4.9 shows a 2-input, type-3 ANFIS with nine rules. Three membership

functions are associated with each input, so the input space is partitioned into nine fuzzy

subspaces, each of which governed by a fuzzy subspace, while the consequent part

specifies the output within this fuzzy subspace.
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output= F(l.S) (4.8)

4.4 Hybrid Learning Rule: Batch (Off-Line) Learning 

Though we can apply the gradient method [25] to identify the parameters in an

adaptive network, the method is generally slow and likely to become trapped in local

minima. Here a hybrid learning rule is proposed, which combines the gradient method

and the least squares estimate (LSE) [23] to identifyparameters.

For simplicity, assume that the adaptive network under consideration has only one
output

Where l is the set of input variables, and S is the set of parameters. If there exists a

function H such that the compose function H o F is linear in some of the elements of S,

these elements can be identified by the least squares mean. More formally, if the

parameter set S can be decomposed into two sets

S = S1 E&S2 (4.9)

(where O represents direct sum) such that Ho Fis linear The elements of S2, then upon

applyingHto (4.8), we have

H(output) =Ho F(l.S) (4.10)

Which is linear in the elements of S2. Now given values of elements of Sı, we can plug

P training data into (4.1 O) to obtain a matrix equation:

AX=B (4.11)

Where X is unknown vector whose elements are parameters in S2. Let IS2l = M, then the

dimensionsofA, X and Bare P*M, M* I, and P*I, respectively. SinceP ( the number of

training data pairs) is usually greater than M(number of linear parameters), this is an

over determined problem [8] generally there is no exact solution to (4.11). Instead, least

squares estimate (LSE) of X, X*, is sought to minimum least squared error IIAX - BW.
This is a standard problem that forms the grounds for linear regression, adaptive

filtering and signal processing. The most well-known formula for X* uses the pseudo­

inverse ofX [20]:

X" = (ATAt' ATB (4.12)

Where Ar is the transeose ofA, and (AT Al1 AT is the pseudo-inverse ofA ifAT A is non

singular. While (4. 12) is concise in notation, its expensive in computation when dealing
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S;+ı =S;
Sıa;+ıaf+ıS;

T '1 +a;+ıS;a;+ı

i = 0,1,.....,P-1 (4.13)

with the matrix inverse and, moreover, it becomes ill-defined if AT A is singular. As a

result, sequential formulas are employed to compute the LSE of X. This sequential

method of LSE is more efficient (especially when M is small) and can be easily

modified to an on-line version for systems with changing characteristics. Specifically,

let the ith row vector of matrix A defined in (4. 11) be a?, and the ıth elements of B be

b?, then X can be calculated iteratively using the sequential formulas widely adopted in
the literature[6],

xi+I = X, + s.;«; (b;~ı - aT+, Xi)

where S; is often called the covariance matrix and the least squares estimate X* is equal

to Xp. The initial conditions to bootstrap (4.13) are Xo = O and So = yl, where y is a

positive large number and I is the identity matrix of dimension M x M When dealing

with multi-output adaptive networks (output in (4.8) is column vector), (4.13) still
applies except that b? is the ith rows of matrixB.

Now the gradient method and the least squares estimate can be combined to

update the parameters in an adaptive network. Each epoch of this hybrid learning

procedure is composed of a forward pass and a backward pass. in the forward pass, we

supply input data and functional signals go forward to calculate each node output until

the matrices A and B in (4. 11) are obtained, and the parameters in S2 are identified by

the sequential least squares formulas in(4.13). After identifying parameters in S2, the

functional signals keep going forward till the error measure is calculated. In the

backward pass, the error rates ( the derivative of the error measure with respect to each

node output, -as explained in chapter3- propagate from the output end toward the input

end, and the parameters in S, are updated by the gradient method using the following
equation [29]:

8ELla=-rı-
8a 

For given fixed values of parameters in Sı, the parameters in S2 thus found are

guaranteed to be the global optimum point in the S2 parameter space due to the choice

(4. 14)

of the squared error measure. Not only can this hybrid learning rule decrease the
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dimension of the search space in the gradient method, but, in general, it will also cut

down substantially the convergence time.

Take for example an one-hidden-layer back-propagation neural network with

sigmoid activation functions. If this neural network hasp output units, then the output in

(4.8) is a column vector. Let HO be the inverse sigmoid function

XH(x) = ln(-) (4.15)
l-x

then (4.1O) becomes a linear (vector) function such element of H(output) is linear

combination of the parameters (weights and thresholds ) pertaining to layer 2. in other

words,
Sı = weights and thresholds of hidden layer

S2 = weights and thresholds of output layer.

Therefore we can apply the back-propagation learning rule to tune the parameters in the

hidden layer, and the parameters in the output layer can be identified by the least

squares method. However, it should be kept in mind that by using the least squares

method on the data transformed by H (·), the obtained parameters are optimal in terms

of the transformed squared error measure instead of the original one. Usually this will

not cause practical problem as long as H(·) is monotonically increasing.

4.5 Hybrid Learning Rule: Pattern (On-Line) Learning 

If the parameters are updated after each data presentation, we have the pattern

learning or on-line learning paradigm. This learning paradigm is vital to the on-line

parameter identification for systems with changing characteristics. To modify the batch

learning rule to its on-line version, it is obvious that the gradient descent should be

based one, instead ofE [3 1].

aEP _"' aEP to:-- - .i..J----ôa o·es acı- ôa
(4.16)

strictly speaking, this is not a truly gradient search procedure to minimizeE, yet it will

approximate to one if learning rate is small.

For the sequential least squares formulas to account for the time-varying

characteristics of the incoming data, we need to decay the effects of old data pairs as

new data pairs become available. Again, this problem is well studied in the adaptive
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xi+I = X; + si+lai+I (bf+ı - ar+ıXi)

S. = _!_[s _ Sıa;+ıai+ıS; J
ı+I 1 I 1 T s

.ıt. + a;+ı ;a;+ı

(4. 17)

control and system identification literature and a number of solutions are available [4].

One simple method is to formulate the squared error measure as a weighted version that

gives higher weighting factors to more recent data pairs. The amounts to addition of a

forgetting factor 1ı. to the original sequential formula [ 1 1]:

Where the value of 1ı. is between O and I. The smaller 1ı. is, the faster the effects of old

data decay. But a small 1ı. sometimes causes numerical instability and should be

avoided.

4.6. Hybrid Learning Algorithm for ANFIS structure

From the proposed type-3 ANFIS architecture (Figure 4.9), it is observed that

given the values of premise parameters, the overall output can be expressed as linear

combinations of the consequent parameters. More precisely, the output fin figure 4.9.

can be rewritten as

! - Wı .f Wı f
- Jı + 2

Wı +w2 WI +w2
- -

f = wıfı + w2f2
- -f = (wıx)p1 +(wıy)q1 +(wı)r1 + (wıx)p2 +(wıx)q2 + (wı)r2

,iıich is linear in the consequent parameters (pı, qı, rı. p2, qı and r2). As a result we

(4.18)

.ve

S = set of total parameters

Sı = set of premise parameters

S2 = set of consequent parameters

(4.9); H() and F(,) are the identity function and the function of the fuzzy inference

_ stem, respectively.

Therefore the hybrid learning algorithm developed previously can be applied

directly. More specifically, in the forward pass of the hybrid learning algorithm,

functional signals go forward till layer 4 and the consequent parameters are identified

~ the least squares estiinate. In the backward pass, the error rates propagate backward
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and the premise parameters are updated by the gradient descent. Table 4.1 summarizes

the activities in each pass.
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Figure 4. 10 (a) type 3 Fuzzy reasoning
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Figure 4.10 (b) Equivalent ANFIS (type 3)

J
Forward pass Backward pass

I Premise parameters Fixed Gradient descent

I Consequent parameters Least Square Estimate Fixed

I signals Node output Error rates

Table 4.1 Two passes in the hybrid learning for ANFIS

...
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As mentioned earlier, the consequent parameters thus identified are optimal (in

the consequent parameter space) under the condition that the premise parameters are

fixed. Accordingly the hybrid approach is much faster than the strict gradient descent

and it is worthwhile to look for the possibility of decomposing the parameter set in the

manner of (4.9). For type-I ANFIS, this can be achieved if the membership function on

the consequent part of each rule is replaced by a piecewise linear approximation with

two consequent parameters (figure. 4.11).

] 1 ••••••••••••••••.•••.••••••••••••• ,....- __

q
output

output
p q

Figure 4. 1 1 Piecewise linear approximation of membership functions

on the consequent part of type-I ANIFS.
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In this case, again, the consequent parameters constitute set S2 and the hybrid

learning rule can be employed directly. However, it should be noted that the

computation complexity of the least squares estimate is higher than that of the gradient

descent. In fact there are four methods to update the parameters, as listed below

according to their computation complexities [8]:

1. Gradient Descent Only: all parameters are updated by the gradient descent.

2. Gradient Descent and One Pass ofLSE: The LSE is applied only once at every

beginningto get the initialvalues of the consequent parameters and then the gradient

descent, takes over to update all parameters.

3. Gradient descent and LSE: This is the proposed hybrid learning rule.

4. Sequential (Approximate)LSE Only: The ANFIS is linearizedwith respect to the

premise parameters and the extended Kalman filter algorithm is employed to update

all parameters. This has been proposed in the neural network literature [25].



The choice of above methods should be based on the trade-off between

computation complexity and resulting performance. Note that the consequent

parameters can also be updated by the Widrow-HoffLMS algorithm [30]. The widrow­

Hoff algorithm ·requires less computation and favors parallel hardware implementation,

but it converges relatively slowly when compared to the least square estimate.

As pointed out by one of the reviewers [15], the learning mechanisms should not

be applied to the determination on membership functions since they convey linguistic

and sub ejective description of ill-defined concepts. We think this is case-by-case

situation and the decision should be left to the users. In principle, if size of available

input-output data set is large enough, then the fine-tuning of the membership functions

are applicable (or even necessary) since the human-determined membership function are

subject to the differences from person to person and from time to time; therefore they

are rarely optimal in terms of reproducing desired outputs. However, if the data set is

too small, then it probably does not contain enough information of system under

consideration. In this situation, the human-determined membership functions represent

important knowledge obtained through human experts experiences and it might not be

reflected in the data set; therefore the membership functions should be kept fixed

throughout the learning process.

Interestingly enough, if the membership functions are fixed and only the

consequent part is adjusted, the ANFIS can be viewed as a functional-link network [24]

where the "enhanced representation" of the input variables is achieved by the

membership functions. This "enhanced representation" which takes advantage of human

knowledge is apparently more insight-revealing than the functional expansion and the

tensor (outer product) models. By fine-tuning the membership functions, we actually

make this "enhanced representation" also adaptive.

Because the update formulas of the premise and consequent parameters are

decoupled in the hybrid learning rule (table I), further speedup of learning is possible

by using other versions of the gradient method on the premise parameters, such as

conjugate descent, second-order back-propagation, quick-propagation, nonlinear

optimization [11].
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4. 7. Fuzzy Inference Systems with Simplified Fuzzy If- Then Rules 

The reasoning mechanisms (figure 4.10) introduced earlier are commonly used,

each of them has inherent drawbacks. For type-1 reasoning (figure 4.8. or 4.11), the

membership functions on the consequence part are restricted to monotonic functions

which are not compatible with linguistic terms such as "medium" whose membership

function should be bell-shaped. For type-2 (figure 4.8) reasoning the defuzzification

process is time-consuming and systematic fine-tuning of the parameters is not easy. For

type-3 reasoning (figure 4.7), it is just hard to assign any appropriate linguistic terms to

the consequence part which is not a fuzzy function of the input variables to cope with

these disadvantages, simplifiedfuzzy if-then rules of the following form are introduced:

If x is big andy is small, then z is d.

Where z is described by a crisp value (or equivalently, a singular membership function),

this class of simplified fuzzy if-then rules can employ all three types of reasoning

mechanisms.More specially, the consequent part of this simplified fuzzy if-then rule is

represented by a step function (centered at z = d) in type 1, a singular membership

function (at z = d) in type 2, and a constant output function in type 3, respectively. Thus

the three reasoning mechanismsare unified under this simplifiedfuzzy if-then rules.

Most off all, with this simplified fuzzy if-then rule, it is possible to prove that

under certain circumstance, the resulting fuzzy inference system has unlimited

approximationpower to match any nonlinear functions arbitrarilywell on a compact set.

In application of fuzzy inference systems, the domain in which we operate is

almost always closed and bounded and therefore it is compact. For the first and second

criteria, it is trivial to find simplifiedfuzzy inference systems that satisfy them. Now all

we need to do is examine the algebraic closure under addition and multiplication.

Suppose we have two fuzzy inference systems S andS ; each has two rules and the

output of each systemcan be expressed as

S:z=wıfı +w2/2.
Wı +W2

~ wf, -ı-s: z = 1 ı +w2 2
wı +w2
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x-c.
µ A;(x) = a; exp[-(--' )2]

a;
(4.22)

where/I /2, Jı , and ]2 are constant output of each rule. Then az + b z and z z can be

calculatedas follows [11]:

b~ wıfı+w2f2 bwılı+w2l2az+ z c a +
Wı +wı Wı +wı

W1W1(afı +b}ı)+W1l~'ı(afı+b]ı)+w2wı(aj2 +b}ı)+W2W2(aj2 +b]ı)
WıWı +wıw2 +W2Wı +W2W2

~ WıWıfılı +W1W2fıf2 +W2Wıf2lı +W2W2f2l2ZZ=--'-~-'--~----'-~~~__;;'--'--"-~~"---"~~ 
WıWı +W1W2 +W2Wı +W2W2

(4.21)

which are of the same form as (4.19) and (4.20). Apparently the ANFIS architectures

that compute az + b z and z z are of the same class ofS and S if and only if the class

of membership functions is invariant under multiplication. This is loosely true if the

class of membership functions is the set of all bell-shaped functions, since the

multiplication of two bell-shaped function is almost always still bell-shaped. Another

more tightly defined class of membership functions. Satisfyingthis criterion, as pointed

out in [23], is the scaled Gaussian membership function:

Therefore by choosing an appropriate class of membership functions, we can conclude

that the ANFIS with simplified fuzzy if-then rules satisfy the criteria of the Stone­

Weierstrass theorem [8]. Consequently, for any given e > O, and any real-valued

functiong, there is a fuzzy inference system S such that lg(x) - S(x) I <e for all x in

the underlyingcompact set. Moreover, since the simplifiedANFIS is a proper subset of

all three types of ANFIS in figure.4.7 or 4.8, we can draw the conclusion that all the

three types of ANFIS have unlimited approximation power to match any given data set.

However, caution has to be taken in accepting this claim since there is no mention about

how to construct the ANFIS according to the given data set. That is why learning plays

a role in this context.

4.8. Summary 

The Neural network and Fuzzy systems are complementary rather than

competitive. NN provide algoritluns for classification and optimization, and they work
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at numerical level. Fuzzy logic offers a tool to process inaccurate and approximate

information, as well as mechanism for implementing rules. This chapter presented

neural fuzzy systems which combine both features, provide more flexibility, faster, and

more robust than NN alone. There are number of ways to combine neuro-fuzzy systems,

in this chapter we just go through over these methods, their architectures, and the

operation principles of them. ANFIS architecture and its operational principle are

described as well. The learning algorithm ANFIS uses back-propagation or hybrid

learningrules. Learning algorithms for TKS type neuro-fiızzy system are given too.
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n mLan-iy<i) (t) + ctp(y(t)) =L bm-P(j) (t) (5.1)

CHAPTERS: DEVELOPMENT OF NEURO-FUZZY SYSTEM FOR

MODELING OF NONLINEAR PROCESSES

5.1. Overview

The material studied so far was carrying a theoretical explanation of neuro-fuzzy

system approaches and its features starting form the appearance of fuzzy theory; its

advantages over the standard control theories or in other words the mathematical

modeling method were any plant or problem can be modeled or described using the

formal way of description equations. ect., on the other hand fuzzy theory allowed us to

use a human verbal description, and this helped to overcome most of the uncertainties,
unstabilitiesthat systemcould have.

In this part of the thesis a modeling of nonlinear dynamics objects and predicting

exchange rate are considered and manipulated using a simulation program of a neural

network trained via fuzzy logic approach.

The realization of modeling of nonlinear dynamics objects and predicting

exchangerate using MATLAB tools is considered.

The ANFIS can construct input-output mapping based on both human

knowledge (in the form of fuzzy if-then rules) and stipulated input-output data pairs.

The ANFIS architecture is employed to modal nonlinear functions, identify nonlinear

components on-linelyi.e., a control system, and predict a chaotic time series [7].

5.2. Modeling of dynamic objects by Neuro-Fuzzy system

5.2.1. Direct and inverse schemes for modeling dynamic objects.

In this part modeling of the dynamics of nonlinear plant using neuro-fuzzy

systemis considered.

Assume that the plant is described by the following differentialequation

i=l j=l

where a; (i=I, ... ,n) and b1 (b=I, ... ,m) are known parameters of control object, c is
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Figure 5.2 Inverse modeling of dynamic object. ------

unknownnonlinearparameter, m<n.

Problem consists of modeling of dynamic plant (1) by using Neuro-Fuzzy

system. This is implemented by learning unknown coefficients of Neuro-Fuzzy system,

-i.e., a, b, and c which are the values of membership function, some of the successive

actual value for a,b, and c respectively, the rest of value will be found in appendix2.

37.4084 5.3988 5.3988

29.6976 15.5695 15.5695

20.6903 14.6254 14.6254

10.7795 6.8250 6.8250

0.3982 2.4119 2.4119

In figure (5. 1) the structure of the system is shown.

U(k) I object I Y(k)

z" 1-----------l ~ Y(k)
Neuro- ~ +

z· Fuzzy
1-----l system

Figure 5. 1 Direct modeling of dynamic object.

In figure 5.2 the structure of the system for obtaining inverse model of plant is
shown.

U(k) Y(k)object

U(k)
+

Neuro­
Yn(k) I Fuzzy

system

z

z·
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Here, inputs of neuro-fuzzy system are output signals and one-step delay of

input and output. Output of neuro-fuzzy system is compared with the input of plant. As

a result of comparison the value of error is determined. Using this value the unknown

parameters of the neuro-fuzzy system are trained. The learning is continued until the
value of error become acceptable small.

5.2.2. Simulation of nonlinear dynamics of plant 

The simulation was done using MATLAB, the program was written for direct

and inverse modeling of plant. In the figure 5.3 the flowchart of the algorithm
described,program listing can be found in appendix1.

In the first stage the random values of parameters of neuro-fuzzy system are

generated. Then the value of input signal for the plant is calculated; we use here

sinusoidal input signal u(t) = sin(ııt) for the plant. This signal at the same time is given
to neuro-fuzzy system.

The input of neuro-fuzzy system can include one-step delayed input and output

of the plant. After that, the output of neuro-fuzzy is calculated. This output is compared

with plant's output and difference is retained as error value. If the value of error is

acceptable small or zero then the model of plant is found, otherwise using learning

algorithm described in chapter four the creation of parameters of neuro-fuzzy system is

carried out, new value of output signal neuro-fuzzy system is determined and compared

again with the plant's output. This procedure is continued until the value of error

become zero or acceptable small.

For modeling nonlinear dynamics, the following control object that is described

by nonlineardifferenceequation was considered

y(k) = a, .y(k-1) +a2.y(k-l) +b, .u(k)+b2.y(k-l).u(k-l) +b3.cos(k) (5.2)

here aı=l.7938, a2=0.8066, b1=1.0224, b2=0.0J, b3=JO.y(k) is output of the plant, u(k)

is input reference signal. u(k-1), yık-I) are one-step delayed input and output signals of
the plant, respectively.



start

Generating parameters
of neuro-fuzzy system

Generating plant's
input signal

Calculating the output
of neuro-fuzzy system

5.3)

Correcting the value
of parameters of

neuro-fuzzy system

\

Calculating the output
of the plant

)

Calculating value of error
e(t) = y(t) - Yn(tJ

Saving the trained values
of parameters of neuro­

fuzzy system

~

Figure 5 .3 Flowchart of modeling nonlinear plant

Sinusoidal signal is given to the plant input, as shown in the figure 5.4.

u(e) = sin(n/15)
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Figure 5 .4 Input sinusoidal signal

Plant's output is determined and plotted as shown in figure 5.5. From the plot it is

obviousthat the plant has nonlinear characteristics.
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Figure 5. 5 Plant output
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In figure 5.6 the plant input and output plots are given.
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Figure 5.6 Input signal and output signalof object

At the end of training of neuro-fuzzy system the model of plant is obtained. The plot of

output of neuro-fuzzy system is shown in figure 5.7. From the plot we can realize that

the output ofneuro-fuzzy system converges to the output of the plant.
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Figure 5.7 Output signal ofNeuro-fuzzy system

Also the simulation of inverse neuro-fuzzy modeling of dynamic plant is carried

out. In figure 5. 8 the result of simulation of is given.
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Figure 5.8 The curve for inverse model of the plant ) 
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5.2.3. Results 

The results of training of the learning system are described in the following

table, the rest ofvalues can be found in appendix2.

Number of nodes: 131

Number oflinear parameters: 147

Number of nonlinear parameters: 42

Total number of parameters: 189

Number of training data pairs: 100

Number of checking data pairs: O

Number of fuzzy rules: 49

Learning rate: 0.08

Time of training: 3 min

Error value: O. O 1

Step size increases to O.Ol 1000 after epoch 6.

Designated epoch number: 20

5.3. Neuro-Fuzzy system for predicting Exchange Rate 

In this part of the thesis, using Neuro-Fuzzy system the modeling of chaotic

nonlinear system is considered. As an example the prediction of future value of

exchange rate is considered. In specific we chose the relation between Turkish Lira

(TL) and dollar of United Sates (USD). This is one of the most important problems;

since it deals with business, marketing or in other wards people daily life specially in

Turkey and Cyprus. Because of the high inflation and devaluation rates and after the

decision of Central Bank of Turkey to take its hand of controlling the money market and

exchange rates. So every one need to know what will be the value of exchange in the

near future even an approximate value will be sufficient. From this point we started in

attempt to solve this problem using neuro-fuzzy system.

The starting point was just collecting real values of exchange for the past two

years, for differentUSD against TL, the format of data was; as an example, as shown in

the table 5.1;

----
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Date USD 

03.01.2000 543,401 TL
04.01.2000 538,399 TL

05.01.2000 537,722 TL
06.01.2000 537,738 TL

11.01.2000 542,212 TL
12.01.2000 541,876 TL

13.01.2000 542,939 TL
14.01.2000 545,344 TL

17.01.2000 548,869 TL

18.01.2000 549,036 TL

19.01.2000 548,880 TL

Table 5.1 Fragment of data for exchange rate between TL and USD.

The rest of data is listed in appendix 5 [3 3].

These data are taken as value of time series. To do so we utilize from MATLAB

accessories and that by providing the ANFIS with time series prediction ability. In

plotting the input data we got the following graph, where x-axis shows the number of

iterations, and y-axis shows the corresponding value of Turkish Lira.
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In exchange rate prediction we want to use known values of the time up to the

point in time, say t, to predict the value at some point of the future, say t+P, the

standard method of this type of prediction is to create a mapping from D sample data

points, which is the data we collected, (as shown in figure 5.8) sampled every L1 units in

time,(x(t-(D-1) L1), ..... ,x(t- L1), ..... ,x(t), to predict future value x(t+P). Following the

conventional settings for time series we set D=4 and P=6. For each t, the point training

data for ANFIS is a four dimensionalvector of the following form:

w(t) = {x(t-18) x(t-12) x(t-6) x(t)} (5.4)

In other words we attempt to find an approximate relation that illustrates the change of

exchange value after specific period of time, and since the exchange value is taken daily

then the value that is to be predicted is after 6 days

the output training data correspond to
s(t) = x{t+6)

) 

1800r-~,--~~~..---~-,-~--r~-ı-~-,.~~.--~..----,

600~...,,,..---~

1600

1400

1200

1000

800

400 -
O 100 200 300 400 500 600 700 800 900 1000

Figure 5. 9 Plot of input data sample

(5.5)

the training input/output data will be a structure whose first component is the four

dimensioninput vector w, and second component is the outputs.
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To be more specific the general structure for the neuro-fuzzy system we applied

is shown in figure 5.10 below.

, ııııı X+6

Figure 5. 1 O general structure of the applied neuro-fuzzy system.

where we have five layer network with 16 fuzzy rule with in the hidden layer, the first

layer is input layer where it has four input nodes getting their values from the input

vector, which is the value of TL exchange rate at specific time t. the second layer is the

fuzzification layer, third layer consists of normalization nodes, fourth layer is the

defuzzificationlayer, and the fifth layer is the output layer. The final output node of the

system should have predicted value i.e. x+6 of the entered value x for a designated time

t. note that here we kept the value ofUSD as fixed or in other world as a unit.
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For each t, ranging in values from 25 to 900, the training input/output data will

be a structure whose first component is the four-dimensionalinput w, and whose second

component is the output s. There will be 922 input/output data values. We use the first

460 data values for the ANFIS training (these become the training data set), while the

others are used as checking data for validating the identified fuzzy model. This results a

two 460-point data structures: trnData and chkData.

To start the training, we need an FIS structure that specifies the structure and

initialparameters of the FIS for learning. Since we did not specify numbers and types of

membership functions used in the FIS, default values are assumed. These defaults

provide two generalized bell membership functions on each of the four inputs, eight

altogether. As shown in the figure below

Figure 5 .11 Two generalized bell membershipfunctions on each of the four inputs.

The generated FIS structure contains 16 fuzzy rules with I 04 parameters, the

program generates initial membership functions that are equally spaced and cover the

whole input space. Plot the input membership functions are given in figure 5.12.
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Figure 5 .12 The generated membership function for input data

In order to achieve good generalization capability, it is important to have the

number of training data points be several times larger than the number of parameters

being estimated. In this case, the ratio between _data and parameters is about four
(460/104).

The training takes about four minutes on a PC AT Pentium II 300 MHz, for 10

epochs of training, and error value equal to O. O 1. Because the checking data option of

ANFIS was invoked, the final FIS you choose would ordinarily be the one associated

with the minimum checking error. At the result of learning the new membership
functionsare obtained.

The comparison of the original exchange rate time series and the ANFIS

prediction is given below, in figure 5 .13. Note that the difference between the original

exchange rate time series and the antis estimated values is very small. This is why you
can only see one curve in the first plot.
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Figure 5. 13 Output signalgenerated by ANFIS

The prediction error is shown in the second plot with a much finer scale (figure

5.14). Note that we have only trained for 10 epochs. Better performance is expected if
we applymore extensive training.

:.,..
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Figure 5. 14 The error signal of plotting

5.3.2. Results 

The results of training of the learning system are described in the following table

Number of nodes: 55

Number of hidden neurons: 48

Number of linear parameters: 80

Number of nonlinear parameters: 24

Total number of parameters: 104

Number of training data pairs: 460

Number of checking data pairs: 423

Number of fuzzy rules: 16

Learning rate: 0.08
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Time of training: 4 min

Error value: O.Ol

Designated epoch number: 1 O.

Step size decreases to 0.009000 after epoch 10.

5.4. Summary 

In this chapter two different models of neuro-fuzzy systems have been produced

to solve two different practical modeling of nonlinear dynamic object, and exchange

rate prediction, respectively. To do so the MA1LAB package was used, the systems are

designed, the date are input, the networks are trained, then by analyzing the obtained

results the efficiency of the applied method was proved in terms of time and labor

consumed, and accuracy of obtained with respect to the error value specified to O. O 1 for

example while training stage of the second model the error is too small and that is

obvious in the plot of error signal in figure 5 .14.
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The analysis of industrial and non-industrial processes show that they are

characterized with uncertainty of environment, fuzziness of information, flexible of

functionality.For these reasons the development of intellectual systems based on fuzzy

and neural network technologies is very important. Because fuzzy system can over

come the uncertainty via its linguistic expression and reasoning mechanism, while the

neural network overcomes the slowness and changeability of functions via its parallel
structure and abilityoflearning.

In the thesis the developments of neuro-fuzzy systems in general and modeling

nonlinear plants, and predicting exchange rate for Turkish Lira against US Dollar in

specificwere considered. To solve these two problems this requires us to go through the
antecedent chapters, in brieflydescription.

In the first chapter some of the previously done works using the neuro-fuzzy

concepts, and ideas were introduced, were referenced, and their results were
investigatedbrieflyas well.

In the second chapter the general architecture and main elements of fuzzy rule

based systems, their structures, and functions of main blocks. The different types of

fuzzyrule based systemsand their inference mechanismwere described.

In the third chapter the common architectures of neural networks, their different

types of learning algorithms were described, and one of their most efficient and most

widely used learning algorithm which is back-propagation learning algorithm was

introduced as well; where it has good learning speed. Its functions, advantages and

disadvantageswere explained.

In the forth· chapter the different structures of neuro-fuzzy systems, their

operation principles, the learning algorithms which are used for training the neuro-fuzzy

systems were explained. The structure and algorithms of adaptive neuro-fuzzy inference

systemfor differenttype fuzzy IF-THEN rules were described.

In the fifth chapter in order to prove the efficiency of neuro-fuzzy systems we

considered two different practical problems to be solved by neuro-fuzzy system

concept, the first one is direct and inverse modeling of nonlinear dynamic plant, the

second one is predicting of exchange rate of Turkish Lira against US Dollar. The both

.......___,

CONCLUSION 
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problems were applied utilizing from the learning ability of ANFIS associated with

MATLAB toolbox.

The applied method emphasized the power and efficiency of neuro-fuzzy system

by watching the applied system results where it has small error ratio with respect to the

data provided, i.e. accuracy. The system shows a less ability to be stacked in local or

global minima according to the linguistic description of functions which helps to

decrease any uncertainty or eliminate it totally some times could happen either while

learning or before, this causes the system to be converged and trained in less time, and

also tabor consumed.

The aims of the presented work within this thesis were to obtain neural network

learning of fuzzy systems to solve two different static and dynamic problems, modeling

of nonlinear object, predicting, predicting exchange rate of Turkish Lira against US

Dollar, and to prove the efficiency of the applied method to solve different problems.

These aims have all been achieved throughout the work that is described within

this thesis. Obtained results and the analysis of them show the achievement of the work.

(
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mffype=gbellmf;
epoch_ n=20;

input=[xl' x2']
trn_Data=[x 1' x2' x2']

,

APPENDIX 1 

Program code for modeling 
pi=3.14;
1=3;
k1=50; k:2=1;
aO=l.42;
al=2.12;
a2=1;
b=80;
nc=0.01;
t=O. 15;
aal=(2*a0+al *t)/(aO+al *t+a2*t*t);
aa2=-aO/(aO+al *t+a2*t*t);
bbl=(b*t*t)/(aO+al *t+a2*t*t);
bb2=0;
for 1=1:100

out(l)=O;
ul(l)=O;
g(l)=O;

end

for 1=3:100
g(l)=( sin(pi*l/15))'
out(l)=g(l)*bb 1+aa 1 * out(l-1 )+aa2 *out(l-2)+nc* out(l-1 )*g(l-1)+ 1 O* cosıl);
xl(l)=kl *g(l);
x2(l)=k:2*out(l-1 );

end;

plot(xl)
pause
plot(x2)
pause
plot(xl)
pause

in_fismat = genfisl(trn_Data);

out_ fismat=anfis( trn_Data,in _fismat,20 );

. plot( evalfis(iriput,out_ fismat));

Al



APPEND1X2 

Program execution results for modeling 
Columns 78 through 88

-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492
-0.5952 -0.4153

Columns 89 through 99
-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934

0.9956 0.9543
Column 100
0.8713

out=
Columns 1 through 11

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15.1126 -1.4689
Columns 12 through 22
14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646

-8.9924 -18.8836
Columns 23 through 33
-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282

15.6022 16.5083 2.7149
Columns 34 through 44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9.1677 -16.9760 -

8.4495 8.4033 17.8945
Columns 45 through 55
11.0883 -5.9740 -17.8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns 56 through 66
13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493

9.8738 -7.0712 -16.5894
Columns 67 through 77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1. 1079
Columns 78 through 88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns 89 through 99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
Column 100
15.1259

g=
Columns 1 throughl l

O O 0.5875
0.8666 0.7439

-

0.7429 0.8658 0.9509 0.9944 0.9946 0.9514

Columns 12 through 22
0.5888 0.4080 0.2094 0.0016 -0.2062 -0.4051 -0.5862 -0.7418 -0.8650 -

0.9504 -0.9943
Columns 23 through 33

A2.l



-0.9948 -0.9518 -0.8673 -0.7450 -0.5901 -0.4095 -0.2109 -0.0032 0.2047
0.4036 0.5849

Columns 34 through 44
0.7407 0.8642 0.9499 0.9941 0.9949 0.9523 0.8681 0.7461 0.5914

0.4109 0.2125
Columns 45 through 55

0.0048 -0.2031 -0.4022 -0.5837 -0.7397 -0.8634 -0.9494 -0.9939 -0.9951
-0.9528 -0.8689
Columns 56 through 66
-0.7471 -0.5927 -0.4124 -0.2140 -0.0064 0.2016 0.4007 0.5824 0.7386

0.8626 0.9489
Columns 67 through 77

0.9938 0.9953 0.9533 0.8697 0.7482 0.5940 0.4138 0.2156 0.0080 -
0.2000 -0.3993
Columns 78 through 88
-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492

-0.5952 -0.4153
Columns 89 through 99
-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934

0.9956 0.9543
Column 100 0.8713

out=
Columns 1 through 11

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15.1126 -1.4689
Columns12 through22
14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646

-8.9924 -18.8836
Columns23 through33
-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282

15.6022 16.5083 2.7149
Columns34 through44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9.1677 -16.9760 -

8.4495 8.4033 17.8945
Columns45 through55
11.0883 -5.9740 -17.8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns56 through66
13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493

9.8738 -7.0712 -16.5894
Columns67 through77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1.1079
Columns78 through88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns89 through99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
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A2.3

Column 100 15.1259
g=

Columns l through 11
O O 0.5875 0.7429 0.8658 0.9509 0.9944 0.9946 0.9514

0.8666 0.7439
Columns 12 through 22
0.5888 0.4080 0.2094 0.0016 -0.2062 -0.4051 -0.5862 -0.7418 -0.8650 -

0.9504 -0.9943
Columns 23 through 33
-0.9948 -0.9518 -0.8673 -0.7450 -0.5901 -0.4095 -0.2109 -0.0032 0.2047

0.4036 0.5849
Columns 34 through 44
0.7407 0.8642 0.9499 0.9941 0.9949 0.9523 0.8681 0.7461 0.5914

0.4109 0.2125
Columns 45 through 55
0.0048 -0.2031 -0.4022 -0.5837 -0.7397 -0.8634 -0.9494 -0.9939 -0.9951

-0.9528 -0.8689
Columns 56 through 66
-0.7471 -0.5927 -0.4124 -0.2140 -0.0064 0.2016 0.4007 0.5824 0.7386

0.8626 0.9489
Columns 67 through 77
0.9938 0.9953 0.9533 0.8697 0.7482 0.5940 0.4138 0.2156 0.0080 -

0.2000 -0.3993
Columns 78 through 88
-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492

-0.5952 -0.4153
Columns 89 through 99
-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934

0.9956 0.9543
Column 100
0.8713

out=
Columns 1 through 11

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15.1126 -1.4689
Columns 12 through 22
14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646

-8.9924 -18.8836
Columns 23 through 33
-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282

15.6022 16.5083. 2.7149
Columns 34 through 44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9.1677 -16.9760 -

8.4495 8.4033 17.8945
Columns 45 through SS
11.0883 -5.9740 -17.8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns 56 through 66



13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493
9.8738 -7.0712 -16.5894

Columns 67 through 77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1.1079
Columns 78 through 88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns 89 through 99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
Column 100
15.1259

g=
Columns 1 through 11

O O 0.5875 0.7429 0.8658 0.9509 0.9944 0.9946 0.9514
0.8666 0.7439
Columns12 through22
0.5888 0.4080 0.2094 0.0016 -0.2062 -0.4051 -0.5862 -0.7418 -0.8650 -

0.9504 -0.9943
Columns23 through33
-0.9948 -0.9518 -0.8673 -0.7450 -0.5901 -0.4095 -0.2109 -0.0032 0.2047

0.4036 0.5849
Columns34 through44
0.7407 0.8642 0.9499 0.9941 0.9949 0.9523 0.8681 0.7461 0.5914

0.4109 0.2125
Columns45 through55
0.0048 -0.2031 -0.4022 -0.5837 -0.7397 -0.8634 -0.9494 -0.9939 -0.9951

-0.9528 -0.8689
Columns56 through66
-0.7471 -0.5927 -0.4124 -0.2140 -0.0064 0.2016 0.4007 0.5824 0.7386

0.8626 0.9489
Columns67 through77
0.9938 0.9953 0.9533 0.8697 0.7482 0.5940 0.4138 0.2156 0.0080 -

0.2000 -0.3993
Columns78 through88
-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492

-0.5952 -0.4153
Columns89 through99
-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934

0.9956 0.9543
Column100
0.8713

out=
Columns1 through 11

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15.1126 -1.4689
Columns12 through22

A2.4



14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646
-8.9924 -18.8836
Columns 23 through 33
-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282

15.6022 16.5083 2.7149
Columns 34 through 44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9.1677 -16.9760 -

8.4495 8.4033 17.8945
Columns 45 through 55
11.0883 -5.9740 -17.8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns 56 through 66
13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493

9.8738 -7.0712 -16.5894
Columns 67 through 77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1.1079
Columns 78 through 88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns 89 through 99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
Column 100
15.1259

g=
Columns 1 through 11

O O 0.5875 0.7429 0.8658 0.9509 0.9944 0.9946 0.9514
0.8666 0.7439
Columns12 through22
0.5888 0.4080 0.2094 0.0016 -0.2062 -0.4051 -0.5862 -0.7418 -0.8650 -

0.9504 -0.9943
Columns23 through33
-0.9948 -0.9518 -0.8673 -0.7450 -0.5901 -0.4095 -0.2109 -0.0032 0.2047

0.4036 0.5849
Columns34 through44
0.7407 0.8642 0.9499 0.9941 0.9949 0.9523 0.8681 0.7461 0.5914

0.4109 0.2125
Columns45 through55
0.0048 -0.2031 -0.4022 -0.5837 -0.7397 -0.8634 -0.9494 -0.9939 -0.9951

-0.9528 -0.8689
Columns56 through66
-0.7471 -0.5927 -0.4124 -0.2140 -0.0064 0.2016 0.4007 0.5824 0.7386

0.8626 0.9489
Columns67 through77
0.9938 0.9953 0.9533 0.8697 0.7482 0.5940 0.4138 0.2156 0.0080 -

0.2000 -0.3993
Columns78 through88

A2.5



A2.6

-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492 -
0.5952 -0.4153

Columns 89 through 99
-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934

0.9956 0.9543
Column 100
0.8713

out=
Columns1 through 11

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15.1126 -1.4689
Columns12 through22
14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646

-8.9924 -18.8836
Columns23 through33
-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282

15.6022 16.5083 2.7149
Columns34 through44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9.1677 -16.9760 -

8.4495 8.4033 17.8945
Columns45 through55
11.0883 -5.9740 -17.8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns56 through66
13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493

9.8738 -7.0712 -16.5894
Columns67 through77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1.1079
Columns78 through88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns89 through99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
Column100
15.1259

g==
Columns1 through 11

O O 0.5875 O. 7429 0.8658 0.9509 0.9944 0.9946 0.9514
0.8666 0.7439
Columns12 through22
0.5888 0.4080 0.2094 0.0016 -0.2062 -0.4051 -0.5862 -0.7418 -0.8650 -

0.9504 -0.9943
Columns23 through3 3
-0.9948 -0.9518 -0.8673 -0.7450 -0.5901 -0.4095 -0.2109 -0.0032 0.2047

0.4036 0.5849
Columns34 through44



A2.7

0.7407 0.8642 0.9499 0.9941 0.9949 0.9523 0.8681 0.7461 0.5914
0.4109 0.2125
Columns 45 through 55
0.0048 -0.2031 -0.4022 -0.5837 -0.7397 -0.8634 -0.9494 -0.9939 -0.9951

-0.9528 -0.8689
Columns 56 through 66
-0.7471 -0.5927 -0.4124 -0.2140 -0.0064 0.2016 0.4007 0.5824 0.7386

0.8626 0.9489
Columns 67 through 77

0.9938 0.9953 0.9533 0.8697 0.7482 0.5940 0.4138 0.2156 0.0080 -
0.2000 -0.3993

Columns 78 through 88
-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492

-0.5952 -0.4153
Columns 89 through 99
-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934

0.9956 0.9543
Column 100

0.8713
out=
Columns 1 through 1 1

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15.1126 -1.4689
Columns 12 through 22
14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646

-8.9924 -18.8836
Columns 23 through 33
-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282

15.6022 16.5083 2.7149
Columns 34 through 44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9.1677 -16.9760 -

8.4495 8.4033 17.8945
Columns 45 through SS
11.0883 -5.9740 -17.8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns 56 through 66
13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493

9.8738 -7.0712 -16.5894
Columns 67 through 77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1.1079
Columns 78 through 88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns 89 through 99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
Column 100
15.1259



A2.8

g=
Columns 1 through 11

O O 0.5875 0.7429 0.8658 0.9509 0.9944 0.9946 0.9514
0.8666 0.7439
Columns12 through22
0.5888 0.4080 0.2094 0.0016 -0.2062 -0.4051 -0.5862 -0.7418 -0.8650 -

0.9504 -0.9943
Columns23 through33
-0.9948 -0.9518 -0.8673 -0.7450 -0.5901 -0.4095 -0.2109 -0.0032 0.2047

0.4036 0.5849
Columns34 through44
0.7407 0.8642 0.9499 0.9941 0.9949 0.9523 0.8681 0.7461 0.5914

0.4109 0.2125
Columns45 through55
0.0048 -0.2031 -0.4022 -0.5837 -0.7397 -0.8634 -0.9494 -0.9939 -0.9951

-0.9528 -0.8689
Columns56 through66
-0.7471 -0.5927 -0.4124 -0.2140 -0.0064 0.2016 0.4007 0.5824 0.7386

0.8626 0.9489
Columns67 through77
0.9938 0.9953 0.9533 0.8697 0.7482 0.5940 0.4138 0.2156 0.0080 -

0.2000 -0.3993
Columns78 through88
-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492

-0.5952 -0.4153
Columns89 through99
-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934

0.9956 0.9543
Column100
0.8713

out=
Columns1 through 11

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15.1126 -1.4689
Columns12 through22
14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646

-8.9924 -18.8836
Columns23 through33
-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282

15.6022 16.5083 2.7149
Columns34 through44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9.1677 -16.9760 -

8.4495 8.4033 17.8945
Columns45 through 55
11.0883 -5.9740 -17:8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns56 through66
13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493

9.8738 -7.0712 -16.5894
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Columns 67 through 77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1.1079
Columns 78 through 88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns 89 through 99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
Column 100
15.1259

g= 
Columns1 through 11

O O 0.5875 0.7429 0.8658 0.9509 0.9944 0.9946 0.9514
0.8666 0.7439
Columns12through22
0.5888 0.4080 0.2094 0.0016 -0.2062 -0.4051 -0.5862 -0.7418 -0.8650 -

0.9504 -0.9943
Columns23 through33
-0.9948 -0.9518 -0.8673 -0.7450 -0.5901 -0.4095 -0.2109 -0.0032 0.2047

0.4036 0.5849
Columns34 through44
0.7407 0.8642 0.9499 0.9941 0.9949 0.9523 0.8681 0.7461 0.5914

0.4109 0.2125
Columns45 through55
0.0048 -0.2031 -0.4022 -0.5837 -0.7397 -0.8634 -0.9494 -0.9939 -0.9951

-0.9528 -0.8689
Columns56 through66
-0.7471 -0.5927 -0.4124 -0.2140 -0.0064 0.2016 0.4007 0.5824 0.7386

0.8626 0.9489
Columns67 through77
0.9938 0.9953 0.9533 0.8697 0.7482 0.5940 0.4138 0.2156 0.0080 -

0.2000 -0.3993
Columns78 through88
-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492

-0.5952 -0.4153
Columns89 through99
-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934

0.9956 0.9543
Column100
0.8713

out=
Columns1 through 11

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15.1126 -1.4689
Columns12 through22
14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646

-8.9924 -18.8836
Columns23 through3 3
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-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282 15.6022
16.5083 2. 7149
Columns 34 through 44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9. 1677 -16.9760 -

8.4495 8.4033 17.8945
Columns 45 through 55
11.0883 -5.9740 -17.8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns 56 through 66
13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493

9.8738 -7.0712 -16.5894
Columns 67 through 77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1.1079
Columns 78 through 88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns 89 through 99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
Column 100
15. 1259

g=
Columns 1 through 11

O O 0.5875 0.7429 0.8658 0.9509 0.9944 0.9946 0.9514
0.8666 0.7439
Columns 12 through 22

0.5888 0.4080 0.2094 0.0016 -0.2062 -0.4051 -0.5862 -0.7418 -0.8650 -
0.9504 -0.9943
Columns 23 through 33
-0.9948 -0.9518 -0.8673 -0.7450 -0.5901 -0.4095 -0.2109 -0.0032 0.2047

0.4036 0.5849
Columns 34 through 44

0.7407 0.8642 0.9499 0.9941 0.9949 0.9523 0.8681 0.7461 0.5914
0.4109 0.2125
Columns 45 through 55

0.0048 -0.2031 -0.4022 -0.5837 -0.7397 -0.8634 -0.9494 -0.9939 -0.9951
-0.9528 -0.8689
Columns 56 through 66
-0.7471 -0.5927 -0.4124 -0.2140 -0.0064 0.2016 0.4007 0.5824 0.7386

0.8626 0.9489
Columns 67 through 77
0.9938 0.9953 0.9533 0.8697 0.7482 0.5940 0.4138 0.2156 0.0080 -

0.2000 -0.3993
Columns 78 through 88
-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492

-0.5952 -0.4153
Columns 89 through 99
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-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934
0.9956 0.9543

Column 100
0.8713

out=
Columns 1 through 11

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15.1126 -1.4689
Columns 12 through 22
14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646

-8.9924 -18.8836
Columns 23 through 33
-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282

15.6022 16.5083 2.7149
Columns 34 through 44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9.1677 -16.9760 -

8.4495 8.4033 17.8945
Columns 45 through 55
11.0883 -5.9740 -17.8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns 56 through 66
13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493

9.8738 -7.0712 -16.5894
Columns 67 through 77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1.1079
Columns 78 through 88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns 89 through 99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
Column 100
15.1259

g=
Columns 1 through 11

O O 0.5875 0.7429 0.8658 0.9509 0.9944 0.9946 0.9514
0.8666 0.7439
Columns 12 through 22

0.5888 0.4080 0.2094 0.0016 -0.2062 -0.4051 -0.5862 -0.7418 -0.8650 -
0.9504 -0.9943
Columns 23 through 3 3
-0.9948 -0.9518 -0.8673 -0.7450 -0.5901 -0.4095 -0.2109 -0.0032 0.2047

0.4036 0.5849
Columns 34 through 44

0.7407 0.8642 0.9499 0.9941 0.9949 0.9523 0.8681 0.7461 0.5914
0.4109 0.2125
Columns 45 through 5 5



0.0048 -0.2031 -0.4022 -0.5837 -0.7397 -0.8634 -0.9494 -0.9939 -0.9951 -
0.9528 -0.8689

Columns 56 through 66
-0.7471 -0.5927 -0.4124 -0.2140 -0.0064 0.2016 0.4007 0.5824 0.7386

0.8626 0.9489
Columns 67 through 77

0.9938 0.9953 0.9533 0.8697 0.7482 0.5940 0.4138 0.2156 0.0080 -
0.2000 -0.3993
Columns 78 through 88
-0.5811 -0.7375 -0.8617 -0.9484 -0.9936 -0.9954 -0.9538 -0.8705 -0.7492

-0.5952 -0.4153
Columns 89 through 99
-0.2171 -0.0096 0.1985 0.3978 0.5798 0.7364 0.8609 0.9479 0.9934

0.9956 0.9543
Column 100

0.8713
out=
Columns 1 through 1 1

O O -9.2992 -10.5473 2.0178 15.8131 15.8635 1.3967 -13.7452 -
15. 1126 -1.4689
Columns 12 through 22
14.3108 17.4185 4.8127 -12.0693 -17.8972 -7.5361 9.2716 16.8887 8.1646

-8.9924 -18.8836
Columns23 through 33
-12.4482 4.4097 16.2492 12.2855 -3.6993 -16.8393 -14.8601 0.6282

15.6022 16.5083 2.7149
Columns34 through 44
-12.9158 -15.8612 -3.2969 13.3015 18.7057 7.9340 -9.1677 -16.9760 -

8.4495 8.4033 17.8945
Columns45 through 55
11.0883 -5.9740 -17.8189 -13.7579 2.2945 15.4279 13.4506 -1.8956 -

16.5340 -16.9935 -2.7943
Columns 56 through 66
13.1085 16.2310 3.8716 -12.4132 -17.4417 -6.3745 10.8269 18.5493

9.8738 -7.0712 -16.5894
Columns67 through 77
-9.8533 6.9768 18.4151 13.8883 -2.5409 -15.9045 -14.0849 1.0517 15.3793

15.5091 1. 1079
Columns78 through 88
-14.7857 -17.7403 -5.1920 11.2050 16.2985 5.3724 -11.5159 -18.7828 -

9.6482 7.6262 17.3271
Columns 89 through 99
10.7286 -5.8934 -17.0404 -12.2502 4.2751 17.5235 15.4674 0.1146 -

14.3422 -14.5781 -0.3878
Column 100
15.1259

>>
input=
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o o
o o

29.3764 O
37.1430 -9.2992
43.2880 -22.5126
47.5430 -29.3280
49.7222 -24.1305
49.7305 -11.3034
47.5676 -1.3633
43.3278 -1.4805
37.1963 -9.0749
29.4408 -14.3582
20.3999 -9.5024
10.4683 3.9713
0.0796 16.3860

-10.3125 18.6291
-20.2544 10.4132
-29.3119 0.4659
-37.0897 -1.5615
-43.2481 5.9609
-47.5183 15.1045
-49.7138 15.7069
-49.7387 4.8266
-47.5920 -10.4045
-43.3675 -19.1846
-37.2495 -16.8135
-29.5051 -8.8328
-20.4725 -5.7417
-10.5461 -13.1859
-0.1593 -26.6640
10.2346 -35.5991
20.1815 -32.9932
29.2473 -21.7822
37.0362 -12.0838
43.2081 -11.9058
47.4934 -19.8516
49.7052 -26.4869
49.7468 -23.0814
47.6164 -9.7010
43.4071 4.7591
37.3025 10.6252
29.5694 6.2025
20.5452 -0.7930
10.6240 -0.4587
0.2389 10.0305

-10.1566 23.6423
-20.1086 29.7909
-29.1827 23.9744
-36.9827 11.8819
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-43.1679 4.1567
-47.4685 6.6088
-49.6965 14.8959
-49.7547 18.6022
-47. 6406 1 O. 9688
-43.4465 -4. 7048
-37.3555 -17.9092
-29.6335 -20.4068
-20.6177 -13.6154
-10.7018 -7.1127
-0.3185 -9.6771
10.0786 -21.1317
20.0357 -32.4744
29.1180 -34.1289
36.9290 -24.7096
43.1277 -12.2665
47.4434 -6.9065
49.6877 -11.5808
49.7625 -19.4745
47.6647 -20.3672
43.4859 -10.1210
37.4084 5.3988
29.6976 15.5695
20.6903 14.6254
10.7795 6.8250
0.3982 2.4119

-10.0006 8.0524
-19.9627 20.5385
-29.0533 29.5881
-36.8753 27.2190
-43.0874 15.0883
-47.4182 3.0148
-49.6787 0.0091
-49.7702 6.0654
-47.6887 12.2903
-43.5251 9.2564
-37.4612 -4.1311
-29.7617 -19.4436
-20.7627 -26.3114
-10.8573 -21.7888
-0.4778 -12.8922
9.9226 -10.0141
19.8897 -17.3045
28.9884 -28.8557
36.8215 -34.1518
43.0469 -27.7375
47.3929 -14.2315
49.6696 -4.1136
49.7778 -4.1749
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A2.15

47.7126 -11.3873
43.5643 -15.7988

tm Data=

o
o

o
o

o
o

29.3764 O O
37.1430 -9.2992 -9.2992
43.2880 -22.5126 -22.5126
47.5430 -29.3280 -29.3280
49.7222 -24.1305 -24.1305
49.7305 -11.3034 -11.3034
47.5676 -1.3633 -1.3633
43.3278 -1.4805 -1.4805
37.1963 -9.0749 -9.0749
29.4408 -14.3582 -14.3582
20.3999 -9.5024 -9.5024
10.4683 3.9713 3.9713
0.0796 16.3860 16.3860

-10.3125 18.6291 18.6291
-20.2544 10.4132 10.4132
-29.3119 0.4659 0.4659
-37.0897 -1.5615 -1.5615
-43.2481 5.9609 5.9609
-47.5183 15.1045 15.1045
-49.7138 15.7069 15.7069
-49.7387 4.8266 4.8266
-47.5920 -10.4045 -10.4045
-43.3675 -19.1846 -19.1846
-37.2495 -16.8135 -16.8135
-29.5051 -8.8328 -8.8328
-20.4725 -5.7417 -5.7417
-10.5461 -13.1859 -13.1859
-0.1593 -26.6640 -26.6640
10.2346 -35.5991 -35.5991
20.1815 -32.9932 -32.9932
29.2473 -21.7822 -21.7822
37.0362 -12.0838 -12.0838
43.2081 -11.9058 -11.9058
47.4934 -19.8516 -19.8516
49.7052 -26.4869 -26.4869
49.7468 -23.0814 -23.0814
47.6164 -9.7010 -9.7010
43.4071 4.7591 4.7591
37.3025 10.6252 10.6252
29.5694 6.2025 6.2025
20.5452 -0.7930 -0. 7930



10.6240 -0.4587 -0.4587
0.2389 10.0305 10.0305

-10.1566 23.6423 23.6423
-20.1086 29.7909 29.7909
-29.1827 23.9744 23.9744
-36.9827 11.8819 11.8819
-43.1679 4.1567 4.1567
-47.4685 6.6088 6.6088
-49.6965 14.8959 14.8959
-49.7547 18.6022 18.6022
-47.6406 10.9688 10.9688
-43.4465 -4.7048 -4.7048
-37.3555 -17.9092 -17.9092
-29.6335 -20.4068 -20.4068
-20.6177 -13.6154 -13.6154
-10.7018 -7.1127 -7.1127
-0.3185 -9.6771 -9.6771
10.0786 -21.1317 -21.1317
20.0357 -32.4744 -32.4744
29.1180 -34.1289 -34.1289
36.9290 -24.7096 -24.7096
43.1277 -12.2665 -12.2665
47.4434 -6.9065 -6.9065
49.6877 -11.5808 -11.5808
49.7625 -19.4745 -19.4745
47.6647 -20.3672 -20.3672
43.4859 -10. 1210 -10.1210
37.4084 5.3988 5.3988
29.6976. 15.5695 15.5695
20.6903 14.6254 14.6254
10.7795 6.8250 6.8250
0.3982 2.4119 2.4119

-10.0006 8.0524 8.0524
-19.9627 20.5385 20.5385
-29.0533 29.5881 29.5881
-36.8753 27.2190 27.2190
-43.0874 15.0883 15.0883
-47.4182 3.0148 3.0148
-49.6787 0.0091 0.0091
-49.7702 6.0654 6.0654
-47.6887 12.2903 12.2903
-43.5251 9.2564 9.2564
-37.4612 -4.1311 -4.1311
-29.7617 -19.4436 -19.4436
-20.7627 -26.3114 -26.3114
-10.8573 -21.7888 -21.7888
-0.4778 -12.8922 -12.8922
9.9226 -10.0141 -10.0141
19.8897 -17.3045 -17.3045
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28.9884 -28.8557 -28.8557
36.8215 -34.1518 -34.1518
43.0469 -27.7375 -27.7375
47.3929 -14.2315 -14.2315
49.6696 -4.1136 -4.1136
49.7778 -4.1749 -4.1749
47.7126 -11.3873 -11.3873
43.5643 -15.7988 -15.7988

ANFIS info:
Number of nodes: 13 I
Number oflinear parameters: 147
Number ofnonlinear parameters: 42
Total number of parameters: 189
Number of training data pairs: 100
Number of checking data pairs: O
Number of fuzzy rules: 49

Warning:number of data is smaller than number of modifiableparameters

Start training ANFIS ...

1 5 .30644e-005
2 5.31178e-005
3 5.29964e-005
4 5.29912e-005
5 5.28154e-005
6 5.26248e-005

Step size increases to 0.011000 after epoch 6.
7 5.25697e-005
8 5.25457e-005
9 5.25443e-005
10 5.26051e-005
1 I 5.24986e-005
12 5.24062e-005
13 5.22334e-005
14 5.22664e-005
15 5.21349e-005
16 5.193e-005
17 5 .20346e-005
18 5.19601e-005
19 5. I6698e-005
20 5.17142e-005

Designated epoch number reached--> ANFIS training completed at epoch 20.



APPENDIX3 

Program code for predicting exchange rate 

load usd2002. txt

t = usd2002( :, 1 );
x = usd2002(:, 2);

plot(t, x);
w(t) = [x(t-18) x(t-12) x(t-6) x(t)]
s(t) = x(t+6)

for t=20:902
Data(t-19,:)=[x(t-18) x(t-12) x(t-6) x(t) x(t+6)];
end

trnData=Data(l:460, :);
chkData=Data( 461: end, : );
fi.sınat= genfisl(trnData);

subplot(2,2, 1)
plotmf(fismat, 'input', 1)
subplot(2,2,2)
plotmf(fismat, 'input', 2)
subplot(2,2,3)
plotınf(fismat, 'input', 3)
subplot(2,2, 4)
plotınf(fismat, 'input', 4)

fismat2=anfis(trnData,fismat,[],[],chkData);
[fismat,errorl,ss,fismat2,error2] = anfis(trnData,fismat,[],[],chkData);

subplot(2,2, 1)
plotmf(fismat2, 'input', 1)
subplot(2,2,2)
plotınf(fismat2, 'input', 2)
subplot(2,2,3)
plotmf(fismat2, 'input', 3)
subplot(2,2, 4)
plotmf(fismat2, 'input', 4)

plot([ error 1; error2]);

anfis_output = evalfis([trnData, chkData],fismat2);
plot( anfis_output);
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APPENDIX4 

Program execution results for predicting exchange rate 

ANFIS info:
Number ofnodes: 55
Number of linearparameters: 80
Number of nonlinearparameters: 24
Total number of parameters: 104
Number oftraining data pairs: 460
Number of checking data pairs: O
Number of fuzzy rules: 16

Start training ANFIS ...

1 31.4343
2 31.6357
3 32.4524
4 31.7551
5 31.5946
6 31.9037
7 32.5328
8 32.3151
9 32.358
10 31.4373

Step size decreases to 0.009000 after epoch 10.

Designated epoch number reached--> ANFIS training completed at epoch 10.

ANFIS info:
Number ofnodes: 55
Number oflinear parameters: 80
Number of nonlinearparameters: 24
Total number ofparameters: 104
Number of training data pairs: 460
Number ofchecking data pairs: 423
Number of fuzzy rules: 16

Start training ANFIS ...

1 31.4343 439.618
2 31.6357 484.197
3 32.4524 345.91
4 31.7551 281.453
5 31.5946 272.165
6 31.9037 236.305
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7 32.5328
8 32.3151
9 32.358
10 31.4373

728.101
580.387
637.682
348.04

Step size decreases to 0.009000 after epoch 10.

Designated epoch number reached --> ANFIS training completed at epoch 1 O.
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1 543,401
2 538,399
3 537,722
4 537,738
5 542,212
6 541,876
7 542,939
8 543,012
9 543,354
10 545,344
11 548,869
12 549,036
13 548,880
14 549,510
15 549,855
16 550,266
17 550,926
18 552,974
19 552,985
20 553,451
21 555,949
22 558,441
23 560,572
24 561,067
25 561,541
26 562,503
27 563,577
28 563,063
29 562,082
30 542,212
31 561,553
32 560,587
33 560,367
34 561,171
35 562,924
36 564,686
37 564,787
38 566,680
39 567,012
40 566,894
41 566,325
42 565,137
43 567,277
44 568,035
45 564,085

46 563,657
47 567,732
48 566,698
49 568,865
50 570,505
51 575,799
52 574,816
53 576,598
54 575,055
55 577,193
56 577,863
57 578,357
58 579,558
59 580,949
60 581,854
61 580,570
62 581,089
63 579,822
64 580,547
65 581,882
66 582,185
67 582,651
68 583,273
69 586,145
70 584,726
71 584,216
72 584,468
73 584,762
74 584,902
75586,896
76 589,712
77 591,155
78 590,896
79 591,446
80 591,875
81 592,357
82 592,698
83 588,901
84 591,527
85 593,198
86 592,963
87 593,585
88 594,015
89 594,654
90 594,97.,

91 595,334
92 593,798
93 595,907
94 598,363
95 599,Ş52
96 601,865
97 602,256
98 602,653
99 602,641
100 602,124
101 607,010
102 607,857
103 608,356
104 608,773
105 609,226
106 612,243
107 614,154
108 613,515
109 619,285
110 619,035
111 618,992
I 12 618,859
113 618,040
114 620,122
115 619,725
116 616,246
117 617,279
118 617,774
119 618,523
120 618,990
121 616,863
122 620,224
123 623,533
124 623,929
125 623,553
126 622,254
127 621,698
128 620,758
129 621,658
130 623,975
131 620,733
132 619,008
133 616,624
134 617,025
135 617,542

APPENDIX5 
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136 617,706 185 632,990 234 668,126
137 617,665 186 634,122 235 668,229
138 615,009 187 632,234 236 669,413
139 616,294 188 632,808 237 673,206
140 613,765 189 633,496 238 672,870
141 613,838 190 637,265 239 673,568
142611,064 191 637,866 240 674,368
143 612,587 192 638,224 241 675,795
144 614,877 193 638,579 242 674,3_58
145 616,388 194 637,812 243 664,304
146 615,948 195 641,913 244 668,621
147 614,004 196 645,329 245 667,803
148 614,267 197 644,486 246 666,407
149 617,426 198 644,824 247 666,489
150 616,321 199 645,869 248 666,563
151 616,144 200 646,589 249 666,633
152 615,489 201 647,086 250 669,096
153 615,723 202 648,505 251 668,922
154 618,064 203 646,950 252 670,307
155 620,973 204 645,111 253 671,046
156 622,459 205 648,441 254 671,157
157 622,976 206 646,392 255 671,261
158 625,927 207 646,536 256 672,809
159 625,532 208 646,836 257 673,952
160 625,214 209 647,335 258 673,486
161 624,991 210 645,528 259 673,206
162 624,784 211 648,022 260 674,647
163 621,970 212 650,276 261 675,850
164 621,079 213 652,711 262 676,411
165 624,013 214 653,459 263 681,063
166 624,810 215 652,754 264 681,536
167 624,632 216 652,115 265 681,057
168 624,145 217 651,178 266 682,865
169 623,313 218 651,479 267 684,650
170 623,407 219 652,946 268 684,646
171 625,777 220 654,469 269 686,620
172 625,112 221 656,599 270 686,744
173 624,956 222 656,282 271 689,772
174 626,440 223 655,695 272 690,886
175 628,478 224 655,235 273 691,260
176 629,998 225 655,142 274 689,082
177 630,319 226 659,098 275 685,342
178 631,288 227 662,199 276 685,978
179 631,596 228 664,499 277 683,242
180 631,803 229 665,214 278 682,891
181 635,823 230 669,036 279 681,318
182 635,687 231 668,965 280 679,186
183 633,898 ---· 232 668,364 281 680,710
184 633,369 233 668,549 282 683,524
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283 684,131
284 684,637
285 685,248
286 681,676
287 683,934
288 685,399
289 685,087
290 686,822
291 686,235
292 686,942
293 689,771
294 690,322
295 691,679
296 691,746
297 692,171
298 692,365
299 692,536
300 689,069
301 686,176
302 685,669
303 685,390
304 684,316
305 679,500
306 682,680
307 682,149
308 680,156
309 678,636
310 680,373
311 684,404
312 685,285
313 686,105
314 684,367
315 683,871
316 679,359
317 680,943
318 682,904
319 678,074
320 676,435
321 675,474
322 673,198
323 675,004
324 669,989
325 667,028
326 668,532
327 669,749
328 666,940
329 669,092
330 671,705
331 671,990

332 669,365
333 668,899
334 668,706
335 672,556
336 673,006
337 673,772
338 673,425
339 673,921
340 674,071
341 678,201
342 674,851
343 678,319
344 682,528
345 681,463
346 680,514
347 682,086
348 682,437
349 679,693
350 676,298
351 676,359
352 676,453
353 676,620
354 679,778
355 679,965
356 683,952
357 683,511
358 683,433
359 682,277
360 682,833
361 685,978
362 689,306
363 688,754
364 688,342
365 686,368
366 691,319
367 688,696
368 962,499
369 985,237
370 1078,163
371 950,870
372 910,535
373 925,119
374 920,125
375 913,265
376 908,080
377 891,886
378 927,802
379 946,060
380 1004.610

381 1008,365
382 1011,891
383 998,826
384 991,675
385 976,046
386 976,687
387 980,125
388 984,275
389 981,.075
390 981,668
391 986,706
392 997,140
393 999,235
394 1061,640
395 1025,482
396 1120, 115
397 1238,549
398 1234,287
399 1225,367
400 1204,111
401 1187,780
402 1242,267
403 1285,000
404 1285,029
405 1273,267
406 1261,905
407 1202,316
408 1174,055
409 1221,681
410 1258,961
411 1225,967
412 1230,227
413 1234,280
414 1233,550
415 1219,040
416 1230,714
417 1228,369
418 1166,164
419 1143,180
420 1143,108
421 1163,683
422 1165,563
423 1158,379
424 1140,763
425 1138,453
426 1145,519
427 1151,929
428 1140,438
429 1146,931
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430 1150,881
431 1151,087
432 1145,376
433 1130,931
434 1113,130
435 1111,398
436 1108,380
437 1115,450
438 1109,597
439 1115,881
440 1116,972
441 1112,934
442 1108,908
443 1121,917
444 1127, 140
445 1162,108
446 1211,964
447 1210,364
448 1150,289
449 1148,218
450 1171,484
451 1172,322
452 1168, 170
453 1165,324
454 1164,673
455 1197,645
456 1202,064
457 1229,31 O
458 1196, 190
459 1195,532
460 1195,919
461 1224,471
462 1242,264
463 1254,923
464 1280,046
465 1278,231
466 1276,285
467 1299,871
468 1271,315
469 1251,561
470 1273,528
471 1265,109
472 1258,815
473 1257,573
474 1276,020
475 1278,340
476 1280,137
477 1280,716
478 1280,900

479 1311,545
480 1335,791
481 1307,311
482 1308,675
483 1327,364
484 1342,443
485 1334,059
486 1331,844
487 1350,452
488 1380,654
489 1377,153
490 1373,239
491 1489,722
492 1372, 145
493 1335,240
494 1315,386
495 1319,325
496 1321,746
497 1311,868
498 1322,780
499 1318,452
500 1325,085
501 1325,725
502 1326,247
503 1329,490
504 1332,716
505 1340,562
506 1340, 750
507 1346,237
508 1352,395
509 1359,541
510 1374,437
511 1382,951
512 1385,669
513 1392, 125
514 1400,569
515 1472, 125
516 1485,666
517 1460,982
518 1423,666
519 1424,512
520 1425,306
521 1439, 136
522 1460,233
523 1472,546
524 1448,375
525 1437,125
526 1425,056
527 1407,650

528 1384,508
529 1426,491
530 1414,821
531 1402,036
532 1396,719
533 1407,684
534 1428,667
535 1428,868
5361452,!15
537 1466,003
538 1472,809
539 1488,685
540 1543,265
541 1497,273
542 1498,214
543 1510,236
544 1521,963
545 1534,343
546 1557,836
547 1554,517
548 1546,960
549 1543,221
550 1540,363
551 1525,991
552 1550,160
553 1567,000
554 1581,698
555 1587,206
556 1592,750
557 1582,894
558 1619,750
559 1628,391
560 1644,826
561 1597,894
562 1595,235
563 1592,360
564 1603,894
565 1630,096
566 1635,306
567 1630,575
568 1638,253
569 1644,837
570 1629,555
5711611,111
572 1605,836
573 1616,500
574 1605,117
575 1599,526
576 1597,394
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577 1595,060
578 1573, 196
579 1568, 130
580 1560,339
581 1557,818
582 1541,388
583 1554,482
584 1545,285
585 1557,250
586 1559,332
587 1561,651
588 1563,640
589 1540,375
590 1522,657
591 1510,802
592 1510,723
593 1478,375
594 1464,400
595 1491,934
596 1499,574
597 1491,875
598 1486, 123
599 1479,102
600 1476,394
601 1481,989
602 1491,705
603 1481,078
604 1485,334
605 1489,445
606 1477,817
607 1456,673
608 1453,381
609 1451,654
610 1448, 102
611 1445,375
612 1436,956
613 1430,069
614 1408,944
615 1434,750
616 1455,229
617 1468,466
618 1480,675
619 1477,739
620 1471,750
621 1450,945
622 1453,224
623 1455,804
624 1440,112
625 1446,510

626 1453,615
627 1440,765
628 1432,254
629 1425,409
630 1433,811
631 1390,232
632 1385,565
633 1393,429
634 1383,215
635 1381,578
636 1372,769
637 1356,638
638 1361,291
639 1364,073
640 1360,568
641 1358,668
642 1339,245
643 1318,841
644 1328,088
645 1343,596
646 1341,225
647 1340,878
648 1324,602
649 1323,251
650 1313,626
651 1319,914
652 1310,009
653 1304,426
654 1298,428
655 1306,493
656 1301,531
657 1321,944
658 1325,254
659 1327,444
660 1368,243
661 1375,066
662 1368,280
663 1348,944
664 1340,226
665 1338,274
666 1345,473
667 1347,274
668 1362, 157
669 1367,442
670 1375, 113
671 1386,926
672 1398,336
673 1385,081
674 1382,002

675 1375,490
676 1374,912
677 1374,476
678 1372,226
679 1362,198
680 1354,969
681 1358,364
682 1355, 125
683 1354,891
684 1348,950
685 1339,325
686 1343,246
687 1356,732
688 1350,225
689 1340,871
690 1339,500
691 1331,653
692 1338,716
693 1335,466
694 13 31,254
695 1327,304
696 1331,556
697 1336,858
698 1342,108
699 1329,304
700 1328, 125
701 1327,729
702 1312,019
703 1304,412
704 1305,440
705 1303,896
706 1301,254
707 1298,487
708 1289,301
709 1285,642
710 1297,629
711 1287,062
712 1290,562
713 1297,697
714 1297,573
715 1298,143
716 1311,450
717 1330,488
718 1338,214
719 1348,952
720 1351,892
721 1330,530
722 1330,952
723 1349,780
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724 1560,235
725 1361,140
726 1355,733
727 1370,051
728 1365,905
729 1366,977
730 1369,254
731 1372,539
732 1373,129
733 1377,243
734 1386,393
735 1384,448
736 1389,968
737 1392,524
738 1406,327
739 1423,232
740 1412,184
741 1404,483
742 1407,125
743 1409,200
744 1403,817
745 1398,823
746 1394,774
747 1409,001
748 1410,236
749 1411,904
750 1437,003
751 1454,341
752 1435,307
753 1431,420
754 1432,532
755 1432,968
756 1463,240
757 1486,916
758 1528,800
759 1541,562
760 1541,932
761 1542,768
762 1580,113
763 1580,138
764 1562,306
765 1529,725
766 1544,235
767 1564,821
768 1569,237
769 1570,764
770 1626,946
771 1568,045
772 1570,235

773 1572,051
774 1583,055
775 1633,240
776 1612,775
777 1611,875
778 1638,235
7791653,231
780 1663,475
781 1654,240
782 1643,216
783 1654,000
784 1667,256
785 1670,235
786 1675,982
787 1677,583
788 1658,637
789 1646,313
790 1659,858
791 1662,124
792 1668,939
793 1667,854
794 1678,492
795 1676,905
796 1675,558
797 1682, 124
798 1687,228
799 1680,690
800 1687,012
801 1674,611
802 1645, 701
803 1625,228
804 1619,936
805 1642, 103
806 1629,037
807 1618,360
808 1632,896
809 1635,254
810 1639,263
811 1630,843
812 1628,532
813 1639,432
814 1630,036
815 1632,029
816 1634,846
817 1625,233
818 1621,634
819 1621,965
820 1628,960
821 1626,225

822 1624,840
823 1622,647
824 1624,680
825 1620,212
826 1618, 188
827 1615,223
828 1611,923
829 1620,495
830 1617,705
831 1614,368
832 1627,738
833 1635,214
834 1657,662
835 1654,375
836 1653,006
837 1654,486
838 1661,493
839 1661,865
840 1662,005
841 1662, 005
842 1658,848
843 1650,636
844 1647,908
845 1648,963
8461651202
847 1644,439
848 1647, 106
849 1647,515
850 1654,981
851 1645,235
852 1636,022
853 1629,348
854 1629,578
855 1638,146
856 1640,427
857 1639,564
858 1638,102
859 1637,792
860 1626,368
861 1639,828
862 1637,487
863 1636,945
864 1636,447
865 1641,156
866 1646,201
867 1653,949
868 1648,601
869 1648,521
870 1535,246
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