ABSTRACT

The fundamental function of adaptive channel equalization is to compensate, eliminate or minimize distortion in a communication channel between a transmitter and a receiver. In this thesis, a Nonlinear Neuro Fuzzy Equalizer (NNFE) is proposed for the equalization of Quadrature Amplitude Modulation (QAM) signals in communication channels by improving the quality of complex signal transmission which eventually leads to more efficient communication. The presence of noise, intersymbol interference (ISI) and the time-varying characteristics of the communication channel necessitate the use of adaptive equalizers. A fuzzy adaptive filter is constructed from a set of fuzzy If-Then rules that change adaptively to minimize some criterion functions as new information becomes available. The fuzzy adaptive filter with the combination of neural networks is a significant type of adaptive equalizer which allows short training time of the equalizer, yields better results in terms of bit error rate (BER) and convergence rate with its efficient structure and design algorithms. The use of neuro-fuzzy equalizer in digital signal transmission allows decreasing the training time of the equalizer's parameters and decreasing the complexity of the network. Normalization method applied at the transmitter side of the communications system is utilized and nonlinear neurofuzzy equalizer (NNFE) is employed for the equalization of QAM signals.

The purpose of this thesis is to successfully equalize QAM signals that are distorted by noise and channel conditions when transmitted through a communications channel before being received by an equalizer at the end of the system. It's possible to reach fast and accurate equalizer output results with the aid of normalization technique in relatively small number of iterations. Convergence rate and BER performance comparisons have been carried out for 4-QAM and 16-QAM signals. The simulation results have revealed that the proposed nonlinear neuro-fuzzy equalizer (NNFE) can successfully minimize the errors and equalize both linear and nonlinear channels in addition to providing better convergence rate and improved BER performance for linear channel in severely noisy channel conditions.

Key words: Equalization, Quadrature Amplitude Modulation (QAM), bit error rate, nonlinear neuro-fuzzy equalizer, communications system, normalization.

ACKNOWLEDGEMENTS

Firstly, I would like to thank my supervisor Assist. Prof. Dr. Tayseer A.M. Alshanableh for his guidance, support and patience during the preparation of this thesis.

Special thanks to the Vice-President of Near East University, Prof. Dr. Şenol Bektaş for his full faith in me and for the motivation at critical times of the process.

Finally, I would like to express my special gratitude to my parents for their support and patience throughout and especially to my mother for her endless faith and caring about me.

TABLE OF CONTENTS

AB	stracti		
AC	KNOWLEDGEMENTS ii		
ТА	TABLE OF CONTENTSiii		
LIS	ST OF TABLES		
LIS	ST OF FIGURES		
AB	BREVIATIONS USED		
DE	CLARATION OF ORIGINALITY & CONTRIBUTIONxii		
1.	REVIEW ON CHANNEL EQUALIZATION		
	1.1 INTRODUCTION		
	1.2 Overview		
	1.3 The State of Application of Channel Equalization		
	1.4 State of Application of Neural Networks and Fuzzy Technologies for		
	Channel Equalization		
	1.4.1 Design of neural network based equalizers		
	1.4.2 Channel equalization by using fuzzy logic		
	1.5 Summary		
2.	STRUCTURE OF CHANNEL EQUALIZATION		
	2.1 Overview		
	2.2 Architecture of Data Transmission Systems		
	2.3 Channel Characteristics		

	2.4 Channel Distortions	20
	2.4.1 Multipath propagation	22
	2.4.2 Intersymbol interference	23
	2.4.3 Noise	25
	2.4.3.1 The additive noise channel	27
	2.4.3.2 The linear filter channel	28
	2.4.3.3 The linear time-variant filter channel	29
	2.5 Summary	.30
3.	MATHEMATICAL BACKGROUND OF A NEURO-FUZZY EQUALIZER	31
	3.1 Overview	31
	3.2 Neuro-Fuzzy System	.31
	3.3 Fuzzy Inference Systems	32
	3.3.1 Architecture of fuzzy inference systems	32
	3.3.2 Rule base fuzzy if-then rule	34
	3.3.3 Fuzzy inference mechanism	37
	3.4 Artificial Neural Networks	42
	3.4.1 Neural network's learning	44
	3.4.2 Multilayer perceptrons & backpropagation algorithm	46
	3.5 Neuro-Fuzzy Network Models	50
	3.5.1 Nonlinear neuro-fuzzy network	51
	3.5.1.1 Structure of the nonlinear neuro-fuzzy network	51
	3.5.1.2 Learning of the nonlinear neuro-fuzzy network	55
	3.6 Summary	57

4.	QUADRATURE AMPLITUDE MODULATION (QAM) APPLIED TO	
	NONLINEAR NEURO-FUZZY EQUALIZER (NNFE)	58
	4.1 Analysis of QAM	58
	4.1.1 Significance of complex envelope and carrier frequency	61
	4.1.2 Alternative implementations of QAM	61
	4.2 Structure of Channel Equalization System	63
	4.3 Applications of QAM	66
	4.4 Advantages and Disadvantages of QAM	68
	4.4.1 Advantages of QAM	68
	4.4.2 Disadvantages of QAM	69
	4.5 Design Features of <i>M</i> -QAM Applied to NNFE	70
	4.5.1 Normalization	70
	4.5.2 Reciprocity	72
	4.5.3 Complex representations of <i>M</i> -QAM constellations	72
	4.5.4 Multifunctionality	73
	4.5.5 Gray coding	74
	4.6 Summary	75
5.	SIMULATION RESULTS AND ANALYSIS	77
	5.1 Overview	77
	5.2 Development of Normalizer-based Nonlinear Neuro-Fuzzy Equalizer System	77
	5.3 Flowchart Diagram of the Normalizer-based Neuro-Fuzzy Equalization System	78
	5.4 Analysis of Bit Error Rate (BER) and Signal-to-Noise Ratio (SNR)	81
	5.5 Simulation of the Normalizer-based NNFE System for Linear Channel	82

OUADDATUDE AMDUTUDE MODULATION (OAM) ADDUED TO 4

5.6 Simulation of the NNFE System for Nonlinear Tim	e-Varying Channel83
5.7 Analysis of Simulations	
5.7.1 Simulation results of 4-QAM	85
5.7.2 Simulation results of 16-QAM	
5.8 Comparison Analysis	
6. CONCLUSION	
FUTURE WORK	
REFERENCES	
APPENDIX	

LIST OF TABLES

Table 4.1	M-QAM transmitted symbols and normalized transmitted symbol	ls73
Table 5.1	BER performance of linear and nonlinear channels for 4-QAM	
Table 5.2	2 BER performance of linear and nonlinear channels for 16-QAM	
Table 5.3 BER performance comparison of <i>M</i> -QAM between linear and		
	and nonlinear channels	

LIST OF FIGURES

Figure 2.1	Basic components of a communications system	
Figure 2.2	Architecture of a digital communications system17	
Figure 2.3	Additive Gaussian noise channel	
Figure 2.4	Linear filter channel with additive noise	
Figure 3.1	Structure of fuzzy inference system	
Figure 3.2	Examples of membership functions	
Figure 3.3	3 Types of fuzzy reasoning mechanisms	
Figure 3.4	Artificial neuron	
Figure 3.5	A single layer and a multilayer network	
Figure 3.6	Multilayer feedforward network	
Figure 3.7	The NNFN Architecture	
Figure 4.1	<i>M</i> -symbol QAM constellation60	
Figure 4.2	Three possible circular QAM signal constellations	
Figure 4.3	Structure of a neuro-fuzzy equalization system	
Figure 4.4	Block diagram of the normalizer-based M-QAM signal generating	
	and equalizing communications system71	
Figure 4.5	16-QAM constellation with binary coding and Gray coding75	
Figure 5.1	Flowchart diagram of normalizer-based neuro-fuzzy equalization	
	system	
Figure 5.2	4-QAM BER performance of normalizer-based NNFE for linear and	
	nonlinear channels85	
Figure 5.3	Linear channel outputs of 4-QAM86	

Figure 5.4	Nonlinear channel outputs of 4-QAM86	
Figure 5.5	Linear channel convergence curve of 4-QAM	
Figure 5.6	Nonlinear channel convergence curve of 4-QAM87	
Figure 5.7	Figure 5.7 Equalizer outputs of 4-QAM for linear channel	
Figure 5.8	Equalizer outputs of 4-QAM for nonlinear channel	
Figure 5.9	16-QAM BER performance of normalizer-based NNFE for linear and	
	nonlinear channels	
Figure 5.10	Linear channel outputs of 16-QAM90	
Figure 5.11	Nonlinear channel outputs of 16-QAM90	
Figure 5.12	Linear channel convergence curve of 16-QAM91	
Figure 5.13	Nonlinear channel convergence curve of 16-QAM91	
Figure 5.14	Equalizer outputs of 16-QAM for linear channel	
Figure 5.15	Equalizer outputs of 16-QAM for nonlinear channel	
Figure 5.16	BER comparison of 4-QAM with 16-QAM for both linear and	
	nonlinear channels	
Figure 5.17	Simulated and Theoretical Bit Error Rate of 4-QAM and 16-QAM94	

ABBREVIATIONS USED

AM	Amplitude Modulation
ANFIS	Adaptive Neuro-Fuzzy Inference System
ANN	Artificial Neural Network
AWGN	Additive White Gaussian Noise
BCH	Bose-Chaudhuri-Hocquenghem
BER	Bit Error Rate (Probability of Bit Error)
CMA	Constant Modulus Algorithm
COA	Center of Average
COG	Center of Gravity
CPU	Central Processing Unit
DCS	Digital Communications System
DFE	Decision Feedback Equalizer
DSB	Double Sideband
DSP	Digital Signal Processing
DVB	Digital Video Broadcasting
FBF	Feedback Filter
FFF	Feedforward Filter
FFNN	Feedforward Neural Network
FIR	Finite Impulse Response
FIS	Fuzzy Inference System
IMD	Intermodulation Distortion
ISDN	Integrated Services Digital Network
ISI	Intersymbol Interference
LMS	Least Mean Square
LTE	Linear Transversal Equalizer
MISO	Multi-Input Single Output
MLP	Multilayer Perceptron
MLSD	Maximum Likelihood Symbol Detection
MLSE	Maximum Likelihood Sequence Estimator
MMA	Multimodulus Algorithm
MMSE	Minimum Mean Square Error
MSE	Mean Square Error
MQAM	<i>M</i> -ary Quadrature Amplitude Modulation
NF	Nonlinear Function
NN	Neural Network
NNFE	Nonlinear Neuro-Fuzzy Equalizer
NNFN	Nonlinear Neuro-Fuzzy Network
NTSC	National Television Standards Committee (USA)
PSD	Power Spectral Density
PSK	Phase Shift Keying
QAM	Quadrature Amplitude Modulation

PAL	Phase Alternate Line (TV)
PAM	Pulse Amplitude Modulation
RBF	Radial Basis Function
RLS	Recursive Least Squares
RNN	Recurrent Neural Network
SISO	Single Input Single Output
SNR	Signal-to-Noise Ratio
TDMA	Time Division Multiple Access
TSK	Takagi-Sugeno-Kang
TV	Television

DECLARATION OF ORIGINALITY & CONTRIBUTION

The originality and contribution of the thesis include the followings:

- Development of a Normalizer-based nonlinear neuro-fuzzy equalizer for the channel equalization of multilevel Quadrature Amplitude Modulation (QAM) signals,
- The construction of the mathematical model of the neuro-fuzzy equalizer based on gradient-descent algorithm,
- Simulation, analysis and comparison of the results of the Normalizer-based equalizer for QAM signaling by using MATLAB programming language,

The routine used to carry out literature research is an exception.

CHANNEL EQUALIZATION OF QUADRATURE AMPLITUDE MODULATION (QAM) SIGNALS USING A NEURO-FUZZY EQUALIZER

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED SCIENCES OF NEAR EAST UNIVERSITY

by

HAKAN BERÇAĞ

In Partial Fulfillment of the Requirements for the Degree of Master of Science in Electrical and Electronics Engineering

NICOSIA 2013

xiv