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ABSTRACT

An electrocardiogram (ECG) is a bioelectrical signal which records the heart’s electrical activity versus time. It is an important diagnostic tool for assessing heart functions. In this thesis, pattern recognition techniques are used for the interpretation of an ECG signal. The techniques used in this pattern recognition application are, signal pre-processing, QRS detection, feature extraction and artificial neural network for signal and cardiac condition (healthy or a certain disease) classification. In this thesis, the signal processing and neural network toolbox are used in Matlab environment. The processed signal source came from the Massachusetts Institute of Technology Beth Israel Hospital (MIT-BIH) arrhythmia database which was developed for research in cardiac electrophysiology.

Three conditions of ECG waveform were selected from MIT-BIH database in this thesis. The ECG samples were pre-processed, then features representing the each sample were extracted to produce a set of features that can be used in a neural network to make the classification of samples and the recognition rates were recorded. The thesis is focused on finding an easy but reliable feature extraction method and best neural network structure to correctly classify three different cardiac conditions.

It was found that different structures of the neural network were able to obtain perfect training and testing recognition rates (based on our feature extraction method) as high as 100% for three different cardiac conditions. But network structure with 200 inputs, 7 hidden and 3 output neurons showed highest accuracy around 90% (0.8976)while obtaining recognition rate of %100.Also with this structure network showed its fastest training and testing times (around 7 and 0.9secs respectively). Training rates were always around 100% with each run of the program (training and testing) but testing differs between %86-%100 with accuracy values changing from 60%-%90 respectively. Based on these results, the method of using 200 sample values of the ECG between R-R intervals as feature values feeding the network can dramatically decrease the complexity of the neural network structure, which can increase the training and testing speed and the accuracy rate of the network classification.
Keywords: ECG, ECG Classification, Classification of Cardiac Conditions, Intelligent Recognition, Pattern Recognition, Signal Processing, Digital Filter Implementation.

ÖZET
Elektrokardiyografi (EKG) kalbin zamana karşı elektriksel aktivitesini kaydeden bir biyolojik sinyaldir. EKG kalbin işlevlerini değerlendirmek için kullanılan çok önemli bir gereçtir. Bu tezde EKG sinyalinin değerlendirilmesi için patern tanıma teknikleri kullanılmıştır. Bu tezde kullanılan teknikler, sinyal ön-işleme, QRS tanıma, öznitelik çıkarma ve yapay sinir ağları kullanarak sinyal ve kalp durumu sınıflandırma teknikleridir. Bu tezde Matlab ortamında sinyal işleme ve sinir ağları araç kütüphaneleri kullanılmıştır. İşlenmiş sinyal kaynağı olarak   kardiyak elektrofizyoloji çalışmaları için geliştirilmiş olan Massachusetts Teknoloji Enstitüsü Beth Israel Hastanesi’nin (MIT-BIH) aritmi veri tabanı kullanılmıştır.

Bu tezde kullanılmak üzere MIT-BIH veri tabanından üç farklı EKG dalga şekli seçilmiştir. EKG örnekleri bir ön işlemeden geçirildikten sonra, herbir örneği temsil eden öznitelikler sinyallerden çıkartılarak sinir ağı sınıflandırılımasında kullanılacak olan öznitelik setleri oluşturulmuş ve sınıflandırma sonucunda tanıma oranları kaydedilmiştir. Bu tez temel olarak üç farklı kardiyak durumu doğru olarak sınıflandırabilmek için kolay fakat güvenilir öznitelik çıkartma metodu bulmak ve en iyi sinir ağı yapısını oluşturmak üzerine yoğunlaşmıştır.

Deneyler sonucunda farklı sinir ağı yapılarının üç farklı kardiyak durum için  %100 oranında mükemmel öğrenim ve test tanıma oranlarına (kullanılan öznitelik çıkartma yöntemi temelinde) ulaştığı gözlemlenmiştir. Ancak 200 giriş, 7 gizli ve 3 çıkış nöronu yapısına sahip olan ağ yapısı %100 tanıma oranı gösterip %90 civarında (0.8976) doğruluk oranıyla en yüksek oranı elde etmiştir. Ayrıca bu yapıyla ağ en hızlı öğrenim ve test zamanlarını elde etmiştir (sırasıyla 7sn ve 0.9sn). Öğrenim oranları herzaman %100 civarındayken, test oranları %86-%100 arasında değişim gösterip %60 - %90 arası doğruluk oranları elde edilmiştir. Bu sonuçlara dayanarak, ağı beslemek için öznitelik değerleri olarak EKG’nin R-R aralıklarında 200 örnek değeri alınması metodu, ağın kompleksliğini büyük ölçüde azalttığı ve bunun da ağ sınıflandırmasının öğrenim ve test hızlarıyla doğruluk oranlarını arttırdığı sonucuna varılabilmektedir.

Anahtar Sözcükler: EKG, EKG Sınıflandırılması, Kardiyak Durum Sınıflandırılması, Akıllı Tanıma, Patern Tanıma, Sinyal İşleme, Dijital Filtre Uygulaması.
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CHAPTER 1

INTRODUCTION

In the hospital and health community, there are considerable commercial interests in the classification of the Electrocardiogram signals (ECG). This thesis is aimed at developing intelligent, cost effective and easy-to-use ECG diagnostic system based on a software program that uses signal processing and effective feature extraction techniques to obtain the critical characteristics of ECG waves representing different cardiac conditions and classifying these conditions by using artificial neural networks. Unification of this program with real-time patient ECG recorders will be able to provide patients with self diagnosis systems that can be used in homes in the future.

The ECG is the electrical manifestation of the contractile activity of the heart, and can be recorded fairly easily with surface electrodes on the limbs or chest. The ECG is perhaps the most commonly known, recognized and used biomedical signal. The rhythm of the heart in terms of beats per minute (bpm) may be easily estimated by counting the readily identifiable waves. More important is the fact that the ECG waveform is altered by cardiovascular diseases and abnormalities such as the ones that will be described later on this report (Rangayyan.,1999). 

The interpretation of the ECG signal is an application of pattern recognition. The purpose of pattern recognition is to automatically categorize a system into one of a number of different classes (Chazal D.P.,1998). An experienced cardiologist can easily diagnose various heart diseases just by looking at the ECG waveforms printout. In some specific cases, sophisticated ECG analyzers achieve a higher degree of accuracy than that of cardiologist, but at present there remains a group of ECG waveforms that are difficult to identify by computers. However, the use of computerized analysis of easily obtainable ECG waveforms can considerably reduce the doctor’s workload. Some analyzers assist the doctor by producing a diagnosis; others provide a limited number of parameters by which the doctor can make his diagnosis (Granit R., 2003).

In this thesis there are five major steps to the ECG pattern recognition and classification (Figure 1.1), namely, signal pre-processing, QRS detection, ECG feature extraction and ECG signal classification using Artificial Neural Network (ANN).




Figure 1.1 ECG Pattern Recognition
The first step is data acquisition. The data could be collected from real subjects but in this thesis it is collected from online database. Next step is signal pre-processing. In this step obtained ECG signals are filtered to remove noise. The third step is QRS detection which corresponds to the period of ventricular contraction or depolarization of heart. Fourth step is to find the smallest set of features that maximize the classification performance of the next step. Final step is the classification of the signal into three different cardiac conditions.

The choice of features depends on the techniques used in the final step. Consequently the set of features that are optimal for one technique are not necessarily optimal for another. Because of the unknown interactions of different sets of features, it is impossible to predict the optimum features for a chosen classification technique. Different techniques such as statistical classifiers, artificial neural network and artificial intelligence can be used for ECG classification. The artificial neural network will be used in this thesis. Neural networks are especially useful for classification function, which are tolerant of some imprecision if plenty of training data is available. If there are enough training data and sufficient computing resources for a neural network, it is possible to train a neural network to perform almost any signal classification solution.

Generally, the ECG is one of the oldest and the most popular instrument-bound measurements in medical applications. It has followed the progress of instrumentation technology. Its most recent evolutionary step, to the computer-based system, has allowed patients to wear their computer monitor or has provided an enhanced, high resolution ECG that has opened new scene of ECG analysis and interpretations. (Carr J. J. and John M.Brown J.M., 1988).
1.1 The Electrical System of the Heart

The heart contains four chambers and several one-way valves as it can be seen in Figure 1.2. Septum divides the heart into left and right sides, in a double pump configuration. Each side is then further divided into an upper chamber, the atrium, and a lower chamber, the ventricle. The right side of the heart receives de-oxygenated blood from the venous systems, which is then pumped to the lungs via the pulmonary loop, where the carbon dioxide in the blood is exchanged for oxygen. The left side of the heart receives the oxygenated blood from the lungs and pumps it into the systemic loop for distribution throughout the body.

Co-ordinated electrical events and a specialized conduction system of the heart play major roles in the rhythmic contractile activity of the heart. The contraction of the various muscles of the heart enables the blood to be pumped. While the myocardial muscle cells can contract spontaneously, under normal conditions these contractions are triggered by action potentials originating from pacemaker cells situated in two areas of the heart; the Sino-Atrial (SA) and Atrio-Ventricular (AV) nodes. The SA (Sino Atrial) node is the basic, natural cardiac pacemaker that triggers its own train of action potentials. The action potential of the SA node propagates through the rest of the heart, causing a particular pattern of excitation and contraction. The SA pacemaker cells can spontaneously generate action potentials at 60-80 times per minute. The SA node is generally the site to trigger the action potential for a heartbeat, but the AV node can take over this role if for some reason the SA node fails (Rushmer RF., 1976).
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Figure 1.2 Structure of the Heart
The normal cycle of a heartbeat has the following sequence of events:

· The SA node generates an action potential, which spreads across both atria.

· This spreading action potential results in the simultaneous contraction of the left and right atria.

· This action potential is also passed to the AV node via the inter-nodal conducting fibres, taking about 40msec.

· During the contraction of the atria, blood frım the atria is pushed to the respective ventricle.

· The AV node’s own action potential is triggered by the action potential arriving from the SA node. The AV action potential is spread to the ventricles via further conducting fibres, resulting in a delay of about 110 msec, which is sufficient time to ensure that the atrial contraction has finished.

· The AV action potential triggers both ventricles to contract and push blood into the aterial system. The left ventricle supplies the systemic arterial system while the right ventricle supplies the pulmonary system where the blood is oxygenated by the lungs.

· All muscles of the heart then relax and blood continues to flow due to the elastic recoil of the arterial walls. During this period both atria and ventricles fill with blood as it returns from the body via the venous system. A series of one-way valves at the input and outputs of the atria and ventricles determine the direction of blood flow.

Any disturbance in the regular rhythmic activity of the heart is termed arrhythmia.  Cardiac arrhythmia may be caused by irregular firing patterns from the SA node or by abnormal and additional pacing activity from other parts of the heart.
1.2 Electrocardiography

The various propagating action potentials within the heart produce a current flow, which generates an electrical field that can be detected, in significantly attenuated form, at the body surface, via a differential voltage measurement system. The resulting measurement, when taken with the electrodes in standardized locations, is known as the electrocardiogram (ECG). The ECG signal is typically in the range of ±2mv and requires a recording bandwidth of 0.05 to 150Hz.

The ECG is a graphic representation of the electrical activity of the heart’s conduction system recorded over a period of time. Under normal conditions, ECG tracings have a very predictable direction, duration and amplitude. Because of this, the various components of the ECG tracing can be identified, assessed and interpreted as to normal or abnormal function.The ECG is also used to monitor the heart’s response to the therapeutic interventions. Because the ECG is such a useful tool in the clinical setting, the respiratory care practitioner must have a basic and appropriate understanding of ECG analysis.(Jardins T.D., 2002).

1.2.1 The Standard 12 Lead ECG System
The standard 12 Lead ECG systems consist of four limb electrodes and six chest electrodes. Collectively, the electrodes (or leads) view the electrical activity of the heart from 12 different positions, 6 standard limb-leads and 6 pericardial chest-leads showed in Table 1.1 (Jardins T.D., 2002). Each lead:

· Views the electrical activity of the heart from a different angle,

· Has a positive and negative component, and

· Monitors specific portions of the heart from the point of view of the positive electrode in that lead.

Table 1.1 ECG lead system

	Standard Leads
	Limb Leads
	Chest Leads

	Bipolar Leads
	Unipolar Leads
	Unipolar Leads

	Lead I

Lead II

Lead III
	AVR

AVL

AVF
	V1

V2

V3

V4

V5

V6


The ECG, over a single cardiac cycle, has a characteristic morphology (Figure 1.3) containing a P wave, a QRS complex and a T wave. The normal ECG configurations are composed of waves, complexes, segments and intervals recorded as voltage (on a vertical axis) against time (on a horizontal axis). A single waveform begins and ends at the baseline. When the waveform continues past the baseline, it changes into another waveform. Two or more waveforms together are called a complex. A flat, straight, or isoelectric line is called a segment. A waveform, or complex, connected to a segment is called an interval. All ECG tracings above the baseline are described as positive deflections. Waveforms below the baseline are negative deflections.
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Figure 1.3 ECG Signal over one cardiac cycle (a single waveform)
1.2.2 The P wave

The propagation of the SA action potential through the atria results in contraction of the atria, producing the P wave. The magnitude of the P wave is normally low (50-100uV) and 100msec in duration.
1.2.3 The PR interval
The PR interval begins with the onset of the P wave and ends at the onset of the Q wave. It represents the duration of the conduction through the atria to the ventricles. Normal measurement for PR interval is 120ms-200ms.

The PR segment begins with the endpoint of the P wave and ends at the onset of the Q wave. It represents the duration of the conduction from the atrioventricular node, down the bundle of its end through the bundle branches to the muscle. 
1.2.4 The QRS complex
The QRS complex corresponds to the period of ventricular contraction or depolarization. The atrial repolarisation signal is swamped by the much larger ventricular signal. It is the result of ventricular depolarization through the Bundle Branches and Purkinje fibre.

 The QRS complex is much larger signal than the P wave due to the volume of ventricular tissue involved. If either side of the heart is not functioning properly, the size of the QRS complex may increase.QRS can be measured from the beginning of the first wave in the QRS to where the last wave in the QRS returns to the baseline. Normal measurement for QRS is 60ms-100ms.
1.2.5 The ST segment
The ST segment represents the time between the ventricular depolarization and the repolarization.  The ST segment begins at the end of the QRS complex (called J point) and ends at the beginning of the T wave. Normally, the ST segment measures 0.12 second or less.

The precise end of the depolarization (S) is difficult to determine as some of the ventricular cells are beginning to repolarise.

1.2.6 The T wave

The T wave results from the repolarization of the ventricles and is of a longer duration than the QRS complex because the ventricular repolarization happens more slowly than depolarization. Normally, the T wave has a positive deflection about 0.5mv, although it may have a negative deflection. It may, however, be of such low amplitude that it is difficult to read. The duration of the T wave normally measures 0.20 sec or less.
1.2.7 The QT interval

The QT interval begins at the onset of the Q wave and ends at the endpoint of the T wave, representing the duration of the ventricular depolarization/repolarisation cycle.

The normal QT interval measures about 0.38 second, and varies in males and females and with age. As a general rule, the QT interval should be about 40 percent of the measured R-R interval. 
1.2.8 Summary
Table 1.2 below shows approximate values for the duration of various waves and intervals in the normal adult ECG.
Table 1.2 Duration of waves and intervals in a normal adult human heart

	Parameter
	Duration (sec)

	Intervals
	

	P-R interval
	0.12-0.20

	Q-T interval
	0.30-0.40

	Waves
	

	P wave duration
	0.08-0.10

	QRS duration
	0.06-0.10


In the normal rhythm, the PR interval should not exceed 0.20 second. The QRS duration should not exceed 0.10 second. The P wave duration should not exceed 0.10 second. The T wave should be at least 0.20 second wide. A heartbeat rate between 60 and 100 is considered “normal” so the R-R interval should be between 0.6 and 1 second (Dubowik K., 1999).  

1.3 Heart Problems in This Thesis
Changes from the normal morphology of the ECG can be used to diagnose many different types of arrhythmia or conduction problems. ECG can be split into different segments and intervals, which relate directly to phases of cardiac conduction. Limits can be set on these to diagnose abnormality.

There are lots of heart problems which can be diagnosed from different ECG waveforms. This thesis aims at classifying 3 different waveforms. They are: Normal (N), Right Bundle Branch Block (R or RBBB) and Paced Beats (P). They will be explained as follows (Wartak J., 1978).

1.3.1 Normal Waveform

This is the normal adult human waveform with features described as in previous section.
1.3.2 Right Bundle Branch Block
Right Bundle Branch Block (RBBB) has the following ECG characters:

· The QRS duration between 0.10 and 0.11 sec (incomplete RBBB) or 0.12sec or more (complete RBBB)

· Prolonged ventricular activation time or QR interval (0.03sec or more in V1-V2)

· Right axis deviation

Incomplete RBBB often produce patterns similar to those of right ventricular hypertrophy. The ECG pattern of RBBB is frequently associated with ischemic, hypertensive, rheumatic and pulmonary heart disease, right ventricular hypertrophy and some drug intoxication; occasionally it may be found in healthy individuals.
1.3.3 Paced Beats
This is the artificial beat form from the device called pacemaker. A pacemaker is a treatment for dangerously slow heart beats. Without treatment, a slow heart beat can lead to weakness, confusion, dizziness, fainting, shortness of breath and death. Slow heart beats can be the result of metabolic abnormalities or occur as a result of blocked arteries to the heart’s conduction system. These conditions can often be treated and a normal heart beat will resume. Slow heart beats can also be a side effect of certain medications in which case discontinuation of the medicine or a reduction in dose may correct the problem. It can be characterized in ECG by a large peak after QRS complex. 
1.4. Development of the ECG diagnostic system

1.4.1 The development history
Kolliker and Mueller (Bronzino D.J. et al., 2000)using frogs discovered electric activity related to the heartbeat. Donder recorded the frog’s heart muscle twitches, producing the first electrocardiographic signal. Waller originally observed the ECG in 1889 (Waller A.D., 1889) using his pet bulldog as the signal source and the capillary electrometer as the recording device. In 1903, Einthoven (D.Bronzino, 2000)enhanced the technology by employing the string galvanometer as the recording device and using a human subject with a variety of cardiac abnormalities.

Traditionally, the differential recording from a pair of electrodes in the body surface is referred to as a lead. Einthoven defined three leads numbered with the Roman numerals I,II and III. They are defined as:


Lead I = VLA- VRA    






(1.1)


Lead II = VLL- VRA 






(1.2)


Lead III= VLL - VLA           




                  (1.3)

Where the subscript RA= right arm, LA= left arm and LL=left leg. Because the body is assumed purely resistive at ECG frequencies, the four limbs can be thought as wires attached to the torso. Lead I could be recorded from the respective shoulders without a loss of cardiac information. The lead system presented in this research is focused on processing a modified limb II (MLII) obtained by placing electrodes on the patient chest.

Not long after Einthoven described his string galvanometer, efforts were begun to create an electrocardiograph that used vacuum tubes. Between introduction of the string galvanometer and the hot stylus recorder for ECG, attempts were made to create direct inking ECG recorders. Despite the instant availability of inked recording of the ECG, those produced by the string galvanometer were superior, and it took some time for a competitor to appear. Such an instrument did appear in the form of the hot stylus recorder.

In 1933 Wilson added the concept of a “unipolar” recording, where tying the three limbs together creates a reference point and averaging their potentials so that individual recording sites on the limbs or chest surface would be differentially recorded with the reference point.

However, from the mid-1930s until today, a standard 12-lead ECG system comprises 3 limb leads, 3 leads in which the limb potentials are referenced to a modified Wilson terminal, and 6 leads placed across the front of the chest and referenced to the Wilson terminal.

The final step toward modern electrocardiography was the introduction of the hot stylus recorder by Haynes (Haynes J.R., 1936).Following the end of World War II, vacuum tube electrocardiographs with heated stylus recorders became very popular and are still in use today. The vector cardiogram uses a weighted set of recording sites to form an orthogonal xyz lead set, providing as much information as the 12-lead system, but with fewer electrodes. Cardiac surface mapping uses many recording sites (>64 electrodes) arranged on the body so that the cardiac surface potential can be computed and analysed over time. Other subsets of the 2-lead ECG are used in limited mode recording situations such as the tape recorded ambulatory ECG (usually 2 leads) or intensive care monitoring at the bedside (usually 1 or 2 leads) or telemeter within regions of the hospital from patients who are not confined to bed (1 lead).

Automated ECG interpretation was one of the earliest uses of computers in medical applications. This was initially achieved by linking the ECG diagnostic machine to a centralized computer via phone lines or computer network. The modern ECG machine is completely integrated with an analogue front end, a high resolution analogue converter and a microcomputer (Bronzino D.J. et al., 2000).
1.4.2 Computerised ECG interpretation

Application of the computer to the ECG for machine interpretation was one of the earliest uses of computers in the medicine (Jenkins J.M., 1981).Of primary interest in the computer-based systems was replacement of the human reader and elucidation of the standard waves and intervals. Originally this was performed by linking the ECG machine to a centralized computer via phone lines or computer network. The modern ECG diagnostic machine is completely integrated with an analog front and end, a 12-to 16 bit analog to digital (A/D) converter, a central computational microprocessor, and dedicated input and output (I/O) processor.

The above mentioned systems can compute a measurement matrix derived from the 12 lead signal and analyse this matrix with a set of rules(such as neural network) to obtain the final set of interpretive statements (Pryor T. A. et al., 1980).
There are hundreds of interpretive statements from which a specific diagnosis is made for each ECG, but there are only about five or six major classification groups for which the ECG is used. The first step is analyzing an ECG requirement determination of the rate and rhythm for the atria and ventricles. Included here would be any conduction disturbances either in the relationship between the various chambers or within the chambers themselves. The one can proceed to identify features that relate to the vents that would occur with ischemia or an evolving myocardial infarction (Bronzino D.J. et al., 2000).

1.5 Aims and Objectives
The main aim of this thesis is to develop an ECG diagnostic system that can recognize three different ECG waveforms (Normal, Paced and RBBB) and classify them as normal or arrhythmia. With future combination with a real time ECG recorder it is aimed to help practicing doctors by reducing their workload and provide patients a self diagnostic system that can be used in their homes. 

The other objectives of this thesis are:

· To fulfill above aim by using computerized intelligent pattern recognition system.

· To apply filters to remove noise from ECG signals obtained from the database.

· To find an easy but efficient feature extraction method for the ECG signal.

· To use artificial neural networks to do signal classification.

· To make suggestions on the feature improvement of the system and the development of the system into a real time diagnostic system.
CHAPTER 2

THEORETICAL BACKGROUND

This chapter presents the theoretical background in signal pre-processing, QRS detection, ECG feature extraction and neural network classification.
2.1. Signal Pre-processing
It is to be expected that any ECG recognition system will have to operate in a noisy hospital environment. The ECG signal is normally corrupted with different types of noise. Often the information cannot be readily extracted from the raw signal, which must be processed first for a useful result.
2.1.1 Noise in the signal
There are many sources of noise in a clinical environment that can degrade the ECG signal. A noisy ECGsignal extracted from the MIT/BIH database is shown in Figure 2.1.
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Figure 2.1: Typical ECG signal with noise

There are many sources of noise in a clinical environment that can corrupt ECG signal. The common sources of ECG noise are (Friesen G.M. and Jannett C.T. et al., 1990):

· Power line interference (60Hz pickup and harmonics),

· Muscle contraction noise (10000Hz high frequency noise),

· Electrode contact noise (about 60Hz),

· Patient movement,

· Baseline wandering and ECG amplitude due to respiration (0.15 to 0.3 low frequency noise),

· Instrumentation noise generated by electronic devices used in signal processing and

· Electrosurgical noise (100 kHz to 1 MHz, this noise completely destroys the ECG signal if present) and other, less significant noise resource. 
A brief description of these noise signals will be discussed as follows:

Power line interference

Power line interference consists of 60Hz pickup and harmonics, which can be modeled as sinusoids and combination of sinusoids. Typical parameters: Frequency content-60 Hz (fundamental) with harmonics; Amplitude-up to 50 percent of peak to peak ECG amplitude.
Muscle contraction noise

Muscle contraction noise causes artificial millivolt-level potentials to be generated. The baseline electromyogram is usually in the microvolt range and therefore is usually insignificant. Typical parameters: Standard deviation-10 percent of peak to peak ECG amplitude; Duration-50ms; Frequency content-dc to 10000 Hz.

Electrode contact noise

Electrode contact noise is transient interference caused by loss of contact between the electrode and skin, which effectively disconnects the measurement system from the subject. Typical parameters: Duration-1s; Amplitude-maximum recorder output; frequency-60 Hz time constant-about 1s.

Patient movement

Patient movements are transient (but not step) baseline changes caused by variations in the electrode skin impedance with electrode motion. Typical parameters: Duration-100-500 ms; amplitude-500 percent of peak to peak ECG amplitude.
Baseline wandering and ECG amplitude due to respiration

The drift of the baseline with respiration can be represented as a sinusoidal component at the frequency of respiration added to the ECG signal. Typical parameters: Amplitude variation-15 percent of peak to peak ECG amplitude; Baseline variation- 15 percent of peak to peak ECG amplitude variation at 0.15 to 0.3 Hz.

Instrumentation noise generated by electronic devices used in signal processing, and artifacts generated by electronic devices in the instrumentation system.

Electrosurgical noise

Electrosurgical noise completely destroys the ECG and can be represented by a large amplitude sinusoid with frequencies approximately between 100 kHz and 1 MHZ. Typical parameters: Amplitude-200 percent of peak to peak ECG amplitude; Frequency content- Aliased 100 kHz to 1MHz; Duration-1-10s.
2.1.2 Signal processing and filters
Signal processing can be defined as the manipulation of a signal for the purpose of extracting information from the signal, extracting information about the relationship of two or more signals, or producing an alternative representation of the signal. Most commonly the manipulation process is specified by a set of mathematical equations, although qualitative of “fuzzy” rules are equally valid (Bruce N.E., 2001).

There are numerous specific motivations for signal processing, but many fall into the following categories:

· To remove unwanted signal components that are corrupting the signal of interest,

· To extract information by rendering it in a more obvious or more useful form,

· To predict future values of the signal in order to anticipate the behavior of its source.

The first motivation clearly comprises the process of filtering to remove noise; most methods of signal processing implicitly provide some basis for discriminating desired from undesired signal component.

In some proposed signal processing methods (Hosseini H.G. et al., 1998), digital filters can be designed and applied to ECG signals for noise cancellation. An adaptive filter is a digital filter with self-adjusting characteristics and in-built flexibility. In most cases where there is a spectral overlap between the signal and noise or if the band occupied by the noise is unknown or varies with time the fixed coefficient filter must vary and cannot be specified in advance.

Adaptive filtering techniques are an effective method in cancelling most interference polluting the ECG signal. An adaptive self-tuning filter structure can be selected for minimizing noise. This filter uses least mean square (LMS) algorithm. 

An alternative noise cancellation method is band-pass filtering. The band-pass filter proposed by Lo (Lo T.Y. and Tang P.C., 1982) can be selected for noise removal. This filter is the combination of a low-pass and high-pass filter. A low-pass filter was implemented with the first side-lobe zero amplitude response placed at 60Hz. This filter with a cutoff frequency at about 18 Hz can easily remove noise and other less important high-frequency components of the ECG signal. The cutoff frequency of the high-pass filter is about 1 Hz.

Besides the above-mentioned filters, there are still many other ways for signal pre-processing, such as filter bank or neural network. Moreover, diagnostic tools must be in variant to different noise sources and should be able to detect components of ECG signal even when the morphology of the ECG signal varies with respect to time.
2.1.3 Filter design and filtering

A filter alters or removes unwanted components from signals. Depending on the frequency range that the filters either pass or attenuate, filters can be classified into:

· Low-pass filter which passes low frequencies but attenuates high frequencies,

· High-pass filter which passes high frequencies but attenuates low frequencies,

· Bandpass filter which passes a certain band of frequencies,

· Band-stop filter, which attenuates a certain band of frequencies.

2.1.3.1 Filter implementation and analysis
A digital filter’s output y(n) is related to its input x(n) by convolution with its impulse response h(n)
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Matlab toolbox provides a rich and customizable support for the key areas of filter design and spectral analysis. It is easy to implement a design technique that suits the application, design digital filters directly, or create analogy prototypes and discrete them.

2.1.3.2 Filters and transfer functions 
The Z-transform of a digital filter’s output Y(z) related to the z-transform of the input X(z) by:
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Where H(z) is the filter’s transfer function. Here, the constants b(i) and a(i) are the filter coefficients and the order of the filter is the maximum of na and nb.

Many standard names for filters reflect the number of a and b coefficients present:

· When nb=0, the filter is an Infinite Impulse Response (IIR).

· When na=0, the filter is a Finite Impulse Response (FIR).

2.1.3.3 Different types of filters (IIR and FIR)
If the classification method is based on their impulse response, digital filters are divided into two classes, infinite impulse response (IIR) and finite impulse response (FIR) filters. The input and output signals to the filter are related by the convolution sum, which is given in equation 2.3 for the IIR and in equation 2.4 for FIR.
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The choice between FIR and IIR filters depends largely on the relative advantage of the two filter types. Generally:

Use only important requirement is sharp cut-off filters and high throughput, as IIR filters, especially those using elliptic characters, will give fewer coefficients than FIR.

Use FIR if the number of filter coefficients is not too large and, in particular, if little or no phase distortion is desired (Ifeachor E. C. and Jervis B. W., 1993).

2.1.3.4 Median filter
IF your data contains outliers, spikes or filers, you can consider a median filter. The median filter is based on a statistical, or non-linear algorithm. The advantage of the median filter is that it neatly removes outliers while adding no phase distortion. In contrast, regular IIR and FIR filters are nowhere near as effective at removing outliers, even with high orders. The price paid is speed (Jamal R. and Pichlik H., 1998).  
2.2 QRS detection
The QRS complex is the most striking waveform within the ECG. Since it reflects the electrical activity within the heart during the ventricular contraction, the time of its occurrence as well as its shape provide much information about the current state of the heart. Due to its characteristic shape, it serves as the basis for the automated determination of the heart rate, as an entry point for classification scheme of the cardiac cycle, and it is often used in ECG data compression algorithms. In that sense, QRS detection provides the fundamentals for almost all automated ECG analysis algorithms (Kohler B.U., 2002).

The QT interval is one parameter that is needed to receive the maximum attention (Sahambi J.S. and Tandon S.N. et al., 2000). Normal QT length is 420ms, but it maybe potential concern if QT>450ms and it may increase the risk of tachyarrhytmia if QT>500ms.

The shape of ST segment in the ECG is another important indication in the diagnosis of heart problem. So, the measurements taken on the ST segment forms another predominant factor in the interpretation  phase of the ECG (Paul J.S. et al., 1998).  
The function medfilt1 in signal processing toolbox implements one-dimensional median filtering, a non-linear technique that applies a sliding window to a sequence. The median filter replaces the centre value in the window with the median value of all the points within the window.

The design of digital filters is an extensive topic whose practical implementation is eased considerably by the availability of modern computer software.  

2.2.1 QRS detection algorithms
A large number of QRS detection scheme are described in the literature (Furno G.S. and Tompkins W.J.,1983). It is hard to compare all of them. Four basic types of algorithms will be explained here. Algorithms based on both amplitude and first derivative, algorithms based on first derivative only, algorithm that utilizes both first and second derivative and the last one is “median” algorithm.

Algorithms based on both amplitude and first derivative

There are three main examples to this type of  algorithms. First one is an algorithm developed by Moriet-Mahoudeaux (Mahoudeaux P.M. et al., 1981). If X(n) represents a one-dimensional array of n sample points of the synthesized digitized ECG, an amplitude threshold is calculated as a fraction of the largest positive valued element of that array. A QRS candidate occurs when three consecutive points in the first derivative array exceed a positive slope threshold and followed within the next 100ms by two consecutive points which exceed the negative threshold.

Second one is an analog QRS detection scheme developed by Fraden and Neuman (Fraden J. and Neuman M.R., 1980).
And the third one is a concept created by Gustafson (Gustafson D. et al., 1977). The first derivative is calculated at each point of the ECG. The first derivative array is then searched for points which exceed a constant threshold, then next three derivative values must also exceed the threshold. If these conditions are met, that point can be classified as a QRS candidate if the next two sample points have positive slope amplitude products.

Algorithms based on first derivative only

Two main examples; one that developed by Menard (Menrad A. et al., 1981) and another one that is a modification of an early digital QRS detection scheme developed by Holsinger (Holsinger W.P. et al., 1971). The derivative is calculated for the ECG. This array is searched until a point is found that exceeds the slope threshold. A QRS candidate occurs if another point in the next three sample points exceeds the threshold.
Algorithms that utilizes both first and second derivative 

First example is the QRS detection scheme presented by Balda (Balda R.A. et al., 1977). The absolute values of the first and second derivative are calculated from the ECG. Two arrays are scaled and then summed. One of the arrays is scanned until a threshold is met or exceeded. Once this occurs, the next eight points are compared to the threshold. If six or more of these eight points meet or exceed the threshold, the criteria for identification of a QRS are met.

Second example is the QRS detection scheme developed by Ahlstorm and Tompkins (Ahlstrom M.L. and Tompkins W.J., 1983). The rectified first derivative is calculated from the ECG. Then first rectified derivative is smoothed. The rectified second derivative is calculated. The first smoothed derivative is added to the second derivative. The maximum value of this array is determined and scaled to serve as the primary and secondary thresholds. The array of summed derivative is scanned until a point exceeds the primary threshold. In order to find a QRS candidate, the next six consecutive points must all meet or exceed the secondary threshold.
Algorithm based on median filter

A median filter is a non-linear filter for processing digital signal. It is also a good selection for QRS detection (Chazal D.P., 1998).
All of the above-mentioned algorithms have limitations. No algorithm expressed in this research is clearly superior for all sources of QRS complexes considered. This research will use a modified Pan- Tompkins algorithm which will be described in detail on the next chapter.
2.2.2 QT Interval analysis
QT interval reflects the electrical signal from ventricular depolarization to depolarization. QTc interval is the QT interval corrected for heart rate. In assessing QT interval variability, determination of absolute QT duration is relatively unimportant sometimes, but the method must be sensitive to subtle changes in QT interval from one beat to the next, as well as relatively intensive to signal noise. The detection and localization of the QT interval requires the detection of onsets and offsets of the QRS complex, the T-wave and J-point. This is done after reliable detection of the QRS complex.
2.2.3 ST segment detection
The ST segment represents the part of the ECG signal between the QRS complex and T wave. Changes in the ST segment may indicate ischaemia caused by insufficient blood supply to the heart muscle. Evaluation of the ST segment together with T wave changes indicate that the zone of ischaemia is around the applied lead. Therefore, analysis of the ST segment is an important task in cardiac diagnosis (Hosseini H.G., 2001).

Some of the most recent literatures in the area of QT interval and ST segment analysis are summarized as follows:

Beat to beat QT interval variability was measured by automated analysis on the basis of 256 second records of the surface ECG. A QT variability index (QTVI) was calculated for each subject as the logarithm of the ratio of normalized QT variance to heart rate variance (Sahambi J.S. and Tandon S.N. et al., 2000).

Another new algorithm is composed of several steps: pre-processing, QRS detection to position beats, QRS onset and T-wave end definition and selection of possible noisy beats in order to remove them (Laguna P. et al., 1990).
In one approach for ST segment analysis, a software was developed to detect R wave. It can determine sustained capture and calculate beat by beat and average ST level and slope on captured beats by five computer methods (single points, average, weighted average, linear least squares, parabolic least squares) (Jadvar H. et al., 1989).

In another approach (Paul J.S. et al., 1998), the ST segment waveform is extracted by identifying the J-point and the onset of ensuing T wave. The fiducial points are obtained by separating out the QRS complex and T wave using eigen filters in the Discrete Cosine Transform domain. 
2.3 ECG feature extraction
After pre- processing and QRS detection the next stage towards classification is to extract features from the ECG signals. The features, which represent the classification information contained in the signals, are used as inputs to the classifier (neural network) used in the classification stage. 

The goal of the feature extraction stage is to find the smallest set of features that enables acceptable classification rates to be achieved.  In general developer cannot estimate the performance of a set of features without training and testing the classification system. Therefore a feature selection is an iterative process that involves trailing different feature sets until acceptable classification performance is achieved.

Extracted Features should obey these rules (Hasnain K. U.  and Asim S. M. , 1999):

Discrimination: features of pattern in different classes should have significantly different values.

Reliability: features should have similar values for pattern of the same class.

Independence: features should not be strongly correlated to each other.

Optimality: some redundant features should be deleted. A small number of features are preferred for reducing the complexity of the classifier. 

In one work by Chazal, 178 features were abstracted from a QRS complex for a representative ECG beat. After applying the transforms to the features there were a total of 229 transformed features. Methods for calculating these features were determined from many existing ECG literatures (Chazal D.P., 1998).

In another work 30 features were extracted for a neural network using a backpropagation training algorithm (Pretorius L.C. et al., 1992).

With the above-mentioned features, the more the input the more complex will be the network structure of the classification. The classification speed will become so slow in the normal personal computer that it cannot be accepted in research. To solve this problem, important and basic features from ECG waveform will be introduced to the system. The method used in this research will be explained in detail in the next chapter.

The ECG features can be extracted from the QRS complex, the ST segment, the statistical and power spectral density (PSD) of the signal. Some selected features that are used in literature are explained below (Hosseini H.G. et al., 1999):
2.3.1 Morphological features
2.3.1.1 The QRS  complex  features

 The QRS duration is one of the main characteristics of this complex and can be used in analyzing and classifying of the ECG signal.

The QRS area is defined as the area located above the isoelectric line and between the Q and S points

The R-R interval is the distance between two subsequent QRS complex and represent the heart beat rate.

The PR interval represents the time lag from the start of atrial depolarization to the start of ventricular depolarisaton and allows systole to occur. 

The R wave amplitude is the amplitude of the R wave. That is the highest distance of the height of R wave.

The R-T interval is the intervals between the peaks of QRS complex and the consecutive peaks of T waves. It is the time interval from the peak of a ventricular depolarization to the consecutive peak of the ventricular polarization.
2.3.1.2 The  QT  interval  and  ST  segment  feature

The QT interval is the longest distance between the Q wave and the T wave

The ST segment represents the part of the ECG signal between the QRS complex and T wave changes. 

Three important features from ST segment are ST slope, ST segment area and ST level. The ST slope is the most important feature of the ECG for investigating myocardial ischaemia (Hosseini H.G., 2001).

Other important features of the ST-segment are ST segment area and ST level. The ST-segment area is the area between the ST-segment and the isoelectric level from J to T points.

The ST level is the maximum deviation from the isoelectric level. The isoelectric level is determined between the offset of the P wave and the onset of the Q wave.
2.3.2 Statistical features
Identifying the highest cross correlation between a set of store templates and an unknown ECG signal can perform the classification of the ECG signal. The template, which has given the maximum cross correlation, would be the match candidate with the unknown ECG signal.

The PSD features: The PSD of a signal is a measurement of its energy at various frequencies. The PSD can be calculated by multiplying the FFT of the signal and its conjugate.

The standard deviation (STD) of the QRS complex can be computed from the FFT of the QRS complex and its conjugate (Hosseini H.G. et al., 1999).
2.4 Neural network classification
Artificial neural networks (ANN) have been trained to perform complex function in various fields of application including pattern recognition, identification, classification, speech, vision and control system. A neural network is a massively parallel-distributed processor that has a natural propensity for storing experiential knowledge and making it available for use. It resembles the brain in two aspects (Chazal D.P., 1998):

· Knowledge is acquired by the network through a learning process,

· Inter-neuron connection strengths known as synaptic weights are used to store the knowledge.

In theory, neural networks can do anything a normal digital computer can do. We can train a neural network to perform a particular input leads to a specific target output. Such a situation is shown in Figure 2.2 (Demuth H. and Beale M., 2001). There, the network is adjusted, based on a comparison of the output and the target, until the network output matches the target. Typically many such input/target pairs are used, in this supervised learning to train a network.
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Figure 2.2: Neural Network adjust system

In practice, neural network have been trained to perform complex function in various fields of application. They are especially useful for signal classification. If there are enough training examples and enough computing resources it is possible to train a feed-forward neural network to perform almost any mapping to an arbitrary level of precision.
2.4.1 The Neuron Model and Architectures

2.4.1.1 The neuron

The simplest Neural Network is the single layer perceptron. It is a simple net that can decide whether an input belongs to one of two possible classes. Output of a perceptron usually passed through nonlinearity called a transfer function. This transfer function is of different types; the most popular is a sigmoidal function.

A simple description of the operation of a neuron is that it processes the electric currents, which arrive on its dendrites, and transmits the resulting electric currents to other connected neurons using its axon. The classical biological explanation of this processing is that the cell carries out a summation of the incoming signals on its dendrites. If this summation exceeds a certain threshold, the neuron responds by issuing a new pulse, which is propagated along its axon. If the summation is less than the threshold the neuron remains in active.
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In these two equations, each set of synapses is characterized by a weight or strength of its own. A signal X, at the input of synapse I connected to neuron j is multiplied by synaptic weight [image: image12.png]


. It is important to make a note of the manner in which this subscripts of the synaptic weight [image: image14.png]


 are written. The first subscript refers to the neuron in question and the subscript refers to the input end of the synapse to which the weight refers. The weight [image: image16.png]


 is positive if the associated synapse is excitatory, it is negative if the synapse is inhibitory. An adder sums the input signals, weighted by the respective synapses of the neuron.

The amplitude of the output of a neuron limits an activation function. The activation function is also referred to as a squashing function in that it squashes the permissible amplitude range of the output signal to some finite value.

2.4.1.2 Transfer function

Many transfer functions have been included in Matlab neural network toolbox. The most commonly used functions are log-sigmoid, tan-sigmoid and linear transfer functions.

Multi-layer networks often use the log-sigmoid transfer function as shown in Figure 2.3.
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Figure 2.3 Log-Sigmoid Transfer Function

Alternatively, multiplayer network may use the tan-sigmoid transfer function as shown in Figure 2.4.
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                                          Figure 2.4 Tan-Sigmoid Transfer Function

Occasionally, the linear transfer function purelin is used as shown in Figure 2.5.
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                                             Figure 2.5. Linear Transfer Function

The sigmoid transfer function squashes the input, which may have any value between plus and minus infinity into the range of 0 to 1. This transfer function is commonly used in back-propagation networks, in part because it is differentiable.

2.4.1.3 Single-layer feed-forward network
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          Figure 2.6 Single-layer feed-forward network (Demuth H. and Beale M., 2001)

A layered neural network is a network of neurons organized in the form of layers. Figure 2.6 shows the simplest form of a layered network, which has an input layer of source nodes that projects onto an output layer of neurons but not vice versa. In other words, this network is strictly of a feed forward type. The input layer of source nodes does not count, because no computation is performed there.

A one-layer network with R input elements and S neurons are shown in Figure 2.6. In this network each element of the input vector p is connected to each neuron input through the weight matrix Wp. The ith neuron has a summer that gathers its weighted inputs and bias to form its own scalar output n(i). The various n(i) taken together form an S-element net input vector n. Finally, the neuron layer outputs form a column vector a. It is shown the expression for a at the bottom of the Figure.
It is common for the number of inputs to a layer to be different from the number of neurons. A layer is not constrained to have the number of its inputs equal to the number of its neurons.

2.4.1.4 Matrix-vector input

A neuron with a single R-element input vector, p1,p2……..pR, is shown in Figure 2.6. The individual element inputs are multiplied by weights, w1,1, w1,2,………..w1,R.

The weighted values are fed to the summing junction. Their sum is simply Wp, the dot product of the (single row) matrix W and the vector p.
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                 Figure 2.7: A neuron with a single R-element input vector (Howard Demuth, 2001)
The neuron has a bias b, which is summed with the weighted inputs to form the net input n. This sum, n, is the argument of the transfer function f.
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A layer of a network is defined in Figure 2.7 shown above. A layer includes the combination of the weights, the multiplication and summing operation (here realized as a vector product Wp ), the bias b, and the transfer function f. The array of inputs, vector p, will not be included in or called a layer.

The input vector elements enter the network through the weight matrix W.
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                                                  (2.8)     

The row indices on the elements of matrix W indicate the destination neuron of the weight and the column indices indicate which source is the input for that weight. Thus, the indices in W12 say that the strength of the signal from the second source to the first (and only) neuron is W12.

2.4.1.5 Multi-layer feed-forward network
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                  Figure 2.8: Multi-layer feed-forward network (Demuth H. and Beale M., 2001)

The second class of feed forward neural networks is multi-layer, shown in Figure 2.8. It may distinguish itself by the presence of one or more hidden layers, whose computation nodes are correspondingly called hidden neurons or hidden units. The function of the hidden neurons is to intervene between the external input and the network output. By adding one or more hidden layers, the network is enabled to extract higher-order statistics and is particularly valuable when the size of the input layer is large.

Each neuron in the hidden layer is connected to a local set of source nodes that lie in its immediate neighbourhood. Likewise, each neuron in the output layer is connected to a local set of hidden neurons. Thus, each hidden neurons responds essentially to local variations of the source signal.

A network can have several layers. Each layer has a weight matrix W, a bias vector b, and an output vector a. To distinguish between the weight matrices, output vectors and so on, for each of these, we will append the number of the layer to the names for each of these variables. For instance, the weight matrix and output vector for the first layer are denoted as W1 and A1, for the second layer these variables are designated W2, A2 and so on.

The network shown above has R1 inputs, S1 neurons in the first layer, S2 neurons in the second layer, etc. It is common for the different layers to have different numbers of neurons. A constant input 1 is fed to the biases for each neuron.

The outputs of each intermediate layer are the inputs to the following layer. Thus layer 2 can be analysed as a one-layer network with S1 inputs, S2 neurons, and an S1xS2 weight matrix W2. The input to layer 2 is a1, the output is a2. Now that we have identified all the vectors and matrices of layer 2 we can treat it as a single layer network on its own. This approach can be taken with any layer of the network. The layers of a multi-layer network play different roles. A layer that produces the network output is called an output layer. All other layers are called hidden layers. (Demuth H. and Beale M., 2001)

Multiple layer networks are quite powerful. For instance, a network of two layers, where the first layer is sigmoid and the second layer is linear, can be trained to approximate any function (with a finite number of discontinuities) arbitrarily well. This kind of two-layer network is used extensively in backpropagation neural network.

2.4.1.6 Nodes, inputs and layers required 

The number of nodes must be large enough to form a decision region, which is as complex as required by the given problem. However, it cannot be so large that the many weights required cannot be reliably estimated from the available training data. No more than three layers are required in perceptron like feed-forward networks, because a three-layer network can generate complex decision regions.

The number of nodes in the second layer must be greater than one when decision regions are disconnected or meshed and cannot be formed from one convex area. The number of second layer nodes required in the worst case is equal to the number of disconnected regions in input distributions. The number of nodes in the first layer must typically be sufficient to provide three or more edges for each convex area generated by every second layer-node. Typically there should be more than three times as many nodes in the second as in the first layer.

2.4.2 Training Algorithm

2.4.2.1 Backpropagation

Generalising the Widrow-Hoff learning rule to multiple-layer networks and nonlinear differentiable transfer function created backpropagation. Input vectors and the corresponding output vectors are used to train a network until it can approximate a function, associate input vectors with specific output vectors, or classify input vectors in an appropriate way as defined.

Standard backpropagation is a gradient decent algorithm, as is the Widrow-Hoff learning rule. The term backpropagation refers to the manner in which the gradient is computed for nonlinear multiplayer networks. There are numbers of variations on the basic algorithm which are based on other standard optimization techniques, such as conjugate gradient and Newton methods.

The backpropagation neural network is a feed-forward network that usually has hidden layers, as shown in Figure 2.8. The activation function for this type of network is generally the sigmoid function. Since the activation function for these nodes is the sigmoid function above, the output from each node is given by (Hasnain S.K.U. and Asim., 1999)
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Where [image: image28.png]


 is the total input to node i, which is given by:
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Note how the weights are indexed. Weight [image: image31.png]Wij



 is the weight of the connection from node j to node i. Now, as for the perceptron, we will minimize the error in the network by using the gradient descent algorithm to adjust the weights. So the change in the weight from node j to i is given by
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Where [image: image34.png]


 is the mean square error for the Kth  pattern. The error for a hidden node i is calculated from the errors of the nodes in the next layer to which node i is connected. This is how the error of the network is backpropagated.

So, putting it all together, the change for weight [image: image36.png]


, where node i is in a hidden layer, is given by:
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The changes in the weights of the network, which allow the network to learn, are now totally defined. This generalized delta rule for backpropagation neural networks defines how the weights between the outputs layer and the hidden layer change, and how the weights between other layers change also. This network is called backpropagation because the errors in the network are fed backward, or backpropagated, through the network.

Generalization is perhaps the most useful feature of a backpropagation network. Since the network uses supervised training, a set of input patterns can be organized into groups and fed to the network. The network will “observe” the patterns in each group, and will learn to identify the characteristics that separate the groups. Often, these characteristics are such that a trained network will be able to correct groups, even if the patterns are noisy. The network learns to ignore the irrelevant data in the input patterns.

2.4.2.2 Conjugate Gradient Algorithm

The basic backpropagation algorithm adjusts the weights in the steepest descent direction (negative of the gradient). This is the direction in which the performance function is decreasing most rapidly. Although the function decreases most rapidly along the negative of the gradient, this does not necessarily produce the fastest convergence. In the conjugate gradient algorithms a search is performed along conjugate directions, which produces generally faster convergence than steepest descent directions.

In most of the conjugate gradient algorithms the step size is adjusted at each iteration. A search is made along the conjugate gradient direction to determine the step size which will minimize the performance function along that line (Demuth H. and Beale M., 2001). There are different search functions that are included in the toolbox and we will discuss one of them.

Fletcher-Reeves Update:

All of the conjugate gradient algorithms start out by searching in the steepest descent direction (negative of the gradient) on the first iteration.
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A line search is then performed to determine the optimal distance to move along the current search direction:
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Then the next search direction is determined so that it is conjugate to precious search direction. The general procedure for determining the new search direction is to combine the new steepest descent direction with the precious search direction:
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The various version of conjugate gradient are distinguished by the manner in which the constant [image: image42.png]


 is computed. For the Fletcher-Reeves update the procedure is
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This is the ratio of the norm squared of the current gradient to the norm squared of the previous gradient.

The conjugate gradient algorithm is usually much faster than variable learning rate backpropagation. Although the result will vary from one problem to another, the conjugate gradient algorithms require only a little more storage than the simpler algorithms, so they are often a good choice for networks with a large number of weights.

2.4.2.3 Levenberg-Marquardt (TrainLM)

The Levenberg-Marquardt algorithm appears to be the fastest method for training moderate-sized feed-forward neural network. The Levenberg-Marquardt algorithm was designed to approach second order training speed without having to compute the Hassian matrix. When the performance function has the form of a sum of squares (as is typical in training feed-forward networks), then the Hessian matrix can be approximated by Newton’s method. Newton’s method is faster and more accurate near an error minimum, so the aim is to shift towards Newton’s method as quickly as possible.  
2.4.3 Neural network application in ECG classification

Pattern classification is perhaps the most important application of artificial neural network. In fact a large number of different approaches to computerized ECG signal classification have been proposed in the literature.

A new neural network called MART (multi channel adaptive resonance theory) was developed by Carpenter and Grossberg. It has been considerably modified with the objective of carrying out an adaptive and self organizing classification of multi channel pattern. MART carries out a process that is characterized by on-line and unsupervised learning, updating its weights with each QRS that is presented as input data. MART uses a non-supervised learning process with regard to the morphologies that are presented in the input data, storing a representation of each of them. Another important characteristic of MART is the selective evaluation of the beat class differences in each channel, as a function of the signal quality (Barro S.M. and Delgado F., 1998).

An artificial neural network (ANN) structured as an auto-associator is implemented to perform arrhythmia detection because of its capability to reject unknown or ambiguous pattern. Both a static and a recurrent ANN approach are implemented in several architecture to detect ischemic episodes. While the first approach features an easier learning process, the second one is able to learn the input signal evolution even on a reduced training set. Several ANN’s structure combined with different pre-processing and post-processing techniques are designed and evaluated for arrhythmia classification, ischemia detection and recognition of chronic myocardial diseases (Silipo R. and Marchesi C., 1998). Every ANN has been tested and compared with the most common traditional ECG analysers on appropriate database. Thus based on the results, the ANN’s approach is shown capable of dealing with ambiguous nature of the ECG signal. 

In another research project, a novel approach to demonstrate the feasibility of having a patient-adaptable ECG beat classification algorithm was developed. A self organization map/linear vector quantization (SOM/LVQ) based approach was presented to illustrate that these requirements can be met. (Yu H.H. and Tompkins W.J., 1997).
Another method uses the principle of a Kohonen self-organising feature map and a one layer perception (Conde T., 1994).

Supervised learning networks based on a decision-based formulation are explored. More specifically, a decision based neural network (DBNN) is proposed, which combines the perceptron-like learning rule and hierarchical nonlinear network structure (Kung S.Y. and Taur J.S., 1995).

Recent results from another application to both simulated and real registers are shown and benchmarked with the classical LMS (Least Mean Square) and normalized LMS algorithms. Outcomes indicate that the Finite Impulse Response (FIR) network is a reliable method for the fatal ECG recovery (Camps G., 2001).

There are shortcomings associated with all of the above-mentioned techniques. For example, some techniques suffer from long processing times, other classifiers may depend on the patient ECG waveform characteristics, and a few of the classifiers require noise and artifact removal. Moreover, many of the proposed algorithms analyse only one part of the signal and hence detect only one or two abnormalities (Miller A.S. Blott B.H. and Hames T.K., 1992). It is observed that there exist more than 40 symbols in the MIT/BIH ECG database (Moody G. and Mark R., 1992) to describe the number of different waveforms. Current analyzers have failed to cluster all abnormalities.

The other common problem of intelligent ECG signal classification is that structural complexity grows as the size of the training parameters increases. Moreover, performance of the analysers is poor in recognizing a specific type of ECG when it occurs only rarely in a patient’s ECG record. In this research, several neural network architectures were designed for comparing their performance to detect and classify up to 3 different ECG waveforms.

CHAPTER 3

ECG SIGNAL DIAGNOSING METHODS
The methods for the system developed (ECG signal diagnosing system) in this thesis involve data acquisition, noise removal, QRS detection, normalization and feature extraction, conversion of the features into a suitable format for neural network input, output vector formation and artificial neural network (ANN) design for signal classification. The output can be used for ECG signal classification or making a report of the patient’s heart condition.

The development procedure is as follows (Figure 3.1):

1. ECG Data acquisition from a web database

2. Separating data into training and testing sub-data sets

3. Loading training data

4. Pre-processing of training data 

5. QRS detection of training data 

6. Normalization of training data 

7. Feature extraction

8. Output vector formation

9. Designing the neural network structure

10. Training the neural network with the training data

11. Obtaining Recognition Rates

12. Loading test data

13. Repeating steps 4,5,6,7 and 8 for test data

14. Testing the neural network with the test data

15. Obtaining Recognition rates

All of the above steps besides step 1and 2 are performed in Matlab environment and the system developed at the end is a Matlab software. Steps 3,9,10,11,14 and 15 are performed with the main program which is ECGclassifier.m and steps 4,5,6,7,8 are repeated for training and testing data with the function fprepnextract.m which is a function called by the main program (see CD for program codes).








Figure3.1 Detailed Block Diagram of the ECG Pattern Recognition and Classification System

3.1 Experimental Tools: The Matlab Enviroment
Matlab is a powerful, comprehensive, and easy to use environment for technical computations. It provides engineers, scientists, and other technical professionals with a single interactive system that integrates numeric computation, visualization, and programming. Matlab includes a family of application specific solutions called toolboxes.

One of its greatest strengths is that Matlab allows building its own reusable tools. Customised special functions and programs can be easily created in Matlab code. Biomedical engineers use Matlab in research, design and manufacturing of medical devices and to develop embedded algorithms and systems for medical instrumentation. Matlab has several advantages over other traditional means of numerical computing.

· It allows quick and easy coding in a very high level language.

· Data structures require minimal attention, in particular, arrays need not be declared before first use.

· An interactive interface allows rapid experimentation and easy debugging.

· High-quality graphic and visualization facilities are available.

· Matlab M-files are completely portable across a wide range of platforms.

· Toolboxes can be added to extend the system, giving, for example, specialized signal processing facilities.

Furthermore, Matlab is a modern programming language and problem-solving environment: it has sophisticated data structures, contains built in debugging and profiling tools, and supports object oriented programming.  These factors make Matlab to be an excellent language for teaching and a powerful tool for research and practical problem solving.

3.1.1 Signal processing toolbox
The signal processing toolbox is a collection of Matlab functions that provides a rich, customizable framework for analog and digital signal processing (DSP). Graphical user interfaces (GUIs) support interactive designs and analyses, while command-line functions support advanced algorithm development. The Signal Processing Toolbox is the ideal environment for signal analysis and DSP algorithm development. It uses industry-tested signal processing algorithms that have been carefully chosen and implemented for maximum efficiency and numeric reliability. Functions are mostly implemented as M-file routines written in the Matlab language, giving access to the source code and algorithms. The open-system philosophy of Matlab and the toolboxes enables making changes to existing functions or adding own experiments.

The main features of the signal processing toolbox are as follows (Little J.N. and Shure L.,2001):

· A comprehensive set of signal and linear system models

· Tools for analog filter design

· Tools for finite impulse response (FIR) and infinite impulse response (IIR) digital filter design, analysis and implementation.

· The most widely used transforms, such as Fast Fourier transform (FFT) and discrete cosine transform (DCT)

· Methods for spectrum estimation and statistical signal processing.
3.1.2 Neural Network Toolbox
The Neural Network Toolbox extends the Matlab computing environment to provide tools for the design, implementation, visualization and simulation of neural networks. Neural networks are very powerful tools that are used in applications where formal analysis would be difficult or impossible, such as pattern recognition and non-linear system identification and control. The Neural Network Toolbox provides a comprehensive support for many proven network paradigms, as well as a graphical user interface that enables the experiment to design and manage networks The toolbox’s modular, open and extensible design simplifies the creation of customized functions and networks.

The main features of Neural Network Toolbox are as follows (Demuth H. and Beale M., 2001):

· Support for the most commonly used supervised and unsupervised network architectures

· A comprehensive set of training and learning functions

· Modular network representation, allowing an unlimited number of input setting layers, and network interconnections

· Pre and post-processing functions for improving network training and assessing network performance.
3.2 ECG Data Acquisition
In this thesis the source of the ECG data is MIT-BIH Arrhythmia database from Physionet website (http://www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm). MIT-BIH Arrhythmia database is a set of over 4000 long-term Holter recordings. Approximately 60% of these recordings were obtained from in-patients. The database contains 23 records (numbered from 100 to 124, some numbers missing) chosen at random from this set, and 25 records (numbered from 200 to 234, again some numbers missing) selected from the same set to include a variety of rare but clinically important phenomena.Each of the 48 records is slightly over 30 minutes long.

The first group of records is intended to serve as a representative sample of the variety of waveforms and artifacts that an arrhythmia classifier might encounter in routine clinical use.

Records in the second group were chosen to include complex arrhythmia and conduction abnormalities. Two recordings from this group is selected for this thesis because the rhythm, QRS morphology variation or signal quality might be expected to present significant difficulty to arrhythmia classifier.

All the waveforms present in these recordings are studied and classified by expert cardiologist and presented as annotations in the website. ECG records 100, 118 and 217 (normal, rbbb and paced beats respectively) are used in the training (Figure 3.2) and records 101, 231 and 107 (normal, rbbb and paced beats respectively) are used in testing (Figure 3.3) of the neural network in this thesis.

Each of these records is slightly over 30 minutes long, has a sample frequency of 360Hz and contains 2 channels (2 signals recorded from different angles on chest). By using Physionet’s built-in web tool only 1 minute long sections of each record is extracted as .m files that can be readily used in Matlab. As a result 6 recordings (3 for training and 3 for testing) each containing 21600 samples and approximately 60-80 waveforms depending on heart rate and class(normal, rbbb or paced) is obtained and loaded into Matlab environment. After loading the data into Matlab one of the channels is removed and only one channel for each recording is used for the rest of the program(channel MLII).

In the end of the Data acquisition part a total of 214 waveforms (as 3 separate recordings each representing a normal, rbbb and paced waveform class) for training and 202 waveforms for testing are prepared ready for next step which is signal pre-processing.
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Figure 3.2 A Section Raw ECG Training Records Obtained From MIT-BIH Database
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Figure 3.3 A Section From Raw ECG Testing Records Obtained From MIT-BIH Database

3.3 Signal Pre-processing
Signal processing can be defined as the manipulation of a signal for the purpose of extracting information from the signal or producing an alternative representation of the signal. There are numerous specific motivations for signal processing, but many fall into following three categories. First is to remove unwanted signal components that are corrupting the signal of interest. Second is to extract information by rendering it in a more obvious or more useful form and third is to predict future values of the signal in order to anticipate the behavior of its source.

This thesis, at signal pre-processing step is focused on noise removal and after this step processing of the signal will continue with QRS detection and Feature extraction steps.

ECG recognition systems have to be designed in a way that they are capable of working in a noisy hospital environment. ECG signal is normally corrupted with different types of noise. To obtain useful information from raw signals you have to first process them and remove the noise. Although our system will not be working on real time patient recorded signals, the ECG data that we get from MIT-BIH database may also contain some noise (Figure 3.4) so we also have to pre-process the signal and remove the noise.  
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Figure 3.4 Sample raw noisy ECG record before pre-processing

To remove unwanted noise from raw ECG signals four levels of filtering is applied to ECG records; DC component removing, 10 point moving average (low pass) filter, derivative based (high pass) filter and a comb filter. 
3.3.1 Removing DC Components of the ECG Signal
As it can be clearly seen from Figure 3.4, ECG signals taken from MIT-BIH database contain baseline (sections of ECG where there is no electrical activity of heart) amplitudes higher than zero (around 950 in Figure 3.4). In this step by subtracting the mean of the signal from itself, the unwanted dc component is removed and the signal baseline amplitude is pulled back to level zero.

                                  ECGSignal=ECGSignal-mean(ECGSignal)



(3.1)

3.3.2 Removing Low Frequency and High Frequency Noise
ECG data used for the system contains low and high frequency noise components that may be caused by the sources explained in the previous chapter. Before the design of the software both frequency domain and time domain filters were tested for noise removal. It is observed that time domain filters provide better noise removal on the signals obtained from MIT-BIH database than frequency domain filters (butterworth filters in our case). Because of this and since the most of the noise present in the database are random noise time domain filters were chosen to filter unwanted high and low frequency noise.

To remove high frequency random noise,mostly caused by patients muscle contractions during recording,from the ECG signals a 10 point moving average (low pass)  filter (Figure 3.5) which passes low frequencies but attenuates high frequencies chosen and the signals are filtered by using Matlab’s filter function.




B=(1/10)*ones(1,10);




A=1;




ECGSignal=filter(B,A,ECGSignal)  


       
          (3.2)

[image: image47.png]Magnituce (c5)

Phase (dagrees)

10 Point Moving Avarage Filtre

]

]

100

0

100

01 02 08 04 05 06 07 0.8 09
Normalized Frequency (<t mdisample)

200
(]

01 02 08 04 05 06 07 0.8 09
Normalized Frequency (<t mdisample)





Figure 3.5 Low Pass Filter

After the removal of high frequency noise from the signal next step is to remove low frequency noise components. This low frequency noise shows itself as baseline wandering that is caused mostly by the respiration of the patient. To remove this low frequency noise, a derivative based (high pass) filter (Figure 3.6) that passes high frequencies but attenuates low frequencies used.




B=(1/1.0025)*[1 -1];




A=[1 -0.995];




ECGSignal=filter(B,A,ECGSignal)



             (3.3)
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Figure 3.6 High Pass Filter

3.3.3 Removing 60Hz Powerline Interference
Powerline interference is a noise caused by the electricity current flowing in wires and power lines.Powerline interference that is present in our ECG signals consists of 60Hz pickup and harmonics. Since frequency of 60Hz overlaps with our ECG signal frequency range we have to suppress only 60Hz frequency components and its harmonics without disturbing the frequencies around. To achieve this, comb filter (Figure 3.7) is used and 60Hz powerline interference with its harmonics is removed from the ECG signals. Comb filter is a band-stop filter which attenuates a certain band of frequencies and their harmonics.

B=conv([1 1],[0.6310 -0.2149 0.1512 -0.1288 0.1227 -0.1288 0.1512 -0.2149 0.6310]);

A=1;

ECGSignal=filter(B,A,ECGSignal)    





             (3.4)
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Figure 3.7 Comb Filter

All of the above steps are applied to all 3 training ECG records (and later will be repeated for testing records at testing stage) and filtered ECG signals (Figure 3.8) are obtained ready for the next QRS detection step.
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Figure 3.8 Sample filtered ECG signal after preprocessing

3.4 QRS Detection
As mentioned before in previous chapter, the QRS complex is the most striking waveform within the ECG. Since it reflects the electrical activity within the heart during the ventricular contraction, the time of its occurrence as well as its shape provide much information about the current state of the heart. Due to its characteristic shape it serves as an entry point for classification scheme of cardiac cycle. In that sense, QRS detection provides the fundamentals for almost all automated ECG analysis algorithms. Supporting this, previous research (Ozbay Y. And Karlik B., 2001) proved that taking samples as feature values in the intervals of R-R are very effective in representing the class of those ECG waves (one cardiac cycle) cardiac condition. Apart from this, since the 3 ECG records, each representing a different cardiac condition, used for training in this thesis are 1 minute long (each containing 60-80 ECG waveform), in order to separate each waveform (we need to do this because cardiologist classify cardiac conditions by looking at single ECG waveforms (cardiac cycles), not by looking at whole record) and find how many waveforms each record contain we also need to detect the QRS complexes.

There are many different QRS detection techniques but this thesis is focused on QRS detection using Pan-Tompkins algorithm (Pan J and Tompkins WJ., 1985). Pan and Tompkins proposed a real-time QRS detection algorithm based on analysis of the slope, amplitude and width of QRS complexes. The algorithm includes a series of methods that perform derivative, squaring, integration, adaptive thresholding and search procedures.
3.4.1 Derivative Operator
The derivative procedure suppresses the low-frequency components of the P and T waves, and provides a large gain to the high-frequency components arising from the high slopes of the QRS complex. Derivative operation is implemented in Matlab by using diff function which finds the differences between the adjacent values in the signal.

                     Derivative=diff(ECGSignal)     


         (3.5)
3.4.2 Squaring Operation
The squaring operation makes the result positive and emphasizes large differences resulting from QRS complexes; the small differences arising from P and T waves are suppressed. QRS complex is further enhanced. Squaring operation is implemented simply by multiplying the signal by itself in Matlab.

                     Squaring=derivative.*derivative
    
                       (3.6)
3.4.3 Integration

The output of a derivative based operation may contain multiple peaks within the duration of a single QRS complex. A moving window integrator is applied to perform smoothing of the output of the preceding operations so that multiple peaks are avoided. This step is performed in Matlab by using medfilt1 function and a window width of 54 is found to be suitable for sampling frequency 360Hz.

window=ones[1,54];

Integration=medfilt1(filter(window,1,squaring),10);       

     (3.7)

3.4.4 Thresholding
Maximum value of the signal that had passed from above steps is taken and multiplied by a threshold percentage value. This is done because the output of preceding operations may contain noise peaks. These noise peaks do not have as large amplitude as R peaks but if we take all the peaks present in the output of above steps as R peaks then noise peaks will also be classified as R peaks (QRS complexes). So by taking a certain percentage of the highest peak amplitude as a threshold we avoid this. Different values for threshold percentage were tested and value 0.2 found to be suitable for removing noise peaks in our signals. This threshold value is used for searching R peak in search procedures. 




          maxvalue=max(integration)

          threshold=maxvalue*0.2



 (3.8)

3.4.5 Search Procedures for QRS (Location of R Peaks)
In the last step of QRS detection, regions of the output signal, of the preceding steps, that is above the threshold value is found. Starting and ending locations of each region is recorded. Then each specific region is again searched on the original ECG signal for a maximum value which represents the exact R peak of that wave. Locations of all R peaks are then recorded and the QRS searching algorithm is finalized (Figure 3.9).

 position_region=integration>threshold

  left=find(diff([0 position_region])==1)

  right=find(diff([position_region 0])==-1)


 for i=1:length(left)

 [maxvalue(i) maxlocation(i)]=max(ECGSignal(left(i):right(i)))


end                      







(3.9)
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Figure 3.9 ECG signal with R peaks detected

3.5 Removing Negative Values and Normalizing Before Feature Extraction
Artificial Neural Networks provide better results when the inputs fed into them contains no negative values and normalized between 0 and 1.  To remove the negative values of the ECG signals we add the absolute value of the minimum value of the signal to the signal itself (3.10). After removing negative values, to normalize the ECG signals we divide the signal into its maximum value (3.11).

ECGSignal=ECGSignal+abs(min(ECGSignal)


(3.10)

ECGSignal=ECGSignal/max(ECGSignal)



(3.11)

3.6 Feature Extraction
As we mentioned before, previous research suggested that taking samples between R-R intervals of ECG waves as feature values enables a good representation of the cardiac condition of those ECG waves. As we investigate our ECG signals that we are using for training we can easily see that the features that clearly distinguishes each class (normal, rbbb and paced) lies between the R-T interval (Discrimination).Also it can be easily observed that each member of a class shows same form of pattern in this interval (Reliability). So we took 200 samples between R-R intervals (Figure 3.10) (approximately this amount of samples corresponds to R-T interval with sampling frequency of 360Hz) starting from R peaks as our feature values excluding (deleting) all other parts of the ECG waveforms(Optimality).

for i=1:length(maxlocation)-1



for j=1:200



feature_vector(I,j)=ECGSignal(maxlocation(I)+j);



end

end









(3.12)

When this method is applied to all 3 training ECG records we obtained 214x200 feature vector (Figure 3.11) which will fed inputs to our neural network. We have sorted the features in this order; normal, rbbb, paced, normal, rbbb, paced and so on.
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Figure 3.10 Method of Feature Extraction
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Figure 3.11 An example to 214x200 Feature Vector representing 200 features for every member of each class

3.7 Output Target Vector Formation
Accompanying each record in the MIT-BIH database there is an annotations file in which each heartbeat has been identified by expert cardiologist annotators. This annotated information can be employed for designing the target vector and evaluating the classifier performance. This thesis is focused on classifying three different cardiac condition namely normal beats, right bundle branch block and paced beats. These cardiac conditions are defined as follows Table 3.1

Table 3.1 Output Target Vector Representations

	Cardiac Condition
	Vector

	Normal (N)
	[1 0 0]

	Right Bundle Branch Block (RBBB)
	[0 1 0]

	Paced Beat (P)
	[0 0 1]


When these representationsare applied to the whole records and the output vectors are sorted in the order same as the feature vector, the 214x3 output target vector is formed (Figure 3.12).
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Figure 3.12 214x3 Output Target Vector
This output target vector will be used by neural network during training stage. Network will compare these desired outputs with its actual results and hence calculate errors and adapt its weights to learn the patterns. After the training completed this vector will be used in calculating correct training recognition rate by comparing it to networks actual output.
3.8 Designing the Neural Network
Developing a classifier based on neural network involves choosing an appropriate classifier model and then using the training algorithm to train and then test the input signal to classify them into different categories. Backpropagation algorithm will be used in this thesis as a training function to train feed forward neural networks to solve our ECG signal classification problem.

Multi-layer feed-forward backpropagation networks that have 1 input 1 hidden and 1 output layers are designed for diagnosing the cardiac conditions by ECG signals. Five different structures of neural networks are designed and will be tested for best performance. Each of them has same number of input (200) and output (3) neurons but differ in their number of hidden neurons (7, 20, 60, 100, 200).Matlab’s newff function is used to design the network. Maximum epochs are set to 1000 and error limit is set to 0.001. ‘Traingdx’ is used as backpropagation learning algorithm with momentum value. Learning rate and momentum coefficients are remained as defaults of the Matlab’s function and log sigmoid ‘Logsig’ functions are used for neuron transfer functions.


Net=newff(minmax(feature_vector), [200,7,3], (‘logsig’,’logsig’,‘logsig’), ‘traingdx’);


Net.trainParam.epochs=1000;


Net.trainParam.goal=0.001;






(3.13)

3.9 Training the Neural Network
214x200 Feature vector that contains feature values obtained from training data set, along with its corresponding 214x3 output target vector is fed into the networks designed in previous step for training with backpropagation algorithm. Training is continued until error goal is achieved or maximum epoch is reached. After the training finished, networks outputs are compared with output target vector and correct training recognition rates and accuracies are recorded. Correct recognition is counted when the same output neuron shows the maximum value both for actual output and desired output. Accuracy is found by subtracting networks actual output of the neuron that should show the maximum value (that should be classified) from the desired output which is always 1. The example of the feature data for training is shown in Figure 3.13. Matlab’s train function is used for training the network designed in previous step.

[finalnet,tr,training_output]=train(net,feature_vector,output_vector);

(3.14)
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Figure 3.13 The training data sample

3.10 Testing the Neural Network
After training is completed the test data records 101, 231 and 107 taken from MIT-BIH database were loaded into program and all the previously explained signal pre-processing, QRS detection, normalization and feature extraction methods were also applied to these testing data until we obtained 202x200 testing feature vector and 202x3 testing output target vector, both sorted in the same manner as training vectors. A testing feature data example is shown in Figure 3.14. As it can be seen testing data is more complicated than training data.
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Figure 3.14 The testing data sample

While testing the trained networks testing feature vector was fed into the network for only one forward pass through the network and the classification outputs that the network produced is compared with desired testing output target vector to calculate the networks correct testing recognition rates and accuracies. Testing was done in Matlab with function sim. Already trained network is fed into the function along with testing feature vector and the function returns the classifications (outputs) that the network produces.

Classification=sim(finalnet,feature_vector_test);      

 (3.15)

CHAPTER 4

RESULTS and DISCUSSION

ECG Data obtained from MIT-BIH database were pre-processed, QRS complexes were detected and  200 samples between R-R intervals were extracted as feature values representing ECG classes. After all these steps five different network structures are trained with training data, training performances were recorded and finally they were all tested with testing data and testing performances were recorded for result analysis and discussions.

Five network structures designed and tested was all multilayer feed-forward back-propagation networks with network architectures 200:7:3 (N1) (input neurons:hidden neurons:output neurons), 200:20:3(N2), 200:60:3(N3), 200:100:3(N4) and 200:200:3(N5) respectively. Maximum epochs, error limits, learning rates and momentum coefficients were all same in all networks.

When we test all of the above networks we found that all of them obtained %100 recognition rates and accuracies above %90 in training phase. For this reason we did not find it necessary to change any parameters like maximum, epochs, error limits or learning rates.

During testing phase, N1 obtained 100% testing recognition rate and an average accuracy around 90% in its best run. N2’s numbers were 99% recognition rate and 80% accuracy. N3 obtained 100% recognition rate but 79% accuracy. N4 obtained 95% recognition rate and 74% accuracy. Finally N5 got 98% recognition rate and 85% accuracy.

These results can change with each run of the program because with each new run program starts training the networks again with different random weights and the testing rates may change due to different final training weights obtained with each training. So although the training recognition rates reach 100% almost every time due to the more complexity of testing data testing rates may vary from run to run. Trained N1 during its best run can be found in program CD saved as BestTrainedNetwork.m 

As we can see from the results, N1 which has the architecture 200:7:3 showed the best results during its best training and testing run. Relying on these results final parameters of the ANN is decided to be as follows.
4.1 ANN Final Parameters and Results (200:7:3)

Table 4.1 ANN final parameters

	No of input neurons
	200

	No of hidden neurons
	7

	No of output neurons
	3

	Minimum error goal
	0.001

	Obtained error 
	0.001

	Epochs took to train
	160

	Learning rate
	Default of Matlab’s ‘traingdx’ algorithm

	Momentum coefficient
	Default of Matlab’s ‘traingdx’ algorithm

	Training time
	7 seconds

	Testing time
	Less than 1 seconds


Table 4.2 Recognition rates

	
	Correct recognition/total patterns
	percentage

	Training Recognition Rate
	214/214
	100%

	Testing Recognition Rate 
	202/202
	100%

	Overall Recognition Rate
	416/416
	100%


Table 4.3 Accuracies

	
	Value
	Percentage

	Training Accuracy
	0.9598
	95.9%

	Testing Accuracy
	0.8976
	89.7%
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Figure 4.1 Training performance of the final network

4.2 Discussion
Based on the results of the final neural network, it can be said that the neural network classifier that is designed in this thesis obtained excellent results using the proposed signal processing and feature extraction methods on the ECG data obtained from MIT-BIH database. Most of the signal processing methods including filters and QRS detection algorithm were standard but the feature extraction algorithm proposed in this thesis proved to be very successful for this job. Rather than taking whole ECG beat samples and feeding them into network as features, extracting only 200 samples between R-R waves which approximately corresponds to R-T interval represented each different class of ECG wave effectively and reduced the complexity of the classification system based on neural network, making it faster and more accurate.

However current very high results of the classification system are very dependent on its current design. If we had tried to classify 5 or 10 cardiac conditions (diseases) rather than only 3 and have used more complex and noisy data, detecting the QRS complexes would be harder, so that the feature extraction, resulting in a more complex and poor classifier. To avoid that, more efficient signal processing and noise reduction can be applied to the system and since with increased number of classes the samples between the R-R intervals of the ECG waves will became more and more similar, it will become harder for the classifier to distinguish the differences between them, so another way of feature extraction may be based on the combination of statistical, morphological and power spectrum features can be considered. But for the conditions of our thesis it can be easily repeated that our ECG pattern recognition and classification system did what it should do and classified 3 different cardiac conditions very accurately, effectively and efficiently.

CHAPTER 5

CONCLUSIONS
The most important step in ECG diagnostic is to detect different waves, mainly QRS complex, to extract efficient features and to find suitable structure and algorithm for ANN ECG signal classifications. Four levels of filtering and a QRS detection algorithm were applied and tested to achieve in this purpose. The selected features were suitable for diagnosis of three cardiac conditions and allowed the neural network to obtain very high recognition rates and accuracies.

It can be concluded that the time domain based filters performed well and QRS detection based on Pan-Tompkins algorithm proved to be very suitable for our case. The method proposed for feature extraction was an effective method in classifying three different cardiac conditions. The advantage of the ANN classifier using the proposed feature vector is its simplicity and ease of implementation. In testing of the ANN signal classification it was found that the network with the structure 200:7:3 achieved best results with 100% recognition rate and almost 90% accuracy. The use of Matlab reduced the programming demands and allowed us to focus more on algorithm development. The current design of the network is very suitable for three cardiac conditions. Some of the features may be changed if other cardiac conditions are selected.

CHAPTER 6

FUTURE WORK

Computerized ECG diagnostic system is an important tool used in clinical practice today. Analysis of ECG signal is a difficult task but with the help of this kind of software systems, it is possible to automate this process. There is still lot of things to do in the future:

· Real-time patient data acquisition can be added

· More advanced filters can be designed to remove real-time dynamic noise

· Noise removal for powerline interference can also be adapted to frequencies of countries that use 50HZ instead of 60Hz.
· More complex feature extraction methods can be applied

· System can be adapted to classify most of the cardiac conditions (rather than just 3) that can be faced in a clinical environment.
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APPENDIX
Program Source Code:

Main Program:

%'ECG Classifier' created by Ali ISIN for the Msc Thesis;

%'Intelligent Recognition and Classification of Three Cardiac Conditions

% Using ECG Signals'

% Near East University 2013

clc

clear all

disp('////ECG Waveform Recognition and Disease Classification Using ANN////')

disp('///Created by Ali ISIN///')

%Loading DATA for Training of the System...

%All training and testing data are taken from MIT/BIH Arrhythmia Database

%www.physionet.org/physiobank/database/html/mitdbdir/mitdbdir.htm

%Each 1 min record contains approximately 60-80 waveforms

%total 180-240 (3*(60-80))waveforms for training approximately

%sample rate of the signals=360Hz

%loading normal,Right bundle branch block(rbbb) and Paced beat waveform recordings (3 1min records, 3*21600 samples) 

disp('Loading ECG Records That Will Be Used In Training the ANN...')

n=load('100m.mat'); %1min record containing normal beat waveforms

r=load('118m.mat'); %1min record containing rbbb beat waveforms

p=load('217m.mat'); %1min record containing paced beat waveforms 

%above ecg .mat files contains 2 channel ECG records.

%we only need one channel so extracting only one of the channels

%(channel MLII)

normal=n.val(1,:);

rbbb=r.val(1,:);

paced=p.val(1,:);

%%%%optional plot%%%%

%subplot(3,1,1);plot(normal)

%title('Raw ECG Training Data (normal)')

%subplot(3,1,2);plot(rbbb)

%title('Raw ECG Training Data (rbbb)')

%subplot(3,1,3);plot(paced)

%title('Raw ECG Training Data (paced)')

%figure

%sending raw ECG data to function fprepnextract for signal pre-processing

%and feature extraction

[feature_vector,output_vector]=fprepnextract(normal,rbbb,paced);

%changing rows to coulums

s=size(feature_vector);

s1=s(:,1);

for i=1:s1

    feature_vector_tr(:,i)=feature_vector(i,:);

    output_vector_tr(:,i)=output_vector(i,:);

end

%%%TRAINING OF THE NETWORK%%%

disp('%%%%Training the ANN%%%%')

%designing network structure

net=newff(minmax(feature_vector_tr), [200,7,3],{'logsig','logsig','logsig'},'traingdx');

%training parameters

net.trainParam.epochs=1000; %maximum iteration

net.trainParam.show=50; %show error values every 100 iterations

net.trainParam.goal=0.001; %error limit

%start training

[net,tr,train_out]= train(net,feature_vector_tr,output_vector_tr);

disp('Training Completed')

%finding training recognition rate

avg_accuracy=0;

correct_rec=0;

for i=1:s1

    [desired_v desired_n]=max(output_vector_tr(:,i));

    [actual_v actual_n]=max(train_out(:,i));

    if desired_n==actual_n

        correct_rec=correct_rec+1;

        accuracy=desired_v-actual_v;

    else

        accuracy=desired_v-(train_out(desired_n,i));

    end

    avg_accuracy=avg_accuracy+accuracy;

end

avg_accuracy=1-(avg_accuracy/s1);

recognition_rate=(correct_rec*100)/s1;

disp('Total No. of Training Patterns')

disp(s1)

disp('Correct Recognized Training Patterns')

disp(correct_rec)

disp('Training Recognition Rate (%)')

disp(recognition_rate)

disp('Average Training Accuracy')

disp(avg_accuracy)

%%%%%loading Test data%%%%

%Test Data contains approximately same amount of waveforms as Training Data

disp('Loading ECG Records That Will Be Used In Testing...')

nt=load('101m.mat');%1min record containing normal beat waveforms

rt=load('231m.mat');%1min record containing rbbb beat waveforms

pt=load('107m.mat');%1min record containing paced beat waveforms

normalt=nt.val(1,:);

rbbbt=rt.val(1,:);

pacedt=pt.val(1,:);

%%%optional plot%%%

%figure

%subplot(3,1,1);plot(normalt)

%title('Raw ECG Testing Data (normal)')

%subplot(3,1,2);plot(rbbbt)

%title('Raw ECG Testing Data (rbbb)')

%subplot(3,1,3);plot(pacedt)

%title('Raw ECG Testing Data (paced)')

%figure

%sending test data to fprepnextract for pre-processing and feature

%extraction

[feature_vector,output_vector]=fprepnextract(normalt,rbbbt,pacedt);

%changing rows to coulums

s=size(feature_vector);

s2=s(:,1);

for i=1:s2

    feature_vector_tst(:,i)=feature_vector(i,:);

    output_vector_tst(:,i)=output_vector(i,:);

end

%%%%TESTING THE NETWORK%%%%

disp('%%%Testing the ANN%%%')

class_out=sim(net,feature_vector_tst); %testing the network using feature vector obtained from test data

disp('Testing Completed')

%finding correct number of classifications and testing recognition rate

correct_rec_tst=0;

avg_accuracy_tst=0;

for i=1:s2

    [desired_v_tst desired_n_tst]=max(output_vector_tst(:,i));%finding which node(neuron) should be active ideally in the output for that waveform(ith waveform)

    [actual_v_tst actual_n_tst]=max(class_out(:,i)); %finding which node actualy is active for that waveform 

    if desired_n_tst==actual_n_tst %if they are same then network classified that waveform correctly

        correct_rec_tst=correct_rec_tst+1;

        accuracy_tst=desired_v_tst-actual_v_tst;   

    else

        accuracy_tst=desired_v_tst-(class_out(desired_n_tst,i));

    end

avg_accuracy_tst=avg_accuracy_tst+accuracy_tst;

end

avg_accuracy_tst=1-(avg_accuracy_tst/s2);

recognition_rate_tst=(correct_rec_tst*100)/s2;

disp('Total Number of Testing Patterns')

disp(s2)

disp('Correct Recognized Testing Patterns')

disp(correct_rec_tst)

disp('Testing Recognition Rate (%)')

disp(recognition_rate_tst)

disp('Avarage Testing Accuracy')

disp(avg_accuracy_tst)

disp(':::++++++>>>  END OF PROGRAM  <<<++++++:::')

Signal Processing and Feature Extraction Function: 
%Function for Pre-Processing and Feature Extraction of ECG Signals

%defining function. function will recieve normal, rbbb and paced ECG

%records from main program, do signal pre-processing and return feature and

%output vector ready for ANN training or testing

function [feature_vector,output_vector]=fprepnextract(normal,rbbb,paced)

disp('Signal Pre-processing...')

%Signal Pre-Processing Stage...

%removing DC components (noise) of the signals (set mean to 0)

normal=normal-mean(normal);

rbbb=rbbb-mean(rbbb);

paced=paced-mean(paced);

%filtering signals for noise removal

%10 point moving average (low pass) filter

B=(1/10)*ones(1,10);

A=1;

normal=filter(B,A,normal);

rbbb=filter(B,A,rbbb);

paced=filter(B,A,paced);

%Derivative Based (high pass) Filter

B=(1/1.0025)*[1 -1];

A=[1 -0.995];

normal=filter(B,A,normal);

rbbb=filter(B,A,rbbb);

paced=filter(B,A,paced);

%comb filter for remowing 60hz powerline interference

B=conv([1 1],[0.6310 -0.2149 0.1512 -0.1288 0.1227 -0.1288 0.1512 -0.2149 0.6310]);

A=1;

normal=filter(B,A,normal);

rbbb=filter(B,A,rbbb);

paced=filter(B,A,paced);

%%%%optional plot%%%%

%figure

%subplot(3,1,1);plot(normal)

%title('Filtered ECG normal')

%subplot(3,1,2);plot(rbbb)

%title('Filtered ECG rbbb')

%subplot(3,1,3);plot(paced)

%title('Filtered ECG paced')

%performing QRS detection by Pan Tompkins Algorithm

%step1: Differentiator

dnormal=diff(normal);

drbbb=diff(rbbb);

dpaced=diff(paced);

%step2: Squaring Operation

snormal=dnormal.*dnormal;

srbbb=drbbb.*drbbb;

spaced=dpaced.*dpaced;

%step3: Moving Window Integrator 

window=ones(1,54); %N=54 moving window

inormal=medfilt1(filter(window,1,snormal),10);

delay=ceil(length(window)/2);

inormal=inormal(delay:length(inormal));

irbbb=medfilt1(filter(window,1,srbbb),10);

delay=ceil(length(window)/2);

irbbb=irbbb(delay:length(irbbb));

ipaced=medfilt1(filter(window,1,spaced),10);

delay=ceil(length(window)/2);

ipaced=ipaced(delay:length(ipaced));

%%%%%optional plot%%%%%

%figure

%subplot(3,1,1);plot(inormal)

%title('After Pan Tompkins normal')

%subplot(3,1,2);plot(irbbb)

%title('After Pan Tompkins rbbb')

%subplot(3,1,3);plot(ipaced)

%title('After Pan Tompkins paced')

%Searching for QRS (location of R peaks)

max_n=max(inormal);

max_r=max(irbbb);

max_p=max(ipaced);

threshold=0.2;

%for record normal

poss_reg =inormal>(threshold*max_n); %finding sample positions that are higher than threshold level (R peaks)

left = find(diff([0 poss_reg])==1);%finding left (starting) points of R peaks

right = find(diff([poss_reg 0])==-1);%finding right (end) points of R peaks

 for i=1:length(left)

    [maxvalue_n(i) maxloc_n(i)]=max(normal(left(i):right(i)) ); %finding the max values between the starting and end points of peaks (which are the top points of R peaks)

    maxloc_n(i)=maxloc_n(i)-1+left(i); % adding offset to find exact position on the original signal

   end

%for record rbbb

poss_reg =irbbb>(threshold*max_r); 

left = find(diff([0 poss_reg])==1);

right = find(diff([poss_reg 0])==-1);

 for i=1:length(left)

    [maxvalue_r(i) maxloc_r(i)]=max(rbbb(left(i):right(i)) ); 

    maxloc_r(i)=maxloc_r(i)-1+left(i); 

    end

%for record paced

poss_reg =ipaced>(threshold*max_p); 

left = find(diff([0 poss_reg])==1);

right = find(diff([poss_reg 0])==-1);

 for i=1:length(left)

    [maxvalue_p(i) maxloc_p(i)]=max(paced(left(i):right(i)) ); 

    maxloc_p(i)=maxloc_p(i)-1+left(i); 

   end

%%%%optional plot%%%%

%maxposition_n=ones(1,21600)*(-max(normal)); %putting max value to R locations inorder to plot R locations

%maxposition_n(1,maxloc_n)=max(normal);

%maxposition_r=ones(1,21600)*(-max(rbbb)); 

%maxposition_r(1,maxloc_r)=max(rbbb); 

%maxposition_p=ones(1,21600)*(-max(paced)); 

%maxposition_p(1,maxloc_p)=max(paced);

%figure

%subplot(3,1,1);plot(normal)

%title('Signal with detected R waves');

%hold on

%plot(maxposition_n,'r')

%legend('Filtered Signal','R');

%subplot(3,1,2);plot(rbbb)

%hold on

%plot(maxposition_r,'r')

%subplot(3,1,3);plot(paced)

%hold on

%plot(maxposition_p,'r')

%removing negative values from signals (for better ANN input)

normal=normal+abs(min(normal));

rbbb=rbbb+abs(min(rbbb));

paced=paced+abs(min(paced));

%normalizing values between 0-1

normal=normal/max(normal);

rbbb=rbbb/max(rbbb);

paced=paced/max(paced);

%%%optional plot%%%

%figure

%subplot(3,1,1);plot(normal)

%title('After removing negatives and normalization(normal) ')

%subplot(3,1,2);plot(rbbb)

%title('After removing negatives and normalization(rbbb)')

%subplot(3,1,3);plot(paced)

%title('After removing negatives and normalization(paced)')

%figure

%%%%%%%%%%% Feature Extraction %%%%%%%%%%%%%%%%%%%

disp('Feature Extraction...')

%taking 200 sample values (features) between R-R waves representing that waveform 

for i=1:(length(maxloc_n)-1) %excluding last R wave (because there might be less than 200 samples after last R wave so we can exceed dimensions of the signal)

    for j=1:200

        feat_n(i,j)=normal(maxloc_n(i)+j);

    end

end

for i=1:(length(maxloc_r)-1)

    for j=1:200

        feat_r(i,j)=rbbb(maxloc_r(i)+j);

    end

end

for i=1:(length(maxloc_p)-1)

    for j=1:200

        feat_p(i,j)=paced(maxloc_p(i)+j);

    end

end

%combining and mixing feature vectors into one feature vector 

%order: normal, rbbb, paced, normal, rbbb, paced ...

i=1;

j=1;

a=size(feat_n);

a=a(:,1);

b=size(feat_r);

b=b(:,1);

c=size(feat_p);

c=c(:,1);

while i<a+b+c+1 %we are doing this procedure beacause each record contain different number of waveforms

    if j<a+1

    feature_vector(i,:)=feat_n(j,:); 

    else

        i=i-1;

    end

    if j<b+1

    feature_vector(i+1,:)=feat_r(j,:);

    else

        i=i-1;

    end

    if j<c+1

    feature_vector(i+2,:)=feat_p(j,:);

    else

        i=i-1;

    end

    i=i+3;

    j=j+1;

end

%defining the output classification vector for training feature vector

% 1 0 0 represents normal beat

% 0 1 0 represents rbbb beat

% 0 0 1 represents paced beat

i=1;

j=1;

a=size(feat_n);

a=a(:,1);

b=size(feat_r);

b=b(:,1);

c=size(feat_p);

c=c(:,1);

while i<a+b+c+1

    if j<a+1

    output_vector(i,:)=[1 0 0];

    else

        i=i-1;

    end

    if j<b+1

    output_vector(i+1,:)=[0 1 0];

    else

        i=i-1;

    end

    if j<c+1

    output_vector(i+2,:)=[0 0 1];

    else

        i=i-1;

    end

    i=i+3;

    j=j+1;

end

disp('Pre-processing finished and Feature and Output vectors are created.')







Signal pre-processing





QRS Detection





ANN Signal Classification





Feature Extraction





Data Acquisition





Left atrium





Right atrium





Right ventricle





Left ventricle





Designing and Training ANN





ANN Output Vector Formation





Feature Extraction





Signal pre-processing





QRS Detection





Training Data





Normalization





Trained ANN





Testing Data





Testing





Database





Signal Processing and Feature Extraction Function





Classification





amplitude





amplitude





amplitude





samples





amplitude





amplitude





amplitude





samples





amplitude





samples





amplitude





samples





Samples





Amplitude         (mV)





200 sample wide   window





200 features





Number of waveforms in that record (when applied to all 3 training records size will be 214)





class





1





1





200





214





1





214





Normal





RBB





Paced





samples





amplitude





amplitude





samples














i
85

