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ABSTRACT 
 
Nowadays, continuous glucose monitoring (CGM) device has been the most useful tool for 

diabetes disease control, a diabetes patient is able to display his/her glucose concentration 

every minute for several days. This allows better controll of the prevention of occurrences of 

hypoglycemia and hyperglycemia, which can be excited by many factors, including insulin 

dosage, bodily activity, passionate tension, nervous tension and quantity of food consumed. 

It is naturally desirable to avoid hypo/hyperglycemic cases before they occur and commercial 

devices exist that have an alarm to alert the patient for such cases. However, it is known that 

percentage of false alerts for those devices is still high and much is still needed to be done in 

order to improve that. 

The purpose of this thesis is to design a blood glucose prediction system that can be used as 

part of a CGM device. With the help of a Kalman filter, glucose concentration is first reduced 

of its random noise component, and a neural network is then used for prediction of glucose up 

to two hours. Finally, this system is thoroughly tested for accuracy against various external 

factors. It is shown that such factors as patient’s body weight, his/her exercise period and 

lifestyle may influence how well glucose concentration is predicted and therefore should be 

taken into account for early and accurate detection of hypo/hyperglycemic incidents. 
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ÖZET 
Günümüzde, sürekli glikoz izleme (CGM) cihazı diyabet hastalığının kontrolü için en yararlı 

bir araç olmuştur, bir diyabet hasta birkaç gün boyunca onun / glukoz konsantrasyonu her 

dakika takip edebiliyor. Bu insülin doz, fiziksel aktivite, duygusal stres ve gıda alımı da dahil 

olmak üzere birçok faktör tarafından heyecanlı olabilir hipoglisemi ve hiperglisemi, oluşunda 

önlenmesi daha iyi yönetimi sağlar. 

Onlar ortaya çıkar ve ticari cihazlar bu tür olaylar için hasta uyarmak için bir alarm olduğunu 

var önce hipo / hiperglisemik olayları önlemek için doğal olarak arzu edilir. Ancak, bu 

cihazlar için sahte uyarılar yüzdesi hala yüksek ve çok hala geliştirmek için yapılması gereken 

olduğu bilinmektedir. 

Bu tezin amacı, CGM cihazının bir parçası olarak kullanılabilecek bir kan şekeri tahmin 

sistemi tasarlamaktır. Bir Kalman filtresi yardımı ile, glukoz ilk olarak rastgele gürültü 

bileşeni azalır ve bir sinir ağı daha sonra iki saate kadar glukoz öngörülmesi için 

kullanılmaktadır. Son olarak, bu sistem iyice çeşitli dış etkenlere karşı hassasiyeti için test 

edilir. Bu hastanın vücut ağırlığı, onun / onu egzersiz süresi ve yaşam tarzı gibi faktörler 

glukoz konsantrasyonu tahmin ne kadar iyi etkileyebilir ve bu nedenle hipo / hiperglisemik 

bölüm erken ve doğru tespiti için dikkate alınması gerektiği gösterilmiştir. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction 

Diabetes mellitus acts as the most crucial metabolic disease in the recent years, as a result of 

awareness lack of health. Glucose monitoring is an invention that will enhance the life of 

million patients. A patient can employs the readings of glucose monitoring to change any 

wrong activity contributed in glucose trend variations. 

This research describes a system that shows the effect of a patient’s body weight, his/her 

exercise period and lifestyle on glucose level prediction. The system uses a hybrid technique 

which comprises of a Kalman filter to initially take out noise from glucose concentration, and 

a back propagation neural network to predict new glucose concentration level up to two hours.  

Chapter 2 is devoted to diabetes disease, and introduces continuous glucose monitoring 

(CGM) systems. 

Chapter 3 is about CGM sensors. Chapter 4 describes some important factors which affect the 

measurement process performance of a CGM sensor. 

Chapter 5 deals with the Kalman filter (KF) algorithm and how it can be tuned to denoise a 

signal.  

Chapter 6 discusses the artificial neural networks (ANNs) and their terminologies, and how 

they can implement a prediction task. 

Chapter 7explains the proposed network and gives details of its quantitative analysis.  

Finally, chapter 8 summarizes the conclusions obtained from the suggested analysis and the 

recommendations for the future.  
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1.2 Literature Review 

   An inclusive search has been done by the Direct Net study group [1], which analyzed the 

enhancement in continuous glucose monitoring sensors accuracy backing to modifying the 

timing and number of the standardization points. The conclusion of study results leads to that 

the timing of the calibration points is even more imperative than the number. Gianni 

Marachetti et al [2] suggested an amended proportional integral derivative (PID) control 

approach for blood glucose controll and seriously evaluated in silica using physiologic style 

of Hovorka. M. Stemmann et al [3], his report get a consideration that a standardization model 

could be obtained involving original blood glucose readings and debasing noise to the 

readings of the non-invasive glucose monitoring (NIGM) sensor. Using the supposed 

procedure, the influence of the original readings and the noise on the sensor readings could be 

analyzed. Furthermore, they found that standardization models different among many patients 

gives imminent into the variability of the non-invasive sensor between various patients. 

Additionally, the calibration model to determine the dynamics of the sensor according to the 

fundamental blood glucose concentration used in their work and degrading noise could be 

investigated. 

   It is the initial instant that Kalman filter (KF) used to practice CGM information while   

Knobbe and Bukingham [4] presented their work; anywise the idea of this research was to 

remake blood glucose concentration, and not to diminish the noise CGM information. Most 

beneficial estimation with aid of KF has been anticipated by Palerm etal [5], the goal of this 

method is to predict the glucose trend and revealing hypoglycemia. KuureKinsy et al [6], 

employed the double - ratio Kalman filter for true time CGM device in order to get better 

CGM standardization as possible as.  They utilized CGM sensor for prediction of glucose and 

its ratio -of-varying if an ordinary five minute sampling accounted of a noisy signal. The 

procedure gave an uncommon eight hour intervals essential glucose indicator samples the 

ability to the sensor gain and its varying ratio to be revised. This Kalman filter model 

accounts for ambiguity in both the CGM sensor and the essential glucose indicator. The 

research group tested this strategy on factitious and experimental concentrations, reinforcing 

its validity to straightforward one-point calibration. Facchinetti et al. [7], make an extensive 

challenge to denoise CGM sensor, their proposed method based on a Bayesian estimation 

designed and executed by kalman filter. The conclusion leads to the fact that a best possible 

filter, which satisfies the finest association between noise lessening and signal deformation, 
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can be achieved by getting the filter design problem within a Bayesian background. Andrea 

Facchinetti et al [8] thought about a new online tactic to reducing noise of CGM signals using 

a Kalman filter, whose unidentified parameters are modified in a certain individual by a 

arbitrarily centered silky typical exploiting data of a burn-in period. They compared results 

with those calculated by a moving-average (MA) filtering approach with permanent 

parameters presently in use in probably all mercantile CGM devices. Conclusion show that 

the new kalman filter approach behaves much better than MA. 

Mark B. Savage et al  [9] formed an artificial nervous network to figure out the CGM sensor 

output plus the system parameters, and show a relationship between them and blood glucose 

levels, by emerging a noninvasive blood glucose determining mean, depend on employment 

of the visual viaduct in the near – infrared zone. A back propagation neural (BPN) network 

utilized for obtaining blood glucose in diabetic patients by V. Ashok et al [10] research. The 

analysis recorded a non- invasive recordings of CGM concentrations based on reflected laser 

ray from the index finger. During the process the index finger is cited in the laser beam 

transceiver element, the reflected visual wave is altered into its corresponding electrical wave 

and the resulted wave is processed by the nervous network which introduces the results in the 

form of BG concentration. Diabetes catalog employed for declared rapprochements and they 

concluded that back propagation nervous network carries out more perfectly. Scott M. 

Pappada et al [11] utilized NeuroSolutions program to build various neural network styles 

with variable predictive screens of 50, 75, 100, 120, 150, and 180 minutes. They trained the 

network using patient information groups ranging from 11-17 patients and calculated the 

patient information not incorporated in neural network structure. The calculation of mean 

absolute difference percent on the whole and at hypoglycemic and hyperglycemic cases is the 

aim of this tactic.  

Facchinetti et al. [12] introduced again a novel technique for noise decline able to deal also 

with the personality varying of the signal to noise ratio(SNR).Their tactic depends on a 

Bayesian smoothing procedure that employs a statistically-based scale to get and continuously 

notify, filter parameters in real time. S.Shanthi and D.Kumar [13] took in their research the 

elimination of errors caused by various noise models in CGM device readings. They trains a 

feed forward neural network with Extended Kalman Filter (EKF) algorithm to negate the 

effects of white Gaussian, exponential and Laplace noise models in CGM time series. The 

nervous network elements renewed with respect to the signal to noise ratio of the entering 

signal. The plan is being tested in pretended data and twenty real patient’s data set. The 
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validity of the proposed system is analyzed with root mean square error (RMSE) as metric 

and has been compared with preceding approximations in terms of time delay and smoothness 

relative gain (SRG). They concluded that hopeful results can deals with the usage of CGM 

signal auxiliary to systems such as hypoglycemic alert generation and input to artificial 

pancreas. C. Zecchin et al. [14] aimed in their work to build up a new short- period glucose 

prediction system using a neural network that, as well to all past CGM readings, also uses 

details on carbohydrates intakes quantitatively described through a physiological model. 

Results on simulated data quantitatively show that the new algorithm outperforms other 

published algorithms.  

Panteleon and colleagues [15] advance the regulation of CGM with assist of a seventh order 

finite impulse response (FIR) filter by proposing that even if standardization with sensor 

current as the autonomous variable get a bias in the estimate of blood glucose, it is a more 

fitting regulation method as the decreasing of the mean absolute difference (MAD) between 

sensor present glucose reading and blood glucose had an initial anxiety. Keenan and 

associates [16] have studied the delays in CGMSGold and GuardianRT instruments, by a 

demonstration analysis of the data collection to determine a modern calibration algorithm 

utilized in the Paradigm Veo insulin pump. 

An integral based fitting and filtering algorithm for a CGM data developed by Chase et al. 

[17], but it requires that insulin dosages should be identified. Their research compares two 

metabolic models in terms of the predictive power. When a extended prediction window of 

more than five hours employed, glucose sensor predictions attempt to be more accurate in the 

collection from New Zealand while the new model tries to predict better in the collection from 

Denmark. For both models, outlying prediction errors are subjugated by single patients, 

particularly type 1 diabetic patients. CGM sensor predicted blood glucose concentrations are 

generally higher compared to new predicted values. As expected, the root mean square (RMS) 

prediction error increases with prediction interval for both models and collections.  

 

1.3 Aim of Thesis 

In this study, the first goal is to remove noise associated with a CGM device using a Kalman 

filter, as it works well with non-linear applications. The second goal is to use a back 

propagation neural network to implement a prediction system for the filtered glucose 

concentration.   

CHAPTER 2 
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DIABETES MELLITUS DISEASE 

 

2.1 Diabetes Mellitus 

In the present time, the foremost health problem in the world is Diabetes Mellitus. Newly 

developing countries suffering from the arising of this disease. All health organizations took 

on healthy lifestyle practices associated with the avoidance of diabetes specifically creating 

appreciation and balance diet, maintain ideal body weight and physical activities were 

encouraged. It is necessary also to remember people about the complications relating to 

diabetes, by offering a guide lines on the management of diabetes and by patient education. 

Diabetes is a disease in which the body stop make or not make enough the insulin hormone. 

Insulin is a hormone that is converts the blood glucose into energy needed for daily life. The 

effect of diabetes continues to be a dangerous problem in future, and this effect associated 

with both genetics and environmental factors. There are two major types of diabetes; type 1 

and type 2 [18]. 

 

2.2 Type 1& Type 2 Diabetes 

Diagnosis of Type 1 diabetes is customarily done in young adults and children. In type 1 

diabetes, the body does not make insulin. Human body needs insulin to be able benefit from 

glucose. Glucose sugar is the essential fuel for the body cells, and insulin transfers the sugar 

from the blood into the cells. The most general shape of diabetes is type 2 diabetes. In this 

kind, either the body does not make enough insulin or the cells ignored the insulin. If the 

blood saturated with glucose instead of going into cells, this leads to two problems: right 

absent, cells may be very hungry for energy and over time, increasing in blood glucose 

concentrations may harm eyes, kidneys, nerves or heart. 

When chronic hyperglycemia appears at the diabetic patient, increases the risk of micro 

vascular destruction, which causes retinopathy, nephropathy, and neuropathy. Hence, diabetes 

is the leading cause of blindness and visual weakness in adults in developed countries and is 

in charge for over one million lower limb amputations each year. A superior risk of macro 

vascular complications threats diabetic people, where they are two to four times more 

possibly to infect cardiovascular disease (CVD) than people without diabetes. Because of 
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these complications, diabetes represents the fourth major cause of global death by disease. 

Actually, obesity, in particular, central obesity, physical inactivity, and unhealthy dietary 

habits speeds up the infection of type 2 diabetes. Whereas the patient reveals diabetes quickly, 

this would be of great to avoid consequences. In fact at least 50% and 80% in some countries, 

of all people with diabetes are unaware of their condition and will stay unaware until 

complications appear.  

Recently clinical studies found that 80% of type 2 diabetes complications can be eliminated or 

delayed by premature appreciation in people at hazard of this disease, by varying their 

lifestyle and/or by curative methods. Smart data analysis, like continuous glucose monitoring 

sensor will help those people to enhance their conditions [19]. 

 

2.3 Continuous Glucose Monitoring System 

Newly, the progress that happens in continuous glucose monitoring (CGM) devices awarded   

new opportunities to manage glycemia of diabetic patients. The minimally invasive nature of 

modern CGM devices offers a mean to compute and record a patient's current glycemic state 

as possible as every minute. a closed-loop artificial pancreas is mere a Continuous glucose 

sensors coupled with continuous insulin infusion pumps. The adjustments of insulin infusion 

rates don by closed-loop control algorithms automatically to sustain blood glucose at a 

desired concentration (e.g. 4-7 mg/dl). Despite of the high performance of developed control 

algorithms; they repeatedly require a time-consuming task of presenting an appropriate model 

for control. Consequently, it is desirable to promote modern models of techniques to be a 

basis for controller execution and design, and this leads to a correctly prediction of glucose 

level for long prediction windows to recompense for the lag time between: under skin glucose 

and blood glucose concentration. By other word, the prediction time based on the comparative 

delay between the CGM system readings and the blood glucose value [20]. 

From the clinical point of view, a CGM system which has different chemical parameters is 

always necessary. The process of blood sampling in the intensive care units and analyzing in 

the laboratory takes long time and its be too slow in the critical cases. For that reason, the 

continuous monitoring of blood glucose can be used as an aid for the treatment of diabetes to 

improve the process of dose optimization in the beginning of the medical therapy. Patient can 

daily use a small wearable tool for the continuous glucose monitoring to decide about the 

required amount of insulin much more exactly and reduce the danger of hypoglycemic 



7 
 

innings. As a future step the CGM system could be attached with an proper insulin delivery 

system to form a miniaturized artificial pancreas. 

 
The CGM systems use a teeny sensor inserted subcutaneously to check glucose levels in 

tissue fluid. This sensor still in place for several days to a week and then should be changed. 

A transmitter sends information about glucose levels by means of radio waves from the sensor 

to a pager like wireless monitor. The patient must verify blood samples with a glucose meter 

to program the devices. Patients should corroborate glucose levels with a meter before making 

any change in treatment, because currently approved CGM devices are not as accurate and 

reliable as standard blood glucose meters, Figure 2.1 shows the complete system of glucose 

monitoring [19]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.1: Continuous glucose monitoring system [20] 
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CHAPTER 3 

CONTINUOUSE GLUCOSE MONITORING SENSOR 

 
3.1 Glucose Sensor 

Several new continuous glucose monitoring systems have been introduced. Some are 

invasive, such as enzymatic sensors – which can be fully implanted or transcutaneous – or the 

transcutaneous micro dialysis technique. Others are non – (or almost none) – invasive, such as 

the iontophoretic or the optical techniques. Figure 3.1 shows the internal structure of glucose 

sensor [21]. 

 

 

  

 

 

 

 

 

 

 

 

 

 

3.1.1 Fully Implanted Sensors 

    The biggest advantage of a fully implanted sensor that there is no material inserted 

through skin. Even if, there are many problems quiet remain, because the implant place is in 

a blood vessel (and this may be caused blood clotting) or in the under skin tissue. Although 

subcutaneous place is suitable because it is relatively easy to insert in, but there are many 

limitations about reliability and time of functioning of a sensor sited here. The future of the 

technique depends on these obstructions. For more convinced, most under skin ingrained 

glucose sensors are not able of monitoring glucose for more than few hours because of a 

foremost drift in electrical signal. The biological surroundings affected significantly in the 

difficulties faced with ingrained sensors because the separated sensors work correctly in 

Fig.3.1: Internal construction of CGM sensor [22] 
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laboratory. The recent study reports found that if an interfacing angiogenesis membrane 

added, to imitate the advance of capillaries around the sensor, this will briefed the early 

period of confused monitoring and enhanced sensor permanence. The meaning that it is 

possible to monitor glucose in subcutaneous tissue for long intervals of time: the mean 

lifetime of the sensors was ˃ 100 days [21]. 

 

3.1.2 Transcutaneous Devices 

    The design of a through skin electro enzymatic glucose sensor began before 20 years ago. 

The sensor contains oxidize within envelop was placed at the top of a needle – like electrode. 

In recent times, an electrode like this has been developed commercially introduced by 

minima: mass production has offered a very low-cost glucose sensor, which can be rooted for 

about 3 days in subcutaneous tissue. The sensor’s electrical signal drops specifically in the 

hours after implantation and drifts over the subsequent days, making calibration required 

several times a day with the patients over blood glucose. The monitor displays only the 

electrical current on its screen and the results can be interpreted only after all the recording 

has been transferred onto a computer. Therefore, in its present mode, the system is practical 

for a hyperglycemia holder secondarily interpreted by the physician, but new versions should 

make the blood concentration directly offered to the patient [21]. 

 

3.1.3. Non – Invasive Sensors  

A new technique called Iontophoresis, in which a low – density electric current is passed 

through the skin between an anode and a cathode. Principally, the movement of sodium ions 

toward the cathode carrying the excited current. Other molecules that didn’t charge such as 

glucose are transported by electro – osmosis. The quantity of extracted molecules at the 

cathode, calculated by a glucose oxides biosensor, is associated with blood glucose. After 

calibration, The GlucoWatch glucose oxides biosensor using finger stick blood glucose 

information and a three hours equilibration period, supply readings every twenty minutes. 

Adequate results from 40 – 400 mg/dl given by this watch, but causes some degree of local 

iteration and does not used throughout periods of increased sweating. The temperature and 

conductance of skin sensors eliminate these confusing factors, and about twenty per cent of all 

readings are passed over for these reasons. 

     Optical sensors use the opinion that fingertip represents the absorption pattern of near – 

infrared light. Highly structured mathematical models used to process the reflected light 
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signal to filter out the interferences from biological molecules, tissue structures and the 

optical properties, and to enlarge any aspects of the signal that may illustrate some correlation 

with blood glucose. This technique had a difficulty that it is require for glucose selectivity, 

and investigate is needed to analysis the complex in vivo factors that affect the optical 

measurement of blood glucose [21]. 
 
3.2 Advantages of Glucose Monitoring 

There are two major advantages identify the modern glucose sensors over old CGM 

techniques: they are fewer invasive and they permit monitoring of ambulatory patients. The 

most important benefit of CGM devices is that they supply information about the ambiguous 

variations of blood glucose level to patient every few minutes. The latest devices have a 

screen in which patient can see whether glucose levels are increasing or falling. There are 

some systems also have an alarm to let him know when his glucose reaches high or low 

levels. Others are able to display figures detecting glucose levels accumulated over an evident 

number of hours on its display screen. Resulted data on all devices can be downloaded to a 

computer for graphing and extra vital trend analysis. CGM device record patient blood 

glucose levels every few minutes so he/she can follow the direction of blood glucose varying. 

Depending on the trend – for example, whether the glucose is rising or falling – patient may 

decide to take action differently to the same number. It is possible to see trends in his/her 

glucose levels may inspire to him/her to change any wrong actions before glucose levels 

become awkward. 

Actually CGM systems are very active instrument to detect early the occurrence of an 

“transitional " problem such as hypoglycemia. Data analysis translates patient response to the 

problem and may guide him/her to prevent the problem from happening again. The device can 

aid in checking blood glucose concentrations overnight, over a part of a day, or over several 

days to see the superior management view. Patient may be able to display trends on the 

monitor itself or he/she may need to download the information onto a computer, based on the 

CGM device being used, and during that there are many questions start taking shape in patient 

mind. The questions like: What classically happens after meals? Does it depend on the kind of 

foods eaten, time of day, and timing of insulin dose? When hypoglycemia does occur? What 

effect does exercise, school, work, or dining out have on glucose levels?, are more usual. The 

answers of all these questions offered by CGM device and the results from device must be 

attached with written records of his/her daily routines and assignments by diabetes care 
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provider at the next appointment. So patient and device can decide what changes he/she may 

need to maintain blood glucose levels in the objective range [23]. 

 

3.3 Disadvantages of Glucose Sensor 

Not always the CGM devices can be useful for diabetes patients in all cases. The reading of 

device must be always confirmed with test results of the care provider of patient. Patient must 

change the sensor every 3 or 4 days and monitors must change from 6 months to about 2 

years, based on the manufacturer.  For this reason traditional finger stick blood glucose 

measuring is still required, and is still considered necessary for device calibration and to 

verify hypo- or hyperglycemia before any corrective action. Time lag is what are researchers 

discussed continuously, it raised between 5 and 20 minutes registered by the multi types of 

CGM devices because the blood glucose reading is drawn from under skin fluid and does not 

give the actual blood glucose concentration that is measured in standard finger stick blood 

samples drawn from capillary blood. The keyword to remember the advantage of the CGM 

devices is trend. Lag time is trivial when blood glucose levels are relatively steady – and these 

appear clearly on the CGM monitor. On the other hand, if the CGM monitor shows that the 

blood glucose level has been dropping over a short phase of time, a finger stick test is 

recommended to check for hypoglycemia. [23]. 

 

3.4. Noise Associated with Glucose Sensor 

   In all applications of CGM sensors, precision of glucose readings are affected by the 

presence of various causes of error, allied to device physics, chemistry, and electronics. The 

modern experiments deal with the most general approach by comparing of CGM readings and 

original blood glucose (BG) samples collected at the same time by laboratory techniques. The 

process of measuring has many difficulties, because CGM measurements are collected in a 

location different from the blood, i.e., under skin, and, as well, originals BG are available at 

least around 30-min sampling. Whenever sensor exactitude is concerned, it is well be sure that 

CGM time series are also corrupted by a random noise component which complicates signal 

elucidation and, particularly, may decline the performance of hypo/hyperglycemic alert 

generation systems as well as that of the controllers entrenched within artificial pancreas 

algorithms. Though, categorization of sensor random noise is relatively unfamiliar. [24]. 
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CHAPTER 4 

FACTORS AFFECTING CGM MEASUREMENT PROCESS 

 

4.1 Introduction 

The CGM devices utilized electrochemical sensors have a property of negligible invasive put 

under skin.  The CGM devices aid the diabetes people in recognizing that what happens with 

blood glucose and what cause its variation drift. Measurement of accuracy of CGM monitors 

is difficult for two initial reasons: 

1. CGMs calculate blood glucose variations ultimately by measuring the concentration of 

under skin glucose and still calibrated using self-monitoring to converge to blood 

glucose. 

2. CGM information point to an underlying process in time and consist of ordered-in-time 

highly inter dependent data points. 

 All factors have a physiological nature such as time lag, improper calibration, random noise, 

errors due to sensor physics, and chemistry affects the accuracy of CGM data. This damage 

the performance of CGM signals in hypoglycemic alert generation and control input to 

artificial pancreas. The standard reports of this technique have offers clear guidelines on how 

to use and present data in CGM devices. Different types of CGM devices are accessible 

nowadays. Sections below summarize the factors that affect on the measurement process of 

continuous glucose monitoring sensor [25]. 

 
4.1.1 Calibration 

All online CGM systems that available in market need to a calibration. Calibration is the 

process of transformation of signal generated by glucose sensor at certain time which is just a 

very small current (nA), into estimation of glucose concentration. [26]. Glucose concentration 

in this process measured using on or many self measured blood glucose SMBG samples. 

Calibration need to assess the inspiration of the number, accuracy, and temporal position of 

the reference SMBG samples, as well as by the trend of glucose concentration at their pick 

uptimes. The position of drawing a blood sample by CGM devices is under patient skin, and 

thus they measure interstitial glucose (IG) instead of blood glucose (BG) concentration, 

therefore calibration is required here. In real conditions of patient’s life style, e.g., after taking 



13 
 

food, IG and BG can be obviously different because of the existence of a BG-to-IG kinetics 

which has been described by a two- partition model [29],  

 

                     
)t(BG

t
g)t(IG

t
1)t(IG 

                                                                    
(4.1) 

 

where g represents the static gain of the BG-to-IG system (which considered equal to 1, i.e., 

in steady state, the concentration of glucose in both sites are equal) and t is a time constant 

(change from individual to other). Equation (4.1) represents a first order, linear, low-pass 

filter, and introduces a distortion and alleviation in amplitude and phase delay, which is 

readily evident in Figure 4.1 (top panel). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Fig. 4.1: Blood glucose levels (stars) vs. original CGM blood glucose levels 
(continuous line). [26] 
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This figure shows a comparison performed in a clinical study on a type 1 diabetic subject 

between a CGM blood glucose levels and blood glucose levels collected every 15 min and 

determined in laboratory. There are some of discrepancies are marked along the y-axis like 

those appears in the period starting at 18 hour until 25 hour, could not explicate because of 

BG-to-IG kinetics existence. Possibly, this difference is due to a change of behavior of the 

CGM sensor operation after its initial calibration. This make CGM profiles affected by 

calibration problems and have a crucial effects in several applications such as alert generation 

systems and artificial pancreas. For this reason, real time recalibration of CGM data is always 

required, and there is an intention to process sensor output (in mg/dl) by an algorithm can 

attached externally to the device in order to improve its precision. As a result of recalibration, 

the difference between BG and CGM samples should be more accurate depending on BG-to-

IG kinetics only. A linear regression model thought for an off-line application for many recent 

recalibration procedure,, which is briefed by equation: 

 
                            y = ax + b                                                                                               (4.2) 

 

Fig. 4.1Blood glucose levels (stars) vs. CGM blood glucose levels (blue line) recalibrated 
by the method of King et al. [26]. 
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where a and b are recalibration elements which are calculated by fitting them against a couple 

of BG and CGM pairs, i.e., y and x in Equation (4.2), correspondingly, collected at the same 

time. [27] 

 

4.1.2 Filtering  

The analysis of continuous glucose monitoring  signal can be demonstrated with the equation, 

 

                               yk = uk + vk                                                                                                                  (4.3) 

 

where yk is the measured CGM signal, uk is the unidentified glucose value at time ‘k’ and vk 

is the additive noise which due to measurement error. If the spectral characteristics of noise 

anticipated, low pass filtering can be used as the most natural nominee to denoise CGM 

signals. Since signal and noise spectra normally overlap, deduction of noise vk will cause 

distortion in the true signal uk and this a very vital problem with low pass filtering. Distortion 

and delay affecting the estimate of true signal.  The CGM time series observed with different 

sampling rates, thus there is a need process it by filters with varied parameters and filter 

optimization made on order and weights cannot be directly reused from sensor to another. 

Furthermore, filter parameters should be tuned according to the SNR of the time series, 

whereas the SNR higher, the filtering be more flat. Exact tuning of filter parameters in an 

automatic manner is a thorny problem for the basic filters. So far the filtering approaches have 

been tested with a consideration of white Gaussian noise alone in CGM sensor data. Despite 

these marvelous works by various research groups, attainment of 100% accurate prediction is 

still an arduous task. This clarifies the need of more intelligent filtering algorithms. For 

reliable real time monitoring of blood glucose, the filtering algorithm should account for: 

1. Short term errors due to motion artifacts. 

2. Random Noise and other noise types. 

3. Errors due to inadequate calibration. 

4. Long term errors caused by performance decline of sensor, bio fouling, inflammatory        

complications etc. 

5. Ambiguity in physiological elements [13]. 
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4.1.3 Prediction 

All ordinary on-line application of CGM sensors has the ability to reveal hypo/hyperglycemic 

cases. Some methods were proposed to generate alerts after the appearance of CGM sensors 

by few years in the market, in which the actual trend of the glucose concentration suggested 

that hypoglycemia was likely to take place within a short time. Projection methods are the 

other name for these techniques. The CGM sensors can be enhanced by generating hypo-

/hyper-alerts manufactured on the bases oft ahead-of-time prediction of glucose concentration, 

which can be determined from past CGM data and appropriate time-series models. The 

different prediction windows surely affect on the process [27]. 

 

4.1.4 Alert Generation 

The generation of alerts to match requirements and concepts is a very critical situation. All 

commercial systems that generate alerts comparing the actual glucose level and a pre-selected 

level. Nevertheless, the efficiency of these systems is divisive.  High percentage of false 

identifies those alerts particularly, although many applications of CGM sensors allowing 

enough sensitivity. Besides, these systems cannot avoid the event, because they generate the 

alert when the event occurs while its need to be generated before the happening of event. To 

overcome this limitation, some devices now perform a trend analysis, pointing to variation 

direction and rate of glucose, in order to provide the patient with an early caution. However, 

to the best of our consciousness, no large scale studies have quantitatively renowned in rival -

reviewed articles the benefit of this procedure. Because of   inaccurate CGM data due to 

calibration problems and always uncertain, generating alerts accurately is difficult. The 

mathematical background behind the generation of alerts should therefore be set on more 

solid foundation by assuming, in addition to a trivial threshold comparison, the uncertainty of 

the data, which should be estimated in real-time in a statistical setting to evaluate, a suitable 

(SNR) [27]. 
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CHAPTER 5 

ON KALMAN FILTERING 

 

5.1 What is Kalman Filter? 

  From the theoretical point of view Kalman filter is an recursively estimator for the linear-

quadratic problem, which is the problem of estimating the immediate state of any linear 

dynamic system troubled by white noise by employing information linearly associated to the 

state and also corrupted by white noise. The result is an estimator statistically most favorable 

and provides solution for any quadratic function of estimation error. From practical side, it 

has very large importance in the field of statistical estimation theory and possibly the greatest 

invention in the twentieth century. It has become very necessary in estimation problems as the 

silicon necessary in the makeup of many electronic systems. Kalman filter has many abrupt 

applications all of them used for the control of complex dynamic systems like aircraft, ships, 

spacecraft and all continuous manufacturing processes. This filter make available to deduce 

the absent information from roundabout (and noisy) information, because in applications of 

control theory it is not at any time probable or required to determine all wanted variables. It’s 

also used for predicting the anticipated future trajectories of dynamic systems which be vague 

to control, the examples are: flowing of rivers during flood, the paths of celestial bodies, or 

the prices of traded possessions [28]. 

The Kalman filter inspired its name from Rudolph E. Kalman who published in 1960 his 

famous paper clarifying a recursive answer about all discrete-data linear filtering problems. 

The researchers expanded when they dealing with the subject because of the great variety of 

applications in many fields from engineering to finance. All applications contain, in some 

way, stochastic estimation from noisy sensor measurements [29]. 

 

5.2 Why It’s Called a Filter? 

Generally, a filter is a physical device for removing unwanted fractions of mixtures. Firstly, a 

filter solved the problem of sorting out undesired components of gas-liquid-solid mixtures.  In 

the field of crystal radios and vacuum tubes, the item was applied to analog circuits that 
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“filter” electronic signals. There are different frequency components included in these signals, 

and these physical devices preferentially attenuate unwanted frequencies. This conception was 

extended to the isolation of “signals” from “noise,” both of which were characterized by their 

power spectral densities. In case of kalman filter it’s very unfamiliar that the term “filter” 

would apply to an estimator. Klomogrov and wiener employed this statistical specifications of 

their probability distributions in forming an optimal estimate of the signal, given the sum of 

the signal and noise.  

  The feature of Kalman filtering is explained in that it can used in the original ideal filtering  

of separation of the components of a mixture, and additionally it’s also solved the inversion 

problem, in which its possible to represent the determined variables as functions of the most 

interested variables. Essentially, it converse this functional rapport and predicts the 

autonomous variables as reversed functions of the dependent (measurable) variables. These 

variables of interest are also allowed to be dynamic that are only partially predictable [28]. 

 

5.3 The Mathematical Foundations  

 The essential subjects forming the mathematical basics for Kalman filtering theory are shown 

in figure 5.1. Despite this shows Kalman filtering as the top of pyramid, it is itself part of the 

basics of another punctuality control theory and a proper subset of statistical decision theory 

[28]. 
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Fig.5.1: Basic Concepts in Kalman Filtering [28] 
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5.4 What It Is Used For? 

 The essential use of kalman filter is almost exclusively for two purposes: estimation and 

analysis of estimator’s behavior, although its applications cover many fields. [28]. A whole 

characterization of the probability distribution uses estimation errors of The Kalman filter in 

evaluating the best filtering gains, and this probability distribution may be used in assessing 

its performance in term of “design parameters” of an estimation system, such as 

   Kinds of sensors to be used, 

 The various sensor types positions and directions according to the system to be 

estimated, 

 Sensors primitive noise characteristics, 

 The pre-filtering methods for soften sensor noise, 

 The various sensor types data sampling rates, and  

 The model simplification level to decrease implementation requirements. 

 

 

5.5 Kalman Filter Algorithm 

The description of steady-state Kalman filter can be briefed using the following equations: 

Measurement update 

                     ])1nn[xC]n[y(M]1nn[x]nn[x v  
                                                  

(5.1) 

 

Time update 

                              ]n[Bu]nn[xA]n1n[x                                                                     (5.2) 

For these equations: 

 ]1nn[x  is the predict of x[n] given past calculated value up to yv[n − 1] 

 ]nn[x is the updated predict based on the last calculated value yv[n] 

 M  is the innovation gain of Kalman filter 

 u[n] is the original signal or input to be predicted 

 yv[n] is the noisy signal which represents the last calculated value. 
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 A, B, and C are the matrices of mathematical model used.  

Given the current predict ]nn[x , the time update predicts the state value at the next sample 

(one-step-ahead predictor). The measurement update then adjusts this prediction based on the 

new value of yv[n + 1]. The correction term is a function of the innovation, that is, the 

discrepancy, 

                                                           ]n1n[xC]1n[y v    

between the measured and predicted values of y[n + 1]. The innovation gain M is chosen to 

minimize the steady-state covariance of the estimation error given the noise covariance 

 

          Q]n[w]n[wE T                       R]n[v]n[vE T                         0]n[v]n[wEN T   

 

The time and measurement update equations can be attached into one state-space model (the 

Kalman filter). 

                            ]1nn[x)MCI(A]n1n[x   +[B AM]  

                                   
]n[CMy]1nn[x)MCI(C]nn[y v   

This filter generates an optimal estimate of y[n]. Note that the filter state is ]1nn[x   [30]. 

 
5.6 How to Tune the Kalman Filter 

If Kalman Filter linked to the real system, then it must be tuned very well. The algorithm of 

this filter usually used two essential elements: process disorder (noise) auto-covariance Q 

and/or the measurement noise auto-covariance R. In real systems measurement noise mainly 

introduces noise into the estimates. If the value of Q is large, then stronger measurement-

based updating of the state estimates because a large Q inspire to the Kalman Filter that there 

are large variations in the real state variables (keep in mind that the process noise influences 

on the state variables). Consequently, the larger Q the larger Kalman Gain K and the stronger 

updating of the estimates. The key tuning rule is as follows: Select as large Q as possible 

without the state estimates becoming too noisy [28]. 
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5.7 The Impact of Kalman Filter on Technology  

From all features involved in estimation and control problems, at least, this has to be 

considered the greatest achievement in estimation theory of the twentieth century. There are 

many achievements would not have been possible without it. It was one of the enabling 

technologies for the Space Age, in particular. Without it the precise and efficient navigation 

of spacecraft through the solar system could not have been done. 

Kalman filtering has many standard uses have been employed in modern control systems, 

such as the tracking and navigation of all sorts of vehicles, and in predictive design of 

estimation and control systems. These technical activities were made possible by the 

introduction of the Kalman filter [28]. 

 
 

5.8 Advantages of Kalman Filter  

 The Kalman filter is executable in the shape of a program run with a digital computer, 

this mean that it can replace analog circuitry for estimation and control. The 

implementation may slower, but it is capable of much higher accuracy than had been 

authentic with analog filters. 

 The deterministic dynamics or the random processes that have stationary properties 

does not required with kalman filter, and many applications of importance involve no 

stationary stochastic processes. 

 It is well-matched with the state-space formulation of optimal controllers for dynamic 

systems, and it was able to prove useful dual properties of estimation and control for 

these systems. 

 The Kalman filter offers the required information for mathematically, statistically-

based decision methods for revealing and refusing irregular measurements [28]. 
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CHAPTER 6 

ARTIFICIAL NEURAL NETWORKS 

 
6.1 Introduction 

Neural networks are extrapolated from biological nervous systems. Its contain simple units 

working in parallel. As in nature, the network determined its function mostly by the relations 

between units. The concept of work is the obligation of a neural network to perform a 

particular task by regulating the values of the relations (weights) between units. Frequently 

neural networks are adjusted, or trained, so that a particular input leads to a specific target 

output. Such a situation is shown in figure 6.1 below. In figure below, the network is 

regulated; by comparing the output and the target, until the network output corresponds the 

target. Typically many such input/target pairs are used to train a network [31]. 

 

 

 

 

 

 

 

  

 

 

  

6.2 Definition of Artificial Neural Network 

Nowadays, an artificial neural network would be very desirable. Although computing these 

days is actually advanced, there are specific functions that a program run for a general 

microprocessor is unable to perform; nevertheless a software execution of a neural network 

Fig. 6.1:  Block diagram for neural network structure [31] 
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has many advantages and disadvantages [32]. 

Advantages 

 A neural network can achieve functions that a normal program cannot.  

 If any unit of the neural network fails, neural network can go on without any problem 

as parallel nature. 

 This network learns and does not need to be reprogrammed. 

 It can be implemented in any application and without any problem. 

Disadvantages 

 The training is necessary for neural network to operate. 

 A neural network structure is unlike the microprocessors structure, therefore needs to 

be emulated.  

 High processing time required for large neural networks. 

 

6.3 Artificial Neural Networks: Terminology 

Processing Unit: The artificial neural network (ANN) looked a very easy model if it’s 

compared with the biological neural network. It involves interlinked processing units. The 

processing unit has a broad frame contains a summing part go ahead by an output part. The 

summing part extradites N number of input values, multiplied each value by a weight, and 

counts a weighted sum. The result from summing part is called the activation value. A signal 

from the activation value produced by the output part. The weight’s sign for each input 

measures if the input is excitatory (positive weight) or inhibitory (negative weight). The input 

could be discrete or continuous data values, and by same the output also could be discrete or 

continuous. The input and output could also be deterministic or random or vague. 

Interconnections: Several processing units are interlinked in an artificial neural network with 

respect to some manner to accomplish a pattern recognition task. For this reason, the inputs to 

a processing unit may come from the outputs of other processing units, and/or from outside 

resources. Each unit gives its output to some units including it. The strength of the connection 

between the units affected on the amount of the output of one unit received by another unit, 

and it is translated in the weight value associated with the connecting link. If there are N units 
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in a given ANN, then at any instant of time each unit will have a single activation value and a 

single output value. The activation state of the network at that instant defined by the group of 

the N activations values of the same network. By the same manner, the group of the N output 

values of the network defines the output state of the network at that instant. Depending on the 

discrete or continuous nature of the activation and output values, the state of the network can 

be described by a discrete or continuous point in an N-dimensional space.  

Operation: In this stage, each unit of an ANN receives inputs from other linked units and/or 

from an outer resource. At a given instant of time the weighted sum of the inputs is evaluated. 

The actual output from the output function unit determined by the activation value, i.e, the 

output state of the unit. Sequentially, The activation and output states of other units 

determined by the output values and other external inputs. The activation values of all units 

determined by the activation dynamics and the activation state of a network as a function of 

time. The activation dynamics also determines the dynamics of output state of the network. 

The activation states group defines the activation state space of the network. The trajectory of 

the path of the states in the state space of the network determined by the activation dynamics. 

For a given network, defined by the units and their interlinking with suitable weights, the 

activation states determine the short term memory function of the network.  

Update: During the implementation, there are several choices accessible for both activation 

and synaptic dynamics. In particular, the updating of the output states of all units could be 

performed at the same time. In this case, the activations values of all units are counted at the 

same time. The new output state of the network is derived from the activation values. On the 

other hand, in an asynchronous update, unit is updated sequentially, receiving the present 

output state of the network each time. For each unit the activation value determines the output 

state either deterministically or stochastically. In reality, the activation dynamics including the 

update is much more complicated in a biological neural network than the simple models 

mentioned above. The ANN models along with the equations prevailing the activation and 

synaptic dynamics are designed according to the pattern recognition task to be carried out 

[32].  

 

6.4 Learning Rules 

 From all that mentioned above, weights are adapted by learning rules. The learning rules 

verify how “experiences” of a network make use of their influence on its future behavior. 
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Essentially, three types of learning rules are found: supervised, reinforcement, and non-

supervised or unsupervised. 

 

6.4.1 Supervised learning 

     The idiom supervised has two meaning in a very common and narrow technical sense. In 

the narrow technical sense supervised denotes that if for a certain input the analogous output 

is known, the network is to learn the charting from inputs to outputs. For all supervised 

learning enforcements, the real output must be identified and available to the learning 

algorithm. The job of the network is to know how the map is drawn. The amount of the error 

that the network produces at the output layer controlling the varying in weights values, the 

larger error will largely change the weights. The divergence between the output that the 

network produces (the real output) and the accurate output value (the required output), 

represents this error. This is why this method called error-correction learning. There are some 

examples for supervised method such as the perceptron learning rule, the delta rule, and the 

famous one is back propagation. Back-propagation is very forceful and there are many types 

of it. The energy for applications is giant, especially because such networks can be used as a 

common approximates. Such learning algorithms are used in the circumstance of feed forward 

networks. Back-propagation requires a multi-layer network. Many different areas should be a 

wide environment for these networks, whenever a problem can be transformed into one of 

classification. A foremost example is the recognition of handwritten zip codes which can be 

practical to automatically cataloging mail in a post office. The word supervised has also a 

non-technical use. In a non-technical sense it means that the learning, for example with 

children, is done with the present of supervision of a teacher who supplies them with some 

guidance. The word used here is very vague and hard to translate into concrete neural network 

algorithms [32]. 

 

6.4.2 Reinforcement learning 

   Reinforcement learning described by the following: when the teacher merely notifies a 

student whether his/her answer is right or not and leaves the task of knowing why this answer 

is right or wrong to the student. The credit assignment or blame assignment problem defined 

as the trouble of attributing the error to the right cause. It is fundamental to many learning 

theories. For the neural network literature there is also a more technical meaning of the term 

(reinforcement learning). It is used to appoint learning where a particular behavior is to be 
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reinforced. For example, the robot receives a positive support signal if the result was good, no 

support or a negative strengthening signal if it was bad. If the robot has controlled to raise up 

an object, has found its way through a table, or if it has managed to shoot the ball into the 

goal, it will get a positive reinforcement. Reinforcement learning is not attached to neural 

networks: there are many reinforcement learning algorithms in the field of machine learning 

in general. [32] 

 

 

6.4.3 Unsupervised learning 

     Unsupervised learning has two categories of learning rules: Hebbian learning and 

competitive learning. Hebbian learning establishes connections where, if two nodes are active 

at the same time (or within some time window) the connection between them is strengthened. 

Hebbian learning has become well-liked because, though it is not very vigorous as a learning 

mechanism, it requires only local information and it is reasonable biologically. Hebbian 

learning is very much associated to point -time- dependant elasticity, where the change of the 

synaptic force depends on the precise timing of the pre-synaptic and post-synaptic activity of 

the neuron. Hebbian learning is not used in industrial applications. Competitive learning, in 

particular Kohonen networks is used to locate clusters in information sets. Kohonen networks 

also have a certain biological plausibility. In addition, they have many industrial usages [32] 

 

 

6.5 Back Propagation Algorithm 

There is a large number of Neural Network types have been discovered over the years. In fact, 

because Neural Nets are so broadly revised by Computer Scientists, Electronic Engineers, 

Biologists and Psychologists, they are have many distinctive names. They are called Artificial 

Neural Networks (ANNs), Connectionism or Connectionist Models, Multi-layer Perceptrons 

(MLPs) and Parallel Distributed Processing (PDP). On the other hand, despite all the different 

terms and different types, there are a small group of “classic” networks which are commonly 

used and on which many others are based. These are: Back Propagation, Hopfield Networks, 

Competitive Networks and networks using Spiky Neurons. There are many variations even on 

these topics [33]. 
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6.6 Implementation of Back Propagation Algorithm  

The most ideal Neural Net is Back Propagation network. Actually, Back Propagation is the 

keeping fit or educating algorithm rather than the network itself. The network used is 

generally of the simple type shown in figure 6.2. These are called Feed-Forward Networks or 

irregularly Multi-Layer Perceptrons (MLPs).  

 

 

 

 

 

 

 

 

 

 

 

 

The learning of a Back Propagation network done by example. The algorithm takes the 

examples of the desired task from the network to do and it changes the network’s weights so 

that, when training is finished, it will give the required output for a particular input. It is 

perfect for simple Pattern Recognition and Mapping Tasks. As said before, to train the 

network there is a need to give it examples of the desired object (called the Target) for a 

particular input as shown in Figure 6.3. 

 

 

 

 

 

 
Fig. 6.3: Back propagation training Set [35] 

For this particular 
Input pattern to 
the network, we 
would like to get 

this output. 

Inputs 

Targets 

(the output you want for 
each pattern) 

01 10 11 

Fig. 6.2:Multi-layer back propagation neural network [34] 
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If first prototype assumed to the network, we want the output to be 0 1 as shown in figure 6.3, 

(a black pixel is noted by 1 and a white by 0 as in the previous examples). The input and its 

corresponding target are called a Training Pair. 

 

 

 

 

 

 

 

 

 

 

 

From the first time that the network is trained, it will offer the desired output for any of the 

input prototypes. The network is first excited by setting up all its weights to be small random 

numbers (between –1 and +1). Next, the input pattern will be available and the output is got 

(this is called the forward pass). The calculation gives an output which is totally different than 

what is desired (the target), since all the weights are random. After that the error of each 

neuron can be calculated, which is essentially: Target – Actual Output. This error is then used 

mathematically to vary the weights in a manner that the error will be very small. In other 

words, the output of each neuron will converge to its target (this part is called the reverse 

pass). The process is recurring again and again until the error is being minimal [35]. 

 

 

Fig. 6.4: Applying a training pair to a network [35] 
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6.7. The Activation Function 

     The input to the neuron is calculated as the weighted sum given by equation (6.1), 

                           


r

1
iiWQn
                                                                                      

(6.1)  

In Figure 6.5, F is the activation function, which has a sigmoid form.  

 

 

 

 

 

 

 

 

 The ease of the sigmoid function derivative explains its familiarity and use as an activation 

function in training algorithms [36]. Figure 6.6 shows an artificial neuron. With a sigmoid 

activation function, the output of the neuron is given by equation (6.2) and equation (6.3), 

                          Out = F(n)                                                         (6.2) 

                          )e1(
1)n(F n

                                                                    (6.3) 

 

 

 

 

  

Fig. 6.5: Sigmoid function [37] 
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The derivative of the sigmoid function can be obtained as follows equation (6.4): 

                              ))(1(*)()1(*)/)(( nFnFoutoutdnndf                                            (6.4) 

 

6.8 Feed Forward Calculation 

It is very necessary to modify the previous input data to training. The input data values within 

the input layer must be extent from 0 to 1. The feed forward computations have many stages 

can be described according to the layers. The indexes i, h and j are used for input, hidden and 

output respectively [36]. 

 

6.8.1 Input Layer (i) 

Figure 6.7 shows a neuron in the input layer. The output of each input layer neuron is exactly 

equal to the modified input. 

                           input layer output = Oi = Ii                               (6.5) 

 

  

 

 

 

Fig. 6.6:  Artificial neuron [36] 

Fig. 6.7:An input layer neuron [36] 
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6.8.2 Hidden Layer (h) 

Figure 6.8 illustrates a neuron in the hidden layer. The hidden layer neuron received a signal 

is equal to the sum of all the outputs of the input layer neurons multiplied by their associated 

connection weights, as in equation (6.6), 

 

                           hidden layer input = Ih = 
i

ihiOW
                                                                       

(6.6) 

The sigmoid function used to calculate each output of a hidden neuron. This is described in 

equation (6.7), 

 

                        hidden layer output =
)Iexp(1

1O
h

h 
                                 (6.7) 

 

 

 

 

 

6.8.3 Output Layer (j) 

A neuron in the output layer can be demonstrated in figure 6.9. A neuron in the output layer 

received  signal is equal to the sum of all the outputs of the hidden layer neurons multiplied 

by their related connection weights plus the bias weights at each neuron, as in equation (6.8), 

                          output layer input =  Ij = 
h

hjh OW                                                      (6.8) 

Again the sigmoid function used to determines each output of an output neuron in the output 

layer. [36] This is described in equation (5.9), 

 

Hidden 

neuron 
Input  Ih 

Output Oh 

Fig. 6.8:A hidden layer neuron [36] 
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                          output layer output = Oj = 
)Iexp(1

1

j
                              (6.9) 

 

 

 

 

 

6.9 Error Back Propagation Calculation 

Exclusively, during the training of the neural network, error back propagation calculations are 

made. The crucial elements in these calculations are the learning rate, error signal, weight 

adjustment, and momentum factor [38]. 

 

6.9.1 Signal Error 

The feed forward output state calculation is joined with backward error propagation and 

weight adjustment calculations, throughout the network training, representing the network's 

learning. It’s very important to the concept of training that a neural network can designate the 

network error. Error term affected strongly by the difference between the output values an 

output neuron is assumed to have, called the target value Tj, and the value it actually has as a 

result of the feed forward calculations, Oj. The error term represents an index of how well a 

network is training on a particular training set [38]. Equation (6.10) demonstrates the 

definitions for the error. The subscript p denotes what the value is for a given pattern. 

    



jr

1jPE (TPj-Opj)2                                                                          (6.10) 

Output 

neuron 
Input Ij Output Oj 

Fig. 6.9: An output layer neuron [36] 
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Reduction of this error over all training patterns represents the goal of the training process. 

It’s concluded that the output of a neuron in the output layer is a function of its input, or Oj = 

f(Ij). The first derivative of this function, f '(Ij) is a central element in error back propagation. 

For output layer neurons, the error signal is a quantity represented by Δj which is defined in 

equation (6.11), 

                          Δj = f '(Ij) (Tj – Oj) = (Tj – Oj)Oj (1 – Oj )                           (6.11) 

 

This error value is propagated back and suitable weight regulated. This is done by 

accumulating the Δ's for each neuron for the entire training set, add them, and propagating 

back the error based on the huge total Δ. This is called bunch (epoch) training [39]. 

 

6.9.2 Learning Rate and Momentum Factor 

    The learning ability of the neural network impacted with two essential parameters. The first 

parameter is the learning coefficient  which identifies the learning force of a neural network, 

and the second is the momentum factor  which identifies the speed at which the neural 

network learns. Those parameters can be attuned to a certain value in order to prevent the 

neural network from local energy minima occurrence. Both values can range between 0 and 1 

[40]. Each initial value has a weight, thus a random initialization is usually performed. Weight 

adjustment is achieved in stages, starting at the end of the feed forward phase, and going 

backward to the inputs of the hidden layer [41]. 

 

6.9.3 Output Layer Weights Update 

The weights that feed the output layer (Wjh) are updated using equation (6.12). This also 

involves the bias weights at the output layer neurons. Anyway, in order to stay away from the 

risk of the neural network falling in local minima, the momentum term can be added as in 

equation (6.13), 

                        Wjh (new) = Wjh (old) +  ΔjOh                             (6.12) 

                        Wjh (new) = Wjh (old) +  ΔjOh +  [Wjh (old)]                                 (6.13)  
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where Wjh (old) stands for the previous weight change [41]. 

 

6.9.4 Hidden Layer Weights Update 

The identification of error term for an output layer is illustrated in equation (6.11). For the 

hidden layer, it is not easy to identify the error term. However, the error term for a hidden 

neuron is described as in equation (6.14) and, subsequently, in equation (6.15) [41]. 

                            Δh = f '( Ih)                                                       (6.14) 

                            Δh = Oh (1 – Oh )                                          (6.15) 

 

The weight adjustments for the linking feeding the hidden layer from the input layer are now 

found in a similar way to those feeding the output layer [41]. These regulations are calculated 

using equation (6.17), 

                          Whi (new) = Whi (old) +  ΔhOi +  [Whi (old)]                          (6.17) 

The bias weights at the hidden layer neurons are updated, by the same manner, using equation 

(6.17). 

 

6.10 Prediction Using Neural Network 

Predicting is expecting about something that will occur, often based on information from past 

and from present state. There are many solutions for problem of prediction every day with 

various degrees of success. For example weather, harvest, energy consumption, earthquakes, 

and a lot of other substance needs to be predicted. In the era of technology predictable 

parameters of a system can be often articulated and evaluated using equations, prediction is 

then simply the evaluation or solution of such equations. In spite of this, practically we stand 

facing problems where such a description would be too difficult or not possible at all. In 

addition, the computation solution by this method could be very complicated, and sometimes 

the matter solved after the event to be predicted happened. All various approximations are 

available here, for example regression of the dependency of the predicted variable on other 
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events that is then extrapolated to the future. Finding such approximation can be also difficult. 

This approach generally means creating the model of the predicted event. 

Various levels of success satisfied with neural networks prediction. The advantage of those 

networks involves automatic learning of dependencies only from determined data without any 

need to add extra data. Using the historical data, the neural network could be trained with the 

hope that it will realize hidden dependencies and that it will be able to use them for predicting 

into future. Neural network not just a black box that is able to learn something. It is possible 

to predict various types of data, however in the rest of thesis focusing on predicting of time 

series. Time series shows the development of a value in time. The value can be influenced by 

also other factors than just time. Time series represents discrete history of a value and from a 

continuous function it can be obtained using sampling [42]. 

 

6.11 Time Series  

A sequence of vectors, x(t), t = 0,1,… , where t represents beyond time can characterized the 

time series is. It considered here only sequences of scalars for simplicity, although the 

methods assumed specify easily to vector series. From the theoretical side, x may be a value 

which varies continuously with, any physical quantity. In practice, x will be dividing into 

specimens to result a series of distinct data points, equally spaced in time for any given 

physical system. The ratio at which specimens are taken dictates the maximum determination 

of the model; nevertheless, it is not truth usually that the model with the highest resolution has 

the best predictive power; therefore superior results may be obtained by employing only every 

nth point in the series [42]. 

Analysis in neural networks has focused on forecasting future developments of the time series 

from values of x up to the present time. Officially this can be stated as: for any function f: ℜN 

→ ℜ such as to obtain an estimate of x at time t + d, from the N time steps back from time t, 

so that: 

                            x(t + d) = f (x(t), x(t −1),K, x(t − N +1)) 

                            x(t + d) = f (y(t))  



36 
 

where y(t) is the N-array vector of delayed x values. Usually d will be one, so that f will be 

forecasting the next value of x. 

6.12 Neural Network Predictors 

The encouragement of the function ƒ using any feed forward function approaching neural 

network framework, such as, a standard multi layer preceptons MLP, an radial basis function 

RBF architecture, or a Cascade correlation model, is the essential neural network method of 

carrying out time series prediction [8], using a set of N-clusters as inputs and a single output 

as the target value of the network. The sliding window technique is the name of this method 

as the N-cluster input slides over the full training set. Figure 6.10 shows the basic structure. 

 

 

 

 

 

 

 

 

 

As noted in this technique it can be seen as an extension of auto-regressive time series 

modeling, in which the function ƒ is supposed to be a linear mixture of a permanent number 

of previous series values. Such a bound does not apply with the non-linear neural network 

approach as such networks are general function approximators [42]. 

 

 

 

 

X(t+1) 

Hidden Unites 

X(t-2) X(t-1) X(t) 

Fig.6.10 The essential method of carrying out time series prediction using 
a sliding window of, in this example, three time steps [42] 
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CHAPTER 7 

DESIGN AND ANALYSIS OF GLUCOSE 

 CONCENTRATION PREDICTION SYSTEM 

 

7.1 The Aim 

The aim of this thesis is to design a system for glucose concentration prediction of diabetic 

patients and analyze the performance of it against different factors. Data is taken from 

GlucoSim software [43] (figure 7.1), which simulates a continuous glucose monitoring 

(CGM) system, and is fed to a new network comprising of a Kalman filter and an artificial 

neural network (figure 7.2). In this approach, Kalman filter is used to denoise the CGM sensor 

data, and artificial neural network model acts as a predictor. Using the back propagation 

algorithm and two predictive windows, neural network predicts glucose values up to two 

hours. This helps avoid hypo/hyperglycemia, which can lead to serious complications.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig 7.1:GlucoSim software [43] 
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7.2. Denoising of CGM Sensor Data Using a Kalman Filter 

Errors can be vital in several practical enforcements, as an example, in both open- and closed-

loop control algorithms if the numerical properties of CGM sensor are known. Regrettably, 

layout the accuracy of CGM sensors is very difficult for both empirical and methodological 

causes [24]. There are many noise models will be associated with the time series of this 

device. It must be noted that the accuracy of CGM data affected by several sources of error. In 

particular, defective calibration can causes an error component usually. Other resources of 

error are belonged to the sensor chemistry, physics, and electronics. As a final point, the 

random noise component is also corrupting the CGM signal, which overcomes the original 

signal at high frequency. In this thesis, we will deal with the reduction of this last component. 

To enhance the quality of the signal and diminish the random noise component of the error, 

it’s better to use the digital filtering techniques. In more strict terms, if following equation is 

considered, 

                        y(t) = u(t) + v(t)                                                                                    (7.1) 

where y(t) is the glucose concentration measured at time t, u(t) is the original, mysterious, 

glucose concentration, and v(t) is the random noise affecting it, which is assumed to be 

additive. The purpose of filtering is to get back u(t) from y(t). If the predicted spectral 

specifications of noise known, for example, noise is white, then (causal) low-pass filtering 

represents the most natural entrant to separate signal from noise in online applications. Since 

signal and noise spectra normally overlap, so there is a major problem in low-pass filtering in 

Fig. 7.2: Block diagram of suggested system 
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difficulty to eradicate the random noise v(t) from the determined signal y(t) without distorting 

the true signal u(t).In particular, delay is the result of distortion and affecting the estimated 

u(t) with respect to the original u(t); the more the filtering, the larger the delay. For this 

reason, many version of CGM data could be ineffective in practice especially for the 

generation of timely hypo alerts, because all having a constantly delayed, even if less noisy. 

The clinically point of view is thus the establishment of a conciliation between the regularity 

of estimated u(t) and its delay with respect to the true u(t).This thesis therefore suggests noise 

removal using a Kalman filter [8]. 

Figure 7.3 shows a patient’s 12 hour glucose profile simulated by GlucoSim software. A zero-

mean white Gaussian noise sequence has then been added to this reference time-series and 

resulting signal is filtered using a Kalman filter. Figures 7.4-7.6 show the glucose 

concentration of this patient after it has been filtered by a Kalman filter having three different 

sets of variances (Q=1 and R=1, Q=3.5 and R=2.5, Q=5 and R=5). Results show that the filter 

can be tuned by adjusting the parameters Q and R. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.3: Simulated CGM time-series 
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Fig. 7.4: Filtered CGM time-series (Q=1 and R=1) 

Fig. 7.5: Filtered CGM time-series (Q=3.5 and R=2.5) 
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Table 7.1 shows signal-to-noise ratio (SNR) values in decibels of five patients’ noisy glucose 

concentrations before and after they have been filtered. Results are tabulated for three 

different sets of filter Q and R values. As expected, the SNR values have increased after 

filtering. 

 

 

Patient 

No. 

Q=1, R=1 Q=3.5, R=2.5 Q=5, R=5 

SNRbefore SNRafter SNRbefore SNRafter SNRbefore SNRafter 

1 3.50 dB 15.31 dB 2.83 dB 17.72 dB 3.51 dB 15.32 dB 

2 3.53 dB 15.50 dB 2.81 dB 18.14 dB 3.51 dB 15.53 dB 

3 3.54 dB 15.61 dB 2.82 dB 18.33 dB 3.52 dB 15.64 dB 

4 3.51 dB 15.22 dB 2.80 dB 17.60 dB 3.54 dB 15.23 dB 

5 3.52 dB 15.71 dB 2.81 dB 18.41 dB 3.53 dB 15.74 dB 

 

Fig. 7.6: Filtered CGM time-series (Q=5 and R=5) 

Table 7.1 Signal-to-Noise ratio (SNR) of five noisy CGM time-series before and after 
Kalman filtering 
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7.3 Prediction of Glucose Concentration Using a Neural Network 

Time series forecasters used by neural networks have been broadly used as: most often these 

are feed-forward networks which utilize a sliding window over the input sequence. Typical 

examples of this approach are market predictions, meteorological and network traffic 

forecasting [42]. 

The neural network developed in this thesis was time-lagged feed-forward neural network. It 

is categorized as multilayer perceptrons that have memory units to store previous values of 

data within the network. The network was trained using a method known as the back 

propagation of errors called Back Propagation Algorithm (BPA). The neural network was 

configured to stop training after 1000 epochs or if the mean squared error was less than 0.1 

[11]. 

Figure 7.7 shows the internal structure of proposed neural network. In this network, the input 

is the filtered CGM data. Input layer contains input neurons equal to 720 glucose levels for 

each patient, hidden layer contains 10 neurons, and output layer represents the predicted CGM 

data that also includes 720 new glucose levels after prediction.  

 

 

 

 

 

 

 

 

 

 Fig. 7.7: Structure of neural network predictor  
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The model of neural network used here was developed with predictive windows equal to 60 

and 120 minutes, which is very important for diabetes patients, specifically after meals and 

insulin dosages. Each glucose value was collected every minute; therefore during a 60 minute 

predictive window, the neural network was configured to predict 60 CGM values. During the 

process the dataset is divided to three groups: 70% of data is used for training, 15% for 

validation and 15% for testing the neural network. Figure 7.8 shows predicted data for CGM 

time-series of figure 7.3 (prediction length is 60 minutes). 

 

 

7.4 Quantitative Analyses 

This section presents the quantitative analyses of the proposed system. Data used here are 25 

sets of simulated blood glucose concentrations for 25 patients with various weights (25, 35, 

45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 115, 120, 125, 130, 135,140, 145, 150, 

155, 160kilograms).For all analyses, simulation period is equal to 720 minutes (or 12 hours) 

and Kalman filter Q and R values are equal to 1. 
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Fig. 7.8: Predicted CGM time-series 
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7.4.1 Methods of Performance Analysis 

Five methods are implemented to analyze the accuracy and validity of the developed system. 

The aim of all methods is the valuation of the mean absolute difference percent (MAD%) of 

the neural networks predictive abilities. Before, absolute difference percent (AD%) of each 

patient must be determined. Equation 7.2 is utilized for calculating the absolute difference 

percent (AD%) between each neural network’s predicted value and the corresponding actual 

CGM value. In the analysis of this thesis a low MAD% values desired [11]. 

          AD%(t)= 100
)t(CGM

)t(CGM)t(NNet

actual

actualpredict



%                                                 (7.2) 

where AD%(t) is the calculated AD%  at time t, NNetpredict(t) is the predicted neural network 

glucose value at time t, CGMactual(t) is the actual CGM data point at time t, and N is the 

number of data points. Equation 7.3 is used to calculate the MAD%, which is defined as the 

mean of all obtained AD% values. 

                   MAD%=
N

)t%(AD
N

1i

                                                                                 (7.3) 

 

7.4.2 Effect of Denoising 

This method compares predicted CGM glucose concentrations of the suggested system with 

those by a system that contains neural network only. For each system, the neural network is 

first trained using entire dataset of 25 patients and then MAD% value of each patient is 

determined. Table 7.2 shows the average MAD% values for entire 25 patients. It can be seen 

that the proposed system has lower average MAD% values for both prediction windows. This 

emphasizes the importance of having a filter in such a system. 
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7.4.3 Variation of Training Set and Prediction Window Length  

This method involves analysis of the suggested system with variable training set and 

prediction window lengths. In this analysis, training sets using 10 to 24 patients are used for 

the neural network with predictive windows of 60 and 120 minutes. Performance of neural 

network is evaluated using diabetes data for patients who are not included in the training data. 

Average MAD% values of these patients are tabulated in table 7.3.  

 

No. of Patients in 

a Training Set 

Prediction Window of60 min. Prediction Window of120 min. 

MADavg% MADavg% 

10 24.02 40.14 

12 25.10 37.43 

14 27.86 38.09 

16 27.95 38.31 

18 27.17 36.60 

20 26.88 35.65 

23 27.50 34.45 

24 27.42 33.86 

 

It is observed that average MAD% values of patients are relatively constant for different 

training sets when prediction window is smaller (the fact that increasing the training data 

increases the neural network performance has not been observed here). However, as the 

prediction window is increased, there is an increase in all average MAD% values, i.e. 

System 
Prediction Window of60 min. Prediction Window of120 min. 

MADavg% MADavg% 

NN with KF 29.10 33.08 

NN 55.19 58.78 

Table 7.3 Effects of varying training set and predictive window length  

Table 7.2 Effect of denoising 
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accuracy of the system decreases, but higher number of patients in a training set seems to 

have increased the accuracy a bit. 

7.4.4. Effect of Body Weight 

It is known that weight can influence diabetes and diabetes can influence weight. Hence, it 

becomes important to control body weight fluctuations for people with diabetes. This analysis 

aims to check if the thesis system is suitable for blood glucose concentration prediction of 

various groups of patients with different body weights. Glucose concentration data of 25 

patients are first used to train the neural network and then four groups of patients are used to 

check the system’s accuracy: Group 1 contains 25 patients of average weight of 96.60 

kilograms; Group 2 represents 8 patients with an average weight of 50.63 kilograms (i.e. light 

weight patients); Group 3 contains 9 patients with an average weight of 96.67 kilograms (i.e. 

medium weight patients) and Group 4 contains 8 patients with an average weight of 142.50 

kilograms (i.e. heavy weight patients). Table 7.4 lists the average MAD% results of this 

analysis. 

 

Patients Group 
Prediction Window of60 min. Prediction Window of120 min. 

MADavg% MADavg% 

Group 1 29.10 33.08 

Group 2 25.52 39.16 

Group 3 24.31 36.70 

Group 4 23.89 30.08 

 

    It can be seen from the results of groups 2 to 4 that when prediction window is smaller, 

patients’ weights almost have no effect on the accuracy of the system. However, increasing 

the number of patients tested has decreased the accuracy (as in group 1). This proves that the 

system may not be tested on high number of patients after it has been trained. On the other 

hand, the accuracy has decreased, as expected, for the higher prediction window. No solid 

conclusion can be drawn from the results here as far as the effect of body weight is concerned.  

 

Table 7.4 Effect of patients’ weight in a training Set 
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7.4.5 Effect of Exercise  

Exercise is a key to life time management of diabetes. This method analyzes the impact of 

exercise on glucose concentration prediction. Patients in group 3 of the previous analysis 

(section 7.4.4) are now exercised for periods of 30, 60, and 90 minutes. The neural network is 

trained with the dataset of 25 patients and analysis results of patients in group 3 for 60 minute 

prediction window are given in table 7.5. 

 

Patient Group Duration of Exercise MADavg% 

Group 3 

30 min. 24.04 

60 min. 38.68 

90 min. 42.45 
 

It is observed that increasing the exercise period dramatically decreases the accuracy of this 

system due to a temporary sharp decrease of patients’ blood glucose concentrations during 

exercising. 

 

7.4.6. Effects of Lifestyle of a Patient 

Hypoglycemia can suddenly occur in people using insulin if too little food is eaten, if a meal 

is delayed or in the case of too much exercise. Hyperglycemia can occur when too much food 

is eaten or not enough insulin is taken. Therefore, how a patient lives his/her life is often 

crucial in keeping diabetes under control. It is hence the intent of this analysis to see the 

effects of a combination of factors such as meal intake, exercise and insulin injection on the 

accuracy of the performance of the suggested system. The neural network is, again, trained 

with the dataset of 25 patients and is tested on a single patient. Table 7.6 shows the results. 

 

 

 

 

Table 7.5 Effect of exercise  



48 
 

 

 

 

 

 

Average MAD% values are consistent here, except when the patient has exercised as well as 

consumed more food. In that case, the accuracy has decreased due possibly to sudden 

hypo/hyperglycemic events.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Action MADavg% 
Increase Meal Intake 26.23 

Exercise and Increase Meal Intake 44.42 

Increase Insulin Dosage 25.91 

Exercise and Increase Insulin Dosage 16.05 

Table 7.6 Effects of a patient’s lifestyle 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

 

8.1 Conclusions 

 Continuous Glucose Monitoring (CGM) is very much necessary for avoidance of diabetic 

complications. Perfect filtering of various types of noise distributions in CGM data enables it 

to be employed for further processing like hypo/hyperglycemic alert generation and as control 

input to closed loop artificial pancreas. Conventional filtering methods are not adequate to 

chase the variations of physiological signal neglecting the noise effects. The proposed work 

comprising of an intelligent artificial neural network and a Kalman filter algorithm has been 

proved to be successful in denoising the CGM signal with simulated data sets.  

Results prove that signal to noise ratio (SNR) of the filtered CGM signal changes with 

Kalman filter covariances Q and R, and therefore their values must be tuned well to give the 

best results. Furthermore, prediction results show that there is an increase in MAD% values 

whenever there is an increase in prediction window length. This indicates that it is better for 

patients to use small prediction windows during the measurement process to get accurate 

prediction results and avoid the two dangerous blood glucose levels, hyperglycemia and 

hypoglycemia. Results further show that the following cases should be avoided as they 

decrease the prediction accuracy: Testing the system (i) after extended periods of exercise, 

and (ii) after an excessive exercise when it is combined with increased food consumption. 

 

8.2 Future Work 

This work can be improved to also cope with SNR variations from individual to individual 

and from sensor to sensor, and by using other values of Kalman filter covariances Q and R in 

prediction analysis. For more accurate results it is better to use real diabetes data which would 

be more sensitive to all types of analyses.   
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APPENDIX 

Source Code of the System within the Thesis 

 

Software: MATLAB R2012a 

 A = [1.1269   -0.4940    0.1129; 

     1.0000         0         0; 

          0    1.0000         0]; 

  

 B = [-0.3832; 0.5919; 0.5191]; 

   

 C = [-1 0 0]; 

  

 D = 0; 

 u=pat2(:,2) 

 t = [1:720]'; 

 n = length(t) 

 randn('seed',0); 

 Q=1; 

 R=1; 

 w = sqrt(Q)*randn(n,1); 

 v = sqrt(R)*randn(n,1); 

 sys = ss(A,B,C,D,-1); 

 noise=u+w; 

 [kalmf,L,P,M] = kalman(sys,Q,R); 

  

  

  

  y = lsim(kalmf(1,:),noise);   % w = process noise  %y = lsim(sys,noise); 
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  yv = y + v;          % v = meas. noise 

  P=B*Q*B';         % Initial error covariance 

  x=zeros(3,1);     % Initial condition on the state 

  ye = zeros(length(t),1); 

  ycov = zeros(length(t),1); 

  errcov = zeros(length(t),1); 

  

  for i=1:length(t) 

  % Measurement update 

  Mn = P*C'/(C*P*C'+R); 

  x = x + Mn*(yv(i)-C*x);  % x[n|n] 

  P = (eye(3)-Mn*C)*P;     % P[n|n] 

  ye(i) = C*x; 

  errcov(i) = C*P*C'; 

  

 % Time update 

 x = A*x + B*u(i);        % x[n+1|n] 

 P = A*P*A' + B*Q*B';     % P[n+1|n] 

 end 

 plot(t,u); 

 figure(2) 

 plot(yv); 

 xlabel('Time in Minuets') 

ylabel('Glucose Levels') 

axis([0 720 20 180]) 

hold; 

figure(3) 

plot(ye,'r'); 

xlabel('Time in Minuts') 

ylabel('Glucose Concentration (mg/dl)') 
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axis([0 720 20 180]) 

hold; 

figure(4) 

plot(y,'g'); 

%plot the original signal over top the  

snr_before = mean( u .^ 2 ) / mean( noise .^ 2 ); 

snr_before_db = 10 * log10( snr_before ) % in dB 

R = u - ye;  

snr_after = mean( ye .^ 2 ) / mean( R .^ 2 );  

snr_after_db = 10 * log10( snr_after ) 

 % Solve an Auto regression Time-Series Problem with a NAR Neural Network 

% Script generated by NTSTOOL 

% This script assumes this variable is defined: 

%close_data - feedback time series. 

  

targetSeries = tonndata(ye,false,false); 

  

% Create a Nonlinear Autoregressive Network 

feedbackDelays = 1:4:60; 

hiddenLayerSize = 10; 

net = narnet(feedbackDelays,hiddenLayerSize); 

  

% Choose Feedback Pre/Post-Processing Functions 

% Settings for feedback input are automatically applied to feedback output 

% For a list of all processing functions type: help nnprocess 

net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 

  

% Prepare the Data for Training and Simulation 

% The function PREPARETS prepares timeseries data for a particular network, 
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% shifting time by the minimum amount to fill input states and layer 
states. 

% Using PREPARETS allows you to keep your original time series data 
unchanged, while 

% easily customizing it for networks with differing numbers of delays, with 

% open loop or closed loop feedback modes. 

[inputs,inputStates,layerStates,targets] = 
preparets(net,{},{},targetSeries); 

  

% Setup Division of Data for Training, Validation, Testing 

% For a list of all data division functions type: help nndivide 

net.divideFcn = 'dividerand';  % Divide data randomly 

net.divideMode = 'time';  % Divide up every value 

net.divideParam.trainRatio = 70/100; 

net.divideParam.valRatio = 15/100; 

net.divideParam.testRatio = 15/100; 

  

% Choose a Training Function 

% For a list of all training functions type: help nntrain 

net.trainFcn = 'trainlm';  % Levenberg-Marquardt 

  

% Choose a Performance Function 

% For a list of all performance functions type: help nnperformance 

net.performFcn = 'mse';  % Mean squared error 

  

% Choose Plot Functions 

% For a list of all plot functions type: help nnplot 

net.plotFcns = {'plotperform','plottrainstate','plotresponse', ... 

  'ploterrcorr', 'plotinerrcorr'}; 
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% Train the Network 

[net,tr] = train(net,inputs,targets,inputStates,layerStates); 

  

% Test the Network 

outputs = net(inputs,inputStates,layerStates); 

errors = gsubtract(targets,outputs); 

performance = perform(net,targets,outputs) 

  

% Recalculate Training, Validation and Test Performance 

trainTargets = gmultiply(targets,tr.trainMask); 

valTargets = gmultiply(targets,tr.valMask); 

testTargets = gmultiply(targets,tr.testMask); 

trainPerformance = perform(net,trainTargets,outputs) 

valPerformance = perform(net,valTargets,outputs) 

testPerformance = perform(net,testTargets,outputs) 

  

% View the Network 

view(net) 

  

% Plots 

% Uncomment these lines to enable various plots. 

figure, plotperform(tr) 

figure, plottrainstate(tr) 

figure, plotresponse(targets,outputs) 

  

% Closed Loop Network 

% Use this network to do multi-step prediction. 

% The function CLOSELOOP replaces the feedback input with a direct 
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% connection from the output layer. 

netc = closeloop(net); 

[xc,xic,aic,tc] = preparets(netc,{},{},targetSeries); 

yc = netc(xc,xic,aic); 

perfc = perform(net,tc,yc) 

  

% Early Prediction Network 

% For some applications it helps to get the prediction a timestep early. 

% The original network returns predicted y(t+1) at the same time it is 
given y(t+1). 

% For some applications such as decision making, it would help to have 
predicted 

% y(t+1) once y(t) is available, but before the actual y(t+1) occurs. 

% The network can be made to return its output a timestep early by removing 
one delay 

% so that its minimal tap delay is now 0 instead of 1.  The new network 
returns the 

% same outputs as the original network, but outputs are shifted left one 
timestep. 

nets = removedelay(net); 

[xs,xis,ais,ts] = preparets(nets,{},{},targetSeries); 

ys = nets(xs,xis,ais); 

closedLoopPerformance = perform(net,tc,yc) 

for t=1:660 

m=cell2mat(yc) 

AD=abs(m(t)-u(t))./u(t) 

MAD=mean(AD); 

end 
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