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ABSTRACT

Convergence in the variation seminorm of Bernstein and Bernstein

Chlodovsky Polynomials

June 2013, 79 pages

This thesis is devoted to a study of the variation detracting property, convergence

in variation and rates of approximation of Bernstein and Bernstein-Cholodovsky

polynomials in the space of functions of bounded variation with respect to the

variation seminorm. For instance, the variation detracting property V[0;1] [Bnf ] �

V[0;1] [f ] holds for all function f of bounded variation. Nevertheless, the expres-

sion limn!1 V[0;1] [Bnf � f ] = 0, which represents the convergence of the polynomial

Bnf to the function f in the variation seminorm, is valid if and only if f is ab-

solutely continuous. Additionally, the variation detracting property is related to the

Voronovskaya-type theorems for the derivative of the polynomials. On this occa-

sion, the Voronovskaya-type theorems having a signi�cant place in the convergence

in the variation seminorm and the relationships between these theorems and the

convergence in the variation seminorm are mentioned in this thesis.

Keywords : Linear positive operators, Bernstein polynomials, Bernstein-Chlodovsky

operators, Korovkin Theorem, bounded variation, variation seminorm, convergence

and rate of convergence in the variation seminorm.
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ÖZET

Bernstein ve Bernstein-Chlodovsky Polinomlar¬n¬n varyasyon

yar¬normunda yak¬nsakl¬klar¬

Haziran 2013, 79 sayfa

Bu tez, varyasyon yar¬normuna göre s¬n¬rl¬sal¬n¬ml¬fonsiyon uzay¬nda Bernstein ve

Bernstein-Cholodovsky polinomlar¬n¬n sal¬n¬m azaltma özelli¼gi, varyasyonda yak¬n-

sakl¬k ve yak¬nsakl¬k h¬zlar¬konusunda bir çal¬̧smaya adan¬r. Örne¼gin, tüm s¬n¬rl¬

sal¬n¬ml¬f fonksiyonlar¬için sal¬n¬m azaltma özelli¼gi V[0;1] [Bnf ] � V[0;1] [f ] sa¼glan¬r.

Fakat, varyasyon yar¬normunda (Bnf) polinomunun f fonksiyonuna yak¬nsamas¬n¬

temsil eden limn!1 V[0;1] [Bnf � f ] = 0 ifadesi ancak ve ancak f mutlak yak¬n-

sak ise vard¬r. Ek olarak, sal¬n¬m azaltma özelli¼gi polinomlar¬n türevleri için olan

Voronovskaya tipi teoremler ile ili̧skilidir. Bu vesile ile, bu tezde varyasyon yar¬nor-

mundaki yak¬nsakl¬kta önemli bir yere sahip olan Voronovskaya tipi teoremlerden

ve bu teoremler ve varyasyon yar¬normundaki yak¬nsakl¬k aras¬ndaki ili̧skilerinden

bahsedilmi̧stir.

Anahtar Kelimeler : Lineer pozitif operatorler, Bernstein polinomlar¬, Bernstein-

Chlodovsky operatörleri, Bohman-Korovkin Teoremi, s¬n¬rl¬sal¬n¬m, varyasyon yar¬normu,

varyasyon yar¬normunda yak¬nsakl¬k ve yak¬nsakl¬k h¬z¬.
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CHAPTER 1

INTRODUCTION

This work is based on the field of approximation theory. The current studies concerning

approximation theory mostly focus on the approximation of real-valued continuous

functions by the class of algebraic polynomials.

A fundamental result for the functions approximation theory development is known as

first Weierstrass approximation theorem, established by K.Weierstrass in 1885 which

asserts that for each function f ∈ C [a, b] and all ε > 0, there is a polynomial P(x) such

that

| f (x) − P(x)| < ε

for any x ∈ [a, b]. This theorem was concerned with the density of the space of poly-

nomials in C [a, b]. It was so arduous to comprehend the first proof of Weierstrass due

to being complicated and long. Accordingly, this complexity encouraged such a lot of

mathematicians to find a simpler and more apprehensible proof.

In 1912, the well-known Bernstein polynomials

(Bn f )(x) = B f
n(x) =

n∑
k=0

f
(

k
n

) (
n
k

)
xk (1 − x)n−k

for any function f (x) defined on [0, 1] were introduced by S. Bernstein (Bernstein,

1912) with the purpose of giving a simpler proof of the approximation theorem of

Weierstrass. In addition to this, if f ∈ C [a, b], then as it will be seen in Chapter 2,

lim
n→∞

B f
n(x) = f (x)

uniformly in [0, 1].

In 1937, I. Cholodovsky (Cholodovsky, 1937) gave a more comprehensive proof for
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Weierstrass theorem by calling into being the Bernstein-Cholodovsky operators in gen-

eralization of the Bernstein polynomials which approximate the function f defined on

[0, 1]. These operators are given by

(Cn f ) :=
n∑

k=0

f
(
bn

n
k
)

pk,n

(
x
bn

)

where f is a function defined on [0,∞) and bounded on every finite interval [0, b] ⊂

[0,∞) with a certain rate with pk,n denoting as usual

pk,n(x) =

(
n
k

)
xk (1 − x)n−k , 0 ≤ x ≤ 1

and (bn)∞n=1 being a positive increasing sequence of real numbers with the properties

lim
n→∞

bn = ∞ and lim
n→∞

bn

n
= 0 (1.1)

As it shall be seen in Chapter 2, if

M (b; f ) := sup
0≤x≤b

| f (x)|

then if

lim
n→∞

exp
(
−α

n
bn

)
M (bn; f ) = 0 (1.2)

for every α > 0, it is said that (Cn f ) (x) converges to f (x) at each point of continuity of

f .

One of the simplest and most powerful proof of Weierstrass was come out by H.

Bohman in 1952 and P.P. Korovkin in 1953. Bohman had the following idea: Let

Ln : C [a, b] → C [a, b] be a sequence of positive linear operator. If
(
Lnti

)
⇒ xi

(i = 0, 1, 2) then

Ln f ⇒ f on [a, b] .

Bohman proved this theorem in 1952 and a year later (in 1953) Korovkin proved the

same theorem for integral type operators. On this occasion that theorem is mostly

2



known as Bohman-Korovkin Theorem (Altomare and Campiti, 1994). The power of

Bohman-Korovkin Theorem has attracted so many mathematicians and over the last

sixty years, numerous research extended this theorem.

The rate of approximation by the (Bn f )(x) to f (x) and (Cn f )(x) to f (x) were formed

by Voronovskaya (Voronovskaya, 1932) and J. Albrycht,J. Redecki (Albrycht and Re-

decki, 1960), respectively. For the former it was showed that, for bounded f on [0, 1],

lim
n→∞

n
[
(Bn f )(x0) − f (x0)

]
=

x0(1 − x0)
2

f ′′(x0) (1.3)

at each fixed point x0 ∈ [0, 1] for which there exists f ′′(x0) , 0.

Intercalarily, for the latter, it was demonstrated that; for {bn}
∞
n=1 satisfying (1.1) ,

lim
n→∞

n
[
(Cn f )(x) − f (x)

]
=

x f ′′(x)
2

provided (1.2) , for every α > 0, at each point x ≥ 0 for which f ′′(x) exists. After

43 years of J. Albrycht and J. Radecki’s proof, (1.3) was extended to first derivative

of (Bn f )(x) by Bardaro, Butzer, Stens, Vinti (Bardaro et.al., 2003). The theorem states

for bounded f on [0, 1] for which f ′′′(x) exists at x ∈ [0, 1],

lim
n→∞

n
[
(Bn f )′(x) − f ′(x)

]
=

1 − 2x
2

f ′′(x) +
x(1 − x)

2
f ′′′(x)

Furthermore, Butzer and Karsli (Butzer and Karsli, 2009) verified the similar theorem

for first derivative of (Cn f ), which is given by

lim
n→∞

n
[
(Cn f )′(x) − f ′(x)

]
=

f ′′(x) + x f ′′′(x)
2

holds at each fixed point x ≥ 0 for which f ′′′(x) exists, provided (1.2) is satisfied for

every α > 0.

This thesis is concerned with the variation detracting property, rates of approximation

of the Bernstein and Bernstein-Cholodovsky polynomials in variation seminorm. It is

3



also investigated that the convergence in variation seminorm by (Bn f ) to f and (Cn f )

to f , such as

lim
n→∞

VI
[
Bn f − f

]
= 0

where VI
[
f
]

is the total variation of the function f . Throughout this thesis, the class

TV(I) is the space of all the functions of bounded variation on I, endowed with the

seminorm

‖ f ‖TV(I) := VI
[
f
]
.

The first study about the variation detracting property and the convergence in variation

of a sequence of linear positive operators was come out by Lorentz (Lorentz, 1953).

He proved that Bn have

V[0,1]
[
Bn f

]
≤ V[0,1]

[
f
]

and it is called the variation detracting property.

It is taken from Bardaro, Butzer, Stens, Vinti’s work (Bardaro et.al., 2003) that the vari-

ation detracting property is significant to research the convergence in variation semi-

norm. In addition, it is known that the meaning of the total variation of a function

f ⊂ AC(I) and L1(I) − norm of f are exactly identical.

After these available studies, convergence in semi-normed space has become a new

field in the theory of approximation.
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CHAPTER 2

PRELIMINARIES AND AUXILIARY RESULTS

In this chapter preliminaries and auxiliary results that will be used throughout this the-

sis are presented. Some basic definitions and significant theorems about linear positive

operators concerning approximation theory are given, as well. Addition to these, this

chapter is dedicated to give some famous theorem about approximation theory such as

Weierstrass, Bernstein, Cholodovsky, Bohman-Korovkin’s Theorem.

Definition 2.1 (Normed Space)

A normed space X is a vector space with a norm defined on it. Here a norm on a

(real or complex) vector space X is a real valued function on X whose value at an x ε

X is denoted by

‖x‖ (read “norm of x”)

and which has the properties

(N1) ‖x‖ ≥ 0

(N2) ‖x‖ = 0 ⇐⇒ x = 0

(N3) ‖αx‖ = |α| ‖x‖

(N4) ‖x + y‖ ≤ ‖x‖ + ‖y‖

here x and y are arbitrary vectors in X and α is any scalar.

(E. Kreyszig, 1978)

Definition 2.2 (Seminorm)

A seminorm on a vector space X is a mapping p : X → R satisfying (N1), (N3)

and (N4) and a part of (N2) which is said that if x = 0 then ‖x‖ = 0.

(E. Kreyszig, 1978).
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By observing this definition, it can not be said that if ‖x‖ = 0 then x = 0 in a semi-

normed space. In other words the fact ‖x‖ = 0 does not provide the expression x = 0.

Definition 2.3 (Operator)

Let X and Y be two linear normed function spaces. An operator L : X → Y is a

rule which assigns to each function of X a function of Y . The operators are denoted by

(L f )(x).

(Butzer and Nessel, 1971)

Definition 2.4 (Linear Operator)

Let X and Y be normed spaces and T : D(T ) ⊂ X → R(T ) ⊂ Y . The operator T is

called a linear operator if it satisfies the following conditions:

i) T (x + y) = T (x) + T (y)

ii) T (αx) = αT (x) where α is a scalar.

(E. Kreyszig, 1978)

Definition 2.5 (Positive Linear Operator)

A linear operator L defined on a linear space of functions, V , is called positive, if

L( f ) ≥ 0, for all f ∈ V , f ≥ 0.

(Radu Paltanea, 2004)

Theorem 2.6 Linear positive operators are monotone increasing.

Proof. Let L be a positive linear operator. It is sufficient to show that for the functions

f and g,

f ≤ g then L( f ) ≤ L(g)

Since f ≤ g, it is clear that g − f ≥ 0. Then L(g − f ) ≥ 0 because of L is

positive. Besides from linearity of L, it can be written that L(g)− L( f ) ≥ 0. Therefore,

L( f ) ≤ L(g). Consequently, L is monotone increasing. �

6



Theorem 2.7 If L is a linear positive operator then

|L( f )| ≤ L(| f |)

Proof. Let f be an arbitrary function. It is obvious that

− | f | ≤ f ≤ | f |

Since L is monotone increasing it is written that,

L(− | f |) ≤ L( f ) ≤ L(| f |)

Because of linearity of L,

−L(| f |) ≤ L( f ) ≤ L(| f |)

Hence,

|L( f )| ≤ L(| f |).

�

Definition 2.8 (Bounded Linear Operator)

Let X and Y be normed spaces and T : D(T ) → Y is a linear operator, where

D(T ) ⊂ X. The operator T is said to be bounded linear operator if there is a real

number cx such that for all x ∈ D(T ),

‖T x‖Y ≤ cx ‖x‖X

(E. Kreyszig, 1978)

Definition 2.9 (Uniformly continuous Function)

7



A function f : D → R is uniformly continuous on a set E ⊆ D ⊆ R if and only

if for any given ε > 0 there exists δ > 0 such that | f (x) − f (t)| < ε for all x, t ∈ E

satisfying |x − t| < δ.

(A.J.Kosmala, 2004)

Definition 2.10 (Limit or Accumulation Point)

Let M be a subset of a vector space X. Then a point x0 of X (which may or may

not be a point of M) is called a accumulation point of M (or limit point of M) if every

neighborhood of x0 contains at least one point y ∈ M distinct from x0.

(E. Kreyszig, 1978)

Definition 2.11 (Closure)

The set consisting of the points of M and the accumulation points of M is called

the closure of M and is denoted by M.

(E. Kreyszig, 1978)

Definition 2.12 (Dense Set)

A subset M of a metric space X is said to be dense in X if

M = X.

(E. Kreyszig, 1978)

This definition means that every point of X is an accumulation point of M. In other

words, for every point of X, a sequence in M can be found which converges to the

element of X.

Definition 2.13 (Pointwise Convergence)

A sequence of functions { fn}, where for each n ∈ N , fn : D → R with D ⊆ R,

converges (pointwise) on D to a function f if and only if for each x0 ∈ D the sequence

of real numbers { fn(x0)} converges to the real number f (x0).

(A.J.Kosmala, 2004)
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Definition 2.14 (Uniform Convergence)

A sequence of functions { fn}, where for each n ∈ N , fn : D → R with D ⊆ R,

converges uniformly to a function f if and only if for each ε > 0 there exists n∗ ∈ N

such that | fn(x) − f (x)| < ε for all x ∈ D and n ≥ n∗.

(A.J.Kosmala, 2004)

Theorem 2.15 (E. Kreyszig, 1978) Let (E, d) be a metric space. A nonempty subset M

of E is closed if and only if for any sequence xn in M, xn → x0 implies that x0 ∈ M.

Proof. Let M be closed. Suppose that x0 < M. Then x0 ∈ Mc where Mc is an open set.

So there exists B(x0, r) such that B(x0, r) ⊂ Mc. This means B(x0, r) does not contain

any points in M distinct from x0. This is a contradiction because of x0 is a limit point

of M.

Conversely, assume that M is not closed. Then Mc is not open. This means ∃ x0 ∈

Mc such that ∀ ε > 0,

B(x0, ε) ∩ M , ∅.

Select ε = 1
n and take xn ∈ B(x0, ε) ∩ M. Then (xn) ⊂ M and d(xn, x0) < 1

n . So

lim
n→∞

xn = x0 < M.

This is a contradiction which completes the proof. �

As it was mentioned, the significance of density of a set M in a metric space X

is to find a sequence in M for every element of X such that the sequence converges

to the element of X. Most of studies about approximation theory are concerned with

the approximation of continuous functions by the class of polynomials. The first main

study related to this was verified by K. Weierstrass in 1885. His work showed that the

class of polynomials is dense in the class of continuous functions.

The following theorem is due to K. Weierstrass.

9



Theorem 2.16 Each continuous real valued function f defined on [a, b] is approximat-

able by algebraic polynomials.

In other words for each ε > 0 there is a polynomial P with | f − P| < ε , ∀ x ε [a, b].

Proof. Consider the heat equation;

ut = α2uxx , −∞ < x < ∞, t > 0.

for u(x, t) a function of two variables, with initial condition

u(x, t) = f (x), −∞ < x < ∞.

If the Green’s Method is considered for solving the heat equation, then the solution

is given by;

(wn f )(x) =
n
√

2π

∞∫
−∞

f (t)e−n2(t−x)2
dt.

Let us consider the partial sum of e−n2(t−x)2
.

S m =

m∑
k=0

[−n2(t − x)2]k

k!
.

Now, the following integral, which is written by using the above partial sum, is

considered;

(Pm f )(x) =
n
√

2π

∞∫
−∞

S m(t − x) f (t)dt.

Since f (x) is continuous then f (x) is bounded in any bounded and closed interval.

In other words on any bounded and closed interval | f (x)| ≤ M, where M ∈ R+.

10



The solution can be considered on [a, b]. So;

|(wn f )(x) − (Pm f )(x)| =

∣∣∣∣∣∣∣∣ n
√

2π

b∫
a

f (t)e−n2(t−x)2
dt −

n
√

2π

b∫
a

S m(t − x) f (t)dt

∣∣∣∣∣∣∣∣
≤

Mn
√

2π

b∫
a

∣∣∣∣e−n2(t−x)2
− S m(t − x)

∣∣∣∣ dt <
Mnε
√

2π
(b − a)

= Aε

as m→ ∞, where A = Mn
√

2π
(b − a).

If it is shown that (Pm f )(x) is an algebraic polynomial and (ωn f )(x) → f (x), then

the proof will be completed.

(Pm f )(x) =
n
√

2π

b∫
a

m∑
k=0

[−n2(t − x)2]k

k!
f (t)dt

=
n
√

2π

m∑
k=0

(−1)kn2k

k!

2k∑
p=0

cp
k (−1)pxp

b∫
a

t2k−p f (t)dt.

where cp
k = k!

(k−p)!p! .

Hence, (Pm f )(x) =
2m∑
v=0

Avxv = A0 + A1x + A2x2 + ... + A2mx2m. So (Pm f )(x) is an

algebraic polynomial. In order to complete the proof, it must be shown that (wn f )(x)→

f (x) or |(wn f )(x) − f (x)| < ε as n→ ∞.

In order to show |(wn f )(x) − f (x)| < ε, some properties of (wn f )(x) should be

given. It is known that (wn f )(x) = n
√

2π

∞∫
−∞

f (t)e−n2(t−x)2
dt where n

√
2π

e−n2(t−x)2
is called

the Gauss-Weierstrass kernel which is denoted by GWn(u) = n
√

2π
e−n2u2

. Then,

1- GWn(u) > 0.

2- GWn(−u) = GWn(u). This implies GWn(u) is an even function.

3- limn→∞GWn(u) = limn→∞
n
√

2π
e−n2u2

=


+∞ , u = 0

0 , u , 0
.

4- limn→∞ sup|u|≥δ GWn(u) = limn→∞
n
√

2π
e−n2δ2

= 0 and
∞∫
−∞

GWn(u)du = 1 (Gauss

probability).

11



For all ε > 0, there exists n∗ ∈ N such that for all n ≥ n∗ it is deduced that,

|(wn f ) (x) − f (x)| =

∣∣∣∣∣∣∣∣
∞∫

−∞

[ f (t) − f (x)]GWn(t − x)dt

∣∣∣∣∣∣∣∣
≤

∞∫
−∞

| f (t) − f (x)|GWn(t − x)dt

=

x+δ∫
x−δ

| f (t) − f (x)|GWn(t − x)dt +

x−δ∫
−∞

| f (t) − f (x)|GWn(t − x)dt

+

∞∫
x+δ

| f (t) − f (x)|GWn(t − x)dt

< ε

x+δ∫
x−δ

GWn(t − x)dt + ε + ε

< 3ε.

Thus,

| f (x) − (Pm f ) (x)| ≤ |(wn f ) (x) − f (x)| + |(wn f ) (x) − (Pm f ) (x)| < [3 + A]ε.

In conclusion;

Every continuous function can be written as a limit of a sequence of polynomials

�

The first Weierstrass theorem was complicated and long. For this reason it was

so hard to deduce. So, this situation made so many mathematicians study to find a

simpler proof for Weierstrass approximation theorem. In the first instance, S.Bernstein

(Bernstein, 1912) established a simpler proof by presenting Bernstein polynomials.

Definition 2.17 (Bernstein polynomials)

12



For a function f (x) defined on the closed interval [0, 1], the expression

(Bn f )(x) = Bn
f (x) =

n∑
k=0

f
(

k
n

) (
n
k

)
xk (1 − x)n−k (2.1)

is called the Bernstein polynomial of order n of the function f (x).

(Bernstein, 1912 see also G.G. Lorentz, 1986).

It follows from (2.1) that,

(Bn f )(0) = f (0) and (Bn f )(1) = f (1)

This means that a Bernstein polynomial for f interpolates f at both x = 0 and x = 1.

The Bernstein operator is linear, which follows from (2.1) that,

(Bn(α f + βg))(x) =

n∑
k=0

(α f + βg)
(

k
n

)
pk,n(x)

=

n∑
k=0

(α f )
(

k
n

)
pk,n(x) +

n∑
k=0

(βg)
(

k
n

)
pk,n(x)

= α(Bn f )(x) + β(Bng)(x)

for all f , g defined on [0, 1] and all real α, β.

It can be seen readily that Bn is a positive operator. So it can be said that Bn is monotone

increasing. Therefore it is concluded that,

m ≤ f (x) ≤ M =⇒ m ≤ (Bn f )(x) ≤ M, x ∈ [0, 1] .

Let us prove the famous theorem of Weierstrass by the polynomials (Bn f )(x). It can

be made inferences that the theorem of Weierstrass is a corollary of the following

theorem:

Theorem 2.18 (Bernstein, 1912) For a function f (x) bounded on [0, 1], the relation

lim
n→∞

Bn(x) = f (x)

13



holds at each point of continuity x of f ; and the relation holds uniformly on [0, 1] if

f (x) is continuous on this interval.

Proof. It is obvious that
n∑

k=0
pk,n(x) = (x + 1 − x)n = 1. Moreover, the sums

n∑
k=0

kpk,n(x)

and
n∑

v=0
k2 pk,n(x) are found in a following way.

n∑
k=0

kpk,n(x) =

n∑
k=1

kpk,n(x) =

n∑
k=1

k
n!

(n − k)!k!
xk(1 − x)n−k

=

n∑
k=1

n!
(n − k)!(k − 1)!

xk(1 − x)n−k

=

n−1∑
k=0

n!
(n − 1 − k)!k!

xk+1(1 − x)n−1−k

= nx
n−1∑
k=0

(n − 1)!
(n − 1 − k)!k!

xk(1 − x)n−1−k

= nx

and

n∑
k=0

k2 pk,n(x) = nx
n−1∑
k=0

(k + 1)
(n − 1)!

(n − 1 − k)!k!
xk(1 − x)n−1−k

= nx + nx
n−1∑
k=0

k
(n − 1)!

(n − 1 − k)!k!
xk(1 − x)n−1−k

= nx + nx(n − 1)x

= n2x2 − nx2 + nx.

Since x(1 − x) ≤ 1
4 on the closed interval [0, 1], then the following inequality can

be obtained;

∑
| kn−x|≥δ

pk,n ≤
∑
| kn−x|≥δ

( k
n − x)2

δ2 pk,n

=
1

n2δ2

∑
| kn−x|≥δ

(k2 − 2nxk + n2x2)pk,n

≤
1

n2δ2 (n2x2 − nx2 + nx − 2n2x2 + n2x2)

=
1

n2δ2 nx(1 − x) ≤
1

4nδ2

14



Because of boundness of f (x), there exists M ∈ R+ such that | f (x)| ≤ M in 0 ≤ x ≤

1.

If x is a point of continuity of f , for a given ε > 0, δ > 0 can be found such that

| f (t) − f (x)| < ε whenever |x − t| < δ.

Hence it is written,

|(Bn f )(x) − f (x)| =

∣∣∣∣∣∣∣
n∑

k=0

f
(

k
n

)
pk,n − f (x)

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
n∑

k=0

f
(

k
n

)
pk,n −

n∑
k=0

f (x)pk,n

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
n∑

k=0

[
f
(

k
n

)
− f (x)

]
pk,n

∣∣∣∣∣∣∣ ≤
n∑

k=0

∣∣∣∣∣∣ f
(

k
n

)
− f (x)

∣∣∣∣∣∣ pk,n

=
∑
| kn−x|<δ

∣∣∣∣∣∣ f
(

k
n

)
− f (x)

∣∣∣∣∣∣ pk,n +
∑
| kn−x|≥δ

∣∣∣∣∣∣ f
(

k
n

)
− f (x)

∣∣∣∣∣∣ pk,n

≤ ε +
∑
| kn−x|≥δ

[∣∣∣∣∣∣ f
(

k
n

)∣∣∣∣∣∣ + | f (x)|
]

pk,n

≤ ε + 2M
∑
| kn−x|≥δ

pk,n ≤ ε +
M

2nδ2

Consequently,

|(Bn f )(x) − f (x)| ≤ ε +
M

2nδ2 as n→ ∞ (2.2)

which implies that

(Bn f )(x)→ f (x)

Finally, if f (x) is continuous on [0, 1] then (2.2) holds with a δ independent of x so

that

(Bn f )(x)⇒ f (x)

�
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Lemma 2.19 For t ∈ [0, 1] the inequality

0 ≤ z ≤
3
2

√
nt (1 − t)

implies ∑
|k−nt|≥2z

√
nt(1−t)

pk,n(t) ≤ 2 exp
(
−z2

)
.

(Albrycht and Redecki, 1960).

Bernstein polynomials was defined on bounded interval [0, 1]. By linear substitution,

the interval [a, b] can be transformed into [0, 1]. Bernstein polynomials were not con-

sisting any problem on bounded interval for the proof of Weierstrass approximation

theorem. At this stage, the major question making mathematicians think was con-

cerned with Bernstein polynomials on an unbounded interval. In 1937, Chlodovsky

solved that question by following this way:

Let the function f (x) be defined on the interval [0, b), b > 0. In order to obtain the

Bernstein polynomials B f
n(x) for the interval (0, b), let us define the Bernstein polyno-

mial of Q(y), 0 ≤ y ≤ 1,

BQ
n (y) =

n∑
k=0

Q
(

k
n

) (
n
k

)
yk(1 − y)n−k

Let us make the subsitution y = x
b in the polynomial BQ

n (y). So it can be seen easily

that Q(y) = f (by), 0 ≤ y ≤ 1. Therefore

B f
n(x) =

n∑
k=0

f
(
b

k
n

) (
n
k

) ( x
b

)k (
1 −

x
b

)n−k

for a constant b. It is assumed here that b = bn is a function of n.

Let’s suppose that f (x) is defined in 0 ≤ x < ∞. In order to obtain the relation

B f
n(x)→ f (x)

16



for this interval, it must be accepted that the distance between two adjacent points

bn
n → 0 as n→ ∞. This means that bn = o(n).

As it can be seen above, Chlodovsky modified Bernstein polynomials by extending

the interval [0, 1] into unbounded interval [0,∞). Herewith, the polynomials that

Chlodovsky introduced are cited as Bernstein-Chlodovsky polynomials. Therefore

Bernstein-Chlodovsky polynomials can be given as below:

Definition 2.20 (Bernstein-Chlodovsky polynomials)

Bernstein-Chlodovsky polynomials are given by

(Cn f )(x) =

n∑
k=0

f
(
bn

n
k
)

pk,n

(
x
bn

)

where f is a function defined on [0,∞) and bounded on every finite interval [0, b] ⊂

[0,∞) with a certain rate, with pk,n denoting as usual

pk,n(x) =

(
n
k

)
xk(1 − x)n−k , 0 ≤ x ≤ 1

and (bn)∞n=1 being a positive increasing sequence of real numbers with the properties

lim
n→∞

bn = ∞ , lim
n→∞

bn

n
= 0.

(Chlodovsky, 1937 see also Karsli, 2011).

After Chlodovsky introduced Bernstein-Chlodovsky polynomials, he proved Weier-

strass approximation theorem by utilizing them.

The following theorem is due to Cholodovsky.

Theorem 2.21 (Cholodovsky, 1937) If bn = o(n) and

lim
n→∞

exp
(
−α

n
bn

)
M(bn; f ) = 0 for each α > 0,

then

lim
n→∞

(Cn f ) = f (x)

17



at any point of continuity of the function f .

Proof.

|(Cn f )(x) − f (x)| =

∣∣∣∣∣∣∣
n∑

k=0

[
f
(
kbn

n

)
− f (x)

]
pk,n

(
x
bn

)∣∣∣∣∣∣∣
≤

n∑
k=0

∣∣∣∣∣∣ f
(
kbn

n

)
− f (x)

∣∣∣∣∣∣ pk,n

(
x
bn

)
=

∑
∣∣∣∣ kbn

n −x
∣∣∣∣<δ

∣∣∣∣∣∣ f
(
kbn

n

)
− f (x)

∣∣∣∣∣∣ pk,n

(
x
bn

)

+
∑

∣∣∣∣ kbn
n −x

∣∣∣∣≥δ
∣∣∣∣∣∣ f

(
kbn

n

)
− f (x)

∣∣∣∣∣∣ pk,n

(
x
bn

)

= :
∑

1∗

+
∑

2∗

It is expected to prove that

lim
n→∞

∑
1∗

= 0 and lim
n→∞

∑
2∗

= 0

If x is a point of continuity of f , for a given ε > 0, δ > 0 is found such that

| f (t) − f (x)| < ε whenever |x − t| < δ. Therefore,

∑
1∗

=
∑

∣∣∣∣ kbn
n −x

∣∣∣∣<δ
∣∣∣∣∣∣ f

(
kbn

n

)
− f (x)

∣∣∣∣∣∣ pk,n

(
x
bn

)

< ε
∑

∣∣∣∣ kbn
n −x

∣∣∣∣<δ
pk,n

(
x
bn

)
≤ ε

This implies that

lim
n→∞

∑
1∗

= 0

18



Since M(b; f ) := sup0≤x≤b | f (x)|,

∑
2∗

=
∑

∣∣∣∣ kbn
n −x

∣∣∣∣≥δ
∣∣∣∣∣∣ f

(
kbn

n

)
− f (x)

∣∣∣∣∣∣ pk,n

(
x
bn

)

≤ 2M(bn; f )
∑

∣∣∣∣ kbn
n −x

∣∣∣∣≥δ
pk,n

(
x
bn

)

For
∣∣∣ k
nbn − x

∣∣∣ ≥ δ it is obtained that,

∣∣∣∣∣k − n
x
bn

∣∣∣∣∣ ≥ n
bn
δ = 2

( √
nδ

2
√

x (bn − x)

) √
n

x
bn

(
1 −

x
bn

)

≥ 2
( √

nδ

2
√

xbn

) √
n

x
bn

(
1 −

x
bn

)

Therefore according to Lemma (2.19) ,

∑
∣∣∣∣ kbn

n −x
∣∣∣∣≥δ

pk,n

(
x
bn

)
≤ 2 exp

(
−
δ2n

4xbn

)
(2.3)

Thus, ∑
2∗

≤ 4M(bn; f ) exp
(
−
δ2n

4xbn

)
which implies

lim
n→∞

∑
2∗

≤ lim
n→∞

4M(bn; f ) exp
(
−
δ2n

4xbn

)
= 0

Consequently,

lim
n→∞

Cn f = f .

�

After Bernstein and Chlodovsky, H. Bohman gave a more general idea to prove the

density and verified Weierstrass approximation theorem in 1952. One year later, P.P.

Korovkin attested the same theorem for integral type operators. For this reason this

theorem is known as Bohman-Korovkin Theorem.
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The following theorem was given by Bohman and Korovkin and is called Bohman-

Korovkin Theorem.

Theorem 2.22 (Altomare and Campiti, 1994) Let Ln be a sequence of positive linear

operators from C[a, b] into itself. Assume that

(Lnti)(x)⇒ xi (i = 0, 1, 2).

Then for every f ∈ C[a, b],

(Ln f )(x)⇒ f (x) on [a, b].

Proof. Let f ∈ C[a, b]. Then f is uniformly continuous and bounded on [a, b]. By

the definition of uniformly continuous it is said that ∀ ε > 0, ∃ δ > 0 such that

| f (t) − f (x)| < ε for all x, t in [a, b] satisfying |t − x| < δ.

Since f (x) is bounded on [a, b], there exists M > 0 such that | f (x)| ≤ M in a ≤ x ≤

b. According to the triangle inequality it is deduced that,

| f (t) − f (x)| ≤ | f (t)| + | f (x)| ≤ 2M

If |t − x| ≥ δ then (t−x)2

δ2 ≥ 1. So, it can be written that

| f (t) − f (x)| ≤ 2M
(t − x)2

δ2

Thus,

for |t − x| < δ, | f (t) − f (x)| < ε

for |t − x| ≥ δ, | f (t) − f (x)| < 2M
(t − x)2

δ2

it is concluded that

| f (t) − f (x)| < ε + 2M
(t − x)2

δ2 for all t, x ∈ [a, b]

20



Now let us show that (Ln f )(x)⇒ f (x).

|(Ln f (t)) (x) − f (x)| = |(Ln f (t)) (x) − (Ln f (x)) (x) + (Ln f (x)) (x) − f (x)|

= |(Ln( f (t) − f (x)) (x) + f (x)(Ln1)(x) − f (x)|

= |(Ln( f (t) − f (x)) (x) + f (x) ((Ln1)(x) − 1)|

≤ |(Ln( f (t) − f (x)) (x)| + | f (x)| |(Ln1)(x) − 1|

By Theorem (2.7) ,

|(Ln f (t)) (x) − f (x)| ≤ (Ln | f (t) − f (x)|) (x) + | f (x)| |(Ln1)(x) − 1|

Since Ln monotone increasing and | f (x)| ≤ M it is written that,

|(Ln f (t)) (x) − f (x)| ≤
(
Ln

(
ε + 2M

(t − x)2

δ2

))
(x) + M |(Ln1)(x) − 1)| (2.4)

From the linearity of Ln,

(
Ln

(
ε + 2M

(t − x)2

δ2

))
(x) = ε(Ln1)(x) +

2M
δ2 Ln((t − x)2)(x)

= ε(Ln1)(x) +
2M
δ2 (Ln(t2 − 2tx + x2))(x)

= ε(Ln1)(x) +
2M
δ2 {(Lnt2)(x) − 2x(Lnt)(x) + x2(Ln1)(x) + 2x2 − 2x2}

= ε(Ln1)(x) +
2M
δ2

{
((Lnt2)(x) − x2) + 2x(x − (Lnt)(x)) + x2((Ln1)(x) − 1)

}
Thus,

(
Ln

(
ε + 2M

(t − x)2

δ2

))
(x) = ε(Ln1)(x) +

2M
δ2 {((Lnt2)(x) − x2)

+2x(x − (Lnt)(x)) + x2((Ln1)(x) − 1)} (2.5)
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If the equality (2.5) is put in (2.4),

|(Ln f (t))(x) − f (x)| ≤ ε(Ln1)(x) +
2M
δ2 {(Lnt2)(x) − x2)

+2x(x − (Lnt)(x)) + x2((Ln1)(x) − 1)} + M |(Ln1)(x) − 1)|

Since (Lnti)(x)⇒ xi for i = 0, 1, 2 it can be seen easily from the above inequality,

lim
n→∞
{max
a≤x≤b

|(Ln f (t))(x) − f (x)|} = 0.

That is,

lim
n→∞
‖Ln( f ) − f ‖ = 0.

Consequently,

(Ln f )(x)⇒ f (x).

�

The next theorem can be given for instance of Bohman-Korovkin Theorem.

Theorem 2.23 Let f ∈ C[0, 1]. Then

(Bn f )(x)⇒ f (x).

holds true.

Proof. Since (Bn f ) is a positive operator from C[0, 1] into C[0, 1], in order to prove

the above theorem Bohman-Korovkin Theorem will be used . It is known that

n∑
k=0

pk,n(x) = 1,
n∑

k=0

kpk,n(x) = nx,
n∑

k=0

k2 pk,n(x) = n2x2 − nx2 + nx
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Then,

(Bn1)(x) =

n∑
k=0

1.pk,n(x) = 1

(Bnt)(x) =

n∑
k=0

k
n

pk,n(x) =
1
n

n∑
k=0

kpk,n(x) = x

Bnt2)(x) =

n∑
k=0

k2

n2 pk,n(x) =
1
n2

n∑
k=0

k2 pk,n(x) = x2 −
x2

n
+

x
n

Since x in [0, 1] , it is inferred that

|(Bn1)(x) − 1| <
1
n

|(Bnt)(x) − x| <
1
n∣∣∣(Bnt2)(x) − x2

∣∣∣ ≤ 2
n

Since 1
n approaches 0 as n→ ∞, it can be said that

(Bn1)(x) ⇒ 1

(Bnt)(x) ⇒ x

(Bnt2)(x) ⇒ x2

Terefore by Bohman-Korovkin Theorem,

(Bn f )(x)⇒ f (x).

�
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CHAPTER 3

FUNCTIONS OF BOUNDED VARIATION AND RELATED TOP-

ICS

The focus of this chapter is to give some definition and theorems concerning total vari-

ation that it will be used in the topic of convergence and rate of convergence in the

variation seminorm and set the relationships, which play an important role in approx-

imation in the variation seminorm, among the spaces BV, AC, and TV . Further, it is

referred to the Stieltjes integral and its relevance between Riemann integral and total

variation.

3.1 Function of Bounded Variation

Let a function f (x) be defined and finite on the

a = x0 < x1 < x2 < ... < xn−1 < xn = b

and form the sum

V =

n−1∑
k=0

| f (xk+1) − f (xk)| .

Definition 3.1 (Total variation)

The least upper bound of the set of all possible sums V is called the total variation

of the function f (x) on [a, b] and is designated by
b∨
a

( f ) or V[a,b][ f ]

(I.P. Natanson,1964)

Definition 3.2 (Finite variation)

If
b∨
a

( f ) < +∞, then f (x) is said to be a function of finite (or bounded) variation on

[a, b]. It is also said that f (x) has finite (or bounded) variation on [a, b].
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(I.P. Natanson, 1964)

Definition 3.3 (BV space)

The class of all functions of bounded variation on I is called BV space and denoted

by BV(I). This space can be endowed both with seminorm |.|BV(I) and with a norm,

‖.‖BV(I), where

| f |BV(I) := VI[ f ], ‖ f ‖BV(I) := VI[ f ] + | f (a)|

f ∈ BV(I), a being any fixed point of I.

(Octavian Agratini, 2006)

Definition 3.4 (TV space)

Let I ⊆ R be a fixed interval, and VI[ f ] the total variation of the function f : I →

R. The class of all bounded functions of bounded variation on I endowed with the

seminorm

‖ f ‖TV(I) := VI[ f ].

is called TV space and is denoted by TV(I).

(Bardaro et.al., 2003)

Theorem 3.5 A monotonic function on [a, b] has finite variation on [a, b].

Proof. If f is a monotonically increasing function on [a, b], then for any partition

{x0, x1, x2, ..., xn} of [a, b] ,

n−1∑
k=0

| f (xk+1) − f (xk)| =
n−1∑
k=0

f (xk+1) − f (xk) = f (b) − f (a)

Hence,
b∨
a

( f ) = f (b) − f (a) < +∞. This implies f is of finite variation on [a, b].

It can be proven for a decreasing function in a similar way. �

Definition 3.6 (Lipschitz condition)
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A finite function f (x) defined on [a, b] is said to satisfy a Lipschitz condition if

there exist a constant K such that for any two points x,y in [a, b],

| f (x) − f (y)| ≤ K |x − y| .

(I.P. Natanson, 1964)

Theorem 3.7 Every function of finite variation in [a, b] is bounded in [a, b].

Proof. Let a < x < b and {a, x, b} be a partition of [a, b] where x0 = a, x1 = x, x2 = b.

Then,
1∑

k=0
| f (xk+1) − f (xk)| = | f (x) − f (a)| + | f (b) − f (x)| ≤

b∨
a

( f ). Since f is bounded

variation on [a, b], then | f (x) − f (a)| ≤ K where K is a nonnegative real number. It is

concluded that

f (a) − K ≤ f (x) ≤ f (a) + K.

Since x is an arbitrary number in [a, b] ,it is said that f is bounded on [a, b]. �

Theorem 3.8 The sum, difference and product of two functions of finite variation are

functions of finite variation.

Proof. Let f (x) and g(x) ∈ BV [a, b] . It is set that s(x) = f (x) + g(x). Then,

|s(xk+1) − s(xk)| = | f (xk+1) + g(xk+1) − f (xk) − g(xk)| ≤ | f (xk+1) − f (xk)|+|g(xk+1) − g(xk)|.

Follows from the observation, the inequality
b∨
a

(s) ≤
b∨
a

( f )+
b∨
a

(g) can be obtained. It is

known that f and g are of bounded variation on [a, b]. So it can be written
b∨
a

(s) ≤ M,

where M is a positive real number. This means that s(x) is in BV[a, b].

Similarly, it is shown that f − g is of bounded variation on [a, b].

In order to prove that f g ∈ BV [a, b], let us consider a new function t(x) = f (x)g(x).

Then it can be written,

|t(xk+1) − t(xk)| = | f (xk+1)g(xk+1) − f (xk)g(xk) − f (xk)g(xk+1) + f (xk)g(xk+1)|
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And from triangle inequality it is written,

|t(xk+1) − t(xk)| ≤ |g(xk+1)| | f (xk+1) − f (xk)| + | f (xk)| |g(xk+1) − g(xk)| (3.1)

From Theorem (3.7), it is known that f and g are bounded on [a, b]. Therefore the

inequality (3.1) implies that
b∨
a

(t) =
b∨
a

( f g) ≤ K, where K is a positive real number.

Hence f g ∈ BV [a, b]. �

Theorem 3.9 Let a finite function f (x) be defined on [a, b] and let a < c < b. Then

b∨
a

( f ) =

c∨
a

( f ) +

b∨
c

( f ).

Proof. Subdivide each of the intervals [a, c] and [c, b] by means of the points

a = y0 < y1 < ... < ym = c , c = z0 < z1 < ... < zn = b

Let V1 =
m−1∑
k=0
| f (yk+1) − f (yk)| and V2 =

n−1∑
k=0

f (zk+1)− f (zk). Then it is concluded that

V1 + V2 ≤
b∨
a

( f ). Since the point sets {y0, y1, ..., ym} and {z0,z1, ..., zm} are arbitrary, it is

created that
c∨
a

( f ) +
b∨
c

( f ) ≤
b∨
a

( f ).

Now subdivide the interval [a, b] by means of the points

a = x0 < x1 < ... < xn = b

Since a < c < b, suppose that c = xm where m < n. Then

n−1∑
k=0

| f (xk+1) − f (xk)| =
m−1∑
k=0

| f (xk+1) − f (xk)| +
n−1∑
k=m

| f (xk+1) − f (xk)| ≤
c∨
a

( f ) +

b∨
c

( f )

Therefore,
b∨
a

( f ) ≤
c∨
a

( f ) +
b∨
c

( f ). In conclusion,

b∨
a

( f ) =

c∨
a

( f ) +

b∨
c

( f )
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Theorem 3.10 A function f (x) defined and finite on [a, b] is a function of finite varia-

tion if and only if it is representable as the difference of two increasing functions.

Proof. Let f1 and f2 be two increasing functions. By Theorem (3.5) f1, f2 are in

BV [a, b]. So f = f1 − f2 ∈ BV [a, b].

Conversely, setting π(x) =
x∨
a

( f ), where a < x ≤ b, and π(a) = 0. It can be seen

easily that π is an increasing function. Now let us consider a new function; v(x) =

π(x) − f (x). Firstly, it must be shown that v(x) is an increasing function.

If x < y then v(y) − v(x) = π(y) − f (y) − π(x) + f (x) =
y∨
a

( f ) − f (y) −
x∨
a

( f ) + f (x).

Follows from Theorem (3.9) it is written v(y) − v(x) =
x∨
a

( f ) +
y∨
x

( f ) − f (y) −
x∨
a

( f ) +

f (x).Therefore it is clear that v(y) − v(x) =
y∨
x

( f ) − [ f (y) − f (x)] ≥ 0. This implies that

v(x) ≤ v(y). Hence v(x) is an increasing function.

In conclusion,

f (x) = π(x) − v(x). This completes the proof. �

Theorem 3.11 Let a function f (x) of finite variation be defined on the closed interval

[a, b]. If f (x) is continuous at the point x0, then the function

π(x) =

x∨
a

( f )

is also continuous at x0.

Proof. Suppose that x0 < b. To show that the continuity of π(x), ε > 0 is choosen, and

the segment [x0, b] is subdivided as follows;

x0 < x1 < x2 < ... < xn = b

So
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V =

n−1∑
k=0

| f (xk+1) − f (xk)| >
b∨
x0

( f ) − ε

Since the sum V only increases when new points are added, it might be supposed

that | f (x1) − f (x0)| < ε. So,

b∨
x0

( f ) < ε +

n−1∑
k=0

| f (xk+1) − f (xk)| < 2ε +

n−1∑
k=1

| f (xk+1) − f (xk)| ≤ 2ε +

b∨
x1

( f )

Therefore,
b∨
x0

( f )−
b∨
x1

( f ) ≤ 2ε. Then
x1∨
x0

( f ) ≤ 2ε. Since π(x)−π(x0) =
x∨
a

( f )−
x0∨
a

( f ) =

x∨
x0

( f ), it is concluded that π(x) is continuous from the right at x0.

The other part can be proven in a similar way. Thus, π(x) is continuous at x0. �

Corollary 3.12 A continuous function of finite variation on [a, b] can be written as the

difference of two continuous increasing functions.

Theorem 3.13 Let f be a function defined on [a, b]. If f ′ exists, bounded and Riemann

integrable on [a, b] then f ∈ BV[a, b] and
b∨
a

( f ) =
b∫

a
| f ′(x)| dx.

Proof. Subdivide the interval [a, b] by means of the points

a = x0 < x1 < x2 < ... < xn−1 < xn = b

It is known that f ′ is bounded on [a, b]. Then it is said that ∃ M > 0 such that

| f ′(x)| ≤ M for all x ∈ [a, b].

Since f ′ exists, according to the Mean Value Theorem there exists ck ∈ R,where

xk ≤ ck ≤ xk+1, such that

f (xk+1) − f (xk)
xk+1 − xk

= f ′(ck) for all k = 0, ..., n − 1
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Therefore it can be obtained that

n−1∑
k=0

| f (xk+1) − f (xk)| =
n−1∑
k=0

| f ′(ck)| |xk+1 − xk| ≤ M(b − a)

So f ∈ BV[a, b]. In addition, by using the definition of Riemann integral the fol-

lowing quantity is obtained:
b∨
a

( f ) = sup
n−1∑
k=0
| f (xk+1) − f (xk)| = sup

n−1∑
k=0
| f ′(ck)| |xk+1 − xk| = limn→∞

n−1∑
k=0
| f ′(ck)| |xk+1 − xk| =

b∫
a
| f ′(x)| dx. This completes the proof. �

Definition 3.14 (Absolutely continuous Function)

Let f (x) be a finite function defined on the closed interval [a, b]. Suppose that for

every ε > 0, there exists a δ > 0 such that

∣∣∣∣∣∣∣
n∑

k=1

{ f (bk) − f (ak)}

∣∣∣∣∣∣∣ < ε
for all numbers a1, b1, ..., an, bn such that a1 < b1 ≤ a2 < b2 ≤ ... ≤ an < bn and

n∑
k=1

(bk − ak) < δ

Then the function f (x) is said to be absolutely continuous. The class of all absolutely

continuous function on [a, b] is denoted by AC [a, b] .

(I.P. Natanson, 1964)

Theorem 3.15 An absolutely continuous function is uniformly continuous.

Proof. It is obvious if n is picked as 1 in definition (3.14). �

Theorem 3.16 If f : [a, b] → R is a Lipschitz function with Lipchitz constant M > 0

then f is absolutely continuous on [a, b].
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Proof. Let ε > 0 and (ak, bk) be non-overlapping intervals in [a, b] such that

n∑
k=1

(bk − ak) < δ.

According to Lipschitz condition it is concluded that | f (bk) − f (ak)| ≤ Mk |ak − bk| ,

where Mk ∈ R
+ for every k = 1, ..., n. Therefore it is obtained,

n∑
k=1

| f (bk − f (ak)| ≤
n∑

k=1

Mk |ak − bk| < M.δ where M = max
1≤k≤n

Mk

picking δ ≤ ε
M , the proof will be completed. Consequently f is absolutely contin-

uous. �

Theorem 3.17 Every absolutely continuous function on the interval [a, b] has finite

variation on [a, b].

Proof. Let f : [a, b] → R be absolutely continuous. Then for any given ε > 0 there

exists δ > 0 such that
n∑

i=1
| f (bi) − f (ai)| < ε whenever

n∑
i=1
|bi − ai| < δ and (ai, bi) are

non-overlapping intervals in [a, b].

Let us consider a partition of [a, b] by means {xi = a + i (b−a)
k : 0 ≤ i ≤ k}. Hence

xi∨
xi−1

( f ) ≤ ε by the absolute continuity condition. There are at most the number of k

of these subintervals. Therefore by Theorem (3.9) it can be obtained that
b∨
a

( f ) ≤ εk.

Hereby, f is of bounded variation on [a, b]. �

Corollary 3.18 If a function f satisfies the Lipschitz condition on [a, b], then it is of

finite variation on [a, b]

Theorem 3.19 AC[a, b] is a closed subspace of TV[a, b] in the variation seminorm.

Proof. By Theorem (3.17), it is clear that AC is a subset of TV .

Let ( fn)nεN be a sequence of functions in AC[a, b] that converges in the variation

seminorm to f . Then, given ε > 0, there exists n ∈ N such that
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V[a,b][ fn − f ] = ‖ fn − f ‖ <
ε

2

Whereby fn ε AC[a, b], there exists a δ > 0 such that, for every finite set {[a, b] :

i = 1, 2, ..., k} of nonoverlapping intervals for which
k∑

i=1
(bi − ai) < δ it can be written,

k∑
i=1

| fn(bi) − fn(ai)| <
ε

2

In this manner it is deduced that,

k∑
i=1

| f (bi) − f (ai)| ≤
k∑

i=1

|( f − fn)(bi) − ( f − fn)(ai)| +
k∑

i=1

| fn(bi) − fn(ai)|

≤ V[a,b][ f − fn] +
ε

2

< ε

.

There follows f ε AC[a, b] and so AC[a, b] is closed. �

Remark 3.20 If f is absolutely continuous, then f has a derivative almost everywhere

and f ′ is Lebesgue integrable.

3.2 The Stieltjes Integral

Definition 3.21 (The Stieltjes Integral)

Let f (x) and g(x) be finite functions defined on the closed interval [a, b]. Subdivide

[a, b] into parts by means of the points

a = x0 < x1 < x2 < ... < xn = b,

choose a point ξk in [xk, xk+1] for k = 0, ..., n − 1, and form the sum

σ =

n−1∑
k=0

f (ξk)[g(xk+1) − g(xk)].
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If the sum σ tends to a finite limit I as

λ = max(xk+1 − xk)→ 0

independently of both the method of subdivision and the choice of the points ξk, this

limit is called the Stieltjes Integral of the function f (x) with respect to g(x) and it is

denoted by

b∫
a

f (x)dg(x) or (S )

b∫
a

f (x)dg(x).

(I.P. Natanson, 1964)

Theorem 3.22 The integral
b∫

a

f (x)dg(x)

exists if the function f (x) is continuous on [a, b] and g(x) is of finite variation on

[a, b].

Proof. It can be said that g is increasing because of every function of finite variation is

the difference of two increasing functions. Subdivide [a, b] by means of the points

x0 = a < x1 < ... < xn = b

Let mk and Mk be the least and greatest values of f (x) on [xk+1, xk] and

s =

n−1∑
k=0

mk[g(xk+1) − g(xk)], S =

n−1∑
k=0

Mk[g(xk+1) − g(xk)]

Then it is reached that,

s ≤ σ ≤ S .
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s does not decrease when new points of subdivision are added.To show that this,

let us add the point xc into [xm, xm+1] and let’s say

s1 = m0[g(x1)−g(x0)]+...+mi[g(xc)−g(xm)]+m j[g(xm+1)−g(xc)]+...+mn−1[g(xn)−g(xn−1)].

where mi,m j are the least values of f on [xm, xc] and [xc, xm+1], respectively. Since,

s = m0[g(x1) − g(x0)] + ... + mm[g(xm+1) − g(xm)] + ... + mn−1[g(xn) − g(xn−1)]

and mm is the least value of f on [xm, xm+1] it is deduced,

s1 ≥ s.

In the similar way it can be shown that S does not increase. These mean that none

of the sum s is greather than any of the sum S . That is, for two method of subdividing

the segment [a, b] with corresponding s1, S 1 and s2, S 2 we have s1 ≤ S 2.

Let

I = sup{s}

Therefore for every subdivision of [a, b],

s ≤ I ≤ S

and consequently,

|σ − I| < S − s

Since f is continuous on [a, b], then f is uniformly continuous. So for any ε > 0, a

δ > 0 can be found such that | f (x) − f (y)| < ε whenever |x − y| < δ for all x, y in [a, b].

And so,

MK − mk < ε, k = 0, 1, ..., n − 1.
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Therefore for λ < δ,

S − s =

n−1∑
k=0

Mk[g(xk+1) − g(xk)] −
n−1∑
k=0

mk
[
g(xk+1) − g(xk)

]
=

n−1∑
k=0

(Mk − mk)[g(xk+1) − g(xk)]

≤ ε

n−1∑
k=0

[g(xk+1) − g(xk)]

= ε[g(b) − g(a)]

Since |σ − I| < S − s it is obtained that,

|σ − I| < ε[g(b) − g(a)]

Consequently,

lim
λ→0

σ = I

That is,

I =

b∫
a

f (x)dg(x)

�

Theorem 3.23 For all f1, f2, f ∈ C [a, b] and g1, g2, g ∈ BV [a, b],

1)
b∫

a
[ f1(x) + f2(x)]dg(x) =

b∫
a

f1(x)dg(x) +
b∫

a
f2(x)dg(x).

2)
b∫

a
f (x)d[g1(x) + g2(x)] =

b∫
a

f (x)dg1(x) +
b∫

a
f (x)dg2(x).

3) If m and n are constants, then

b∫
a

m f (x)dng(x) = mn

b∫
a

f (x)dg(x).

4) If a < c < b then,

b∫
a

f (x)dg(x) =

c∫
a

f (x)dg(x) +

b∫
c

f (x)dg(x).
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Theorem 3.24 If the function f (x) is continuous on [a, b] and g(x) has finite variation

on [a, b] then, ∣∣∣∣∣∣∣∣
b∫

a

f (x)dg(x)

∣∣∣∣∣∣∣∣ ≤ M( f )
b∨
a

(g).

Proof. For an arbitrary subdivision of [a, b],

∣∣∣∣∣∣∣∣
b∫

a

f (x)dg(x)

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣ limn→∞

n−1∑
k=0

f (ξk)[g(xk+1) − g(xk)]

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ limn→∞

n−1∑
k=0

| f (ξk)| [g(xk+1) − g(xk)]

∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣ limn→∞

n−1∑
k=0

max
x ∈ [a,b]

| f (x)| [g(xk+1) − g(xk)]

∣∣∣∣∣∣∣
= M( f )

∣∣∣∣∣∣∣ limn→∞

n−1∑
k=0

[g(xk+1) − g(xk)]

∣∣∣∣∣∣∣
= M( f ) |g(b) − g(a)|

≤ M( f )
b∨
a

(g)

Therefore, ∣∣∣∣∣∣∣∣
b∫

a

f (x)dg(x)

∣∣∣∣∣∣∣∣ ≤ M( f )
b∨
a

(g).

�

.

Theorem 3.25 If the function f (x) is continuous on [a, b] and if the function g(x) has

a Riemann integrable derivative g′(x) at every point of [a, b], then

(S )

b∫
a

f (x)dg(x) =

b∫
a

f (x)g′(x)dx.

Proof. Since g(x) has derivative, g(x) satisfies the Lipschitz condition and so g(x) is of

finite variation. Thus the integral on the left side exists.
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Subdivide [a, b] by means of the points

x0 = a < x1 < x2 < ... < xn = b.

According to the mean value theorem it is deduced,

g(xk+1) − g(xk) = g′(ck)(xk+1 − xk) (xk < ck < xk+1)

The point ck might be taken for the point ξk. Therefore,

(S )

b∫
a

f (x)dg(x) = lim
n→∞

n−1∑
k=0

f (ck)[g(xk+1) − g(xk)]

= lim
n→∞

n−1∑
k=0

f (ck)g′(ck)(xk+1 − xk)

= lim
n→∞

n−1∑
k=0

( f g′)(ck)(xk+1 − xk)

=

b∫
a

f (x)g′(x)dx.

�
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CHAPTER 4

VORONOVSKAYA-TYPE THEOREMS AND CONVERGENCE IN

THE VARIATION SEMINORM

4.1 Voronovskaya-Type Theorem

After veryfying the convergence of (Bn f )(x) and (Cn f ) (x), the most significant ques-

tion coming to mind was rate of approximation by the (Bn f )(x) to f (x) and (Cn f )(x)

to f (x). In 1932 Voronovskaya answered this question for Bernstein and in 1960 J.

Albrycht and J. Redecki did for Bernstein-Cholodovsky polynomials. Sebsequent to

these, Bardaro, Butzer, Stens, Vinti (Bardaro et.al., 2003) and Butzer, Karsli (Butzer

and Karsli, 2009) found the solution of that question for (Bn f )′(x) and (Cn f )′(x), re-

spectively.

In this section, the certain results needed to prove Voronovskaya type theorems are

presented and Voronovskaya type theorems are established.

4.1.1 Bernstein polynomials case

Recall that, Bernstein polynomials, for any function f (x) defined on [0, 1] ,are defined

as

(Bn f )(x) = B f
n(x) =

n∑
k=0

f
(

k
n

)
pk,n(x) (4.1)

where

pk,n(x) =

(
n
k

)
xk(1 − x)n−k

Differentiating the formula (4.1) , it can be obtained that

(Bn f )′(x) =

n∑
k=0

f
(

k
n

) (
n
k

) {
kxk−1 (1 − x)n−k

− (n − k) xk (1 − x)n−k−1
}
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(Bn f )′(x) = n
n−1∑
k=0

[
f
(
k + 1

n

)
− f

(
k
n

)]
pk,n−1(x) (4.2)

Since d
dx

(
pk,n(x)

)
=

(k−nx)pk,n(x)
x(1−x) , it is also written for (Bn f )′(x),

(Bn f )′(x) =
1

x(1 − x)

n∑
k=0

f
(

k
n

)
(k − nx)pk,n(x). (4.3)

Lemma 4.1 For (Bnts)(x), s = 0, 1, 2, 3, 4, 5 one has for 0 ≤ x ≤ 1

(Bn1)(x) = 1

(Bnt)(x) = x

(Bnt2)(x) = x2 +
x(1−x)

n

(Bnt3)(x) = x3
[

n2−3n+2
n2

]
+ x2

[
3(n−1)

n2

]
+ x

n2

(Bnt4)(x) = x4
[

n3−6n2+11n−6
n3

]
+ x3

[
6(n2−3n+2)

n3

]
+ x2

[
7(n−1)

n3

]
+ x

n3

(Bnt5)(x) = x5
[

n4−10n3+35n2−50n+24
n4

]
+x4

[
10(n3−6n2+11n−6)

n4

]
+x3

[
25(n−3n+2)

n4

]
+x2

[
15(n−1)

n4

]
+

x 1
n4

Proof.

(Bn1)(x) =

n∑
k=0

pk,n (x) = 1

(Bnt)(x) =

n∑
k=0

k
n

pk,n

(
x
bn

)
=

1
n

n∑
k=1

kpk,n (x)

=
1
n

n−1∑
k=0

n!
(n − 1 − k)!k!

xk+1 (1 − x)n−1−k

= x
n−1∑
k=0

pk,n−1 (x) = x

(
Bnt2

)
(x) =

n∑
k=0

k2

n2 pk,n (x)

=
1
n2

n−1∑
k=0

(k + 1)
n!

(n − 1 − k)!k!
xk+1 (1 − x)n−1−k

=
x
n

 n−1∑
k=0

kpk,n−1 (x) +

n−1∑
k=0

pk,n−1 (x)


=

x
n

((n − 1) x + 1) = x2 +
x(1 − x)

n
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(Bnt3)(x) =

n∑
k=0

k3

n3 pk,n (x)

=
1
n3

n−1∑
k=0

(k + 1)2 n!
(n − 1 − k)!k!

xk+1 (1 − x)n−1−k

=
x
n2

 n−1∑
k=0

k2 pk,n−1 (x) + 2
n−1∑
k=0

kpk,n−1 (x) + 1


=

x
n2 [(n − 1) x [(n − 2) x + 1] + 2 (n − 1) x + 1]

= x3
(
n3 − 3n + 2

n2

)
+ x2

(
3(n − 1)

n2

)
+ x

1
n2

(Bnt4)(x) and (Bnt5)(x) can be found in the similar way. �

The following lemma is concerned with the moments for (Bn f )(x) which will be

used to established the theorems of rate of convergence of (Bn f )(x) and (Bn f )′ (x).

Lemma 4.2 Considering the moments

Wn,m :=
n∑

k=0

(k − nx)m pk,n(x) (m ∈ N0) (4.4)

Then for X := x(1 − x) there hold for all x ∈ [0, 1] the following identities

Wn,0(x) = 1

Wn,1(x) = 0

Wn,2(x) = nX

Wn,3(x) = nX(1 − 2x)

Wn,4(x) = 3(nX)2 + (1 − 6X)nX

Wn,5(x) =
(
10 (nX)2 + (1 − 12X) nX

)
(1 − 2x)

Wn,6(x) = 15 (nX)3 + (25 − 130X) (nX)2 + (1 − 30X + 120X2)nX.

Proof. In order to complete the proof it is needed to use previous lemma. By using the
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previous lemma the identities can be obtained as follows;

Wn,0(x) =

n∑
k=0

pk,n (x) = 1

Wn,1(x) =

n∑
k=0

(k − nx)pk,n (x)

=

n∑
k=0

kpk,n (x) − nx = 0.

Wn,2(x) =

n∑
k=0

(k − nx)2 pk,n (x)

=

n∑
k=0

k2 pk,n (x) − 2xn
n∑

k=0

kpk,n (x) + n2x2

= b2
n
n2

b2
n

[
x2 +

x (bn − x)
n

]
− 2xnbn

nx
bn

+ n2x2

= nx(1 − x) = nX.

Wn,3(x) =

n∑
k=0

(k − nx)3 pk,n (x)

=

n∑
k=0

k3 pk,n (x) − 3nx
n∑

k=0

k2 pk,n (x)

+3n2x2
n∑

k=0

kpk,n (x) − n3x3

= n3
[
x3

(
n3 − 3n + 2

n2

)
+ x2

(
3(n − 1)

n2

)
+ x

1
n2

]
−3nxn2

[
x2 +

x(1 − x)
n

]
+ 3n2x2nx − n3x3

= nx(1 − 2x)(1 − x)

= nX(1 − 2x).

In the similar method Wn,4(x),Wn,5(x) and Wn,6(x) are calculated. �

Let us consider a Voronovskaya-type theorem for (Bn f )(x) which is due to Voronovskaya

(Voronovskaya, 1932). This result was first come out in the instance of Kantrovich

polynomials (Voronovskaya, 1952)..
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Theorem 4.3 Let f be a bounded function on [0, 1]. Then

lim
n→∞

n
[
(Bn f )(x) − f (x)

]
=

x(1 − x)
2

f ′′(x)

at each fixed point x ∈ [0, 1] for which there exists f ′′(x) , 0.

Proof. Since f ′′(x) exists, from Taylor it is obtained

f
(

k
n

)
= f (x) +

(
k
n
− x

)
f ′(x) +

(
k
n
− x

)2 (
1
2

f ′′(x) + h
(

k
n
− x

))

where h(y) is converges to zero with y.

Since f (x) is bounded it can be said that h(y) is bounded for all y, saying |h(y)| ≤ M.

From Bernstein’s expression and Lemma (4.2)

(Bn f )(x) = f (x) +
f ′(x)

n

n∑
k=0

(k − nx)pk,n(x) +
f ′′(x)
2n2

n∑
k=0

(k − nx)2 pk,n(x)

+
f ′′(x)
2n2

n∑
k=0

(k − nx)2h
(

k
n
− x

)
pk,n(x)

= f (x) +
X
2n

f ′′(x) + Rn(x)

where the remainder is given by

Rn(x) =
f ′′(x)
2n2

n∑
k=0

(k − nx)2h
(

k
n
− x

)
pk,n(x)

Therefore,

lim
n→∞

n
[
(Bn f )(x) − f (x)

]
= lim

n→∞

[X
2

f ′′(x) + nRn(x)
]

Then in order to complete the proof it is sufficient to prove that

lim
n→∞

nRn(x) = 0
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Let’s divide Rn(x) into two parts as follows

Rn(x) =
f ′′(x)
2n2

∑
| kn−x|<δ

(k − nx)2h
(

k
n
− x

)
pk,n(x)

+
f ′′(x)
2n2

∑
| kn−x|≥δ

(k − nx)2h
(

k
n
− x

)
pk,n(x)

Since h(y) is converges to 0, for any ε > 0 there exists δ > 0 such that |h(y)| < ε

whenever 0 ≤ y < δ. Thus,

∣∣∣∣∣∣∣∣∣
f ′′(x)
2n2

∑
| kn−x|<δ

(k − nx)2h
(

k
n
− x

)
pk,n(x)

∣∣∣∣∣∣∣∣∣ ≤
| f ′′(x)|

8n
ε

Since |1 − 6X| ≤ 1, for
∣∣∣ k
n − x

∣∣∣ ≥ δ from Lemma (4.2) it is obtained

∣∣∣∣∣∣∣∣∣
f ′′(x)
2n2

∑
| kn−x|≥δ

(k − nx)2h
(

k
n
− x

)
pk,n(x)

∣∣∣∣∣∣∣∣∣ ≤
3 | f ′′(x)|M

32δ2n2 +
| f ′′(x)|M

8δ2n3

Consequently,

|nRn(x)| ≤
| f ′′(x)|

8
ε +

3 | f ′′(x)|M
32δ2n

+
| f ′′(x)|M

8δ2n2

which implies that

lim
n→∞

nRn(x) = 0

�

Now, Voronovskaya type theorem will be presented for (Bn f )′(x). Replacing f by

f ′ and (Bn f )(x) and (Bn f )′(x) yields theorem (4.4) below. The first quantitative version

of the following theorem is due to Bardaro, Butzer, Stens, Vinti (Bardaro et.al., 2003)..

Theorem 4.4 If f is bounded on [0, 1] and f ′′′(x) exists in a certain point x ∈ [0, 1],

then

lim
n→∞

n[(Bn f )′(x) − f ′(x)] =
(1 − 2x)

2
f ′′(x) +

x(1 − x)
2

f ′′′(x).

43



Proof. By Taylor’s formula it can be written,

f
(

k
n

)
= f (x) +

(
k
n
− x

)
f ′(x) +

(
k
n
− x

)2 f ′′(x)
2!

+

(
k
n
− x

)3 [
1
6

f ′′′(x) + h
(

k
n
− x

)]

where h(y) is bounded for all y, it is said that |h(y)| ≤ M, and converges to zero.

Therefore from the representation (4.3) and Lemma (4.2) the following part is ob-

tained.

(Bn f )′(x) =
1
X

n∑
k=0

f
(

k
n

)
(k − nx)pk,n(x)

=
f (x)
X

n∑
k=0

(k − nx)pk,n(x) +
f ′(x)

X

n∑
k=0

(k − nx)
(

k
n
− x

)
pk,n(x)

+
f ′′(x)
2X

n∑
k=0

(k − nx)
(

k
n
− x

)2

pk,n(x) +
f
′′′

(x)
6X

n∑
k=0

(k − nx)
(

k
n
− x

)3

pk,n(x)

+
1
X

n∑
k=0

(k − nx)
(

k
n
− x

)3

h
(

k
n
− x

)
pk,n(x)

= f ′(x) +
(1 − 2x) f ′′(x)

2n
+

X f ′′′(x)
2n

+
(1 − 6X) f ′′′(x)

6n2 +
1
n3

n∑
k=0

(k − nx)4

X
h
(

k
n
− x

)
pk,n(x)

The last term 1
n3

n∑
k=0

(k−nx)4

X h
(

k
n − x

)
pk,n(x) is written as;

1
n3

n∑
k=0

(k − nx)4

X
h
(

k
n
− x

)
pk,n(x) =

1
n3

∑
| kn−x|<δ

(k − nx)4

X
h
(

k
n
− x

)
pk,n(x)

+
1
n3

∑
| kn−x|≥δ

(k − nx)4

X
h
(

k
n
− x

)
pk,n(x)

Since h(y) converges to zero, for any ε > 0 there exists a δ > 0 such that |h(y)| < ε

for 0 < y < δ. It is known that 0 ≤ X ≤ 1
4 . It follows from Lemma (4.2),

1
n3

∑
| kn−x|<δ

(k − nx)4

X
h
(

k
n
− x

)
pk,n(x)

≤
ε

Xn3

∑
| kn−x|<δ

(k − nx)4 pk,n(x)

≤
3εX

n
+
ε

n2 (1 − 6X) ≤
2ε
n
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For
∣∣∣ k
n − x

∣∣∣ ≥ δ it is composed that (k−nx)2

n2δ2 ≥ 1. Therefore,

1
n3

∑
| kn−x|≥δ

(k − nx)4

X
h
(

k
n
− x

)
pk,n(x)

≤
M

n3X

∑
| kn−x|≥δ

(k − nx)4 pk,n(x)

≤
M

n5Xδ2

∑
| kn−x|≥δ

(k − nx)6 pk,n(x)

≤
M

n5Xδ2

[
15(nX)3 + (25 − 130X)(nX)2 + (1 − 30X + 120X2)(nX)

]
=

15X2

n2δ2 M +
(25 − 130X)X

n3δ2 M +
(1 − 30X + 120X2)

n4δ2 M

Since |25 − 130X| ≤ 25 and
∣∣∣1 − 30X + 120X2

∣∣∣ ≤ 16, it is written that

∣∣∣∣∣∣∣∣∣
1
n3

∑
| kn−x|≥δ

(k − nx)4

X
h
(

k
n
− x

)
pk,n(x)

∣∣∣∣∣∣∣∣∣
≤

15X2

n2δ2 M +
|25 − 130X| X

n3δ2 M +

∣∣∣1 − 30X + 120X2
∣∣∣

n4δ2 M

≤
56M
δ2n2

Hence,

∣∣∣∣∣∣∣ 1
n3

n∑
k=0

(k − nx)4

X
h
(

k
n
− x

)
pk,n(x)

∣∣∣∣∣∣∣
≤

2ε
n

+
56M
δ2n2

Consequently,

∣∣∣∣∣n[(Bn f )′(x) − f ′(x)] −
(1 − 2x)

2
f ′′(x) −

x(1 − x)
2

f ′′′(x)
∣∣∣∣∣

≤
|1 − 6X|

6n
| f ′′′(x)| +

2ε
n

+
56M
δ2n

≤ 2ε +
1
n

[
| f ′′′(x)|

6
+

56M
δ2

]
→ 0 as n→ ∞

So, the proof was completed. �

45



4.1.2 Chlodovsky polynomials case

It had better to reveal the definition of Bernstein-Chlodovsky polynomials, over again.

These polynomials are given by

(Cn f )(x) =

n∑
k=0

f
(
bn

n
k
)

pk,n

(
x
bn

)
where f is a function defined on [0,∞) and bounded on every finite interval [0, b] ⊂

[0,∞) with a certain rate, with pk,n denoting as usual

pk,n(x) =

(
n
k

)
xk(1 − x)n−k , 0 ≤ x ≤ 1

and (bn)∞n=1 being a positive increasing sequence of real numbers wih the properties

lim
n→∞

bn = ∞ , lim
n→∞

bn

n
= 0.

Since
d
dx

pk,n

(
x
bn

)
=

kbn − nx
x (bn − x)

pk,n

(
x
bn

)
there follow by differentation the two fundemental representations for (Cn f )′(x)

(Cn f )′(x) =
n
bn

n−1∑
k=0

[
f
(
k + 1

n
bn

)
− f

(
k
n

bn

)]
pk,n−1

(
x
bn

)
(4.5)

=
1

x (bn − x)

n∑
k=0

f
(

k
n

bn

)
(kbn − nx) pk,n

(
x
bn

)
(4.6)

Lemma 4.5 For (Cnts)(x), s = 0, 1, 2, 3, 4, 5 one has for 0 ≤ x ≤ bn

(Cn1)(x) = 1

(Cnt)(x) = x

(Cnt2)(x) = x2 +
x(bn−x)

n

(Cnt3)(x) = x3
[

n2−3n+2
n2

]
+ x2

[
3bn(n−1)

n2

]
+

xb2
n

n2

(Cnt4)(x) = x4
[

n3−6n2+11n−6
n3

]
+ x3

[
6bn(n2−3n+2)

n3

]
+ x2

[
7b2

n(n−1)
n3

]
+ x b3

n
n3

(Cnt5)(x) = x5
[

n4−10n3+35n2−50n+24
n4

]
+x4

[
10bn(n3−6n2+11n−6)

n4

]
+x3

[
25b2

n(n−3n+2)
n4

]
+x2

[
15b3

n(n−1)
n4

]
+

x b4
n

n4

46



Proof.

(Cn1)(x) =

n∑
k=0

pk,n

(
x
bn

)
= 1

(Cnt)(x) =

n∑
k=0

kbn

n
pk,n

(
x
bn

)
=

bn

n

n∑
k=1

kpk,n

(
x
bn

)

=
bn

n

n−1∑
k=0

n!
(n − 1 − k)!k!

(
x
bn

)k+1 (
1 −

x
bn

)n−1−k

= x
n−1∑
k=0

pk,n−1

(
x
bn

)
= x

(
Cnt2

)
(x) =

n∑
k=0

k2b2
n

n2 pk,n

(
x
bn

)

=
b2

n

n2

n−1∑
k=0

(k + 1)
n!

(n − 1 − k)!k!

(
x
bn

)k+1 (
1 −

x
bn

)n−1−k

=
bnx
n

 n−1∑
k=0

kpk,n−1

(
x
bn

)
+

n−1∑
k=0

pk,n−1

(
x
bn

)
=

bnx
n

(
n − 1

bn
x + 1

)
= x2 +

x(bn − x)
n

(Cnt3)(x) =

n∑
k=0

k3b3
n

n3 pk,n

(
x
bn

)

=
b3

n

n3

n−1∑
k=0

(k + 1)2 n!
(n − 1 − k)!k!

(
x
bn

)k+1 (
1 −

x
bn

)n−1−k

=
xb2

n

n2

 n−1∑
k=0

k2 pk,n−1

(
x
bn

)
+ 2

n−1∑
k=0

kpk,n−1

(
x
bn

)
+ 1


=

xb2
n

n2

[
(n − 1)x

bn

(
(n − 2)x

bn
+ 1

)
+ 2

(n − 1)x
bn

+ 1
]

= x3
(
n3 − 3n + 2

n2

)
+ x2

(
3bn(n − 1)

n2

)
+ x

b2
n

n2

(Cnt4)(x) and (Cnt5)(x) can be determined by using the proven identities. �

47



The moments concerning (Cn f ) is needed so as to verify the rate of convergence of

(Cn f )(x) and (Cn f )′(x). For this reason the moments for (Cn f ) (x) will be identified in

the following lemma.

Lemma 4.6 Defining the moments

Tn,m :=
n∑

k=0

(kbn − nx)m pk,n

(
x
bn

)
(4.7)

where m ∈ N0. Then there hold the following identities

Tn,0(x) = 1

Tn,1(x) = 0

Tn,2(x) = nx(bn − x)

Tn,3(x) = nx(bn − x)(bn − 2x)

Tn,4(x) = nx(bn − x) [(bn − x)(bn − 2x) + x(4x − 3bn) + 3nx(bn − x)]

and the following recurrence relation:

Tn,m+1(x) = x(bn − x)
[
T ′n,m(x) + mnTn,m−1(x)

]
, m ≥ 1. (4.8)

Proof. The proof is finalized by using the foregoing Lemma as follows:

Tn,0(x) =

n∑
k=0

pk,n

(
x
bn

)
= 1

Tn,1(x) =

n∑
k=0

(kbn − nx)pk,n

(
x
bn

)
= bn

n∑
k=0

kpk,n

(
x
bn

)
− nx = 0

Tn,2(x) =

n∑
k=0

(kbn − nx)2 pk,n

(
x
bn

)
= b2

n

n∑
k=0

k2 pk,n

(
x
bn

)
− 2xnbn

n∑
k=0

kpk,n

(
x
bn

)
+ n2x2

= b2
n
n2

b2
n

[
x2 +

x (bn − x)
n

]
− 2xnbn

nx
bn

+ n2x2

= nx(bn − x)
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Tn,3(x) =

n∑
k=0

(kbn − nx)3 pn,k

(
x
bn

)
= b3

n

n∑
k=0

k3 pk,n

(
x
bn

)
− 3b2

nnx
n∑

k=0

k2 pk,n

(
x
bn

)
+3bnn2x2

n∑
k=0

kpk,n

(
x
bn

)
− n3x3

−3b2
nnx

n2

b2
n

[
x2 +

x(bn − x)
n

]
+ 3bnn2x2 n

bn
x − n3x3

= nx(bn − 2x)(bn − x)

Tn,4(x) is obtained by following the similar technique.

Now, Let us prove the recurrence relation (4.8). Differentiating both sides of the

expression (4.7) with respect to x, it is deduced

T ′n,m(x) =

n∑
k=0

[
(kbn − nx)m d

dx
pk,n

(
x
bn

)
− mn (kbn − nx)m−1 pk,n

(
x
bn

)]
=

n∑
k=0

(kbn − nx)m d
dx

pk,n

(
x
bn

)
− mn

n∑
k=0

(kbn − nx)m−1 pk,n

(
x
bn

)
=

n∑
k=0

(kbn − nx)m (kbn − nx)
x (bn − x)

pk,n

(
x
bn

)
− mn

n∑
k=0

(kbn − nx)m−1 pk,n

(
x
bn

)

and therefore

T ′n,m(x) =
1

x (bn − x)
Tn,m+1(x) − mnTn,m−1(x)

there follows the recurrence relation (4.8). �

The following lemma plays an important role in the proof of the theorems of the

rate of approximation of (Cn f )(x) and (Cn f )′(x). On this occasion the following lemma

about central moment for (Cn f ) and a significant result concerning the central moment

will be presented.

Lemma 4.7 For the central moments of order m ∈ N0,

T ∗n,m(x) :=
n∑

k=0

(
kbn

n
− x

)m

pk,n

(
x
bn

)
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one has

T ∗n,0(x) = 1

T ∗n,1(x) = 0

T ∗n,2(x) =
x(bn−x)

n

T ∗n,3(x) =
x(bn−x)(bn−2x)

n2

T ∗n,4(x) =
x(bn−x)[(bn−x)(bn−2x)+x(4x−3bn)+3nx(bn−x)]

n3

and for any fixed x ∈ [0,∞),

∣∣∣T ∗n,m(x)
∣∣∣ ≤ Am(x)

x(bn − x)
bn

(
bn

n

)[(m+1)/2]

(n ∈ N, n > bn), (4.9)

where Am(x) denotes a polynomial in x, of degree [m/2] − 1, with non-negative coeffi-

cients independent of n, and [a] denotes the integral part of a.

Proof. The identities T ∗n,0(x), T ∗n,1(x), T ∗n,2(x), T ∗n,3(x) and T ∗n,4(x) are obtained readily by

following the previous lemma. Exclusively, the inequality (4.9) will be proven.

Differentiating both sides of the expression (4.4) with respect to x, it is obtained

W ′
n,m(x) =

n∑
k=0

[
(k − nx)m d

dx
pk,n (x) − mn (k − nx)m−1 pk,n (x)

]
=

n∑
k=0

(k − nx)m d
dx

pk,n (x) − mn
n∑

k=0

(k − nx)m−1 pk,n (x)

=

n∑
k=0

(k − nx)m (k − nx)
x (1 − x)

pk,n (x) − mn
n∑

k=0

(k − nx)m−1 pk,n (x)

and so

Wn,m+1(x) = x(1 − x)
[
W ′

n,m(x) + mnWn,m−1(x)
]

, m ≥ 1

The last expression can rewrite by using t variable as follows:

Wn,m+1(t) = t(1 − t)
[
W ′

n,m(t) + mnWn,m−1(t)
]

, m ≥ 1 (4.10)
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From this formula by using mathematical induction the following representation

can be obtained:

Wn,2s =

s∑
j=1

α j,s,n (t (1 − t)) j n j

Wn,2s+1 = (1 − 2t)
s∑

j=1

β j,s,n (t (1 − t)) j n j

where s ∈ N and α j,s,n, β j,s,n denote real numbers independent of t and bounded

uniformly in n. ( see the proof in [?] ).

If t is equal to x
bn

, 0 ≤ x ≤ bn, in the expression (4.10), it is concluded that,

T ∗n,m(x) =
bm

n

nm Wn,m

(
x
bn

)

So it is deduced the following representations:

T ∗n,2s =

(
bn

n

)2s s∑
j=1

α j,s,n

(
x
bn

(
1 −

x
bn

)) j

n j

T ∗n,2s+1 =

(
bn

n

)2s+1 (
1 − 2

x
bn

) s∑
j=1

β j,s,n

(
x
bn

(
1 −

x
bn

)) j

n j

for s ∈ N, where α j,s,n, β j,s,n are independent of x and bounded uniformly in n.

Therefore for sufficiently large n ( such that n > bn ), it is made inferences that

∣∣∣T ∗n,2s

∣∣∣ ≤ (
bn

n

)2s s∑
j=1

∣∣∣α j,s,n

∣∣∣ ( x
bn

(
1 −

x
bn

)) j

n j

=

(
bn

n

)2s s∑
j=1

∣∣∣α j,s,n

∣∣∣ x j

(
1 −

x
bn

) j ( n
bn

) j

≤

(
bn

n

)2s (
1 −

x
bn

) s∑
j=1

∣∣∣α j,s,n

∣∣∣ x j

(
n
bn

) j

=

(
bn

n

)2s x
bn

(
1 −

x
bn

)
n

s∑
j=1

∣∣∣α j,s,n

∣∣∣ x j−1
(

n
bn

) j−1
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=

(
bn

n

)2s x
bn

(
1 −

x
bn

)
n

s−1∑
j=0

∣∣∣α j+1,s,n

∣∣∣ x j

(
n
bn

) j

≤

(
bn

n

)2s x
bn

(
1 −

x
bn

)
n

s−1∑
j=0

∣∣∣α j+1,s,n

∣∣∣ x j

(
n
bn

)s−1

=

(
bn

n

)s+1 x
bn

(
1 −

x
bn

)
n

s−1∑
j=0

∣∣∣α j+1,s,n

∣∣∣ x j

=
x (bn − x)

bn

(
bn

n

)s s−1∑
j=0

γ j,sx j

whereγ j,s denote non-negative independent of n and x. Since
∣∣∣∣1 − 2 x

bn

∣∣∣∣ ≤ 1, in the

same way it is obtained that

∣∣∣T ∗n,2s+1

∣∣∣ ≤ x (bn − x)
bn

(
bn

n

)s+1 s−1∑
j=0

η j,sx j

whereη j,s denote non-negative independent of n and x.

The finite sums
s−1∑
j=0
γ j,sx j and

s−1∑
j=0
η j,sx j represent polynomials. There provides (4.9),

since Am(x) denotes a polynomial in x, of degree [m/2] − 1, with non-negative coeffi-

cients independent of n. �

Throughout the following two theorems, Voronovskaya type theorems for (Cn f )(x)

and (Cn f )′(x) will be given and verified. These two theorems are due to J. Albrycht, J.

Redecki (Albrycht and Redecki, 1960) and Butzer, Karsli (Butzer and Karsli, 2009),

respectively.

Theorem 4.8 Let a function f ,defined on [0,∞), satisfy

lim
n→∞

n
bn

exp(−α
n
bn

)M(bn; f ) = 0 for each α > 0, (4.11)

and {bn} being a positive sequence satisfy (1.1) Then there holds,

lim
n→∞

n
bn

[
(Cn f )(x) − f (x)

]
=

x
2

f ′′(x).

at each point x ≥ 0 at which f ′′(x) exists
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Proof. Since f ′′(x) exists, according to Taylor,

f
(
kbn

n

)
= f (x) +

(
kbn

n
− x

)
f ′(x) +

(
kbn

n
− x

)2 [
f ′′(x)

2
+ h

(
kbn

n
− x

)]
(4.12)

where h(y) converges to 0 with y. So,

(Cn f ) (x) = f (x) + f ′(x)
n∑

k=0

(
kbn

n
− x

)
pk,n

(
x
bn

)
+

f ′′(x)
2

n∑
k=0

(
kbn

n
− x

)2

pk,n

(
x
bn

)
+

n∑
k=0

(
kbn

n
− x

)2

h
(
kbn

n
− x

)
pk,n

(
x
bn

)

By Lemma(4.7)

(Cn f ) (x) = f (x) +
x (bn − x)

2n
f ′′(x) + Rn(x)

where

Rn(x) =

n∑
k=0

(
kbn

n
− x

)2

h
(
kbn

n
− x

)
pk,n

(
x
bn

)
Therefore,

lim
n→∞

n
bn

[
(Cn f )(x) − f (x)

]
= lim

n→∞

[
x
2

f ′′(x) −
x2

2bn
f ′′(x) +

n
bn

Rn(x)
]

Since bn → ∞ as n→ ∞, it will be sufficient to prove

lim
n→∞

n
bn

Rn(x) = 0
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Let us write Rn(x) as follow;

Rn(x) =
∑

∣∣∣∣ kbn
n −x

∣∣∣∣<δ
(
kbn

n
− x

)2

h
(
kbn

n
− x

)
pk,n

(
x
bn

)

+
∑

∣∣∣∣ kbn
n −x

∣∣∣∣≥δ
(
kbn

n
− x

)2

h
(
kbn

n
− x

)
pk,n

(
x
bn

)
= : Rn,1(x) + Rn,2(x)

Because of convergence of h(y) one has

∣∣∣Rn,1(x)
∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
∑

∣∣∣∣ kbn
n −x

∣∣∣∣<δ
(
kbn

n
− x

)2

h
(
kbn

n
− x

)
pk,n

(
x
bn

)∣∣∣∣∣∣∣∣∣∣
≤ ε

∑
∣∣∣∣ kbn

n −x
∣∣∣∣<δ

(
kbn

n
− x

)2

pk,n

(
x
bn

)

and according to Lemma (4.7) ,

∣∣∣Rn,1(x)
∣∣∣ ≤ εA2(x)

x (bn − x)
bn

(
bn

n

)

Then

lim
n→∞

n
bn

Rn,1(x) ≤ lim
n→∞

εA2(x)
(
x −

x2

bn

)
= 0

The representatiaon (4.12) readily yields,

(
kbn

n
− x

)2

h
(
kbn

n
− x

)
= f

(
kbn

n

)
− f (x) −

(
kbn

n
− x

)
f ′(x) −

(
kbn

n
− x

)2 f ′′(x)
2
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Therefore,

∣∣∣Rn,2(x)
∣∣∣ ≤ ∑

∣∣∣∣ kbn
n −x

∣∣∣∣≥δ
∣∣∣∣∣∣ f

(
kbn

n

)∣∣∣∣∣∣ pk,n

(
x
bn

)
+ | f (x)|

∑
∣∣∣∣ kbn

n −x
∣∣∣∣≥δ

pk,n

(
x
bn

)

+ | f ′(x)|
∑

∣∣∣∣ kbn
n −x

∣∣∣∣≥δ
∣∣∣∣∣kbn

n
− x

∣∣∣∣∣ pk,n

(
x
bn

)
+
| f ′′(x)|

2

∑
∣∣∣∣ kbn

n −x
∣∣∣∣≥δ

(
kbn

n
− x

)2

pk,n

(
x
bn

)

= :
∗∑
1

(n) +

∗∑
2

(n) +

∗∑
3

(n) +

∗∑
4

(n)

Since sup0≤x≤α | f (x)| = M(α; f ),

∗∑
1

(n) ≤ M(bn; f )
∑

∣∣∣∣ kbn
n −x

∣∣∣∣≥δ
pk,n

(
x
bn

)

From the inequailty (2.3) ,

∗∑
1

(n) ≤ 2M(bn; f ) exp
(
−
δ2n

4xbn

)

So

lim
n→∞

n
bn

∗∑
1

(n) ≤ lim
n→∞

2
n
bn

M(bn; f ) exp
(
−
δ2n

4xbn

)
= 0

Now it remains to show that

lim
n→∞

n
bn

∗∑
i

(n) = 0

is valid for i = 2, 3, 4.

Firstly for
∗∑
2

(n),

∗∑
2

(n) ≤
| f (x)|
δ4

∑
∣∣∣∣ kbn

n −x
∣∣∣∣≥δ

(
kbn

n
− x

)4

pk,n

(
x
bn

)

By Lemma (4.7) ,

∗∑
2

(n) ≤
| f (x)|
δ4 A4(x)

x (bn − x)
bn

(
bn

n

)2
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which implies that

lim
n→∞

n
bn

∗∑
2

(n) ≤ lim
n→∞

| f (x)|
δ4 A4(x).x

[
bn

n
−

x
n

]
= 0

Now to the next term,

∗∑
3

(n) ≤
| f ′(x)|
δ3

∑
∣∣∣∣ kbn

n −x
∣∣∣∣≥δ

(
kbn

n
− x

)4

pk,n

(
x
bn

)

≤
| f ′(x)|
δ3 A4(x)

x (bn − x)
bn

(
bn

n

)2

Thus

lim
n→∞

n
bn

∗∑
3

(n) ≤ lim
n→∞

| f ′(x)|
δ3 A4(x).x

[
bn

n
−

x
n

]
= 0

In the similar way for
∗∑
4

(n),

lim
n→∞

n
bn

∗∑
4

(n) ≤ lim
n→∞

| f ′′(x)|
2δ2 A4(x).x

[
bn

n
−

x
n

]
= 0

This completes the proof. �

Theorem 4.9 Let a function f , defined on [0,∞), satisfy the growth condition (4.11)

for every α > 0, {bn} being a positive sequence satisfy (1.1) Then there holds,

lim
n→∞

n
bn

[(Cn f )′(x) − f ′(x)] =
f ′′(x) + x f ′′′(x)

2
. (4.13)

at each point x ≥ 0 at which f ′′′(x) exists.

Proof. Firstly, it will be shown that the theorem is valid for x = 0.

From the representation (4.5) it can be written that

(Cn f )′(0) =
n
bn

[
f
(
bn

n

)
− f (0)

]
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It is needed to show that

lim
n→∞

n
bn

{
n
bn

[
f
(
bn

n

)
− f (0)

]
− f ′(0)

}
=

f ′′(0)
2

If f ′′′(x) exists, from Taylor’s formula

n
bn

{
n
bn

[
f
(
bn

n

)
− f (0)

]
− f ′(0)

}
=

f ′′(0)
2

+
bn

n

[
f ′′′(0)

6
+ h

(
bn

n

)]

where h
(

bn
n

)
converges to 0 as n→ ∞. Since bn

n → 0 as n→ ∞, the representation

(4.13) holds. Thus the theorem is valid for x = 0.

So let bn > x > 0. By Taylor it is easily written,

f
(

k
n

bn

)
= f (x) +

(
k
n

bn − x
)

f ′(x) +

(
k
n

bn − x
)2 f ′′(x)

2

+

(
k
n

bn − x
)3 [

f ′′′(x)
6

+ h
(

k
n

bn − x
)]

(4.14)

where h(y) converges to zero with y. Then,

(Cn f )′(x) =
n f (x)

x(bn − x)

n∑
k−0

(
k
n

bn − x
)

pk,n

(
x
bn

)
+

n f ′(x)
x(bn − x)

n∑
k−0

(
k
n

bn − x
)2

pk,n

(
x
bn

)
+

n f ′′(x)
2x(bn − x)

n∑
k−0

(
k
n

bn − x
)3

pk,n

(
x
bn

)
+

n f ′′′(x)
6x(bn − x)

n∑
k−0

(
k
n

bn − x
)4

pk,n

(
x
bn

)
+

n
x(bn − x)

n∑
k−0

h
(

k
n

bn − x
) (

k
n

bn − x
)4

pk,n

(
x
bn

)

From Lemma (4.7) ,

n
bn

[
(Cn f )′ (x) − f ′(x)

]
=

f ′′(x)
2

(
1 −

2x
bn

)
+

f ′′(x)
2

x
(
1 −

x
bn

)
+

f ′′′(x)
6n

(
bn − 6x +

6x2

bn

)
+

n
bn

Rn(x)
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where

Rn(x) :=
n

x(bn − x)

n∑
k−0

h
(

k
n

bn − x
) (

k
n

bn − x
)4

pk,n

(
x
bn

)
It is known that bn → ∞ and bn

n → 0 as n → ∞, so to complete the proof, it must

be proven that

lim
n→∞

n
bn

Rn(x) = 0

The sum Rn(x) can be written as the addition of two sums as follows;

Rn(x) : =
n

x(bn − x)


∑
| kn bn−x|<δ

+
∑
| kn bn−x|≥δ

 h
(

k
n

bn − x
) (

k
n

bn − x
)4

pk,n

(
x
bn

)
= :

∑
1

+
∑

2

Since h(y) converges to zero, for any ε > 0 there exists a δ > 0 such that |h(y)| < ε

whenever |y| < δ. According to Lemma(4.7) ,

∣∣∣∣∣∣∣∑1

∣∣∣∣∣∣∣ <
εn

x(bn − x)

∣∣∣∣∣∣∣
n∑

k−0

(
k
n

bn − x
)4

pk,n

(
x
bn

)∣∣∣∣∣∣∣
<

εn
x(bn − x)

x(bn − x)
bn

A4(x)
(
bn

n

)2

=
bn

n
εA4(x)

This implies that

lim
n→∞

n
bn

∑
1

= 0

By the representation (4.14) it can be written,

(
k
n

bn − x
)3

h
(

k
n

bn − x
)

= f
(

k
n

bn

)
− f (x) −

(
k
n

bn − x
)

f ′(x)

−

(
k
n

bn − x
)2 f ′′(x)

2
−

(
k
n

bn − x
)3 f ′′′(x)

6
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So,

∣∣∣∣∣∣∣∑2

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
n

x(bn − x)

∑
| kn bn−x|≥δ

h
(

k
n

bn − x
) (

k
n

bn − x
)3 (

k
n

bn − x
)

pk,n

(
x
bn

)∣∣∣∣∣∣∣∣∣
≤

n
x(bn − x)

∑
| kn bn−x|≥δ

∣∣∣∣∣∣ f
(

k
n

bn

)∣∣∣∣∣∣
∣∣∣∣∣knbn − x

∣∣∣∣∣ pk,n

(
x
bn

)

+ | f (x)|
n

x(bn − x)

∑
| kn bn−x|≥δ

∣∣∣∣∣knbn − x
∣∣∣∣∣ pk,n

(
x
bn

)

+ | f ′(x)|
n

x(bn − x)

∑
| kn bn−x|≥δ

∣∣∣∣∣knbn − x
∣∣∣∣∣2 pk,n

(
x
bn

)

+
| f ′′(x)|

2
n

x(bn − x)

∑
| kn bn−x|≥δ

∣∣∣∣∣knbn − x
∣∣∣∣∣3 pk,n

(
x
bn

)

+
| f ′′′(x)|

6
n

x(bn − x)

∑
| kn bn−x|≥δ

∣∣∣∣∣knbn − x
∣∣∣∣∣4 pk,n

(
x
bn

)

= :
∗∑
3

(n) +

∗∑
4

(n) +

∗∑
5

(n) +

∗∑
6

(n) +

∗∑
7

(n)

From the Cauchy-Schwarz inequality,

∗∑
3

(n) =
n

x(bn − x)

∑
| kn bn−x|≥δ


∣∣∣∣∣∣ f

(
kbn

n

)∣∣∣∣∣∣
√

pk,n

(
x
bn

) ∣∣∣∣∣kbn

n
− x

∣∣∣∣∣
√

pk,n

(
x
bn

)
≤

n
x(bn − x)


∑
| kn bn−x|≥δ

∣∣∣∣∣∣ f
(
kbn

n

)∣∣∣∣∣∣2 pk,n

(
x
bn

)
1
2


∑
| kn bn−x|≥δ

∣∣∣∣∣kbn

n
− x

∣∣∣∣∣2 pk,n

(
x
bn

)
1
2

= :
n

x(bn − x)

∗∑
3,1

(n)
∗∑

3,2

(n)
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Since
√

sup0≤x≤α | f (x)|2 = M(α; f ),

∗∑
3,1

(n) ≤ M(bn; f )


∑
| kn bn−x|≥δ

pk,n

(
x
bn

)
1
2

It is known that from(2.3) ,

∑
| kn bn−x|≥δ

pk,n

(
x
bn

)
≤ 2 exp

(
−
δ2n

4xbn

)

So it is written that

∗∑
3,1

(n) ≤ M(bn; f )
(
2 exp

(
−
δ2n

4xbn

)) 1
2

=
√

2M(bn; f ) exp
(
−
δ2n

8xbn

)
By Lemma (4.7),

n
x(bn − x)

∗∑
3,2

(n) ≤
n

x (bn − x)

 1
δ2

∑
| kn bn−x|≥δ

∣∣∣∣∣kbn

n
− x

∣∣∣∣∣4 pk,n

(
x
bn

)
1
2

≤
n

x (bn − x)
1
δ

√
A4(x)

√
x(bn − x)

n

(
bn

n

)
=

1
δ

√
A4(x)√

x
(
1 − x

bn

)
Therefore it is deduced the following:

lim
n→∞

n
bn

∗∑
3

(n) ≤ lim
n→∞

√
2A4(x)

δ
√

x
(
1 − x

bn

) n
bn

exp
(
−
δ2n

8xbn

)
M(bn; f ) = 0
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Now let us show that the same thing for
∗∑
4

(n).

∗∑
4

(n) : = | f (x)|
n

x(bn − x)

∑
| kn bn−x|≥δ

∣∣∣∣∣knbn − x
∣∣∣∣∣ pk,n

(
x
bn

)

≤ | f (x)|
n

x(bn − x)
1
δ5

∑
| kn bn−x|≥δ

∣∣∣∣∣knbn − x
∣∣∣∣∣6 pk,n

(
x
bn

)

≤
| f (x)|

x(bn − x)
n
δ5

x (bn − x)
bn

(
bn

n

)3

A6(x)

=
| f (x)|
δ5

(
bn

n

)2

A6(x)

Then

lim
n→∞

n
bn

∗∑
4

(n) ≤ lim
n→∞

| f (x)|
δ5 A6(x)

bn

n
= 0

Now to the next term,

∗∑
5

(n) : = | f ′(x)|
n

x(bn − x)

∑
| kn bn−x|≥δ

∣∣∣∣∣knbn − x
∣∣∣∣∣2 pk,n

(
x
bn

)

≤ | f ′(x)|
n

x(bn − x)
1
δ4

∑
| kn bn−x|≥δ

∣∣∣∣∣knbn − x
∣∣∣∣∣6 pk,n

(
x
bn

)

≤
| f ′(x)|

x(bn − x)
n
δ4

x (bn − x)
bn

(
bn

n

)3

A6(x)

=
| f ′(x)|
δ4

(
bn

n

)2

A6(x)

which implies that

lim
n→∞

n
bn

∗∑
4

(n) ≤ lim
n→∞

| f ′(x)|
δ4 A6(x)

bn

n
= 0

For
∗∑
5

(n) and
∗∑
6

(n), in the same way it is composed that

lim
n→∞

n
bn

∗∑
5

(n) ≤ lim
n→∞

| f ′′(x)|
2δ3 A6(x)

bn

n
= 0
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and

lim
n→∞

n
bn

∗∑
6

(n) ≤ lim
n→∞

| f ′′′(x)|
6δ2 A6(x)

bn

n
= 0

Eventually, for all that the proof have been finalizied. �

4.2 Convergence in the Variation Seminorm

One of the most engrossing issue concerning approximaion theory is convergence in a

semi-normed space. The first study about this subject matter was occured by Lorentz

(Lorentz, 1953). Following, Bardaro, Butzer, Stens, Vinti (Bardaro et.al., 2003) speci-

fied the variation detracting property which is given by for a linear operator L,

VI
[
L f

]
≤ VI

[
f
]

is such a serious issue in order to obtain a convergence result in the variation semi-

norm. Throughout this section, the class TV(I) is space of all the function of bounded

variation on I, reported with the seminorm

‖ f ‖TV(I) := VI
[
f
]
.

For a given f ∈ TV(I), the sequence (Ln) converges in variation to f , if

lim
n→∞

VI
[
Ln f − f

]
= 0

holds. This represents the TV − approximation of a function f by the sequence (Ln) .

The main purpose of this section is to confirm the variation detracting property and

convergence in the variation seminorm for (Bn f ) and (Cn f ).
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4.2.1 Bernstein polynomials case

Theorem 4.10 If f ∈ TV[0, 1], then

‖Bn f ‖TV[0,1] ≤ ‖ f ‖TV[0,1] .

Proof. By Theorem (3.13) and the representation (4.2) it is deduced,

‖Bn f ‖TV[0,1] = V[0,1][Bn f ] =

1∫
0

|(Bn f )′(x)| dx

=

1∫
0

∣∣∣∣∣∣∣n
n−1∑
k=0

[
f
(
k + 1

n

)
− f

(
k
n

)]
pk,n−1(x)

∣∣∣∣∣∣∣ dx

≤

n−1∑
k=0

∣∣∣∣∣∣ f
(
k + 1

n

)
− f

(
k
n

)∣∣∣∣∣∣ n
(
n − 1

k

) 1∫
0

xk(1 − x)n−k−1dx

=

n−1∑
k=0

∣∣∣∣∣∣ f
(
k + 1

n

)
− f

(
k
n

)∣∣∣∣∣∣ n
(
n − 1

k

)
B(k + 1, n − k)

=

n−1∑
k=0

∣∣∣∣∣∣ f
(
k + 1

n

)
− f

(
k
n

)∣∣∣∣∣∣ n
(
n − 1

k

)
Γ(k + 1)Γ(n − k)

Γ(n + 1)

=

n−1∑
k=0

∣∣∣∣∣∣ f
(
k + 1

n

)
− f

(
k
n

)∣∣∣∣∣∣ ≤ V[0,1][ f ] = ‖ f ‖TV[0,1]

�

Theorem 4.11 Let f ∈ TV[0, 1]. There holds f ∈ AC[0, 1] if and only if

lim
n→∞

V[0,1][Bn f − f ] = 0.

Proof. Since f and Bn f ∈ AC[0, 1], then Bn f − f ∈ AC [0, 1]. By following Theorem

(3.13) and Remark (3.20) it is written,

lim
n→∞

V[0,1][Bn f − f ] = lim
n→∞

1∫
0

|(Bn f )′(x) − f ′(x)| dx
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From Theorem(4.4) it can be seen easily that (Bn f )′(x)→ f ′(x) as n→ ∞. There-

fore,

lim
n→∞

V[0,1][Bn f − f ] = 0.

Conversely, since limn→∞ V[0,1][Bn f− f ] = 0 it is written that limn→∞ ‖Bn f − f ‖TV[0,1] =

0. This means that Bn f → f in TV space. Therefore f is in AC because of AC is

closed. �

4.2.2 Chlodovsky polynomials case

Theorem 4.12 If f ∈ TV[0, bn], then

V[0,bn][Cn f ] ≤ V[0,bn][ f ].

Proof. If the representation (4.5) and Theorem (3.13) are followed, it is obtained

V[0,bn][Cn f ] =

bn∫
0

|(Cn f )′(x)| dx

=

bn∫
0

∣∣∣∣∣∣∣ n
bn

n−1∑
k=0

[
f
(
k + 1

n
bn

)
− f

(
k
n

bn

)]
pk,n−1

(
x
bn

)∣∣∣∣∣∣∣
≤

n
bn

n−1∑
k=0

∣∣∣∣∣∣ f
(
k + 1

n
bn

)
− f

(
k
n

bn

)∣∣∣∣∣∣
(
n − 1

k

) bn∫
0

(
x
bn

)k (
1 −

x
bn

)n−1−k

dx

If it is defined that

t =
x
bn

It can be written

V[0,bn][Cn f ] ≤
n−1∑
k=0

∣∣∣∣∣∣ f
(
k + 1

n
bn

)
− f

(
k
n

bn

)∣∣∣∣∣∣ n
(
n − 1

k

) 1∫
0

tk (1 − t)n−1−k dt

=

n−1∑
k=0

∣∣∣∣∣∣ f
(
k + 1

n
bn

)
− f

(
k
n

bn

)∣∣∣∣∣∣ ≤ V[0,bn][ f ].

64



It is known that (Cn f )(0) = f (0). Since ‖ f ‖BV(I) := VI[ f ] + | f (0)|,

‖(Cn f )‖BV[0,bn] = V[0,bn][Cn f ] + |(Cn f )(0)|

≤ V[0,bn][ f ] + | f (0)| = ‖ f ‖BV[0,bn]

�

Theorem 4.13 Let f ∈ TV[0, bn], {bn}
∞
n=0 satisfying (1.1) There holds

lim
n→∞
‖Cn f − f ‖TV[0,∞) = 0 ⇐⇒ f ∈ AC[0, bn].

The proof is done in the same way with the proof of Theorem (4.11) by using

Theorem (4.9) instead of Theorem (4.4) .
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CHAPTER 5

RATE OF CONVERGENCE IN THE VARIATION SEMINORM

This chapter is devoted to indicate the rate of approximation by (Bn f ) to f and (Cn f )

to f in the variation seminorm.

5.1 Bernstein Polynomials Case

Theorem 5.1 Let g′′ ∈ AC[0, 1]. Then

V[0,1]
[
Bng − g

]
≤

C
n

{
V[0,1][g] + V[0,1][g′′]

}
(n ≥ 3) ,

Proof. At this time it will be used of Taylor’s formula with integral remainder term,

g
(

k
n

)
= g(x) +

(
k
n
− x

)
g′(x) +

(
k
n
− x

)2 g′′(x)
2

+
1
2

k
n∫

x

(
k
n
− t

)2

g′′′(t)dt

Substituting t − x = u, it is easily reached that

g
(

k
n

)
= g(x) +

(
k
n
− x

)
g′(x) +

(
k
n
− x

)2 g′′(x)
2

+
1
2

k
n−x∫
0

(
k
n
− x − u

)2

g′′′(x + u)du

As it can be seen the proof of Theorem (4.4), one has

(Bng)′ (x) = g′(x) +
(1 − 2x)

2n
g′′(x) + (Rng)(x)
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here the remainder is given by

(Rng)(x) =
1

2x (1 − x)

n∑
k=0


k
n−x∫
0

(
k
n
− x − u

)2

g′′′(x + u) (k − nx) pk,n

(
x
bn

)
du


It is known that,

V[I] =

∫
I

|g′(t)| dt = ‖g‖L1(I)

So, in the cause of proving the theorem it is needed to use the weighted L1 − norm.

‖(Bng)′ − g′‖L1[0,1] =

1∫
0

|(Bng)′(x) − g′(x)| dx

=

1∫
0

∣∣∣∣∣g′′(x)
2n

(1 − 2x) + (Rng)(x)
∣∣∣∣∣ dx

≤
1
2n

1∫
0

|g′′(x)| |1 − 2x| dx +

1∫
0

|(Rng)(x)| dx

=
1
2n

1∫
0

|g′′(x)| |1 − 2x| dx + ‖(Rng)(x)‖L1[0,1]

Since |1 − 2x| ≤ 1, for x ∈ [0, 1], it is deduced

‖(Bng)′ − g′‖L1[0,1] ≤
1
2n

1∫
0

|g′′(x)| dx + ‖(Rng)(x)‖L1[0,1]

=
1

2n
‖g′′‖L1[0,1] + ‖(Rng)(x)‖L1[0,1]

Noting that ∣∣∣∣∣kn − v
∣∣∣∣∣2 ≤ ∣∣∣∣∣kn − x

∣∣∣∣∣2
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holds for k
n ≤ v ≤ x or x ≤ v ≤ k

n . Applying the substitution x + u = v to (Rng)(x),

|(Rng)(x)| =

∣∣∣∣∣∣∣∣∣∣
1

2x (1 − x)

n∑
k=0


k
n∫

x

(
k
n
− v

)2

g′′′(v) (k − nx) pk,n (x) dv


∣∣∣∣∣∣∣∣∣∣

≤
1

2n2x (1 − x)

n∑
k=0

k
n∫

x

(k − vn)2
|k − nx| |g′′′(v)| dv.pk,n (x)

Observing that (k − nx)3 and
k
n∫

x
|g′′′(v)| dv have the same sign. There follows that,

‖(Rng)‖L1[0,1] =

1∫
0

∣∣∣∣∣∣∣∣∣∣
1

2x (1 − x)

n∑
k=0


k
n−x∫
0

(
k
n
− x − u

)2

g′′′(x + u) (k − nx) pk,n (x) du


∣∣∣∣∣∣∣∣∣∣ dx

≤
1

2n2

1∫
0

n∑
k=0

(k − nx)3

x (1 − x)

k
n∫

x

|g′′′(v)| dv.pk,n (x) dx

=
1

2n2

1∫
0

n∑
k=0

(k − nx)3

x (1 − x)

k
n∫

0

|g′′′(v)| dv.pk,n (x) dx + Ang

Here the term Ang was added and substracted, where

Ang = −
1

2n2

1∫
0

n∑
k=0

(k − nx)3

x (1 − x)

x∫
0

|g′′′(v)| dv.pk,n (x) dx

Thus it can be written that

‖(Rng)‖L1[0,1] ≤
1

2n2

∣∣∣∣∣∣∣∣∣∣
1∫

0

n∑
k=0

(k − nx)3

x (1 − x)

k
n∫

0

|g′′′(v)| dv.pk,n (x) dx

∣∣∣∣∣∣∣∣∣∣ + |Ang|

68



Applying Fubini’s theorem,

‖(Rng)‖L1[0,1] ≤
1

2n2

n∑
k=0

∣∣∣∣∣∣∣∣∣∣
k
n∫

0

|g′′′(v)|


1∫

0

(k − nx)3

x (1 − x)
.pk,n (x) dx

 dv

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣ 1
2n2

1∫
0

n∑
k=0

(k − nx)3

x (1 − x)
pk,n (x) dx

x∫
0

|g′′′(v)| dv

∣∣∣∣∣∣∣∣
From Lemma (4.2),

n∑
k=0

(k − nx)3

x (1 − x)
pk,n (x) =

1
x (1 − x)

nx(1 − x)(1 − 2x)

= n(1 − 2x)

Therefore,

Ang =
1

2n

1∫
0

(1 − 2x)dx

x∫
0

|g′′′(v)| dv

≤
1

2n

x∫
0

|g′′′(v)| dv ≤
1

2n

1∫
0

|g′′′(v)| dv

The inner integral can be evaluated and estimated by

∣∣∣∣∣∣∣∣
1∫

0

(k − nx)3

x (1 − x)
pk,n (x) dx

∣∣∣∣∣∣∣∣
=

(
n
k

) ∣∣∣∣∣∣∣∣
1∫

0

(k − nx)3

x(1 − x)
xk (1 − x)n−k dx

∣∣∣∣∣∣∣∣
=

(
n
k

) ∣∣∣∣∣∣∣∣
1∫

0

(k − nx)3 xk−1 (1 − x)n−k−1 du

∣∣∣∣∣∣∣∣
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=

(
n
k

) ∣∣∣∣∣∣∣∣∣
k3B(k, n − k) − 3k2nB(k + 1, n − k)

+3kn2B(k + 2, n − k) − n3B(k + 3, n − k)

∣∣∣∣∣∣∣∣∣
=

(
n
k

) ∣∣∣∣∣∣∣∣∣
k3 (k−1)!(n−k−1)!

(n−1)! − 3k2n k!(n−k−1)!
n!

+3kn2 (k+1)!(n−k−1)!
(n−1)! − n3 (k+2)!(n−k−1)!

(n+2)!

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ 2n(n − 2k)
(n + 1)(n + 2)

∣∣∣∣∣
Hence, ∣∣∣∣∣∣∣∣

1∫
0

(k − nx)3

x (1 − x)
pk,n (x) dx

∣∣∣∣∣∣∣∣ ≤ 2n2

(n + 1)(n + 2)

Consequently

‖(Rng)(x)‖L1[0,1] ≤
1

(n + 1)(n + 2)

n∑
k=0

k
n∫

0

|g′′′(v)| dv +
1

2n

1∫
0

|g′′′(v)| dv

≤
(n + 1)

(n + 1)(n + 2)

1∫
0

|g′′′(v)| dv +
1

2n

1∫
0

|g′′′(v)| dv

=

(
1

n + 2
+

1
2n

) 1∫
0

|g′′′(v)| dv

≤
3
2n
‖g′′′‖L1[0,1]

So this yields

∥∥∥(Bng)′ − g′
∥∥∥

L1[0,1]
≤

1
2n
‖g′′‖L1[0,1] +

3
2n
‖g′′′‖L1[0,1]

According to Stein’s inequality,

‖g′′‖L1[0,1] ≤ B1

(
‖g′‖L1[0,1] + ‖g′′′‖L1[0,1]

)
, where B1 > 1
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Therefore, it is obtained that

∥∥∥(Bng)′ − g′
∥∥∥

L1[0,1]
≤

1
2n

B1

(
‖g′‖L1[0,1] + ‖g′′′‖L1[0,1]

)
+

3
2n
‖g′′′‖L1[0,1]

=
1

2n
B1 ‖g′‖L1[0,1] +

(
1
2n

B1 +
3

2n

)
‖g′′′‖L1[0,1]

≤
1
n

(
B1

2
+

3
2

) (
‖g′‖L1[0,1] + ‖g′′′‖L1[0,1]

)
=

C
n

(
‖g′‖L1[0,1] + ‖g′′′‖L1[0,1]

)
, where C =

B1

2
+

3
2

which completes the proof. �

5.2 Chlodovsky polynomials case

Theorem 5.2 Let g′′ ∈ AC [0, bn]. Then

V[0,bn][Cng − g] ≤ B
bn

n
{
V[0,bn][g] + V[0,bn]

[
g′′

]}
,

where B > 1 is a constant and bn being the same as appearing in introduction.

Proof. By Taylor formula with integral reminder term,

g
(

k
n

bn

)
= g(x) +

(
k
n

bn − x
)

g′(x) +

(
k
n

bn − x
)2 g′′(x)

2

+
1
2

k
n bn∫
x

(
k
n

bn − t
)2

g′′′(t)dt

If the variable t is changed into the variable u by using the substitution t − x = u, it

is written that

g
(

k
n

bn

)
= g(x) +

(
k
n

bn − x
)

g′(x) +

(
k
n

bn − x
)2 g′′(x)

2

+
1
2

k
n bn−x∫
0

(
k
n

bn − x − u
)2

g′′′(x + u)du
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So from the representation (4.6), one has

(Cng)′(x) =
1

x (bn − x)

n∑
k=0

g
(

k
n

bn

)
(kbn − nx) pk,n

(
x
bn

)
=

g(x)
x (bn − x)

n∑
k=0

(kbn − nx) pk,n

(
x
bn

)
+

g′(x)
x (bn − x)

n∑
k=0

(
k
n

bn − x
)

(kbn − nx) pk,n

(
x
bn

)
+

g′′(x)
2x (bn − x)

n∑
k=0

(
k
n

bn − x
)2

(kbn − nx) pk,n

(
x
bn

)
+(Rng)(x)

where the remainder is written by

(Rng)(x) =
1

2x (bn − x)

n∑
k=0


k
n bn−x∫
0

(
k
n

bn − x − u
)2

g′′′(x + u) (kbn − nx) pk,n

(
x
bn

)
du


By using Lemaa(4.7), it is obtained with ease,

(Cng)′ (x) = g′(x) +
(bn − 2x)

2n
g′′(x) + (Rng)(x)

Thus,

‖(Cng)′ − g′‖L1[0,bn] =

bn∫
0

|(Cng)′(x) − g′(x)| dx

=

bn∫
0

∣∣∣∣∣g′′(x)
2n

(bn − 2x) + (Rng)(x)
∣∣∣∣∣ dx

≤
1

2n

bn∫
0

|g′′(x)| |bn − 2x| dx +

bn∫
0

|(Rng)(x)| dx

=
1

2n

bn∫
0

|g′′(x)| |bn − 2x| dx + ‖(Rng)(x)‖L1[0,bn]
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Since |bn − 2x| ≤ bn, for x ∈ [0, bn], it is deduced

‖(Cng)′ − g′‖L1[0,bn] ≤
bn

2n

bn∫
0

|g′′(x)| dx + ‖(Rng)(x)‖L1[0,bn]

=
bn

2n
‖g′′‖L1[0,bn] + ‖(Rng)(x)‖L1[0,bn]

Note that ∣∣∣∣∣kbn

n
− v

∣∣∣∣∣2 ≤ ∣∣∣∣∣kbn

n
− x

∣∣∣∣∣2
holds for kbn

n ≤ v ≤ x or x ≤ v ≤ kbn
n . Applying the substitution x + u = v to

(Rng)(x),

|(Rng)(x)| =

∣∣∣∣∣∣∣∣∣∣
1

2x (bn − x)

n∑
k=0


k
n bn∫
x

(
k
n

bn − v
)2

g′′′(v) (kbn − nx) pk,n

(
x
bn

)
dv


∣∣∣∣∣∣∣∣∣∣

≤
1

2n2x (bn − x)

n∑
k=0

k
n bn∫
x

(kbn − vn)2
|kbn − nx| |g′′′(v)| dv.pk,n

(
x
bn

)

It is seen that (kbn − nx)3 and
k
n bn∫
x
|g′′′(v)| dv have the same sign and known that

|kbn − nv| ≤ |kbn − nx| . From the previous inequality there follows that,

‖(Rng)‖L1[0,bn] =

bn∫
0

∣∣∣∣∣∣∣∣∣∣
1

2x (bn − x)

n∑
k=0


k
n bn−x∫
0

(
k
n

bn − x − u
)2

g′′′(x + u) (kbn − nx) pk,n

(
x
bn

)
du


∣∣∣∣∣∣∣∣∣∣ dx

≤
1

2n2

bn∫
0

n∑
k=0

(kbn − nx)3

x (bn − x)

k
n bn∫
x

|g′′′(v)| dv.pk,n

(
x
bn

)
dx

=
1

2n2

bn∫
0

n∑
k=0

(kbn − nx)3

x (bn − x)

k
n bn∫

0

|g′′′(v)| dv.pk,n

(
x
bn

)
dx
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−
1

2n2

bn∫
0

n∑
k=0

(kbn − nx)3

x (bn − x)

x∫
0

|g′′′(v)| dv.pk,n

(
x
bn

)
dx

≤
1

2n2

∣∣∣∣∣∣∣∣∣∣
bn∫

0

n∑
k=0

(kbn − nx)3

x (bn − x)

k
n bn∫

0

|g′′′(v)| dv.pk,n

(
x
bn

)
dx

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
1

2n2

bn∫
0

n∑
k=0

(kbn − nx)3

x (bn − x)

x∫
0

|g′′′(v)| dv.pk,n

(
x
bn

)
dx

∣∣∣∣∣∣∣∣∣
Applying Fubini’s theorem,

‖(Rng)‖L1[0,bn] ≤
1

2n2

n∑
k=0

∣∣∣∣∣∣∣∣∣∣
k
n bn∫

0

|g′′′(v)|


bn∫

0

(kbn − nx)3

x (bn − x)
.pk,n

(
x
bn

)
dx

 dv

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣
1

2n2

bn∫
0

n∑
k=0

(kbn − nx)3

x (bn − x)
pk,n

(
x
bn

)
dx

x∫
0

|g′′′(v)| dv

∣∣∣∣∣∣∣∣∣ (5.1)

From Lemma (4.7) ,

n∑
k=0

(kbn − nx)3

x (bn − x)
pk,n

(
x
bn

)
=

1
x (bn − x)

nx(bn − x)(bn − 2x)

= n(bn − 2x)

Therefore the latter integral of the last inequality can be written as

1
2n2

bn∫
0

n∑
k=0

(kbn − nx)3

x (bn − x)
pk,n

(
x
bn

)
dx

x∫
0

|g′′′(v)| dv

=
1

2n

bn∫
0

(bn − 2x)dx

x∫
0

|g′′′(v)| dv

≤
bn

2n

x∫
0

|g′′′(v)| dv ≤
bn

2n

bn∫
0

|g′′′(v)| dv

74



Let x
bn

= u for the former integral of the inequality (5.1). Therefore,

∣∣∣∣∣∣∣∣∣
bn∫

0

(kbn − nx)3

x (bn − x)
pk,n

(
x
bn

)
dx

∣∣∣∣∣∣∣∣∣
= b2

n

(
n
k

) ∣∣∣∣∣∣∣∣
1∫

0

(k − nu)3

u(1 − u)
uk (1 − u)n−k du

∣∣∣∣∣∣∣∣
= b2

n

(
n
k

) ∣∣∣∣∣∣∣∣
1∫

0

(k − nu)3 uk−1 (1 − u)n−k−1 du

∣∣∣∣∣∣∣∣
= b2

n

∣∣∣∣∣ 2n(n − 2k)
(n + 1)(n + 2)

∣∣∣∣∣
See in the proof of Theorem(5.1) . Hence,

∣∣∣∣∣∣∣∣∣
bn∫

0

(kbn − nx)3

x (bn − x)
pk,n

(
x
bn

)
dx

∣∣∣∣∣∣∣∣∣ ≤
2b2

nn2

(n + 1)(n + 2)

Thus,

‖(Rng)(x)‖L1[0,bn] ≤
b2

n

(n + 1)(n + 2)

n∑
k=0

k
n bn∫

0

|g′′′(v)| dv +
bn

2n

bn∫
0

|g′′′(v)| dv

≤
b2

n(n + 1)
(n + 1)(n + 2)

bn∫
0

|g′′′(v)| dv +
bn

2n

bn∫
0

|g′′′(v)| dv

= bn

(
1

n + 2
+

1
2n

) bn∫
0

|g′′′(v)| dv

≤
3bn

2n
‖g′′′‖L1[0,bn]

So, this provides

∥∥∥∥(Cng

)′
− g′

∥∥∥∥
L1[0,bn]

≤
bn

2n
‖g′′‖L1[0,bn] +

3bn

2n
‖g′′′‖L1[0,bn]
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Then, it is deduced that

∥∥∥∥(Cng

)′
− g′

∥∥∥∥ ≤ bn

2n
B1

(
‖g′‖L1[0,bn] + ‖g′′′‖L1[0,bn]

)
+

3bn

2n
‖g′′′‖L1[0,bn]

=
bn

2n
B1 ‖g′‖L1[0,bn] +

(
bn

2n
B1 +

3bn

2n

)
‖g′′′‖L1[0,bn]

≤
bn

n

(
B1

2
+

3
2

) (
‖g′‖L1[0,bn] + ‖g′′′‖L1[0,bn]

)
=

bn

n
B

(
‖g′‖L1[0,bn] + ‖g′′′‖L1[0,bn]

)
, where B =

B1

2
+

3
2

Consequently, the proof is completed. �
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CHAPTER 6

CONCLUSION

One of the main issue in this thesis is the variation detracting property. As far as it is

known, Lorentz’s work (Lorentz, 1953) is the first study about this topic. Afterward,

Bardaro, Butzer, Stens, Vinti’s study (Bardaro et.al., 2003) showed that so as to reach

a convergence resut in the variation seminorm, setting the variation detracting property

is so significant. By following these, the study presented this thesis offers a new path

and can be utilized to create the convergence results for other operators in the variation

seminorm. One of the interesting result which is taken from this study is to obtain the

convergence event in the semi-normed space which a distance can not be described.

The significant thing concerning this event is to obtain the convergence in that space

by setting a relationship between L1 − norm and the seminorm.
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