DECLARATION

I hereby declare that all information in this document has been obtained and presented in accordance with academic rules and ethical conduct. I also declare that, as required by these rules and conduct, I have fully cited and referenced all material and results that are not original to this work.

Name: Qasem Alyazji

Signature:

Date:

ABSTRACT

The articulating surface of a conventional knee-component is as generic shape while every individual patient has a unique shape of knee joint and this is causes some problems. The Conventional implants give a satisfactory result in many cases that bring the patient back to a near normal and active lifestyle especially for younger patients. Most patients' gaits are altered after a total knee arthroplasty (TKA) and proper walking and ambulation has to be relearned due to the change in surface geometry. In this study, a custom design for femoral implant with maintains the articulating surface of and the implant-bone interface as natural knee is necessary to address the most common problems found with conventional knee component. This was done by creating 3D models from computerized tomography (CT) scan data through computer segmentation using Materialise MIMICS 10.01. It converts the 3D model into a stl file format. Geomagic studio 2012 was used in this study for smoothing and preparation of the model. The STL file was imported from Mimics to Geomagic Studio. The model is now ready for femoral component design; however, the best 3D CAD model file would be in STEP format. Geomagic Studio cannot directly convert STL files into STEP files. This process involves generating closed NURBS (Non Uniform Rational B-Spline) surfaces. The 3D model as STEP format was then exported from Geomagic Studio to CAD design software for design on the femoral components of the implant. Based on the powerful feature options and availability, solidworks (Solidworks, USA) was selected for this thesis. The 3D model of the femur was imported into solidworks as STEP format. From 3D model of the femur, a custom knee implant femoral component was designed. Finite Element Analysis is used to examine the stress distribution in the implant-bone interface and compare the proposed design of a custom femoral component with a conventional design. A 3D finite element (FE) model of the femoral implant was developed in ANSYS Workbench. The proposed custom design as smooth surface shows a more even stress distribution on the implant bone interface, which will reduce the uneven bone remodeling that can lead to premature loosening.

Keyword: knee-component, TKA, 3D femoral component, Conventional implants, STEP format.

ACKNOWLEDGEMENTS

Firstly, I would like to present my special appreciation to my supervisor Dr. Zafer Topukçu, without whom it was not possible for me to complete the project. His trust in my work and me and his priceless awareness of the project has made me do my work with full interest. His friendly behavior toward me and his words of encouragement kept me going in my project.

Also, I would like to acknowledge Al Fakhoora Scholarship Program for financial and moral support for me.

To all the faculty of the Biomedical Engineering department, I thank you all for your support over the years, specially Assoc. Prof. Dr. Terin Adali, and Prof. Dr. Dogan Ibrahim, who helped me in various aspects of my research. I am grateful to my research Prof. Dr. Yakup Barbaros Baykal and Prof. Dr. Levent Celebi in the Ortopedics department at Near East University hospital. They helped me to learn more about the clinical performance of a total knee replacement and gave valuable suggestions on my simulation models. I would also like to thank chairman of radiology department at Near East University Prof. Dr. Nail Bulakasi for help with all the necessary Computerized Tomography (CT) scans.

Most deeply, I offer special thanks to my parents, who encouraged me in every field of life and try to help whenever I needed. Also, I thank my wife, has provided consistent support and encouragement.

I thank all other staff, students and friends, who gave me, support in research and life, during the course of the project, special thanks to my friend, Mr. Youssef Kassem for help me and encouragement.

Dedicated to my family who have been with me through it all . . .

CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGMENTS	iii
DEDICTION	iv
CONTENTS	v
LIST OF TABLES	ix
LIST OF FIGURES	х
LIST OF SYMBOLS USED	xiv
CHAPTER 1	
INTRODUCTION	1
1.1 Introduction	1
1.2 Motivation	2
1.3 Objectives	5
1.4 Structure of thesis	6
CHAPTER 2	
THE KNEE JOINT	7
2.1 Anatomy of the knee joint	7
2.1.1 Bones of the knee joint	9
2.1.1.1 The femur	9
2.1.1.2 The tibia	10
2.1.1.3 The patella	12
2.1.2 Menisci	12
2.1.3 Ligaments	13
2.1.4 Mechanical axis of the knee	14
2.1.5 Deformity (malalignment) of knee joint	16
2.2 Kinematics of the Knee	17
2.3 Normal gait cycle	19
2.4 Forces in knee joint	19

2.5 Structure and mechanical property of bones	20
2.5.1 Anatomy and Physiology of bone	20
2.5.2 Material property of bone	23
CHAPTER 3	
LITERATURE REVIEW-TOTAL KNEE REPLACEMENT	25
3.1 Arthritis, a common disease	25
3.2 Total Knee Replacement	27
3.2.1 Implantation femoral component	28
3.2.2 Failure model of total knee prostheses	28
3.3 Rapid Tooling and Manufacturing	29
3.3.1 Electron Beam Melting	30
CHAPTER 4	
METHODOLOGY	31
4.1 Specific aim in detail	31
4.2 Functional Requirements of the femoral Implant Design	32
4.3 Proposed methodology	32
4.3.1 Selection of patient	33
4.3.2 Computed Tomography Scan	33
4.3.3 Image reconstruction	33
4.3.4 Three dimensional reconstruction	35
4.3.5 Creation of FE model (Remeshing)	37
4.3.6 Preprocessing CAD Model for Design	40
4.3.6 Design of Implant	41
CHAPTER 5	
DESIGN OF IMPLANTS	43
5.1 Proposed Methodology for the Design of Custom femoral component implants	43
5.2 Design of femoral implant with smooth custom bone-implant interface	44
5.2.1 Selection of thickness in femoral implant design	44
5.2.1.1 Mechanical failure thickness criterion	44
5.2.1.2 Bone ingrowth promoting thickness criterion	47
5.2.2 Implant Stability after Surgery	48

5.2.3 Detail design steps	48
5.2.4 Parametric inner surface design of distal femur bone	62
5.2.5 Robotic Surgery	65
5.3 Design of "Standard" femoral component of human knee implant	66
5.3.1 Parametric inner surface design of distal femur bone	74
5.4 Finite Element Analysis	75
5.4.1 Creation of FE models with ANSYS	75
5.4.1.1 Assigning Material Properties	76
5.4.1.2 Geometry	78
5.4.1.3 Meshing the geometry	79
5.4.1.4 Boundary/loading Condition	80
CHAPTER 6	
RESULTS AND DISCUSSION	83
6.1 Results	83
6.2 Discussion	87
CHAPTER 7	
CONCLUSION AND FUTURE WORK	89
7.1 Conclusion	89
7.2 Future work	90
7.2.1 Design of custom human tibial component of implant	90
7.2.2 Finite Element Analysis for total knee joint	91
7.2.3 Implant materials research	91
7.2.4 Robotic Surgery	91
REFERENCES	93
APPENDIX	102
Appendix A : Segmentation Procedure and 3D model	102

LIST OF TABLES

2.1	Material properties of (femur) bone. Left column shows type of material while	23
	the middle and the right columns show values in unit and comments respectively	
	(bone location and cadaveric bone age)	
2.2	Empirical mathematical relationship between the modulus (longitudinal) and	24
	apparent density of cortical and trabecular bone.	
5.1	List of radii and thickness of implant at each section	58
5.2	Face widths of standard implant in % of Total Length L	68
5.3	Angle of each face relative to horizontal face c	69
5.4	Thickness of implant at center of face and at edges	69
5.5	Average of % Face widths and angle	70
5.6	Average of Implant Thickness	70
5.7	show the summeries of the material properties used for analysis	78
5.8	Number of nodes and tetrahedral elements used for each element	80

LIST OF FIGURES

1.1	knee implant components	2
1.2	femoral component loosening	4
2.1	tibio-femoral and patello-femoral joints	7
2.2	Anatomy of the knee joint: anterior medial view	8
2.3	Bones of the knee joint	9
2.4	Shaft and distal end of femur. A. Anterior view. B. Posterior view	10
2.5	Proximal extremity of the tibia. A. Superior view - tibial plateau. B. Anterior	11
	view. C. Posterior view. D. Cross-section through the shaft of tibia	
2.6	Patella. A. Anterior view. B. Posterior view. C. Superior view	12
2.7	Menisci of the knee joint, superior view	13
2.8	Ligaments of knee joint	14
2.9	Anatomical planes of the human body	15
2.10	Mechanical axis of the knee joint: (a) mechanical axis in frontal plane; (b)	15
	mechanical axis in sagittal plane	
2.11	malalignment of the knee, varus (A), natural (B), valgus (C)	16
2.12	Four-bar linkage	17
2.13	Circular posterior condyles	18
2.14	walking gait cycle	19
2.15	Structure of the long bone	21
2.16	cortical and trabecular bone in the femur	22
3.1	Process of arthritis over time	26
3.2	Causes for TKR Revision	29
3.3	Schematic diagram of EBM machine by Arcam	30
4.1	human knee being CT scanned	34
4.2	CT images imported into MIMICS	35
4.3	MIMICS user interface with imported CT scan: A:front view (coronal); b:top	36
	view (axial); c:side view (sagittal); d: 3D view	
4.4	Three- dimensional CAD model of knee generated in MIMICS	37

4.5	MIMICS remesher starts with smoothening operation	38
4.6	triangle reduction in MIMICS remesher	38
4.7	auto remeshing in MIMICS remesher	39
4.8	Remeshing operation using MIMICS remesher tools	39
4.9	Smooth femoral knee implant CAD model from Geomagic studio	40
4.10	Solid model as STEP format generated from Geomagic studio	41
5.1 (a)	Implant failure site	45
5.1(b)	Cantilever load on one condyle	46
5.1(c)	Thickness of cortical bone in human femur	48
5.1(d)	Schematic sketch of proposed contact surface between implant and femur	49
5.2	Three dimensional CAD model imported to Solidworks	50
5.3	Screen-shot from Solidworks, mid plane definition	50
5.4	Side cut sketch details	51
5.5 (a)	Implant during Side-Cut command	52
5.5 (b)	Implant after Side-Cut command	52
5.6	Six section planes passing through the origin	53
5.7	Typical intersection curves replicating the contour of implant surface	54
5.8 (a)	Parametric sketch details, section plane 1	55
5.8 (b)	Parametric sketch details, section plane 2	56
5.8 (c)	Parametric sketch details, section plane 3	56
5.8 (d)	Parametric sketch details, section plane 4	57
5.8 (e)	Parametric sketch details, section plane 5	57
5.8 (f)	Parametric sketch details, section plane 6	58
5.9	Three dimensional guide curves for Cut-Loft function	59
5.10 (a)	Screen-shot from Solidworks, First Cut-Loft function	59
5.10 (b)	Screen-shot from Solidworks, Second Cut-Loft function	60
5.10 (c)	Screen-shot from Solidworks, Third Cut-Loft function	60
5.10 (d)	Screen-shot from Solidworks, Fourth Cut-Loft function	61
5.10 (e)	Screen-shot from Solidworks, five Cut-Loft function	61
5.10 (f)	Screen-shot from Solidworks, Six Cut-Loft function	62
5.10 (g)	Complete inner parametric surface generated	62

5.11	Round cut to avoid any sharp edges	63
5.12	three dimensional CAD model of the distal femur bone and femur implant is	64
	the same STL file	
5.13	Boolean operation commands	64
5.14	Parametric distal femur bone using DesignModeler in ansys workbench	65
5.15	Example of image for some manufacturer (right image), and (left image) show	66
	import the image in solidworks to find all dimensions	
5.16	Schematic diagram of standard human implant	67
5.17	Sketch for flat implant obtained using data from Table 4.5 and Table 4.6	71
5.18 (a)	Standard implant during Side-Cut command	71
5.18 (b)	Standard implant after Side-Cut command	72
5.19 (a)	Sketch for generating pegs	72
5.19 (b)	Pegs on condylar face	73
5.20	Round cut to avoid any sharp edges on flat implant	73
5.21	Standard human femoral component of implant	74
5.22	parametric distal femur bone for standard femoral implant	75
5.23	Typical View of ANSYS Workbench. Static Structural can be chosen from the	76
	left column	
5.24	Assignment of material properties in the Enginnering Data in the Work-bench	77
	for cortical bone	
5.25	Import of Geometries	78
5.26	Meshed Finite Element Model	80
5.27	Load and reaction force used for all finite element analysis models	81
6.1 (a)	the vonMises stress distribution (MPa) in the conventional implant as five cut	84
	surface for case I	
6.1 (b)	the vonMises stress distribution (MPa) in the custom implant as smooth	84
	surface for case I	
6.2(a)	the vonMises stress distribution (MPa) in the conventional implant as five cut	85
	surface for case II	
6.2 (b)	the vonMises stress distribution (MPa) in the custom implant as smooth	85
	surface for case II	

6.3 (a)	the vonMises stress distribution (MPa) in the conventional implant as five cut	86
	surface for case III	
6.3 (b)	the vonMises stress distribution (MPa) in the custom implant as smooth	86
	surface for case III	
7.1	Surgical robotics (orthopedic robots)	92
A-1	knee geometry model construction flow chart	102
A.2 (a)	Profile line drawn on axial view	103
A.2 (b)	typical range of gray value for human knee (3D histogram)	104
A.3	Region growing operation	105
A.4	Three- dimensional CAD model of knee generated in MIMICS	106

LIST OF SYMBOLS USED

Anterior Cruciate Ligament
Curves
Computer Aided Design
Compact disc
Center of mass
Cobalt-Chromium alloy
Computed Tomography
Digital Imaging and Communications in Medicine
Drawing Exchange Format
Elastic Modulus
Electron Beam Melting
Finite Element
Finite Element Analysis
Pound
Initial Graphics Exchange Specification
Line
Lateral Collateral Ligaments
Medial Collateral Ligaments
Non Uniform Rational B-Spline
Posterior Cruciate Ligament
Rapid Tooling
Standardized Graphic Exchange file format
STereoLithography
Total Knee Arthroplasty
Total knee replacement
Ultra High Molecular Weight Polyethylene
Virtual Reality Modeling Language
Moment of Inertia
Bending Moment
Deflection
apparent density
Maximum bending stress
minimum thickness
Inch
Millimeter
Newton
Giga Pascal
Mega Pascal