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ABSTRACT 

q-BIORTHOGONAL POLYNOMIALS 

December 2013, 52 pages 

This work consists of definitions and basic properties of q-biorthogonal polynomials and 

some examples of q-biorthogonal families. 

q-biorthogonal polynomials are generalization of biorthogonal polynomials. For specific 

values of some constants which are used in definitions of bi orthogonal polynomials, they 

give the classical orthogonal polynomials. This, q-biorthogonal polynomials can be turn to 

q-orthogonal polynomials. 

Some q-biorthogonal familes are defined and some properties of them are obtained. 

Key words: orthogonal polynomials, biorthogonal polynomials, Laguerre polynomials, 

q-Laguerre polynomials, Jacobi polynomials, Konhauser polynomials, q-Konhauser 

polynomials. 
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OZET 

q-BIORTHOGONAL POL YNOMLAR 

Arahk 2013, 52 sayfa 

Bu cahsmada biorthogonal polinomlann tammlan ve temel ozellikleriyle bazi biorthogonal 

polinom ailerinin tammlanm icermekte, 

q-biorthogonal polinomlar biortogonal polinomlann bir genellestirmesidir, Bazi ozel sabit 

sayilar icin biortogonal polinomlar klasik orthogonal polinomlan vennektedir. 

Bazi q-biorthogonal polinom aileleri icin tammlar ve ozellikler elde edilmistir, 

Anahtar kelimeler: Orthogonal polinomlar, biortogonal polinomlar, Laguerre 

polinomlan,q-Laguerre polinomlan, Jacobi polinomlan, Konhauser polinomlan, q­ 

Konhauser polinomlan. 
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CHAPTER I 

INTRODUCTION AND BASIC DEFINITIONS 

1.1 Introduction 

In applied mathematics and physics, orthogonal polynomials have an important place. 

Moreover, geometrically, orthogonal polynomials are the basic of vector spaces and so 

any member of this vector space can be expanding a series of orthogonal polynomials. 

Almost four decades ago, Konhauser (1965-1967) found a pair of orthogonal 

polynomials which satisfy an additional condition, which is a generalization of 

orthogonality condition. These polynomials are called biorthogonal polynomials. After 

Konhauser's study, several properties of these polynomials and another biorthogonal 

polynomial pairs was found. 

In 2007, Sekercglu, Srivastava and Tasdelen gave a general definition of q-biorthogonal 

polynomials and obtained main properties of them. 

After these study, some special properties was obtained for q-biorthogonal polynomials. 

In 2008, Srivastava , Tasdelen and Sekeroglu studied several generating functions for 

q-biorthogonal Konhauser polynomials. 

In this work, general and basic properties of biorthogonal polynomials are given and 

two types of bi orthogonal polynomials which are namely Konhauser polynomials and 

Jacobi type biorthogonal polynomials are investigated. 

In the first chapter, several basic definitions and theorems about q-analysis theory are 

given. 

In the second chapter, definition and main theorems of about orthogonal polynomials 

theory are given and some special orthogonal polynomial families are given. 
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In the third chapter, definition and main theorems of about biorthogonal polynomials 

are obtained and some special biorthogonal polynomial families are given. 

In the fourth chapter, definition and main theorems of about 

q-orthogonal polynomials theory and some special q-orthogonal polynomial families are 

given. 

In the fifth chapter, definition and main theorems of about q-biorthogonal polynomials 

theory and some q-biorthogonal polynomial families are given. 

In the sixth chapter, are given conclusions. 

1.2 Gamma Function 

The definition of a special function which is defined by using an improper integral is 

given below. This function is called Gamma Function and has several applications in 

Mathematics and Mathematical Physics. 

Definition 1.l(Rainville, 1965) 

The improper integral 

converges for any x > 0 is called "Gamma Function" and is denoted by I'. 

CX) 

I'(x) = f tx-le-tdt. 
0 
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Some basic properties of Gamma function are given without their proofs (Rainville, 

1965). 

00 

J tne-tdt = n! = f(n + 1), 
0 

where n is a positive integer. 

n. f(n) = I'(n + 1), 

and 

rc2b}vrr = 21-2b rcb)r ( b + ~), 

where Re(b) > 0. 

f(2b + n){rr21- 2b - n = r ( b + ~n) r (b + ~. n + ~). 

where Re(b) > 0 and n is non-negative. 

I'(a) = (u)" (n - 1)! 
(a)n ' 

where Re(a) > 0 and n is non-negative integer. 

Definition 1.2(Askey, 1999) 

Let x be a real or complex number and n is non-negative integer, 

I'(x + n) 
(x)n = f(x) = x(x + 1) ... (x + n - 1), 



(x)0 = 1, 

(X)1 = X, 

(x)2 = x2 + x, 

is known "Pochammer Symbol". 

There are some properties of Pochammer symbol. 

1. 

(c + nh = (c)n+k 
I' - '\. I 

where c is real or complex number and n and k are natural numbers. 

2. 

n! _ (-nh 
(n - k)! - (-1)k' 

where n and k are natural numbers. 

3. 

(c)2k = (=-) (~) 
22k 2 k • 2 k, 

where c is a complex number and k is a natural number. 

4 
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4. 

(2k) ! (1) 
2zkk! = 2 / 

where k is a natural number. 

There is a useful lemma for Pochammer symbol. Proof of this lemma can be obtained 

by directly and elementarily (Raiville, 1965). 

Lemma 1.1 

Let a be real or complex number and n is non-negative integer, 

(a)2n = 22n (~) . (a+ 1) 
2 n 2 ' n 

(1.1) 

Proof 

(a)2n = a(a + 1)(a + 2) ... (a+ 2n - 1) 

_ zn (a) (a+ 1) (a ) (a+ 1 ) -2 2 -2- 2+1 ... -2-+n-1 

= z2n (i) (i + 1) ... (i + n - 1) (a; 1) (a ; 1 + 1) 

... (a; 1 + n-1) 

= 22n(~) (~) 
2 n 2 n 
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1.3 q- Analysis 

After the systematic development of calculus by Leibniz and Newton in the after half of 

the seventeenth century, Mathematicians attempted to improve new techniques. One of 

them is q-Analysis, which is an important generalization of standard techniques. 

Definition 1.3 

Let q E lffi. \ { 1}. Then the q-analogue of a number a is given by 

1-qa 
[a]q = 1 - q 

Definition 1.4 

For a real or complex number q (lql < 1), (a; q)n is given by 

(n = O) 

(n EN= {1,2, ... }) 

and 

00 

(a; q)ao = n (1- aqi) 
j=O 

Definition 1.5 

Let qE lffi. \ { 1 }. Then the q-Pochhammer symbol is defined by 

n-1 

[a]n;q = n [a+ m]q 
m=O 

for a reel parameter a. 
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Definition 1.6 

Let q E Iffi. \ { 1}. Then the q-analogue of n! is given by 

n 

[n]q! = n [m]q , [O]q! = 1 
m=l 

for a natural parameter n. 

Definition 1. 7 

Let qE Iffi./ { 1}. The q-derivative operator o, is defined by 

Dq(f(x)) = f(qx) - f(x) 
(q - 1)x ' 

(1.2) 

Notation 

It is significant to mention about when q ~ 1-, it is said that [a]q ~ a and [a]n,q ~ 

(a)n, [n]q ! ~ n! and Dq[ (x) ~ :x (t(x)) where (a)n is called Pochhammer symbol 

for a natural number n and a real number a. 

Example 1 

Let a is a reel number then 

Solution 

the representation ( 4.1) is applied to the expression xa, it is deduced that 



Example 2 

The q-exponential function is 

1 f (x)1' 
eq(x) = ((1- q)x; q)oo = 6'o [k]q! . 

a is a real number then 

Solution 

With the help of the representation (1.3) it can be written that, 

If example 1 is used in above the equation , it is readily obtained, 

f (a)1' f (ax)1'-1 
eq(x) = L [k] ! [k]qxk-1 = a L [k - 1] , = aeq(ax). 

k=1 q k=1 q 

Lemma 1.2 

f(x) and g(x) be two piecewise continuous function in (a,b). Then we have 

{f(x)g(x)} = f(x)Dq{g(x)} + g(x)Dq{f(x)} 

+(q - l)xDq{f(x)}Dq{g(x)}. (1.4) 

(1.3) 

8 
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Proof 

If the representation (1.2) is applied to the left side of the equation (1.4), it is written 

that, 

Dq(f(x)g(x)) = f(qx)g(qx) - f(x)g(x) 

if the quantity f (x)g(x) add to and substract from the equation above, the following 

relation is found easily. 

Dq(t(x)g(x)) = f(qx)g(qx) - f(x)g(x) + f(x)g(x) - f(x)g(x) 

= f(x) (g(qx) - g(x)) + (x) (f(qx) - f(x)) 
(q - 1)x 9 (q - 1)x 

= f(x)Dqg(x) + g(qx)Dq/(x) 

if the equation 

g(qx)=g(x)+( q-1 )xDqg (x) 

that was obtained with the help of ( 1.2) is used, the proof will be completed. 

Definition 1.8 

The q-integral of a piecewise continuous function f(x) in (a,b) is defined as follows: 

b 00 00 

J f(x)dqx = L (bqn - bqn+1)f(bqn) - L (aqn - aqn+1)f(aqn) 
a n=O n=O 
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co co f f(x)dqx = (1 - q) L qi f( qi). 
0 i=-co 

(1.5) 

If f is a continuous function, the meaning of q-integral exactly equals to Riemann 

integral when q approaches to 1-. In order to show this, let us take f(x) as xa. assume 

that F(x) is an antiderivative of f(x). There follows F(x)= xa+i • a+1 

co L f(bqn) (bq" - bqn+l) 
n=O 

co co 

= I (bqn)a(bqn - bqn+1) = ba+1c1 - q) I qCa+1)n 
n=O n=O 

= ba+1 1- q 
1- qa+1 

then 

lim ba+l 1 - q ba+1 
q--.1- - 1- qa+1 - a+ 1 = F(b) 

in the similar way, 

lim aa+1 1- q 
q--.i- 1 - qa+1 = F(a). 

Consequently, 

b b 

lim f f(x)dqx = F(b) - F(a) = f f(x)dx. 
q--.1- 

a a 

Theorem 1.1 

e q-integral of a piecewise continuous function f(x) in (a,b) is defined as follows: 



b 00 00 f f(x)dqX = L (bq" - bqn+1)f(bqn) - L (aqn - aqn+1)f(aqn) 
a n=O n=O 

and 

00 00 f f(x)dqx = (1 - q) L qi f( qi). 
O i=-oo 

Lemma 1.3 (q-partial integration) 

The q-partial integration is defined by 

00 

f f(x)Dq{g(x)}dqx = J~~{f(q-n)g(q-n) _ f(qn+1)g(qn+1)} 
0 

00 00 - f g(x)Dq{f(x)}dqx - (q - 1) f «o; {f(x)}Dq{g(x)}dqx. 
0 0 

for two piecewise continuous f(x) and g(x). 

Proof 

If q-integral is applied to both sides on the expression (1.4) on [O,oo ), by using the 

definition (1.5), it is found that 

00 00 - f g(x)Dq{ (x)dqx - (q - 1) f x ( Dq{ (x)) ( Dqg(x)) dqx. (1.6) 
0 0 

11 
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If the definition of q-derivative operator is applied to the first term of the right side of 

(1.6), it is reached that 

= !~~ ((1- q) f qk X f qk (f g)(qk+~ - ~g)(qk)) 
k=-n k=-n (q l)q 

n =!~~I (ctg)(qk+l)- (fg)(qk)) 
k=-n 

Definition 1.9 

Jackson defined a q-analogue of the gamma function as 

) 
) 1-x (q; q 00 (1- q 

I'q(X) = (qx; q)oo O<q<l. 

ate that I'q satisfies the functional equation 

qX -1 
I'q(x + 1) = 1 I'q(x). q- 

He also showed that limq_,1- I'q (x) = I'q- Askey proved the integral formula 

00 

J xadx I'(-a)I'(a + 1) 
(-(1- q)x; q)00 - I'q(-a) 

0 

0 < q < 1, Re(a) > 0. (1.7) 
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CHAPTER2 

ORTHOGONAL POLYNOMIALS 

In this section, definitions and main properties of orthogonal polynomials which are a 

special case of the biorthogonal polynomials are given. (Askey, 1999) 

2.1 ORTHOGONAL POLYNOMIALS 

Definition 2.1 

A polynomial is a function p whose value at x is 

where ~, an-i, ... , a2, a1 and a0, called the coefficients of the polynomial, are 

constants and, if n >O, then an* 0. The number n, the degree of the highest power ofx 

in the polynomial, is called the degree of the polynomial. (The degree of the zero 

polynomial is not defined.) 

Definition 2.2 

Let w(x) is a weight function and Pn(x) polynomials are defined over the interval [a,b ], 

if 

b f w(x)pn(x)pm(x) dx = 0, 
a 

m¢n, (2.1) 

is satisfied, then the polynomials Pn(x) are called orthogonal with respect to the weight 

function w(x) are the interval (a,b), m and n are degrees of polynomials. 

There is an additional condition for the orthogonal polynomials which makes them 

orthonormal. 
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Definition 2.3 

If the polynomials Pn(x) are orthogonal with respect to the weight function w(x), over 

the interval ( a,b) and 

b b 

11Pn(x)ll2 = J L w(x)p~(x)dx = 1 , 
a 

m=n, 

is satisfied, then the polynomials Pn(x) are called orthonormal. 

There is an equivalent condition for the orthogonality relation (2.1) which is given 

below. 

Theorem 2.1 (Askey, 1999) 

It is sufficient for the orthogonality of the polynomials on the interval [ a,b] with respect 

to the weight function w(x) to satisfy the condition 

b J w(x)¢n(x)xidx = 0, 
a 

i = 0,1,2, ... , n - 1 (2.2) 

here, ¢n (x) is polynomial of degree n. 

Proof 

If the polynomials ¢n(x) and ¢m(x) are orthogonal on the interval [a,b] with respect 

to w(x) then 

b 

J w(x)¢n(x)xidx = 0 , m * n 
a 

xi, can be written as linear combinations, 
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i 

xi= aoc/>o + a1¢1 + a2¢2 + ... + aic/>i = L amc/>m(x), 
m=O 

substituting this in (2.2). 

i b 

= Lam J w(x) c/>n(x)c/>m(x)dx = 0 
m=O a 

for 0$ m::;; i, c/>n(x) and c/>m(x) where O::;; m < n. Hence, 

b 

J w(x) c/>n(x)xidx = 0, 
a 

i = 0,1,2, •••In - 1. 

Orthogonal polynomials have several important properties. In this section, general 

definitions of these properties are given and then obtained special form of them for 

well-known orthogonal polynomial families. 

Definition 2.4 (Askey, 1999) 

Any polynomial family c/>n(x), which is orthogonal on the interval [a,b] with respect to 

the weight function w(x), satisfies the recurrence formula 

c/>n+1Cx) - (xAn + Bn)c/>n(x) + Cnc/>n-1(x) = 0 here An,Bn and Cn are constants 
which depend on n. 

Definition 2.5 (Askey , 1999) 

Rodrigues Formula for orthogonal polynomials are written as 
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n = 0,1,2, ... (2.3) 

here, c/>n(x) polinomials are orthogonal with respect to the weight function w(x) and un 

is a polynomial ofx. 

Definition 2.6 (Askey, 1999) 

If the two variable function F(x,t) has a Taylor series as in the form of 

i 

F(x, t) =Lan c/>n(x)tn, 
n=O 

(2.4) 

with respect to one of its variables t, then the function F(x,t) is called the generating 

function for the polynomials { ¢n (x)}. 

Definition 2.7 (Bilateral Generating Funtion) 

If the three variable function H(x,y,t) has a Taylor series in the form of 

00 

H(x,y, t) = L Cnfn(x)gn(x)tn 
n=O 

with respect to one of its variables, t, then the function H(x,y,t) is the bilateral 

generating function for the families fn and Bn . 

Definition 2.8 (Bilinear Generating Function) 

If the three variable function G(x,y,t) has a Taylor series in the form of 



17 

00 

G(x,y, t) = I Cnfn(x)gn(y)tn 
n=O 

with respect to one of its variables , t , then the function G(x,y,t) is the bilinear 

generating function for the families function fn and Bn . 

2.2 Some Special Orthogonal Polynomial Families 

Some well-know orthogonal polynomials families which have several applications in 

applied mathematics are given at this section. These polynomial families have several 

properties which are common and obtainable for any orthogonal polynomial family. 

2.2.1 Laguerre Polynomials (Rainville, 1965) 

For a> -1, the L~a)(x) polynomials, which are orthogonal on o::; x < co with respect 
to the weight function w(x)=xae-x and which are known as Laguerre polynomials are 

given by, 

n 
¢n(x) = LY:)(x) = '\""' (-1)k (n + a) xk L, n- k k' 

k=O ' 

n = 0,1,2, .... 

The special case a = 0 is L~a)(x) = Ln(x). Let us give the first five Laguerre 
polynomials, 

L0(x) = 1 

L,.(x) = -x + 1 

Li(x) = .!.cx2 - 4x + 2) 
2 

"3(x) = .!. (-x3 - 16x2 - 18x + 6) 
6 
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L4(x) = 2. (x4 - 16x3 + 72x2 - 96x + 24) 
24 

L5(x) = 
1~0 

(-x5 + 2Sx4 - 200x3 + 600x2 - 600x + 120) 

The graphs of first six Laguerre polynomials L0 (x), L1 (x), L2 (x), L3 (x), L4 ( x) and 

L5(x) are shown in the figure: 

Laguerre Polynomials 

15 

n=O--- 
n=l --- 
n = 2 . 

I 

I 

n = 4 ----· 
n=5 -·-·- 

10 

5 

-5 

-5 0 5 15 20 10 
X 

Several properties of Laguerre polynomials similar to orthogonal polynomials can be 

obtained. One of these properties is that it satisfies second order differential equations. 

tarting from.!!:.... [xa+le-x .!!:.... Ln(x)], we obtain Leguerre differential equation, 
dx dx 

xy"+ (a+ 1- x)y' + ny = 0, 

rhere the solution of this differential equation are Laguerre polynomials can be 

obtained. 

us start with the equation below: 



it can be written as linear combinations, 

Therefore, 

by integrate over the interval (O,oo), it is deduced that 

oo oo n f Lj(x) :x [xa+le-x :x Ln(x)] dx = f Lj(x)xae-x L aiLi (x) 
0 O i=l 

CXl CXl n 

= ai f xae-xL2j(x)dx + Lai f e-xxaLj(x)Li(x)dx 
0 t=l 0 

j=l 

it is known that the Laguerre polynomial are orthogonal, then 

00 f e-xxa Li(x)Li(x)dx = 0, i =t- j 
0 

Consequently, 

00 CXl f Lj(x) :x [xa+le-x ! Ln(x)] dx = ai f xae-x L2j(x)dx + 0 
0 0 

19 
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ai = f,~ Li(x)![x•+1e-'iL.(x)] dx 
f0 xae-xL2j(x)dx 

xy" +(a+ 1 - x)y' + Jy = 0 

n-1 ,, , An = -n(-2- • (x) +(a+ 1 - x)) = n. 

Then the following differential equation is obtained. 

xy" +(a+ 1 - x)y' + ny = 0. 

The generating function for the Laguerre polynomials 

f (a) n _ 1 (-xt) L Ln (x)t - (l _ t) exp 1 _ t , 
n=O 

(2.5) 

can be written. For obtaining the IIL~\x) II norm of Laguerre polynomials, the 

generating function (2.5) is rewritten as in the form of 

co 

~ 1 (-xt) L e= Lc:n(x)tm = e-x (1- t) exp 1 - t ' 
m=O 

(2.6) 

· multiplying both sides of (2.5) by w(x) = e-x where m * n . If (2.5) and (2.6) are 
ultiplied side by side and integrate over the interval (O,oo) 

tained. If left hand side of the last equation is separated for m = n and m * n, and 
the integral at right hand side, 



1 1- t 1 
(1 - t)2 • (1 + t) = 1 - t2 

is obtained. By using the orthoganality of Laguerre polynomials, for n=m , second 

integral at the left hand side is equal to zero. 

If the Taylor series , 

1 
---= 
1-t 

is used on the right hand side of the last equality, then 

is obtained. Thus , equality of the coefficient of t2n in both sides give the norm of 

Laguerre polynomials as 

00 

IIL~a)(x)f = J e-xL~(x)dx = 1. 
0 

Finally the recurrence relation for Laguerre polynomial L':i (x) is given as, 

21 
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Jacobi Polynomials (Askey, 1999) 

or a > -1 , f3 > -1, the Jacobi polynomials P;;_a,fl) (x), which is orthogonal on the 

· terval -1:5 x :5 1 with respect to the weight function w(x)=(l - x)a(1 + x)fl, are 
given by the formula 

n 
(a,{3)( ) = ~ ~ (n + a) (n + f3) (x + 1)k(x -1r-k , Pn X znL k n-k 

k=O 

n=0,1,2, .... 

If a= {3, the polynomials P;;_a,P)(x), are called "Ultraspherical Polynomials". 

Some special cases of Jacobi polynomials which depend on the values of a and /3 are 
given below: 

1. For a = f3 = - !, the polynomials 
2 

[n/2) 
(-&,-~) - n! xn-2k(x2 - 1? - 

pn (x)- I r •..• 1-'\,r~ .,,_'\, -Tn(X), 
k=O 

are called "I. Type Chebyshev Polynomials". 

Some of the polynomials Tn(x) are 

T0(x) = 1 

T1(X) = X 
T2(x) = 2x2 - 1 

T3(x) = 4x3 - 3x 

T4(x) = 8x4 - 8x2 + 1 
T5(x) = 16x5 - 20x3 + Sx 

The graphs of first six I. Type Chebyshev Polynomials T0(x), T1(x), T2(x), 

T3(x), T4(x) and T5(x) are shown in the figure: 
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-1.0 0.0 
X 

1.0 0.5 -0.5 

For a = fJ = 0, the polynomials 
[n/2] 

p~o,o)(x) = 2-n L (-ll (~) (2n ~ 2k) xn-2k = Pn(x), 
k=O 

called " Legendre Polynomials". Let us give the first five Legendre polynomials; 

(x) = 1 
(z) = X 

(x) = .!.(3x2 -1) 
2 

3(x) = .!. (3x2 - 3x) 
2 

(x) = ~35x4 - 30x2 + 3) 
8 

(x) = .!. (63x5 - 70x3 + 15x). 
8 

graphs of first six Legendre polynomials P0(x), P1 (x), P2 (x), P3(x), P4(x) and 

(x) are shown in the figure: 
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0.5 

-0.5 

-1 

Po(x) - 
P1(x) ··.···········.·.·······. 
P2(x) - 
P3(X) -­ 
P4(X) - 
Ps{x) - 

-1 -0.5 1 0 
X 

Here 

[
~] = { i if n is even, 
2 n-1 

-2- ifnisodd. 

0.5 

If ~ [(1 - x2)(1 - x)a(l + x)f1 ~ P;;a,/3) (x)], is used to start, the Jabobi differential 
dx dx 

equation can be obtain as 

(1-x2)y" + [,B - a - (a+ ,B + 2)x]y' + n(n + ,B +a+ l)y = 0, 

which has the solutions as Jacobi polynomials. 

Generating function for the Jacobi polynomials are given as 
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00 L P;a,p)(x)tn 
n=O 

za+p 

- ./1 - 2tx + t2 [1 - t + ../1 - 2xt + t2][1 + t + ./1 - 2xt + t2]° 

Finally, the recurrence relation for Jacobi polynomials are given as 

2(n+l)(n+a + (3 - 1)(2n+/J + a)P,;~f)(x) - [(2n +a+ (3 + 1)(a2 - (32)(2n + a(J + 
(J)x]P;a,p)(x) + 2(n + a)(a + (3)(2n +a+ (3 + 2)P,;~f\x) = 0. 

2.2.3 Hermite Polynomials (Askey, 1999) 

The Hn(x) Hermit polynomials, which are orthogonal on the interval -oo < x < oo with 
respect to the weight function w(x)=e-x2 given by, 

[n/2] k 
- - ~ (-l) n! n-2k c/>n(x) - Hn(x) - L ,., 1__ ·'11-" (2x) , 

k=O 

n=0,1,2, ... 

Some of the polynomials Hn (x) are, 

H0(x) = 1 

H2(x) = 4x2 - 2 

H4(x) = 16x4 - 48x2 + 12 

H5(x) = 32x5 - 160x3 + 120x 



The graphs of first six Hermit polynomials H0(x), H1 (x), H2 (x), H3 (x), H4(x) and 

H5(x) are shown in the figure: 
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I 0 :x: 
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Hermite (physicists') Polynomia.ls 

-1 0 1 

X 

Rodrigues formula for Hermite polynomials 

The generating function for the Hermite polynomials 

Norm of the Hermite polynomials 

n=O­ 
n=l- 
n=2- 
n=J-w 
n=4- 
n=5- 

2. 3 

(2.7) 
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00 

11Hn(x)ll2 = f e-x2 Hn(x)dx = zn...{iin! 
-oo 

Form the equation 

The Hermite differential equation can be obtained as 

y" - 2xy' + 2ny = 0, 

Which has the solution as Hermite polynomials. 

Finally, the recurrence relation for the Hermite polynomials given as 

(2.8) 

By using generating function, (2.7), we can obtain the recurrence relation above by 

following steps. 

Take the derivative of both side in (2.7) with respect tot. 

00 

(2x - 2t)e2xt-t2 _ I Hn(x) - -~ntn-1 
n! n=O 

00 00 

(2x - 2t) ~ Hn(x) = ~ Hn(X) tn-1 
L n! L(n-1)! n=O n=1 

00 00 00 

~ Hn(X) tn - ~ 2Hn(X) tn+1 = ~ Hn(X) tn-1 
L n! L n! L(n-1)! n=O n=O n=O n--+n-1 

if the indices are manipulated to make all powers oft as t", 
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00 00 00 

I 2xHn(x) L 2Hn-1Cx) L Hn+1Cx) ---tn - t" = t" 
n! (n -1)! n! n=O n=O n=O 

and open some terms to start the summations from 1, 

is obtained. By the equality of the coefficients of the term tn, 
n! 

can be written, which gives the recurrence relation (2.8). 

28 



29 

CHAPTER3 

BIORTHOGONAL POLYNOMIALS 

In 1951, L.Spencer and U.Fano introduced a particular pair of biorthogonal polynomial 

sets in carrying out calculations involving the penetration of gamma rays through matter 

Spencer and Pano did not establish any general properties of biorthogonal polynomial 

sets, but essentially utilized the biorthogonality of polynomials in x and polynomials in 

x2 with respect to the weight function xae-x, where a is a nonnegative integer, over 

the interval (O,oo). 

3.1 Biorthogonal Polynomials 

Definition 3.1 

Let r(x) and s(x) be real polynomials in x of degree h > 0 and k > 0, respectively. Let 

Rm (x) and Sn (x) denote polynomials of degree m and n in r(x) and s(x) , respectively. 

Then Rm(x)and Sn(x) are polynomials of degree mh and nk in x. Here, the 

polynomials r(x) and s(x) are called basic polynomial. 

Notation 3.1 

Let [Rm(x)] denote the set of polynomials R0, R1, R2, ••• of degree 0,1,2, ... in r(x). Let 

[Sm(x)] denoted the set of polynomials S0, S1, S2, ... of degree 0,1,2, ... in s(x). 

Definition 3.2 (Konhouser, 1965) 

The real-valued function p(x) of the real variable xis an admissible weight function on 

the finite or infinite interval (a,b) if all the moments 
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b 

hi= J p(x)[r(x)]i[s(x)]idx, 
a 

i,j = 0,1,2, ... 

exist, with 

b 

lo» = J p(x)dx * 0. 
a 

For orthogonal polynomials, it is customary to require p(x) be non-negative on the 

interval (a,b ). This requirement is necessary fot the establishment of certain properties 

for biorthogonal polynomials, this is found necessarily to require that p(x) be either 

nonnegative or non-positive, with 10,0 * 0, on the interval (a,b). 

Definition 3.3 (Konhouser, 1965) 

The polynomial sets Rm (x)and Sn(x) are biorthogonal over the interval (a,b) with 

respect to the admissible weight function p(x) and the basic polynomials r(x) and s(x) 

provided the orthogonality conditions 

b 

J { 0, m-:f:.n 
lm,n = p(x)Rm(x)Sn(x)dx = * 0, m = n' m,n = 0,1,2, ... (3.1) 

a 

are satisfied. 

The orthogonality conditions (3.1) are analogous to the requirements (1.1) for the 

orthogonality of a single set of polynomials. Following (1.9), it was pointed out that the 

requirement that the different from m=n was redundant. The requirement in (1.1) that 

lm,n be different from zero is not redundant. Polynomial sets [Rm(x)] and [Sn (x)] exist 

such that 

{ o , 
fm,n = -:f:. 0, m * n m n=O 1 2, ... , , , , m=n' andfk,k = 0. 
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Definition 3.4 

If the leading coefficient of polynomial is unity. The polynomial is called monic. 

Now, let give the alternative definition for biorthogonality condition the following 

theorem is the analogue of the Theorem (2.3) which gives an alternative definition for 

orthogonality condition. 

Theorem 3.1 (Konhouser, 1965) 

If p(x) is an admissible weight function over the interval (a,b) and if the basic 

polynomials r(x) and s(x) are such that for n=0,1,2, ... , 

b J p(x) [r(x)]i Sn(x)dx = {O, j = 0,1,2, ... , n - 1 
a =tO , j=n 

(3.2) 

and 

b J p(x) [s(x)]i Rm(x)dx = {O, j = 0,1,2, ... , m - 1, 
a * 0, j = m, 

(3.3) 

are satisfied, then 

b 0 f p(x)Rm(x)Sn(x)dx = {*'0, 
a 

m=tn 
n=m' m, n = 0,1,2, ... (3.4) 

holds. Conversely, when (3.4) holds then both (3.2) and (3.3) hold. 

Proof 

If (2.3) and (2.4) hold, then constants, Cm,j,j =0,1, ... ,m, (cm,m * 0), exist such that 
m 

Rm(x) = L Cm,j[r(x)]( 
j=O 



If m:5 n, then 

b b m J p(x)Rm(x)Sn(x)dx = J p(x) L Cm,j[r(x)]i Sn(x)dx 
a a j=O 

m b 

= r Cm,i J p(x)[r(x)JiSn(x)dx. 
J=O a 

in virtue of (3.2), 

b 

J p(x)[r(x)JiSn(x)dx 
a 

vanishes except where j=m=n. 

Ifm > n, then constants dn,j,j=O,l, ... ,n (dn,n * 0), exist such that 
m 

Sn(x) = I dn)s(x)]i, 
j=O 

and the argument is completed as in the case m :5 n. 

Now, assume that (3.4) holds. Then constants em,i and fn,i exist such that 

j 

[r(x)]i = L em,i Ri(x), 
i=O 

and 

j 

[s(x)]i = L s: Si(x) · 
i=O 

32 
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If os j ::; n, then 

b b j f p(x)[r(x)]i Sn(x)dx = f p(x) L em,iRi(x)Sn(x)dx 
a a i=O 

j b 

= I em,i f p(x)Ri(x)Sn(x)dx. 
t=O a 

If i=l,2,3, ... ,j , j < n, each interval on the right side is zero since (3.4) holds. If j = n, 

the interval on the right side is different from zero. Therefore (3.2) holds. In like manner 

(3.3) can be established. 

3.2 Investigation Of Sufficient Conditions Which Ensure The Existence Of 

Biorthogonal Polynomials 

The determinant !::.n depends upon the moments 

li,j, whith, in turn, depend upon the basic polynomials r(x)and s(x), the weight 

function p(x) and the interval (a,b ). It is natural to attempt to attempt to determine 

sufficient conditions which ensure that !::.n* 0, n=l,2,3, ... .In this direction, partial 

results will be obtained. 

Notation 

The determinant !::.n is given by 

lo,o lo,1 
11,0 11,1 

lo,n-1 

11,n-1 

ln-1,0 ln-1,1 ln-1,n-1 

If p(x) is an admissible weight function then !::.1 = 10,0 * 0. 
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Theorem 

Given the basic polynomials r(x) and s(x) and an arbitrary admissible weight function 

p(x) on the interval (a,b), polynomial sets [Rm(x)] and [Sm(x)] satisfying the 

biorthogonality requirement (3 .4) exist if and only if the determinant Lln is different 

from zero for n=l,2,3, .... Moreover. The polynomials are unique, each to within a 

multiplicative constant. 

Proof 

It is convenient to use the equivalent conditions (3 .2) and (3 .3) in place of (3 .4 ). 

Coefficients Cn,o, Cn,1' ... , Cn,n and dn,o, dn,v ... , dn,n, with Cn,n, dn,n * 0 , are 
required such that for n=O, 1,2, ... 

b n 

J p(x) L Cn,i[r(x)]i[s(x)]jdx = {0 
a i=O 

,j=0,1, ... ,n-1 
*-0 j=n (3.5) 

and such that 

b n J p(x) L dn,i[r(x)]i[s(x)]idx = {0 * 0' j = O,,l, .. j: ~ 1 (3.6) 
a i=O 

In term of the moments Ii,j, requirements (3.5) and (3.6) may be written 

n 

I I -{o , j = 0,1, ... ,n -1 C ... - 
n.t 1,1 * 0 , j * n 

i=O 
(3.7) 

and 

j=0,1, ... ,n-1 
j*n (3.8) 
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The first n requirements of (3. 7) constitute a system of linear equations in the n 

unknowns Cn,01Cn,n, Cn,11cn,n,· .. , Cn,n-1/cn,n· The system will have a unique solution if 

and only if the coefficient determinant, which is precisely l::.n, is different from zero. 

The first n requirements of (3.8) constitute a system of n linear equations in then 

unknowns dn,oldn,n, dn,11dn,n,· .. , dn,n-ildn,n· The determinant of this system is the 

transpose !::.~ of l::.n and is nonzero if and only if l::.n is nonzero. Therefore, if l::.n * 0, 
n=l,2,3, ... , then polynomials can be found which satisfy the first n requirements of 

both (3.7) and (3.8). Moreover, the polynomials are unique, eachto within a 

multiplicative constant. 

The (n+ l)st requirements of (3.7) and (3.8) must snow be examined. The (n+ l)st 

requirement of (3.7) is that 

n L Cn,ihn '=F 0. 
i=O 

(3.9) 

If we replace Cn,i by its value as determined from the solution of the system of n 

equations the left side of (3.9) is Cn,n/ l::.n times the determinant l::.n+l must be different 

from zero for n=l,2,3, .... m life manner, the (n+l)st requirement for (3.8) leads to the 

requirement that 

n 
~ d ./ . _ dn,nl::.n+l L n.; n,1 - !::. -=f:. 0. 
i=O n 

Multiplication of the polynomials Rn(x) and Sn(x) 

By constants, which are not necessarily the same for every value of n, does not affect 

the satisfaction of requirements (3. 7) and (3 .8). In conclusion, a necessary and sufficient 

condition for the existence of bi orthogonal polynomials are that the determinants l::.n be 

different from zero for n=l,2,3, .... 

In regard to the basic polynomials r(x) and s(x), it is clear that the biorthogonal 

polynomials determined by the basic polynomials r(x)+µ and s(x)+v, whereµ and v 
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are constants, are identical because of the orthogonality of Rn(x) and Sn(x) with 

respect to the constants S0(x) and R0(x), respectively. 

3.3 Some Special Biorthogonal Polynomial Families 

After Konhoauser found the general property of biorthogonal polynomials, there was a 

rise in interest of this topic. Then, in 1967 he defined a pair of biorthogonal polynomial 

family. This situation had the interest of this topic reached to the top point. The 

polynomial family that is called biorthogonal polynomial defined by Laguerre 

polynomial is also called Konhouser polynomial. After that year, the mathematicians 

were established biorthogonal polynomial family defined by the property of classic 

orthogonal polynomial. 

3.3.1 Biorthogonal Polynomials Defined By Laguerre Polynomials 

In this section, it will be mentioned about the pair of bi orthogonal polynomial defined 

by Konhauser in 1967. 

z;:(x; k) and Yt(x; k) polynomials are given by, a> -1, 

n kj 
T(kn+a+l)~ j(n) x 

z;:(x;k)= n! ~(-l) j T(kj+a+l) 
J=O 

(3.10) 

and 

1 f xi f . f i) (j + a + 1) 
Yt(x; k) = n!L i! L (-1)1 V k n 

i=O j=O 

(3.11) 

the expressions (3 .10) and (3 .11) yield, 



Joo . {O ' 
xae-x Z~(x; k)xldx = * 0 

0 

i = 0,1, ... , n - 1 
i = n (3.12) 

and 

Joo ki {o ' 
x+e:" Y,f (x; k)x 'iix = * 0 

0 

i = 0,1, ... , n - 1 
i = n (3.13) 

respectively. If (3.10) is put in (3.12), there follows, 

00 

J xae-x Z~(x; k)xidx 
0 

oo n xkj 

J I'(kn + a + 1) ~ j (n) xrdx 
= xae-x n! x ~(-1) j I'(kj +a+ 1) 

0 

00 

I'(kn +a+ 1) f (-l)j (~) 1 J e-xxkj+a+1dx 
= n' L J I'(kj +a+ 1) 

• j=O 0 

n 
_ I'(kn +a+ 1) L _ . (n) I'(kj +a+ i + 1) - ( 1)1 . 

n! . J I'(kj +a+ 1) · 
J=O 

(3.14) 

It can be obtained easily that, 

Dixkj+a+il x=l = (kj +a+ i)(kj +a+ i - 1) ... (kj +a+ 1)xkj+al x=l 

I'(kj +a+ 1) 
= (kj +a+ i)(kj +a+ i - l) ... I'(kj +a+ 1) 

I'(kj +a+ i + 1) 
I'(kj +a+ 1) · 

By following the quantity that is was obtained above, the expression (3.14) can be 

written that, 

37 
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oo n 

J . I'(kn +a+ 1) ~ . (n) ( . k i ·I ) xae-x Z;i(X; k)x1dx = n! L (-1)1 j D1x 1+a+i x=1 
0 j=O 

_ I'(kn +a+ 1) Dixa+i f (-1)j (])xkjlx=1 
- I L n. j=O 

This expression is equal to zero for i=O, 1, ... ,n-1 however it is different from zero for 

i=n. This shows that the expression (3.12) is satisfied. Ins similar way, it shows that 

(3 .13) is satisfied as well. 

Theorem 

If (3.12) and (3.13) are satisfied, Z;i(x; k) and v:(x; k) is biorthogonal with respect to 

xae-x over the interval (0,oo) by Theorem 3.2.1. 

That is, 

00 

J xae-x Z;i(X; k)Y:(x; k)dx = {~ o' 
0 

m:;t:n 
(3.15) , m=n 

is satisfied. In fact for m:5 n, it is written 

00 

lm,n = J xae-x Z;i(X; k)Y:(x; k)dx 
0 

= [ x+e:" {~,t. :: t,(-l)i G)f +: + l }z~(x; k)dx 
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m i loo l 1 1 . i J+a+l . =m!~i!~(-l)'G)( k t [ x•e-xz~(x;k)x'dx 
i = 0,1, ... ,n-1,n * m 

i = n =m 

Form 2:: n, it is obtained 

co 

lm,n = f x+e ? Z1~(x; k)Y,f (x; k)dx 
0 

Joo _ {I'(kn +a+ 1) f (-l)i (~) xki } Y,f (x; k)dx 
= xae x n! ~ J I'(kj +a+ 1) 

J=O 0 

_ I'(kn +a+ 1) f (-l)i (~) . 1 . !Joo xae-xyna(x; k)xidx) - L 1 r(k1 + a + 1) 
j=O 0 

j = 0,1, ... , n - 1, n * m 
j =n=m 

These expressions show that the equation (3 .15) is satisfied. 

In the definition of (3.10) and (3.11), it is seen that the polynomials Z~(x; k) and 

Y,f (x; k) can be reduced to Laguerre polynomials defined by (3.15) for k=l. In a similar 

way the orthogonality relations (3.12) and (3.13) can be reduced to the orthogonality 

relation of Laguerre polynomials defined by (3.14) for k=l. So, the polynomials 

Z~(x; k) and Y%(x; k) are called biorthogonal polynomial defined by Laguerre 

polynomial and Konhauser polynomials. 

3.3.2 Biorthogonal Polynomials Defined By Jacobi Polynomials 

At this time, the pair of polynomials that were defined by Madhekar and Thakare and 

can be reduced to Jacobi Polynomials for k=l will be defined. 
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In (a, b, k; x) and Kn (a, b, k; x) polynomials are given by 

In(a, b, k; x) = (1 +n~hn f (-l)j (7) (1 +a+ {3 + nhj 
j=O (1 + a)kj 

(3.16) 

and 

Kn(a,b,k;x) 
n r 

= ~ ~ -l r+s (r) (1 + f3)n (s +a+ 1) (~)r (~)n LL.} ) s n! r! (1 + f3)n-r k n 2 2 (3.l7) 
r=Os=O 

respectively. 

The polynomial family In (a, b, k; x) and Kn (a, b, k; x) that were given in (3.16) and 

(3.17) are biorthogonal with respect to the weight function (1 - x)a (1 + x)/3 over the 
interval (-1, 1 ). 

1 

J (1- x)a(l + x)f1 In(a, b, k; x) Km(a, b, k; x)dx = {~ 011 

-1 

m=t=n 
m = n;m,n = 01 ' ' ... 

For k=l, both of In(a, b, k; x) and Kn(a, b, k; x) polynomials are reduced to Jacobi 

polynomials. P~a,{3) (x) and is called biorthogonal polynomials defined by Jacobi 

polynomials. 
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CHAPTER4 

q-ORTHOGONAL POLYNOMIALS 

4.1 q-Orthogonal Polynomials 

q-orthogonal polynomial family is a generalization of classic orthogonal polynomials 

family. These generalization has may common properties with orthogonal polynomials. 

Definition 4.l(q-orthogonal polynomial) 

For lql < 1, let w(x;q) be a positive weight function which is defined on the set 
{aqn, bq"; n E N0}. If the polynomials {Pn(x; q)}nENo satisfy the following property: 

b 

f { o ~*aj 
Pm(x; q)Pn(x; q)w(x; q)dqx = * 0 (m = n), (m, n E N0), (4.1) 

a 

then the polynomial Pn(x; q) are called q-orhogonal polynomials with respect to the 

weight function w(x;q) over the interval (a,b). 

For q~ 1-, (4.1) q-orthogonality condition gives the orthogonality condition (2.1). 

4.2 Some Special q-Orthogonal Polynomials Families 

4.2.1 q-Laguerre Polynomial 

The ordinary Laguerre polynomials are defined as 

n k: 
(a) _ (a + l)n""' (-nhx , 

Ln (x) - n! L (a+ lhk! 
k=O 

where a1c = a(a + 1)(a + 2) ... (a+ k - 1). These polynomials satisfy the 

orthogonality relation 



There is a q-analogue of these polynomials which is defined as 

Note that L~a) (x; q) -+ L~a) (x) as q-+ 1-. 

One orthogonal relation is: 

Theorem 1. 

For a> -1, the following integral is given by 

oo xadx f L~a) (x; q) Lc:i) (x; q) (-(1 - q)x; q)oo 
0 I" + 1)I'(-a)(qa+1; q)n 

= I'q(-a)(q; q)nqn 
0 , 

, m=n, (4.3) 
m'if:.n. 

Proof 

Firstly, it should be shown that 

00 

I (a) . m xa dx - t; (x, q)x ( ( ) ) - 0, m < n. ( 4.4) - 1- q x; q co 
0 

In fact by (1.7), 
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By the reflection formula for the gamma function and the functional equation for the q­ 

gamma function, it is reached that, 

= rr(qa+1; q)n csc(-arr - mrr) f (q-n; q)kq{~)(qn+a+1 )k(-)k(q-a-k-m; qh 
(q; q)nI'q(-a - m) 6 (qa+1; q)k(q; q)k 

(qa+1; q)nI'(-a)I'(a + 1)(q-a-m; q)m(-)m 
- (q; q)n(1- q)mrq(-a) 

f (q-n; q)k(qa+m+1; q)k(qn-m)k 
X 6 (qa+1; qh(q; qh . 

There is a sum due to Heine [see 3.p.68], 

in particular when a = q:», 



hence the integral (4.4) can be written as the following way. 

00 

f L(a)( ) xm+ad n x;q x 
0 

{
o ,if m < n 

= I'(-a)I'(a+1)(qa+1;q)n(-r _ 
2 , m-n 

I'q(-a)qan+n +nc1- qr 

(a) (c-)n n2+nac1- )n) since Ln (x; q) = q (q;q)n q xn + ... , it is obtained, 

00 J (L~a) (x; q))2 xadx 

0 

I'(-a)I'(a + 1)(qa+1; q)n 
I'q(-a)(q; q)nqn 

which proves the theorem. 
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The measure can be normalized so that the total mass in one, and it is deduced that, 

00 f L~a)(x;q)Lc::i)(x;q) x~I'q(-a)dx = {(q~+1,q)n, 
o ( (1- q)x, q)ooI'(-a)I'(a + 1) (q, q)nqn 

0, 

There is another orthogonality relation using Ramanujan's sum. 

m=n 

m-=i=-n. 
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4.2.2 q- Hermite Polynomial 

The continuous q-Hermit polynomials {Hn(xlq)} are generated by the recursion 

relation 

(4.5) 

and the initial conditions 

H0(xlq) = 1, H1 (xlq) = 2x. (4.6) 

Our fist take is to derive generating function for {Hn(xlq)}. Let 

co t" 
H(x, t) = L Hn(xlq) (q; q)n' 

n=O 

Multiply (4.5) by C ~n) , add for n=l,2,3, ... , and take into account the initial condition 
q,q n 

( 4.6). we obtain the functional equation 

H(x,t)-H(x,qt) = 2xtH(x,t) - t2H(x,t). 

Therefore 

H(x, qt) H(x, qt) 
H(x, t) = ., _ ?x + t2 = (L - teiB)(l _ te-ie) ~ (4.7) 

x=cos8. 

This suggests iterating the functional equation ( 4. 7) to get 

H(cos8, qnt) . 
H(cos8, t) = (te'", te="; q)n 

As n--+ oo , H(x,qnt) --+ H(x,O) = 1. 
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CHAPTERS 

q-BIORTHOGONAL POLYNOMIALS 

Firstly in 1983, q-biorthogonal polynomial that is q-analogue ofbiorthogonal 

polynomials were come out by Al-Salam and Verma (1983) These polynomials defined 

by (5.1) and (5.2) are seen as the definition of q-Konhouser polynomials that is q­ 

analogue ofKonhouser polynomial. In 1992, Jain and Srivastava obtained the 

alternative definitions of these polynomials. 

Basic definitions and general conditions of q-biorthogonality are given by Sekeroglu , 

Srivastava and Tasdelen (2007). 

5.1 q-Biorthogonal Polynomials 

Definition 5.1 

For lql < 1, let r(x;q) and s(x;q) be polynomials in x of degrees hand k, respectively 

(h,kE N). Also let Rm(x; q)and Sn(x; q) denote polynomials of degrees m and n in 

r(x;q) and s(x;q), respectively. Then Rm(x; q) and Sn(x; q) are polynomials of degrees 

mh and nk in x . The polynomials r(x;q) and s(x;q) are called the q-basic polynomials. 

For lql < 1, let {Rn(x; q)}:=o denote the set of polynomials 

R0 (x; q), R1 (x; q), ... , Rn (x; q), ... 

of degrees 

0,1, ... ,n, ... in r(x; q). 

Similarly, let {Sn(x; q)}:=o denote the set of polynomials 

S0(x; q),S1(x; q), ... ,Sn(x; q), ... 

of degrees 

0,1, ... ,n, ... in s(x; q). 
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Definition 5.2 

For lql < 1, lerwrx.q) be an admissible weight function which is defined on the set 

If the polynomial sets 

satisfy the following condition: 

b 

J [ O . (m * n) 
Rm(x; q)Sn(x; q)w(x; q)dqx = * 0 (m = n) (m, n E N0) (5.1) 

a 

then the polynomial sets 

are said to be q-biorthogonal over the integral (a,b) with respect to the weight function 

w(x;q) and the q-basic polynomials r(x;q) and s(x;q). 

The q-biothogonality condition (5.1) is analogous to the q-orthogonality condition (4.1). 

We also note that, when q--+ 1 -, the q-biorthogonality condition (5.1) gives us the 

usual biorthogonality condition (3 .1 ). 

5.2 Some Special q-Biorthogonal Polynomial Families 

5.2.1 q-Konhauset Polynomials 

Remark 1. If we take the weight function 

over the interval (0,oo), we obtain the following q-Konhauser polynomials: 



z~a) ex. k; q) = (ql+a; q)n" In (q-n"; q") jqi"i(kj-1)+kj(n+a+1) 
( 

k: ") tci q ; q n . (q"; q") ·(q1+a. q). X 
1 

(5.2) 
J=O 1 , jk: 

and 

which were considered by Al-Salam and Verma [1], who proved that 

00 

f O (n :;t: m), f z~a)(x,k;q)Y~a)(x,k;q)xaeq(-x)dqx = l:;t: 0 (n = m). 
0 

Equation (5.4) does indeed exhibit the fact that the polynomials z~a) (x, k; q) and 

Y~a) (x, k; q) are q-biorthogonal polynomials with respect to the weight function 

xaeq(-x) over the interval (O,oo). 

Remark 2. For k=l, the q-Konhauser polynomials in (5.2) and (1.4) reduce to the q­ 

Laguerre polynomials given by (4.2) 

Remark 3. Just as we indicated in the preceding section, Jain and Srivastava gave 

another pair of q-Konhauser polynomials which are defined by 
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and 
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CHAPTER6 

CONCLUSIONS 

In this thesis, definitions and basic properties of q-biorthogonal polynomials are given 

and q-Konhauser polynomials Yn(x, k; q) and Zn(x, k; q) are defined. 

For k=l, q-Konhauser polynomials give the q-Laguerre polynomials. So, several 

properties of q-Laguerre polynomials can be generalized for the q-Konhauser 

polynomials. 

Moreover, new q-biorthogonal families can be investigated and by using q­ 

biorthogonality process, they can be obtained. 
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