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ABSTRACT 

Hyperbolic geometry, which has a large place in mathematics, consists dynamical 

systems, chaos theory, number theory and many more mathematics and physics area 

beside geometry. This geometry dating back to 19.CC, was found during the studies 

of understanding the axiom which is known as parallel axiom and the fifth one of 

the axioms published in 300 BC by Euclid. In hyperbolic geometry althought the 

first four postulate hold, the fifth postulate of Euclid is changed as a, a hyperbolic 

line and a point not on the given line, there are at least two lines parallel to the 

given line.The convenient meta- definition for geometry is given by Felix Clain 

(1849-1929) in his Erlang en programme which is published in 18 72. It is 'given a set 

with some structure and a group of transformations that preserve that structure, 

geometry is the study of objects that are invariant under these transformations.' 

For two dimensional Euclidean geometry, the set is the plane R2 equipped with the 

Euclidean distance function together with a group of transformations that preserves the 

distance between points. In this thesis, the defination of hyperbolic geometry given 

like Euclidean geometry; it will be defined a notation of distance on a set and 

study the transformations which preserve this distance. During this study will be 

studied with the upper half plane model and Poancare madel with the complex 

valuable functions. 

Keyword: Euclidean geometry, Hyperbolic geometry, Mobius transformations, upper 

half plane and Poancare model. 
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OZET 

Hiperbolik geometri, matematikte genis yer kaplayan konulardan biri olup, geometrinin 

yam sira Dinamik Sistemler, Kaos Teorisi, Sayilar Teorisi ve daha bir cok matematik 

ve fizik alanlanm kapsamaktadir. 19. yizyilda ortaya cikan bu geometri, Oklid in 

Milattan ince 300 yilmda yaymladig aksiyomlann besincisi olan ve ginlmizde par­ 

alellik aksiomu olarak bilinen bu aksiomu anlamaya yonelik yapilan cahsmalarda bu­ 

lunmustur. Hiperbolik geometride, Oklid geometrisindeki ilk dart aksiom saglanmasma 

ragnen, besinci aksiom; verilen bir hiperbolik dogu ve bu hiperbolik dogu i.izerinde 

olmayan bir nokta, bu noktadan gecen ve verilen hiperbolik doguya paralel olan en az 

iki dogu vardir, olarak degisir. 

Geometriye, uygun bir tamrrn 1892 yihnda Felix Klein, yaymladig Erlange pro­ 

grammda soyle tarumlarrustir; 

'Geometri, bazi yapilarla verilen bir kimede, yapilan koruyan donislm gruplan, ve 

bu dtnisimler altmda degismeyen nesnelerlein incelenmesidir.' iki boyutlu Oklid ge­ 

ometrisi, Cklid uzakhk fonksiyonu ile birlikte noktalar arasmdaki mesafeleri koruyan 

grup dcniJ;;iinu ile donatilrrns R2 di.izlemidir. Bu tezde, hiperbolik geometri de ayni 

yolla tammlanarak bir kime i.izerinde uzkhk kavrami tammlayarak, bu uzakhklan 

koruyan donisimlerle cahsilacaktir. Bu calisma sirasmda hiperbolik geometrinin 

modellerinden kompleks deg:rli fonksiyonlar ve izerinden Ist yan di.izlem modeli 

ve Poancare modeli ile cahsilacaktir. 
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CHAPTER 1 

INTRODUCTION TO THE STUDY 

1.1 Overview 

In this chapter the background of the Hyperbolic Geometry will be presented. 

Hyperbolic Geometry has been put forward by different mathematicians. Hyperbolic 

Geometry originates from Euclidean Geometry. For every line and for every point that 

does not lie on, there exists a unique line through the point that is parallel to the line. 

(Greenberg, 1993). All studies and reserches focuses on the same postulate and proves 

the same result. However this postulate is not true on Hyperbolic geometry. In this 

study this will be the main focus area. 

1.2 Background of the Hyperbolic Geometry 

Hyperbolic Geometry was discovered in the first half of the nineteenth century in the 

midst of attempt to understand the fifth postulate of Euclidean geometry. Hyperbolic 

geometry is the one of the non-Euclidean geometry that is the prototype of the study 

of geometry on space of constant negative curvature. 

Hyperbolic geometry is connected the many other parts of mathematics. Like, complex 

analysis, topology, differential geometry, dynamical systems, number theory, geomet­ 

ric group theory, Riemann surface, etc. 

In this thesis it will be studied in the upper half plane (also known as the Lobachevskii 

plane) lHl = {z EC : Imz > O} with the metric ds = i:! and the unit disc (Poincare disk) 
D = {z E C : lzl < 1} with the metric ds = <~~~:2• However, to construct the hyperbolic 

geometry there are some other models, like, Jernisphere, Klein and Loid (hyperboloid). 

In order to define and give the background of Hyperbolic Geometry, It is better to start 

with given Euclidean postulates. 

1 



1.2.1 Five postulate of Euclidean geometry .. 
Euclidean geometry is study of geometry in JR.2 or more generally Rn. There are many 

ways to constructing Euclidean geometry, one of them Klein's Erlanges program (Klein, 

1878); its give the definition of Euclidean geometry in term of Euclidean plane, equipped 

with the Euclidean distance function and the set of isometries that preserve the Eu­ 

clidean distance. The alternatively defination can be given with Greek mathematician 

Euclid (c.325BC- c.265BC). In the first of his thirteen volume set ' The Elements', 

Euclid systematically developed Euclidean geometry. In his first book contains twenty 

three definitions (point, line etc.), five common notions, some proposition and follow­ 

ing five postulates (Euclid, 1926); 

(i) a straight line may be drown from any point to any other point, 

(ii) a finite straight line may be extended continously in a straight line, 

(iii) a circle may be drown with any center and any radius, 

(iv) all right angles are equal, 

(v) if a straight line falling on two straight lines makes the interior angles on the 

same side less than two right- angles, then the two straight lines, if extended indefi­ 

nitely, meet on the side on which the angles are less than two right-angles. 

It is easy to understand the first four postulates but the fifth postulate is more complex 

and not natural. Therefore the equivalent explanation for the fifth postulate which is 

given below and it is known as the parallel postulate; 

Given any infinite straight line and a point not on that line, there exists a unique infinite 

straight line through that point and parallel to the given line. 

For over two thousand years there are most of studies the fifth postulate. During this 

period most of plane geometry can be devoloped without using fifth postulate and it 

is not used until proposition 29 in Euclid's first book and so it is suggested that the 

parallel postulate is not necessary. In the same period most of mathematcians attempt 

to prove that the fifth postulate is not independent from the first four postulates and it 

can be obtained from the others first four simplier postulates. In fact,all studies turned 

out to be equivalent to the fifth postulate: 
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Proclus (412- 485), Suppose Lis a line and Pis a point not on L. Then there exist a 

unique line L' through P and parallel to (i.e. not meeting) L. 

The Englishman John Wallis (1616,1703), he thought he had deduce the fifth postulate 

but he actually showed, there exist similar triangles of different sizes. 

Girolamo Saccheri (1667-1733) who was italian mathematician, considered quadri­ 

laterals with two base angles equal to right angle and with vertical sides having equal 

length and deduced concequences from the (non euclidean) possibility that the remain­ 

ing two angles were not right angles. 

Johann Heinrich Lambert (1728-1777) proceeded in a similar fashion and wrote an 

extensive work on the subject. 

Kastener (1719-1800) studied with his student Kltigel (1739-1812), they considered 

approximately thirty proof attempts for the parallel postulate. 

In the nineteenth century, the decisive progress came when mathematicians leave the 

studies to find the contradiction the fifth postulate, and they found that, 

"Given a line and a point on it, there is more then one line going through the given 

point that is parallel to the given line." 

This postulate constucts the hyperbolic geometry. 

Carl Friedrich Gauss (1777-1855), Nikolai Ivanovich Lobachevskif (1792- 1856) and 

Janos Bolyai (1802- 1860) independently developed a consistent geometry which the 

parallel postulate fails but the rest of Euclidean's postulates remain true. 
( 

Gauss prove that the fifth postulate is independent from the other four postulates. In- 

deed, he discovery that geometry for which the first four postulates hold but the par­ 

allel postulate fail. And this geometry is different from the Euclidean geometry. For 

instance as a known fact the sum of the three sides of triangle is 180 degrees in the 

Euclidean geometry but in 1824 Gauss wrote an assumtion that the sum of the sides is 

less then 180 degrees. And this geometry called Non-Euclidean geometry. Gauss did 

not publish any of his findings. 

Later hyperbolic geometry rediscoverd independently by Bolyai who interest come 

from his father and he published his discovery as a 26 pages Appendix in his father's 
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book in 1831 (Bolyai and Bolyai, 1913) . The third one is Lobachevskil. He did 

more extensive studies. He developed a non- Euclidean trigonometry that paralleled 

the trigonometric formulas of Euclidean geometry and publish his findings in 1829. In 

1837 he suggested that curved surface of constant negative curvature represent non- 

Euclidean geometry. 

In 1868 Eugenio Beltrami, established one can constract the hyperbolic plane using 

standart mathematics and Euclidean geometry. 

Klein (1872), study of properties of a set invariant under a transformation group. 

Poincare (1854- 1912), in 1881 put forward the isometries or distance preserving bi- 

jections of upper half plane model and unit disc model are just the linear fractional 

transformations or Mobius maps which preserve D or lHI respectively. This makes it 

particularly easy to study and compute with such maps. It turns out that they are also 

the set of all conformal automorphisms of D or H. 

1.3 Comparison Between Euclidean And Hyperbolic Geometry 

Basic givens 

Model 

Lines 

Axiom 1 

Axiom2 

Angle sum of 

triangle 

Circumferance 

of circle 

Area of circle 

Euclidean Hyperbolic 

points, lines, planes points, lines, planes 

Euclidean plane Dor lHI 

Euclidean lines arcs orthogonal to boundary 

any two distace point any two distance point 

lie on a unique line lie on a unique line 

throught any point throught any point 
\_ P ft. L there is a unique p ft. L there are infinitely 

parallel line to L many parallel to L 

7[ < 7[ 

21rr 21r sinh r 

41r sinlr' ~ 

4 
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1.4 Definitions of Terms 

H Upper half plane 

D Unit disc 

D Closure of unit disc . 

(C Complex plane 

(C Extended complex plane. 

Aut((C) Conformal Mobius group 

Group of conformal Mobius 

Aut(H) transformation which 

transformation H to H. 
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CHAPTER 2 

COMPLEX NUMBERS 

The aim of this chaper is give the some backround of complex analysis. There will be 

given some basic properties and described the polar form of complex numbers. And 

the end of this chapter there will be defined the Stereographic projection. 

Complex numbers can be defined as a ordered pairs (x, y) of real numbers, and there 

is a one to one correspondence between complex numbers and ordered pairs in the 

Euclidean plane R 2• The real numbers correspond to the x-axis and the pure imaginary 

numbers which of form iy are corresponds to the y-axis in the Euclidean plane. The 

y-axis is reffered to as the imaginart axis. 

The sum and product of two complex numbers z1 = (x1, Y1) and z2 = (x2, Y2) are defined 
as follows; 

(2.1) 

(2.2) 

Any complex number z =(x,y) can be written as 

z = (x, 0) + (O,y) 

acording to (2.2) , it is easy to see that 

(0, l)(y,O) = (O,y) 
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and if defined i := (0, 1) then it will be obtained, 

Z = (x,y):::: X + iy, 

Also the square of i is; 

i2 = (0, 1)(0, 1) = (-1,0) = -1. 

In conclusion it can be said that, the complex numbers can be expression of the form, 

Z = X + iy (2.3) 

where x and y are real numbers. 

Now, some basic of algebraic properties for addition and multiplication can be given, 

1) Z1 + Z2 = z2 + z1 and Z1Z2 = z2z1 (commutative laws) 

2) (z1 + z2) + Z3 = Z1 + (z2 + Z3), (z1z2) Z3 = Z1 (Z2Z3) 
3) Z1 (z2 + Z3) = Z1Z2 + Z1Z3 

(associative laws) 

(distributive law) 

Complex numbers behave as same with the real numbers with respect to algebraic 

operations. The additive identity O = (0, 0) and multiplicative identity 1 = (1, 0) carry 

over the entire complex plane from the real numbers. That is, 

z + 0 = (x, y) + (0, 0) = (x, y) = z 

and 

z.I = (x,y)(l,0) = (x,y) = z, 

are satisfied for every complex number z = (x,y) = x + iy, 
In the complex number system there is a unique additive inverse -z = (-x, -y) = 

-x - iy for any complex number z. And additive inverse -z satisfy the equation z + 

(-z) = 0. Similarly, there is a unique multiplicative invrese z-1 which is satisfy 

z.z " = 1. 
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Definition 2.1 (Modulus) 

The modulus or absolute value of the complex number z = x + iy is a nonegative 
real number denoted by the relation 

The number lzl is the distance between the orgin and the point z = (x, y). 
From (2.3), z2 = (Rez)2 + (Jmz)2, then Re: ~ IRezl ~ lzl and Im: ~ l/mzl ~ lzl are easily 
obtained. 

Definition 2.2 ( Complex conjugate) 

The complex conjugate of a complex number z = x + iy is defined to be z = x - iy. 
Geometrically is the reflection of z in the x-axis. 

y 

z = (x,y)=x+iy 

[z] 

X 

z= (x,-y)=x-iy 

Let z = x + iy and the conjugate of z is z = x - iy, then their addition, 

z + z = 2x 

can be defined the real part of z as a, 

z+z 
x=~2. (2.4) 

8 



If thinking the subtruction of z and z, it will be obtained the imaginary part of z, 

z- z = 2iy 

then 
z-z 

y=2i. (2.5) 

Some properties of compex conjugation are; 
- 
z=z 

Z1 + Z2 = Z1 + Z2 

lzl = lzl 
lzl2 = z.z. 

After these properties it can be given the triangle inequalitiy which is the important 

appication of these properties. 

Theorem 2.3 (Triangle inequalitiy) 

If z1 and z2 are arbitrary complex numbers, then 

Proof. 

lz1 + z212 = (z1 + z2) (zi" + 22) 

= Z1Z1 + Z1Z2 + Z1Z2 + Z2Z2 

= lzii2 + Z1Z2 + Z1Z2 + lz212 

= lzii2 + 2Re (z1fil + lzi 

s lzii2 + 2 lz1 I lz2I + lz212 

= (lz1I + lz2lf 

9 



r 

< 

hence, 

in conclusion; 

is hold. o 

And the other usefull identity is obtained by means of the trianle inequality. Taking 

any point z E C, it can be written by 

z=z-w+w 

if taking modulus both sides, and apply the triangle inequality 

lzl = lz - w + wl 

:$ lz - wl + lzl 

subtructing lwl from both sides of inequality then, 

lzl - lwl :$ lz - wl , (2.6) 

with the same idea, if z and w change their place, 

lwl - lzl :$ lw - zl (2.7) 

since, 

[w - zl = 1-(z - w)I = lz - wl 

then (2.7), 

lzl - lwl :2: - lz - wl (2.8) 
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and from (2.6) and (2.8), 

llzl - lwll ::; lz - w]. 

2.1 Polar Representation 

Any point z = (x, y) in the complex plane can be described by polar coordinates rand 

e, where r is the modulus of z and e is the angle between the vector from orgin to the 

point z and x-axis And the cartesian coordinates x and y can be recovered from the 

polar coordinates r , e by 

X = r COS 8 

y = r sine 

then the number z can be written in polar form as 

z = r ( cos e + i sin e) . 

y 

z = (x,y)={r c056, r sine) 

e 
X 

Definition 2.4 (Argument) 

The argument of z is defined by angle e and it is written 

argz = e. 

Thus arg z is multivalud function, defined for z * 0. 
The principal vale of arg z, denoted by Argz is that unique e such that -tt < e ::; tt. The 
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vales of arg z are obtained from Argz by adding integral multiples of 21r, such that 

arg z = {Argz + 'Iatn : n = 0, +1, ±2, ±3, ... } . 

2.2 Stereographic Projection 

In order to understand the relationship among the hyperbolic models it will be used 

stereographic projection. In this section,it will be developed some important properties 

of stereographic projection. 

To construct the streographic projection, let denote S with the unit sphere .x2+y2+z2 = 1 

in R3 and let N = (0, 0, 1) denote the "North Pole" of S. Take a point P (X, Y, Z) E S, 

other then N, then the line connecting N and P intersects the XY- plane (which is 

identify the complex plane C) at a point z(x,y, 0). (as it can see following figure) 

z 

N(0,0,1) 

<~ 

z 

X 

The line which is pass through N, P and z can be considered with, 

P - z = t(N - z), where t E R, 

and so there exist, 

(X, Y, Z) = t (0, 0, 1) + (1 - t)(x, y, 0) 

then, 

12 



X = (1 - t) X 

y = (1- t)y (2.9) 

z = t 
Since (X, Y, Z) on the unit sphere S, there fore, 

(1 - !)2 x2 + (1 - !)2 y2 + t2 = 1 

so that, 

(1 - r)2 lzi2 = 1 - t2 

from the assumtion, P is diferent point from the N(O, 0, 1 ),so t * l, then, 

t = lzl2 - 1 
lzl2 + ( 

using this and (2.4), the equation (2.9) yiels, 

X- _2_x- z+z 
- lzl2+1 - lzl2+1 

y- _2_y- z-z 
· - lzl2+1 - lz12+1 

z = lzl2-1 
lzl2+1 

(2.10) 

conversly, it is easily obtained that, 

{ X: l~Z y - 1-Z 

(2.11) 

Now, it can be given the defination of streographic projection. 

(Stereographic projection) 

Let S denote the unit sphere x2 + y2 + z2 = 1 in JR3 and let N = (0, 0, 1) denote the 
"North Pole" of S. Given a point P E S, other then N, then the line connecting N 

and P intersects the XY- plane (which is considered as the z- plane) at a point z. The 

13 



stereographic projection is the map 

tt : C ~ S - {N} : z ~ P 

conversely, 

1r-1 : S - {N} ~ C : P ~ z. 

Note that, under stereographic projection, points on the unit circle lzl = 1 (in the z­ 

plane) remain fixed (that is z=Z), forming the equator. Point outside the unit circle 

lzl > 1 project to points in the northern hemisphere, while those inside the unit circle 

lzl < 1 project to southern hemisphere. In particular the orgin of the z-plane projects to 

the south pole of the Reimann Sphere. 

Theorem 2.5 Suppose T c C00• Then the corresponding image of Ton the Rimann 

sphere S is 

( a) a circle in S not containing image (0, 0, 1), if T is a circle; 

(b) a circle in S passes through (0, 0, 1) if T is a line. 

Proof. First start the proof with considering the general equation of a circle in the 

plane, 

T = {(x,y): A (.x2 +/)+Bx+ Cy+ D = o] (2.12) 

the image of T under stereographic projection with using equation (2.11) , 

l+Z X Y 
A--+ B-- + C-- + D = 0 
1-Z 1-Z 1-Z 

then, 

(A - D) Z + BX + XY + (A + D) = 0 (2.13) 

which is the equation of a plane in the space. Since the intersection of any plane and 

sphere is a circle. And the point N = (0, 0, 1) is not satisfiy the equation (2.13). 
Thus, the image of any circle in C00 under streographic projection is a circle not contain 

14 



2 

the point (0, 0, 1). 

Assume that, A = 0 in the equation (2.12) then Twill be a line C00• And the image of 

line will be 

BX+ XY - DZ+ D = 0 

the intersection of this equation with sphere S is a circle wihich is passes through the 

N = (0, 0, 1). 
Hence, if Tis a line then the image of Tis a circle in S passes through (0, 0, 1). o 

The converse of above theorem takes the above form; 

Theorem 2.6 If Ts is acircle on the Riemann sphere S and Tis its stereographic pro- 

jection on Coo, then 

(a) Tis a circle if (0, 0, 1) ff_ Ts 

(b) Tis a line if (0, 0, 1) E Ts. 

Proof. If Ts is acircle on the sphere S, then Ts can be defined by the intersection of a 

plane with sphere S, 

Ts = {AX+ BY + CZ + D = 0} n {AX2 + BY2 + CZ2 = 1} . (2.14) 

And according the (2.10) , 

2x 2y lzl2 - 1 
A +B +C +D=O 

Jzl2 + 1 lzi2 + 1 lzl2 + 1 

if rewrite the above equation, 

(C + D) (x2 + /) + 2Ax + 2By- C + D = 0 (2.15) 

is obtained. 

Now, from (2.14), Ts passes through (0, 0, 1) if C + D = 0. Then the eqn (2.15) repre- 
sents the line when C + D = 0, and if C + D * 0, its represent the equation of circle on 

15 



In conclution, Tis a circle if (0, 0, 1) (/. Ts and it is a line if (0, 0, 1) E Ts. D 

The length of the segment joining Z = (X, Y, Z) and W = (U, V, W), known as 

chordal distance of z from w, is defined as x(z, w) = d(Z, W). therefore, 

x(z, w) = ~(X - U)2 + (Y - V)2 + (Z - W)2 

since, X + Y + Z = 1 and U + V + W = 1, then 

x(z, w) = .../2- 2(XU + YV + ZW) 

according to (2.10) , it is botained, 

21z-wl 
x(z, w) = ,Vl + lzl2 .../1 + lwl2 

In particular, x is defined with chordal metric that is satisfies the properties of a metric, 

a) x(z1, z2) ~ 0 

b)x(z1,Z2) = 0 <=> Z1 = Z2 
c)x(z1, z2) = x(z2, z1) 
d)x(z1, Z3) ~ x(z1, z2) + x(z2, z3) 
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CHAPTER 3 

CONFORMAL MAPPING AND MOBIUS TRANSFORMATION 

The aim of this chapter, given the definition of conforml mappings, and defined the 

Mobius transformations which are analytic conformal mapping. And the end of this 

chapter there will be given important transformations which transforms D to D, H to 

H and D to H and the following next chapter they help to construct the isometries of 

hyperboic geometry. 

3.1 Conformal Mapping 

Before given the theorem of conformality, it is needed to given the some definitions. 

Definition 3.1 (Continuity of a function) 

Let f(z) be a complex function of the complex variable z that is defined for all 

values of z in some neighborhood of zo. f (z) is continious at zo if the following three 
conditions are satisfied: 

limz-,zo f(z) exists; 

f (zo ) exists; 

limz-,zo f (z) = f (zo ). 
A continuos function is a function that is continuous at each point of its domain. 

(Analytic function) 

A function f(z) is analytic on the open set U if f(z) is (complex) differentiable at each 

point of U and complex derivative f' (z) is continuous on U. 

Definition 3.2 (homeomorphism) 

A function f : (C ~ (C is a homeomorphism if f is a bijection and if both f and 

J-1 are continuous. 
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Definition 3.3 (Automorphism) 

The set of all conformal bijections C--+ Care defined by Aut( C). 

Theorem 3.4 Suppose f(z) is analytic at z0with f (z0) * 0. Let Y1 : Y1 (t) and Y2 : Y2Ct) 

be smooth curves in the z- plane that intersect at zo =: y1 (to) =: Y2 (t0), with 11 : 

w1 (t) and 12 : w2 (t) the images of y1 and y2 respectively. Then the angle between y1 

and Y2 measured from Y1 to Y2 equal to the angle between 11 and 12 measured from 11 

Proof. consider that, the tangents of y1 and y2 makes angle with 81 and 82 and the 

argument of the tangent vectors 11 and 12 are 81 and 02 respectively and so as it 

can be seen below figure the angle between nand Y2 which is the angle between their 

tangent curves is 82 - 81, and the angle between the image curves 11 and 12 is 81 - 82. 
\?' 

Firstly, For any point z1 on the curve y1 other than zo, 

f (z1 ) - f Czo) (z1 - zo) · 
WJ - Wo = ZJ - Zo 

Thus, 

(
f(z1) - f(zo)) arg(w1 - wo) = arg + arg (z1 - zo) . 

Z1 - Zo 
(3.1) 

Note that, when zo approaches zo along the curve y1 , arg (z1 - zo) approaches a value 

81, likewise, arg(w1 - wo) is approaches a value 01. And sice f(z) is analytic at zo, 

f'(zo) -:f. 0, therefore j'(zo) has meaning. 

Now, if consider the limit of both sides of equation (3.1), 
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is obtained. With the same way if take any point on y2, then it can be easily obtained 

that, 

Then, the angle between I' 1 and I' 2 which is the angle between their tangent lines is, 

Consequently, the angle between y1 and y2 is equal to the angle between f1 and I' 2. D 

If f is analytic at all points in complaex plane then the theorem (3.4) provides at 

all points. It gives that, if f is analytic function than it is conformal. 

3.2 Linear Fractional Transformations 

The aim of this section, give a special transformation like,maps the upper half plane 

on to the unit disk, upper half plane to upper half plane and unit disc to unit disc which 

they give isometries of the hyperbolic geometry. In order to define this special map, 

it will be given some definitions and properties of Linear Fractinal Transformations. 

Moreover, threre will be given cross ratio which is used later to define the formula for 

distance in the Hyperbolic geometry. 

Definition 3.5 (Linear Fractional Transformation) 

A linear fractimal transformation is a function of the form 

w = f (z) = az + b 
cz+ d' 

(3.2) 

where a, b, c and dare complex constants satisfying ad - be * 0. 
Linear fractional transformations ara also called Mobius transformations. 

If c = 0 then the transformatiom f (z) given by (3.2) reduces to 

az b 
f(z) = d + d 
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and it can be written 

f (z) = Az + B, 

where A = ~ and B = ~. and ad -::f:. 0, i.e. A -::f:. 0. A function of this form is called linear 

transformation. 

It is obvious that Mobius transformations are analytic on C \ {-d/c}. Consider the 

derivative, 

/ (z) = ad-be 
(cz + d)2 

since, ad - be -::f:. 0 so that / (z) -::f:. 0, it means that f (z) is not constant. 

(z -::f:. -d/c), 

There are special types of transformations which Mobius transformations can be writ- 

ten the composition of these transformations: 

(i) f (z) = z + A, where A E C. (translation), 

(ii) f (z) = rz, wherer r E R \ {0} , (magnification), 
(iii) f (z) = ei8z, 8 E R 
(iv) f (z) = l, z 

(rotations), 

(inverse). 

Then, if c -::f:. 0, then the transformation (3.2) can be decomposed as, 

f (z) a be- ad 1 = -+ - 
C C CZ+ d 

= :: _ ( ad - be )-1 
c c2 z+4 

C 

(3.3) 

so, the Mobius transformations can be obtaind with the compsitions of the following 

transformations; 

f1 (z) = W1 = Z + 4 C (translatiun), 

Ji (z) = W2 = ..l. = ~ (inversion), 
W] z+c 

l3 (z) = W3 = (-adc-;_bc) W2 (magnification and rotation), 

(translation), 

hence, f (z) = f1 (z) o Ji (z) o f3 (z) o !4 (z) . 

Proposition 3.6 Composition of two Mobius transformation is a Mobius transforma- 

tion. 
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Proof. Let f = az+db, (ad - b * 0) and g = a'.z+b~, (a' cf - b' c' * o) are Mobius trans- cz+ c z+a 
formations. The composite function off and g is defined by 

aa'.z+b' + b 
(fog)(z) C z+d = ca;z+b' + d 

C z+d' 
(aa' + bc')z +(ab'+ bcf) 

= (ca' + de') z + (cb' + dd') 
Az+B 

(3.4) = Cz+D 

where, 

A= (aa' +be'), B =(ab'+ bd), C =(ca'+ de'), D = (cb' +def). (3.5) 

In order to say that equation(3.4) is a Mobius transformation it must be shown 

AD-BC* 0 

if all equations (3.5) are put in equation 

AD - BC = (aa' + be'). (cb' + dd)-(ab' + bd). (ca'+ de') 

= (aa'cb' +aa'dd +bc'cb' +bc'dd)-(ab'ca' +ab dc +bdca' +bddc') 

= (aa' def+ be' cb')- (ab' de'+ bd ca') 

= a' cf ( ad - be) - b' c' ( ad - be) 

= ( ad - be) ( a' cf - b' c') 

since ad - b * 0 and a' cf - b' c' * 0. Hence, 

AD-BC -:f:. 0 

In conclusion, 

Composition of two Mobius transformation (fog) is a Mobius transformation. D 

21 



Theorem 3.7 Miibius transformations are one- to- one mapping. 

Proof. Let f be a Mobius transformation with f = ~:;~, (ad - be* 0) . In order to 
say that f is one- to one, it must be shown thet, z1 = z2 when f (z1) = f (z2) for 
Z1, Z2 E (C \ {-d/e}. 

Since, 

then, 

= 
ez1 + d CZz + d 

~ (az1 + b) (cz2 + d) = (az2 + b) (cz1 + d) 

~ (ad=bcs z, = (ad-bc)z2 

since, ad - be * 0 

D 

As f is one to one, its inverse always exists. Inverse of Mobius transformation is 

obtained by solving the equation, 

w = f (z) = az + b 
cz+ d 

~ w (cz + d) = az + b 
~ z (cw - a) = b - dw 

z = 1-1 (w) = dw-b ~ 
-cw+a 

where, ad - (-b) (-c) = ad - be* 0, where w * a/c. It can be given the following 

proposition. 
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Proposition 3.8 

~~ 
S' UNJv~, 

<v~ ~ 
.:c- ~ ~ -\ 

~ LIBRARY -<. 

The inverse of a Mobius transformation is also Mobius trans\.171J};_- OG:J,"(' J/ 
~88-LEff~7 

~_:.;:;~"" tion. 

It can be easily checked that, 

(f o I) (z) = (I o f) (z) = f (z) , 

where /(z) = z is a identity function. So, the set of all Mobius transformations is a 

group with respect to the composition. 

Since, Mobius transformations defind on the complex plane except the points z = -d/c 

and oo. But it can be enlarge the definition of Mobius transformation f (z) to the whole 
extended complex plane by including these points. Indeed as, 

. 1 . CZ+ d 0 
hm--=hm--= =0 

Z->-d/c f (z) Z->-d/c az + b a-d + b 
C 

then, 

lim f (z) = oo. 
z-s=dl c 

Morever, 
£ + b a+ b: a 

limf(z) = lim-~ - = lim-- = -. 
z->oo z->0 - + d z->0 C + dz C z 

Then, it can be define, for c * 0, 

az+b if z * =d r c, Z * 00 cz+d 

f (z) = ~ oo if Z = -d/ C 

£ ifz=oo 
C 

And similarly, defined for inverse Mobius transformations; 

dw-b if Z * a/c, Z * oo -cw+a' 

1-1 (z) = oo if z = a/c 
_!!. if Z = OO 

C 
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It shows that both l and 1-1 are onto surjection functions. 

And as it mention before Mobius transformations are group with respect to composi- 

tion in the whole extended complex plane C. And the Mobius groups will be shown 

with Mob(C). 

Theorem 3.9 Mobius maps are conformalior angle preserving). 

Proof. Since all analytic functions are conformal.And as it was mention, all Mobius 

transformations are analytic functions, and so all Mobius maps are conformal. o 

Theorem 3.10 Mobius maps are Automorphism. 

Proof. Since all Mobius transformations are bijection and from previous theorem, they 

are conformal. Then, it can be say that they Mobius maps are Automorphism. D 

3.3 Matrix Representation 

The coefficients of a Mobius map can be represented by the matrix as a, 

A = [ : : ) E G L(2, C), 

for any Mobius transformation M = ~;;~, wherer G L(2, C) is denoted by the general 
linear group such that 

GL(2, C) ={A= [ : : ), a.b.c.d E C,detA;t O} 

The compose of Mobius maps (as it can be seen proposition (3.6)) can be obtained by 

multiplying the matrices. 

Proposition 3.11 The map F : G L (2, C) ~ Aut(C) de.fined by 

b l ~ (1 (z) = az + b) 
d cz + d 
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is a homomorphism 

Proof. Consider that, two matrices with 

[ 
a b l az + b [ a' --+ -- and 
C d CZ+ d c' 

b' ]--+ a' z + b' 
d c' : + d 

then, the multiplication of two matrices is, 

[ 
aa + be' ab'+ bd ]--+ (aa' + be') z +(ab'+ bd) 
ca' + de' cb' + dd (ca' + de') z + (cb' + dd)' 

by popositon(3.6), the right side is equivalent to the composition of two Mobius map. 

And its shows that the homoemorphism of F. o 

Corollary 3.12 Any TE Aut(c) can be represented by a matrix 

[ : : l E SL (2, C) . 
where SL (2, C) is defined by for any matrix A, 

SL(2,C) = {A E GL(2,C): detA = 1}. 

Proof. By previous proposition, T can be represented by a matrix 

A=[: :JEGL(2,C), 
with detA = ad - be. 

Since the metrices de~A A and A have same image under F, and the determinant of de~A A 

is equal 1. 

Hence, A E SL (2, C) . o 
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3.4 Cross- Ratio 

Theorem 3.13 Given three distance points z1,z2,and z3 in the extended z- plane amd 

bilinear transformation w = T(z) E Aut( C) such that T(zk) = wk,for k = 1, 2, 3. 

three distance points w1, w2, and w3 in the extendend w- plane, there exist a unique 

Proof. First assume that non of the six points is oc, Let 

w = T(z) = az + b 
cz+d' 

fork= 1, 2, 3, it can be written, 

wk= azk + b 
CZk + d 

then, 
az+b azk+b w-wk=-----­ 
cz + d CZk + d 

with making the elementary operations, above equation can be written, 

(ad - be) (z - Zk) 
w - wk= (cz + d) (czk + d) 

fork = 1 and k = 3, it can be obtained, 

(ad - bc)(z - z1) 
w - wi = (cz + d) (cz1 + d) 

and 
(ad - be) (z - Z3) 

w - w3 = (cz + d)(cz3 + d)' 

dividing (3.7)by (3.8), 
w - w1 _ (cz3 + d) (z - z1) 
w - W3 - (cz1 + d) (z - Z3)° 
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in above equation, if put zz instead of z and w2 instead of w, then, 

W2 - W1 _ (CZ3 + d) (z2 - Z1) 
w2 - W3 - (cz1 + d) (z2 - Z3) · (3.10) 

multiplying (3.9) by (3.10), it will be obtained, 

(w - w1) (w2 - w3) 
(w - W3) (w2 - w1) 

(z - z1) (z2 - Z3) 
- (z - Z3)(Z2 - Z1). 

(3.11) 

If one of the points were oo, assume z3 = oo, by taking the limit of (3.11) as zs ap- 

proached oo, 

(w - w1) (w2 - W3) 
(w - W3) (w2 - w1) 

1 . (z - z1) (z2 - Z3) = 1m 
zs-v= (z - Z3) (z2 - Z1) 
(z - Z1) 
(z2 - Z1). = 

To show that the uniqueness of T(zk), assume its not. And let S (Zk) and T(zk) are both 

two nonlinear transformations that 

then, 

and so 

s-1 o T = I 

then, obtained 

S=T 

which proves the uniqueness part of the theorem. o 

Corollary 3.14 Given three distance points z1,z2,and z3 in the extended z-plane there 

exists a unique bilinear transformation w = T(z) such that T(z1) = 0, T(z2) = 
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1, T(z3) = oo. And it is given by 

unique transformation, 

Proof. From the previous theorem, it is known that for any z1,z2,and z3, there exist a 

if put 0, 1 and oo instead of w1, w2, w3 respectively, 

(z - z1) (z2 - Z3) 
w=----- 

(z - Z3)(z2 - z1)' 

the proof is completed. o 

Definition 3.15 ( Cross- Ratio) 

Let, z1,z2, z3, z be distinct points in C, the cross- ratio of these points is defined by 

Theorem 3.16 Let A be either a circle or a line in C. Then A has the equation 

azz + /3z + /3z + y = 0, 

where a, y E Rand f3 E C. 

Proof. Since the equation, 

a(.x2 + y2) +bx+ cy + d = 0, where a, b, c, d E R, 
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is an equation of circle when a * 0, or an equation of a line when a = 0. Recalling that 
x = z~z and y = z~l and x2 + y2 = lzi2, substituting these expression into (3.12) ,then, 

z+z z-z 
a lzi2 + b-2- + c2i + d = 0 

and recombine gives, 
2 b-ci b+ ci a lzl + --z + --z + d = 0 2 2 

consider, a = a, d = y E R and b-{ i = f3 E C. Then if a = a equal to zero, then 
above equation gives a line, unless it gives a circle in C. Hence any circle or line in the 

complex plane can be written as a form, 

azz + /3z + {3z + y = 0. 

D 

Proposition 3.17 Let A be either a circle or a line in C with satisfying the equation 

azz + [3z + ~z + y = 0. Suppose f3 E R. Then A is either circle with centre on real axis 
or a vertical straight line. 

Proof. From the proof of the previous theorem, b-{ i = f3 if f3 E C. And assume a * 0 
in the equation (3.12), then it can be recomposed as a 

( 
b )2 ( c )2 b2 + c2 - 4ad x+ - + y+ - = 2 , 2a 2a 4a 

then the center of the circle is, 

since ! = Re/3 and -:; = Im/3, and so the center can be expressed, 
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Hence, if f3 E R, then Im/3 = 0. Therefore if f3 E R, the center of the equation azz + 
[3z + fiz + y = 0, is on the real axis. 
Now, assume a= 0, then the equation (3.12) will be, 

bx+ cy + d = 0, 

and the slope of above line is -; ,and it can be expressed as a ::. If f3 E R, Im/3 = 0 
where it gives the vertical line. D 

Lemma 3.18 Every Mobius transformation maps circles and lines into circles and 

lines in C. 

Proof. From theorem (3 .16) , the equation of a circle or a line can be regarded as, 

azz + B: + ""tz + y = 0. (3.13) 

Let, 

w = az+ b 
cz+ d' 

then 
dw-b z=--­ -cw+a 

Substituting this into (3.13), 

( 
dw - b ) ( aw - b ) ( dw - b ) -( aw - b ) 

(l' - + /3 + /3 + y = 0, 
-cw + a -cw + a -cw + a -cw + a 

it can be recomposed as a, 

( ad2 - f3cd - ficd + yc2) ww+(-abd + Bad + fibc - yac) w+(-abd + f3bc + fiad - yac) w+( ab2 - f3al 

(3.14) 
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Since, a, b, c, d.a and y are real number,,B is a complex number, and it is known that 

2Re,B = ,B + ft. And so, if it is considered 

o:d2 - 2cdRe,B + yc2 = 0:1, 

=abd +,Bad+ fibc - yac = ,81, whenever - abd + ,Bbc + fiad - vac = ,81 

and 
- 2 o:b2 - ,Bab - Bab + ye = Y1 

then the equation (3.14) can be regarded as, 

with a:, y E R,,B EC. Clearly, the last equation represent the equation of a circle when 

0:1 -:f:: 0, and a line when o:1 = 0. This complete the proof. o 

3.5 Automurphism of the Unit Disc And Upper Half Plane 

In this section, it will be introduce some particular Mobius maps which transform 

upper half plane to the unit disc, upper half plane to itself and unit disk to unit disk. 

And it will be start in this section with Cayley transformation which is transform upper 

half plane to the unit circle it will be introduce the Mobius map; 

z-i 
C:z---+--.=w 

z+i 

which is called Cayley transformation. 

Lemma 3.19 Cayley transformation induces a conformal automorphismfrom lHI to D 
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Proof. Take any three poins 0, 1 and oo on the JR U {oo}, from the theorem (3.13), 

there exist a unique transformation which is transform the thre points to another three 

poins on the circle. with C(O) = -1, C( oo) = 1 and C(l) = -i, which is give the cyley 
transformation 

z-i 
w=--. 

z+i 

So the cyley transformation transform the boundary of H onto boundary of unit disk. 

Let take any point in the upper half plane it can be easily seen that the cyley transfor- 

mation transforms the point in the unit disk. Therefore it is an Mobius map from H to 

D.o 

3.5.1 Automorphism of the unit disc D 

Automorphism of unit disk is defind by 

Aut(D) = { T E Aut(C) : T(D) = D}. 

Theorem 3.20 The set Aut(D) is the subgroup of Aut(C) of Mobius maps of the form 

az+c 2 2 
T(z) = --_, with lal + lbl = 1 

cz+a 

Proof. Since the unit circle is defined by lzl2 = 1, and from lemma (3.18), every 

Mobius transformation maps circles into circles in C. Take any Mobius transformation 

az+ b . 
T(z) = w = --d with ad - be = 1 

cz+ 

then, 
dw-b dw-b z = and f = - - -cw+ a -cw+ a 

is obtained. Put them into unit circle, 

( 
dw - b ) ( dw - b ) 
-cw + a -cw + a = l 
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Jdl2 Jwl2 - bdw - bdw + 1h12 = JcJ2 Jwl2 - caw - acw + Jal2 

(ldl2 - Jcl2) Jwl2 + (-bd + ca) w + (-bd + ac) w + 1h12 - Jal2 = 0 

is obtained. In order to obtained unit circle 

-bd + ca 

and 

-bd + ac 

must be equal to zero and 
Jal2 - Jbl2 
Jdl2 - Jcl2 = 1 

and so 

Jal2 - 1h12 = Jdl2 - Jcl2 * 0 

From equation (3.16) 

-bd + ac = 0 => ac = bd 

from here, let 
a b 
d=~=A 

then, 

a = Ad and b = Ac 

put them on equation (3 .17) 

Jdl2 - Jcl2 = Jal2 - 1h12 = JAl2 (ldl2 - JcJ2) 

=> Jdl2 - Jcl2 = JAl2 (ldl2 - Jcl2) 

and from ad - be= 1, 
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because of dd = ldl2 and cc = lcl2 are real, ,l must be real, therefore ,l = ± 1, the sign 

of ,l is depend on ldl2 - lcl2• 

The transform of inside of the unit circle is inside of the unit circle nad as it mentiond 

before the point ~d is tranform oo under the Mobius transformation so that point must 

be keep out the inside of the unit circle. Therefore 

1-: I > 1 ~ ldl > 1c1 

than, 

ldl - lcl > 0. 

It is implise that ,l must be equal to 1. If put 1 instead of ,l in the equation (3 .18) , then, 

a= d, b = c 

and so, 

a= d, b = C 

are obtained. Finally, the Mobius transformation T(z) will be equal, 

az+c . 2 2 T(z) = --_, with lal - lcl = 1. 
cz+a 

In conclusion, 

the Mobius transformation which is translate the unit circle to unit circle is given by 

az+ c . 
T(z) = --_, with lal2 - lcl2 = 1. 

cz+a 

D 
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3.5.2 Automorphism of The upper half plane H 

Before given the Automprphism of the upper half plae, it will be defined Automor­ 

phism of upper half plane, 

Aut(H) = { T E Aut(C) : T(H) =, H}. 

Theorem 3.21 The set Aut(H) of analytic bijections H ~ H is the subgroup of Aut(C) 

of Mobius maps of the form; 

az-b 
f(z) = --d, with a, b, c, d ER, ad- be> 0. 

cz- 
(3.19) 

Proof. It is needed to show that the Mobius transformation which transform the upper 

half plane to apper half plane is in the form of (3.19). So the Jmf(z) under the trans- 

formation must be equal to zero whenever Imz > 0. Take a Mobius transformation, 

f(z) = az + b 
cz+ d' 

first it must be computed Imf(z), since Imz = t (z - z) and if apply this for f(z), then, 

lmf(z) 1 (az + b az + b) - ----- 
2i CZ+ d CZ+ d 
1 (az + b)(cz + d) - (az + b)(cz + d) 
2i (cz + d) (cz + d) = 

after making some elimination, it will be obtained, 

1 ad - be (z - z) 
Jmf(z) = 2i [cz + di, 

which is equivalent, 
ad-be 

Imf(z) = , Imz: 
lcz+ di 

Now, Since Im: and [cz + dl2 greater then zero and so for making, Imf(z) > 0, ad - be 

must be greater then zero. And this completes the proof. o 
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To move from D to H, it will be intoduce the Mobius map; 

z-i 
C:z~--.=w 

z+z 

which is called Cayley transformation. 

Lemma 3.22 Cayley transformation induces a conformal automorphism from H to D 

Proof. Take any three poins 0, 1 and co on the JR. U {oo}, from the theorem (3.13), 

there exist a unique transformation which is transform the three points to another three 

points on the circle. with C(O) = -1, C( oo) = 1 and C(l) = -i, which is give the cyley 
transformation 

z-i 
w=-­ 

z+i 

So the cyley transformation transform the boundary of H onto boundary of unit disk. 

Let take any point in the upper half plane it can be easily seen that the cyley transfor- 

mation transforms the point in the unit disk. Therefore it is an Mobius map from H to 

D.o 
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CHAPTER 4 

HYPERBOLIC GEOMETRY 

4.1 Upper Half Plane Of Hyperbolic Geometry 

In this section a review of background knowlage on upper half plane of hyperbolic 

will be presented. In the framework of upper half plane method, length and distance in 

hyperboic geometry will be presented. Then aspects, definitions will be listed. Mor­ 

ever some formulas will be illustrated. Follwing this namely path integrals will be 

highlighted. Finally relevant aspects of the upper half plane will be mention with the 

empirical studies contacted on this area. 

Definition 4.1 (upper half plane model) 

The upper hyperbolic plane H model is the upper half plane in the complex plane 

and its defined by, 

H = {z E CC : Im: > 0} 

with the metric 
ds2 = d:x2 + dy2 

y2 

Definition 4.2 (boundary of H) 

The boundary of His defined to be the set 8H = {z E CC : /m(z) = 0} U { oo }. That is 
8H is the real axis together with the point oo. 

Definition 4.3 (Hyperbolic Line) 

There are two seeningly types of Hyperbolic line,both defined in terms of Euclidean 

objects in CC. One is the intersection of H with an Euclidean line in CC perpendicular to 

the real axis R in CC. The other is the intersection of H with an Euclidean circle centred 

on the real axis in R 
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Proposition 4.4 For each pair p and q of distinct points in H, there exist a unique 

hyperbolic line f in H passing through p and q. 

Proof. Firstly, it will be shown that the existence of the hyperbolic line passing through 

p and q. There are two cases to consider the line; 

First, assume Rep= Req, it means, if p and q are defined by p = P: + ip2 and q = 
q1 + iq, then p1 = qi.From Euclidean geometry, it is known that, there is a line passes 

through p and q with equation, 

(4.1) 

and from the assumption P: = q1, the line which passes through p and q is perpendicu- 

lar to the IR axis in the Euclidean plane. According to definition (4.3), the intersection 

of H with line e is a hyperbolic line which passing through p and q. 
Now, assume Rep * Req, again the line joining p and q is defined with equation (4.1). 
Let perpendicular bisector of this line is K, and si~ce Kand IR- axis are not parallel each 

other so they intersect at any point, let says c. The euclidean circle that passes through 

p and q has its center on K. Assume a circle A with the center C and radius will be 

le - pl. Since the center c lies on the perpendicular bisector K so le - pl = le - qi, it 
means the circle A passes through both p and q. According to ( 4.1) it can be said that 

the intersection of H with a circle A is a Hyperbolic line. 

In order to complete the proof, it must be shown that the uniqueness of this hyperbolic 

lines. As it was mentioned before, for the circle passing through p and q, the center 

must be on the perpendicular bisector. Moreover the perpendicular bisector and R- 

axis intersect only one point c, and so there exist a unique Euclidean circle centered on 

R and passes through p and q. And there exists unique Euclidean line passes through 

p and q. This completes the proof. o 

Definition 4.5 

Two hyperbolic lines in H are parallel if they are disjoint. 

As it was mentioned in the introduction part Hyperbolic geometry is a one of the non 
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Euclidean geometry which is not satisfied the fifth postulate of Euclidean geometry. 

The following theorem gives the importance of the between Euclidean geometry and 

hyperbolic geometry. 

Theorem 4.6 Let e be a hyperbolic line in H, and let p be a point in Hnot one. Then, 

there exist infinitely many distinct lines through that are parallel toe. 

Proof. Let the Hyperbolic line e contained from any Euclidean line L. Since p is 

not on L then from the Euclidean fifth postulate there exist a K Euclidean line wich is 

passes through p and parallel to L. Because of e is hyperbolic line, Lis perpendicular 

to R, then K must be perpendicular to Ras well. And so according to Definition(4.3) 

one hyperbolic line in H through p and parallel to L is the intersection of Hand K. 

In order to show that there exist another line passes through p and parallel to L; Let 

take any point x on R-axis between Land K. Therefore Rep * Rex, there exist an 
Euclidean circle A which passes through p and x, and has a center on R- axis. By this 

construction, A and Lare disjoint. And so the Hyperbolic line H n A and e are disjoint, 
that is reached that H n A is another Hyperbolic parallel line to e. 

Because of,there are infinetly many points on R between Kand L, its gives that there 

are infinitely many distance Hyperbolic lines through p and parallel to e. 

To complete the proof, It needs to show that, If e is contained any circle, there exist 

infinitely many parallel Hyperbolic lines parallel to e. 

Now, assume that e contained from an Euclidean circle A, and pis a point in Hnot on 

A. Let D be the Euclidean circle which has a same center with A and passes through 

p. Since, circles with have same center are disjont, then from Definition ( 4.5) one 

Hyperbolic line passes through p and parallel to e is H n D. 

In order to construct second hyperbolic line, take any point x on R between D and A. 

There exist an Euclidean circle E, which passes through x and p. From construction 

of E, A and E are disjoint and so H n A that is hyperbolic line e and H n E are disjoint 

then the second hyperbolic line passes through p and parallel toe is H n E. 

Finally, therefore infinitely many points on R between A and D, there are infinitely 

many distinct hyperbolic lines through p and parallel to e. 
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Consequently, for any line l in H, there exist infinitely many distinct hyperbolic lines 

through any point p not on l. D 

t 

4.2 Length And Distance In Hyperbolic Geometry 

In this section, it wil be given definitions and theorems for hyperbolic distance, in 

addition this there will be given most usefull distance formulas. Before define the 

length in hyperbolic geometry, it is needed to recall from calculus the definition of 

element of arc-length. 

4.2.1 Path integrals 

A path a- in the plane JR.2 is a function a- : [a, b] ~ JR.2 that is continuous on [a, b] and 

differentiable on (a, b) with continuous derivative. The image of the interval under a­ 

is a curve in JR.2. The Euclidean length of a- is given by the integral 

lengthier) = lb Jex' et))2 + (y' et))2dt 
where a- can be written with a- = exet), yet)) , t E [a, b] , and Jex' et) )2 + (y' et) )2 dt is 
the arc-length element in JR.2• 

If it is assumed a- as a path into the complex plane, then a- can be written with a- = 
x(t) + iyet), the length of tr, 

lengthea-) = lb ~ex' et))2 + (y' et))2dt = lb [a-'(t)[ dt 
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then, it can be rewritting as a 

length(er) = L ldzl, 
where ldzl = lcr'(t)I dt is the standart Euclidean element of arc-lenght in CC. 

Then the path integral of any continuous function can be obtained with using above 

notations, that is let f be a continuous function f : CC - R The path integral of f 
along the a path er : [a, b] - CC is the integral 

L f(z) ldzl = lb f (er(t)) ler' (t)I dt, 

it can be thought f(z) ldz/ as a new element of arc-length and it rise the following 

defination. 

Definition 4. 7 

For a path er : I«, b] - CC, the lenght of er with respect to the element of arc-length 

f (z) ldzl is defined to be the integral 

length! (er) = L f (z) ldzl = lb f (er(t)) /er'(t)/ dt. 

4.2.2 Hyperbolic length and distance 

This section will be start with the defination of hyperbolic length and hyperbolic dis­ 

tance in lH .After that there will be given theorems which gives the distance between 

two hyperbolic points on the hyperbolic vertical line and then the preserving of distace 

under the Aut(H). 

To define them it is will be used a suitable arc- lenght element on lH invariant under the 

action of Aut(H). 

Definition 4.8 (Length in H) 
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For a piecewise path er : [a, b] - H, the hyperbolic length of er defined to be 

L 1 lb 1 lengthH(cr) = er Imz /dz/ = a L_, -'·" /cr'(t)/ dt. 

Definition 4.9 ( Distance ) 

Let z, z' EH. The hyperbolic distance between z and z' is defined by 

dH (z, z') = inf {lengthH (er) : er is a piecewise differentiable path with end points z and z'}. 

Definition 4.10 (Geodesic) 

The paths of shortest hyperbolic length between points are called hyperbolic geodesics. 

Theorem 4.11 Vertical lines are geodesics in H. Moreover if b > a, then 

Proof. By defination (4.8), the lenght of any path er is defined by, 

rb i 
lengthH(cr) = Ja T .. , '·" /cr'(t)/ dt. 

Let take the path from ai to bi as a cr(t) = it with a ~ t ~ b, which is the vertical line 
in H, then 

= r !idt Ja t 
= Inb - Ina 

b = In-. 
a 
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Now, consider any path a- = x(t) + iy(t) : [0, 1] ~ H joining ai and bi. Again from 

definition (4.8), 

11 1 lenght'!rll(a-) = 
0 

Im (a-(t)) la-'(t)I dt 

= 11 y;t) ~(x'(t))2 + (y'(t)/dt 
~ 11 _1_ ~(y'(t))2dt 

0 y(t) 11 1 = 
0 

y(t) ly' (t)I dt 

11 1 ~ -y'(t)dt 
0 y(t) 
b = ln-. 
a 

Hence, the infimum length of paths joining ai and bi is ln ~- The equality is hold only 

x'(t) = 0, so x(t) is constant, it means that the length which is the joining ai and bi is 

the vertical line in H. This complete the proof. o 

Proposition 4.12 Let y be a Mobius transformation ofH and let z and z' E H . Then 

dTrn (y(z), y(z')) = dTrn (z, z'). 

Proof. Let a- be a path from z to z'. Then the path from y(z) to y(z') is y (a-). In 

order to show that the distace of two points is equal to the distance under the Mobius 

transformation of that points, it is sufficient to show that 

lengthTrn(Y o er) = length(a-). 

Let take a Mobius transformation y(z) = ~;;;, with a, b, c and c are real, then, 

ly' (z)I = ad - be 
[cz + dl2 
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and 
ad-be 

/m(y(z)) = , lm(z), 
Jez+ di 

they can be proved easily. Take z = o-(t), 

length~ (yo o-) = J Im [(y: ,,..\ ft\l l(y o o-)' (t)I dt 

= J •- / ~ ~/N, Jy'(o-(t))l lo-'(t)I dt 

J 1 ad-be , = ad b , lo- (t)I dt 
lca-(;+~l2 lmo-(t) lco-(t) + di 

= J 7 /l_/,n lo-'(t)J dt. 

= length"'(o-). 

D 

Since, with the aid of cross ratio, it can be found a Aut(H) that is transform any line 

in H to the vertical line (namely y-axis). The importance of the above theorem, it proves 

that all Aut(H) preserve the hyperbolic distances. And so the previous two theorem 

construct significant structure in the following sections to determine the formula of 

distance of any two point. 

4.2.3 Metric spaces 

Definition 4.13 (A Metric on a set X) 

A metric on a set X is a function 

satisfying three conditions: 

1. d(x,y) ~ 0 for all x,y EX, and d(x,y) = 0 if and only if x = y. 
2. d(x,y) = d(y,x) for all x,y EX. 
3. d(x, z) ~ d(x,y) + d(y, z) for all x,y EX (triangle inequality). 
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If d is a metric on X, it is referred to a metric space (X, d). 

Theorem 4.14 (H, dp1) is a path metric space. 

Proof. To show that dH does define a metric. dH must be satisfies the three conditions 

in the definition ( 4.13) . 

Let r [ x, y] denoted by the set of all piecewise o: paths o: : [a, b] ~ H with <r(a) = x 

and <r(b) = y. Now, consider the path tr : [a, b] ~ H in I' [ x, y] , from the definition of 

lengthH (<r), 

L 1 Lb 1 lengthH(<r) = -1 ldzl = " l<r'(t)I dt, 
er mz a lmtat; 

since above integral is always nonegative, therefore lengthH(<r) is nonnegative for ev- 

ery path in I' [ x, y] and so the infimum dH(x, y) of these integrals are nonnegative which 

is complete the first condition of defination (4.13). 

Now to show that dH(x, y) = dH(y, x), for all x, y in H, it is needed to compare the 

length of paths in I' [ x, y] and I' [y, x] . Let ata, b) ~ H be a path in I' [ x, y] and define 

y : [a, b] ~ [a, b] with y = a+ b-t and the composition of <randy, <roy: [a, b] ~ H 

lies in T(y, x), in fact o: o y(a) = <r(b) = y and o: o y(b) = <r(a) = x. And the length of 
(TO y, 

= r -1-ldzl 
Jcroy Im: r i = Ja L.11 .,u\\l(<roy)'(t)ldt 

r i = Ja T___// _/ /,\\ l(<r'(y(t))l ly'(t)I dt, 

if make a subsitution withs = y(t), with, s = y(a) = b, s = y(b) = a ands' = y'(t) = 
-dt, then, 

lengthH(<r o y) = - [ T .. .1 

11 
_" l<r'(s)I ds 

t 1 = Ja T ... , 1 " l<r'(s)I ds 

= lengthH(<r). 
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Hence, every path in I' [y, x] has the same length with the path in r [ x, y] , by composing 

with the appropriate y. Using the same argument, every path in I' [y, x] and in I' [x,y] 

has equal length. 

In particular, two sets of hyperbolic length, 

{lengthH(cr), CT E I' [x,y]} and {lengthH(p), p E I' [y, x]} 

are equal. Thus they have the same infimum, and it shows that dr>11(x,y) = dH(y, x). 
To complete the proof, it must be satisfied the last condition of definition (4.13). Sup- 

pose it is not satisfied for de, then there exist three distance points x, y, and z such 

that, 

and so, 

let, 

Since, dH (x, y) = inf {lengthHCf) : f Er [ x, y]}, there exists a path f : [a, b] ~ H in 

I' [x,y], such that, 

Similarly, dH (y, z) = inf /lengthH(g) : g Er [y, z]), and there exists a path g : [b, c] ~ 

Hin r [y, z] , such that, 
E 

lengthH(g) < dH (y, z) + 2. 
Assume, h : [a, c] ~ Hin I' [x, z] be a concatenation off and g, and so it is lies in 

r [x, z], then 
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Therefore, 

dri:n (x, z) :'.5 lengthri:n(h) 

= lengthH(f) + lengthr,n(g) 

< dH (x,y) + dH (y, z) + c, 

then, 

dri:n (x, z) - (d8 (x,y) + d8 (y, z)) < c 

which is a contradiction. This complete the proof. o 

4.2.4 Isometries of H 

An isomerty of a metric space (X, d) is an homeomorphism f of X that preserves dis­ 
tance. That is, an isometry of (X, d) is a homeomorphism f of X for which 

d(x,y) = d(f(x), f(y)) 

for every pair x and y of points of X. 

Proposition 4.15 Let x, y, and z be distinct point in H.Then, 

dH (x,y) + dH (y, z) = dH (x, z) 

if and only if y is contained in the hyperbolic line segment joining x to y. 

Proof. There exist a Mobius transformation m in Mob (H) such that m(x) = i and 
m(z) = ai. From Proposition ( 4.12) and Theorem ( 4.11) , 

ln a = de (i, ai) = de (x, z) , 

and let, m(y) =a+ ib. There are several cases; 

As a first case, let y lies on the hyperbolic line segment joining x toy. Then, m(y) lies 
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on the line segment joining m(x) to m(z), In particular (y) = bi and 1 ::; b ::; a, therefore 

de (x, y) = dlHI (i, bi) = ln b, 

and 
a 

dlHI (y, z) = dlHI (bi, ai) = ln b = ln a - ln b, 

and so, 

dlHI (x,y) + dlHI (y, z) = dlHI (x, z). (4.2) 

Now, assume that y does not lie on the hyperbolic line segment joining x to z. Then, 

m(y) can be lie on the positive imaginary axis such that a = 0 or not on the positive 
imaginary axis so that a* 0 and so there are two cases for this step, 
Let m(y) lies on the positive imaginary axis with not on the hyperbolic line segment 

joining x to z and so either O < b < 1 or b > a, and a = 0. 
If O < b < 1, as ln b < 0, 

and 

and then, 

and so, 

dlHI (x, z) < dlHI (x, y) + de (y, z) (4.3) 

is obtained. 

And If b > a, then ln b > In a, and 
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and 

dlHI (y, z) = dlHI (bi, a:i) = ln ~ = lnb - lno:, 
a: 

then, 

dlHI (y, z) = lnb- lno: 

with added both sides ln b, then, 

ln b + de (y, z) = 2 ln b - In a: > ln a: 

it is obtained that, 

dlHI (x,y) + dlHI (y, z) > dlHI (x, z). (4.4) 

segment joining x to z, and so a * 0. It can be observation that, whenever a * 0, 
Let m(y) does not lie on the positive imaginary axis with not on the hyperbolic line 

dlHI (i, bi) < de (i, a+ bi) = dlHI (x, y), 

likewise, 

dlHI (bi, ai) < de (a+ bi, ai) = dlHI (y, z). 

If 1 < b < a:, then according to equation (4.2), 

dlHI (x, z) = dlHI (x, y) + dlHI (y, z) = dlHI (i, bi)+ dlHI (bi, a:i) 

if apply the equations (4.5) and (4.6) then, 

dlHI (x, z) < dlHI (x, y) + dlHI (y, z). 

(4.5) 

(4.6) 

And similarly, If b > a: or O < b < 1, then according from equations (4.3) and (4.4), 

both case have, 

dlHI (x, z) < de (i, bi)+ de (bi, a:i) < dlHI (i, a+ bi) + dlHI (a+ bi, ai) = dlHI (x, y) + dlHI (y, z) 
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is obtained. 

In conclusion, 

the only case in which dlfll (x, z) = dlflI (x, y) + dlflI (y, z), is y lies on the hyperbolic line 
joining x to z. This complete the proof. o 

The previous proposition observation that hyperbolic line segments can be charac­ 

terized purely in terms of hyperbolic distance. 

Lemma 4.16 Every hyperbolic isometry of H takes hyperbolic lines to hyperbolic 

lines. 

Proof. From previous proposition, assume y lies on the line segmet lxz joining x to z, 

then 

Taking fas a hyperbolic isometry, so it preserves hyperbolic distance, therefore, 

dlflI (f (x), f(z)) = de (f (x), f (y)) + dlflI (f (y), f (z)) 

is hold. From above equation, it can be say that f(y) lies on the hyperbolic line segmet 

lt<xlf<zl joining f(x) to f(z). And so 

f(lxz) = ef(x)f(z)· 

Hence, the hyperbolic isometry f takes hyperbolic lines to hyperbolic lines. o 

Theorem 4.17 Isom(H, dlfl!) = Aut(H) 

Proof. Since all Mobius transformations are bijection and invertable, and from propo­ 

sition (4.12) every element of Aut(H) is a hyperbolic isometry, and so Aut(H) c 

Isom (H, dlfl!) • In order the complete the proof it must be shown that Isom (H, dlfl!) c 

Aut(H). 
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Let f(z) be a hyperbolic isometry function and for any two points p and q EH, let lpq 

be a hyperbolic line segment joining p to q . From definition of isometry 

Assume, t be a perpendicular bisector of hyperbolic line t pq which is a hyperbolic line 

t = {z EH : dJPJ. (p, z) = dJPJ. (q, z)}. 

And so f(t) is a perpendicular bisector of f(lpq) = lt<Plf(q)· 
Now, normalize the hyperbolic isometry f. Let take any two points x and y on the 
positive imaginary axis I in H. Since there exists an element y of Aut(H) that satisfies 

y(f(x)) = x and y(f(y)) = y because dJPJ. (x, y) = dJPJ. (f(x), f(y)). In particular, yo J 

fixes both x and y it means that yo f takes I to I. 
If take another point on I then it can be preserved by determined by the two hyperbolic 

distances dJPJ. (x, z) and dJPJ. (y, z) and as both hyperbolic distances are preserved by yo f. 
Now, let w be any point in H that does not lie on I, let t be a hyperbolic line throught 

w that is perpendicular to I. l can be describe as a hyperbolic line contained in the 

Euclidean circle with Euclidean center O and radius lwl .Since l is a perpendicular 
bisector of any line segment in/. And since yo f fixes every point of I then yo f ( t) = 
t.Assume t and I intersect at a point z, therefore, dJPJ. (z, w) = dJPJ. (yo f(z), yo f(w)) and 
since yo f preserves I then it must be yo f fixes w. It means that yo f fixes every point 

of H, It shows yo f is a identity function. And so f = y-1 therefore f is an element of 

Aut(H). This complete the proof. D 

4.2.5 More formula for distance 

There are several useful ways of writing down the distance between two points without 

having to integrate along arcs. One of this method is a cross ratio; 
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Proposition 4.18 

dm1(z,w) = ln[z,z';w,w'] (4.7) 

where z' and w' are the endpoints on olH of the geodesic that joins z to w. 

Proof. In order the proof of this proposition, it is enough to check that the left hand 

side of equality (4.7) equal to the right had side. 

Since there exists an isometric function f such that the points z, z', w and w' maps to 

f(z) = i, f(z') = 0, f(w) = oi and f(w') = oo. And then from theorems (4.12)and 

(4.11), 

de (z, w) = de (f(z), f(w)) 

= de ti, ad) = ln a. 

And the cross ratio of these four points, 

(w' - z) (z' - w) 
(w' - w) (z' - z) 
(f(w') - f (z)) (f (z') - f (w)) 
(f (w') - f (w)) (f (z') - f (z)) 
(f (w') - i) (0 - ai) 
(f(w') - ai) (0 - i) 
ai 

1. 
f(w')-i = - 1m i f(w')->oo f(w') - ai 

[ I• '] Z,Z ,W,W = 

= 

= 

= a. 

Then, 

ln [z.z': w, w'] = Ina. 

Hence, the left hand side is equal to right hand side and so, the equality ( 4. 7) is hold. 

D 

And the another useful way to calculate the Hyperbolic distance is given the fol- 

lowing proposition; 
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Proposition 4.19 Given two points z, w E H; 

lz-wl2 
coshdlHI(z,w) = 1 + Zlmzlmw (4.8) 

proposition. 

Proof. To prove this proposition, the same proof technique will be used with above 

with f (z) = i and f(w) = ad, then 
As a first let find the right hand side of the equality ( 4.8), let f be a isometric function, 

1 + /z-w/2 
2/mzlmw 

= 1 + If (z)- f (w)l2 
2/mf (z) Imf (w) 

1 Ii - ail2 = +-- 2.1.a 
2a + (1 - a)2 

= 2a 
1 + a2 = -- 
2a 

And to find the left hand side, according from ( 4.11) , the distace from z to w is, 

dlHI (z, w) = Ina. 

And so, 

cash de (z, w) = coshlna 
elna + e-lna 

= 2 
a+ a-1 

= -- 
2 

a2 + 1 = -- 
2a 

conclude that, left hand side equal to right hand side for all z, w E H. o 
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CHAPTER 5 

THE POINCARE DISC MODEL 

Up to now it is studied the upper half plane model of hyperbolic geomerty but there 

are several other useful models to study hyperbolic geomerty and one of them which 

will be described in this chapter is Poincare disc model. There are different ways to 

construct the Poincare Disc Model, and in this thesis it will construct with using the 

upper half plane. 

Definition 5.1 The disc D = {z E C : lzl < 1} is called Poincare disc. The circle 8D = 
{z E C : lzl = 1} is called the circle at oo or boundary of D. 

Definition 5.2 ( Geodesics in D) 

The geodesics in the Poincare Disc Model of hyperbolic geometry are the arcs of 

circles and diameters in D that meet 8D orthogonally. 

Recall from in chapter 1, the Mobius transformation from lHI to D is given with the 

Cayley mapping, 
z-i 

h(z) = z + ( 

The inverse function of Cayley mappind is defined by D to JHI, 

g(z) = h-1 (z) = iz + i 
-z + 1 · 

For any piecewise o: path tr : [a, b] ~ D, the composition g o o: : [a, b] ~ lHI is a path 

in JHI, and the length of g o o: in lHI is given by, 

lengthu (g o <r) - l 1 - -ldzl 
goer Im: - lb 1 

- a Im ((go er) (t)) l(g O <r)' (t)I dt 

- lb 1 
- a lm(g(<r(t)) lg'(<r(t))l l<r'(t)I dt 
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and it is easy to calculate that, 

er(t) - i 1 - ler(t)l2 
Im(g(er(t))) = Im er(t) + i = 1-er(t) + 112 

and 

2 
lg'(er(t))I = 1-er(t) + 112' 

and so 

1 
- Jg'(er(t))I = ~ 2 

Hence, 

lb 2 
length9 (go er) = ? Jer'(t)I dt. 

a 1 - la-(t)I 

Then the length of the path er in D is defined by, 

Ib 2 
lengths, (er) = ? Jer'(t)I dt. 

a 1 - Jer(t)J 

The distance between two points z, w E D is defined by taking the length of the shortest 
path between them: 

dn(z, w) = inf {lengthn (er) : er is a piecewise differentiable path from z tow/. 

Proposition 5.3 Let er : [0, r] ~ D, then 

dn(O, r) = In ( 1 + r). 
1 - r 

Morever, the real axis is the unique geodesic joining to O to r. 
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Proof. Let define a path er [O, r] ~ D with cr(t) = t. Then, 

lengthn(cr) = L 2 
2 ldzl 

er 1 - lzl lr 2 = l2dt 
0 - t 

I( 1 1 ) = --+-- dt l+r l-r 

= In[~]. 1 - r 

To show that this length is minimum, take polar coordinates (r, 8) in D and recall that 

dx2 + dy2 = dr2 + r2d82. 
Now, consider any path er = r(t) + ie(t) : [O, 1] - D joining O and r. Again from 

definition (4.8), 

l l 2 
lenghtu(cr) = 2 !cr'(t)I dt o 1 - !cr(t)! 

= ll _l _2 ~(r'(t))2 + r2 (8'(t))2dt 
0 1 - r 

~ ll 1 
~(r'(t))~dt 

o 1 - r2(t) 

= ll [ 1 }r(t) + 1 _\(t)] lr'(t)! dt 
l l [ 1 1 ] ~ + r'(t)dt 
0 1 + r(t) 1 - r(t) 

= In [ 1 + r(t)] 
1 - r(t) 

= In[~]. 1 - r 

Hence, the infimum length of paths joining O and r is In [ ~~;] . The equality is hold 

only 8' (t) = 0, it means that the length which is the joining O and r is the real axis. This 

complete the proof. o 
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From previous proposition, 

dn(O, r) = ln ( 1 + r) 1 - r , 

if it solve for r, 
edo(O,r) _ 1 

r----- 
- edo(O,r) _ 1 ' 

. anh e2z+l th since t z = e2z_1, en, 

r = tanh ( ~dn(O, r)) . 

Above formula is related with the radius of hyperbolic circle and Euclidean circle. In 

euclidean geometry, a circle is defined as the locus of all points a fixed distance from 

a fixed point and the definition of circle in the hyperbolic plane is given following 

definition. 

Definition 5.4 (Hyperbolic Circle) 

A hyperbolic circle in D is a set in D of the form 

C = {y ED: dn(x,y) = p} 

where x E D and p > 0 are fixed. x is refer to the hyperbolic centre of C and p is refer 

the Hyperbolic radius of C. 

Lemma 5.5 The circumference of a hyperbolic circle of radius p is 27f sinh(p ). 

Proof. Let start the proof with take any hyperbolic circle with hyperbolic center O and 

hyperbolic radius p, then from the definition (5.4), 

P = dn(O, r) = ln ( 1 + r) . 
1 - r 
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Then, r = tanh(ip), and so the hyperbolic circle is also Euclidean circle with center 0 
and radius r. Since the Euclidean circle can be parametrized by, 

y: [O, 2JT] ~ D, y(t) = re", where O ~ t ~ 27r, 

with 

ly(t)I = r and ldy(t)I = rdt. 

Then, the hyperbolic length of y(t), 

dv = I 2 ldzl = l21r ___.l!__dt = 4JTr . 
y 1 - lzl2 o 1 - r2 1 - r2 

And since, r = tanh (ip) , then, 

dv = 4JT tanh iP 
1 - (tanh iP)2 
4JT tanh iP 

= 
sech2ip 

= 4Jrsinh (~P) cash (~P). 

Since sinh(2t) = 2 sinh(t) cosh(t), and so the length of hyperbolic circle will be, 

do = 2JT sinh(p ). 

D 

Lemma 5.6 The area of a hyperbolic circle of radius p is 4JT sinh( iP ). 

Proof. The integral from the zero to radius of the hyperbolic circumference of the 

circle gives that the area of the circle. And so, 

Area = LP 2JT sinh p dp = 2JT cosh p 16 = 2JT ( cos hp - 1) 
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since sinh = cash Zp - l the p 2 , n, 

D 

Area = 4n sinlr' ( ~p) . 
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CHAPTER 6 

CONCLUSION 

In this thesis studied with hyperbolic geometry which is the one of the non Euclidean 

geometry. It is construct with using upper half plane model and Poancare and com­ 

plex variable functions. The Mobius transformations played most imprtant role in the 

hyperbolic geometry. Here with using the Mobius transformations obtained the some 

formulas to find length and distace in hyperbolic geometry. And stereographic projec­ 

tion and hyperbolic geomtery make easiest to study with spherical geometry. 
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