
 

NEAR EAST UNIVERSITY 

 

 

Faculty of Engineering 

 

 

Department of Computer Engineering 

 

 

 

EGG CATCHER GAME 

 

Graduation Project 

COM – 400 

 

 

Student:  Burak AKIN 20081375 

 

Supervisor:  Assist.Prof.Dr.Besime ERIN 

 

 

 

Nicosia - 2014 



 

NEAR EAST UNIVERSITY 

 

 

Faculty of Engineering 

 

 

Department of Computer Engineering 

 

 

 

EGG CATCHER GAME 

 

Graduation Project 

COM – 400 

 

 

Student:  Burak AKIN 20081375 

 

Supervisor:  Assist.Prof.Dr.Besime ERIN 

 

 

 

Nicosia - 2014 



 

 ACKNOWLEDGEMENTS 

 
 

 First, I would like to thank to supervisor of the project, Assist.Prof.Dr.Besime 

ERIN, for her invaluable advice and belief in my work and myself over the 

course of this project. Her guidance and encouragement helped me so much. 

 

Second, I would like to express my gratitude to Near East University for 

providing magnificent environment and facilities throughout my education.  

 

Third, I thank my family for their support and encouragement throughout my 

education and also during the preperation of this project. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(i) 



ABSTRACT 

 

People regardless of their age or job have always been interested in playing 

games. Games helps people not only have nice time but also depending on the 

game it helps in so many other ways. 

Computer games born out of our for lack of a better word “need” to play games 

and it gave us the ability to share our imagination with other people as 

accurately as we can. 

When it comes to computer games there is no one single true approach 

regarding how to make a game or how should the game act. There are those 

games which are rely havily on being realistic and there are those that concern 

with action and reaction more then anything else. 

The aim of this project is to produce a straight forward, easy to play computer 

game that is engaging and has a very low hardware requirements so it can be 

played on practically any computer by anyone. 

 

 

 

 

 

 

 

 

 

 

 

(ii) 



TABLE OF CONTENTS 

 

ACKNOWLEDGEMENTS            i 

ABSTRACT              ii 

TABLE OF CONTENTS            iii 

INTRODUCTION             1 

JAVA               2 

 1.1 History             2 

  1.1.1 Principles           3 

  1.1.2 Versions             3 

 1.2 Java Platform            3 

 1.3 Implementations             4 

 1.4 Performance            5 

 1.5 Automatic Memory Management         5 

 1.6 Syntax             6 

 1.7 Hello World!            8 

 1.8 Applet            10 

 1.9 Servlet            12 

 1.10 JavaServer Pages          13 

 1.11 Swing Applications          13 

 1.12 Generics            15 

 1.13 Criticism             15 

 1.14 Use by External Companies         15 

  1.14.1 Google           15 

  1.14.2 Gaikai           16 

 1.15 Documentation           16 

LIGHTWEIGHT JAVA GAME LIBRARY        17 

 2.1 Introduction           17 

 2.2 Goals of LWJGL            17 

  2.2.1 Speed           17 

  2.2.2 Ubiquity           18 

  2.2.3 Simplicity          18 

  2.2.4 Smallness          19 

(iii) 



2.2.5 Security           19 

  2.2.6 Robustness          19 

  2.2.7 Minimalism          20 

SLICK2D ENGINE            21 

 3.1 Introduction           21 

 3.2 Game Containers           21 

  3.2.1 Basic Functionality         21 

  3.2.2 Application Game Container        22 

  3.2.3 Applet Game Container        23 

 3.3 State Based Games          23 

 3.4 Setting up Slick2D with Eclipse         24 

  3.4.1 Introduction          24 

  3.4.2 Downloading and Extracting Slick2D and LWJGL     24 

  3.4.3 Setting Up Slick2D and LWJGL in Eclipse      25 

  3.4.4 Setting Up a Project to use LWJGL in Eclipse     25 

MARTE ENGINE            27 

 4.1 Introduction           27 

 4.2 Features            27 

  4.2.1 Entity and World         27 

  4.2.2 Render and Update         28 

  4.2.3 ResourceManager         28 

4.2.4 Basic Collision          29 

ECLIPSE             31 

5.1 Overview             31 

5.2 History             31 

5.3 Licensing             32 

5.4 Name             32 

5.5 Architecture            32 

5.6 Rich Client Platform           33 

5.7 Server Platform            34 

5.8 Web Tools Platform           34 

5.9 Modeling Platform           34 

5.10 Model Transformation           35 

(iv) 



5.11 Model Development Tools       35 

5.12 Extensions         35 

DESCRIPTION OF THE APPLICATION     36 

6.1 Introduction         36 

6.2 CONCEPT         37 

6.3 Project Setup         38 

6.4 Classes          39 

 6.4.1 EggCatcherGame Class       40 

 6.4.2 Menu Class        40 

 6.4.3 GameWorld Class       42 

 6.4.4 GameOver Class       43 

 6.4.5 Background Class       44 

 6.4.6 Chicken Class        45 

 6.4.7 Egg Class        45 

 6.4.8 Broken Class        46 

 6.4.9 Ground Class        46 

 6.4.10 Player Class        47 

CONCLUSION         48 

REFERENCES         49 

APPENDICES         50 

 

 

 

 

 

 

 

 

 

 

 

(v) 



1 
 

INTRODUCTION 

 

This project describes development of a game which is named Egg Catcher 

using LWJGL, Slick 2D Engine and Marte Engine on top of Java programming 

language. 

 

It is my belief that this project will shed light of usefullness of tools like LWJGL, Slick 

2D Engine and Marte Engine which are all open source and are developed by 

collaboration of imaginative and able programmers all around the world. 

 

Game itself developed to provide nice time to people who like to spend their free time 

playing enjoyable and fun games and also because of its game play, Egg Catcher can be 

seen as an educational tool to help those who are not accustomed to computers and by 

extension don’t accustomed to operating mouse. 

 

The project consist of introduction, 6 chapters and conclusion. 

Chapter One describes the Java Programming Language. 

Chapter Two describes the LWJGL. 

Chapter Three describes the Slick 2D Engine. 

Chapter Four describes the Marte Engine. 

Chapter Five describes the Eclipse text editor. 

Chapter Six describes how this game has developed. 

 

 

 

 

 

 

 

 

 



2 
 

 

JAVA 

 

1.1 History 

 

Java is a general-purpose, concurrent, class-based, object-oriented computer 

programming language that is specifically designed to have as few implementation 

dependencies as possible. It is intended to let application developers "write once, run 

anywhere" (WORA), meaning that code that runs on one platform does not need to be 

recompiled to run on another. Java applications are typically compiled to bytecode 

(class file) that can run on any Java virtual machine (JVM) regardless of computer 

architecture. Java is, as of 2012, one of the most popular programming languages in use, 

particularly for client-server web applications, with a reported 10 million users. Java 

was originally developed by James Gosling at Sun Microsystems (which has since 

merged into Oracle Corporation) and released in 1995 as a core component of Sun 

Microsystems' Java platform. The language derives much of its syntax from C and C++, 

but it has fewer low-level facilities than either of them. 

The original and reference implementation Java compilers, virtual machines, and 

class libraries were developed by Sun from 1991 and first released in 1995. As of May 

2007, in compliance with the specifications of the Java Community Process, Sun 

relicensed most of its Java technologies under the GNU General Public License. Others 

have also developed alternative implementations of these Sun technologies, such as the 

GNU Compiler for Java and GNU Classpath. 

 

 

 

 

 

 

 

 



3 
 

1.1.1 Principles 

 

There were five primary goals in the creation of the Java language. 

-It should be "simple, object-oriented and familiar" 

-It should be "robust and secure" 

-It should be "architecture-neutral and portable" 

-It should execute with "high performance" 

-It should be "interpreted, threaded, and dynamic" 

 

1.1.2 Versions 

 

Major release versions of Java, along with their release dates: 

JDK 1.0 (January 21, 1996) 

JDK 1.1 (February 19, 1997) 

J2SE 1.2 (December 8, 1998) 

J2SE 1.3 (May 8, 2000) 

J2SE 1.4 (February 6, 2002) 

J2SE 5.0 (September 30, 2004) 

Java SE 6 (December 11, 2006) 

Java SE 7 (July 28, 2011) 

Java SE 8 (March 18, 2014) 

 

1.2 Java Platform 

 

One characteristic of Java is portability, which means that computer programs 

written in the Java language must run similarly on any hardware/operating-system 

platform. This is achieved by compiling the Java language code to an intermediate 

representation called Java bytecode, instead of directly to platform-specific machine 

code. Java bytecode instructions are analogous to machine code, but they are intended 

to be interpreted by a virtual machine (VM) written specifically for the host hardware. 

End-users commonly use a Java Runtime Environment (JRE) installed on their own 

machine for standalone Java applications, or in a Web browser for Java applets. 



4 
 

Standardized libraries provide a generic way to access host-specific features 

such as graphics, threading, and networking. 

A major benefit of using bytecode is porting. However, the overhead of 

interpretation means that interpreted programs almost always run more slowly than 

programs compiled to native executables would. Just-in-Time (JIT) compilers were 

introduced from an early stage that compile bytecodes to machine code during runtime. 

 

1.3 Implementations 

 

Oracle Corporation is the current owner of the official implementation of the 

Java SE platform, following their acquisition of Sun Microsystems on January 27, 2010. 

This implementation is based on the original implementation of Java by Sun. The 

Oracle implementation is available for Mac OS X, Windows and Solaris. Because Java 

lacks any formal standardization recognized by Ecma International, ISO/IEC, ANSI, or 

other third-party standards organization, the Oracle implementation is the de facto 

standard. 

The Oracle implementation is packaged into two different distributions: The 

Java Runtime Environment (JRE) which contains the parts of the Java SE platform 

required to run Java programs and is intended for end-users, and the Java Development 

Kit (JDK), which is intended for software developers and includes development tools 

such as the Java compiler, Javadoc, Jar, and a debugger. 

OpenJDK is another notable Java SE implementation that is licensed under the 

GPL. The implementation started when Sun began releasing the Java source code under 

the GPL. As of Java SE 7, OpenJDK is the official Java reference implementation. 

 

The goal of Java is to make all implementations of Java compatible. Historically, 

Sun's trademark license for usage of the Java brand insists that all implementations be 

"compatible". This resulted in a legal dispute with Microsoft after Sun claimed that the 

Microsoft implementation did not support RMI or JNI and had added platform-specific 

features of their own. Sun sued in 1997, and in 2001 won a settlement of US$20 

million, as well as a court order enforcing the terms of the license from Sun. As a result, 

Microsoft no longer ships Windows with Java. 



5 
 

Platform-independent Java is essential to Java EE, and an even more rigorous 

validation is required to certify an implementation. This environment enables portable 

server-side applications. 

 

1.4 Performance 

 

Programs written in Java have a reputation for being slower and requiring more 

memory than those written in C++. However, Java programs' execution speed improved 

significantly with the introduction of Just-in-time compilation in 1997/1998 for Java 

1.1, the addition of language features supporting better code analysis (such as inner 

classes, the StringBuffer class, optional assertions, etc.), and optimizations in the Java 

virtual machine itself, such as HotSpot becoming the default for Sun's JVM in 2000. As 

of December 2012, microbenchmarks show Java 7 is approximately 44% slower than 

C++. 

Some platforms offer direct hardware support for Java; there are 

microcontrollers that can run Java in hardware instead of a software Java virtual 

machine, and ARM based processors can have hardware support for executing Java 

bytecode through their Jazelle option. 

 

1.5 Automatic Memory Management 

 

Java uses an automatic garbage collector to manage memory in the object 

lifecycle. The programmer determines when objects are created, and the Java runtime is 

responsible for recovering the memory once objects are no longer in use. Once no 

references to an object remain, the unreachable memory becomes eligible to be freed 

automatically by the garbage collector. Something similar to a memory leak may still 

occur if a programmer's code holds a reference to an object that is no longer needed, 

typically when objects that are no longer needed are stored in containers that are still in 

use. If methods for a nonexistent object are called, a "null pointer exception" is thrown. 

One of the ideas behind Java's automatic memory management model is that 

programmers can be spared the burden of having to perform manual memory 

management. In some languages, memory for the creation of objects is implicitly 

allocated on the stack, or explicitly allocated and deallocated from the heap. In the latter 



6 
 

case the responsibility of managing memory resides with the programmer. If the 

program does not deallocate an object, a memory leak occurs. If the program attempts 

to access or deallocate memory that has already been deallocated, the result is undefined 

and difficult to predict, and the program is likely to become unstable and/or crash. This 

can be partially remedied by the use of smart pointers, but these add overhead and 

complexity. Note that garbage collection does not prevent "logical" memory leaks, i.e. 

those where the memory is still referenced but never used. 

Garbage collection may happen at any time. Ideally, it will occur when a 

program is idle. It is guaranteed to be triggered if there is insufficient free memory on 

the heap to allocate a new object; this can cause a program to stall momentarily. 

Explicit memory management is not possible in Java. 

Java does not support C/C++ style pointer arithmetic, where object addresses 

and unsigned integers (usually long integers) can be used interchangeably. This allows 

the garbage collector to relocate referenced objects and ensures type safety and security. 

As in C++ and some other object-oriented languages, variables of Java's 

primitive data types are not objects. Values of primitive types are either stored directly 

in fields (for objects) or on the stack (for methods) rather than on the heap, as 

commonly true for objects (but see Escape analysis). This was a conscious decision by 

Java's designers for performance reasons. Because of this, Java was not considered to be 

a pure object-oriented programming language. However, as of Java 5.0, autoboxing 

enables programmers to proceed as if primitive types were instances of their wrapper 

class. 

Java contains multiple types of garbage collectors. By default, HotSpot uses the 

Concurrent Mark Sweep collector, also known as the CMS Garbage Collector. 

However, there are also several other garbage collectors that can be used to manage the 

Heap. For 90% of applications in Java, the CMS Garbage Collector is good enough. 

 

1.6 Syntax 

 

The syntax of Java is largely derived from C++. Unlike C++, which combines 

the syntax for structured, generic, and object-oriented programming, Java was built 

almost exclusively as an object-oriented language. All code is written inside a class, and 

everything is an object, with the exception of the primitive data types (e.g. integers, 



7 
 

floating-point numbers, boolean values, and characters), which are not classes for 

performance reasons. 

Unlike C++, Java does not support operator overloading or multiple inheritance 

for classes. This simplifies the language and aids in preventing potential errors and 

antipattern design. 

Java uses similar commenting methods to C++. There are three different styles 

of comments: a single line style marked with two slashes (//), a multiple line style 

opened with /* and closed with */, and the Javadoc commenting style opened with /** 

and closed with */. The Javadoc style of commenting allows the user to run the Javadoc 

executable to compile documentation for the program. 

 

Example: 

// This is an example of a single line comment using two slashes 

  

/* This is an example of a multiple line comment using the slash and asterisk. 

 This type of comment can be used to hold a lot of information or deactivate 

 code, but it is very important to remember to close the comment. */ 

  

package fibsandlies; 

import java.util.HashMap; 

  

/** 

 * This is an example of a Javadoc comment; Javadoc can compile documentation 

 * from this text. Javadoc must immediately preceed thing being documented. 

 */ 

public class FibCalculator extends Fibonacci implements Calculator { 

    private static HashMap<Integer, Integer> memoized = new HashMap<Integer, 

Integer>(); 

    static { 

        memoized.put(1, 1); 

        memoized.put(2, 1); 

    } 

  

    /** An example of a method written in Java, wrapped in a class. 



8 
 

     *  Given a non-negative number FIBINDEX, returns 

     *  the Nth Fibonacci number, where N equals FIBINDEX. 

     *  @param fibIndex The index of the Fibonacci number 

     *  @return The Fibonacci number itself 

     */ 

    public static int fibonacci(int fibIndex) { 

        if (memoized.containsKey(fibIndex)) { 

            return memoized.get(fibIndex); 

        } else { 

            int answer = fibonacci(fibIndex - 1) + fibonacci(fibIndex - 2); 

            memoized.put(fibIndex, answer); 

            return answer; 

        } 

    } 

} 

 

1.7 Hello World! 

 

The traditional Hello World program can be written in Java as: 

class HelloWorldApp { 

    public static void main(String[] args) { 

        System.out.println("Hello World!"); // Display the string. 

    } 

} 

 

Source files must be named after the public class they contain, appending the 

suffix .java, for example, HelloWorldApp.java. It must first be compiled into bytecode, 

using a Java compiler, producing a file named HelloWorldApp.class. Only then can it 

be executed, or 'launched'. The Java source file may only contain one public class, but it 

can contain multiple classes with other than public access and any number of public 

inner classes. 

A class that is not declared public may be stored in any .java file. The compiler 



9 
 

will generate a class file for each class defined in the source file. The name of the class 

file is the name of the class, with .class appended. For class file generation, anonymous 

classes are treated as if their name were the concatenation of the name of their enclosing 

class, a $, and an integer. 

The keyword public denotes that a method can be called from code in other 

classes, or that a class may be used by classes outside the class hierarchy. The class 

hierarchy is related to the name of the directory in which the .java file is located. 

 

The keyword static in front of a method indicates a static method, which is 

associated only with the class and not with any specific instance of that class. Only 

static methods can be invoked without a reference to an object. Static methods cannot 

access any class members that are not also static. 

The keyword void indicates that the main method does not return any value to 

the caller. If a Java program is to exit with an error code, it must call System.exit() 

explicitly. 

The method name "main" is not a keyword in the Java language. It is simply the 

name of the method the Java launcher calls to pass control to the program. Java classes 

that run in managed environments such as applets and Enterprise JavaBean do not use 

or need a main() method. A Java program may contain multiple classes that have main 

methods, which means that the VM needs to be explicitly told which class to launch 

from. 

The main method must accept an array of String objects. By convention, it is 

referenced as args although any other legal identifier name can be used. Since Java 5, 

the main method can also use variable arguments, in the form of public static void 

main(String... args), allowing the main method to be invoked with an arbitrary number 

of String arguments. The effect of this alternate declaration is semantically identical (the 

args parameter is still an array of String objects), but it allows an alternative syntax for 

creating and passing the array. 

The Java launcher launches Java by loading a given class (specified on the 

command line or as an attribute in a JAR) and starting its public static void 

main(String[]) method. Stand-alone programs must declare this method explicitly. The 

String[] args parameter is an array of String objects containing any arguments passed to 

the class. The parameters to main are often passed by means of a command line. 

Printing is part of a Java standard library: The System class defines a public 



10 
 

static field called out. The out object is an instance of the PrintStream class and 

provides many methods for printing data to standard out, including println(String) 

which also appends a new line to the passed string. The string "Hello, world!" is 

automatically converted to a String object by the compiler. 

 

1.8 Applet 

 

Java applets are programs that are embedded in other applications, typically in a 

Web page displayed in a Web browser. 

// Hello.java 

import javax.swing.JApplet; 

import java.awt.Graphics; 

  

public class Hello extends JApplet { 

    public void paintComponent(final Graphics g) { 

        g.drawString("Hello, world!", 65, 95); 

    } 

} 

 

The import statements direct the Java compiler to include the javax.swing.JApplet and 

java.awt.Graphics classes in the compilation. The import statement allows these classes 

to be referenced in the source code using the simple class name (i.e. JApplet) instead of 

the fully qualified class name (i.e. javax.swing.JApplet). 

 

The Hello class extends (subclasses) the JApplet (Java Applet) class; the JApplet class 

provides the framework for the host application to display and control the lifecycle of 

the applet. The JApplet class is a JComponent (Java Graphical Component) which 

provides the applet with the capability to display a graphical user interface (GUI) and 

respond to user events. 

 

The Hello class overrides the paintComponent(Graphics) method (additionally indicated 

with the annotation, supported as of JDK 1.5, Override) inherited from the Container 



11 
 

superclass to provide the code to display the applet. The paintComponent() method is 

passed a Graphics object that contains the graphic context used to display the applet. 

The paintComponent() method calls the graphic context drawString(String, int, int) 

method to display the "Hello, world!" string at a pixel offset of (65, 95) from the 

upperleft corner in the applet's display. 

 

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" 

"http://www.w3.org/TR/html4/strict.dtd"> 

<!-- Hello.html --> 

<html> 

    <head> 

        <title>Hello World Applet</title> 

    </head> 

    <body> 

        <applet code="Hello.class" width="200" height="200"> 

        </applet> 

    </body> 

</html> 

 

An applet is placed in an HTML document using the <applet> HTML element. 

The applet tag has three attributes set: code="Hello" specifies the name of the JApplet 

class and width="200" height="200" sets the pixel width and height of the applet. 

Applets may also be embedded in HTML using either the object or embed element, 

although support for these elements by Web browsers is inconsistent. However, the 

applet tag is deprecated, so the object tag is preferred where supported. 

The host application, typically a Web browser, instantiates the Hello applet and 

creates an AppletContext for the applet. Once the applet has initialized itself, it is added 

to the AWT display hierarchy. The paintComponent() method is called by the AWT 

event dispatching thread whenever the display needs the applet to draw itself. 

 

 

 



12 
 

1.9 Servlet 

 

Java Servlet technology provides Web developers with a simple, consistent 

mechanism for extending the functionality of a Web server and for accessing existing 

business systems. Servlets are server-side Java EE components that generate responses 

(typically HTML pages) to requests (typically HTTP requests) from clients. A servlet 

can almost be thought of as an applet that runs on the server side—without a face. 

 

// Hello.java 

import java.io.*; 

import javax.servlet.*; 

  

public class Hello extends GenericServlet { 

    public void service(final ServletRequest request, final ServletResponse response) 

    throws ServletException, IOException { 

        response.setContentType("text/html"); 

        final PrintWriter pw = response.getWriter(); 

        try { 

            pw.println("Hello, world!"); 

        } finally { 

            pw.close(); 

        } 

    } 

} 

The import statements direct the Java compiler to include all of the public 

classes and interfaces from the java.io and javax.servlet packages in the compilation. 

The Hello class extends the GenericServlet class; the GenericServlet class 

provides the interface for the server to forward requests to the servlet and control the 

servlet's lifecycle. 

The Hello class overrides the service(ServletRequest, ServletResponse) method 

defined by the Servlet interface to provide the code for the service request handler. The 



13 
 

service() method is passed: a ServletRequest object that contains the request from the 

client and a ServletResponse object used to create the response returned to the client. 

The service() method declares that it throws the exceptions ServletException and 

IOException if a problem prevents it from responding to the request. 

The setContentType(String) method in the response object is called to set the 

MIME content type of the returned data to "text/html". The getWriter() method in the 

response returns a PrintWriter object that is used to write the data that is sent to the 

client. The println(String) method is called to write the "Hello, world!" string to the 

response and then the close() method is called to close the print writer, which causes the 

data that has been written to the stream to be returned to the client. 

 

1.10 JavaServer Pages 

 

JavaServer Pages (JSP) are server-side Java EE components that generate 

responses, typically HTML pages, to HTTP requests from clients. JSPs embed Java 

code in an HTML page by using the special delimiters <% and %>. A JSP is compiled 

to a Java servlet, a Java application in its own right, the first time it is accessed. After 

that, the generated servlet creates the response. 

 

1.11 Swing Application 

 

Swing is a graphical user interface library for the Java SE platform. It is possible 

to specify a different look and feel through the pluggable look and feel system of 

Swing. Clones of Windows, GTK+ and Motif are supplied by Sun. Apple also provides 

an Aqua look and feel for Mac OS X. Where prior implementations of these looks and 

feels may have been considered lacking, Swing in Java SE 6 addresses this problem by 

using more native GUI widget drawing routines of the underlying platforms. 

// Hello.java (Java SE 5) 

import javax.swing.*; 

  

public class Hello extends JFrame { 

    public Hello() { 

        super("hello"); 



14 
 

        super.setDefaultCloseOperation(WindowConstants.EXIT_ON_CLOSE); 

        super.add(new JLabel("Hello, world!")); 

        super.pack(); 

        super.setVisible(true); 

    } 

  

    public static void main(final String[] args) { 

        new Hello(); 

    } 

} 

The first import includes all of the public classes and interfaces from the 

javax.swing package. The Hello class extends the JFrame class; the JFrame class 

implements a window with a title bar and a close control. 

 

The Hello() constructor initializes the frame by first calling the superclass 

constructor, passing the parameter "hello", which is used as the window's title. It then 

calls the setDefaultCloseOperation(int) method inherited from JFrame to set the default 

operation when the close control on the title bar is selected to 

WindowConstants.EXIT_ON_CLOSE — this causes the JFrame to be disposed of 

when the frame is closed (as opposed to merely hidden), which allows the Java virtual 

machine to exit and the program to terminate. Next, a JLabel is created for the string 

"Hello, world!" and the add(Component) method inherited from the Container 

superclass is called to add the label to the frame. The pack() method inherited from the 

Window superclass is called to size the window and lay out its contents. The main() 

method is called by the Java virtual machine when the program starts. It instantiates a 

new Hello frame and causes it to be displayed by calling the setVisible(boolean) method 

inherited from the Component superclass with the boolean parameter true. Once the 

frame is displayed, exiting the main method does not cause the program to terminate 

because the AWT event dispatching thread remains active until all of the Swing toplevel 

windows have been disposed. 

 

 

 



15 
 

1.12 Generics 

 

In 2004, generics were added to the Java language, as part of J2SE 5.0. Prior to 

the introduction of generics, each variable declaration had to be of a specific type. For 

container classes, for example, this is a problem because there is no easy way to create a 

container that accepts only specific types of objects. Either the container operates on all 

subtypes of a class or interface, usually Object, or a different container class has to be 

created for each contained class. Generics allow compile-time type checking without 

having to create a large number of container classes, each containing almost identical 

code. In addition to enabling more efficient code, certain runtime exceptions are 

converted to compile-time exceptions, a characteristic known as type safety. 

 

1.13 Criticism 

 

Criticisms directed at Java include the implementation of generics, speed, the 

handling of unsigned numbers, the implementation of floating-point arithmetic, and a 

history of security vulnerabilities in the primary Java VM implementation HotSpot. 

 

1.14 Use by External Companies 

 

1.14.1 Google 

 

Google and Android, Inc. have chosen to use Java as a key pillar in the creation 

of the Android operating system, an open-source smartphone operating system. Besides 

the fact that the operating system, built on the Linux kernel, was written largely in C, 

the Android SDK uses Java to design applications for the Android platform. 

On May 7, 2012, a San Francisco jury found that if APIs could be copyrighted, then 

Google had infringed Oracle's copyrights by the use of Java in Android devices. 

Oracle's stance in this case has raised questions about the legal status of the language. 

However, the Hon. William Haskell Alsup ruled on May 31, 2012, that APIs cannot be 

copyrighted. 

 

 



16 
 

1.14.2 Gaikai 

 

Gaikai uses the Java browser plugin to stream game demos to any PC. Gaikai 

(Japanese for "open ocean") is a cloud-based gaming service that allows users to play 

high-end PC and console games via the cloud and instantly demo games and 

applications from a webpage on any computer or internet-connected device. 

 

1.15 Documentation 

 

Javadoc is a comprehensive documentation system, created by Sun 

Microsystems, used by many Java developers. It provides developers with an organized 

system for documenting their code. Javadoc comments have an extra asterisk at the 

beginning, i.e. the tags are /** and */, whereas the normal multi-line comments in Java 

are set off with the tags /* and */. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 
 

 

LIGHTWEIGHT JAVA GAME LIBRARY 

 

2.1 Introduction 

The Lightweight Java Game Library (LWJGL) is a solution aimed directly at 

professional and amateur Java programmers alike to enable commercial quality games 

to be written in Java. LWJGL provides developers access to high performance 

crossplatform libraries such as OpenGL (Open Graphics Library), OpenCL (Open 

Computing Language) and OpenAL (Open Audio Library) allowing for state of the art 

3D games and 3D sound. Additionally LWJGL provides access to controllers such as 

Gamepads, Steering wheel and Joysticks. All in a simple and straight forward API. 

 

LWJGL is not meant to make writing games particularly easy; it is primarily an 

enabling technology which allows developers to get at resources that are simply 

otherwise unavailable or poorly implemented on the existing Java platform. We 

anticipate that the LWJGL will, through evolution and extension, become the 

foundation for more complete game libraries and "game engines" as they have popularly 

become known, and hide some of the new evils we have had to expose in the APIs. 

 

LWJGL is available under a BSD license, which means it's open source and freely 

available at no charge. 

 

2.2 Goals of LWJGL 

 Explained by one of the major contributor. 

 

2.2.1 Speed 

 

The whole point of LWJGL was to bring the speed of Java rendering into the 21st 

century. This is why we have: 

Thrown out methods designed for efficient C programming that make no sense at all in 

java, such as glColor3fv. 

Made the library throw an exception when hardware acceleration is not available on 

Windows. No point in running at 5fps is there? 



18 
 

 

2.2.2 Ubiquity 

 

Our library is designed to work on devices as small as phones right the way up to 

multiprocessor rendering servers. Just because there aren't any phones or consoles yet 

with fast enough JVMs and 3d acceleration is neither here nor there - there will be, one 

day. We're carefully tailoring the library so that when it happens we'll have OpenGL ES 

support in there just like that. This means that: 

We had to have a very small footprint or it'll never catch on in the J2ME space at all. 

That's why the binary distribution is under half a meg, and that takes care of 3d sound, 

graphics, and IO. 

Even under desktop environments having a 1-2mb download just to call a few 3D 

functions is daft. 

We've worked to a lowest common denominator principle rather than attempting to 

design for all possibilities, but we've made sure that 99% of required uses are covered. 

That's why we've only got one window, and why we don't guarantee that windowed 

mode is even supported (it's officially a debug mode and hence we don't even supply 

some very basic windowy abilities that you'd get in AWT) and why we don't allow 

multiple thread rendering contexts. 

 

2.2.3 Simplicity 

 

LWJGL needed to be simple for it to be used by a wide range of developers. We wanted 

relative newbies to be able to get on with it, and professionals to be able to use it 

professionally, maybe typically coming from a C++ background. We had to choose a 

paradigm that actually fits with OpenGL, and one that fits with our target platforms 

which ranges from PDA to desktop level. This is why: 

We aren't catering for single-buffered drawing 

We don't require that an instance of GL is passed around all over the place but we do 

not prevent this style of coding. See below for why. 

We removed a lot of stuff that 99% of games programmers need to know nothing about 

We have decided that consistency is better than complexity. Rather than allowing 

multiple ways to call the same methods and bloating the library we've just said, "Right, 



19 
 

no arrays. They're slower anyway. Get used to buffers, as this is what buffers are meant 

to be used for." 

 

 

2.2.4 Smallness 

 

See ubiquity above. We had to be small. 

Small == simple. The fewer ways there are to do something, the easier it is to learn the 

only way that works or is allowed. 

Small == our code is less buggy. Wouldn't you rather be hunting for bugs in your own 

code, not ours? 

Small == downloadable. No version nightmares. LWJGL is small enough to download 

with every application that uses it. 

Small == J2ME. 

 

2.2.5 Security 

 

We realised a few months ago that no-one was going to take us seriously if we couldn't 

guarantee the security of the LWJGL native libraries. This is why we: 

No longer use pointers but exclusively use buffers instead 

Are gradually adding further checks to buffer positions and limits to ensure that the 

values are within allowed ranges to prevent buffer attacks 

 

2.2.6 Robustness 

 

Similarly to security we have now realised that a reliable system is far more useful than 

a fast system. When we actually had a proper application to benchmark finally we had 

some real data. Many of our original design decisions were based on microbenchmarks 

- well, you have to start somewhere! But with a real application to benchmark we now 

know we can throw out asserts and replace them with a proper if (...) check and a 

thrown exception. We know also that we can move all that GL error checking out of 

native code and into Java code and we will no longer need a separate DLL for debug 

mode. 



20 
 

As for runtime exceptions, they have their place. There's not a reasonably well defined 

argument as to when you should use a runtime exception and when you should use a 

checked exception. When I made OpenGLException a checked exception all it did was 

end up littering my code with try {} catch {} sections - except that if you've got an 

OpenGLException there is very little sensible you can do to rectify it because it should 

never have occurred in the first place. That's why it's a runtime exception. You should 

simply not write code than can throw it because it is generally not recoverable nicely. 

However for robustness (and security) we are required to throw an exception if 

something is amiss. It falls, I believe, into exactly the same category of trouble as NPEs, 

ArrayIndexOOBs and ClassCastExceptions: should never occur but needs to be trapped 

somewhere. 

 

2.2.7 Minimalism 

 

This is another critical factor in our design decisions. If it doesn't need to be in the 

library, it's not in the library. Our original aim was to produce a library that provided the 

bare minimum required to access the hardware that Java couldn't access, and by and 

large we're sticking to this mantra. The vector math code in the LWJGL is looking 

mighty scared at the moment because it's probably for the chop - well, at least, from the 

core library - as it's not an enabling technology at all, and there are numerous more fully 

featured alternatives. We chucked out GLU because it's mostly irrelevant to game 

developers except for a few functions that we really need to get redeveloped in pure 

Java - but basically, GLU is just a library of code built on top of the enablement layer. 

 

 

 

 

 

 

 

 

 

 



21 
 

 

SLICK2D ENGINE 

 

3.1 Introduction 

Slick2D is an easy to use set of tools and utilities wrapped around LWJGL OpenGL 

bindings to make 2D Java game development easier. 

 

Slick2D includes support for images, animations, particles, sounds, music and much 

much more. Additionally there are many community based projects that add additional 

functionality such as entity support, theme-able widgets and box2d wrappers. 

 

Slick2D uses game containers and state based game approach as its construction. 

 

3.2 Game Containers 

The concept of containers isn't a particularly new one, the container provides 

environment in which your application (in this case a game) can run. It provides that 

game with a set of facilities and expects the game to comply to a certain interface. This 

allows the container (sometimes called the framework) to handle most of the bits of 

code common between all games for you - leaving you to focus on the important game 

logic bits and pieces. 

 

3.2.1 Basic Functionality 

In the case of Slick, the container holds a Game - that is the class that is contained must 

comply to the Game interface. To make things even easier Slick provides a basic 

abstract implementation of Game which you can simply extend, called BasicGame. 

When extending BasicGame you'll need to implement 3 methods: 

 

init() - This is called when the game starts and should be used to load resources and 

initialise the game state. 

 

render() - This method is passed a graphics content which can be used to draw to the 

screen. All of your game's rendering should take place in this method (or in methods 

called from this method) 



22 
 

update() - The method is called each game loop to cause your game to update it's logic. 

So if you have a little guy flying across the screen this is where you should make him 

move. This is also where you should check input and change the state of the game. 

 

The GameContainer itself provides methods to control the properties of the game 

rendering and update. For instance, the game container is where you look for controlling 

what resolution the game runs at and whether it's in fullscreen mode. It's also 

responsible for maintaining the game timer and loop. There are a couple of 

implementations of GameContainer currently available (discussed below), however 

where possible you should rely on the GameContainer interface - apart from of course 

when constructing your container where you are making an explicit decision about how 

your game is to be displayed. 

 

While the Slick game container framework is useful it doesn't suit everyone. It is 

intended that the features of Slick can be used outside of the framework as part of a 

generic LWJGL game. 

 

3.2.2 Application Game Container 

The application game container is the most used, it's intended to run your game stand 

alone or as a webstart. It uses a simple a window to display the game and allows you to 

configure the display mode directly. It's generally constructed in main and started with 

the following lines: 

try {  

    AppGameContainer container = new AppGameContainer(new MyGame());  

    container.setDisplayMode(800,600,false);  

    container.start();  

} catch (SlickException e) {  

    e.printStackTrace();  

} 

Where the 800 and 600 specify the window resolution and the false (or true) specify 

whether the game should be run in fullscreen mode. Note how the container is created 

with an instance of the game implementation. In this way when you change containers 

the game itself does not need to be changed at all. This makes it very easy to make a 



23 
 

demo version of your game available via a webpage while mainitaining the full version 

as a standalone application. 

 

3.2.3 Applet Game Container 

The applet game container uses the recently added LWJGL Applet support to present 

the game as a Java Applet embedded into a webpage. This functionality is currently still 

being tested and developed. It is known to have issues running within Opera and on low 

end machines. Supporting an OpenGL context within a browser window is proving to 

be difficult to be make stable in all cases. 

 

However, for most people this is a great option and allows you deploy your game as an 

applet with the minimal of fuss. The Slick distribution provides the files required for 

applet distribution in the “applet” directory. To use your game in the applet you need to 

specify something similar to the following in the applet tag in the HTML: 

 

    <applet code="org.newdawn.slick.AppletGameContainer" 

archive="slick.jar,testdata.jar,lwjgl_applet.jar,lwjgl.jar,lwjgl_util_applet.jar,natives.jar,j

input.jar"  

            width="640" height="480">  

        <param name="game" value="org.newdawn.slick.tests.InputTest">  

    </applet> 

 

Where the game parameters is replaced with the fully qualified name of your Game 

class and the archive list contains all the jars you require signed with an appropriate 

certificate. See the webstart tutorial for details on how to produce a certificate and sign 

the the JARs correctly. 

 

3.3 State Based Games 

The BasicGame class can get you a long way with simple game development. However, 

when games become more complicated it's often useful to separate out the different 

parts into separate classes with logic and rendering. These different parts are referred to 

states, as in the state a game is in. 



24 
 

In Slick this concept is supported via the Game implementation StateBasedGame. This 

game implementation proxies the render and logic methods to the “current” state. The 

states available and current are set externally by supplying implementations of the 

GameState interface. However, a convenience implementation of State is supplied, 

analogous to BasicGame, named BaseGameState. 

 

The GameState is similar to the game interface, in that it has an init, render and update 

methods. However, the state based game can hold multiple of these state 

implementation which it can then switch between. In this way the render and logic 

associated with each facet of the game can be separated into different classes. 

As an added bonus, when swapping between these game states a visual effect can be 

applied to make the swap seem more fluent. These visual effects are referred to and 

implemented as Transitions. 

 

3.4 Setting up Slick2D with Eclipse 

 

3.4.1 Introduction 

Since Slick2D uses LWJGL, setup is split into 2 parts, the JAR files, and the LWJGL 

natives (*.dll files for Windows, *.so files for Unix and Linux and *.dylib/*.jnilib for 

Mac). 

 

3.4.2 Downloading and Extracting Slick2D and LWJGL 

Download Slick2D from slick.ninjacave.com 

Download LWJGL standard bundle from lwjgl.org 

Extract the LWJGL zip (lwjgl-x.x.zip) file somewhere in your computer, remember or 

note down the location, you will need this later. We suggest you create a library (/lib) 

folder to store all these files in a well-known place. 

 

 

 

 

 

 



25 
 

3.4.3 Setting Up Slick2D and LWJGL in Eclipse 

1. Open up Eclipse. 

2. Go to Project --> Properties in the menu bar. 

3. Click on Java Build Path. 

4. Click Add Library... 

5. Select User Library 

6. Click Next 

7. Click User Libraries 

8. In the user libraries dialog select New 

9. Type in Slick2D or any other name that you want for the Library Name, click ok 

10. Select the new library and 

1. click the Add Jar button (if the libraries were extracted to the project 

space) 

2. click the Add External Jar button (if the libraries were extracted to a 

location outside the project space) 

11. Go to where you extracted slick.zip and add the following '.jar' files ('Ctrl', or 

'Shift' to select multiple entries) from 'lib' folder 

1. lwjgl.jar 

2. slick.jar 

3. jinput.jar 

4. lwjgl_util.jar (if want to use OpenGL's GLU class) 

 

 

3.4.4 Setting Up a Project to use LWJGL in Eclipse 

In a new Java project: 

1. Right-Click your project node and click Build Path > Configure Build Path or 

2. Go to Project > Properties and select Build Path, select the Libraries tab 

3. Click Add Library 

4. Select User Library, click next 

5. Add your Slick2D Library, created as instructed above 

6. Setup the Native Libraries path 

1. From the Properties Dialog on the Library tab expand the Slick2D 

Library 

1. Click the Natives Library Location and click the Edit button 



26 
 

2. Navigate to the location of the LWJGL native folder and select 

the sub folder for the specific OS 

3. Click OK 

2. Alternatively before Runing the project you have to add the following to 

the Run Configurations VM Arguments 

1. Select Run Configurtion 

2. Select the Project 

3. Select the Arguments tab 

4. On VM Options put the following: 

   -Djava.library.path=<lwjgl-X.X path>/native/<linux|macosx|solaris|windows>  

Note: Remember to select the natives of your operating system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



27 
 

 

MARTE ENGINE 

 

4.1 Introduction 

MarteEngine (ME) is a Java videogame engine with it's focus on a simple, clean API for 

fast game development. 

Major inspiration comes from (Flashpunk) and (Slick forum). 

Authors are Alberto "Gornova" Martinelli, http://randomtower.blogspot.com and 

Thomas "Tommy" Haaks, http://www.rightanglegames.com and Stefan "Stef569" (in 

order of appareance!). 

Current main contributor of Marte Engine is Stef569 

MarteEngine run on top of Slick Build #229 and LWJGL Version: 2.6 

 

4.2 Features 

4.2.1 Entity and World 

Entity: 

An Entity is everything in your game: the hero controlled by the player, some flashing 

information text, enemies... nearly everything. This choice was made with 

MarteEngine's main concept in mind: simplicity. 

 

Entity class can (and should) be extended following the basic Java approach: 

public class Player extends Entity {} 

 

World: 

World is a container for entities: imagine it as a level of a videogame. The game starts 

and the hero moves around in a level with obstacles, enemies, a sky and so on. The hero 

is just one Entity but many other entities populate your game world too: the World class 

permits that! 

 

Again, creating a World is simple. Just extend MarteEngine's World class and build a 

basic constructor 

 

 



28 
 

public class Level extends World { 

 public Level(int id, GameContainer container) { 

  super(id, container); 

 } 

} 

You can override the init method of World to load one or more entities into your World: 

 

@Override 

public void init(GameContainer container, StateBasedGame game) 

  throws SlickException { 

 super.init(container, game); 

 Player player = new Player(100,100); 

 add(player,World.GAME); 

} 

Note: you can always remove one entity using this piece of code: 

 

 ME.world.remove(entity); 

This because MarteEngine store reference to current world as static variable on ME 

class and so you can use all world methods anywhere! 

 

4.2.2 Render and Update 

Another key point to understand is that both Entity and World could update game logic 

and render something on screen. To do this, all of your classes that extend Entity or 

World can override two methods: render and update. 

What does that mean in detail? Basically it means that you can render entities in any 

way you like (or again, let MarteEngine help you) or update game logic for particular 

entities (like player controlled one) in your way! 

 

4.2.3 ResourceManager 

ResourceManager is an utility class: you can use it or not: it just stores references to all 

of our media files (spritesheets, images, sounds, font, constants) in a resource.xml file. 

You can write it outside of your Java classes to configure your game the way you want! 

In your classes, you can use your media files by just referencing them using costants! 



29 
 

For example let's write our Player class again using the ResourceManager to load the 

image: 

 

public class Player extends Entity { 

 public Player(float x, float y) { 

  super(x, y); 

  // load Image using resource.xml file using costant name 

  Image img = ResourceManager.getImage("player"); 

  setGraphic(img); 

 } 

Simple enough or not? You must initialize ResourceManager when your game starts 

using: 

 

ResourceManager.loadResources("data/resources.xml"); 

And your resource.xml look like: 

 

<?xml version="1.0" encoding="UTF-8"?> 

<resources> 

 <!-- basedir --> 

 <basedir path="data" /> 

 <!-- sounds --> 

 <!-- songs --> 

 <!-- images --> 

 <image key="player" file="player.png" /> 

 <!-- sheets --> 

 <!-- fonts --> 

</resources> 

Syntax is (hopefully) clear! In resource.xml you define an image with key "player" 

where image is "player.png", so you can reference it later in your game using the 

"player" keyword. 

 

4.2.4 Basic Collision 

For every entity you want to react on collisions, you need to declare two things: 

 



30 
 

Hitbox: The hitbox specifies the borders of an entity. When MarteEngine checks for 

collisions, it looks at every entity's borders if they overlap with any other hitbox, 

Hitbox for wall: 

// hitbox is a rectangle around entity, in this case it is exactly the size of the wall image 

  setHitBox(0, 0, img.getWidth(), img.getHeight()); 

  // declare type of this entity 

  addType(SOLID);  

Type: To speed up collision checks against different groups of entities, you can define 

the type of an Entity. Every entity can have many types. In our example, the Player has 

type "PLAYER" and the Wall has the (builtin) basic type "SOLID". 

 

With these two basic concepts you can do anything you want.. using the collision check 

method for example before the player updates his/her position, it's possibile to check 

and avoid a collision with other entities with type "SOLID": 

Collision checking: 

   if (collide(SOLID, x + 10, y)==null) { 

    x = x + 10; 

   } 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 
 

ECLIPSE 

 

5.1 Overview 

 In computer programming, Eclipse is a multi-language Integrated development 

environment (IDE) comprising a base workspace and an extensible plug-in system for 

customizing the environment. It is written mostly in Java. It can be used to develop 

applications in Java and, by means of various plug-ins, other programming languages 

including Ada, C, C++, COBOL, Fortran, Haskell, JavaScript, Perl, PHP, Python, R, Ruby 

(including Ruby on Rails framework), Scala, Clojure, Groovy, Scheme, and Erlang. It can 

also be used to develop packages for the software Mathematica. Development 

environments include the Eclipse Java development tools (JDT) for Java and Scala, 

Eclipse CDT for C/C++ and Eclipse PDT for PHP, among others. 

The initial codebase originated from IBM VisualAge. The Eclipse software development 

kit (SDK), which includes the Java development tools, is meant for Java developers. Users 

can extend its abilities by installing plug-ins written for the Eclipse Platform, such as 

development toolkits for other programming languages, and can write and contribute 

their own plug-in modules. 

Released under the terms of the Eclipse Public License, Eclipse SDK is free and open 

source software (although it is incompatible with the GNU General Public License). It 

was one of the first IDEs to run under GNU Classpath and it runs without problems under 

IcedTea. 

5.2 History 

 Eclipse began as an IBM Canada project. Object Technology International (OTI), 

which had previously marketed the Smalltalk-based VisualAge family of integrated 

development environment (IDE) products, developed the new product as a Java-based 

replacement. In November 2001, a consortium was formed with a board of stewards to 

further the development of Eclipse as open-source software. The original members were 

Borland, IBM, Merant, QNX Software Systems, Rational Software,   Red Hat, SuSE, 



32 
 

TogetherSoft and WebGain. The number of stewards increased to over 80 by the end of 

2003. In January 2004, the Eclipse Foundation was created. 

Eclipse 3.0 (released on 21 June 2004) selected the OSGi Service Platform specifications 

as the runtime architecture. 

The Association for Computing Machinery recognized Eclipse with the 2011 ACM 

Software Systems Award on 26 April 2012. 

5.3 Licensing 

 The Eclipse Public License (EPL) is the fundamental license under which Eclipse 

projects are released. Some projects require dual licensing, for which the Eclipse 

Distribution License (EDL) is available, although use of this license must be applied for 

and is considered on a case-by-case basis. 

 The Eclipse was originally released under the Common Public License, but was 

later relicensed under the Eclipse Public License. The Free Software Foundation has said 

that both licenses are free software licenses, but are incompatible with the GNU General 

Public License (GPL). Mike Milinkovich, of the Eclipse Foundation commented that 

moving to the GPL would be considered when version 3 of the GPL was released. 

5.4 Name 

 According to Lee Nackman, Chief Technology Officer of IBM's Rational division 

(originating in 2003) at that time, the name "Eclipse" (dating from at least 2001) was not 

a wordplay on Sun Microsystems, as the product's primary competition at the time of 

naming was Microsoft Visual Studio. 

5.5 Architecture 

 The Eclipse Platform uses plug-ins to provide all functionality within and on top 

of the runtime system, in contrast to some other applications, in which functionality is 

hard coded. The Eclipse Platform's runtime system is based on Equinox, an 

implementation of the OSGi core framework specification. 

 This plug-in mechanism is a lightweight software componentry framework. In 

addition to allowing the Eclipse Platform to be extended using other programming 



33 
 

languages such as C and Python, the plug-in framework allows the Eclipse Platform to 

work with typesetting languages like LaTeX, networking applications such as telnet and 

database management systems. The plug-in architecture supports writing any desired 

extension to the environment, such as for configuration management. Java and CVS 

support is provided in the Eclipse SDK, with support for other version control systems 

provided by third-party plug-ins. 

 With the exception of a small run-time kernel, everything in Eclipse is a plug-in. 

This means that every plug-in developed integrates with Eclipse in exactly the same way 

as other plug-ins; in this respect, all features are "created equal".[citation needed] 

Eclipse provides plug-ins for a wide variety of features, some of which are through third 

parties using both free and commercial models. Examples of plug-ins include a UML 

plug-in for Sequence and other UML diagrams, a plug-in for DB Explorer, and many 

others. 

 The Eclipse SDK includes the Eclipse Java development tools (JDT), offering an 

IDE with a built-in incremental Java compiler and a full model of the Java source files. 

This allows for advanced refactoring techniques and code analysis. The IDE also makes 

use of a workspace, in this case a set of metadata over a flat file space allowing external 

file modifications as long as the corresponding workspace "resource" is refreshed 

afterwards. 

 Eclipse implements widgets through a widget toolkit for Java called SWT, unlike 

most Java applications, which use the Java standard Abstract Window Toolkit (AWT) or 

Swing. Eclipse's user interface also uses an intermediate graphical user interface layer 

called JFace, which simplifies the construction of applications based on SWT. 

 Language packs developing by the "Babel project" provide translations into over 

a dozen natural languages. 

5.6 Rich Client Platform 

 Eclipse provides the Rich Client Platform (RCP) for developing general purpose 

applications. The following components constitute the rich client platform: 



34 
 

 -Equinox OSGi – a standard bundling framework 

 -Core platform – boot Eclipse, run plug-ins[citation needed] 

 -Standard Widget Toolkit (SWT) – a portable widget toolkit 

 -JFace – viewer classes to bring model view controller programming to SWT,     

file buffers, text handling, text editors 

 -Eclipse Workbench – views, editors, perspectives, wizards 

Examples of rich client applications based on Eclipse are: 

 -Lotus Notes 8 

 -Novell/NetIQ Designer for Identity Manager 

 -Apache Directory Studio 

 -Coverity Build Analysis tool. 

5.7 Server Platform 

 Eclipse supports development for Tomcat, GlassFish and many other servers and 

is often capable of installing the required server (for development) directly from the IDE. 

It supports remote debugging, allowing the user to watch variables and step through the 

code of an application that is running on the attached server. 

5.8 Web Tools Platform 

 The Eclipse Web Tools Platform (WTP) project is an extension of the Eclipse 

platform with tools for developing Web and Java EE applications. It includes source and 

graphical editors for a variety of languages, wizards and built-in applications to simplify 

development, and tools and APIs to support deploying, running, and testing apps.  

 

5.9 Modeling Platform 

 The Modeling project contains all the official projects of the Eclipse Foundation 

focusing on model-based development technologies. They are all compatible with the 



35 
 

Eclipse Modeling Framework created by IBM. Those projects are separated in several 

categories: Model Transformation, Model Development Tools, Concrete Syntax 

Development, Abstract Syntax Development, Technology and Research, and Amalgam  

5.10 Model Transformation 

 Model Transformation projects uses EMF based models as an input and produce 

either a model or text as an output. Model to model transformation projects includes ATL, 

an open source transformation language and toolkit used to transform a given model or 

to generate a new model from a given EMF model. Model to text transformation projects 

contains Acceleo, an implementation of MOFM2T, a standard model to text language 

from the OMG. Acceleo is an open source code generator that can generate any textual 

language (Java, PHP, Python, etc.) from EMF based models defined with any metamodel 

(UML, SysML, etc.). 

5.11 Model Development Tools 

Model Development Tools projects are implementations of modeling standard used in the 

industry like UML or OCL and their toolkit. Among those projects can be found 

implementation of the following standard: 

 -UML 

 -SysML 

 -OCL 

 -BPMN 

 -IMM 

 -SBVR 

 -XSD 

5.12 Extensions 

 Eclipse supports a rich selection of extensions, adding support for Python via 

pydev, Android development via Google's ADT, JavaFX support via e(fx)clipse, and 

many others at the Eclipse Marketplace 



36 
 

 

DESCRIPTION OF THE APPLICATION 

 

6.1 Introduction 

In this chapter I will explain what every class and how overall game works. 

First, I needed to decide which tools I needed. The tools I use as follows: 

 

GIMP Image Editor 

Eclipse IDE 

Light Weight Java Gaming Library 

Slick2D Engine 

Marte Engine 

 

As you can see in this report there are individual chapters that gives information about 

for all the tools I used except GIMP image editor. Although an image editor was an 

important part of the creation process of this game, I though that it is not actually 

necessary to devote an entire chapter to describe everything about it in detail, because 

after all this project is not about how I made the images I use. 

 

Having said that, before going on deep into creation process I’ll like to present my 

reasons for choosing GIMP image editor as Image editor software. 

 

GIMP is a freeware software that developed by community and constantly improving, 

getting better, it is easy to use and as good as some absurdly expensive image editor 

softwares. 

 

 

 

 

 

 



37 
 

 

6.2 Concept 

 

I’ve always knew that I wanted to make my own computer game as my graduation 

project because unlike any other area of software development while designing a 

computer game, developer can take on very familliar concepts and ideas that has been 

explored by many people before but still can made his/her own unique creation that 

feels and sometimes acts different then what others created using same concept and 

ideas. 

 

After a long time thinking about what kind of game to make I decided to make a game 

in which some object would fall from sky and some other object which controlled by 

player would try to catch it. 

After deciding on the main concept of the game I thought it would make sense if the 

object that suppose to fall to be an egg produced by a chicken and object that suppose to 

catch to be a bucket. After this point everything became clear I could see the finished 

game in my mind I knew how I wanted everything to be and it was time to try and make 

my imagination a reality on the screen. 

 

 

 

 

 

 

 

 

 

 

 

 

 



38 
 

6.3 Project Setup 

 

Figure 6.1 Package Explorer 

 I created new Java project in eclipse and named it “Catch Eggs”. Under the “src” 

folder I created a source folder named “eggcathergame” to store the classes that I write. 

I made a folder named “lib” for storing LWJGL, Slick2D and Marte Engine Jar files 

and folder for images used in the game named “res”. 

I have setup the additional libraries following their instructions. 

 



39 
 

6.4 Classes 

 

 

Figure 6.2 Classes 

 

I stored every class I write under  “eggcathergame” source folder. 

I used State Based Game approach and Game Container provided with Slick2D and 

approached most of the elements in the game as entity provided by Marte Engine  

 

 

 

 

 

 

 

 

 

 

 

 

 



40 
 

6.4.1 EggCatcherGame Class 

 

 

Figure 6.3 Beginning of EggCatcherGame Class 

 

This is the main class of the project. In this class I defined that this game going to be a 

state based game and how many states there are going to be and how to call them, I 

defined Game Container and width and height of it. I have initiated resources and made 

it throw error message if resource initiation fails. 

 

I made 3 states which are menu state, game state and game over state and when 

launched, game should start at menu state. 

 

6.4.2 Menu Class 

 

This class is the starting state. In this class I initiated images that are shown in the menu 

screen and made sure they shown in the exact places on the screen that I wanted.  

 

In this class I set fps to 60 which means game screen would only refresh 60 times per 

second. I choose 60 because human eyes can’t register more and 60 fps is more then 

enough for this game. 

 

I defined four boolean for three difficulty settings named easydif, normaldif, harddif 

and fourth one for checking if user selected difficulty.  

As the names indicate difficulties rise from easy to normal to hard. Differences between 

difficulties are chicken’s movement speed and egg’s dropping speed increase. 



41 
 

 

If users select any one of the three difficulties and press play now the state would 

change to game_state and game starts but if user doesn’t choose a difficulty, play now 

button will do nothing. 

 

 

Figure 6.4 Beginning of Menu Class 

 

 

Figure 6.5 Menu Screen 



42 
 

6.4.3 GameWorld Class 

 

This is the main game play state.  

It covers where ground, chicken and bucket suppose to start on the screen. 

It draws score on to the screen. 

Depending if losing state triggered it changes state to game over. 

If escape key is pressed go back to menu state. 

 

 

Figure 6.6 Beginning of GameWorld Class 

 

 

Figure 6.7 In Game Screen 



43 
 

6.4.4 GameOver Class 

 

This is the class that includes game over state.  

This class will load when more than 3 egg breaks. 

It draw Game Over message on the screen along with the score and exit button. 

 

 

Figure 6.8 Beginning of GameOver Class 

 



44 
 

 

Figure 6.9 Game Over Screen 

 

 

6.4.5 Background Class 

 

Class is for background image as it’s costum for Marte Engine background treated like 

entity. 

This class draws background image on the screen. 

 

 

Figure 6.10 Beginning of Background Class 



45 
 

 

6.4.6 Chicken Class 

 

This class represent chicken. 

It draw chicken image on the screen, set its movement to random. 

Dependending on the difficulty it sets drop rate of eggs and falling down speed of eggs. 

 

 

Figure 6.11 Beginning of Chicken Class 

 

6.4.7 Egg Class 

 

It covers the draw of egg image on the location of chicken. 

Collision detection between ground and buckect. If egg collides with bucket game 

continious and score increase by one and egg image remove from screen. If egg collides 

with ground lifes decrease by one and egg image removed from screen and broken egg 

image drawn instead. If egg collides with ground more then three times game is over. 



46 
 

 

Figure 6.12 Beginning of Egg Class 

 

6.4.8 Broken Class 

 

This class created to delete the broken egg images from the screen after 500milisecond. 

 

 

Figure 6.13 Beginning of Broken Class 

 

6.4.9 Ground Class 

 

This class covers drawing of ground image. 

It sets hitbox and type for collision detection. 

 



47 
 

 

Figure 6.14 Beginning of Ground Class 

 

6.4.10 Player Class 

 

This class is for bucket. 

It draws the bucket image on the screen also it covers the movement of the bucket using 

mouse by listenning mouse movements on x direction. 

 

 

Figure 6.15 Beginning of Player Class 

 

 

 

 

 

 

 

 



48 
 

CONCLUSION 

 

Since the last decade way of distributing computer games change from physical form to 

online form. This change opened the doors for simple games that are developed by 

small developer teams or individual developers to be available to people and 

observation of people’s purchasing choices showed that, majority of the people in the 

world are not necessarily interested in big, time consuming games which are developed 

by huge companies, but are interested in small, easy to play games. 

 

This realization led to development of more, small but enjoyable games and with the 

increased interest programmers everywhere started to developing tools for speeding the 

coding process and for so much more. 

 

Nowadays game industry is accepting new comers with wide as possible open arms and 

one can be sure of the fact that there are people who would like to spend their free time, 

on their own schedule playing a game which is product of ones imagination and 

interpretation. 

 

The most basic reason behind the development of this game is that I wanted to turn 

what I imagine in my mind to reality on the screen for people to enjoy and even if I 

can’t say everyone would enjoy it, I can say that some people will enjoy it and that 

makes all the effort I put in development worth it. 

 

 

 

 

 

 

 

 

 

 

 



49 
 

REFERENCES 

 

[1] Java Tutorials by Oracle from the World Wide Web  

“http://docs.oracle.com/javase/tutorial/ “ 

[2] Marte Engine Documentation from the World Wide Web 

 “https://github.com/Gornova/MarteEngine/wiki” 

[3] Marte Engine Tutorials from the World Wide Web  

 “https://github.com/Gornova/MarteEngine/wiki/Setting-up-your-enviroment” 

[4] Slick2D Java Documents from the World Wide Web  

 “http://slick.ninjacave.com/javadoc/” 

[5] Slick2D Game Development from the World Wide Web  

 “http://slick.ninjacave.com/wiki/” 

 “http://slick.ninjacave.com/forum/” 

[6] LWJGL Documentation and Tutorials from the World Wide Web 

 “http://lwjgl.org/wiki/index.php?title=Main_Page#Getting_started” 

[7] LWJGL Java Documents from the World Wide Web 

 “http://www.lwjgl.org/javadoc/” 

[8] Eclipse Articles, Tutorials, Demos, Books from the World Wide Web 

“http://www.eclipse.org/resources/?category=Tutorial” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



50 
 

APPENDICES 

 

SOURCE CODES 
 

Background.java 

package eggcathergame; 

 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.Graphics; 

import org.newdawn.slick.SlickException; 

 

import it.randomtower.engine.ResourceManager; 

import it.randomtower.engine.entity.Entity; 

 

public class Background extends Entity { 

  

 public Background(float x, float y) { 

   

  super(x, y); 

  setGraphic(ResourceManager.getImage("background")); 

   

 } 

  

 public void update(GameContainer container, int delta) 

   throws SlickException { 

  super.update(container, delta); 

 } 

  

 public void render(GameContainer container, Graphics g) 

   throws SlickException { 

  super.render(container, g); 

 } 

  

} 



51 
 

Broken.java 

package eggcathergame; 

 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.SlickException; 

 

import it.randomtower.engine.ME; 

import it.randomtower.engine.ResourceManager; 

import it.randomtower.engine.entity.Entity; 

 

public class Broken extends Entity { 

 private static int rtime=0; 

  

 public Broken(float x, float y) { 

  super(x, y); 

  setGraphic(ResourceManager.getImage("brokenegg")); 

 } 

  

 public void update (GameContainer container, int delta) throws SlickException{ 

  super.update(container, delta); 

   

  rtime +=delta; 

  while (rtime > 500){ 

   ME.world.remove(this); 

   rtime -=1000; 

  } 

   

 } 

} 

 

Chicken.java 

package eggcathergame; 

 

import java.util.Random; 



52 
 

 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.SlickException; 

 

import it.randomtower.engine.ME; 

import it.randomtower.engine.ResourceManager; 

import it.randomtower.engine.entity.Entity; 

 

public class Chicken extends Entity { 

 public static String CHICKEN = "chicken"; 

  

 private int dropRate = 0; 

  

 

 public Chicken(float x, float y) { 

  super(x, y); 

  setGraphic(ResourceManager.getImage("chicken")); 

  setHitBox(0, 0, 32, 32); 

  addType(CHICKEN); 

 } 

  

 public void update (GameContainer container, int delta) throws SlickException{ 

  super.update(container, delta); 

   

  Random rand = new Random(); 

   

  dropRate += delta; 

   

  if(Menu.easydif){ 

   while(dropRate > 450){ 

    Egg eg = new Egg(x, 32); 

    ME.world.add(eg); 

    x =rand.nextInt(670) +16; 

    dropRate -=900; 



53 
 

   } 

  } 

   

  if(Menu.normaldif){ 

   while(dropRate > 400){ 

    Egg eg = new Egg(x, 32); 

    ME.world.add(eg); 

    x =rand.nextInt(670) +16; 

    dropRate -=800; 

   } 

  } 

   

  if(Menu.harddif){ 

   while(dropRate > 350){ 

    Egg eg = new Egg(x, 32); 

    ME.world.add(eg); 

    x =rand.nextInt(670) +16; 

    dropRate -=700; 

   } 

  } 

 } 

  

} 

 

Egg.java 

package eggcathergame; 

 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.SlickException; 

 

import it.randomtower.engine.ME; 

import it.randomtower.engine.ResourceManager; 

import it.randomtower.engine.entity.Entity; 

 



54 
 

public class Egg extends Entity { 

 public static String EGG = "eggg"; 

 public static String BUCKET = "collector"; 

 public static String GROUND = "ground"; 

 public static int score = 0; 

 public static int life = 3; 

 public static boolean losing = false; 

  

 public Egg(float x, float y) { 

  super(x, y); 

  setGraphic(ResourceManager.getImage("egg2")); 

  setHitBox(0, 0, 16, 16); 

  addType(EGG); 

 } 

  

 public void update (GameContainer container, int delta) throws SlickException{ 

  super.update(container, delta); 

   

  if(Menu.easydif){ 

  y +=(.4 * delta); 

  }else if(Menu.normaldif){ 

   y +=(.5 * delta); 

  }else{ 

   y +=(.6 * delta); 

  } 

   

  if (collide(GROUND, x, y) != null){ 

   ME.world.remove(this); 

   life -=1; 

   Broken bneg = new Broken(x, y+8); 

   ME.world.add(bneg); 

  } 

   

  if(life == -1){ 



55 
 

   losing = true; 

  } 

   

  if (collide(BUCKET, x, y) != null){ 

   score +=1; 

   this.destroy(); 

  } 

   

 } 

} 

 

EggCatcherGame.java 

package eggcathergame; 

 

import java.io.IOException; 

 

import it.randomtower.engine.ResourceManager; 

 

import org.newdawn.slick.AppGameContainer; 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.SlickException; 

import org.newdawn.slick.state.StateBasedGame; 

 

 

public class EggCatcherGame extends StateBasedGame { 

  

 public static final int WIDTH = 704; 

 public static final int HEIGHT = 544; 

  

 public static final int MENU_STATE = 0; 

 public static final int GAME_STATE = 1; 

 public static final int GAMEOVER_STATE = 2; 

  

 public static boolean ressourcesInited = false; 



56 
 

 

 private AppGameContainer container; 

  

 public EggCatcherGame() { 

  super("Catch The Eggs!"); 

 } 

 

 public void initStatesList(GameContainer arg0) throws SlickException { 

  if (container instanceof AppGameContainer) { 

   this.container = (AppGameContainer) container; 

  } 

  addState(new Menu(MENU_STATE)); 

  addState(new GameWorld(GAME_STATE)); 

  addState(new GameOver(GAMEOVER_STATE)); 

   

 } 

 

 public static void initRessources() throws SlickException { 

  if (ressourcesInited) 

   return; 

  try { 

   ResourceManager.loadResources("res/resources.xml"); 

  } catch (IOException e) { 

   e.printStackTrace(); 

   throw new SlickException("Resource loading failed!"); 

  } 

   

  ressourcesInited = true; 

  

 } 

 

 public static void main(String[] args) throws SlickException { 

  try { 



57 
 

   AppGameContainer container = new AppGameContainer(new 

EggCatcherGame()); 

   container.setDisplayMode(WIDTH, HEIGHT, false); 

   container.start(); 

  } catch (SlickException e) { 

   e.printStackTrace(); 

  } 

 } 

} 

 

GameOver.java 

package eggcathergame; 

 

import it.randomtower.engine.World; 

 

import org.lwjgl.input.Mouse; 

import org.newdawn.slick.Color; 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.Graphics; 

import org.newdawn.slick.Image; 

import org.newdawn.slick.SlickException; 

import org.newdawn.slick.state.StateBasedGame; 

 

public class GameOver extends World { 

  

 Image exitgame, over; 

 

 public GameOver(int id) { 

  super(id); 

 } 

 

 public void init(GameContainer container, StateBasedGame sbg) throws 

SlickException{ 

  EggCatcherGame.initRessources(); 



58 
 

  super.init(container, sbg); 

  container.setTargetFrameRate(60); 

   

  exitgame = new Image ("res/exitgame.png"); 

  over = new Image("res/over.png"); 

   

 } 

  

 public void enter(GameContainer container, StateBasedGame sbg) 

   throws SlickException { 

  super.enter(container, sbg); 

  this.clear(); 

   

 } 

  

 public void render(GameContainer container, StateBasedGame sbg, Graphics g ) 

throws SlickException { 

   

  super.render(container, sbg, g); 

   

  over.draw(100, 75); 

  g.setColor(new Color (32, 129, 212)); 

  g.drawString("Your Score Is: "+Egg.score, 255, 300); 

  exitgame.draw(250, 400); 

   

 } 

 

 public void update(GameContainer container, StateBasedGame sbg, int delta) 

throws SlickException{ 

   

  super.update(container, sbg, delta); 

   

  int posX = Mouse.getX(); 

  int posY = Mouse.getY(); 



59 
 

   

  if((posX>250 && posX<450 ) && (posY>43 && posY<146)){ 

   if(Mouse.isButtonDown(0)){ 

    System.exit(0); 

   } 

  } 

   

  Mouse.setGrabbed(false); 

  

 } 

 

} 

 

GameWorld.java 

package eggcathergame; 

 

import it.randomtower.engine.World; 

 

import org.lwjgl.input.Mouse; 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.Graphics; 

import org.newdawn.slick.Input; 

import org.newdawn.slick.SlickException; 

import org.newdawn.slick.state.StateBasedGame; 

 

public class GameWorld extends World { 

  

  

 public GameWorld(int id) { 

  super(id); 

 } 

  

 public void init(GameContainer container, StateBasedGame sbg) throws 

SlickException{ 



60 
 

   

  EggCatcherGame.initRessources(); 

  super.init(container, sbg); 

   

  add(new Background (0,0)); 

  add(new Ground (0,480)); 

  add(new Player (32,449)); 

  add(new Chicken (350,34)); 

   

 } 

  

 public void enter(GameContainer container, StateBasedGame sbg) 

   throws SlickException { 

  super.enter(container, sbg); 

 } 

  

 public void render(GameContainer container, StateBasedGame sbg, Graphics g ) 

throws SlickException { 

  super.render(container, sbg, g); 

  g.drawString("Score = "+Egg.score, 5, 0); 

  g.drawString("Life = "+Egg.life, 622, 0); 

 } 

  

 public void update(GameContainer container, StateBasedGame sbg, int delta) 

throws SlickException{ 

  super.update(container, sbg, delta); 

   

  if (container.getInput().isKeyPressed(Input.KEY_ESCAPE)) { 

   sbg.enterState(0); 

  } 

   

  if(Egg.losing){ 

   sbg.enterState(2); 

  } 



61 
 

   

  Mouse.setGrabbed(true); 

   

 } 

 

} 

 

Ground.java 

package eggcathergame; 

 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.Graphics; 

import org.newdawn.slick.SlickException; 

 

import it.randomtower.engine.ResourceManager; 

import it.randomtower.engine.entity.Entity; 

 

public class Ground extends Entity { 

  

 public static String GROUND = "ground"; 

  

 public Ground(float x, float y) { 

   

  super(x, y); 

  setGraphic(ResourceManager.getImage("background2")); 

  setHitBox(0, 0, 704, 64); 

  addType(GROUND); 

   

 } 

  

 public void update(GameContainer container, int delta) 

   throws SlickException { 

  super.update(container, delta); 

 } 



62 
 

  

 public void render(GameContainer container, Graphics g) 

   throws SlickException { 

  super.render(container, g); 

 } 

  

} 

 

Menu.java 

package eggcathergame; 

 

import it.randomtower.engine.World; 

 

import org.lwjgl.input.Mouse; 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.Graphics; 

import org.newdawn.slick.Image; 

import org.newdawn.slick.SlickException; 

import org.newdawn.slick.state.StateBasedGame; 

 

public class Menu extends World { 

  

 Image playnow, exitgame, mainpic, easyimg, normalimg, hardimg; 

 public static boolean easydif = false; 

 public static boolean normaldif = false; 

 public static boolean harddif = false; 

 public boolean difcho = false; 

 

 public Menu(int id) { 

  super(id); 

 } 

 

 public void init(GameContainer container, StateBasedGame sbg) throws 

SlickException{ 



63 
 

  //EggCatcherGame.initRessources(); 

  super.init(container, sbg); 

  container.setTargetFrameRate(60); 

   

  playnow = new Image("res/playnow.png"); 

  exitgame = new Image ("res/exitgame.png"); 

  mainpic = new Image("res/menuimg.png"); 

  easyimg = new Image("res/easy.png"); 

  normalimg = new Image("res/normal.png"); 

  hardimg = new Image("res/hard.png"); 

   

 } 

  

 public void enter(GameContainer container, StateBasedGame sbg) 

   throws SlickException { 

  super.enter(container, sbg); 

  this.clear(); 

   

 } 

  

 public void render(GameContainer container, StateBasedGame sbg, Graphics g ) 

throws SlickException { 

   

  super.render(container, sbg, g); 

   

  mainpic.draw(100, 50); 

  easyimg.draw(100, 325); 

  normalimg.draw(300, 325); 

  hardimg.draw(500, 325); 

  playnow.draw(100, 400); 

  exitgame.draw(400, 400); 

   

 } 

 



64 
 

 public void update(GameContainer container, StateBasedGame sbg, int delta) 

throws SlickException{ 

   

  super.update(container, sbg, delta); 

   

  int posX = Mouse.getX(); 

  int posY = Mouse.getY(); 

   

  if((posX>100 && posX<200 ) && (posY>169 && posY<218)){ 

   if(Mouse.isButtonDown(0)){ 

    easydif=true; 

    normaldif=false; 

    harddif=false; 

    difcho=true; 

   } 

  } 

   

  if((posX>300 && posX<400 ) && (posY>169 && posY<218)){ 

   if(Mouse.isButtonDown(0)){ 

    easydif=false; 

    normaldif=true; 

    harddif=false; 

    difcho=true; 

   } 

  } 

   

  if((posX>500 && posX<600 ) && (posY>169 && posY<218)){ 

   if(Mouse.isButtonDown(0)){ 

    easydif=false; 

    normaldif=false; 

    harddif=true; 

    difcho=true; 

   } 

  } 



65 
 

   

  if((posX>100 && posX<300 ) && (posY>44 && posY<143)){ 

   if(Mouse.isButtonDown(0) && difcho){ 

    sbg.enterState(EggCatcherGame.GAME_STATE); 

   } 

  } 

   

  if((posX>400 && posX<600 ) && (posY>44 && posY<143)){ 

   if(Mouse.isButtonDown(0)){ 

    System.exit(0); 

   } 

  } 

   

  Mouse.setGrabbed(false); 

  

 } 

 

} 

 

Player.java 

package eggcathergame; 

 

import org.newdawn.slick.GameContainer; 

import org.newdawn.slick.Input; 

import org.newdawn.slick.SlickException; 

 

import it.randomtower.engine.ResourceManager; 

import it.randomtower.engine.entity.Entity; 

 

public class Player extends Entity { 

 public static String BUCKET = "collector"; 

  

 public Player(float x, float y) { 

  super(x, y); 



66 
 

  setGraphic(ResourceManager.getImage("bucket")); 

  setHitBox(0, 0, 32, 32); 

  addType(BUCKET); 

 } 

  

 public void update(GameContainer container, int delta) throws SlickException { 

  super.update(container, delta); 

   

  Input input = container.getInput(); 

  x = input.getMouseX(); 

   

 } 

} 


	01 Cover Page.pdf (p.1)
	02 Title Page.pdf (p.2)
	03 Acknowledgment.pdf (p.3)
	04 Abstract.pdf (p.4)
	05 Table Of Contents.pdf (p.5-7)
	06 Main Project.pdf (p.8-73)

