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ABSTRACT 

The ability of human visual processing system to accommodate and retain clear 

understanding or identification of patterns irrespective of their orientations and presentations 

is quite plausible. Although, this area of computer vision has recently received a massive 

boost in interest by researchers, the situation is far from being resolved. The problem of 

pattern invariance in the computer vision world is not one that can _be overemphasized; 

obviously one's definition of an intelligent system broadens considering the large variability 

with which same patterns can occur and have to be coped with. This research investigates the 

performance of feedforward networks against convolutional and deep neural networks when 

tasked with recognition problems, considering pattern invariances such as translation, 

rotation, scale, and moderate noise levels. The architecture of the considered networks in 

relation to the human visual perception processing has also been explored as a reference to 

the built-in invariances achievable from these networks due to structure and learning 

paradigms. Although, single hidden layer or shallow networks have the capability to 

approximate any function, the benefits of having several hidden layers of such networks have 

been considered and hypothesized by researchers for some time, but the difficulty in training 

these networks has led to little attention given to them. Recently, the breakthrough in training 

deep networks through various pre-training schemes have led to the resurgence and massive 

interest in them, significantly outperforming shallow networks in several pattern recognition 

contests; moreover the more elaborate distributed representation of knowledge present in the 

different hidden layers concords with findings on the biological visual cortex. This research 

work reviews some of the most successful pre-training approaches to initializing deep 

networks such as stacked denoising auto encoders, and deep belief networks based on 

achieved error rates, computational requirements, and training time. Also, as it has been 

debated among researchers, the results of this research suggest that the optimization effect 

obtained from network pre-training dominates the regularization effect, though both effects 

are achieved. While, various patterns can be used to validate this query, handwritten Yoruba 

vowel characters have been used in this research. Databases of the images containing pattern 

constraints of interest were collected, processed, and used to train the designed networks. 

Keywords: Artificial neural networks, deep learning, pattern invariance, character 

recognition, y oruba vowei\naractefs·: .. "'' 
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OZET 

karsilamak ve net bir anlayis ya da desen kimlik korumak icin insan gorse! isleme sisteminin 

yetenegi ne olursa olsun yonelim ve sunumlar oldukca makuldur. Bilgisayar vizyonu bu 

alanda son zamanlarda arastirmacrlar tarafmdan ilgi buytik destek aldi ragmen, durum 90k 

coztllmus olmaktan degildir. bilgisayar vizyonu dunyada desen degismeyen sorunu 

gereginden fazla vurgulanan edilebilir biri degildir; A91k9as1 akilli bir sistem kisinin tamrm 

ayni desenler ortaya ve basa gereken hangi buyuk degiskenligi goz onunde genisletmektedir, 

Bu arastirmalar, ceviri, dondiirme, olcek ve orta gurultu seviyeleri gibi model invariances 

dikkate taruma problemleri ile gorevli katlamah ve derin sinir aglan, karsi ileri beslemeli 

aglar performansmi inceler. insan gorse! algi isleme iliskin dikkate aglann mimarisi de yapi 

ve ogrenme paradigmalan nedeniyle bu aglardan elde yerlesik invariances bir referans olarak 

incelenmistir. Tek gizli katman veya s1g aglar herhangi bir islevi yaklastigi yetenegine sahip 

olsa da, bu ttir aglann cesitli gizli katmanlan olan faydalan kabul edilir ve bir sure 

arastirmacilar tarafmdan hipotez, ama bu aglan egitimi konusunda zorluk verilen biraz dikkat 

yol acti edilmistir Onlara. Son zamanlarda, cesitli on-egitim programlan aracihgiyla derin 

aglan egitimi konusunda atihm anlamh birkac oruntu tamma yansmalannda s1g aglan geride 

birakarak, onlan yeniden dirilisi ve kitlesel ilgi yol acrrnstir; Biyolojik gorse! korteks 

tlzerinde bulgulan ile farkh gizli katmanlar concord un mevcut bilginin tistelik daha aynntih 

dagiulrms gosterimi. Bu arastirma calismalan gibi elde hata oranlan, hesaplama 

gereksinimleri ve egitim stiresine gore yigilrrns denoising oto enkoderler ve derin bir inane 

aglan gibi derin aglar baslatihyor yaklasimlan en basanh oncesi egitimin bazi 

degerlendirmeleri. Bu arasurmacilar arasmda tartisma konusu olmustur olarak da, bu 

arastirmamn sonuclan, her iki etkileri elde olsa ag oncesi egitimden elde edilen optimizasyon 

etkisi, dtlzenlilestirme etkisi hakim oldugunu gostermektedir. Cesitli desenler bu sorguyu 

dogrulamak icin kullarulabilir iken, el yazisi Yoruba tinlli karakterleri bu arasnrmada 

anrlrrnstir. Ilgi desen kisitlamalan iceren goruntulerin Veritabanlan toplandigi, islendigi 

e tasarlanmis aglan egitmek icin kullanildi. 

Anahtar Kelimeler: Yapay sinir aglan, derin ogrenme, desen degismezligi, karakter taruma, 

Yoruba Un!U karakterler 

- 
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CHAPTER ONE 
INTRODUCTION 

Images, and therefore patterns are very important data to humans. They are invariably one of 

the easiest and fastest way human beings assimilate and appreciate information; the ease and 

speed with which we process the details of images are very amazing. 

The human brain is quite able to capture and analyse images almost effortlessly, recognizing 

even intrinsic patterns that are sometimes embedded in the images. The best understanding of 

how human beings achieve these tasks are still somewhat subject to some scientific debate 

and research is still ongoing .e.g. bottom-to-top or top-to-bottom hierarchical process of 

perception or an integration of both. 'It is a difficult experimental issue to determine the 

relative importance of bottom-up and top-down processes' (Delorme, Rousselet, Mace', 

Fabre-Thorpe, 2004). 

Images are arguably one of the most used data formats in the intelligent systems and 

computing world; this is evident in the ease with which they can be captured and lend 

themselves to the representation of information that needs to be processed for further use. e.g. 

control process, database content based search etc. 

However, it is very somewhat evident that such tasks are not that too easily achievable in the 

computing world; especially computer vision. 

Furthermore, the volume of image data that is now available to us from different sources have 

grown exponentially recently, especially due to a surge in internet accessibility, large 

memory mobile phones and related devices that keep being churned out by electronics 

companies. Unfortunately, we more than often require some sense of content-based image 

filtering or sorting to make efficient use of these data. 

A recognition system is a system that has the intrinsic capability to accept data patterns and 

output the corresponding classes to which the inputs belong; actually, the act of matching the 

inputs to output classes using perfect examples is known as template matching. 

Generally, the pattern to be used in such systems as input are presented as images; 

occasionally after some image processing might have been performed on them. 

1 



Character recognition is the process of having a system that has the capability to identify 

sample of characters with which it has been trained. The identification process is seen in the 

est phase of the system, where new characters are supplied to the system for identification. 

The system is meant to accept the characters as input and output the classes of the characters; 

this phase is sometimes also known as the simulation phase. 

It is worthy of note that such a recognition system would lose its concept of being considered 

"intelligent" if it cannot also recognize to an extent characters with which it has not been 

trained with but are quite similar to the ones it has been trained with i.e. such a system should 

possess good generalization power for characters recognition. 

1.1 Contributions of Research 

. Designing intelligent recognition systems for Yoruba vowel characters 

-· Investigating the built-in tolerance achieved by the recognition systems to variances in 

input patterns such as scale, translation, rotation, and noise. 

3. Evaluating the performance of each designed model based on achieved error rates and 

computational requirements, and training time. 

- . Associate the architecture of the considered networks to the built-in invariances achieved 

,y the networks . 

. Establishing the optimization (under-fitting) and regularization (over-fitting) effects of pre 

training in deep networks, and therefore also validating which effect is greater. 

1.2 Scope of Research 

e scope of this research work will be limited to the design of various intelligent recognition 

ystems for Yoruba vowel characters. Handwritten images of characters will be collected 

m selected individuals; processed and used to train the designed systems. Also, validation 

learning will be carried out concurrently during training; after which the systems are 

ulated with character images which were not used to train the systems. It is to be noted 

2 



t varying degree of translation, rotation, scale, and noise levels in patterns will be used for 

testing. 

Hence, the performance of each model will then be evaluated on based on some performance 

parameters. 

1.3 Approaches to Pattern Recognition and Applications 

telligent pattern recognition involves using features and the structure of such features 

erived from objects in grouping them into their corresponding classes. 

Description of objects or pattern is the stage where unique ways to describe objects or 

patterns are developed. It is from these features that rules for identifying objects are derived. 

is usually the job of designers to craft such rules and how objects or patterns are to be 

represented. 

template matching, a test pattern is presented to a recognition system, which it compares 

with the stored templates, then outputs the class of the input pattern based on correlation of 

matching. i.e. outputted class of the test pattern belongs to the class of the template to which 

· has the highest correlation. 

This approach aims to generate a standard perfect object, example or pattern to represent a 

group (class) with which other objects, examples or patterns are compared. It is worthy of 

te that this method may involve the use of the whole object (pattern) representation (e.g. 

hole image) which is considered as global template matching or some regions of the whole 

dect (pattern) representation (e.g. some regions of an image) which is considered as local 

template matching. 

Inasmuch as this suffices in lots of situations for recognition systems, the disadvantage lies in 

that only perfect example, therefore perfect data can be correctly classified. The system lacks 

exibility to moderate variations in the presented data for recognition, and hence termed 

=non-intelligent''; more technically, one can say that such recognition systems lack tolerance 

translational variance, rotational variance and scale mismatch. 

yntactic approach is also known as feature analysis, in which some important descriptors or 

eatures that allow objects or patterns to be represented as uniquely as possible are extracted. 

3 



The structural combination of such descriptors is what is leveraged on when such a 

recognition system is building the identification of patterns. The descriptors are parsed using 

some set algorithms so that the whole pattern can be realized. 

Two of the methods used for feature analysis are: 

• Stroke analysis: patterns are classified from analysing their vertical and horizontal 

line structures 

• Geometric feature analysis: using the general form of a pattern and defining some 

geometric shapes within the pattern (Khashman, 2014). 

More advance feature analysis methods exist in image processing, speech processing and 

other complex problems. 

Another technique for pattern recognition uses statistical models of patterns that have been 

transformed into data. In contrast to using training data to determine suitable algorithms or 

· sties, decision and probability theories are applied. 

e features from training data largely determine the choice of statistical model that is 

pted; hence other suitable choices for representing features of interest are therefore 

y exploited. Common techniques to exploring other options of representations are 

ering, principal component analysis, and discriminant analysis. 

lligent classifiers are recognition systems that have the capability to learn from examples 

a phase known as training. They are shown several examples of task they are required to 

during which they gain experiential knowledge. After learning has been achieved, these 

s,5temS are tested by supplying them sample images of the ones they have been trained with; 

ascertain that proper training has been achieved and not that the system only memorized 

examples, variants of image samples are then used during the test phase and error rates at 

gnition can be determined. 

most commonly used intelligent recognition systems in the field of machine learning are 

cial neural networks. Their robustness and tolerance to moderate noise is what makes 

very important in intelligent recognition. 

P.mem recognition is studied in many fields, including psychology, ethnology, forensics, 

eting, artificial intelligence, remote sensing, agriculture, computer science, data mining, 
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document classification, multimedia, biometrics, surveillance, medical imaging, 

bioinformatics and internet search (Kidiyo Kpalma and Joseph Ronsin, 2007). 

Intelligent recognition for character recognition has also been used significantly in reading 

off bank checks, postal codes and zip codes; this automated process has significantly sped up 

the process of check clearing, postal delivery and applications dependent on machine vision. 

Recently, intelligent recognition has led to a boom in the field of robotics, as the problem of 

robotic navigation of its environment has been greatly improved. More sophisticated robots 

which have a better vision grasp of their environment based on the capability to recognize 

objects and therefore manoeuvre their path safely are being developed. 

1.4 Thesis Overview 

The remaining chapters of thesis describe the approaches and methods that have used to 

achieve the aims of the work. 

Chapter two presents the literature reviews of image processing, and neural networks related 

this thesis briefly. 

Chapter three explains the collection of image data and processing, machine learning 

capability of neural networks, methodology and design of considered neural network 

hitectures. 

Chapter four describes in details the topology and particular network parameters used in the 

training of the networks. 

Chapter five presents the results, analysis and discussions of the simulated networks. 

A brief review of the thesis aim, summarizing as conclusion the findings of work and the 

recommendations as applicable to the findings are supplied in chapter six. 

5 
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CHAPTER TWO 
LITERATURE REVIEW 

1 Overview 

chapter presents the detailed discussion on computational intelligence, under which is 

chine learning as the focus, and briefly the basics of artificial neural networks. Also, 

ge processing schemes as are essential to this thesis were discussed. More importantly, 

· chapter articulates the relationship and importance of the above mentioned sections to the 

verall realization of this thesis. 

Computational Intelligence 

Computational Intelligence is the study of adaptive mechanisms to enable or facilitate 

elligent behaviour in complex and changing environments (Engelbrecht, 2007). 

embodies any natural or biological inspired computational paradigms which include not 

ited to artificial neural networks, evolutionary computing, fuzzy systems, swarm 

elligence etc. 

Characteristics of computational intelligence systems are listed below ( Gary G. Yen, 2014) 

-Biologically motivated behaviour such as learning, 

-Reasoning, or evolution (in the sense of approximation) 

-Parallel, distributed information processing 

-Mysterious power under real-world complications 

-Lack of qualitative analysis 

-Non-repeatable outcomes 

-Stochastic nature 

.2.1 Machine learning 

bile machine learning on the other hand is a branch of computational intelligence involved 

with systems that can act in certain environments by learning from supplied data. The 

uniqueness of these systems lie in that they do not have to be domain-specifically 

programmed. They have intrinsic self-programming nature that allow the same discovery or 
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earn.mg paradigm to be applied to different problems and still be able to perform 
satisfactorily. 

Learning involves searching through a space of possible hypotheses to find the hypothesis 

that best fits the available training examples and other prior constraints or knowledge 

~tchell, 1997). 

These systems are able to discover patterns, sequences, and relationship in supplied data; 

ence are very applicable in data filtering or mining. 

More significant is the need not to write unique domain specific programming codes each 

time a problem is to be simulated as this allows for designers to focus more on understanding 

important features of problems which the network is required to learn; in contrast to 

convectional digital computing in which enormous time goes into writing huge codes for 

mplex problems. 

Generally, machine learning can be broadly divided into supervised, unsupervised and 

reinforced learning. The classes are explicitly listed below. 

1. Supervised learning: 

The network is given examples and concurrently supplied with the desired outputs; 

the network is generally meant to minimize a cost function in order to achieve this, 

usually an accumulated error between desired outputs and the actual outputs. 

Examples of systems that use this learning paradigm are support vector machines, 

neural networks, kernels etc. 

2. Unsupervised learning: 

The network is given examples but not supplied with the corresponding outputs; the 

network is meant to determine patterns between the inputs (examples) accordingly to 

some criteria and therefore group the examples thus. 

Examples of learning paradigms that use unsupervised learning are clustering, 

dimensionality reduction, competitive learning, deep learning etc. 

3. Reinforced learning: 

There is no desired output presented in the dataset but there is a positive or negative 

feedback depending on output (desired/undesired) (Hristev, 1998). 

Markov decision process is an example of learning paradigm that is reinforced. 
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Pattern Constraints in Recognition Systems 

section describes in brief constraints that recognition systems usually encounter in real 

ife, Even more, is the significance when we consider handwritten recognition, where writing 

yles and available domain of input space is quite large. Such constraints as considered in 

· thesis are translation, rotation, scale, and noise. Efficient recognition systems are required 

cope fairly well with some of these constraints. i.e. the systems should maintain a 

relatively good identification of patterns in situations of moderate variances . 

.3.1 Translational invariance 

The is the situation where the patterns to be recognized are not centred in the image; they 

ve centres that lie in various part of the whole image. Usually, this involves only linear 

rizontal or vertical) shift in the position of patterns in images. It is worthy to state that the 

ce relationship between pattern components and the scale are not altered in translational 

rariance. This is a serious source of recognition error in non-intelligent systems. 

igure.2 .1 shows an original image and some translated image versions of the original. 

(a) Original pattern ( c) Translated pattern (b) Translatedpattern 

Figure 2.1: Translational invariance 

figure 2.1, the original centred pattern is shown in (a), translated pattern northeast is shown 

(b), and translated pattern south-west is shown in (c). 

e depicted problem of translational invariance leads to wrong classification in recognition 

ystems; the problem is usually resolved in either of the two ways given below. 

1. Perform an operation on translated patterns to re-centre them in the image frames 

before feeding as inputs into recognition systems. 

8 



Registration algorithms attempt to align a pattern image over a reference image so that pixels 

present in both images are in the same location. This process is useful in the alignment of an 

acquired image over a template (McGuire, 1998). 

2. The other alternative applicable in intelligent recognition systems is training such 

systems with translated copies of original images so that experiential knowledge is 

now broader, and hence such designed systems can handle translated patterns in 

images. 

For any specific object, invariance can be trivially "learned" by memorizing a sufficient 

number of example images of the transformed object (Leibol, Mutch, Rosasco, Ullman, and 

oggio, 2010). 

Conversely, a more sophisticated system that is translation invariant can be built. i.e. the 

centre of patterns in images does not affect recognition. Such systems have built-in structures 

t allow for the accommodation of moderate pattern variances. 

onvolutional neural networks combine three architectural ideas to ensure some degree of 

· ~., scale and distortion invariance (LeCunn, Bottou, Bengio, and Patrick Haffner, 1998) . 

. 2 Rotational invariance 

otational variance is the situation where the patterns to be recognized are rotated spatially 

ugh an angle, either clockwise or counter-clockwise. Recognition systems usually have 

blems correctly classifying such patterns. This is shown in figure 2.2 below. 

( a) Original pattern (b) Rotated pattern ( c) Rotated pattern 

Figure 2.2: Rotational invariance 

can be seen from figure 2.2 (b) and (c) which are rotated versions of (a), counter-clockwise 

clockwise, respectively; and that in template matching, recognition error is probable to 

. Generally, intelligent recognition systems are more robust to rotational variance; this 
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can usually be built into the system during the learning phase or leveraging on convolutional 

neural networks based recognition systems. 

2.3.3 Scale invariance 

Scale mismatch, also known as scale variance, is the situation where input patterns have 

varying scales. Their locations in the images remain the same, and have not been rotated, but 

some now appear either blown up or scaled down (smaller). This is shown in Figure 2.3 

below. 

(a) Original pattern (bjScale varied pattern ( c) Scale varied pattern 

Figure 2.3: Scale invariance 

igure 2.3 (b) and (c) shows downsized copies of the original pattern (a). When such 

wnsized or blown up images are fed into non-intelligent recognition systems, problem of 

mismatch occurs and patterns may be wrongly identified . 

.3.4 Noise 

igure 2.4 below shows various levels of noise affected patterns; the patterns have been 

simulated with varying degree of salt & pepper noise. The noise densities for patterns ( a), (b ), 

d (c) in figure 2.4 are 15%, 25%, and 35% respectively. 

Figure 2.4: Noise 
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2.4 Image Processing 

Digital image processing is the technology of applying a number of computer algorithms to 

process digital images (Zhou, Wu, Zhang, 2010). It is a very important aspect of computer 

vision field. 

An image can be seen as a two-dimensional function f(x,y), where x and y are the spatial 

coordinates; the intensity of any part of an image is given by the amplitude of the function at 

that point. The intensity at a point in an image is sometimes called the gray level at that point 

(Gonzalez, Woods, 2002). 

Image processing finds applications in photography, intelligent systems, bio-medical 

imaging, remote and forensics. During image processing, we obtain some parameters 

describing some characteristics of such images. These characteristics are usually employed in 

manipulating or conditioning images as deemed suitable. Some common operations achieved 

include translation of colour images to gray scale or binary images (black and white), 

filtering, segmentation, enhancements, restoration, compression etc. 

For the purpose of this research, the image processing schemes that have been used are 

discussed briefly below. 

2.4.1 Gray scale of an image 

Generally, colour images have three channels, called the RGB channels, corresponding to the 

Red, Green, and Blue channels. The three methods for transforming an image from colour 

GB) to gray scale are listed below. 

1. Lightness method: This involves taking the average of the maximum and minimum 

values of the RBG channels, the equation below describes the transformation. 

f'(x,y) = (max(RGB)+min(RGB)) (2.1) 

where, f'(x.y) is the transformed pixel for the original RGB pixels 

2. Average method: This method simply takes the average of the pixel values for the 

particular RGB channel, and the formula to achieve this is shown below. 
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f'(x,y)= (R+G+B) (2.2) 

3. Luminosity method: This approach is quite more elaborate, taking into account the 

human visual perception, considering the fact that humans are most sensitive to green, 

followed by red, and least to blue colours; hence the weighting of the ROB 

transformation to a single intensity pixel is achieved as described by the equation 

below. 

f'(x,y) = 0.21R+0.72G+0.07B 
where, f' (x,y) is the transformed gray scale pixel. 

(2.3) 

2.4.2 Negative of an image 

Generally, when gray images are of the range O to 1, the O pixels represent black and 1 pixels 

represent white, values between O and 1 represent lighter shades of black. 

The negative transform is meant to turn black pixels to white and white pixels to black. This 

· s usually achieved by the equation given below to transform all the individual pixel values. 

f'(x,y) = 1- f(x,y) (2.4) 

where, f'(x.y) is the transformed negative image of f(x,y). 

2.4.3 Binarization of an image 

This is the process of obtaining an image with only two possible gray levels. i.e. 0 or 1; there 

are no intermediate gray levels in between the level O and 1. There exists various ways of 

achieving this, but considered in this research is the global thresholding method. This method 

entails choosing a gray level value between O and 1, a value known as the threshold value, 

and deploying an algorithm such that all pixel values less than the threshold value will be 

transformed to O (black), and all pixels above or equal to the threshold value will be 

transformed to 1 (white). 

f'(x,y) = 1, for f(x,y) ~ T (2.5) 

f'(x,y) = 0, for f(x,y) < T (2.6) 

.here T is the global threshold value. 
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Equations 2.5 and 2.6 describe how binarization of an image can be achieved . 

. 4 Image filtering 

· is an usually an enhancement operation performed on images, often, noisy images. The 

ation algorithms are attempts to clean up the image (removing noise). Some of the 

hniques for achieving this include using mean filters, median filters, Gaussian filters, etc . 

. e median filter has been used for this work and will be discussed briefly below. 

e median filter, achieves filtering by taking the median of pixel values over a particular 

ion of the image; usually what is done is that a fixed number of pixels in considered along 

th axes of the image to a particular pixel (usually with pixel of interest in the centre of the 

k); the dimension of the pixels considered along both axes is considered the mask or 

rindow size used in the filtering process (e.g. mxn mask would mean m rows and n columns 

ng the x and y axes respectively). The median value of the pixels is taken and used to 

lace the particular pixel of interest. 

Artificial Neural Network (ANN) 

Artificial neural networks as the name indicates are computational networks, which attempt 

simulate, in a gross manner, the network of nerve cells (neurons) of the biological (human 

animal) central nervous system (Graupe, 2007). 

These networks simulate the human biological neural system in both structure and function. 

The long course of evolution has given the human brain many desirable characteristics not 

esent in von Neumann or modem parallel computers. These are listed below (Jain, Mao, 

and Mohiuddin, 1996). 

• Massive parallelism, 

• Distributed representation and computation, 

• Learning ability, 

• Generalization ability, 

• Adaptability, 

• Inherent contextual information processing, 

• Fault tolerance, and low energy consumption. 
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By mimicking biological neuron features such as synapses, dendrites, cell body, and their 

orking principles, corresponding artificial neural network features such as synaptic 

eights(memories), inputs, artificial neurons(computational units, especially perceptrons) 

and their firing based on thresholds, total potential and activation functions have can be 

hieved (Oyedotun and Khashman, 2014). 

synaptic terminals 
connect to dendrites 
of other neurons 

dendrites 

Figure 2.5: Biological neuron (Wilson, 2012) 

Figure 2.5 shows a typical biological neuron, and as it can be seen from the comparison table 

f biological and artificial neurons that biological neurons have lower processing speed 

several MHz) compared to todays convectional computers with processing speed ranging in 

GHz. 

Table 2.1: Gross comparison of Biological and Artificial Neurons (Eluyode et al., 2013) 

Biological neuron Artificial neuron 

Attribute Dendrites Inputs 
Attribute Cell body Processing 

element 
Attribute Synapses Weights 

(memories) 
Attribute Axon Output 

Processing speed Slow: Several Fast: Few 
milliseconds nanoseconds 

Processing system Massively parallel: Massively 
1014 synapses parallel: 108 

transistors 

The processing power of artificial neural networks does not decisively rely on the processing 

speed of each neuron, but in the massively parallel interconnections that exist between such 
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1 units and hence incredibly ungraded overall processing power for the network is 

red, In essence of this, artificial neural networks behave similarly. 

Wt anore, another attribute of artificial neural networks that make them of great interest is 
~ 

adaptability to solving problems that are inherently 'troubles' for convectional (Von 

I) computers; problems such as pattern recognition, noisy data etc. 

ility of these networks to represent complex relationships between parameters 

putationa1 rules makes them quite easy to implement (self-programming). It 

.t different problems can be solved with the same learning algorithms ( e.g. 

rule) in neural networks while in convectional digital computers, for each 

, a different algorithm invariably must be developed. Moreover, while neural 

&.~ '\.~'s::.."\.~~~"-~-~'s::.. \..i..~~<s::..~\.. ~"""'-'<::.. "~~~~"""'-'s::..~~"\.~~~~~'s::.. ~~'<::..""" """'-~'- ~~"""~'\ "-.<s::..~~ 

complete collapse or failure of the whole system (inherent redundancy in neural 

). The convectional computers are sequential and the failure of one unit or hardware 

y lead to the failure of the system. It takes the failure of a sufficient number of units 

neural networks for a collapse of the whole system to occur, a phenomenon regarded as 

degradation (Eluyode and Akomolafe, 2013). 

~ ~~~~~ ~~.-.fl7~~~ Jp~___,b___.P~ 

rain, how activities are achieved, the nature of signals involved and 

expressions of such processes. 

neural networks therefore as from inception somehow depended on 

researches in medicine and psychology. It is from these new 

tures of neural networks are being modified or new ones built. 

of hypothesized neural network models and learning rules have been 

'date findings in medicine and psychology. 

n, perceptron, was presented by F. Rosenblatt, 1958, which marked 

1 networks in computational intelligence. 

for artificial neural networks are perceptrons, these perceptrons are 

,-.=ted in the networks. The connections or links between neurons are 
These weights acts as long-term memory to the network, holding the 

the present knowledge of the network due to experience. 

15 



and outputs a value known as Total Potential (T.P). The activation of each neun 

determined by comparing the computed total potential to a reference value known it~ 

threshold; the activation of neurons is also referred to as 'firing'. 

Mathematically, it can be shown below that: 

-Neuron fires if: T.P ~ Threshold 

-Neuron does not fire if: T.P < Threshold 

n =, = Iw ». 
k=I lg 

(2.7) 

(2.8) 

·here O, is the output of the neuron, net, is the net input to the neuron, 8j is the threshold for 

e neuron, and ~ is the activation function for the neuron. i.e. net, is passed through the 

tivation function ~ to compute the final output of the neuron. 

net) I cp r--()J 

-1 
()j 

Figure 2.6: Artificial neuron 

metimes times a bias term, bj, is added to neurons so that equation 2. 7 becomes 

n =, = Iw xk +b1 
k=I lg 

(2.9) 

"'.1 Activation functions used in neural networks 

ere are several types of activation functions used in artificial neurons; usually, the 

lication of the network determines which is suitable or more appropriate. Common 

· vation functions used in neurons are shown below. 
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1. Linear activation function 

This outputs directly the weighted sum of the products of the inputs and weights. 

They are also known as identity functions. i.e. 

Figure 2. 7: Linear activation function 

Mathematically, 

(2.91) 

Sometimes a scalar multiplier is applied in the activation or a bias added so that the 

intercept of the graph no longer lies at the origin; the bias can be used to shift the 

graph around on the output axis, hence control the decision boundary. 

2. Hard-Limit function 

This function has binary response, it outputs 1 when the Total Potential (T.P) is 

greater or equal to the threshold, and outputs O otherwise. 

Mathematically, 

0 net, 

Figure 2.71: Hard-limit function 

Mathematically, 

If, =, 2 T.P, then 01 = rp(net) = I (2.92) 

if, =, < T.P, then 01 = rp(net1) = 0 (2.93) 
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The hard-limit function is what is used in the McCulloch-Pitts model of artificial 

neurons, and it is sometimes referred to as the Heaviside function. 

3. Signum function 

The signum function is similar to the hard-limit function save the fact that the output 

is either + 1 or -1. 
cp(net,J 

+1 

.••. c::.,,o 

net1 

-1 

Figure 2.72: Signum function 

Mathematically, 

If, =, 2 T.P, then 01 = <p(net1) = +1 (2.94) 

If, =, < T.P, then 01 = <p(net1) = -1 (2.95) 

4. Log-Sigmoid function 

The log-sigmoid function is a non-linear s-shape function, the output range is from + 1 
to 0. Mathematically, the output of sigmoid function is shown below. 

--00 

rret) 

Figure 2.73: Log-Sigmoid function 

Marhematically, 

1 o = tpinet ) = -a(net)) 
J 1 1 + e 

(2.96) 

The log-sigmoid function is one of the most commonly used activation functions in 

neural networks. It is sometimes referred to a squashing function because it takes the 
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.. 
value of the net input and compress it to range from + 1 to 0. The variable 'a' in 

equation 2.96 controls the steepness of the function. 

For this reason, it is particularly important for networks applying back propagation 

algorithms. For larger values of 'a', the log-sigmoid function approximates a hard 

limit function (Debes, Koenig, Gross, 2005). 

5. Tan-Sigmoid function 

This function, hyperbolic tangent, is quite similar to the log-sigmoid, it is also s 

shaped, but its axis of symmetry passes through the origin and its output range from 

+ 1 to -1. 

Figure 2.74: Tan-Sigmoid function 

,lathematically, 

(2.97) 

Hyperbolic tangent functions can be used in hidden or output layers of neural 

networks. 

6. Gaussian function 

The Gaussian activation function can be used when finer control is needed over the 

activation range. The output range is O to 1; 0 when x=co, and 1 when x=O (Sibi, 

Jones, Siddarth, 2013). 

<J>(net1) 
0.8 

_ 0 .. 6 

t- 
o OA 

3 

Figure 2.75: Gaussian function 
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Mathernatically, 

netJ 

01 = q;(net 
1) 
= e - 2,,2 (2.98) 

where c is used to control the steepness of the curve. 

Gaussian activation functions are commonly used in Radial Basis Function Neural Networks. 

2.6 Summary 

The fundamental discussions of fields or areas to achieving the aim of this thesis have been 

introduced adequately in this chapter. The image process schemes such gray scale 

conversion, image negatives, image binarization, image filtering and the algorithms used to 

achieve these operations have been discussed. Furthermore, the basic understanding of 

artificial neural networks has been presented, comparison with the biological neuron, and 

their activations also have been briefly examined. 
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CHAPTER THREE 
DATA COLLECTION, PROCESSING AND NEURAL NETWORKS 

3.1 Overview 

This chapter presents how the aim of this research was achieved sequentially, going through 

each design stage. 

As it is the aim of this work to investigate different neural networks' responses and tolerance 

some common variances in pattern recognition. The typical single hidden-layer back 

ropagation neural network (BPNN) has been chosen for examination against convolutional 

eural network, and deep networks such as Stacked Auto Encoders (SAEs) and Deep Belief 

Xetworks (DBNs). Recent researches have shown that some emergent deep neural network 

architectures perform significantly better with moderate pattern variances such translation, 

rotation, scale, and noise, as against single hidden-layer feedforward networks. 

Yoruba vowel characters have been used in this research to evaluate the extent to which 

rformances may vary in the investigation domain . 

.2 Collection of data 

The database for this research was gathered by asking different people to write the Yoruba 

·owel characters on a graphic drawing software. These images were then saved as jpeg files. 

6JlEJlEJWLQJlQJW 
Figure 3.1: Unprocessed Yoruba vowel characters 

The Figure 3.1 above shows a sample of the 7 unprocessed Yoruba vowel characters. The 

characters were handwritten employing several people; 100 samples were collected for each 

character. 
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3.3 Datasets and Stages of Design 

The logic and sequence of research are shown below. 

• Generate a training database of Yoruba vowel characters: Al 

• Generate validating database for Yoruba vowel characters: A2 

• Generate translated database for Yoruba vowel character patterns: A3 

• Generate rotated database for Yoruba vowel character patterns: A4 

• Generate scale different database for Yoruba vowel character patterns: AS 

• Generate noise affected database for Yoruba vowel character patterns: A6 

• Process image databases as necessary 
• Train and validate all the different networks with created database Al and A2 

respectively. 
• Simulate the different trained networks with A3, A4, AS, and A6 . 

. 4 Image Processing Phase 

The inputs to the recognition system are images that have been processed as described below. 

• Conversion of images to gray 

The images were checked to ascertain whether conversion to gray is necessary so that image 

rmat, therefore pixel values now lie in the gray scale range (0-255) and the 3- 

. ensionality attributes of the images were reduced to 1-dimensionality.i.e. colour 

ormation eliminated. This process is also important in the advent where the designed 

ystem is simulated with colour images, as this part takes care of conversion to gray. Original 

rocessed handwritten characters used in this research work were gray scale images of size 

x 400 pixels. 

• Conversion of images to binary 

ognition systems, which are neural network based, only accepts input in the range O to 1; 

ce the conversion of images to binary. However, in as much as it is possible to normalize 

gray images to values from O to 1 and then feed as inputs to the recognition system, the 

of binary images where suitable greatly reduces computational requirements. 

igure 3.2 below shows the binarized handwritten characters. 
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Figure 3.2: Binary Yoruba vowel characters 

• Conversion of images to negative 

The binary images were converted to negatives; this is achieved by subtracting pixel values 

f images from 1. The output of this process now makes the images' background black and 

oreground white. Figure 3.3 shows the negatives of the binarized images. 

AJE EJ IroTOl, u 
Figure 3.3: Negative Yoruba vowel characters 

• Filtering of images 

The images were filtered using a median filter of mask 10 x 1 O; this has the effect of 

smoothening out noises that may be present in the images at this stage and filling in some 

missing parts based on neighbourhood operations obtainable from the median filter. 

igure 3 .4 shows the outcome of of the filtering the negative images. 

AEEIOOU 
' 

Figure 3.4: Filtered Yoruba vowel characters 

• Rotation of images 

This done to build some moderate sense of rotational invariance into the network; rotated 

samples of the original images were included as input samples. Some samples are shown 

low in Figure 3.5. 
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Figure 3.5: Rotated Yoruba vowel characters 

• Cropping of pattern occupied part of images 

The character occupied part of the filtered images were then cropped automatically so that a 

ge portion of the background that contains no relevant information (pattern) are cut away. 

This process results in varying sizes of images after cropping. 

igure 3.6 shows cropped handwritten characters. 

Figure 3.6: Cropped Yoruba vowel characters 

• Resizing of images 

As it is evident from the previous operation that images will be of different sizes (pixels), 

ce it will be required that all the images have the same size. Hence, the images were 

ized to 32x32 pixels. The downscaling of image sizes also has the effect of reducing the 

ber of input neurons to the network, which is somewhat related to the number of hidden 

:urons that will be suitable enough to serve as long-term memory to the neural network 

tern. This consequently reduces computational requirements on the whole system . 

.5 Network Output Design and Coding 

• oruba language has 7 vowel characters, hence the designed recognition system should have 

classes, and therefore 7 output neurons. i.e. each neuron responds maximally to a character. 
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Neural Network Models 

eral neural network architectures exist today, and the choice of a particular network 

del to be implemented in solving a particular task depend on the application; some neural 

ork models lend themselves to some range specific tasks than others. 

-eural networks have become a very important area of computational intelligence and 

chine learning over the years; the applications in other diverse fields, even outside of 

e most common application of neural networks in computing today is to perform one of 

se "easy-for-a human, difficult-for-a-machine" tasks, often referred to as pattern 

nerally, neural networks can be implemented as a single layer or multilayer, the suitable 

mnnber of layers has to be determined by the designer depending on application; also, the 

ber of suitable neurons in each layer must be determined. 

the following sections, the four models of neural network architectures considered in this 

esis will be further discussed. These architectures include Back Propagation Neural 

_ietworks, Convolutional Neural Networks (CNNs), and Denoising Auto Encoders (DAEs), 

ep Belief Networks (DBNs). 

Back propagation neural network (BPNN) 

Back Propagation Neural Networks are perhaps the most used neural network models in 

ctice, they are also known as feedforward networks. The name back propagation is 

derived from the manner in which learning is achieved. These networks use a supervised 

learning algorithm; training examples are supplied to the network with corresponding desired 

tputs. The actual outputs are computed during the forward pass of the network, errors are 

mputed at the output layer and propagated back into the network for correction. 

This process is repeated until the set error goal is attained or maximum number of epochs 

ve been executed. After this, how well the network has learnt is obtained by simulating the 

twork with some examples of the same task on which the network has been trained; 

usually, examples that were not supplied as part of training data can be used to see whether 

e trained network can cope with such data. The ability of the network to cope with these 

examples that were not part of training data or set is called the generalization power of the 
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network. This is done so as to ascertain that the trained network has not only memorized the 

training data, while it performs poorly on data that were not part of training set; a 

phenomenon referred to over-fitting. 

The layers in between are referred to as hidden layers, as they are not directly observable 

{Gilnther and Fritsch, 2010). 

The weights determine the function computed. Given an arbitrary number of hidden units, 

any Boolean function can be computed with a single hidden layer (Mooney, 2008). 

Theoretically, back propagation neural networks can have a number of hidden layers. In 

practice, rarely is more than 1 hidden layer used and some researchers have even proved that 

the problem of saturation of hidden units (neurons) makes convergence difficult, especially 

when training weights are initialized randomly as done classically. On the other hand, the 

hard saturation at O may completely block the gradients and make optimization harder 

(Glorot and Bengio, 2010). 

Some important features in multilayer networks are listed below. 

• The hidden layer does intermediate computation before directing the input to the 

output layer. 

• The input layer neurons are linked to the hidden layer neurons; the weights on these 

links are referred to as input-hidden layer weights. 

• The hidden layer neurons and the corresponding weights are referred to as output 

hidden layer weights (Chakraborty, 2010). 

Input layer Hidden layer Output laye,r 

Figure 3.7: Back propagation neural network 
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e output layer requires linear separability. The purpose of the hidden layers is to make the 

blem linearly separable (Borga, 2011). 

e training algorithm for back propagation networks as with other many networks is based 

minimizing a cost function, in this case, the error between the desired output and actual 

tput. The gradient descent approach, where the error surface is descended till the minimum 

int is reached is used; at this point, the weights of the network represent a mapping 

ction of the input to the output. 

Two common error computing functions used in neural networks are Least Mean Square 

(LMS) and Mean Square Error (MSE). The latter will be considered in this review of back 

pagation networks. 

The gradient descent approach for minimizing the error cost function for back propagation 

etworks come in two flavours as shown below. 

(3.1) 

Where dj(n) and yj(n) are the desired and actual outputs of output neuron j at iteration n, ej(n) 

the error of output neuron j at the nth iteration. 

(3.2) 

Eu(n) is the sum of errors at the output layer when the u-th input pattern is given; or the 

accumulated errors of each individual output neuron, it is assumed in equation 13 that the 

output layer has k neurons. 

3.6.1.2 Standard gradient descent 

The standard gradient descent approach accumulates all the errors of the individual training 

patterns, then updates the weights of the network accordingly. This process is repeated until 

the desired error is reached or the maximum number of epochs has been executed. 

....• p 

E(w) = LEu(n) 
u=I 

(3.3) 

..... 
Where, E(w) is the accumulated error for all training samples p. 
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..... 
is the aim of standard gradient method to then minimize E(w) with respect to the weights 

the network, mathematically 

(3.4) 

This type of gradient descent is sometimes referred to as batch training and algorithm is 

Initial weights and thresholds to small random numbers. 

Randomly choose an input pattern x(u) 

Propagate the signal forward through the network 

Compute 8iL in the output layer (o, = Yh 

(3.5) 

Where hiL represents the net input to the ith unit in the Ith layer, and g' is the derivative of the 

tivation function g. 

Compute the deltas for the preceding layers by propagating the error backwards. 

s' = g' (hi)'°' WI+! 51+1 
I I~ 1j j 

j (3.6) 

For 1 = (L-1), ,1. 

6. Update weights using 

(3.7) 

Go to step 2 and repeat for the next pattern until error in the output layer is below the 

a pre-specified threshold or maximum number of iterations is reached. 

Where Wj are weights connected to neuronj, Xj are input patterns, dis the desired output, y is 

the actual output, t is iteration number, and rt (0.0< rt <1.0) is the learning rate or step size 
(Jain, Mao, Mohiuddin, 1996 ). 

New weights update are carried out using the equation below 

(3.8) 
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Error 

Figure 3.8: Standard gradient descent error surface (Leverington, 2009) 

igure.3.8 above shows the weight space of dimensionality two. i.e. wi and w2. It is 

teworthy that the weight space can be of far higher dimensionality. 

The error surface is shown in the figure above, where each input batch forward pass outputs 

compared against the desired outputs, errors gotten and then weights updated . 

. 6.1.3 Stochastic gradient descent 

stochastic gradient method for error minimization, the actual output of the network is 

mputed during the forward pass, when supplied with a particular pattern at the input, the 

mputed output is compared against the desired output for that particular pattern, and then 

error propagated back into the network so that weights can be updated. The main 

erence to the standard gradient descent method lie in that weights are updated after each 

.ttern is supplied and error for that particular pattern is computed; as against standard 

gradient descent in which all input patterns outputs are processed as a batch, error computed 

r the batch, after which weights are updated. The idea behind stochastic gradient descent is 

approximate this gradient descent search by updating weights incrementally, following the 

culation of the error for each individual example. 

ations supporting the stochastic gradient descent are given below (Mitchell, 1997). 

(3.9) 

(3.10) 

..... 
ibere, Eu ( w) is the sum of errors of j output neurons when the u-th input pattern is supplied. 

mal weight updates are achieved using equation 3.8. 
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Figure 3.9: Stochastic gradient descent error surface (Yu, 2010) 

Figure 3.9 shows a typical error minimization using the stochastic gradient descent approach. 

Since the stochastic algorithm does not need to remember which examples were visited 

during the previous iterations, it can process examples on the fly in a deployed system. In 

such a situation, the stochastic gradient descent directly optimizes the expected risk, since the 

examples are randomly drawn from the ground truth distribution (Bottou, 2012). 

3.6.1.4 Local and global minima in gradient descent approach 

One of the problems with the gradient descent approach for error minimization in back 

propagation networks is convergence. It has been seen in many literatures that the algorithm 

at times take so long to converge, and even when it does, may not converge to the point of 

least error on the error surface. This is the situation when the error surface has more than one 

minimum point; the lowest minimum on the error surface is referred to as the true or global 

minimum while the other minima points are known as local minima. 

Figure 3 .10 below exemplifies the problem, it can be seen that there exists various local 

minima, some better than the others. In any error surface, there is generally only one global 

mimmum. 

Local Minima 

Global Minima 

Figure 3.10: Local and global minima on error surface 
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From the figure above, it can be seen that gradient descent can be caught up in one of the 

al minima, which is not the true or global minimum. 

Generally, to overcome the problem of the gradient descent approach being stuck in a local 

minimum, another term known as momentum, a, is added to the equations used to update the 

eights of the networks. Its value ranges between 1 and 0. i.e. 0 <a< 1. 

The momentum term determines the effect of past weight changes on the current weight 

change (Bose, Liang, 1996). 

The momentum term is meant to push the error past local minima, should the surface have 

al minima . 

. 6.1.5 Issues with back propagation neural networks 

Training data dimension: When back propagation networks are used in image 

assification, because of the large number of pixels involved, and therefore input neurons, 

.e number of weights in the network becomes quite large (e.g. thousands). 

ence, such a large number of parameters increases the capacity of the system and therefore 

requires a larger training set (LeCun, Bottou, Bengio, and Haffner, 1998). 

Translation and rotational Invariance: Back propagation networks trained with 

gradient descent algorithm suffer from translational variance, which is a recognition problem 

ciated with moderate linear shifts of patterns in images. Generally, back propagation 

orks perform well on training data and classification tasks where images have been 

centred but perform relatively poor otherwise. 

_ dtematively, translational and rotational invariance can be built into these networks by 

luding translated and rotated copies of the original patterns in the training set. 

owever, from the engineering perspective, invariance by training has two disadvantages. 

irst, when a neural network has been trained to recognize an object in an invariant fashion 

'th respect to known transformations, it is not obvious that this training will also enable the 

ork to recognize other objects of different classes invariantly. Second, the computational 

and imposed on the network may be too severe to cope with, especially if the 

ensionality of the feature space is high (Haykins, 1999). 
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Scale invariance: Back propagation networks do have problems in recognition when 

trained networks are simulated with same patterns but of varying scales. 

_ .• oreover, gradient descent is not scale invariant in the parameters it seeks to optimize 

Agrawal, 2012). 

Illumination invariance: The problem of illumination variance arises when back 

pagation networks are trained, then simulated it same patterns but of varying 

uminations. Since, back propagation networks are trained on pixel values as features for 

ttems, it is therefore evident that variation in pixel values due to illumination may lead to a 

se representation of patterns, and hence recognition may be affected. 

Ignored input topology: This is a general problem with fully connected networks, and 

erefore back propagation networks in that local structure of inputs are rendered irrelevant. 

The input variable can be presented in any (fixed) order without affecting the outcome of the 

training. On the contrary, images (or time-frequency representations of speech) have a strong 

ID local structure: variables ( or pixels) that are spatially or temporally nearby are highly 

rrelated (LeCun, 1998). 

Local correlations of pixels can be used to the advantage that local features are extracted and 

mbined, hence objects recognition then achieved. i.e. a kind of bottom-top visual 

recessing. 

6. Vanishing gradient: Multilayer neural networks trained with back propagation do 

have the problem of vanishing gradient, where error gradients propagated back from higher to 

lower layers towards the input become exponentially decreasing and consequently learning 

becomes quite slow. This phenomenon is sometimes referred to saturation, because it is as a 

result of saturation of the activation functions of hidden units. 

One common problem: saturation when the weighted sum is big, the output of the tanh ( or 

sigmoid) saturates, and the gradient tends towards O (Bengio, 2003). 

This problem had made the training of deep neural networks difficult in the past, but 

presently several approaches exist to resolve these problems when training deep networks. 
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.6.2 Convolutional neural network (CNN) 

onvolutional neural networks leverage on local feature extractions and combinations to 

rercome the above mentioned problems of back propagation networks. 

· erarchical models of the visual system are neural networks with a layered topology. In 

e networks, the receptive fields of units (i.e., the region of the visual space that units 

ond to) at one level of the hierarchy are constructed by combining inputs from units at a 

er level. After a few processing stages, small receptive fields tuned to simple stimuli get 

bined to form larger receptive fields tuned to more complex stimuli (Serre, 2013) . 

. e typical convolutional neural network consists of alternating convolution and sub 

pling layers, then the last layer is a fully connected network; typically a multilayer 

eptron or classifier ( e.g. back propagation network, radial basis function network, or 

first back convolutional neural network was presented by Yann LeCun et al, it was 

ed with back propagation and they applied it to the problem of handwritten digit 

gnition (LeCun, Boser, Denker, Henderson, Howard, Hubbard, and Jackel, 1990) . 

• -N's take translated versions of the same basis function, and "pool" over them to build 

lational invariant features. By sharing the same basis function across different image 

tions (weight-tying), CNNs have significantly fewer leamable parameters which make it 

ible to train them with fewer examples than if entirely different basis functions were 

ed at different locations (untied weights). Furthermore, CNNs naturally enjoy 

lational invariance, since this is hard-coded into the network architecture (Le et al., 

volutional neural networks, fix some weights to be equal. In particular, they encode the 

translational covariance, i.e filters applied in the top right patch will also be applied in the 

om left. Invariance and covariance are essential to the success of convolutional neural 

.orks (Sauder, 2013). 

volutional neural networks are apt for image applications, the extraction of local features 

combinations to form higher feature objects makes them quite suitable. 

are used to extract some features from the data, in image processing, this could be 

es, lines, comers, points etc. Some common filters used in image processing, hence can be 
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ed in convolutional neural networks are Mexican hat filters, Gabor filters, Sobel, Canny 

etc. Note that filters are interchangeably used as kernels. 

-1 

t -1 -1 -1 -1 

(a) Horizontal edge (c) Vertical {d) -456 (b) +45e edge 
Figure 3.11: Line detection kernels (Gonzalez, Woods, and Eddins, 2004) 

Figure 3.11 shows some kernels that can be used in extracting local features such as lines; (a), 

), (c), and (d) are horizontal, +45°, vertical, and -458 line detectors respectively. 

These kernels are used to convolved the whole image so that localized features can be 

extracted. The size of the kernels used fixed and known as the receptive field . 

. . euron units are arranged in subsequent layers in planes (2-dimensional), and all units in a 

particular plane share same set of weights (i.e. kernel weights). Units in a particular plane 

perform a specific operation on all regions of the input; a kernel or filter is used to convolve 

e whole image. i.e. each neuron is connected to the weights of the kernel. 

Convolution operation is mathematically expressed below. 

When two functions f(x) and v(x) are convolved, mathematically, the output 

"' 
g(x) = f v(x')f (x- x')dx = v(x) * f(x) (3 .11) 

-OCJ 

When the v(x) is non-zero only across a finite interval -n Svtx) ~n, and f(x) and v(x) are 

· crete, we can then re-write the equation above as shown below. 

n 

g(i) = I v(j)f (i + J) 
j=-n 

(3.12) 

For two variable functions, equation can be re-expressed as, 
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•• 

n n 

g(i,j) = f(i,j) * v = LL v(k,l)f(i + k,j +l) 
k=-nl=-n 

(3.13) 

e figure below shows the basic architecture of a convolutional neural network, it will be 

n that each convolution layer is followed by a sub-sampling layer. 

6.2.1 Convolution and sub-sampling 

e whole image is convolved with different kernel masks of size axa (receptive field); when 

particular kernel is used so that a particular local feature can be extracted, the output is 

ntained in a respective feature plane. i.e. each unit or neuron in a particular feature plane 

its weights as axa. The number of different kernels of size axa used will determine the 

ber of different feature planes obtained. i.e. each feature plane contains a particular 

acted local response to the filter. It is worth bearing in mind that during convolution, the 

el is not meant to fall outside the image at any rate, hence the sizes of feature planes are 

_ nerally smaller than that of the image (in the no padding convolution). i.e. (ixi) < (KxL). 

During convolution, kernel masks generally overlap by a constant margin as it is shifted 

ugh the image. 

is remarkable that due to the fact units in each feature plane in Cl share same set of 

eights, there is a drastic reduction in the number of trainable weights, connections, and 

efore overall training time for these networks as when compared to back propagation 

tworks where all units' trainable weights are distinct. 

e convolution, combination and implementation of feature maps can be achieved by using 

relation given below. 

I _ f(" 1-1 * kl bl) Xj - L.,.X; ij + j 
iEMj (3.14) 

ihere j is the particular convolution feature map, M, is a selection of input maps, kij is the 

involution kernel, bj is the bias of each feature map, l is the layer in the network, and f is the 

· vation function. 
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Layer 1 

C1: feature map 
(n•) i•I S 1 : feature map 

(n•) j•j 

• • 

Conl>f,lution 
a=a Subsampling 

b•b 
Corlf,lution 
a=a 

Figure 3.12: Convolutional neural network architecture 

Figure 3.12 shows the convolutional neural network, with two 3 convolution layers and 2 

b-sampling layers. The last layer is a regular multi-layer network classifier. Each layer has 

grouped as composing a convolution layer and corresponding sub-sampling layer. 

After feature map Cl has been obtained by convolving the input with the kernels, sub 

sampling of the feature maps in C 1 is then achieved by sweeping a mask of size j x j all over 

each feature plane in Cl, hence, S2 has the same number of feature maps as Cl. i.e. each 

eature map in Cl has a corresponding sub-sampling map in Sl. 

r is noteworthy that two approaches can be employed in the pooling operation for the sub 

sampling layer Sl; the average or max-pooling approach. The max-pooling used is described 

low. 

Since each neuron in each S2 plane has jxj weights connected to the feature planes in Cl, 

sub-sampling is achieved for neurons in each S2 plane by taking the maximum value of the 

inputs jxj, multiplied by a trainable coefficient, bias added, and passed through an activation 

function. It is to be noted that during sub-sampling, adjoining neurons' receptive field do not 

overlap as in the convolution from the input image to C 1. The usefulness of sub-sampling 

includes reducing the resolution of the extracted local features in Cl, damping of the 

response of the outputs to moderate equidistant translation and deformation. Since there is no 

overlap in during sub-sampling, it then follows that the size of feature maps in S 1 is a factor 

lib of the feature maps in Cl. 

The table below shows the parameters of atypical convolutional neural network in Figure 

3.12, and the relationship between each parameter and layers are further discussed below. 
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-Input image size: KxL 

Table 3.1: Convolutional neural network parameters 

Attributes First layer Second layer Convolution 
map layer 

Kernel size a=a axa NIA 

Sub-sampling mask size bxb bxb NIA 

Number of feature maps n M NIA 

Each convolution feature map size Cl: ixi C2:dxd NIA 

Each sub-sampling plane size S 1: j xj S2:exe NIA 

Number of convolution maps p 

Each convolution map feature plane size exe 

is also important to state that usually all the feature planes in C2 are not convolved with the 

eature planes in S 1. Generally, a convolution table is developed to select which planes in S 1 

convolved with which feature planes in C2. This technique greatly reduces again the 

number of connections in the network, and therefore trainable weights. 

The application of the above approach forces different feature maps to extract different 

opefully complementary) features because they get different inputs; it also ensures that 

symmetry is broken in the network (LeCun, Bottou, Bengio, and Haffner, 1998). 

The same process is repeated for layer 2 in figure 3.12; albeit that the last convolution layer, 

3, has full connections to the sub-sampling layer, S2, and each plane is of the same size in 

-, so that after convolution, each output would be a 1 x 1. 

· s hierarchical image processing has been adapted from the visual computation analogy 

und in the biological visual cortex. 

erally, the last layer in convolutional neural networks is the classifier layer; any suitable 

sifier can be adopted at this stage, but common options include back propagation 

orks, radial basis functions, support vector machine, etc. The number of neurons in the 

ut layer of the classifier will be the number of patterns or objects for recognition. 

me mathematical equations relevant to these networks are provided below. 
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(3.15) 

(3.16) 

Where, ( M; , M;) is the feature map size of each plane, ( K;, K;) is the kernel size shifted 

over the valid input image region, ( s;, s;) is the skipping factor of kernels in x and y 
directions between subsequent convolutions, n indicates the layer. Each map in LO is 

connected to at most M0•1 maps in layer L n-I (Ciresan, Meier, Masci, Gambardella, and 

Schmidhuber, 2011 ). 

It will be noticed that in figure 3.12, square feature maps have basically been assumed, but 

the above equations can be used in any general case; also, the number of layers in the 

network may vary according to application and design. 

At times, a contrast normalization scheme is implemented in the convolution map layer 

which significantly improves the network performance. 

3.6.3 Deep learning 

Deep learning is a response to some of the issues encountered in back propagation networks 

as mentioned in sections 3.6.1.5. These networks are 'basically' multilayer networks, but 

differ from the classical back propagation in the analogy in which training is achieved. 

Deep learning is a term that has been in use recently, meaning training feedforward networks 

of more than one hidden layer; features are learnt in a hierarchical way from the input image 

to the classifier, each layer extracts more meaningful features from the previous layer. Also, 

this architecture allows sharing low level representation. 

The problem of feedforward networks getting stuck in local minima is another situation 

generally as a result random initialization of weights in these networks. Some sense of 

features correlation or prior knowledge can be built into the hidden layers of these networks 

by supervised or unsupervised pre-training schemes. 

3.6.3.1 Auto encoder (AE) 

An auto encoder is basically a feedforward network that accepts the inputs as corresponding 

target outputs. They are used to learn compressed encoding of the training data. i.e. as 
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lemented when feedfoward networks are used in image compression (See figure 3.13 & 

erally, many auto encoders can be layered on top of each other, in which case it referred 

as stacked auto encoders. The approach to training this type of architecture build up is 

wn as greedy layer-wise training because each hidden layer is "hand picked" for pre 

nining of weights; each layer is trained as in single hidden layer feedforward networks. 

· ce, an auto-encoder is an unsupervised learning scheme, we can leverage on the 

.ailability of large unlabelled data for the pre-training, then use the available labelled data 

fine tuning the whole network. 

v 

X 

0 L1(x) 0 
C_) W(LI) 0 'fV(LI)_ 0 encoder 

0 0 
decoder 0 •.. - ~ •... 0 •.. • ~ G) • • • 0 • • • • • 

0 Hidden 0 
lnput Output 

Figure 3.13: Auto encoder 

X 

0 
.. 

0 
L2(x) 0 

0 0 FV(U) 0 0 encoder 0 G) •... 0 •... L 0 
0 

•.. •.. 8 •.. 
• • • -· • • • • • 0 • 0 • 

0 0 
. . . 

L1{x) y 

Hidden 1 Output 
Input 

Figure 3.14: Stacked auto encoder 
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encoder can be seen as an encoder-decoder system, where the encoder (input 

yer pair) receives the input, extracting essential features for reconstruction; while 

er (hidden-output layer pair) part receives the features extracted from the hidden 

orming reconstruction at its best (figure 3.13). 

auto encoder is basically a feedforward network, it can be shown that, 

(x) = g(m(x)) = sigm(b(Ll) + W!:!Jd,,;x) (3.17) 

Where, m(x) and n(x) are the pre-activations of the hidden and output layers Ll and y 

respectively; b(LI) and b(y) are biases of the hidden and output layers, Ll and y respectively. 

Generally, the number hidden units in layer L1, j, is smaller than the number of units at the 

input, k (figure 3.13). i.e. some sort of compression of representation. 

The objective of the auto encoder is to perform reconstruction as cleanly as possible, which is 

achieved by minimizing a cost functions such as given below 

k 

C(x,y)= L(Yk -xk)2 (3.19) 

k 

C(x,y) =-I(xk log(yk) + (1- xk)log(l- yk)) (3.20) 

Equation 3 .19 is used when the range of values for the input are real, and a linear activation 

applied at the output; while equation 3.20 is used when the inputs are binary or fall into the 

range O to 1, and sigmoid functions are applied as activation functions. Equation 3.19 is 

known as the sum of Bernoulli cross-entropies. 

In the greedy layer-wise training, the input is fed into Ll as the hidden layer and L2 as the 

output; note that L2 have target data as the input. The network is trained as in back 

propagation and weights connection between the input layer and Ll saved or fixed (Figure 

3.14). 

The input layer is removed and L 1 made the input, L2 the hidden layer, and output follows 

last. The activation values of Ll acts as now input to the hidden layer L2, and the output layer 

made the same as the training data, weights between L 1 and L2 are trained and saved. 
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Finally, the pre-trained weights obtained from the greedy layer-wise training are coupled 

ack to the corresponding units in the network so that final weights fine-tuning for the whole 

network can now be carried out using back propagation algorithm. i.e. the original training 

data is supplied at the input layer and the corresponding target outputs or class labels are 

supplied at the output layer. Note that the weights between the last hidden layer and the 

output network is randomly initialized as usual before final network fine-tuning or maybe 

discriminately pre-trained. 

Another variant of auto encoders, known as denoising auto encoders which are very similar 

o the typical auto encoder, save that the input data is intentionally corrupted by some 

moderate degree (setting some random input data attributes to 0) and the targets are correct, 

unaltered data. Here, the denoising auto encoder is required to learn the reconstruction of 

corrupt input data; this greatly improves the performance of initialized weights for deep 

networks. Note that stacked auto encoders belong to the unsupervised learning pre-training 

approach in deep learning. i.e. it is a generative model. 

3.6.3.2 Deep belief network (DBN) 

This learning scheme allows these networks to have weights that are initialized with some 

evel of correlation to the task the overall designed network is to learn. 

These networks are built on unsupervised learning weights pre-training approach, and the 

asic units found in such networks are Restricted Boltzmann Machines (RBMs). 

Restricted Boltzmann machines have visible and hidden layers, with undirected connections. 

The input layer is referred to as the visible layer and computation can proceed in either 

visible to hidden layer or hidden to visible layer; note that there is full connection between all 

units in both layers. 

X L3_RBM 
.-----::=:::-- 

(_) 
() 
c~) 
• • • 

(~) 
(~) I ww) __ __..,. 

L1_RBM !.2._RBM 
r--- 

"I o ~--> (--:-' 
(_) •• I '·-·) 

JV{h2) w<h',) 

• • • 

• • • () 

<:=> 

• • • (--.,,,, 
'-, __ ) r-) ( __ / 

(-') 
~-- 
input -_'"'"> <"..: 

hidden 1 hidden 2 Rest·rict:ed 
Solt.zn-lann 
MaC:hine. Hldden 2 

Sigrnoid :Beiief Network 

Figure 3.15: Deep Belief Network 
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A restricted Boltzmann machine has only two layers (figure 3.16); the input (visible) and the 

hidden layer. The connections between the two layers are undirected, and there are no 

interconnections between units of the same layer as in the general Boltzmann machine. We 

can therefore say that from the restriction in the interconnections of units between layers, 

units are conditionally independent. 

The RBM can seen as a Markov network, where the visible layer consists of either Bernoulli 

inary) or Gaussian (real values usually between from O to 1) stochastic units, and the 

hidden layer of stochastic Bernoulli units (Deng and Yu, 2013). 

Figure 3.16 below shows an RBM, the backbone of DBNs. 

X. 

C:> 
C-> _ _______, 
c-;-:> - -- - 
lnpLlt 

Figure 3.16: Restricted Boltzmann Machine 

The main aim of a RBM is to compute the joint distribution of v and h, p(v,h), given some 

model specific parameter, <jl. 

This joint distribution can be described using an energy based probabilistic function as shown 

below. 

(3.21) 
i j j 

p(x h: A.) _ e<-E(x,h;¢)) 
' '~ - 

(3.22) 

(3.23) 

Where, E(x,h;<jl) is the energy associated with the distribution of x given h; x and h are input 

and hidden units activations respectively, i is the number of units at the input layer, j is the 
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number of units at the hidden layer, bi is the corresponding bias to the input layer units, b, is 

the corresponding bias to the hidden layer units, Wij is the weight connection between unit Xi 

and hj, P(x,h;~) is the joint distribution of variable x and h, while Z is a partition constant or a 

normalization factor (Li Deng and Dong Yu) [ 45] (Yoshua Bengio et al., 2007). 

For a RBM with binary stochastic variables at both visible and hidden layers, the conditional 

robabilities of a unit, given the vector of units variables of the other layer can be written as, 

(3.24) 

pt x, =Ilh;¢)=0'(LWuh1 +b;) 
j 

(3.25) 

'here o is the sigmoid activation function. 

Deng observed in his work that by taking the gradient of the log-likelihood p(x; ~), the 

eight update rule for RBM becomes, 

(3.26) 

,bere, Edata is the actual expectation when hj is sampled from x, given the training set; and 

F.mooe1 is the expectation of h, from x, considering the distribution defined by the model. 

has also been shown that the computation of such likelihood maximization, Emodei, is 

actable in the training of RBMs, hence the use of an approximation scheme known as 

·contrastive divergence", an algorithm proposed to solve the problem of intractability of 

F.mooe1 by Hinton (Hinton, Osindero, and Teh, 2006). 

ause of the way it is learned, the graphical model has the convenient property that the top 

wn generative weights can be used in the opposite direction for performing inference in a 

· gle bottom-up pass (Mohamed, Hinton, and Penn, 2012). 

ence, such an attribute as mentioned above makes feasible the use of an algorithm like back 

pagation in the fine-tuning or optimization of the pre-trained network for discriminative 

ose. 

ently, the contrastive divergence algorithm was developed to train these networks, which 

described in details below. 
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-Positive phase: 

• An input sample v is clamped to the input layer. 

• v is propagated to the hidden layer in a similar manner to the feedforward networks. 

The result of the hidden layer activations is h. 

- Negative phase: 

• Propagate h back to the visible layer with result v' (the connections between the 

visible and hidden layers are undirected and thus allow movement in both directions). 

• Propagate the new v' back to the hidden layer with activations result h'. 

- Weight update: 

w(t + 1) = w(t) + a(vhT - v' h'T) (3.27) 

Where a is the learning rate and v ; v', h, h', and ware vectors (Vasilev). 

The process of sweeping v and h between visible and hidden layers is repeated until there is a 

satisfactory reconstruction of the input that sample v is significantly close to h. i.e. Gibbs 

sampling. It will be seen from the above figure that the deep belief network is basically a 

stacked RBMs. Each layer is trained greedily; the input acts as the visible layer, input data are 

propagated between Ll_RBM and the input layer (positive and negative phases) as described 

above under contrastive divergence algorithm. After the weights have been updated 

satisfactorily, input layer is decoupled and weights fixed. Then Ll_RBM becomes the visible 

layer (input layer) to L2_RBM; the weights between Ll_RBM and L2_RBM are updated 

using the contrastive divergence algorithm again. This process is repeated for all the hidden 

layers of the network, as this initializes the network's weights to values that give a significant 

overall network performance after fine-tuning using a supervised learning algorithm. 

Generally, the whole network's weights are fine-tuned using the typical back propagation 

algorithm. It is to be noted that there are no connections between units in the visible-visible 

layer or hidden-hidden layer. 
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Summary 

chapter gives good and strong technical insight into the processing of images that were 

in this research; also, the neural network architectures that have been considered were 

fly and sufficiently discussed. 

convectional back propagation neural network was discussed in details, with the learning 

rithm. Furthermore, the problems associated with BPNN networks were presented and 

ysed. Convolutional networks, and its structure which simulates the biological visual 

eption were also discussed briefly. Deep networks were also discussed in view of the 

erent architectures and pre-training schemes obtainable. 

all, this chapter presents a thorough technical background and insight into the designs 

lemented in the following chapter; lastly, it articulates the whole essence of the thesis 

ose involving some image processing work and neural networks as classifiers. 
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CHAPTER FOUR 
TRAINING OF NEURAL NETWORKS 

4.1 Overview 

As it is the aim of this research to investigate pattern invariance and the response or tolerance 

f some neural network models presented in chapter 3; the different designed networks will 

trained on a training set, and validated using another data set. 

Furthermore, in order to investigate the level of pattern invariance learned by each model, the 

esigned systems were simulated with rotated, translated, scale varied, and noisy images. 

The remaining sections of this chapter present the different neural network architectures, 

training parameters and considerations to choosing such parameters . 

. 2 Neural Networks 

The different neural network architectures considered in this thesis are presented in this 

section, with their corresponding training schemes and parameters which have been obtained 

euristically during training. All the networks were trained, validated, and tested on the same 

set of data, hence there is clarity of comparison of training requirements in this chapter, and 

test results in the next chapter. 

A. DATABASESAJ 

These database Al contain the training samples for the different network architectures 

considered for this research. The characters in this database, Al, have been sufficiently 

processed with the key interest being that images are now centred in the images i.e. most 

redundant background pixels removed. 

Figure 4.1: Training database characters 
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.2.1 Back propagation neural network model 

The final processed input images are all of 32 x32 pixels (1024 pixels), it therefore follows 

t the number of input neurons is 1024. The suitable number of hidden neurons cannot be 

termined at this stage of the network design, but will be obtained heuristically during 

training. The number of different characters to be recognized, 7, therefore necessitates the 

The table below shows the training parameters used in training the back propagation network. 

Table 4.1: Heuristic training ofBPNN-1 

Number of training samples 14, 000 

Number of hidden neurons 
Activation function at hidden and output 

layers 
Learning rate (11) 

Momentum rate (a) 
Epochs 

Training time (seconds) 
Mean Square Error (MSE) 

65 

Sigmoid 

0.045 
0.72 
1600 
502 

0.1120 

A validation set of 2,500 samples was used to control the trained back propagation network 

from over-fitting data. i.e. memorizing data and hence losing generalization power. 

Hence, the gradient algorithm with learning and momentum rate has been used in the training 

f the feedforward networks. 

To further observed the performance of BPNN, a network of 2 hidden layers was also 

esigned and the training parameters are shown below. 

Table 4.2: Heuristic training of BPNN- 2 

Number of training samples 14, 000 

Number of neurons in hidden layer 1 
Number of neurons in hidden layer 2 

Activation function at hidden and output 
layers 

Learning rate ( 11) 
Momentum rate (a) 

Epochs 
Training time (seconds) 

95 
65 

Sigmoid 

0.082 
0.65 
2000 
669 
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K-fold cross validation has been used during training, such that the error on the validation set 

is also monitored and in the advent that the error on the validation set increases for a 

specified number of epochs, training is stopped to avoid over-fitting. 

4.2.2 Convolutional network neural model 

The input image sizes are 32x32, and a kernel or receptive field of 5x5 pixels was used in the 

first convolution layer to extract local features; and 6 feature maps were extracted. The 

number of pixels (units) for each feature map is calculated below using Equations 4.1 & 4.2. 

c1 = 32 - s + 1 = 28 
X O+l (4.1) 

c1 = 32 - s + I = 28 
Y O+I 

(4.2) 

Therefore the size of feature maps in Cl is 28x28. The table below shows the full parameters 

for the network training. 

Table 4.3: CNN units and feature maps 

Attributes First layer Second layer Convolution 
map layer 

Kernel size 5x5 5x5 NIA 
Sub-sampling mask size 2x2 2x2 NIA 
Number of feature maps 6 12 NIA 

Each convolution feature map size Cl:28x28 C2: lOxlO NIA 
Each sub-sampling plane size Sl: 14x14 S2:5x5 NIA 
Number of convolution maps 12 

Each convolution map feature plane 5x5 
size 

Since the Cl is sub-sampled using a mask of 2x2 and there is no overlap of regions during 

sub-sampled, it then follows that the size of each feature map in S2 is calculated below as: 

1 28 l_cx=-=14, sx - b 2 
l - c; = 28 = 14 

Sy - b 2 (4.3) 

Therefore the size of each feature map in the sub-sampling layer 1, S 1, is 14x 14. 
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Size of convolution feature maps for layer 2 can be determined using the above formulas 

c: = 14-5 +1=10 
X O+l 

c: = 14-5 +1=10 
Y O+l (4.4) 

Hence, the size of each feature map in the convolution layer 2, C2, is 1Ox10. 

The convolution layer 2 is then again down-sampled using the same mask size as in layer 1. 

i.e, 2x2. 

S2 = c; 10 
y b=2=5 (4.5) 

The number of feature maps at the convolution map layer (the layer just before the classifier 

yer) is 12, and of the same size as the last before it (i.e. 5x5), so that each convolution 

results in a single value. 

Table 4.4: Training parameters for CNN 

Number of training samples 14,000 

Activation function at hidden and 
output layers 

Learning rate ( 11) 
Epochs 

Training time (seconds) 
Mean Square Error (MSE) 

Tanh 

0.8 
4500 
798 

0.1333 

4.2.3 Denoising auto encoder model 

This model is more or less the multilayer neural network, with the basic difference in the way 

weights are initialized for the network. A single hidden layer network was designed, 

therefore, the weights available for pre-training are: 

• weights between the input and hidden layer. 

• weights between the hidden and output layer. 

The number of input neurons remains 1024, the number of input pixels as in the case of back 

propagation network, the number of sufficient hidden neurons to encode the inputs was 

hosen as 100, and number of output neurons remain 7, the number of desired output classes. 

The hidden layer was pre-trained as discussed in section 3.632 until the level of 

reconstruction of the input was found to be significantly suitable. 
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Table 4.5: Pre-training parameters for DAE 

Number of training samples 14,000 

Number of hidden neurons 
Input Zero Masked Fraction 

Activation function at hidden and 
output layers 

Learning rate ( ri) 
Epochs 

100 
0.5 

Sigmoid 

0.8 
10 

The auto encoder was first trained by using inputs as corresponding targets, and the error of 

reconstruction noted until it became significantly low. i.e. hidden layer now has the capability 

o reconstruct inputs with significant performance. The pre-trained network now.has weights 

initialized to values that favourable for better learning when it is coupled all up and trained as 

a back propagation network. i.e. the target outputs are now corresponding input labels. The 

table below, Table 4.6, shows the parameters used to fine-tune the pre-trained network. 

Table 4.6: BPNN Parameters to fine-tuning DAE 

Number of training samples 14,000 

Activation function at hidden and 
output layers 

Learning rate ( ri) 
Epochs 

Training time (seconds) 
Mean Square Error (MSE) 

Sigmoid 

0.7 
500 
250 

0.1006 

4.2.4 Stacked denoising auto encoder model 

Table 4.7: Pre-training parameters for SDAE 

Number of training samples 14,000 

Number of neurons in hidden layer 1 
Number of neurons in hidden layer 2 

Input Zero Masked Fraction 
Activation function at hidden and 

output layers 
Learning rate ( n) 

Epochs 
Training time (seconds) 

95 
65 
0.5 

Sigmoid 

0.8 
10 
118 
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In order to observe how distributed knowledge representation developed in hidden layers may 

affect performance of networks, a 2 hidden layer denoising auto encoder was also designed. 

It should be noted that the 2 hidden layer auto encoder will be referred to a Stacked 
Denoising Auto Encoder (SDAE) as is standard and common practice; the training 
parameters are shown in the table below. 

Number of training samples 

Table 4.8: BPNN Parameters to fine-tuning SDAE 
14,000 

Activation function at hidden and 
output layers 

Learning rate ( 11) 
Epochs 

Training time (seconds) 
Mean Square Error (MSE) 

Sigmoid 

0.7 
400 
377 

0.1046 

4.2.5 Deep belief network model 

The deep model was designed with two hidden layers which were pre-trained as discussed in 

section 3.633. The hidden layers can be seen as stacked restricted Boltzmann machines, and 

the pre-training of weights was achieved using the contrastive divergence algorithm. The 

number of input neurons in the visible layer (first layer) is 1024, the input pixel size; number 

of neurons in the first hidden layer is 200, number in the second hidden layer is 150, while 

the number of output neurons remains 7. 

Number of training samples 

Table 4.9: Pre-training parameters for DBN 
14,000 

Number of neurons in first hidden layer 
Number of neurons in second hidden layer 

Activation function at hidden and output layers 
Learning rate ( 11) 

Epochs 
Training time for hidden layer, Ll (seconds) 
Training time for hidden layer, L2 (seconds) 

200 
150 

Sigmoid 
0.2 
5 
95 
103 

The pre-trained weights were used to initialize the designed feedforward neural network, 

which is now favourable to converge faster to a better local minimum. 
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Table 4.10: BPNN Parameters to fine-tuning DBN 

Number of training samples 14, 000 

Activation function at hidden and output layers 
Learning rate ( ri) 

Epochs 
Training time (seconds) 

Mean Square Error (MSE) 

Sigmoid 
0.6 
1000 
170 

0.1024 

4.3 Summary 

In this chapter, the trainings of the neural networks considered in this research have been 

resented, focusing on training parameters such as the number of required epochs, training 

time, and the achieved mean square error (MSE). It will be seen that the back propagation 

networks have the highest average training time compared to all other networks, after which 

comes convolutional networks. The large time required to train the BPNN models can be 

associated with some of the problems discussed in chapter three; problems such as saturating 

units, vanishing gradients in BPNN2, and the weights generally starting far away from the 

weights space that is favourable for fast convergence to a good local minimum. The 

convolutional network computational requirement and time is obvious in view of the 

convolutional and pooling operations that had to be achieved in the forward and backward 

pass of training data and error gradients respectively; with more convolution and pooling 

layers added to the network, training time may grow exponentially. 

It will also been seen that the deep belief network and denoising auto encoders have the 

lowest MSE after training; this can be considered as a result of the pre-training of the 

networks, favouring the networks' weights starting out at a weight spaces that aids fast 

convergence, and to a better local minimum. 
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CHAPTER FIVE 
RES UL TS AND DISCUSSION 

5.1 Overview 

This section shows the validation and testing results of the models discussed in chapter 4; in 

this research work, processed databases of size 32x32 were used to observe the performance 

of the models. Each database for testing contains images with a particular variance of interest 

on which the tolerance of network models is to be observed. 

5.2 Learning Curve and Validation of Network Models 

The learning curves of the networks described in chapter four are presented here; the 

validation databases with which the different constraints have been now applied on were used 

to simulate the trained networks, the error rates achieved were then analysed and discussed 

accordingly. 

5.2.1 BPNN model 

The back propagation models were trained as discussed in chapter 4, and the MSE (Mean 

Square Error) plot is shown below (figure 5.1 (a) & (b)). It will be seen that even though the 

training the train error (blue curve) kept decreasing, validation error (green curve) had stop 

decreasing, likewise the test error (red curve), hence training was stopped to prevent over 

fitting of training data. Six validation checks were used in the training. i.e. the number of 

iterations such that the training error kept decreasing, but the validation error was increasing. 

---Train 
--- Validation 
---Test 
······- Best 

1400 1600 0 200 

Figure 5.l(a): MSE plot for BPNNI 
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---Train. 
---- vandation 
----Test. 
---····-·BesC 

Figure 5.l(b): MSE plot for BPNN2 

e learning curve for the BPNN2 (BPNN network with 2 hidden layers) is shown in Figure 

CNN model 

e Convolution network (CNN) whose parameters were described in chapter 4 was trained 

d the learning curve is shown below in Figure 5.2. 

Figure 5.2: MSE plot for CNN 

.2.3.1 DAE model 

The denoising auto encoder was fine tuned using the backpropagation algorithm to further 

reduce the error on the network and introduce discriminative feature. 
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I Train H 
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---Test 
------- Best 

----------~--~--~--------------------~ 
0 50 200 250 300 350 

Figure 5.3: MSE plot for DAE fine-tuning 

It will be seen in the above figure (Figure 5_3) that the train, validation, and test curves lie on 

one another indicating that validation did not stop before earlier than optimum learning was 

achieved. 

5.2.3.1 SDAE model 

Figure 5.4 below shows the Mean Square Error plot for the SDAE model, 2 hidden layers 

were implemented in the network, and the same denoising mask fraction of 0_5 was also used . 

.•. 
1 
g 
w ~ 
!! 
"' ::, c:r 
U) 
'c 

"' .. :Ii 

0 200 250 300 350 _ 400 

Figure 5.4: SDAE MSE plot for fine-tuning 

The deep network was fine-tuned in using the backpropagation algorithm in order that the 

network can be used for discriminate tasks. 
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5.2.4 DBN model 

Figure 5.5 shows the MSE plot for fine-tuning the DBN respectively. 

····•·• Best 

0 800 900 

Figure 5.5: DBN MSE plot for fine-tuning 

5.3 Databases for Testing/Simulating Trained Networks 

A. DATABASE A2 

This database contains sample images of the seven vowel characters as in the training 

database, and its sole purpose is to verify or ascertain that the trained networks did not over 

fitting during training, and thus possess good generalization power to samples of images 

found in the training set, database Al. 

Figure 5.6: Validation database characters 
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B. DATABASE A3 

or the purpose of evaluating the tolerance of the trained networks to translation a separate 

tabase was collected with the same characters and other feature characteristics in databases 

Al and A2 save that the characters in the images have now been translated horizontally and 

rertically, The figure below describes these translations. 

A EE I 00 U • • 
Figure 5.7: Translated database characters 

C. DATABASE A4 

This database contains the rotated characters contained in database Al and A2. Its sole 

urpose is to further evaluate the performance of trained networks on pattern rotation. See 

Figure 5.8 for samples. 

Figure 5.8: Rotated database characters 

D. DATABASEA5 

This database is essentially databases Al and A2 except that the scales of characters in the 

images have now been purposely made different in order to evaluate the performance of the 

networks on scale mismatch. It will be seen that some characters are now bigger or smaller as 

compared to the training and validation characters earlier shown in chapter 4, Figure 4.1. 

Figure 5.9 shows samples contained in this database. 

Figure 5.9: Scale varied database characters 
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E. DATABASE A6 

order to assess the performance of the networks on noisy data, sub-databases with added 

salt & pepper noise of different densities were collected as described below. 

2.5% noise density 
5% noise density 
10% noise density 
20% noise density 
30% noise density 

e figure below show character samples of database A6 _ 4. 

Figure 5.10: Database A6_ 4: characters with 20% salt & pepper noise density 

Test Performances of Trained Network Models on Databases 

section details the performance of the trained networks on the validation and test 

tabases as described in section 5.3. The trained networks were supplied with the databases, 

that the corresponding classes of each image can be simulated. 

4,000 samples were used as training set, 2500 samples as validation set, and 700 samples as 

t set on the variances. 

The definition of recognition rates for the simulation or testing of database is given below. 

ognition rate can be obtained from error rate using the equations provided below. 

R 
. . Number of correctly classified samples ecognitton rate=--------------- 

Total number of test samples 
(5.1) 

Error rate= 1- Recognition rate (5.2) 
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Table 5.1: Recognition rates for training and validation data 

Network models Training data Validation data 
(14,000) (2,500) 

BPNN - I layer 95.67% 92.66% 
BPNN - 2 layers 97.23% 93.61% 

ConvNet 98.34% 97.98% 
DAE- I layer 99.53% 93.21% 
SDAE - 2 layers 99.72% 94.33% 
DBN - 2 layers 99.77% 96.23% 

The trained networks were firstly simulated on the training data and the recognition rates 

achieved are can be seen in table 5.1; also, the networks simulated on databases which 

contain translated, rotated images, and Scale varied images as described in section 5 .3. The 

table below shows the performance of the different networks to the variances. 

Table 5.2: Recognition rates for network architectures on variances 

Network models Translation (700) Rotation (700) Scale (700) 

BPNN - 1 layer 14.29% 68.6% 64.29% 

BPNN - 2 layers 17.14% 72.71% 63.42% 

ConvNet 32.86% 86.29% 72.00% 

DAE- I layer 20.00% 75.14% 69.43% 

SDAE - 2 layers 25.71% 77.86% 72.57% 

DBN - 2 layers 18.57% 80.14% 76.71% 

The networks were also simulated on different levels of noise added to the images. i.e. 

database A6. The table below shows the recognition rates obtained. 
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Table 5.3: Recognition rates for networks on various noise densities 

Network models 2.5% 5% 10% 20% 30% 

BPNN - 1 layer 67.86% 65.14% 65.29% 58.71% 51.71 % 

BPNN - 2 layers 70.57% 68.42% 65.86% 55.14% 44.14% 

ConvNet 83.57% 81.43% 79.86% 71.43% 68.29% 

DAE-1 layer 71.57% 67.57% 56.43% 40.14% 31.57% 

SDAE - 2 layers 74.14% 69,57% 61.43% 46.14% 36.29% 

DBN - 2 layers 76.29% 72.29% 61.57% 35.86% 22.71% 

The figure below shows the performance of the different network architectures against 0%, 

2.5%, 5%, 10%, 20%, and 30% noise densities. i.e. Figure 5.11. 
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"' ~ 
~ 0.8 
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~ •... 
~ 0.2 
w 

0.0 
0 

--- bpnn1 
...•.. bpnn2 
..•... ConvNet _,._ 

dae1 

~ sdae2 

-e- dbn 

30 40 10 20 

Noise levels% 

Figure 5.11: Performance of networks on various noise levels 

5.5 Discussion of results 

This research is meant to explore and investigate some common problems that occur in 

recognition systems that are neural network based. It will be seen that the convolutional 

neural network performed best compared to the other networks on variances like translation, 

rotation, scale mismatch, and noise; followed by the deep belief network on the average, 
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while its tolerance to noise decreased noticeably as the level of noise was increased as shown 

in Table 5.3, and Figure 5.11. 

A noteworthy attribute of the patterns (Yoruba vowel characters) used in validating this 

research is that they contain diacritical marks which increases the achievable variations of 

each pattern, and as such, recognition systems designed and described in this work have been 

tasked with a harder classification problem. 

The performance of the denoising auto encoder (DAE-1 hidden layer) and stacked denoising 

auto encoder (SDAE-2 hidden layer), on the average with respect to the variances in 

character images seems to second the deep belief network. 

The performance of the denoising auto encoder is lower than that of the stacked denoising 

auto encoder, it can be conjured that the stacked denoising auto encoder is less sensitive to 

the randomness of the input; of course the training and validation errors for the SDAE are 

lower to the DAE, and the tolerance to variances introduced into the input significantly 

higher. i.e. a kind of higher hierarchical knowledge of the training data achieved. 

5.6 Summary 

This chapter presents the simulation of the different designed network architectures; the 

considered invariances of interest to this research were simulated and achieved recognition 

rates reported in the tables above. Also, a graph showing the tolerance of the networks to 

various level noise of densities is herein supplied. 
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CH,t\PTER SIX 
CONCLUSION AND RECOMMENDATIONS 

6.1 Conclusion 

It is the hope that machine learning algorithms and neural network architectures which, when 

trained once, perform better on variances that can occur in the patterns that they have been 

trained with can be explored for more robust applications. This also obviously saves time and 

expenses in contrast to training many different networks for such situations. 

Furthermore, building invariances by the inclusion of all possible pattern variances in the 

training phase, which can occur when deployed in applications is one solution; unfortunately 

this is not always feasible as the capacity of the network is concerned. i.e. considering 

number of training samples enough to guarantee that proper learning has been achieved. 

It can be seen that the major problem in deep learning is not in obtaining low error rates on 

the training and validation sets (i.e. optimization) but on the other databases which contain 

variant constraints of interest (i.e. regularization). These variances are common constraints 

that occur in real life recognition systems for handwritten characters, and some of the 

solutions have been constraining the users (writers) to some particular possible domains of 

writing spaces or earmarked pattern of writing in order for low error rates to be achieved. 

It is noteworthy that from the recognition rates obtained in Table 5.1, 5.2, and 5.3, it can be 

inferred that pre-training while has both optimization and regularization effect as has been 

observed by researchers, this research reinforces that the optimization effect is larger; this is 

seen in that lower error rates were obtained from the deep networks that were pre-trained 

(DAE, SDAE, DBN) compared to the networks without pre-training (BPNN I-layer and 

BPNN 2-layers ). In addition, it will be seen that as the level of added noise was increased, the 

errors on the deep networks began to rise; at 30% noise level, the shallow network (BPNN 1- 

layer) has the second best highest recognition rate, which can be explained by the fact that it 

has the lowest number of network units (neurons) and therefore a lower possibility of over 

fitting data (see Table 5.3). It will be noticed that even though the stacked auto encoder has 

more units than the denoising auto encoder, hence should have had higher error rates as noise 

was increased (i.e. due to overfitting) as observed in the deep belief network, the SDAE was 

pre-trained using the drop-out technique, and which success in fighting over-fitting can be 

seen in Table 5.3, and Figure 5.11. 
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It has been shown that a flavour of neural networks, "convolutional networks" and its deep 

variant give very motivating performance on some of these constraints, however the 

complexity and computational requirements of these networks are somewhat obvious. 

This work reviews the place of deep learning, a simpler architecture, in a more demanding 

sense, that is, a "train once-simulate all" approach; and how well these networks 

accommodate the discussed variances. It is the hope that with the emergence of better deep 

learning architectures and learning algorithms that can extract features that are less sensitive 

to these constraints, a new era in deep learning, neural networks and machine learning field 

could emerge in the near future. 

6.2 Recommendations 

This thesis has reviewed the performance of some neural network models on some common 

problems that occur in pattern recognition systems, pattern invariance, based on the built-in 

structure of such networks in accommodating or tolerating the pattern constraints considered. 

It is the view that the number of hidden layers of the BPNNs without pre-training can be 

increased to ascertain if there will be any appreciable improvement in performance 

considering the discussed invariances; also, the convolutional and stacked denoising auto 

encoder networks hidden layers can be increased in view of improvements in performance 

but bearing in mind the rapid increase in computational power that will be required in 

achieving training in reasonable time. e.g. processors of many cores may be required. 

Furthermore, other types of generative networks that can be used in the pre-training of the 

deep networks, restricted Boltzmann machine, may be considered. 

Lastly, in recent times, the pre-training of convolutional neural networks have been strongly 

considered, with the hope of initializing the weights to values that are favourable in 

converging to better local minimum; the auto encoder pre-training scheme can be exploited 

more for this purpose, but network initialization from deep Boltzmann machines could be 

quite a promising option as well. 
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APPENDIX A 

BPNN ARCHITECTURE 

Input layer 
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APPENDIXB 

CNN ARCHITECTURE 

Layer1 layer2 Classifier layer 

St feature map 
(nx) jxJ 

• • 

Convplulion 
axa Subsai"npling 

bxb 
Coitf>lution 
a Ka SubsampLing 

bxb 

KxL = 32x32 

axa = 5x5 
n = 6 
Cl: ixi = 28x28 
bxb = 2x2 
Sl: jxj = 14x14 
m = 12 

C2: dxd = l Ox l O 
S2: exe = 5x5 
p = 12 
C3: exe = 5x5 
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APPENDIXC 

DBN ARCHITECTURE 

X1 

Xz 

Visible layer Hidden 1 Hidden 2 
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APPENDIXD 

IMAGE PROCESSING CODES 

% Training data .... character 

for k=l 

eyed = strcat('Train _data_ vowels\A \A_', num2str(k), '.jpg'); 

al = irnread(eyed); 

b 1 =rgb2gray( al); 

bl=im2bw(bl); 

cl=(l-bl);% covert image to negative 

ml=medfilt2(cl,[10 10]);% median filter of mask 10 by 10 

[v,w]=find(ml-=0);% crop out pattern from image 

xmin=min( w ); 

xmax=max(w); 

ymin=min(v); 

ymax=max(v); 

width = xmax - xmin; 

height = ymax - ymin; 

m3 = imcrop(ml,[xmin,ymin,width,height]); 

m4=irnresize(m3,[32 32]);% pixel no= 1024 

d 1 =round(m4 ); 

el=reshape(dl,[ ],1); 

for i=15:15:345 

f=irnrotate(ml,i,'nearest','crop');% rotate images at 15degrees counterclockwise,23 images 

[v,w]=find(f-=0);% crop out pattern from rotated images 

xmin=min(w); 

xmax=max(w); 

ymin=min(v); 

ymax=max(v); 

width = xmax - xmin; 

height = ymax - ymin; 

m3 = imcrop(f,[xmin,ymin,width,height]); 

m4=irnresize(m3,[32 32]);% pixel no = 1024 

m5=round(m4); 

g=reshape(m5,[ ],1);% reshape 32 by 32 1 to 1024 by 1 matrix 

h=[el g];% concatenate reshaped images horizontally 

el =h;% safe images for reuse 

sl=e1;% safe el into sl,incase 

end 
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end 

for k=2:85 

eyed= strcat('Train_data_ vowels\A\A_', num2str(k), '.jpg'); 

al = imread(eyed); 

bl =rgb2gray(al ); 

b 1 =im2bw(b 1 ); 

cl=(l-b1);% covert image to negative 

ml=medfilt2(cl,[10 10]);% median filter of mask 10 by 10 

[v,w]=find(ml-=0);% crop out pattern from image 

xmin=min(w); 

xmax=max(w); 

ymin=min(v); 

ymax=max(v); 

width = xmax - xmin; 

height = ymax - ymin; 

m3 = imcrop(ml,[xmin,ymin,width,height]); 

m4=imresize(m3,[32 32]);% pixel no = 1024 

dl=round(m4); 

e2=reshape(dl,[ ],l); 

for i=lS:15:345 

f=imrotate(ml,i,'nearest','crop');% rotate images at 15degrees counterclockwise,23 images 

[v,w]=find(f-=0);% crop out pattern from rotated images 

xmin=min(w); 

xmax=max(w); 

ymin=min( v ); 

ymax=max(v); 

width = xmax - xmin; 

height = ymax - ymin; 

m3 = imcrop(f,[xmin,ymin,width,height]); 

m4=imresize(m3,[32 32]);% pixel no= 1024 

m5=round(m4 ); 

g=reshape(m5,[ ],1);% reshape 32 by 32 1 to 1024 by 1 matrix 

h=[e2 g];% concatenate reshaped images horizontally 

e2=h;% safe images for reuse 

r=e2; 

end 

q=zeros(l 024, 1 );% zeros matrix for concantenation 

u=[el r];% concantenation with k=l 

el=u; 

end 
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Al=u; 

t1 =ones(l ,2040); 

t2=zeros( 6,2040); 

A_target=[tl ;t2]; 

Ai=[Al;A_target]; 

S1=Ai;% safe Ai 
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APPENDIXE 

BPNN-1 CODES 

% Solve a Pattern Recognition Problem with a Neural Network 
% This script assumes these variables are defined: 
inputs= Al_train; 
targets= Al_target; 
% Create a Pattern Recognition Network 
numHiddenNeurons = 65; 
net.trainParam.lr=0.045 
net.trainParam.mc=O. 72 
net= newpr(inputs,targets,numHiddenNeurons); 
% Set up Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam. valRatio = 15/100; 
net.divideParam.testRatio = 5/100; 
% Train the Network 
[net,tr] = train(net,inputs,targets); 
% Test the Network 
outputs= net(inputs); 
errors= gsubtract(targets,outputs); 
performance= perform(net,targets,outputs) 
% View the Network 
view(net) 
% Plots 
% Uncomment these lines to enable various plots. 
% figure, plotperform(tr) 
% figure, plottrainstate(tr) 
% figure, plotconfusion(targets,outputs) 
% figure, ploterrhist( errors) 
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APPENDIXF 

BPNN-2 CODES 

% Solve a Pattern Recognition Problem with a Neural Network 
inputs= Al_train; 
targets= Al_target; 
% Create a Pattern Recognition Network 
numHiddenNeurons = [95 65]; 
net. trainParam.lr=O. 0 8 2 
net.trainParam.mc=0.65 
net= newpr(inputs,targets,numHiddenNeurons); 
% Set up Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 5/100; 
% Train the Network 
[ net,tr] = train(net,inputs,targets); 
% Test the Network 
outputs= net(inputs); 
errors= gsubtract(targets,outputs); 
performance= perform(net,targets,outputs) 
% View the Network 
view(net) 
% Plots 
% Uncomment these lines to enable various plots. 
% figure, plotperform(tr) 
% figure, plottrainstate(tr) 
% figure, plotconfusion(targets,outputs) 
% figure, ploterrhist(errors) 
net= newpr(inputs,targets,numHiddenNeurons); 
% Set up Division of Data for Training, Validation, Testing 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 5/100; 
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APPENDIXG 

CNN CODES 

%Train CNN 
train_x=Al_train'; 
train_y=Al_target'; 
test_x=Al_test'; 
test_y=Al _test_ desired'; 
train_ x = double(reshape(train _ x',32,32, 14280)); 
test_ x = double(reshape(test_ x',32,32,2520)); 
train _y = double(train _y'); 
test_y = double(test_y'); 
%% exl Train a 6c-2s-12c-2s Convolutional neural network 
%will run 1 epoch in about 200 second and get around 11 % error. 
%With 100 epochs you'll get around 1.2% error 
rand('state',O) 
cnn.layers = { 

struct('type', 'i') %input layer 
struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer 
struct('type', 's', 'scale', 2) %sub sampling layer 
struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer 
struct('type', 's', 'scale', 2) %subsampling layer 

} ; 
cnn = cnnsetup( cnn, train_ x, train _y ); 
opts.alpha= 0.8; 
opts.batchsize = 60; 
opts.numepochs = 20; 
cnn = cnntrain(cnn, train_x, train_y, opts); 
[er, bad]= cnntest(cnn, test_x, test_y); 
%plot mean squared error 
figure; plot( cnn.rL ); 
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APPENDIXH 

DAE CODES 

% Train SDAE 
train_x=Al_train'; 
train _y=Al _target'; 
test x=Al test'· - - ' 
test_y=Al _test_ desired'; 
train_x = double(train_x); 
test_x = double(test_x); 
train_y = double(train_y); 
test_y = double(test_y); 
%% exl train a 100 hidden unit DAE and use it to initialize a FFNN 
% Setup and train a stacked denoising autoencoder (DAE) 
rand('state',O) 
sae = saesetup([l024 100]); 
sae.ae{ 1} .activation_ function = 'sigm'; 
sae.ae{l}.learningRate = 0.8; 
sae.ae { 1} .inputZeroMaskedFraction = 0.5; 
opts.numepochs = 10; 
opts.batchsize = 60; 
sae = saetrain(sae, train_x, opts); 
visualize(sae.ae{l} .W {l }(:,2:end)') 
% Use the SDAE to initialize a FFNN 
nn = nnsetup([l024 100 7]); 
nn.activation_function = 'sigm'; 
nn.learningRate = 0.7; 
nn.W{l} = sae.ae{l}.W{l}; 
% Train the FFNN 
opts.numepochs = 80; 
opts.batchsize = 60; 
nn = nntrain(nn, train_x, train_y, opts); 
[er, bad]= nntest(nn, test_x, test_y); 
assert(er < 0.16, 'Too big error'); 
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APPENDIX I 

SDAECODES 

%Train DAE 
train_x=Al_train'; 
train _y= A 1 _target'; 
test x=Al test'· - - ' 
test_y=Al _test_ desired'; 
train_x = double(train_x); 
test_x = double(test_x); 
train_y = double(train_y); 
test_y = double(test_y); 
%% train a 95 and 65 hidden units for 1st & 2nd hidden layers respectively and use it to initialize a FFNN 
% Setup and train a stacked denoising autoencoder (SDAE) 
rand('state',O) 
sae = saesetup([1024 95 65]); 
sae.ae{ 1} .activation_ function = 'sigm'; 
sae.ae{l}.learningRate = 0.8; 
sae.ae{l}.inputZeroMaskedFraction = 0.5; 
opts.numepochs = 10; 
opts.batchsize = 60; 
sae = saetrain(sae, train_x, opts); 
visualize(sae.ae{ 1 }.W { 1 }(:,2:end)') 
% Use the SDAE to initialize a FFNN 
nn = nnsetup([1024 95 65 7]); 
nn.activation_function = 'sigm'; 
nn.learningRate = 0.7; 
nn.W{l} = sae.ae{l}.W{l}; 
% Train the FFNN 
opts.numepochs = 80; 
opts.batchsize = 60; 
nn = nntrain(nn, train_x, train_y, opts); 
[er, bad]= nntest(nn, test_x, test_y); 
assert(er < 0.16, 'Too big error'); 
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APPENDIXJ 

DBNCODES 

% TrainDBN 
train_x=Al_train; 
train _y= Al_ target; 
test_x=Al_test; 
test_y= Al_ test_ desired; 
train_x = double(train_x'); 
test_x = double(test_x'); 
train_y = double(train_y'); 
test_y = double(test_y'); 
%% ex2 train a 200-150 hidden unit DBN and use its weights to initialize a NN 

rand('state',O) 
%train dbn 
dbn.sizes = [200 150]; 
opts.numepochs = 5; 
opts.batchsize = 60; 
opts.momentum = O; 
opts.alpha = 0.2; 
dbn = dbnsetup(dbn, train_x, opts); 
dbn = dbntrain(dbn, train_x, opts); 
%unfold dbn to nn 
nn = dbnunfoldtonn( dbn, 7); 
nn.activation _function= 'sigm'; 
%train nn 
opts.numepochs = 20; 
opts.batchsize = 60; 
nn = nntrain(nn, train_x, train_y, opts); 
[ er, bad] = nntest(nn, test_ x, test_y); 
assert(er < 0.10, 'Too big error'); 
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