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ABSTRACT 

 

 

Eventhough, real differential functions are one of the main subject of real analysis, they are 

also take place in the centre of complex functions theorem. 

Functions which are both holomorphic and bijective, are called biholomorphic functions. If 

two spaces have biholomorphism between them, then these two spaces are biholomorphically 

equivalent. 

Biholomorphically equivalence is very important in complex analysis, because instead of 

working on complicated spaces, we can work on simpler work on known spaces. 

For example, suppose   and   are both open subsets of    If       and mapping is 

biholomorphic, then         must be holomorphic in order to make       function 

holomorphic. 

Basically, in comlpex functions theorem, spaces which are holomorphically equivalence are 

identical. 

Riemann Mapping Theorem is a big result for sufficient of conditions of biholomorphic 

equivalence in complex function theory. Riemann Mapping Theorem provides an easy way 

for building biholomorphically equivalence. It quarantees the presence of biholomorphic 

functions and it also shows that, building biholomorphic transformations between spaces is 

unnecessary. 

 

Keywords: Biholomorphically equivalent, Open Mapping Theorem, Montel’s Theorem, 

Hurwitz’s Theorem, Mobius Transformations, Conformal Mapping, Riemann Mapping 

Theorem. 
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ÖZET 

 

 

Her nekadar reel diferensiyellenebilir fonksiyonlar reel analizin temel konularından biri ise 

de, holomorfik fonksiyonlar, karmaşık fonksiyonlar teorisinin merkezinde yer alırlar. Burada 

holomorfik ve birebir ve üzerine olan fonksiyonlara biholomorfik fonksiyonlar denilecektir. 

Aralarında biholomorfizm olan iki uzay biholomorfik eşdeğerdirler. 

Karmasık analizde biholomorfik eşdeğerlilik önemlidir. Çünkü bu sayede yapısı hayli karısık 

olan bir uzayla calısmak yerine, yapısı daha yakından bilinen bir uzayı alarak calısmak 

mümkün olabilmektedir. Örneğin, U ve V, C nin açık alt kümeleri oldugunu varsayalım. 

Eger f : U → V donüsümü biholomorfik ise bu durumda herhangi bir g : U →   fonksiyonun 

holomorfik olması icin gerek ve yeter kosul, go f : U →   bileske foksiyonunun holomorfik 

olmasıdır . 

Temelde karmaşık fonksiyonlar teorisinde holomorfik olarak eşdeğer uzaylar aslında özdeştir-

ler. 

Karmaşık fonksiyonlar teorisinde Riemann dönüşüm teoremi, biholomorfik eşdeğerlik için 

hangi koşulların yeterli olacağını belirtmesi bakımından çok önemli büyük bir sonuçtur. 

Uzaylar arasında biholomorfik dönüşümler inşaa etmek genellikle zordur. 

Riemann dönüşüm teoreminin sagladığı kolaylık belirli tipten uzaylar arasında biholomorfik 

fonksiyonun varlığını garanti etmesi ile artık uzaylar arasında biholomorfik dönüşümler insaa 

etmenin gereksiz olacağıdır. 

 

 
Anahtar Sözcükler: Biholomirfik Eşdeğerlik, Açık Dönüşüm Teorisi, Montel Teorisi, 

Hurwitz’s Teorisi, Mobyüs Dönüşümleri, Konform Dönüşümler, Riemann Dönüşüm Teorisi. 
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CHAPTER 1 
 

INTRODUCTION TO COMPLEX NUMBERS 

 
 

The goal of this chapter is to understand complex numbers, complex functions and their 

properties. The chapter is written in order to explain the main topic of my dissertation. The 

difference between complex functions and real functions are mentioned and suitable 

examples are given. Later on this chapter, topologic properties of complex planes are 

discussed. The most importantly, we will see derivatives of complex functions and we will 

also talk about what are the conditions on these subjects. 

 

1.1  Definition of Complex Numbers 

We can represented complex number in cartesian form, polar form and spherical form. 

 

1.1.1 Cartesian form 

Let 

  *(   )                 +  

We call  the set of all complex numbers. This means that   (   )       is complex 

number, where       and    , and x is called the real part of  the given complex number, 

which is  

       

and similarly y is called the imaginary part of the given complex number, which is 

       

Addition to these  ̅ is called conjugate of  , which is, 

 ̅        

and the modulus of a complex number z , that is 

| |  √       
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and also this is positive real number. 

We will talk about some basic properties of complex numbers in cartesian form. Assume that  

            which are,                               where all components 

of all z are in     

If   then we have 

                                 

 

 If       and                                      

For        where       and     then  

 

 
 

 

    
 

    

     
 

 

     
  

 

     
  

 

 The conjugate of   ̅ is equal to   . That is  

  ̿        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅      

 

 |  |
       ̅  

From assertion, we have           and clearly   ̅        . 

     ̅  (      ) (      ) 

                          
                  

  

                                                                  
    

                                                                            (1.1) 

   

We know that  

                                                   |  |  √  
    

                                                                   (1.2)                                   

If we take square 1.2 side by side, then we have    

                                                          |  |
    

    
                                                                    (1.3) 

                     

We can see that 1.1 and 1.3 are equal. Finally, we have  
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|  |
       ̅  

 |    |  |  |     |    |  |  |  

 |  ̅|  |  | 

 |     |  |  | |  | 

 |     |  |  |  |  |. This is called triangle inequality. 

Since                              

  
   ̅

 
       

   ̅

  
  

 

 | |                        

   (     )             

   (     )             

 |
  

  
|  

|  |

|  |
 where |  |     

 

1.1.2 Polar form 

Suppose that   | |and   is argument of any complex number       , then, 

                     

and    (          ) is called polar form of z. 

Clearly,   | |  √               .
 

 
/        Argz is called principle argument, 

where         Then  

                          

For example, let         and we have   | |  √       √  and also   
 

 
  

   √ .   
 

 
     

 

 
/  

is polar form of         

Now, we talk about some basic properties of complex numbers in polar form. Let  

     (            )        (            )   
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            (   (     )      (     )  

 
  

  
 

  

  
 (   (     )      (     ))            

    (     )               

    .
  

  
/                         

 

Example 1.1 Find Argz and arg z where   √     

Solution. We have z lies in fourth quadrant of complex plane. The modulus of z is  

| |  √       

Since z lies in fourth part in  , the principal argument of z is equal to      
   

 
  We know 

that,                        . And finally we have, 

     
   

 
          

 

1.1.3 Stereographic Projection 

 

Let  (     ) is any point in    Through the points N and Z we draw the straight line NZ 

intersecting the sphere S at a point  (        ). Then   is called the stereographic 

projection. Consider the unit sphere S in   , that is  

  *(        )    
    

    
   +  

Equation of the line M passing through Z and N 
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  {(        ) ((   )  (   )   )    } 

           (   ) 

          

                          (   )   

                              (     )  (   )   

                                              *(   )  (   )   )     +  

Then we must have  

(   )    (   )         

            (   ) (     )       

                                           (   ) | |       

                                                     | |     (| |   ) 

                                                                                                 
| |   

| |   
                               (1.4) 

We have  

                                                                          (   )                                                        (1.5) 

If we put 1.4 in 1.5 then we have 

                                                        0  
| |   

| |   
1    

     *
| |    | |   

| |   
+   

                                                          
  

| |   
 

    

| |   
                                                         (   ) 

Similarly, we have  

                                                                          (   )                                                        (1.7) 

If we put 1.4 in 1.7, we have,  
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| |   
 

    

| |   
                                                         (   ) 

And so we have clearly  

                                                                  
| |   

| |   
                                                                    (   ) 

From 1.6, 1.8, and 1.9 we have  

 (        )  (
  

| |   
 

  

| |   
 
| |   

| |   
)  

 

Example 1.2 Write the given complex number   
 

   
 in three form of complex numbers. 

Solution. Now, we multiply numerator and denumerator of the given number with     then 

we have  

  
 

   
 

 

   
 
   

   
 

           
    

     
 

   

 
 

 

 
 

 

 
 

This is the cartesian form of the given z. Now, we compute   and r, which are; 

  | |  √(
 

 
)  (

 

 
)  

√ 

 
 

and  

     (
 

 
 

 

 
)  

 

 
 

Therefore  

  
√ 

 
(   

 

 
     

 

 
) 

this is polar form of the given z. And finally, 
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| |   
 

 
 
 

(
√ 
 )   

 
 

 
 

 
 

 
 

   
  

| |   
 

 
 
 

(
√ 
 )

 

  

 
 

 
 

 
 

 
 

   
| |   

| |   
 

 
   

 
   

  
 

 
                  

Therefore (
 

 
 
 

 
  

 

 
) is the spherical form of the given z. 

 

Definition 1.3      * + is called the extended complex plane. 

In general if for    ,    (        ) on     then  

| |         
  

    
 

| |         
  

    
 

Under stereographic projection, we have  

| |         
 

 
     

    
  

 

 
 

| |         
 

 
     

    
  

 

 
 

| |                             

Now we assume that (        ) is a sequences of S which converge (     ) and let *  
 + be 

the corresponding sequence of points in  . Now, we show that if |  
 |    then 

(        )  (     ). 

Let   
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|  
 |   

 

   
   

 

|  
 |   

 

   
|  

 |   

|  
 |   

  

If |  
 |    we have  

   
|  

 |  

   
 

|  
 |   

   

   
|  

 |  

   
 

|  
 |   

   

   |  
 |  

|  
 |   

|  
 |   

  . 

Now, if we show  ( )   , then we say that   is a continuous function. 

 ( )  (
  

| |   
 

  

| |   
 
| |   

| |   
 

at | |    we have  

   
  

| |   
 

  

   
   

   
  

| |   
 

  

   
   

                                   
| |   

| |   
 

| | (  
 

| | 
)

| | (  
 

| | 
)
 

  
 
 

  
 
 

    

Hence  ( )     which show that   is a continuous function. Now we can define a function 

      . We can see that   is one-to-one and onto. Hence   has inverse function, which is 

       . We know that    (   )     (   )          . If we put      in    

and    we have  

   (    )  and    (    )  
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 and   

  

    
                                                       (1.10) 

   ( )    
  

    
  

  

    
  

Now we define  (     )         and  (  )       where         are continuous on 

   We know that if         on   then 
 

 
 continuous where     . Therefore     is 

continuous where       Now, we show that     is continuous at infinity. 

Let us take any sequence *  +. If   (     ) then  

   
   

      
   

       
   

   

from 1.10 we have  

   
   

      
   

  

    
   

   
   

      
   

  

    
   

        

Hence     is continuous function. 

Finally we can say that   is one-to-one, onto and continuous and     is continuous, then   is 

called homeomorphism. 

Now we can define  

 (     )   (     ) 

is Euclidean distance between          , which are given   (        ) and   (        ) as 

well. Addition to these,           are image of         and          . 

Since           are on the sphere S, then we have  

                                               
    

    
          

    
    

                           (    ) 

We know that the distance between          , is defined as  

 (     )   (     ). 
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Hence we have  

 (     )  √(     )  (     )  (     )  

                                                    √  
          

    
          

          
   

from 1.11 we have  

 (     )  √   (              ) 

                                                                 √  √                                                (1.12) 

since           are on S, clearly we have   

   
  

|  |   
    

  

|  |   
    

|  |
   

|  |   
 

                                             
   

|  |   
    

   

|  |   
    

|  |
   

|  |   
                             (    ) 

If we put 1.13 in 1.12, we have  

 (     )  
  |     |

√|  |
    |  |

   
  

If    is the point at infinity then  

 (    )     
    

  |     |

√|  |    |  |   
 

                                   
|  |  

 |  | |
  

|  |
  |

√|  |    |  | √  
 

|  | 

 

                    
|  |  

 

|  |   
 

 

|  |   
  

We have some important theorems about stereographic projection. 
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Theorem 1.4 Streographic projection take circle to circle and lines. 

Proof. We assume that K is a circle on Riemann sphere. 

  *(        )                       
    

    
   +  

If K passes through (     ) then we have  

                

                                      

from definition of stereographic projection we have  

                                                 
  

| |   
    

  

| |   
 
| |   

| |   
                                        (    ) 

If we put 1.14 in  

                

then we have  

   

       
 

   

       
 

 (       )

       
     

         (     )       (     )    

                                                 (     )(   )                                      (    ) 

If      , then 1.15 becomes  

              

which is equation of a line. If       then 1.15 is  

(   )(     )                

is the equation of a circle. □ 
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Theorem 1.5 Let     . Then the corresponding image of K on S is  

 a is a circle in S not containing (     ) if K is circle 

 a line in S containing (     ) if K is a line. 

Proof. Now, we consider the general equation of a circle in  . 

                                  *(   )  (     )           +                                    (    ) 

Now we put 1.10 in 1.16 then we have,  

 *
  

 

(    ) 
 

  
 

(    ) 
+   

  

    
  

  

    
     

                                         
(  

    
 )

(    ) 
 

       

    
     

                                                                     (   )                                 (    ) 

Let    . Clearly, from 1.16 we have  

          

this is equation of the line. Since     from 1.17  

                 

         (    )     

this equation containing (     ). If K is a line then (     )   . Now we assume that     

and      Then from 1.16 we have  

 (     )          

this is equation of circle and  

                                                                                                                             (    ) 

we can see 1.18 not containing (     )  □ 
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1.2 Topology of the Complex Plane  

In this section we will talk about the topology of the complex plane and we will see 

difference between them. 

 

Definition 1.6 (open set) 

A set is open in   if it contains none of its boundary points. (Churchill and Brown      )  

 

Definition 1.7 (closed set) 

A set is closed in   if it contains all of its boundary points. (Churchill and Brown      )  

 

Definition 1.8 (smooth curve) 

“Suppose that a curve C in the plane is parametrized by    ( ) and    ( ) where 

     . If           are continuous on ,   - and not simultaneously zero on (   ).” (Zill 

and Shanahan      ). 

 

Definition 1.9 (piece-wise smooth curve) 

“C is a piece-wise smooth curve in   if it consists of a finite number of smooth curves 

           joined end to end, that is, the terminal point of on curve    coinciding with the 

initial point of the next curve     .” (Zill and Shanahan      )  

 

Definition 1.10 (connected) 

“An open set S is connected in   if every pair of points           contained in S can be 

joined by a curve that lies entirely in S.” (Mathews and Howell      )  
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Definition 1.11 (simply connected and multiply connected) 

“A domain D in   is simply connected if its complement with respect to   . A domain that is 

not simply connected is called multiply connected domain, that is, it has       ” in it.” (Zill 

and Shanahan      )  

 

Definition 1.12 (domain) 

“A domain is a nonempty open connected set in   ” (Ponnusamy      )  

 

Definition 1.13 (region) 

“A domain together with some, none or all of its boundary points is reffered to as a region in 

  ” (Ponnusamy      )  

 

Definition 1.14 (bounded and unbounded) 

“A set S is bounded in   if                 | |    whenever     else it is 

unbounded.” (Stein and Shakarchi      )  

 

Definition 1.15 (compact set) 

“ If a set S is closed and bounded then it is called compact in   ” (Zill and Shanahan      )  
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1.3 Function of a Complex Variable 

Definition 1.16 (complex function) 

Let A and B be two nonempty subset of  . A function from A to B is a rule,  , which assigns 

each             a unique element            . The number    is called the 

values of   at    and we write     (  ). If z varies in A then    ( ) varies in B. We 

also write      ,      ( ). We have two real-valued functions      ,      , 

then by defining  ( )   (   )    (   ), (   )     We obtain      , where A is 

subset of  . 

 “ In this section introduction, we defined a real-valued function of a real variable to be a 

function whose whose domain and range are subsets of the set   of real numbers. Because   

is a subset of the set   of the complex numbers, every real-valued function of a real variable 

is also a complex function. We will soon see that real-valued functions of two real variables x 

and y are also special types of complex analysis. This functions will play an important role in 

the study of complex numbers.” (Zill and Shanahan , -     )  

If    ( ) is a complex function, then the image of        under   is       . 

For example; let        and       is complex function. Then the image of z under 

        

       (    )               

 (   )          and  (   )       

Where u is real part, v is imaginary part of the given complex function. 

“A useful tol for the study of real functions in elementary calculus is the graph of the 

function. Recall that if    ( ) is a real-valued function of a real variable x, then the graph 

of   is defined to be the set of all points (   ( )) in the two-dimensional Cartesian plane. An 

analogous definition can be made for a complex function. However, if    ( ) is a 

complex function, the both z and w lie in complex plane. It follows that the set of all points 

(   ( )) lies in four-dimensional space. Ofcourse, a subset of four-dimensional space cannot 

be easily illustrated. Therefore; we cannot draw the graph a complex function.” (Zill and 

Shanahan,     )  
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Consider the real function  ( )     . We can draw the given real function in Cartesian 

plane. But if    ( )     is a complex function then the image of               , 

we have  

   (    )   (    )       

       where    , is the line     in w-plane. Finally we have     in z-plane 

mapped onto     in w-plane under     . Since        ,     this is mapped onto 

       ,     under     . 

1.4 Continuity, Differentiable and Analyticity 

Definition 1.17 (continuity) 

“ Let     be an open set and let       be a function. We say   is continuous at      

if and only if  

   
    

 ( )   (  ) 

and that is continuous on A if   is continuous at each point    in A.” (Marsen and 

Hoffman     )  

Definition 1.18 (differentiability) 

“ A complex valued function  ( ) is differentiable at    if  

   
    

 ( )   (  )

    
    

   

 (    )   (  )

 
 

exists. The function   is said to be differentiable on D if it is differentiable at every points of 

D.” (Gamelin     ). 

Definition 1.19 (analyticity) 

“ Let D be an open set in   and   is a complex valued function on D. The function   is 

analytic or holomorphic at the point      if  

   
   

 (    )   (  )
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converge to a limit. The function   is said to be holomorphic or analytic on D if   is 

holomorphic or analytic at every point of D.” (Stein and Shakarchi     )  

Definition 1.20 (Cauchy-Riemann equations) 

Properties of real and imaginary parts of the differentiable function  ( )   (   )  

  (   ) will be deduced by specializing the mode of approach. Firstly, we assume that h 

approaches to zero along the real axis 

   
   

 (   )   ( )

 
    

   

 (     )    (     )   (   )    (   )

 
 

                                                 
                                                                         

 (     )   (   )

 
     

   

 (     )   (   )

 
  

Since   is differentiable at       , then  

             
                   

 (     )   (   )

 
        

   

 (     )   (   )

 
  

must be exists. And also we know that  

             
                   

 (     )   (   )

 
 

  

  
 

and  

             
   

 (     )   (   )

 
 

  

  
  

Thus we have  

                                    ( )     
   

 (   )   ( )

 
 

  

  
  

  

  
 

  

  
                               (    ) 

Now we assume that h approach 0 along the imaginary axis. Then for      ,    is real we 

have 

   
    

 (     )   ( )

   
    

    

 (      )   (   )

   
     

    

 (      )   (   )

   
 

   
    

 (     )   ( )

   
 

 

 
   
    

 (      )   (   )

  
    

    

 (      )   (   )
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   (

  

  
  

  

  
)    

  

  
        (    ) 

 

Example 1.21 Show that the given complex function  ( )     satisfies Cauchy Riemann 

equations. 

Solution.  

 ( )     (    )             

 (   )             (   )               

                                          

                                    

  satisfies all Cauchy-Riemann equations. 

Note that since we talked about complex functions in cartesian form and polar form, now we 

will talk in terms of        ̅. We know that,        gives that 

  
   ̅

 
       

   ̅

  
 

 

If we write complex function  

 ( )   (
   ̅

 
 
   ̅

  
)    (

   ̅

 
 
   ̅

  
) 

Also we can write  

  ̅  
  

  ̅
 

  

  
 
  

  ̅
 

  

  
 
  

  ̅
 

 

 
[
  

  
  

  

  
]  

 

 
[(     )   (     )] 

and   ̅    is equivalent to the system 

                          

Thus we have following theorem. 
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Theorem 1.22 “A necessary condition for a function   to be differentiable at a point a is that 

satisfies the equation   ̅    at a.” (Ponnusamy     )  

Now, we will see, we can write CR-equations in polar form. Let   be differentiable at a point 

z. Since we can write any complex function in polar form, we have  

 (   )   (   )    (   ) 

                                                  and also                .                             (1.22) 

We have from Chain rule;  

                                                           
  

  
 

  

  
 
  

  
 

  

  
 
  

  
                                                       (    ) 

Now in 1.22 we take the derivatives x and y with respect to r and put in 1.23 and we have  

                                                          
  

  
 

  

  
      

  

  
                                                      (    ) 

Similarly, we have from Chain rule; 

                                                         
  

  
 

  

  
 
  

  
 

  

  
 
  

  
                                                        (    ) 

Now in 1.22 we take derivative x and y with respect to   and put in 1.25 and we have;  

                                     
  

  
 

  

  
 (      )  

  

  
 (     )                                                   (    ) 

Similarly, again we have from chain rule; 

                                                       
  

  
 

  

  
 
  

  
 

  

  
 
  

  
                                                        (    ) 

Now, we already have derivative of x and y with respect to  . We can put in 1.27 and we 

have;  

                                                    
  

  
 

  

  
      

  

  
                                                        (    ) 

Finally we have  
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                                                          (    ) 

Now we already have derivative of x and y with respect to    We can put in 1.29  

                                                   
  

  
 

  

  
 (      )  

  

  
 (     )                                    (    ) 

Now, we know that CR-equations in cartesian form, that is,  

                                                                                                                    (1.31) 

If we put 1.31 in 1.24, 1.26, 1.28 and 1.30 we have, 

  

  
  ( 

  

  
 (    )  

  

  
 (     ))   (

  

  
(    )  

  

  
 (    ))   

  

  
        (    ) 

  

  
  ( 

  

  
 (    )  

  

  
 (    ))    (

  

  
(    )  

  

  
 (    ))    

  

  
     (    ) 

and in 1.32 and 1.33 are called CR-equations in polar form. 

 

Example 1.23 Show that the given complex function  (   )                 satisfies 

Cauchy-Riemann equations in polar coordinates. 

Solution.  

 (   )              (   )         

                           

                                    

                                      satisfies Cauchy-Riemann equations in polar coordinates. 

CR-equations are necessary but not sufficient for derivative of a complex function. If any 

complex function differentiable then   must be satisfy CR-equations but it is conversely not 

true. We have following useful example. 
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Example 1.24 Determine   ( )  ,

  

     
       

                 
- is differentiable or not at      

Solution. We can see that  ( )    at    . 

                     

satisfies CR-equations but on the line      (   ) 

  ( )     
   

 (     )   ( )

     
    

   

    
       

     
   

doesn’t exists. Hence   is not differentiable at      

 

Theorem 1.25 “ Let  ( )   (   )    (   ) be defined in a domain D, and let 

        have continuous partial derivatives that satisfy the Cauchy Riemann equations 

                     for all points in D. Then  ( ) is analytic in a domain D.” 

(Ponnusamy     )  

 

Definition 1.26 (singular point) 

“ If a function   fails to be analytic at a point    but is analytic at some point in every 

neighborhood of   , then    is called a singular point of   ” (Churchill and Brown      )  

 

Definition 1.27 (residue) 

“ If a complex function   has an isolated singularity at a point   , then f has a Laurent series 

representation  

 ( )  ∑  (    )
 

 

  

 ∑    (    )
   ∑   (    )

 

 

   

 

   

 

which converges for all z near   . More precisely, the representation is valid in some deleted 

neighborhood of    or punctured open disk   |    |   . The coefficient     of 
 

    
 in 
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the Laurent series given above is called the residue of the function.” (Zill and 

Shanahan     )  

 

Definition 1.28 (discrete or isolated) 

“ A singular point    is said to be isolated if , in addition, there is a deleted neighborhood 

  |    |    of    throughout which   is analytic.” (Churchill and Brown     )  

 

Definition 1.29 (Taylor expansion) 

“ Let   is analytic function throughout an open disc |    |<     centered at    and with 

radius    , then at each point z in that disc,  ( ) has a series representatiton  

 ( )  ∑
  (  ) (    )

 

  

 

   

 

is called a Taylor expansion of  .” (Churchill and Brown     )  

 

Definition 1.30 (zero and pole of holomorphic function) 

“ Let   is analytic in an open domain D. If for      ( )    then z is called zero of 

holomorphic function  . We say that    is a pole of   and the smallest     such that  

(    )
   ( ) 

is bounded near    is called the order of the pole at      (                      )  

 

Definition 1.31 (meromorphic function) 

“ A function   is said to be meromorphic in a domain D if it is analytic throughout D except 

for poles.” (Churchill and Brown     )  
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Definition 1.32 (sequences and subsequences) 

 A mapping          is called a sequence. Suppose *  + is a sequence of points in   

and that *  + is a strictly increasing sequence of natural numbers Then the sequence {   
} is 

called a subsequence of *  +  

Definition 1.33 (converge uniformly) 

 Consider an open set     and a sequence of functions {  } converge uniformly to    if 

                                          |  ( )    ( )|   . Note that this   

must work for all    , it depends only on  . 

Definition 1.34 (converge normally) 

We say that {  } converge normally to    if for each compact     and      there exist 

         such that       |  ( )    ( )|   . 
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CHAPTER 2 

CONFORMAL MAPPING AND MOBIUS TRANSFORMATIONS 

 

 

The goal of this chapter is, given some basic definition, theorem and properties about 

conformal mapping and Mobius transformations. We are going to see how the last chapter is 

important. 

2.1 Conformal Mapping 

 

Definition 2.1 (homeomorphism) 

A function     ̅   ̅ is a homeomorphism if   is a bijection and if both           are 

continuous. 

 

Definition 2.2 (automorphism) 

The set of all conformal bijections  ̅   ̅ are defined by      ̅ . 

 

Theorem 2.3 If f is an analytic function in a domain D containing   , and if         , then 

       is a conformal mapping at     

Proof. Assume that   is analytic function in a domain D containing    and         . Let 

          be two smooth curves in D and    parametrized by       and    parametrized by 

     , respectively, with                 . Let        maps the curves           

onto the curves         . Let   is angle between           and   is angle between image 

of          , respectively,         . Now we have to show that    .          are 

parametrized by        (     )            (     ). Now, we compute the tangent 
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vectors   
        

  to          at        (      )   (      ). We can use the chain 

rule;  

  
    

        (      )   
               

  

  
    

        (      )   
               

  

We have already           are smooth and both   
  and   

  are nonzero. By hypothesis we 

have         . Hence,  

                    
         

                
                 

   

     (      )        
      (      )        

   

        
         

                                                                                       

                                                                                              

Therefore we completed this proof. □ 

 

Example 2.4 Find all points where the mapping           is conformal. 

Solution. Firstly we have          . Now, if we take the first derivative of the given 

function, we have,  

            

                               

     is conformal mapping at z for all                       

 

Example 2.5 Determine where the complex mapping         
  

 
  

 is conformal. 

Solution. Firstly we have         
  

 
  

. Now we take the first derivative of the given 

function with respect to z, we have,  
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Now, we have three roots of z, that is, 

      
 

 
     

 

 
 

              

            
  

 
     

  

 
 

Then we have,  

   
 

 
 

√ 

 
  

                

   
 

 
 

√ 

 
  

  is conformal mapping at z for all   
 

 
 

√ 

 
     

 

 
 

√ 

 
 . 

 

Example 2.6 Find the image  

  {         } 

under  
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Solution. Let we define  

  
   

   
 

This means that  

          

                

                      

   
   

   
 

Let        

  
      

      
 
      

      
 

                                          
                         

         
 

since       

       

         
   

            

                                         . 

Hence the image of H under   is unit disc. 
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Example 2.7 Find the image of  

  {        | |           } 

under  

     
   

   
  

Solution. Let we define  

  
   

   
 

This means that  

         

                      

 

 

  
   

   
  

Since | |    we have  

|
   

   
|    

           |   |  | |    

                    ̅             ̅     

            | |     ̅     | |     ̅    

                      ̅ 

            . 

Let         Since    , we have  
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Hence, the image of K under   is first quadrant of   plane. 

 

2.2 Mobius Transformations 

In this section we will talk about mobius transformations and their basic properties. Mobius 

transformations are very important because this transformations are basic of conformal 

mapping. 

 

Definition 2.8 Let                   and          then  

                                                                     
    

    
                                                                       

and  

                                                                        
  ̅   

  ̅   
                                                                       

is called Mobius transformation. 

2.1 is called automorphism and 2.2 is called anti-automorphism. We will discuss some basic 

properties about automorphism and anti-automorphism of   . 

 Every T anti-automorphism, it can be define composition of automorphism and 

complex conjugate transformation of     

 The composition of two anti-automorphisms is automorphism. 

 A composition of an automorphism and an anti-automorphism again anti-

automorphism. 
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 The automorphism keep constant of the magnitude of angles but inverse the direction. 

Now, in this part when we investigate mobius transformations, we will consider mobius 

transformation in form 2.1. 

        is called determinant of mobius transformation T. We must take         

because in definition of mobius transformation gives us  

                                                            
             

             
                                                  

If         then we take          . This means that T will be constant function. In 

the same time if         then T is one-to-one function. Mobius transformation 

independent to coefficient          If     { } then,             gives us  

     
      

      
 

       

       
 

    

    
 

in this manner again to get T. Therefore, we multiply numerator and denumerator of 2.1 with  

  
 

 √     
 

Then we have  

                                             
    

    
 

 

 √     
  

 

 √     
 

 √     
  

 

 √     

                                     

the determinant of 2.4 is  

(
 

 √     
 

 

 √     
)  (

 

 √     

 

 √     
)  

     

     
   

Consequently, we can take instead of          ,          . 

 

Definition 2.9 Let      
    

    
          ,           then      

 

 
 and  ( 

 

 
)  

   If                  
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Theorem 2.10 Every mobius transformation from    to    are one-to-one and onto. 

For identity transformation                        then we can write  

                                                                  
    

    
                                                                       

Hence        identity transformation is any mobius transformation. Addition to these the 

inverse mobius transformation of T is  

                                                                
    

     
                                                                       

and clearly we can say that     transformation is also mobius transformation. Therefore we 

can give the following theorem. 

 

Theorem 2.11 The set 

  {              
    

    
                  } 

is a group with respect to composition. 

 

Definition 2.12 (similarity transformation) 

                    is called similarity transformation. 

Let   {                            } is the set of similarity transformations. 

Since        then    . Addition to this we can write 

          
    

    
  

Then      

Specially H is closed with respect to composition. Then      
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Definition 2.13 (general linear group) 

  (
  
  

)
   

              is called General Linear Group and we can show in 

form        . 

 

Now, we can define relation between Mobius transformation and matrices 

            

(
  
  

)         
    

    
          

 

Theorem 2.14             is a homeomorphism. Seperately since             is 

onto,   is called epimorphism and its kernel defined as  

       {                 } 

                {(
  
  

)  
    

    
  } 

                               {(
  
  

)             } 

     ={(
  
  

)     } 

If we take     then  

       {(
  
  

)      } 

                          { (
  
  

)      } 

            {       }. 

This is proof of the following theorem. 
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Theorem 2.15  Let I is an identity matrix in form 2x2. Then kernel of homeomorphism  , 

                                                                     {       }                                                         

            two matricesdefined as the same mobius transformation in    if and only if 

       that is to say for           

A necessary of first isomorphism theorem, for   transformation             then 

                    {       } 

          is called Projective General Linear Group and we can define this         . 

Because of this, it can be           . For every             since          

               then  

                  { } 

is called homeomorphism. 

         {  (
  
  

)                  }          

the kernel set of function of determinant is called special linear group. Because of 

determinant is onto, necessary of first isomorphism theorem, we have  

                   

If           then         and for                 Since        it can be 

show this for every mobius transformation in    write in form  

     
    

    
          

Additionally, under           in         . This is proof of following theorem. 

 

Theorem 2.16                      
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2.2.1 Special types of mobius transformations 

 

Definition 2.17 (translation) 

               is called translation.The transformation translation keeps constant of 

infinity and it makes a movement on   plane. 

 

Definition 2.18 (rotation) 

               is called rotation. If     then rotation is counterclockwise, if     

then rotation is clockwise, The transformation rotation makes 0 and infinity constant. 

 

Definition 2.19 (inversion) 

     
 

 
 is called inversion. 

 

Definition 2.20 (magnification) 

                 is called magnification. 

 

The transformation magnification makes 0 and infinity constant. The transformation 

magnification affects as similarity on   plane and longtitude is expanded or shrinked by the r 

multiplier. 

 

Theorem 2.21 Every mobius transformation can write composition of translation, 

magnification, rotation and inversion. 

Proof. Every mobius transformation knows in form  
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If     then      
    

 
      . Let 

 

 
      and  

 

 
    Then  

              

therefore, we have  

                       

This transformation makes infinity constant. If     then we can use          so we 

can write  

     
    

    
 

 

 
 

 

     
 
  

 

Because of there we can write  

                             

 
            (  

 
               )       □             

                  

Definition 2.22 (Euclidean circle) 

The set of points in   satisfy |    |        are called Euclidean circle. 

The set of points in   satisfies |   |  |   |     are called Euclidean line. Euclidean 

circle or   { } are called circle in   . In there   is any Euclidean line. 

 

Theorem 2.23 If a circle in    then the image of C under mobius transformation T,      is 

a circle in     

Proof. We know that general equation of circle is  

   ̅       ̅̅̅̅            . 

the transformation in form  

     
    

    
                   

We have to show that      is a circle. 
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since    
     

     
, clearly we have  

 ̅  
    ̅̅ ̅̅   ̅

   ̅̅ ̅̅   
 

If we put        ̅ in general equation of a circle, we have  

 (
     

     
)  (

    ̅̅ ̅̅̅   ̅

   ̅̅ ̅̅   ̅
)   (

     

     
)   ̅ (

    ̅̅ ̅̅̅   ̅

   ̅̅ ̅̅   ̅
)      

Clearly we have  

     [   ̅    ̅   ̅  ̅     ̅]    ̅  [   ̅    ̅    ̅̅̅̅     ̅ ]    

  [   ̅     ̅   ̅  ̅     ̅]  ̅  [   ̅    ̅   ̅  ̅     ̅]    

In this section the coefficient of     ̅ is real. Because   ̅ and   ̅ are real. Similarly the 

coefficient of    and   ̅ are real. Because of there, image of circle under      again circle. 

 

2.2.2 Reflection 

Let C is a circle in   , which is  

   ̅       ̅̅ ̅                    

If     then C is an Euclidean circle in  . 



37 
 

Let the center of C is w and radius is r.      { }     on the line which include w and z, 

such that  

|   |  |    |    

           are on the same line. There,    is called reflection of z with respect to C. 

 

Definition 2.24 (reflection transformation) 

Let w is a center and r is radius of C.             is called reflection transformation. 

From this definition we can see the point z goes to infinity, when w approaches to   . 

Similarly, when w approaches to z,    goes to infinity. Therefore, we define           

and          . And           is continuous and magnificate to any transformation in    

in the same time. Seperately, 

    
                          

          

If                       . In other words, reflection of any points on C is itself. If    , 

then  

|  ̅   ̅        |  |   | |    |     

Since       and (       on the same line  

                   

then  

     ̅   ̅              

therefore  

           
  

 ̅   ̅
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Theorem 2.25  If          are reflect points with respect to C then the image of          

under      
    

    
, which are          are reflect points with respect to C. 
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CHAPTER 3 

HOLOMORPHIC FUNCTIONS 

 

 

This chapter is dedicated to give some definition, lemma and some theorems about 

holomorphic functions, Fundamental Theorem for Contour Integral, Cauchy’s Integral 

Theorem and its applications, such as Cauchy’s Theorem or Cauchy-Goursat Theorem, 

Bounding Theorem, Taylor’s Theorem, Cauchy’s Integral Formula, Cauchy’s Integral 

Formula for Derivatives, Cauchy’s Inequality, Cauchy Residue Theorem, Argument Principle 

Theorem, Rouche’s Theorem, Open Mapping Theorem, Maximum Modulus Theorem, 

Maximum Modulus Principle, Montel’s Theorem and Hurwitz’s Theorem, as well. 

 

Definition 3.1 (antibiholomorphic) 

If the analytic function preserve angle but not preserve its orientation then this function is 

called antibiholomorphic. 

 

Example 3.2 We have  ( )                   . We assume that the angle   has 

positive orientation. For conjugate of        ( )̅̅ ̅̅ ̅̅       . And its angle is –  . Also we can 

say,   preserve magnitude of angle but not preserve is orientation. Then   is 

antibiholomorphic function. 

Now, we are going to start useful lemma about holomorphic functions. 

 

Lemma 3.3 Suppose that     is simply connected and open that       is holomorphic 

and nowhere vanishing. Then there exists a holomorphic function       * + such that  

, ( )-   ( )              
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Proof. Let   is simply connected and open subset of    Since   is nonvanishing, we can say 

that 
  ( )

 ( )
 is also holomorphic. Then there exists a holomorphic function        such that 

                                                                     ( )     , ( )-                                                       (3.1) 

ıf we take derivative 3.1 with respect to z then we have  

                                                                     ( )  
  ( )

 ( )
                                                                   (   ) 

Since 
  ( )

 ( )
 holomorphic, then   ( ) must be holomorphic, as well. Now we choose     . If 

we put    in 3.1, we have  

 (  )     , (  )- 

Clearly, we have  

                                                                         (  )   (  )                                                             (   ) 

Now,     , from 3.2 

[ ( )    ( )]
 
   ( )    ( )   ( )   ( )    ( ) 

                         ( )    ( )   ( ) 
  ( )

 ( )
    ( ) 

       ( ),  ( )    ( )- 

                                    

   ( )    ( )  is constant. Now, from 3.3 we have  

 (  )  
  ( )    

Hence we have  

 ( )    ( )       

Finally, we have  

                                                                 ( )   
 ( )
                                                                      (   ) 
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If we take square of 3.4 

, ( )-  [ 
 ( )
 ]

 

   ( )   ( ) 

□ 

 

3.1 Cauchy’s Theorem and Its Applications 

Most of powerful theorems proved in this section. Importance of Cauchy’s Theorem lies in 

its applications. Addition to these, there is a such a good relationship between the different 

theorems. 

First we will talk about some famous theorem which are Fundamental Theorem of Contour 

Integral and Green’s Theorem. Because consequence of these theorems are very useful for 

Cauchy Integral Theorem and its applications. 

Theorem 3.4 (Fundamental Theorem for Contour Intergral) 

Let   is continuous on a domain D and      in D. Then any C in D with initial point    and 

terminal point   ,  

∮ ( )    (  )   (  )  

Proof. Let C is smooth curve and parametrized by    ( )      . Clearly,  ( )  

        ( )    . Since   ( )   ( )       we have  

                           ∮  ( )   ∫ ( ( ))   ( )   ∫   ( ( ))   ( )        
 

 

 

 

                (   ) 

We know that  

                                                       
 

  
 ( ( ))    ( ( ))   ( )                                            (   )    

If we put 3.6 in 3.5, we have 

∮ ( )   ∫
 

  
  ( ( ))   
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  ( ( ))   ( ( )) 

  (  )   (  )       

      

Theorem 3.5 (Cauchy Integral Theorem of Cauchy-Goursat Theorem) 

Suppose that a function   is analytic in a simply connected domain D and    is continuous in 

D. Then    in D such that 

∮ ( )      

Proof.  Let  ( )   (   )    (   ). Since   is analytic,  ( ) satisfies Cauchy Riemann 

equations, that is,  

                                                                                                                                    (   ) 

And also we can write          . Hence clearly we have  

∮ ( )   ∮(    ) (      ) 

 ∮(       )   ∮(       ) 

From Green’s theorem we have  

∮(       )  ∬(      )     

and  

                ∮(       )  ∬(     )                          

This means that  

                                   ∮  ( )   ∬(      )      ∬(     )                         (   ) 

If we put 3.7 in 3.8 then we have  
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                             ∮  ( )   ∬(     )      ∬(     )                           

                   ∮  ( )                                                                                    

 

Example 3.6 Use 3.5 and evaluate  

∮
   

    
   

where    |   |   . 

Solution. We have two singular points, which are     and      And also they lie in C. 

We can write again the given function in this form, that is,  

   

 (   )
 

 

 
 

 

   
 

 (   )         

                

               

            . 

Now, we have  

∮
   

    
   ∮

 

 
   ∮
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Example 3.7 Use 3.5 and evaluate  

∮
 

    
   

where    |   |   . 

Solution. We have two singular points, which are               . And also they lie in 

C. We can write again the given function in this form, that is,  

 

    
 

 

    
 

 

    
  

 (    )   (    )    

                

                   

   
 

 
   

 

 
  

We have  

∮
 

    
    

 

 
∮

 

    
   

 

 
∮

 

    
   

  
 

 
     

 

 
        

                                     

 

Remark 3.8 If     in simple closed   , then for     we have  

∮
  

(   ) 
 {

          
        

} 

Now we will apply the given remark in this following example. 
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Example 3.9 Evaluate  the given integral  

  ∮ [
 

   
 

 

(    ) 
]    

where    | |     

Solution. Firstly, we can separate the given integral  

∮
 

   
   ∮

 

(    ) 
    

We have zeros of the given functions are      and     . They are also inside | |     

From remark, we have  

                

Now, we will give some information about Bounding theorem. This is very useful for Cauchy 

Integral formula. 

 

Theorem 3.10 (Bounding Theorem or ML-Inequality) 

If   is continuous on a smooth curve C and if | ( )|       on C then  

|∮  ( )  |     

where L is length of C. 

Proof.  From triangle inequality;  

                |∮ ( )  |  |∑ (  
 )    

 

   

|  ∑| (  
 )| |   |

 

   

  ∑|   |

 

   

                    (   ) 

where      is distance between two points on C. It cannot be greater than length L of C. 

Hence we have;  

                                                              |   |                                                                        (    ) 

If we put 3.10 in 3.9 we have  
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|∮  ( )  |      

□ 

 

Theorem 3.11 (Cauchy Integral Formula) 

Let g is a holomorphic in a simply connected domain D and C is any simple closed contour in 

D. Then  

 ( )  
 

   
∮

 ( )

   
    

Proof. Suppose that D be a simply connected domain, C is a simple closed contour and a 

interior point of C. Addition to these, let    be a circle at a,    lies in C. We can write  

∫
 ( )

   
  

 

 ∫
 ( )

   
  

  

 

From 3.5, we have  

∫
 ( )

   
  

  

     

∫
 ( )

   
  

  

 ∫
 ( )   ( )   ( )

   
  

  

 

                                                                      ( )∮
  

   
 ∮

 ( )   ( )

   
                    (    ) 

Again from 3.5, we have  

                                                                          ∮
  

   
                                                         (    ) 

If we put 3.12 in 3.11, we have  

                                  ∮
  

   
      ( )  ∫

 ( )   ( )

   
  

  

                                      (    ) 
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Since g is continuous, we have      there exists     such that | ( )   ( )|    

whenever |   |     Now, if we choose for     |   |  
 

 
  then from Bounding theorem; 

we have  

                                                |∫
 ( )   ( )

   
  

  

  |  
 

 
 

    
 

 
                                     (    ) 

This happens only bif the integral is 0. Thus  

                                                           ∮
 ( )

   
       ( )                                                        (    ) 

Finallyi if we divided 3.15 side by side by      then we have  

 

   
∮

 ( )

   
    ( )  

□ 

 

Example 3.12 Evaluate  

∮
 

    
    

where    |   |     

Solution.   

              are zeros of the given function. Now, we can see      inside of C. 

Hence from Cauchy Integral formula we have;  

∮
 

    
   ∮

 

(    ) (    )
   ∮

 
    
    

   

We can choose  ( )  
 

    
 is analytic in C. 

∮
 

    
    (  )     
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Theorem 3.13 (Cauchy’s Integral Formula for Derivatives) 

Suppose that   is analytic in a simply connected domain D and C is any simple closed 

contour lying entirely within D. Then for    in C,  

  (  )  
  

   
∮

 ( )

(    )   
    

Proof. Proof by induction. We already find for     in 3.11. Now, we have to find for 

     Let C is    ( )  And clearly we have      ( )   for      . We use 3.11 

and write  

 ( )  
 

   
∮

 ( )  

   
 

 

   
∫

 ( ( ))   ( )  

 ( )   

 

 

 

Let we assume that  

 (   )  
 ( ( ))   ( )

 ( )   
 

and derivative of  (   ) equals to 

  

  
   (   )  

 ( ( ))   ( )

 ( )   
 

Now we have  

  ( )  
 

   
∫

 ( ( ))   ( )  

( ( )   ) 

 

 

 

For     is true. Now, we assume that  for     is also true. And finally we have to show 

that       is true. If we continuous, we will see it is true. □ 
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Example 3.14 Evaluate the given integral  

∮
   

  
   

On    | |     

Solution. We know that     is singular point of the given function and     lies in 

   | |     

∮
 ( )

(   )   
   ∮

   

(   )   
   

   

  
     ( ) 

We have  

 ( )      

  ( )       

   ( )       

    ( )       

If we put 0 instead of z, then we have     ( )     Then  

∮
   

(   )   
   

   

  
   

   

 
 

 

Example 3.15 Evaluate the given integral  

∮
   

       
   

where    | |     

Solution. We know that     is pole of order 3 and       are singular point of the given 

function and only     lies in    | |     Then we have  

∮
   

  (    )
   ∮
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∮

   
    
    

   
   

 
   ( ) 

We have  

 ( )  
   

    
 

  ( )  
    

(    ) 
 

   ( )  
    

(    ) 
 

If we put 0 instead of z.  

   ( )  
   

 
 

then we have  

∮

   
    
    

   
   

 
 (

   

 
)  

 (    )

 
 

 

Now we will talk about Taylor’s theorem. Because its application very useful for Cauchy’s 

Inequality. 

 

Theorem 3.16 (Taylor’s Theorem) 

Let  ( ) be analytic in a domain D whose boundary is C. If    is a point in D, then  ( ) may 

be expressed as  

 ( )  ∑
  (  )

  
(    )

 

 

   

 

and the series converges for |    |     where   is distance from    to the nearest point on 

C. 
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Proof. Suppose that circle   . From Cauchy Integral Formula  

                                                               ( )  
 

   
∮

 ( )  

   
                                                      (    ) 

Let |    |    

  |    |  |    |    

 

   
 

 

    
 [

 

  
    
    

] 

 
 

    
[  

    
    

 (
    
    

)
 

 (
    
    

)
 

   (
    
    

)    
(
    
    

) 

  
    
    

] 

 ( )  
 

   
∮

 ( )

   
   

(    )

   
∮

 ( )  

(   ) 
   

(    )
   

   
∮

 ( )  

(   ) 
    

where  

   
 

   
∮(

    
    

)
  ( )

   
   

But from 3.11 we have  

 ( )   (  )     (  )(    )    
    (  )

(   ) 
(    )

       

   
   

      

Let | ( )|    on   . Then we have  

   
 

  
∮ |

    
    

|
 

|
 ( )

   
| | |  

 

  
.
 

 
/
 

∫
|  |

|   |
 

 

|   |
 

 

|    |  |    |
 

 

   
 

   
 

   (   )
.
 

 
/
 

∮|  |  
   

   
.
 

 
/
 

 

Since    ,  
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.
 

 
/
 

   

Hence,  

∑
  (  )

  
(    )

  

 

   

 

□ 

 

Theorem 3.17 (Cauchy’s Inequality) 

Let     be open and let       be a holomorphic function. Suppose that     and that 

for some     we have  (   )̅̅ ̅̅ ̅̅ ̅̅ ̅     Set         (   )̅̅ ̅̅ ̅̅ ̅̅ ̅| ( )|. Then for       we have;  

|
   

   
( )|  

    

  
  

Proof. Now, we assume that    ,   -    (   ) be the (counterclockwise) path around the 

boundary of the disc  (   ). For     , from Cauchy Integral Formula for derivatives, we 

have;  

 

                                                  
   

   
( )  

  

   
∮

 ( )  

(   )   
                                                    (    ) 

Now, we compute  

|∮
 ( )  

(   )   
|  |∫

 ( ( ))

( ( )   )   
 
  

  
   

 

 

| 

from triangle inequality;  

                |∫
 ( ( ))

( ( )   )   
 
  

  
   

 

 

|  ∫ |
 ( ( ))

( ( )   )   
|  |

  

  
|

 

 

                          (    ) 

      ,   -

| ( ( ))|

| ( )   |   
∫ |

  

  
|    
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The length of path   is    . If we put this length in 3.18, then we have  

             |∫
 ( ( ))

( ( )   )   
 
  

  
   

 

 

|       ,   -

| ( ( ))|

| ( )   |   
                               (    ) 

Now, if we take the absolute of 3.17 then  

             |
   

   
( )|  |

  

   
∮

 ( )  

(   )   
|  

  

  

     ,   -| ( ( ))|

|   |   
                          (    ) 

From assertion we know that  

                                                 ,   -| ( ( ))|                                                                (    ) 

Finally, if we put 3.21 in 3.20, then we have  

|
   

   
( )|  

  

  
 

 

    
     

    

  
 

□ 

 

Theorem 3.18 (Cauchy Residue Theorem) 

“Let C be a simple closed contour,  described in the positive sense. If a function   is analytic 

inside and on C except for a finite number of singular points    (           ) inside C, 

then  

∮ ( )      ∑        ( )

 

   

   

(Churchill and Brown,     )  

 

Example 3.19 Use 3.18 and evaluate the given integral  

∮
  

(   ) (   )
 

where    | |   . 
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Solution. We can see there only     lies in | |     We have  

 

(   ) (   )
 

 

(   ) 
 

 

      
 

                                        
 

(   ) 
 ( 

 

 
)  

 

  
   
 

 

                                                                         
 

(   ) 
( 

 

 
)  [  

   

 
 (

   

 
)
 

  ] 

                                       
  

 ⁄

(   ) 
 

  
 ⁄

   
 

 

 
   

This means that  

   , ( )  -  
 

 
 

Hence  

∮ ( )    
 

 
      

  

 
  

 

Example 3.20 Use 3.18 and evaluate the given integral  

∮
  

    
 

where    |   |     

Solution. Only     lies in C. Then we have  

 

    
 

 

(   ) (   )
 

 
 

   
 

 

     
 

         
 

   
 (

 

 
)  
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 (

 

 
)  [  

   

 
 

(   ) 

  
  ] 

             
 

 ⁄

   
 

 

  
 

   

  
   

    , ( )  -  
 

 
 

∮ ( )   
 

 
     

  

 
  

 

3.2 Zeros of Holomorphic Functions 

In this section, we will demonstrate the zero of holomorphic functions which are not 

identically zero are isolated. 

 

Theorem 3.21 Let     be connected and open set and let       be a holomorphic. If   

is not identically zero, then the zeros of   are isolated. 

Proof. Firstly, assume that   is not identically zero. We have two cases: 

Case 1: Let   has no zeros. This is trivial solution. 

Case 2: Suppose that   has zeros. Let    be a zeros of  . Then 

     {      (
 

  
)
 

 (  )   }  

From assertion we know that   is holomorphic, and also Taylor’s theorem, we can say that  

 ( )  ∑(
 

  
)

 

   

 

 (  ) 
(    )

 

  
     (   ) 

Similarly,  

                                           ( )  ∑(
 

  
)

 

   

 

 (  ) 
(    )

   

  
                                             (   ) 
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From 3.2 we can say that g is holomorphic on D and so g is continuous on D. From 

.
 

  
/
 

 (  )   , we have  (  )   . Since  (  )    

             (    ) 

|    |      | ( )   (  )|  | (  )| 

We know that g has no zero in  (    ). Also we have  

 ( )   ( ) (    )
      (    ) 

 ( )          

Hence all zeros of   must be isolated. □ 

 

Lemma 3.24 Let     be open, and     with  (   )̅̅ ̅̅ ̅̅ ̅̅ ̅   . Assume that   is a 

holomorphic function on U which a zero of order n at q and no other zeros in   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅. Then  

 

   
∮

  ( )

 ( )
      

Proof. Consider  

 ( )  
 ( )

(   ) 
 ∑

 

  

   

   
( )(   )   

 

   

 

since  ( )  
 ( )

(   ) 
, clearly 

 ( )   ( ) (   )  

where  ( ) is an analytic and nonzero at q. Now, if we take derivative of f with respect to z, 

we have  

 ( )    ( ) (   )     ( ) (   )    

Clearly we have;  

                                
  ( )

 ( )
 

  ( ) (   )     ( ) (   )   

 ( ) (   ) 
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  ( )

 ( )
 

 

   
 

 
  ( )

 ( )
  is holomorphic and nonzero on  (   )̅̅ ̅̅ ̅̅ ̅̅ ̅. By Cauchy Integral Theorem; we have  

∮
  ( )

 ( )
   ∮

  ( )

 ( )
   ∮

 

   
   

clearly,  

 

   
∮

  ( )

 ( )
      

□ 

 

Theorem 3.25 (Argument Principle Theorem) 

If   is analytic and nonzero at point of a simple closed positively oriented contour C and is 

meromorphic inside C, then 

 

   
∮

  ( )

 ( )
     ( )    ( ) 

where    ( ) and   ( ) are respectively, the number of zeros and poles of   inside C. 

Proof. Suppose   is an analytic and nonzero function. Assume that  

 ( )  
  ( )

 ( )
 

Since   is an analytic, G is an also analytic and nonzero there. Consider    inside C that is 

zero of   of order m. Then we know that   can be written 

 ( )  (    )
   ( ) 

where  ( ) is analytic and nonzero at   . Now, if we take derivative of   with respect to z, 

we have,  

  ( )    (    )
     ( )  (    )

    ( ) 

From this, we have  
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 ( )  
  ( )

 ( )
 

                                                                           
  (    )

     ( )  (    )
    ( )

(    )   ( )
 

                           
 

    
 

  ( )

 ( )
  

Since 
  ( )

 ( )
 is analytic at   , this representation shows that G has a simple pole at    with 

residue equal to m. Now we have two cases:  

Case 1: If f has a pole of order k at   , then  

                                                                           ( )  
 ( )

(    ) 
                                                  (    ) 

where  ( ) is analytic at    and  (  )     We already have  

 ( )  
  ( )

 ( )
 

Take the derivative of 3.23 with respect to z 

                                               ( )  
  ( ) (    )

     ( ) (    )
   

(    )  
                    (    ) 

If we put 3.24 in 3.23 we have, 

 ( )  

  ( ) (    )
     ( ) (    )

   

(    )  

 ( )
(    ) 

  
 

 
  ( )

 ( )
 

 

    
 

Since 
  ( )

 ( )
 is analytic at   , we find that G has a simple pole at    with residue equal to 

minus k. Finally by Residue theorem, the image of G around C must equal      

∮ ( )   ∮
  ( )

 ( )
      [  ( )    ( )]  



59 
 

Case 2: If f has no poles inside C, then   ( )    and we have  

 

   
∮

  ( )

 ( )
     ( ) 

where   ( ) is the number of zero of f  inside C. □ 

Now, we can say that our job will be easier because of Rouche’s Theorem. Now we will see 

that applying to this theorem is very useful for Open Mapping Theorem. 

 

Theorem 3.28 (Rouche’s Theorem) 

Suppose  ( ) and  ( ) are analytic inside and on a simple closed contour C, with  

| ( )|  | ( )| 

on C. Then  ( )   ( ) has the same number of zeros as  ( ) inside C. 

Proof. Firstly we take the absolute value of  ( )   ( )  We have  

| ( )   ( )|  | ( )|  | ( )| 

Since  ( ) has no zero on C we can divide both side by | ( )|, then we have  

| ( )   ( )|

| ( )|
 |

 ( )

 ( )
|          

for     
 ( )

 ( )
 cannot be equal to zero. The image of C is    under the mapping 

 ( )

 ( )
 doesn’t 

contain ,   ) and the function defined by  

 ( )     
 ( )

 ( )
   |

 ( )

 ( )
|      

 ( )

 ( )
 

                    . 

where 
 ( )

 ( )
        and        is analytic in a simply connected domain    in   . 

  ( )  
  ( )

 ( )
 

  ( )

 ( )
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so  ( )     
 ( )

 ( )
 is antiderivative of 

  ( )

 ( )
 

  ( )

 ( )
      .    is closed curve in     From 

3.5 we have  

∮[
  ( )

 ( )
 

  ( )

 ( )
]    ∮

  ( )

 ( )
   ∮

  ( )

 ( )
   

                         

                          □ 

 

Example 3.29 Use 3.28 and determine the number of zeros of the given function  

 ( )           

where | |     

Solution. Let  ( )     and  ( )       that is,  ( )   ( )   ( )  

| ( )|  | |          

                                  | ( )|  |    |   | |             

      | ( )|     | ( )|        

 ( ) has seven zeros on | |     

 

Example 3.30 Use 3.28 and determine the number of zeros of the given function  

 ( )          

where | |   . 

Solution. Let  ( )     and  ( )         We have  

| ( )|  |  |  | |        

           | ( )|  |     |   | |        

this means that  
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| ( )|        | ( )| 

Hence from 3.28  ( )     ( ) have five zeros inside | |     

 

Theorem 3.31 (Open Mapping Theorem) 

A nonconstant analytic function maps open sets onto open sets. 

Proof. Let     be open set. Now, we suppose that       be analytic and nonconstant at 

    We have to show that  ( ) is open. Let we choose     such that we define new 

function, that is  ( )   ( )     is analytic in  (    )̅̅ ̅̅ ̅̅ ̅̅ ̅̅  and it has no contain zero on 

|    |   . Now, we will show that M be the minimum value of | ( )| on |    |   . 

We will show that  

 (    )   ( ) 

Let     (    ). Then we have  

|     |    | ( )    | 

From 3.28;  

( ( )    )  (     )   ( )     

 ( )     and  ( )     have the same number of zeros in  (    ). Since  ( ) has at least 

one zero, then we can say that  ( )     has at least one zero, as well. Since    is arbitrary, 

we must have  

                                                (    )   ( )                                                                   □ 

Open Mapping Theorem has two results:  

 

Corollary 3.32 (Maximum Modulus Principle) 

Let     be open and connected and   is a holomorphic on U. Let      such that 

| ( )|  | ( )|       Then   is constant. 
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Proof. Suppose that     be open and connected and   is a holomorphic on U. Pick      

Since   is bounded we have  

| ( )|  | ( )|    

Since f  is holomorphic function, by Cauchy’s Inequality, we have  

|  (  )|  
 

 
 

   
   

 

 
    

|  (  )|      (  )   . Hence   is constant. □ 

 

Corollary 3.33 (Maximum Modulus Theorem) 

Let     be bounded, open and connected. Let   be a function which is continuous on  ̅ 

and holomorphic on U. Then the maximum value of | | must occur on   . 

Proof. Since  ̅ is compact, | | must occur on   ̅. We have two cases. 

Case 1: Suppose that f  is constant. If   is constant, result is obvious. 

Case 2: Suppose that   is nonconstant. Since   is nonconstant from Maximum Modulus 

Principle   cannot have a maximum on U, so it must occur on  ̅  □ 

 

3.3 Sequences of Holomorphic Functions 

We will discuss a few result concerning sequence of holomorphic function. In this section we 

will talk about Hurvitz’s Theorem. Because this is very useful for prove that the function is 

injective. Additon to these we will talk about Montel’s Theorem. Because this is central key 

for Riemann Mapping Theorem. 
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Theorem 3.36 (Montel’s Theorem) 

Suppose that     is open and that F is family of uniformly bounded holomorphic functions 

on U. Then for every sequence {  }    there is a subsequence {   } which converges 

normally to a holomorphic function     

 

Theorem 3.37 Let     be open and      Let F be a family of holomorphic functions 

     (   )  ( )     Then there is a sequence {  } in F which converges normally to a 

holomorphic function        (   )  such that |  ( )|  |  
 ( )|       

Proof. Let  

     *|  ( )    |+ 

there exists {  }    we have |  
 ( )|     From assertion we have each function map to unit 

disc. Hence {  } bounded uniformly 1. From 3.36, subsequence {   } converge normally   . 

From application of 3.31 and 3.36 we know that {|   
 ( )|} converge and uniformly bounded,  

{|   
 ( )|}  |  

 ( )|  

If we choose |  
 ( )|   , then proof is completed. □ 

 

Theorem 3.38 (Hurwitz’s Theorem) 

Let     be open and connected. Suppose that {  } is a sequence of nonvanishing functions 

which are holomorphic on U. If this sequence converge normally to a holomorphic function 

  , then    nonvanishing or       

Proof. We assume that      but it vanishes at     with multiplicity n. Since zeros of   

are isolated, we have     such that  (   )̅̅ ̅̅ ̅̅ ̅̅ ̅    and    nonvanishing on  (   )̅̅ ̅̅ ̅̅ ̅̅ ̅  * +. 

From theorem 3.25, we have  

                                                         
 

   
∮

  
 ( )

  ( )
                                                                   (    )  

Since   , we have  
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∮

  
 ( )

  ( )
                                                                   (    ) 

We know that {  } and {   } are converge uniformly to    and     on   (   )  3.25 must be 

converge uniformly to 3.26. Its contradiction because n is nonzero positive integer. Hence we 

have if      then    is nonvanishing. □ 

Now, we are going to talk about Schwarz Lemma and its corollary. They are very important 

application for Riemann Mapping Theorem. 

 

Lemma 3.39 (Schwarz Lemma) 

Let    (   )   (   ) be analytic function which maps the unit disc  (   ) to itself. If 

 ( )    then  

| ( )|  | | for   | |    

    |  ( )|     

Proof. Let  ( )  
 ( )

 
  Then g is analytic for   | |    and it has singular point at      

since  ( )     It becomes analytic at 0 if we define  

 ( )     
   

 ( )

 
   ( ) 

fix      , for | |    

| ( )|  |
 ( )

 
|  

 

 
 

from Maximum Modulus Theorem for analytic g, it follows that | ( )|  
 

 
 for | |   . Fix 

   (   ) and let      to get  

| ( )|    

This is true     (   ) and  

|
 ( )

 
|      | |    
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         | ( )|  | |      (   )  

If | |    then  

| ( )|    

| ( )|  |  ( )|     

□ 

 

Corollary 3.40    (   )   (   ) conformal. There exists | |    and    (   ) such 

that  

 ( )   
   

   ̅ 
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CHAPTER 4 

RIEMANN MAPPING THEOREM 

 

 

The goal of this chapter is Riemann Mapping Theorem. In this chapter we are going to talk 

about this theorem and its importance. This means that, we will show that              are 

biholomorphically equivalent. 

 

Theorem 4.1 Let U be a simply connected domain and     but never    . Then 

        . 

Proof. Assume that U be a simply connected domain and    . We have to show that 

             are biholomorphically equivalent. Let fix    . We consider            

injective holomorphic function such that       . Now, we assume that F be a family of  . 

Firstly, we have to show that F is nonempty. We choose any     and we define new 

function         . We already shown in lemma 3.3, we can find a holomorphic function 

                   

Pick some       . From lemma 3.3, since   is nonconstant and holomorphic we can 

apply theorem 3.31. 

                          . 

From assertion, since   is one-to-one, if                             then      . 

This implies  

            =   

then we can write  

     
 

 [      ]
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We have  

|      |                

Hence           . 

We know that   is one-to-one. Clearly, f is also one-to-one. Hence      . Secondly, 

since    , in order to find any functions which are biholomorphic between             . 

We can use theorem 3.37 we have {  } a sequence in F converge normally to             

such that         . So  

|  
    |        | 

    |. 

Now, we want to prove injectivity. Therefore we will apply theorem 3.38. If we show 

             is not identically zero then that is enough for injectivity. For every    , we 

define  

                        {  } 

From assertion we have for every  , all    are one-to-one. And also every    nonvanishing on 

  {  }  

This means that    is one-to-one. In order to prove that           we must show that    is 

onto. Suppose that    is not onto then there exists          which is not contained in image 

of   . Now we will see that Mobius transformations are very important to this. Now, we 

consider new function on  , that is  

                                                             
       

   ̅     
                                                                         

 

Clearly,   is one-to-one and nonvanishing and maps to unit disc. Since U is simply 

connected domain from lemma 3.3 we can find a holomorphic function  

                                                                                                                                                      

Now, we use Mobius transformations and we can define  
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      ̅̅ ̅̅ ̅̅ ̅    
                                                           

Clearly,            holomorphic and       . Hence      Now we are going to show 

that  

|     |  |  
    | 

Now we take derivative of 4.3 with respect to z, that is,  

                           
          ̅̅ ̅̅ ̅̅ ̅                ̅̅ ̅̅ ̅̅ ̅          ̅̅ ̅̅ ̅̅ ̅     

[      ̅̅ ̅̅ ̅̅ ̅     ]
            

 

                            
     [           ̅̅ ̅̅ ̅̅ ̅ ]      ̅̅ ̅̅ ̅̅ ̅ [         ]

[      ̅̅ ̅̅ ̅̅ ̅     ]
                          

Now if we put p instead of z in 4.4, then we have  

      
      [           ̅̅ ̅̅ ̅̅ ̅]

[      ̅̅ ̅̅ ̅̅ ̅     ]
  

      
     

[      ̅̅ ̅̅ ̅̅ ̅     ]
 

                                                          
     

  |    | 
                                                             

Now we take absolute value of 4.5, we have  

                                              |     |  |
     

  |    | 
|                                                            

From assertion, if we take derivative of 4.2 with respect to z, then we have  

                                                                                                                            

If we put p instead of z in 4.7 then we have 
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Clearly we have  

                                                               
       

      
                                                                         

Again from assertion we have        . If we put p instead of z in 4.1, we have  

     
       

   ̅      
 

Clearly we have  

                                                                                                                                                      

Now we put p instead of z in 4.2 then  

                                                                                                                                                 

If we put 4.9 in 4.10, then we have  

                                                                                                                                                  

We take absolute value both side of 4.11, we have  

                                                               |     |  | |                                                                         

If we take square root of 4.12 then we have 

                                                              |    |  √| |                                                                         

Now, we take absolute value of 4.2 then we have  

                                                             |    |  |    |                                                                     

Note that from assertion  

                                                                                                                                                        

Now, we put 4.2, 4.5, 4.11, 4.13, 4.14 and 4.15 in 4.6 we have 

|     |  |
     

  |    | 
|  |

    
      

  |    |
| 
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|     |  
     

   |    |       
 

|     |  |
  

     [   ̅   
    ]   ̅   

     [  
     ]

[   ̅      ]            |    | 
| 

Since         

|     |  |
  

             
      ̅     

                |    | 
| 

|     |  |
  

        | |  

          | | 
| 

|     |  |
  

        | |     | | 

          | | 
| 

|     |  |
  

        | | 

  √| |
| 

We can see there  

  | |

 √| |
   

So we have  

|     |  |  
    | 

Its contradiction.    is onto. Since one-to-one and onto then     exists and holomorphic too. 

So we have    is biholomorphic functions which is            . Proof is completed. □ 

 

Example 4.2 Let             be biholomorphic. For              { } such that 

      . We want a biholomorphic function which maps a to a zero. 

Solution. We know that from 3.40                 conformal. Then there exists | |    

and          such that  

      
   

   ̅ 
 



71 
 

for this question we assume    . And we have Mobius transformation;  

     
   

   ̅ 
 

We know that every Mobius transformations are biholomorphic and composite of mobius 

transformations again biholomorphic. Clearly,              . We can see there this is 

one-to-one. Now, we have to show that this function takes a to zero. 

       
      

   ̅    
 

Since       , we have  

       
      

   ̅    
 

   

   ̅ 
    

□ 

 

Example 4.3 Find a conformal bijection mapping   {     | |             } to 

       such that 
 

 
 to 0. 

Solution. Let       is analytic such that  

     
   

   
  (

 

 
)  

     

 
 

we can see there the image of that 
 

 
 in second quadrant of  . Let  

  
   

   
 

  
   

   
  

Let        . Since | |   ,  

|   |  |   | 

          ̅            ̅  



72 
 

   ̅              

   . 

since        

  [
      

      
 
      

      
]    

                [
          

         
]    

           . 

Secondly we can define a new function             conformal except 0. We can see there 

the image of second quadrant of   is  

                      

                                . 

Since                   then  

           

                      

Finally, we can define new analytic function  

       
     

     
  

we will find image of         under this function. That is; 

    
     

     
 

             
     

     
  

Since         we have;  

  [ 
     

     
]    
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  [
            

          
 
          

          
]                                             

         
                         

               
                                           

                                                                                                                        

                                                                                                        

 

This is       . Now, we take compositon f, g and h; 

           
*
   
   +

 

  

*
   
   +

 

  

 

                           
              

              
 

                
        

        
  

We can see that  

       (
 

 
)   

 

 
 

But we want to make 0. From 3.40 we have for any a in lower half plane then the map 

   

   ̅
 

Will suffice as a replacement for h. We can see there  

     (
 

 
)  

      

  
  

If we change       

 ̃  
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Finally if we compose f, g and  ̃ then we have  

  ̃         
  *

   
   +

 

      

  *
   
   +

 

      

 

This is conformal bijection and ( ̃    ) (
 

 
)      

□ 
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CHAPTER 5 

CONCLUSION 

 

 

Finally, instead of working in complicated spaces, Mobius transformations and Riemann 

Mapping Theorem provides easier ways to find holomorphic functions between known 

spaces. In my future life I would like work on this subject. 
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