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ABSTRACT

Eventhough, real differential functions are one of the main subject of real analysis, they are

also take place in the centre of complex functions theorem.

Functions which are both holomorphic and bijective, are called biholomorphic functions. If
two spaces have biholomorphism between them, then these two spaces are biholomorphically

equivalent.

Biholomorphically equivalence is very important in complex analysis, because instead of
working on complicated spaces, we can work on simpler work on known spaces.

For example, suppose U and V are both open subsets of C. If f:U — V and mapping is
biholomorphic, then gof:U — C must be holomorphic in order to make g:V — C function

holomorphic.

Basically, in comlpex functions theorem, spaces which are holomorphically equivalence are
identical.

Riemann Mapping Theorem is a big result for sufficient of conditions of biholomorphic
equivalence in complex function theory. Riemann Mapping Theorem provides an easy way
for building biholomorphically equivalence. It quarantees the presence of biholomorphic
functions and it also shows that, building biholomorphic transformations between spaces is

unnecessary.

Keywords: Biholomorphically equivalent, Open Mapping Theorem, Montel’s Theorem,
Hurwitz’s Theorem, Mobius Transformations, Conformal Mapping, Riemann Mapping

Theorem.



OZET

Her nekadar reel diferensiyellenebilir fonksiyonlar reel analizin temel konularindan biri ise
de, holomorfik fonksiyonlar, karmasik fonksiyonlar teorisinin merkezinde yer alirlar. Burada
holomorfik ve birebir ve ilizerine olan fonksiyonlara biholomorfik fonksiyonlar denilecektir.
Aralarinda biholomorfizm olan iki uzay biholomorfik esdegerdirler.

Karmasik analizde biholomorfik esdegerlilik 6nemlidir. Ciinkii bu sayede yapist hayli karisik

olan bir uzayla calismak yerine, yapisi daha yakindan bilinen bir uzay1 alarak calismak

miimkiin olabilmektedir. Ornegin, U ve V, C nin agik alt kiimeleri oldugunu varsayalim.

Eger f : U — V doniisiimii biholomorfik ise bu durumda herhangi bir g : U — C fonksiyonun

holomorfik olmasi icin gerek ve yeter kosul, go f : U — C bileske foksiyonunun holomorfik

olmasidir .

Temelde karmagik fonksiyonlar teorisinde holomorfik olarak esdeger uzaylar aslinda 6zdestir-
ler.

Karmagik fonksiyonlar teorisinde Riemann doniisiim teoremi, biholomorfik esdegerlik i¢in
hangi kosullarin yeterli olacagini belirtmesi bakimindan ¢ok onemli biiylik bir sonuctur.
Uzaylar arasinda biholomorfik doniisiimler ingaa etmek genellikle zordur.

Riemann doniisiim teoreminin sagladig1 kolaylik belirli tipten uzaylar arasinda biholomorfik

fonksiyonun varligin1 garanti etmesi ile artik uzaylar arasinda biholomorfik doniisiimler insaa

etmenin gereksiz olacagidir.

Anahtar Soézciikler: Biholomirfik Esdegerlik, Acik Doniisim Teorisi, Montel Teorisi,

Hurwitz’s Teorisi, Mobylis Doniigiimleri, Konform Doniistimler, Riemann Déniisiim Teorisi.



CHAPTER 1
INTRODUCTION TO COMPLEX NUMBERS

The goal of this chapter is to understand complex numbers, complex functions and their
properties. The chapter is written in order to explain the main topic of my dissertation. The
difference between complex functions and real functions are mentioned and suitable
examples are given. Later on this chapter, topologic properties of complex planes are
discussed. The most importantly, we will see derivatives of complex functions and we will

also talk about what are the conditions on these subjects.

1.1 Definition of Complex Numbers

We can represented complex number in cartesian form, polar form and spherical form.

1.1.1  Cartesian form

Let

C = {(x,y):x and y are in R}.
We call T the set of all complex numbers. This means that z = (x,y) = x + iy is complex
number, where x,y € Rand i € C, and x is called the real part of the given complex number,
which is

Rez = x.

and similarly y is called the imaginary part of the given complex number, which is
Imz =y.

Addition to these Z is called conjugate of z, which is,
Z=x-—1y.
and the modulus of a complex number z , that is

|z| = /%% + y2.



and also this is positive real number.

We will talk about some basic properties of complex numbers in cartesian form. Assume that

74,724,235 € C, which are, z; = x; +iy;,2, = x5 + iy, 23 = x3 + iy3 where all components

ofall zarein R.

If z, =z, then we have

X, tiyr =%, +iy, © x3 =xandy; = y,.

o Ifz, =z,and z, = z3 then z; = z3.
Forz =x + iy where x,y € Rand i € C then

1 1 x—=iy x Ly

e The conjugate of Z; is equal to z;. That is

=X, — WYy, = 2.

|

o |z|?=2z.7.
From assertion, we have z, = x; +iy; and clearly z; = x; — iy;.
z1.71 = (x1 + iy). (X1 — iy1)
=x;2 —ix0.y1 +ix. Y + Y12
1 1-V1 1-Y1 TV

=x? +y1°

We know that
|zy| = /%1% + ¥12
If we take square 1.2 side by side, then we have

|z, 12 = %12 + y,°

We can see that 1.1 and 1.3 are equal. Finally, we have

= = = —1 .
z x+iy x?2+y? x*2+y? x2+y?

(1.1)

(1.2)

(1.3)



|Z1|2 = Z1.73.

e |Rez;| < |z;| and |Imz;| < |z,]
o 7] =z
o |z1.7;| = |z4]. |25]

o |z, +7z,| <|z4| + |zz|. This is called triangle inequality.

Since Rez = x and Imz = y then we have

zZ+Z d _Z—Z_
2 Y=

X =

|z| = 0ifand onlyifz = 0.
Re(Zl i Zz) - R6’21 i RBZZ.

Im(Z1 i Zz) = Ile i ImZZ.

= =l \where |z,| # 0.

|25]

Z1
Z2

1.1.2 Polar form

Suppose that r = |z|and @ is argument of any complex number z = x + iy, then,
x =rcosf and y = rsinf.
and z = r(cos@ + isin®) is called polar form of z.
— — [r2 2 = Y) = i inci
Clearly, r = |z| = /x? + y? and § = tan (x) = Argz. Argz is called principle argument,
where 0 < 6 < 2m. Then

argz = Argz + 2km where k € Z.

T

For example, let z = 2 + 2i and we have r = |z| = V22 + 22 = 22 and also 6 = -
Vs T
z=2/2 (COSZ + isinz).
is polar form of z = 2 + 2i.

Now, we talk about some basic properties of complex numbers in polar form. Let

z, = 1,(cosO, + isinb,)andz, = r,(cosb, + isinb,).



o 7,.2, =1.15(cos(0; + 6,) + isin(6; + 6,).
o Z=1 (cos(8; — 6,) + isin(6; — 6,))where z, # 0.
Zy Ty

o arg(z,.z,) = argz; + argz,.

e arg C_1) = argz, — argz,where z, # 0.
2

Example 1.1 Find Argz and arg z where z = /3 — i.

Solution. We have z lies in fourth quadrant of complex plane. The modulus of z is
lz| =v3+1=2.

Since z lies in fourth part in C, the principal argument of z is equal to Argz = 117” We know
that, argz = Argz + 2km where k € Z. And finally we have,

11m
argz = —— + 2km, k € Z.

1.1.3 Stereographic Projection

Let Z(x,y,0) is any point in C. Through the points N and Z we draw the straight line NZ
intersecting the sphere S at a point A(xy,x2,x3). Then A is called the stereographic

projection. Consider the unit sphere S in R3, that is
S = {(xll xZ) x3): x12 + x22 + x32 = 1}_

Equation of the line M passing through Z and N



M = {(xl,xz,x3): ((1 —t)x, (1 —-1t)y, t), te ]R}
AZ = t(N - 2)
A—Z7Z=Nt—7t
A=Nt+(1—-1t).z
A=00Dt+(1-1t).Z
A={1-t)x,(1—-t)y,t):t € R}
Then we must have
1-t)2x?2+ (A —-t)%>y2+t2=1
1-t)?(x2+y>)+t2=1
(1-1t)?|z]*=1-t>

|z|? =1 =t(lzI* + 1)

= @
We have
x=0-t)x (1.5)
If we put 1.4 in 1.5 then we have
n = (1=l
_[lz2P+1-z7 + 1
1= l lz|2 + 1 l
2x 2Rez
TR+ 2P+ 1 (1.6)
Similarly, we have
x; =1-0)y (1.7

If we put 1.4 in 1.7, we have,



2y 2Imz

= = 1.8
*2 IzI7+1 |z]?+1 (18)

And so we have clearly
_zP -1 (19)

Xop = ———
T zI2 41

From 1.6, 1.8, and 1.9 we have

2x 2y z]?-1
A(xy,x2,x3) = .

lz|2+1"|z]2+ 1" |z|2+ 1

Example 1.2 Write the given complex number z = ﬁ in three form of complex numbers.

Solution. Now, we multiply numerator and denumerator of the given number with 1 — i then

we have

i i 1-i
zZ = T = T ;
1+i 14+i 1-i

=P _1+i_1+i
12412 2 2 2

VA

This is the cartesian form of the given z. Now, we compute 6 and r, which are;

1 1 V2
— — 2 2 —
r = |z] (2) +(2) >
and
0= A (1+i)_7r
—A8\T2) T,
Therefore

I I
z= T(COSZ + isinz)

this is polar form of the given z. And finally,



TlzlP+1 (@)2+1 % 3
oY 2% 12
, = - -z
T 1
o1 _3-1_ 1
x3_|z|2+1_%+1_ 3

Therefore (22 - g) is the spherical form of the given z.

Definition 1.3 C,, = C U {oo} is called the extended complex plane.
In general if for z € C, z = A(xy,x5,x3) on S \ N then

KZ
1+ K2

|z| > K = x3 >

KZ

<K = <——
Izl ST Ke

Under stereographic projection, we have

1
|Z|<1 (=4 X3 <E = X12+x22<Z

1
z| > 1 & x5 > = x12+x22>Z
|z| = 1 < this is the equator z = Z.

Now we assume that (x,, Vn,Z,) IS @ sequences of S which converge (0,0,1) and let {z,,*} be

the corresponding sequence of points in C. Now, we show that if |z,"| » oo then

(an Yn: Zn) - (0,0,1)

Let z,* = x," + iy,



If |z,"| » o we have

2%,
Xp =75 ——
"ozt +1

__ %)
PR

_ |Zn*|2 -1

Iy = "T——5 .
"ozt 41

. 2"
lim To w12 L1 =0
|zn*l>e0 |2, *]2 + 1
2 *
i 2%
|zn*l>e0 |2, *]2 + 1
lan'P-1 _ 4

limyz, o0

zZn 12+1
n*2+1

Now, if we show @ () = N, then we say that @ is a continuous function.

at |z| = oo we have

X

2y zIP-1

2
0(z) = , ,
(2) CEr T+ 1 2F+1

_ 2x _ 2x —0
S PP S
27 1z2P4+1 o+1
1 1
2 -

O O i N el
377002 = = =1

l2l* +1 |z|2(1+#) 14—

Hence © (o) = N, which show that @ is a continuous function. Now we can define a function

®: C — S. We can see that O is one-to-one and onto. Hence ® has inverse function, which is

071:5 > C.Weknowthat x; = (1 —t)x,x, = (1 —t)yand t = x3. If we put t = x5 in x;

and x, we have

x1 =1 —x3)xand x, = (1 —x3)y



_ X1 _ X2
X =1 andy = r— (1.10)
_ X1 . X2
0~ 1A =z= \
( ) Z 1 - X3 + l 1 - x3

Now we define f(xq,x;) = x; +ix, and g(x3) = 1 — x5 where f and g are continuous on

C. We know that if fandg on C then g continuous where x5 # 1. Therefore @71 is

continuous where x5 # 1. Now, we show that ©~1 is continuous at infinity.

Let us take any sequence {z,,}. If z - (0,0,1) then
lim z, = limx, + ilimy,
n—-oo n—-oo

n—-oo

from 1.10 we have

. . X1
limx, = lim = ©
n—oo n—oo 1 — x3
. : X2
limy, = lim = 00
n—oo n—oo 1 — x3
= 7, — .

Hence ©~1 is continuous function.

Finally we can say that @ is one-to-one, onto and continuous and @~ is continuous, then @ is

called homeomorphism.
Now we can define
Y(zy,2,) = d(Z1,Z7)

is Euclidean distance between Z; and Z,, which are given Z; (a4, b1, ¢;) and Z,(a,, by, c;) as

well. Addition to these, Z; and Z, are image of z; = x + iyand z, = x' + iy’.
Since Z; and Z, are on the sphere S, then we have

al+b’ +c2=1landa,?+b, 2 +c,2=1 (1.11)
We know that the distance between z; and z,, is defined as

W(Zp Zz) =d(Zy,Z3).



Hence we have

Y(z1,2;) = \/(a1 —az)?+ (by — by)? + (¢1 — ¢3)?

= \/alz - 2a1a2 + azz + b12 - 2b1b2 + C12 - 2C1C2 + C22.

from 1.11 we have

lII(Zl,Zz) = \/2 - 2(611(12 + blbz + C1C2)

= \/E.\/l - a1a2 - b1b2 - C1C2. (112)

since Z; and Z, are on S, clearly we have

2x 5 2y |z,12 — 1
:—, :—’C T ——
% |z 2+ 1 1 |z 2+ 1 1 |z |2+ 1
2x' 2y’ |z,]2 — 1
— _,b = —_— = > 1.13
R P C P E K PR R (1.13)

If we put 1.13 in 1.12, we have

2. |Zl - Zzl

Vi0zi? + 1.)z,2 + 1

IP(ZLZZ) =

If z, is the point at infinity then

2.1z, — z
Y (zy,0) = lim 1z, — 2|

222%° [|zy|?2 + 1.|z,|? + 1

2|Zz|

1|

l

; 2 2
= l1m = .
|zz]|—>00 |le +1 |21| +1

We have some important theorems about stereographic projection.

10



Theorem 1.4 Streographic projection take circle to circle and lines.
Proof. We assume that K is a circle on Riemann sphere.
K = {(xq,%5,x3):Ax; + Bx, + Cx3 + D = 0 and x;? + x,% + x3% = 1}.
If K passes through (0,0,1) then we have
A0+B.0+C.1+D=0
C+D=0.

from definition of stereographic projection we have

2x 2y lz]2-1
S P R R PTPaE R TP (114)
If we put 1.14 in
Ax{+Bx, +Cx3+D =0
then we have
2 2 _
1 +i§bf|— y? "1 +i§3-]|- y? * C(1x+:2y+ yzl) th=0
20x + 2By + C(x* +y>) = C+D+D(x*+y*) =0
(x2+y>)(C+D)+24x+2By+D—-C=0 (1.15)

If C + D = 0, then 1.15 becomes
2Ax +2By+D—-C=0
which is equation of a line. If C + D # 0 then 1.15is
(C+D)(x*+y%)+24x+2By+D+C=0

is the equation of a circle. O

11



Theorem 1.5 Let K € C,,. Then the corresponding image of K on S is

e aisacircle in S not containing (0,0,1) if K is circle

e alinein S containing (0,0,1) if K'is a line.
Proof. Now, we consider the general equation of a circle in C.
K ={(x,y):A(x* +y*)+ Bx + Cy + D = 0}. (1.16)

Now we put 1.10 in 1.16 then we have,

x12 x22 X1 X2

A B C D=0
(1—x3)2+(1—x3)2+ 1—x3+ 1—x3+

(x12 + x,%)  Bx; + Cx,
A + +D=0
(1 - x3)2 1 - X3

(A—D)x3+Bx; +Cx, +D = 0. (1.17)
Let A = 0. Clearly, from 1.16 we have
Bx+Cy+D=0
this is equation of the line. Since A = 0 from 1.17
—Dx3+Bx; +Cx;+D =0
Bx; + Cx, + D(1 —x3) = 0.

this equation containing (0,0,1). If K is a line then (0,0,1) € S. Now we assume that A # 0
and D = 0. Then from 1.16 we have

A(x>+y*)+Bx+Cy =0
this is equation of circle and
Bx; +Cx, + Ax3; =0 (1.18)

we can see 1.18 not containing (0,0,1). o

12



1.2 Topology of the Complex Plane

In this section we will talk about the topology of the complex plane and we will see

difference between them.

Definition 1.6 (open set)

A setis open in C if it contains none of its boundary points. (Churchill and Brown , 1990).

Definition 1.7 (closed set)

A setis closed in C if it contains all of its boundary points. (Churchill and Brown , 1996).

Definition 1.8 (smooth curve)

“Suppose that a curve C in the plane is parametrized by x = x(t) and y = y(t) where
a <t <b.Ifx"andy’ are continuous on [a, b] and not simultaneously zero on (a, b).” (Zill
and Shanahan , 1940).

Definition 1.9 (piece-wise smooth curve)

“C is a piece-wise smooth curve in C if it consists of a finite number of smooth curves
C;, C,, ..., C,, joined end to end, that is, the terminal point of on curve C, coinciding with the

initial point of the next curve Cy,,.” (Zill and Shanahan , 1940).

Definition 1.10 (connected)

“An open set S is connected in C if every pair of points z; and z, contained in S can be

joined by a curve that lies entirely in S.” (Mathews and Howell , 2006).

13



Definition 1.11 (simply connected and multiply connected)

“A domain D in C is simply connected if its complement with respect to C,,. A domain that is
not simply connected is called multiply connected domain, that is, it has "holes” in it.” (Zill
and Shanahan , 1940).

Definition 1.12 (domain)

“A domain is a nonempty open connected set in C.” (Ponnusamy , 2005).

Definition 1.13 (region)

“A domain together with some, none or all of its boundary points is reffered to as a region in

C.” (Ponnusamy , 2005).

Definition 1.14 (bounded and unbounded)

“A set S is bounded in C if 3 M > 0suchthat |z| <M whenever z €S else it is
unbounded.” (Stein and Shakarchi , 2003).

Definition 1.15 (compact set)

“IfasetS is closed and bounded then it is called compact in C.” (Zill and Shanahan , 1940).

14



1.3 Function of a Complex Variable

Definition 1.16 (complex function)

Let A and B be two nonempty subset of C. A function from A to B is a rule, f, which assigns
each zy = x, + iy, € A a unique element w, = u, + ivy € B. The number w, is called the
values of f at z, and we write wy, = f(z,). If z varies in A then w = f(z) varies in B. We
also write f:A - B, z - w = f(z). We have two real-valued functions u: 4 - R, v: 4 - R,
then by defining f(z) = u(x,y) + iv(x,y), (x,y) € A. We obtain f: A - C, where A is
subset of C.

“ In this section introduction, we defined a real-valued function of a real variable to be a
function whose whose domain and range are subsets of the set R of real numbers. Because R
is a subset of the set C of the complex numbers, every real-valued function of a real variable
is also a complex function. We will soon see that real-valued functions of two real variables x
and y are also special types of complex analysis. This functions will play an important role in
the study of complex numbers.” (Zill and Shanahan [3], 1940).

If w = f(2) is a complex function, then the image of z = x + iy under fisw = u + iv.

For example; let z = x + iy and w = 2z?2 is complex function. Then the image of z under

w = 2z2.
w = 2z% = 2(x + iy)? = 2x? — 2y? + 4xyi
u(x,y) = 2x%2 — 2y? and v(x,y) = 4xy.
Where u is real part, v is imaginary part of the given complex function.

“A useful tol for the study of real functions in elementary calculus is the graph of the
function. Recall that if y = f(x) is a real-valued function of a real variable x, then the graph
of f is defined to be the set of all points (x f (x)) in the two-dimensional Cartesian plane. An
analogous definition can be made for a complex function. However, if w = f(z) is a

complex function, the both z and w lie in complex plane. It follows that the set of all points
(z,f(2)) lies in four-dimensional space. Ofcourse, a subset of four-dimensional space cannot

be easily illustrated. Therefore; we cannot draw the graph a complex function.” (Zill and

Shanahan, 1940).

15



Consider the real function f(x) = x = 3. We can draw the given real function in Cartesian
plane. But if w = f(z) =iz is a complex function then the image of x > 3 under w = iz,

we have
w=f@B+iy)=i(3+iy)=3i—y

w = 3i —y where y € R, is the line v = 3 in w-plane. Finally we have x = 3 in z-plane
mapped onto v = 3 in w-plane under w = iz. Since Rez = x = 3, y € R this is mapped onto

Imw =v >3, u € Runderw = iz.

1.4 Continuity, Differentiable and Analyticity

Definition 1.17 (continuity)

“Let A c C be an open set and let f: A — C be a function. We say f is continuous at z, € A

if and only if
lim £(2) = f(z0)

and that is continuous on A if f is continuous at each point z, in A.” (Marsen and
Hoffman, 1987).

Definition 1.18 (differentiability)

“ A complex valued function f(z) is differentiable at z, if

Y f(2)—f(z) . [f(zo+h)—[(z)
im —— = lim

Z-Z Z— Z h—0 h

exists. The function f is said to be differentiable on D if it is differentiable at every points of
D.” (Gamelin, 2001).

Definition 1.19 (analyticity)

“ Let D be an open set in C and f is a complex valued function on D. The function f is
analytic or holomorphic at the point z, € D if

_ f(z0+h) = f(20)

m

}ll—>0 h
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converge to a limit. The function f is said to be holomorphic or analytic on D if f is

holomorphic or analytic at every point of D.” (Stein and Shakarchi, 2003).
Definition 1.20 (Cauchy-Riemann equations)

Properties of real and imaginary parts of the differentiable function f(z) = u(x,y) +
iv(x,y) will be deduced by specializing the mode of approach. Firstly, we assume that h

approaches to zero along the real axis

. feth)—-f(z) | ulx+hy+tivix+hy) —ulxy) —iv(x,y)
lim = lim
h—0 h h—0 h

ulx+thy —ulxy) . vx+hy —v(xy)
= lim + ilim .
h—0 h h—0 h

Since f is differentiable at z = x + iy, then

ulx+hy) —ulxy) . v(x+hy) —v(xy)
im and lim .
h—0 h h-0 h

must be exists. And also we know that

o u(x+hy)—u(x,y) OJu
llm [ pp—
h—0 h 0x

and

- vix+hy) —vixy OJv
lim = —
h—0 h 0x

Thus we have

s v Jf@+h)—f(2) ou dv Of
f'(z) = }ll_r;r(l) Y = a+ b = ax (1.19)

Now we assume that h approach 0 along the imaginary axis. Then for h = ih,, h, is real we

have

. f(Z + LhZ) - f(Z) . u(x)y + hZ) - u(xl }’) s v(x,y + h’Z) - v(xl Y)
lim - = lim - +ilim -
hy—0 ih, hz—0 ih, hz—0 ih,

. fGe+ir)—f(2) 1 ulxy+h)—ulxy) . vigy+hy)—vxy)
lim - =— lim + lim
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Example 1.21 Show that the given complex function f(z) = z?2 satisfies Cauchy Riemann

equations.
Solution.
f(z) =22 =(x+iy)? =x?—y% + 2xyi
u(x,y) = x? —y?and v(x,y) = 2xy
Uy = 2X,Vy = 2X = Uy =1
Uy = —2y,0x =2y = U, =
= satisfies all Cauchy-Riemann equations.

Note that since we talked about complex functions in cartesian form and polar form, now we

will talk in terms of z and z. We know that, z = x + iy gives that

Z+Z d _Z—Z_
2 MY =7y

X =

If we write complex function

(2) = (z+z‘z—z‘)+, (z+z‘z—z‘>
@ =ul—— )t

Also we can write

_of of ox of oy 1[of of
fe= 5z 9z oy 9z 2lax T3

1 .
y] =5 [ — 1)) + i(vy +uy)]
and f; = 0 is equivalent to the system

fx = —ify oruy = vy, Uy, = =0,

Thus we have following theorem.
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Theorem 1.22 “A necessary condition for a function f to be differentiable at a point a is that

satisfies the equation f; = 0 at a.” (Ponnusamy, 2005).

Now, we will see, we can write CR-equations in polar form. Let f be differentiable at a point

z. Since we can write any complex function in polar form, we have
f(r,0) =u(r,0)+iv(r,0)
z =re' and also x = rcos6,y = rsinb. (1.22)
We have from Chain rule;

du Ou 6x+6u dy 123
dr  dx or dy or’ (1.23)
Now in 1.22 we take the derivatives x and y with respect to r and put in 1.23 and we have

N o5+ 22 sing 1.24
dr—ax.cos ay.sm . (1.24)

Similarly, we have from Chain rule;

du Ou Ox Ou 0dy

@—a.%‘l‘@.%. (1.25)
Now in 1.22 we take derivative x and y with respect to 6 and put in 1.25 and we have;
W _ U (rsind) + 2% (reos 1.26
0" 9% rsin ay.(rcos )- (1.26)
Similarly, again we have from chain rule;
dv dv dx O0v dy
= — (1.27)

dr ox'dr ay or
Now, we already have derivative of x and y with respect to 8. We can put in 1.27 and we

have;

dv dv ov

—_—=— —.sind. 1.2
I = ox cosH+ay sin@ (1.28)

Finally we have
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dv_0dv Ox 0Jv dy

@_ﬁ'%Jr@'ae' (1.29)
Now we already have derivative of x and y with respect to 8. We can put in 1.29
dv Jdv ] dv
0= x (—rsinf) + e (rcos0). (1.30)
Now, we know that CR-equations in cartesian form, that is,
Uy = V), Uy = — Ty (1.31)

If we put 1.31in 1.24, 1.26, 1.28 and 1.30 we have,

dv

_ 6v(_6)+0v( 8 = 0u(_9)+6u( 6| = du 132
dH_r ax.sm 3y rCcos =r 3y sin i cos —rar (1.32)

du 617(,9) Ou( 6| = 017(,0)_,_617( 8)) = Jdv 133
de—r 3y sin F cos =-r 3y sin I cos = rar (1.33)

and in 1.32 and 1.33 are called CR-equations in polar form.

Example 1.23 Show that the given complex function f(r,8) = 2rcosf + i2rsinf satisfies

Cauchy-Riemann equations in polar coordinates.

Solution.
u(r,0) = 2rcos0 and v(r, 0) = 2rsinf
U, = 2¢0s60,v9 = 2rcosd = ru, = vy
Ug = —2rsinf, v, = 2sinf = —1v, = ug

= satisfies Cauchy-Riemann equations in polar coordinates.

CR-equations are necessary but not sufficient for derivative of a complex function. If any
complex function differentiable then f must be satisfy CR-equations but it is conversely not

true. We have following useful example.
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Xy .
iifz+0
Example 1.24 Determine f(z) = {x2+y2 f

} is differentiable or not at z = 0.

Solution. We can see that f(z) = 0 atz = 0.
Uy =v,=0andu, = -v, =0

satisfies CR-equations but on the line y = mx (m # 0)

Flh+imh) —fO) e
, . + imh) — .. h2+m?Zh? _
f'(0) = lim h + imh e %

doesn’t exists. Hence f is not differentiable at z = 0.

Theorem 1.25 “ Let f(z) =u(x,y) +iv(x,y) be defined in a domain D, and let
u and v have continuous partial derivatives that satisfy the Cauchy Riemann equations
u, = v, = 0and u, = —v, = 0 for all points in D. Then f(z) is analytic in a domain D.”

(Ponnusamy, 2005).

Definition 1.26 (singular point)

“ If a function f fails to be analytic at a point z, but is analytic at some point in every

neighborhood of z,, then z, is called a singular point of f.” (Churchill and Brown , 1996).

Definition 1.27 (residue)

“If a complex function f has an isolated singularity at a point z,, then f has a Laurent series

representation

FD =) alz=—2) =) arz—2)"+ ) apz -z
o k=1 k=0

which converges for all z near z,. More precisely, the representation is valid in some deleted

1

neighborhood of z, or punctured open disk 0 < |z — z,| < R. The coefficient a_; of in

Z—Zo
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the Laurent series given above is called the residue of the function.” (Zill and

Shanahan, 1940).

Definition 1.28 (discrete or isolated)

“ A singular point z, is said to be isolated if , in addition, there is a deleted neighborhood

0 < |z — zy| < € of z, throughout which f is analytic.” (Churchill and Brown, 1996).

Definition 1.29 (Taylor expansion)

“ Let f is analytic function throughout an open disc |z — zy|< R,, centered at z, and with

radius Ry, then at each point z in that disc, f(z) has a series representatiton

= 3 L2
n=0

is called a Taylor expansion of f.” (Churchill and Brown, 1990).

Definition 1.30 (zero and pole of holomorphic function)

“ Let f is analytic in an open domain D. If for z € D, f(z) = 0 then z is called zero of

holomorphic function f. We say that z, is a pole of f and the smallest n € N such that

(z = 20)".f(2)

is bounded near z, is called the order of the pole at z,." (Zill and Shanahan, 1940).

Definition 1.31 (meromorphic function)

“ A function f is said to be meromorphic in a domain D if it is analytic throughout D except
for poles.” (Churchill and Brown, 2009).
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Definition 1.32 (sequences and subsequences)

A mapping N — C,n — z, is called a sequence. Suppose {z,} is a sequence of points in C
and that {n; } is a strictly increasing sequence of natural numbers Then the sequence {an} IS

called a subsequence of {z,,}.
Definition 1.33 (converge uniformly)

Consider an open set U < C and a sequence of functions {f;} converge uniformly to f; if
VE > 0 there exist ] ENVj > ] suchthatVz € U |fj(z) — fo(z)| < €. Note that this J

must work for all z € U, it depends only on €.
Definition 1.34 (converge normally)

We say that {f;} converge normally to f; if for each compact K < U and VE > 0 there exist

J €NVj > ]suchthat vz € K |f;(2) — fo(2)| < €.
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CHAPTER 2
CONFORMAL MAPPING AND MOBIUS TRANSFORMATIONS

The goal of this chapter is, given some basic definition, theorem and properties about
conformal mapping and Mobius transformations. We are going to see how the last chapter is

important.

2.1 Conformal Mapping

Definition 2.1 (homeomorphism)

A function f:C — C is a homeomorphism if f is a bijection and if both fand f~* are

continuous.

Definition 2.2 (automorphism)

The set of all conformal bijections C — C are defined by Aut(C).

Theorem 2.3 If f is an analytic function in a domain D containing z,, and if f'(z,) # 0, then

w = f(z) is a conformal mapping at z,.

Proof. Assume that f is analytic function in a domain D containing z, and f'(z,) # 0. Let
C; and C, be two smooth curves in D and C; parametrized by z;(t) and C, parametrized by
z,(t), respectively, with z;(t,) = z,(ty) = z,. Let w = f(z) maps the curves C; and C,
onto the curves y;and y,. Let 8 is angle between C; and C, and ¢ is angle between image
of C,; and C,, respectively, ¥;and ¥,. Now we have to show that 6 = ¢. Y;and ¢, are
parametrized by w; () = f(z1(t)) and w,(t) = f(z,(t)). Now, we compute the tangent

24



vectors wy’ and w,’ to Y;and ¥, at f(zo) = f(z,(to)) = f(22(to)). We can use the chain

rule;
wy' =w,'(ty) = f’(Z1(t0))-Zi(to) = f'(20). 21

wy' = wy () = f’(zz(to))-zé(to) = f'(20).2;

We have already C, and C, are smooth and both z; and z; are nonzero. By hypothesis we

have f'(zy) # 0. Hence,
¢ = arg(w,') —arg(w,') = arg(f’(z).z3) — arg(f'(zo). z1)
¢ = arg(f'(zo)) + arg(z;") — arg(f'(2)) — arg(z,")
¢ = arg(z;") —arg(z,)
¢ =6.

Therefore we completed this proof. O

Example 2.4 Find all points where the mapping f(z) = cosz is conformal.

Solution. Firstly we have f(z) = cosz. Now, if we take the first derivative of the given

function, we have,
f'(z) = —sinz
—sinz=0 @ z=nnwheren=0+1,+12,...

f(z) is conformal mapping at z for all z # nm wheren =0+ 1, £2, ...

P
Example 2.5 Determine where the complex mapping f(z) = z. e3 77 is conformal.

23
Solution. Firstly we have f(z) = z. 63" Now we take the first derivative of the given

function with respect to z, we have,
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z3 z°
f'(z) = €3"° + €37°.2. 22
Z3’
= e37°(1 + 2%)

23’
e3(1+23)=0 & (1423 =0

1
=z3=-1 =z=(-1)3

Now, we have three roots of z, that is,

7/ S [
Zy = cos—+ isin—
3 3

Z1 = COST + isinm

57r+ ~ b5m
Zo = COS — ISin—
z 3 3

Then we have,

_1+\/§,
ZO_Z 2l
z;=-—1

1 V3,
Z; =-——1

f is conformal mapping at z for all z # % + \/Z—gi.—l, %_\/2_51-.

Example 2.6 Find the image

H = {z € C:Imz > 0}

under

i—2z

flz) = i+z
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Solution. Let we define

i —z
W = -
L+ 2z

This means that
w+wz=i—2z
wz+z=1—iw

z1+w)=i(1—-w)

Letw =u+iv

i—ui+v 1+u—iv
z = .
1+u+iv 1+u—iv

i+ui+v—u—ui’?—u+v+uv—iv?
(14+u)?+ v?

7 =

since Imz > 0

1 —u?—v?

—>0
(1+u)? + v?

1—u?>—v%2>0
1> u? —v2.

Hence the image of H under £ is unit disc.
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Example 2.7 Find the image of

K={z=x+iy:|z| <1landy > 0}

under
1+z
f@=1—.
Solution. Let we define
_ 1+z
W= 1—2z

This means that
w—zw=1+4+72z

w—1=zw+1)

Since |z| < 1 we have

w—1

— <1
w+1

lw—-1|<|w|+1
w-—1D.wW-1D<WwW+1.w+1)
wi2—w-w+1< |w2+w+w+1
O<w+w
0<u.

Letw = u + iv. Since y > 0, we have
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w—1 u+iv—-1u+1-iv
Z = = - . -
w+1l u+iv+1l u+1-iv

wWHu—iw+vi—u—-1+iv
(u+ 1) +v?

Z =

2v
Imz 2>0=>~v>0.

:(u+1)2+v

Hence, the image of K under f is first quadrant of C plane.

2.2 Mobius Transformations

In this section we will talk about mobius transformations and their basic properties. Mobius

transformations are very important because this transformations are basic of conformal

mapping.

Definition 2.8 Let a,b,c,d € C,ad —bc # 0and T: C,, —» C,, then

az+ b
I'(z) = cz+d
and
az+b
I'(z) = 7+ d

is called Mobius transformation.

2.1)

(2.2)

2.1 is called automorphism and 2.2 is called anti-automorphism. We will discuss some basic

properties about automorphism and anti-automorphism of C,,.

e Every T anti-automorphism, it can be define composition of automorphism and

complex conjugate transformation of C..

e The composition of two anti-automorphisms is automorphism.

e A composition of an automorphism and an anti-automorphism again anti-

automorphism.
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e The automorphism keep constant of the magnitude of angles but inverse the direction.

Now, in this part when we investigate mobius transformations, we will consider mobius

transformation in form 2.1.

A= ad — bc is called determinant of mobius transformation T. We must take ad — bc # 0

because in definition of mobius transformation gives us

(ad — bc).(z —w)

T@-Tw) = (cz+d).(cw +d)

(2.3)

If ad — bc # 0 then we take T(z) = T(w). This means that T will be constant function. In
the same time if ad —bc # 0 then T is one-to-one function. Mobius transformation

independent to coefficient a, b, ¢, d. If 1 € C — {0} then, Aa, Ab, Ac, Ad gives us

Aaz+2Ab  A(az+b) az+b
Acz+Ad  A(cz+d) cz+d

T(z) =

in this manner again to get T. Therefore, we multiply numerator and denumerator of 2.1 with

1
B +vVad — bc
Then we have
a Z+ b
7y = P _tVad—bc  +vVad - bc
(z) = = 7] (2.4)
cz+d c 74

+vad — bc +vad — bc

the determinant of 2.4 is

< a d > < b c )_ad—bc_1
+vad — bc +Vad — bc +vad — bc +Vad — bc ad — bc

Consequently, we can take instead of A= ad — bc # 0, A= ad — bc = 1.

az+b a
cz+d’ ™’

Definition 2.9 Let T(z) = b,c,d € C, A=ad — bc # 0 then T(c0) = Zand T (— 9) =

oo, If ¢ = 0 then T(o0) = oo,
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Theorem 2.10 Every mobius transformation from C,, to C,, are one-to-one and onto.

For identity transformation I(z) = z,a = d # 0 and b = ¢ = 0 then we can write

az+ 0
0Oz+d

[(z) =z = (2.5)

Hence I(z) = z identity transformation is any mobius transformation. Addition to these the

inverse mobius transformation of T is

T Y(z) =—— (2.6)

and clearly we can say that 7! transformation is also mobius transformation. Therefore we

can give the following theorem.

Theorem 2.11 The set

az+b
cz+d

M={T:(Coo—>(Coo:T(Z)= ,a,b,c,dE(C,ad—bc;tO}

IS a group with respect to composition.

Definition 2.12 (similarity transformation)

U(z) =az+ b,a,b € C,a # 0 is called similarity transformation.

Let H={U:C—> C:U(z) =az+ b,a,b € C,a # 0} is the set of similarity transformations.
Since I(z) € H then H # 0. Addition to this we can write

U(z) = +b_az+b
A

Then H € M.

Specially H is closed with respect to composition. Then H < M.

31



Definition 2.13 (general linear group)

A= (Ccl Z) ,detA = ad — bc # 0 is called General Linear Group and we can show in
2x2

form GL(2, C).

Now, we can define relation between Mobius transformation and matrices
®:GL(2,C) » M

az+b

,ad — bc # 0.
cz+d

(‘C‘ Z) S T,T(2) =

Theorem 2.14 @:GL(2,C) = M is a homeomorphism. Seperately since @: GL(2,C) = M is

onto, @ is called epimorphism and its kernel defined as

K = Kerd = {A € GL(2,C): ®(4) = 2}
+b
={(Ccl Z): Z+d =Z}

={(‘Cl Z):a=d¢0,b=c=0}

(G o))

If we take a = A then

K=I('er<,‘l>={(61 3):/1;&0}

={,1(é (1));/#0}
= {Al: 1 # 0}.

This is proof of the following theorem.
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Theorem 2.15 Let I is an identity matrix in form 2x2. Then kernel of homeomorphism @,
K = Ker® = {Al: 1 € C} (2.7)

A, B € GL(2,C) two matricesdefined as the same mobius transformation in C, if and only if
AB € K thatisto say for 1 # 0 B = AA.

A necessary of first isomorphism theorem, for & transformation ®: GL(2,C) — M then

M = GL(2,C) \ K = GL(2,C) \ {Al: 1 # 0}

GL(2,C) \ K is called Projective General Linear Group and we can define this PGL(2, C).
Because of this, it can be M = PGL(2,C). For every A,B € GL(2,C) since det(A.B) =
det(A) . det(B) then

det: GL(2,C€) -» C* = C — {0}
is called homeomorphism.

a b

Ker(det) = {A = (C d) . A € GL(2,C),det A = 1} = SL(2,C)

the kernel set of function of determinant is called special linear group. Because of

determinant is onto, necessary of first isomorphism theorem, we have
GL(2,C) \ SL(2,C) = C*

If B € GL(2,C) then A% = detB and for A € SL(2,C),B = AA. Since ®(B) = A it can be

show this for every mobius transformation in C,, write in form

az+ b
cz+d

T(z) = ;ad — be = 1.

Additionally, under @, SL(2, C) in PGL(2, C). This is proof of following theorem.

Theorem 2.16 M = PGL(2,C) = PSL(2,C).
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2.2.1 Special types of mobius transformations

Definition 2.17 (translation)

T.(z) =z+t,t € C is called translation.The transformation translation keeps constant of

infinity and it makes a movement on C plane.

Definition 2.18 (rotation)

Rg(z) = €'®z, 6 € R is called rotation. If & > 0 then rotation is counterclockwise, if 8 < 0

then rotation is clockwise, The transformation rotation makes 0 and infinity constant.

Definition 2.19 (inversion)

1. . .
J(2) = —is called inversion.

Definition 2.20 (magnification)

M,(z) =rz, r # 0, r € Cis called magnification.

The transformation magnification makes 0 and infinity constant. The transformation
magnification affects as similarity on C plane and longtitude is expanded or shrinked by the r

multiplier.

Theorem 2.21 Every mobius transformation can write composition of translation,

magnification, rotation and inversion.
Proof. Every mobius transformation knows in form

az+ b

T =
(2) cz+d

rad —bc =1
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az+b
d

If c =0thenT(2) = ,a,d # 0. Let% = rel® and S: t. Then

T(z) =re'®z +t.
therefore, we have
T(z) = Te(z)oM,(z)0Rg(2)

This transformation makes infinity constant. If ¢ # 0 then we can use ad — bc = 1,0 we

can write

) az+b a 1
7Z) = = —_—_
cz+d ¢ cz(z+%)

Because of there we can write

T(2) = Ta0 |_(czeay = (Ta0 J0 T-cq0 M_2) (2). ©
c c

Definition 2.22 (Euclidean circle)

The set of points in C satisfy |z — z,| = r, r > 0 are called Euclidean circle.

The set of points in C satisfies |z — a| = |z — b|, a # b are called Euclidean line. Euclidean

circle or L U {oo} are called circle in C.. In there L is any Euclidean line.

Theorem 2.23 If a circle in C,, then the image of C under mobius transformation T, T(C) is

acircle in Cy.

Proof. We know that general equation of circle is
AzZ+Bz+Bz+D =0; A,D €R.

the transformation in form

az+b
cz+d

T(z) = sa,b,c,d € C,ad — bc # 0

We have to show that T (C) is a circle.
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az+b
cz+d

T(z)=2z =

z'(cz+d)=az+b
czz'+dz' =az+b

czz' —az=b—dz’

b—dz
Z =
cz' —a
. b—dzr
since z = ——, clearly we have
CcZ —a
_ —dzZ’ +D
7Z = ?
cCZ —a

If we put z and Z in general equation of a circle, we have

<b—dz’> <—E+E> (b—dz’) _<—W+E>
A 7 . - — + B 7 + B — = +D=0
CZ —a CZ —a CZ —a CZ —a

Clearly we have

|[Add — Bcd — Bed + Dcclz'z' + [—Abd + Bad + Bbc — Daclz’ +
[-Abd + Bbé + Bad — Daélz' + [Abb — Bab + Bab + Daa| = 0

In this section the coefficient of z’z’ is real. Because dd and cc are real. Similarly the

coefficient of z’ and z’ are real. Because of there, image of circle under T (z) again circle.

2.2.2 Reflection

Let Cisacircle in C,,, which is

azZ+bz+bz+c=0a,c€Randb €C

If a # 0 then C is an Euclidean circle in C.
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Let the center of C is w and radius isr. Vz € C — {w},3z" on the line which include w and z,
such that

lz—w|=|z"-w|=r

z,z"* and w are on the same line. There, z* is called reflection of z with respect to C.

Definition 2.24 (reflection transformation)
Let w is a center and r is radius of C. T, ,.(z) = z* is called reflection transformation.

From this definition we can see the point z goes to infinity, when w approaches to z*.
Similarly, when w approaches to z, z* goes to infinity. Therefore, we define T,, ,.(w) = o
and Ty, (o) = w. And T, ,(z) is continuous and magnificate to any transformation in C,

in the same time. Seperately,
Tw,rz(Z) = (TW,T‘OTW,T‘)(Z) = Tw,r(Z*) =z=1(2)

If T, (z) = 1(z) then z € C. In other words, reflection of any points on C is itself. If z # w,

then
|Z—w).(z" =w)| = |z—-w|.|z* —w| =712
Since (z —w) and ( z* — w) on the same line
arg(z —w) = arg(z* —w)
then

arg(z —w) = —arg(z* —w)

therefore

r
Twr(z) =2" = — = + w.
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Theorem 2.25 If z and z* are reflect points with respect to C then the image of z and z*

under T(z) = %, which are w and w* are reflect points with respect to C.
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CHAPTER 3
HOLOMORPHIC FUNCTIONS

This chapter is dedicated to give some definition, lemma and some theorems about
holomorphic functions, Fundamental Theorem for Contour Integral, Cauchy’s Integral
Theorem and its applications, such as Cauchy’s Theorem or Cauchy-Goursat Theorem,
Bounding Theorem, Taylor’s Theorem, Cauchy’s Integral Formula, Cauchy’s Integral
Formula for Derivatives, Cauchy’s Inequality, Cauchy Residue Theorem, Argument Principle
Theorem, Rouche’s Theorem, Open Mapping Theorem, Maximum Modulus Theorem,

Maximum Modulus Principle, Montel’s Theorem and Hurwitz’s Theorem, as well.

Definition 3.1 (antibiholomorphic)

If the analytic function preserve angle but not preserve its orientation then this function is

called antibiholomorphic.

Example 3.2 We have f(z) = re® where 0 < 6 < 2m. We assume that the angle 6 has

positive orientation. For conjugate of f is f(z) = re~®. And its angle is - 6. Also we can
say, f preserve magnitude of angle but not preserve is orientation. Then f is

antibiholomorphic function.

Now, we are going to start useful lemma about holomorphic functions.

Lemma 3.3 Suppose that U < C is simply connected and open that f: U — C is holomorphic

and nowhere vanishing. Then there exists a holomorphic function g: U — C — {0} such that

[9@)]*=f(z) VvzeU.
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Proof. Let U is simply connected and open subset of C. Since f is nonvanishing, we can say

that % is also holomorphic. Then there exists a holomorphic function h: U — C such that

h(z) = In[f (2)] 3.1)

1f we take derivative 3.1 with respect to z then we have

f'(2)
h'(z) = —= 3.2
@ (3.2)
Since % holomorphic, then h’(z) must be holomorphic, as well. Now we choose z; € U. If

we put z; in 3.1, we have
h(z;) = In[f (z1)]
Clearly, we have
") = f(z) (3.3)
Now, Vz € U, from 3.2
[f(2).e"@] = f'(2).e™"@ — f(2).h'(2).e "

Y —-h(z) _ '@ —h(2)
f'(2).e f(z).—f(z) .e

= e "D[f'(2) - f'(2)]
=0.
= f'(z).e~"@ is constant. Now, from 3.3 we have
f(z).e7 @ =1
Hence we have
f(z) =e"@vzeuU.

Finally, we have

(3.4)
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If we take square of 3.4

2

9@ =[eF] = e = £

3.1 Cauchy’s Theorem and Its Applications

Most of powerful theorems proved in this section. Importance of Cauchy’s Theorem lies in
its applications. Addition to these, there is a such a good relationship between the different

theorems.

First we will talk about some famous theorem which are Fundamental Theorem of Contour
Integral and Green’s Theorem. Because consequence of these theorems are very useful for

Cauchy Integral Theorem and its applications.
Theorem 3.4 (Fundamental Theorem for Contour Intergral)

Let f is continuous on a domain D and F' = f in D. Then any C in D with initial point z; and

terminal point z,,

§ FG)dz = F@) - P

Proof. Let C is smooth curve and parametrized by z = z(t), a <t < b. Clearly, z(a) =

z, and z(b) = z,. Since F'(z) = f(z) Vz € D; we have

b
b
jgf(z)dz= jf(z(t)).z’(t)dt=J F'(Z(t)).z'(t)dt (3.5)
We know that

d
5 F(2©) = F'(2(0).2'®) (36)

If we put 3.6 in 3.5, we have

ba
ff(z)dz =f E.F(z(t)).dt
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= F(Z(b)) - F(Z(a))

=F(z,) —F(z,).0

Theorem 3.5 (Cauchy Integral Theorem of Cauchy-Goursat Theorem)

Suppose that a function f is analytic in a simply connected domain D and f” is continuous in

D. Then ¥C in D such that

jgf(z)dz = 0.

Proof. Let f(z) = u(x,y) + iv(x,y). Since f is analytic, f(z) satisfies Cauchy Riemann

equations, that is,
Uy = V), and Uy, = —,.

And also we can write dz = dx + idy. Hence clearly we have

%f(z)dz = %(u + iv). (dx + idy)

= 3€ (udx —vdy) +i ; (vdx + udy)

From Green’s theorem we have

jg(udx —vdy) = ff(—vx — uy)dxdy

and

jg(vdx + udy) = ff (ux — vy)dxdy

This means that

%f(z)dz = U (—vy —uy)dxdy + lﬂ (uy — vy )dxdy

If we put 3.7 in 3.8 then we have
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jgf(z)dz = ff(uy —uy,)dxdy + if (vy — vy)dxdy

j;f(z)dz =0+0i. O

Example 3.6 Use 3.5 and evaluate

z—2
fzz—zdz

where C: |z —i| = 1.

Solution. We have two singular points, which are z = 0 and z = 1. And also they lie in C.

We can write again the given function in this form, that is,

z—2 _A+ B
z2(z—1) z z-1

A(z—1)+Bz=2z-2
Az—A+Bz=z-2

A+B=1 —-A=-2
A=2andB = —1.

Now, we have

z—2 2 1
f dz = Edz—f dz

z2—2z z—1
= 2.2mi — 1.2mi
= 4mi — 2mi
= 2mi.
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Example 3.7 Use 3.5 and evaluate

f e
Z2+4Z

where C: |z — i| = 4.

Solution. We have two singular points, which are z = —2i and z = 2i. And also they lie in

C. We can write again the given function in this form, that is,

1 __A B
7244 z—20 z+2

A(z+2i)+B(z—-2i) =1
Az+ 2Ai+Bz—-2Bi=1

A+B =0and 24 — 2B = —i

l
A=——B=-—
4

We have

jgld_ijgld_l_ijgld
2+4 T T4 =22 42 Y

Remark 3.8 If a € C in simple closed C’, then for k € Z we have

fﬁ dz _{o; k¢1}
(z—a)k_ 2ick =1

Now we will apply the given remark in this following example.
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Example 3.9 Evaluate the given integral

N { I
“Tlzr2 @+202*
where C: |z| = 5.

Solution. Firstly, we can separate the given integral

f ozt~ $ammt
z+27 (z — 2i)? z

We have zeros of the given functions are z = —2 and z = 2i. They are also inside |z| = 5.

From remark, we have
I =5.2wi — 0 = 10mi.

Now, we will give some information about Bounding theorem. This is very useful for Cauchy

Integral formula.

Theorem 3.10 (Bounding Theorem or ML-Inequality)

If h is continuous on a smooth curve C and if |h(z)| < M vz on C then

H h(z)dz| <ML

where L is length of C.

Proof. From triangle inequality;

n
Z h(Zk*). AZk
k=1

where Az, is distance between two points on C. It cannot be greater than length L of C.

H h(z)dz

n n
< ) 1z 18z ] < M) 18z, (3.9)
k=1 k=1
Hence we have;

1Az < L (3.10)

If we put 3.10 in 3.9 we have
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hg h(z)dz| < ML.

Theorem 3.11 (Cauchy Integral Formula)

Let g is a holomorphic in a simply connected domain D and C is any simple closed contour in
D. Then

1 [9@

dz.
2mi ) z—a z

g(a) =

Proof. Suppose that D be a simply connected domain, C is a simple closed contour and a
interior point of C. Addition to these, let C; be a circle at a, C; lies in C. We can write
9(2) 9(2)

dz =
c Z—a o, Z—a

dz

From 3.5, we have

f 9@) dz = 2mi
c

Z—a
1

j 9(2) j 9(z) + g(a) — g(a)
dz = dz
c,Z2—a ¢ z—a
_ dz 9(2) —g(a)
—g(a)fz_a+f 7 a dz (3.11)
Again from 3.5, we have
; dz = 2mi 3.12
7 — g 2m (3.12)
If we put 3.12 in 3.11, we have
d —
jﬂ * — 2mi.g(a) +f 9@ =9@ (3.13)
zZ—a Cy Z—aQa
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Since g is continuous, we have VE > 0 there exists § > 0 such that |g(z) — g(a)| < €

whenever |z — a| < §. Now, if we choose for C;, |z — a| < g, then from Bounding theorem;

we have
- € 1)
Mdz < —<.2m.7=2n€ (3.14)
¢ Z—a [ 2
2
This happens only bif the integral is 0. Thus
9z)
ygz e dz = 2mig(a) (3.15)

Finallyi if we divided 3.15 side by side by 2mi, then we have

1 190
el adZ =g(a).
O
Example 3.12 Evaluate
s
22+9°%

where C: |z —i| = 3.
Solution.

z?2 +9 =0 = z = +3i are zeros of the given function. Now, we can see z = 3i inside of C.

Hence from Cauchy Integral formula we have;

Z

Z Z 3i
jgz2+9 =Y z-3D.z+3) " )gz—3i z

We can choose f(z) = i is analytic in C.

% Z_ g, (3.)2._31'2._ ,
7219 z=f L.7Tl—6l,. i = mi
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Theorem 3.13 (Cauchy’s Integral Formula for Derivatives)

Suppose that f is analytic in a simply connected domain D and C is any simple closed
contour lying entirely within D. Then for z, in C,
n! f(2)

f"(z0) = 2mi ] (z — zy)"+? dz.

Proof. Proof by induction. We already find for n = 0 in 3.11. Now, we have to find for
n=1. Let Cis o = a(t). And clearly we have do = o' (t)dt for a <t < b. We use 3.11

and write

f(2) = 1 fflo)do 1 f”f(U(t)).a’(t)dt

2mi) o—z  2mi o(t)—z
Let we assume that

e [E©)0©

o(t)—z
and derivative of k(z, t) equals to
dk B f(a(t)).a’(t)
9z ka(2,8) = o(t) —z
Now we have
oo 1 bf(a(t)).0'(t)do
f'@ = Zm'ja (a(t) — z)?

For n = 1 is true. Now, we assume that for n = k is also true. And finally we have to show

that n = k + 1 is true. If we continuous, we will see it is true. O
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Example 3.14 Evaluate the given integral

OncC:|z| =1.

Solution. We know that z = 0 is singular point of the given function and z = 0 lies in

C:lz| = 1.

We have
f(2) = e
f'(2) = 2¢%
£'(2) = 4e?*
["(2) = 8e*

If we put O instead of z, then we have f'"'(0) = 8. Then

; e?? 4 _ 2mi 8_87‘[i
z—03 =31 °73

Example 3.15 Evaluate the given integral

; z+1 d
z* + 2iz3 z

where C: |z| = 1.

Solution. We know that z = 0 is pole of order 3 and z = —2i are singular point of the given

function and only z = 0 lies in C: |z| = 1. Then we have

+1 z+1

Z 21
Y P N 1
¢z3(z+2i) d 7€ z3 d
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z+1 i
- i
ff Z+ 20 dZ — 73T f”(O)

ZZ+1
We have
z+1
f(Z)_z+2i
() = 21
F@ =2z
"z) = 2 — 4i
1@ = iz
If we put 0 instead of z.
2+
IIO —
(o) ==
then we have
2+ 1 2wl 241 2i—1)
Z+2i , _2mi [ m(20—
36z2+1dz_3'( 1’77 6

Now we will talk about Taylor’s theorem. Because its application very useful for Cauchy’s

Inequality.

Theorem 3.16 (Taylor’s Theorem)

Let f(z) be analytic in a domain D whose boundary is C. If z; is a point in D, then f(z) may

be expressed as

n

o=y E8) g
n=0

and the series converges for |z — z,| < &, where § is distance from z, to the nearest point on
C.
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Proof. Suppose that circle C;. From Cauchy Integral Formula

f(p)dp
=— A
f@) =5 (316)
Let |z —zy| =7
r=lz—z| <|p—2z| =m
1 1 1
p-z p-zy |1-2"%
P~ Z
Z— ZO)TL
1 zZ—2z Z—2y\*> [(Z—2Z —
= = = =
P~ Z P~ Z P — 2o P — 2o 1- 0
P~ Z
f(P) (Z—Z) f(p)dp (Z—Z)”1 f(p)dp
F) = — 2 o LR,
2ni ) p — (p—2) 2mi (p—2)
where

1 — n
R, = jg<z ZO> f(p) dp
2ni ) \p—2zy/ p—z

But from 3.11 we have

£ (20)

( 1)| ( - ZO)n_l + Rn

f(2) =f(z0) + +f'(20)(z — 2p) + "+ —<+

lim R, = 0.

n—oo

Let |f(z)| < M on C;. Then we have
j€|Z—Zo <z (T)n ldpl
_ZO 27-[ |p_Z|

1 1 1

lp—zl lp—zl—lz—2| m-—7r

nS<———
2m(m jgl dp| =

Sincer < m,
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Hence,

Theorem 3.17 (Cauchy’s Inequality)

Let U c C be open and let f: U — C be a holomorphic function. Suppose that p € U and that

for some r > 0 we have D(p,r) < U. Set M = sup,epgprlf (2)|. Then for n € Z*, we have;

Proof. Now, we assume that ¢: [0,1] — dD(p,r) be the (counterclockwise) path around the
boundary of the disc D(p, ). For n € Z*, from Cauchy Integral Formula for derivatives, we

have;

onf ~_nl  fla)da
dzm () = 2ni¢ ( p)nH1 (3.17)
Now, we compute
|5£ fl@da | _|*_fap@) dy |
(@—p)" " |Jy @@ -—p)™t de
from triangle inequality;
Vof@®)  dy 2 Fp()
o (W) —p)”“'%'dt‘ = f ‘(¢(t)_p)n+1 |dt| dt (3.18)
lf@@ENI [ty
< Supte[o,l]WL E|'dt
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The length of path vy is 2zr. If we put this length in 3.18, then we have

1
FO@)  dy |

o W@ —p)"*t de

f @ @)
Pl Ty = pn

2nr (3.19)

Now, if we take the absolute of 3.17 then

anf( )| ZT:T!i (C{(_a;;lfﬂ - ;17; SUptljoi]U;T(llJ/rJl(t)N - (3.20)
From assertion we know that
supeefo | f (W) =M (3.21)
Finally, if we put 3.21 in 3.20, then we have
9zn (p)| e+l 2mr = ]Vi:'

Theorem 3.18 (Cauchy Residue Theorem)

“Let C be a simple closed contour, described in the positive sense. If a function f is analytic
inside and on C except for a finite number of singular points z, (k = 0,1, 2, ...,n) inside C,
then

f(2)dz = 2mi ) Res,_, f(z)."
proe =2,

(Churchill and Brown, 2009).

Example 3.19 Use 3.18 and evaluate the given integral

z
f(z - 1*(z-3)

where C: |z| = 2.
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Solution. We can see there only z = 1 lies in |z| = 2. We have

1 1 1
(z-1)2(z-3) (z—-1)2"-2+z-1

:ﬁ<‘%)%

1-—

il e

_1/2 +_1/4 1

T (z-12 z—-1 8

This means that

Res[f(2),1] = %

Hence

i

'K}gf(z)dz = —%.2711' =-

Example 3.20 Use 3.18 and evaluate the given integral

j}‘ dz
72 — 4

where C: |z — 1| = 2.
Solution. Only z = 2 lies in C. Then we have

1 1
z22—4 (z-2).(z+2)

1 1
T z—=24+47-2
1 (3 1

4
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=1/4 1 .z-2
z—2 16 64

= Res[f(2),2] = -

i

jgf(z)dz = %.27‘[1’ =7

3.2 Zeros of Holomorphic Functions

In this section, we will demonstrate the zero of holomorphic functions which are not

identically zero are isolated.

Theorem 3.21 Let U < C be connected and open set and let f: U — C be a holomorphic. If f

is not identically zero, then the zeros of f are isolated.
Proof. Firstly, assume that f is not identically zero. We have two cases:
Case 1: Let f has no zeros. This is trivial solution.

Case 2: Suppose that f has zeros. Let z, be a zeros of f. Then

X = min {k SAR (%)nf(zo) * O}.

From assertion we know that f is holomorphic, and also Taylor’s theorem, we can say that

F@) = i( 2) . C=2 on iy

Similarly,

9(z) = i (%) f(ZO)-(Z_;—!")H (3.2)
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From 3.2 we can say that g is holomorphic on D and so g is continuous on D. From

(%)jf(zo) #+ 0, we have g(z,) # 0. Since g(z,) # 0
36 > 0,6 <rVze D(zy71)
|z — 2] <6 = [8(2) — 8(zo)| < [8(20)I
We know that g has no zero in D(z,, §). Also we have
f(@2) = g(2).(z — z0)* Vz € D(2,6)
f(z2) =0 & z=z

Hence all zeros of f must be isolated. O

Lemma 3.24 Let U c C be open, and g € U with D(q,r) € U. Assume that f is a

holomorphic function on U which a zero of order n at g and no other zeros in D(p,r). Then

f'@
2mi f(2) dz

Proof. Consider

S _N19f .
h<z>—(z_q)n—;. 5 (@D - )i~

f(
-

since h(z) = clearly

f(2) = h(2).(z- )"

where h(z) is an analytic and nonzero at g. Now, if we take derivative of f with respect to z,

we have

f@=h(2).z-—q)"+n.h(z).(z—q)" !

Clearly we have;

'@ _K@.z-"+n.h@).z- "’
f(2) h(z).(z — q)"
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_h(2) n

"~ h(2) * z—q
= ';’((ZZ)) is holomorphic and nonzero on D(q, r). By Cauchy Integral Theorem; we have
f'(2) h'(2) f
dz = dz + dz
f(2) h(z) zZ—q
clearly,
1 '@ dz = n
2ni | f(2)
O

Theorem 3.25 (Argument Principle Theorem)

If £ is analytic and nonzero at point of a simple closed positively oriented contour C and is

meromorphic inside C, then

1 f'@
2mi ) f(2)

dz = No(f) — Np(f)

where N, (f) and N,(f) are respectively, the number of zeros and poles of f inside C.

Proof. Suppose f is an analytic and nonzero function. Assume that

'@
“O=Fn

Since f is an analytic, G is an also analytic and nonzero there. Consider z, inside C that is

zero of f of order m. Then we know that f can be written

f(2) = (z = 20)" h(2)

where h(z) is analytic and nonzero at z,. Now, if we take derivative of f with respect to z,

we have,
fl(2)=m.(z—zy)™ L h(2) + (z — zg)™ h'(2)

From this, we have
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f'(2)

G(z) = —=
(2) @
- m.(z—2))""" h(2) + (2 — 2))". W' (2)
- (z — z)™ h(2)
m h'
= + (Z).
z—2zy h(2)
Since % Is analytic at z,, this representation shows that G has a simple pole at z, with
residue equal to m. Now we have two cases:
Case 1: If f has a pole of order k at z,, then
() = & 3.23
f zZ) = (Z _ Zp)k ( : )
where H(z) is analytic at z,, and H(z,) # 0. We already have
f'(2)
G(z2) =——=
(2)
Take the derivative of 3.23 with respect to z
) H'(2).(z — zp)* — k.H(2).(z — zp)**
f'(z) = =) (3.24)
If we put 3.24 in 3.23 we have,
H'(2).(z — zp)* — k. H(2).(z — z,)**
(z —zp)%
G(z) = 02
(z — zp)*
_H'(2) k
H(z) z-z,
Since % is analytic at z,, we find that G has a simple pole at z, with residue equal to

minus k. Finally by Residue theorem, the image of G around C must equal 2mi.

f'(@)
f (@)

j@ G(z)dz = dz = 2mi[N, (f) — N, (N)].
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Case 2: If f has no poles inside C, then N,,(f) = 0 and we have

1 /'@,
7 f(—Z)dZ—No(f)

where N, (f) is the number of zero of f inside C. O

Now, we can say that our job will be easier because of Rouche’s Theorem. Now we will see

that applying to this theorem is very useful for Open Mapping Theorem.

Theorem 3.28 (Rouche’s Theorem)

Suppose f(z) and g(z) are analytic inside and on a simple closed contour C, with
lg(2)| < |f (2)]

on C. Then f(z) + g(z) has the same number of zeros as f(z) inside C.

Proof. Firstly we take the absolute value of f(z) + g(z). We have

If(2) + 9| < If (@] +19(2)]

Since g(z) has no zero on C we can divide both side by |g(z)|, then we have

f@)+9@| _1f @)
lg(2)] 9(2)

+1,vz e C.

forze C ? cannot be equal to zero. The image of C is C* under the mapping % doesn’t

2

contain [0, o) and the function defined by

w(z) = logf(z) =In 1@ + iargf(—z)
9(2) 9(2) g(z)
=Inr +id.
where % =re® # 0and 0 < A < 2m is analytic in a simply connected domain D* in C*.
L@ _g@
f@) 9=
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) is antiderivative of 22 _ £®

sow(z) = logf( 5 " o

3.5 we have

@ 9@ (2 9@
3€ @ g(z)l dz 3{ O O
= Zf = Zg. O

Example 3.29 Use 3.28 and determine the number of zeros of the given function
h(z)=2z"+4z-1
where |z| = 3.
Solution. Let f(z) = z” and g(z) = 4z — 1 thatis, h(z) = f(2) + g(2).
If (@] = |z|” =37 = 2187
lg2)| =14z—1| <4|z| +1=43+1=13
lg(2)| = 13 < |f(2)| = 2187.

h(z) has seven zeros on |z| = 3.

Example 3.30 Use 3.28 and determine the number of zeros of the given function
h(z)=2z>-7z+6
where |z| = 2.
Solution. Let h(z) = z° and g(z) = —7z + 6. We have
If (@] =12°| = |z|> = 2° = 32
lg(2)| = -7z + 6] < 7|z| + 6 = 20.

this means that
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lg(2)| =20 <32 = |f(2)|

Hence from 3.28 f(z)and h(z) have five zeros inside |z| = 2.

Theorem 3.31 (Open Mapping Theorem)
A nonconstant analytic function maps open sets onto open sets.

Proof. Let U c C be open set. Now, we suppose that f: U — C be analytic and nonconstant at
zo. We have to show that f(U) is open. Let we choose r > 0 such that we define new
function, that is g(z) = f(z) — w, is analytic in D(z,,r) and it has no contain zero on
|z — z,] = r. Now, we will show that M be the minimum value of |g(z)| on |z — z,| = 7.
We will show that

D(wo, M) < f(U)
Let w;, € D(w,, M). Then we have
lwo —wi| <M < |f(2) — wol
From 3.28;
(f(2) = wo) + (W —wq) = f(2) —wy

f(z) —w, and f(z) — w, have the same number of zeros in D(z,, 7). Since g(z) has at least
one zero, then we can say that f(z) — w; has at least one zero, as well. Since w, is arbitrary,

we must have
D(wy, M) c f(U). O

Open Mapping Theorem has two results:

Corollary 3.32 (Maximum Modulus Principle)

Let U c C be open and connected and f is a holomorphic on U. Let 3g € U such that
lf(2)| < |f(q)| Yz € U. Then f is constant.
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Proof. Suppose that U < C be open and connected and f is a holomorphic on U. Pick g € U.

Since f is bounded we have

If@ < If(Dl =M

Since f is holomorphic function, by Cauchy’s Inequality, we have

' (z0)] < 2
fra)l <
M
lim — = 0.

r—oo T

lf'(z9)| <0 < f'(z,) = 0. Hence f is constant. O

Corollary 3.33 (Maximum Modulus Theorem)

Let U c C be bounded, open and connected. Let f be a function which is continuous on U

and holomorphic on U. Then the maximum value of |f| must occur on dU.
Proof. Since U is compact, |f| must occur on U. We have two cases.
Case 1: Suppose that f is constant. If f is constant, result is obvious.

Case 2: Suppose that f is nonconstant. Since f is nonconstant from Maximum Modulus

Principle f cannot have a maximum on U, so it must occur on U. o

3.3 Sequences of Holomorphic Functions

We will discuss a few result concerning sequence of holomorphic function. In this section we
will talk about Hurvitz’s Theorem. Because this is very useful for prove that the function is
injective. Additon to these we will talk about Montel’s Theorem. Because this is central key

for Riemann Mapping Theorem.
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Theorem 3.36 (Montel’s Theorem)

Suppose that U < C is open and that F is family of uniformly bounded holomorphic functions
on U. Then for every sequence {f;}  F there is a subsequence {f; } which converges

normally to a holomorphic function f,.

Theorem 3.37 Let U c C be open and g € U. Let F be a family of holomorphic functions
f:U - D(0,1), f(q) = 0. Then there is a sequence {jj} in F which converges normally to a
holomorphic function f,: U - D(0,1) such that |f'(p)| < |fo (p)| Vf € F.

Proof. Let
w = sup{|f'(p):f € F|}

there exists {f;} c F we have |f/ (p)| = w. From assertion we have each function map to unit
disc. Hence {f;} bounded uniformly 1. From 3.36, subsequence {f;, } converge normally f;.

From application of 3.31 and 3.36 we know that {|f;, (p)|} converge and uniformly bounded,

{1, @} = 1 @)I.

If we choose |f; (p)| = w, then proof is completed. O

Theorem 3.38 (Hurwitz’s Theorem)

Let U c C be open and connected. Suppose that {f]} is a sequence of nonvanishing functions

which are holomorphic on U. If this sequence converge normally to a holomorphic function
fo, then f nonvanishing or f; = 0.

Proof. We assume that f;, # 0 but it vanishes at g € U with multiplicity n. Since zeros of f
are isolated, we have r > 0 such that D(q,r) € U and f, nonvanishing on D(q,7) — {q}.

From theorem 3.25, we have

1 (@
21t f Fo(2)

dz=n (3.25)

Since Vj, we have
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fi (@) @

il 7 (Z) =0 (3.26)

We know that {f;} and {f;'} are converge uniformly to f, and f,’ on 8D (gq,r), 3.25 must be
converge uniformly to 3.26. Its contradiction because n is nonzero positive integer. Hence we

have if f, # 0 then f, is nonvanishing. O

Now, we are going to talk about Schwarz Lemma and its corollary. They are very important

application for Riemann Mapping Theorem.

Lemma 3.39 (Schwarz Lemma)

Let f:D(0,1) - D(0,1) be analytic function which maps the unit disc D(0,1) to itself. If
f(0) = 0then

If(2)| < lz|for0 < |z| <1
If'(0)] < 1.

Proof. Let g(z) = % Then g is analytic for 0 < |z| < 1 and it has singular point at z = 0,

since £(0) = 0. It becomes analytic at O if we define

g(0) = llm& = f'(0)

fix0<r<i1,for|z|=r

9@ =22 <2

from Maximum Modulus Theorem for analytic g, it follows that |g(z)| <= X for |z] < r. Fix

z€ D(0,1)and letr - 1~ to get

lg(2)| <1

This is true vz € D(0,1) and

1, 0<|z|<1

64



If(2)| <1z, 0#z€eD(01).
If |z] < 1 then
lg(0)] <1

lg(0)] = If'(0)] < 1.

Corollary 3.40 ¢:D(0,1) - D(0,1) conformal. There exists |A| =1 and a € D(0,1) such
that

zZ—a

¢(2) = /11 —az
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CHAPTER 4
RIEMANN MAPPING THEOREM

The goal of this chapter is Riemann Mapping Theorem. In this chapter we are going to talk
about this theorem and its importance. This means that, we will show that U and D(0,1) are

biholomorphically equivalent.

Theorem 4.1 Let U be a simply connected domain and U < C but never U = C. Then
U = D(0,1).

Proof. Assume that U be a simply connected domain and U < C. We have to show that
U and D(0,1) are biholomorphically equivalent. Let fix p € U. We consider f:U — D(0,1)
injective holomorphic function such that f(p) = 0. Now, we assume that F be a family of f.
Firstly, we have to show that F is nonempty. We choose any k € U and we define new
function (k) = z — k. We already shown in lemma 3.3, we can find a holomorphic function

@ such that @2 = 6.

Pick some x € @(U). From lemma 3.3, since @ is nonconstant and holomorphic we can

apply theorem 3.31.
dr > 0 such that D(x,r) c @(U).

From assertion, since 6 is one-to-one, if ®(z;) = ®(z,) or &(z,) = —P(z,) then z; = z,.

This implies
D(—x,r) n ®@(U)=0.

then we can write

T
& =@+

66



We have
|®(z)+x|=r VzeU
Hence f: U - D(0,1).

We know that @ is one-to-one. Clearly, f is also one-to-one. Hence f € F # @. Secondly,
since F # @, in order to find any functions which are biholomorphic between U and D(0,1).
We can use theorem 3.37 we have {f;} a sequence in F converge normally to f,: U - D(0,1)

such that f,(p) = 0. So

[fo ()| = supser|f' (P)I.

Now, we want to prove injectivity. Therefore we will apply theorem 3.38. If we show
fo(2) — fo(zo) is not identically zero then that is enough for injectivity. For every j € N, we

define

hi(z) = fj(2) — fi(zo) on U — {2}
From assertion we have for every j, all f; are one-to-one. And also every h; nonvanishing on
U - {Zo}.

This means that f; is one-to-one. In order to prove that U = D(0,1), we must show that f; is
onto. Suppose that f, is not onto then there exists a € D(0,1) which is not contained in image
of fo. Now we will see that Mobius transformations are very important to this. Now, we

consider new function on U, that is

fo(z) —a

A

(4.1)

Clearly, ¥ is one-to-one and nonvanishing and maps to unit disc. Since U is simply

connected domain from lemma 3.3 we can find a holomorphic function
m2 =y (4.2)

Now, we use Mobius transformations and we can define
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() = m(z) — m(p)
1 —m(p)m(2)

(4.1)

Clearly, T: U — D(0,1) holomorphic and T(p) = 0. Hence T € F. Now we are going to show
that

IT'(P)| > Ifo (P

Now we take derivative of 4.3 with respect to z, that is,

m'(z) — m(p).m'(z).m(z) + m(p).m(z) — m(p). m(p)
[1 — Wp).m(z)]2

T'(2) =

m'(2)[1 = m(2).m(). | + m(p).[m(z) — m(p)]

T'(2) = i
[1-m@).m@)]

(4.4)

Now if we put p instead of z in 4.4, then we have

m'(p).[1 — m(p).m(p)]
[1 - m®).m@®)]"

T'(p) =

)
[1—m().m(p)]

T'(p) =

T'(p) = m'(p)

=T m()? (4.2)

Now we take absolute value of 4.5, we have

m'(p)

1= Im@P (46)

IT"®)| = |

From assertion, if we take derivative of 4.2 with respect to z, then we have
Y'(z) =2.m(z).m'(z) (4.7)
If we put p instead of z in 4.7 then we have

Y'(p) = 2.m(p).m'(p)

68



Clearly we have

!
m'(p) = z.m((z)) (4.8)
Again from assertion we have f,(p) = 0. If we put p instead of z in 4.1, we have
—a
Y(p) = %
Clearly we have
Y(p) =—a (4.9)
Now we put p instead of z in 4.2 then
m?(p) = ¥(p) (4.10)
If we put 4.9 in 4.10, then we have
m2(p) = —a (4.11)
We take absolute value both side of 4.11, we have
[m?(@)| = lal (4.12)
If we take square root of 4.12 then we have
Im(p)| = /lal (4.13)
Now, we take absolute value of 4.2 then we have
|7 ()| = Im(p)|? (4.14)
Note that from assertion
fo(p) =0 (4.15)

Now, we put 4.2, 4.5, 4.11, 4.13, 4.14 and 4.15 in 4.6 we have

'®) AT
| Mm@ m(@
TP = ‘1— im0~ [T= v ®)
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Y (p)
A= 1¥®D.2m(p)

IT"(®)| =

7| = [F@:L=EB@] +a (). i~ al
P [1—a foI]22.m(). (1 - @)D
Since fo(p) =0
] < [E@- =0+ f).a (a
1 —0)2.2m(p). (1 — [Z(®)])
| R@.a=lal®)
'@ = 13 mm. a=1an
o |fa@). (= laD.(1 + |al)
e e e NCRT)

fo(p). (1 + |al)
2.+/|al

IT" ()| =

We can see there

1+ |al

2y/lal

=1

So we have

IT" ()| = Ifo ()l

Its contradiction. f; is onto. Since one-to-one and onto then f~* exists and holomorphic too.

So we have f; is biholomorphic functions which is fy: U = D(0,1). Proof is completed. O

Example 4.2 Let f: C - D(0,1) be biholomorphic. For a € C,b € D(0,1) — {0} such that

f(a) = b. We want a biholomorphic function which maps a to a zero.
Solution. We know that from 3.40 ®: D(0,1) — D(0,1) conformal. Then there exists |A| = 1

and b € D(0,1) such that

VA
d(z) = A =
@) 1—bz
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for this question we assume A = 1. And we have Mobius transformation;

z—D>b
6y = —
(2) 1— bz

We know that every Mobius transformations are biholomorphic and composite of mobius
transformations again biholomorphic. Clearly, ®@of: C —» D(0,1). We can see there this is

one-to-one. Now, we have to show that this function takes a to zero.

fz)—b

R 1

Since f(a) = b, we have

f(@—-b b—b

L - =
1—bf(a) 1-bb

bof (@) =

Example 4.3 Find a conformal bijection mapping U = {z € C: |z| < 1 and Imz > 0} to

D(0,1) such that é to 0.

Solution. Let f: U — C is analytic such that

=it (-2

we can see there the image of that % in second quadrant of C. Let

_Z—1
W_Z+1
_1+W
Z—1_W.

Let w = u + iv. Since |z| < 1,
11+ w|<|1-w]|

A4+w).+w)<@A—-w).(1-w)
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w+w<O0

u<o0.

since Imz > 0,

1+u+iv 1—u+iv
Im[ — . ] 0
l1—u—iv 1—u+iv
v(l+u+1-—u)
| >0
(1—u)?+v?
v>0.

Secondly we can define a new function g(z*) = (z*)? conformal except 0. We can see there

the image of second quadrant of C is
9(@") = (2% = (x" +iy")?
g(z*") = (x)? — (y")? + 2x*y*i.
Since Rez* < 0 and Imz* > 0 then

v =2x"y" <0

v <O0.
Finally, we can define new analytic function
z7+1i
h(z"™) = ——.
zZ " —1

we will find image of Imz** < 0 under this function. That is;

z* + i

YA

k%

wWw =

w41
w* —1

Since Imz** < 0 we have;

w41
Im|i
w** —1

<o
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A+u™)i—v™ u™—-1-iv™
u™* —1+iv™ u*—1-—iv*

A+u™). W™ —-1).i+i(v™)?
@ = D7+ )

WH2—1+ @2 <0

(u**)Z + (U**)Z < 1.

This is D(0,1). Now, we take compositon f, g and h;

z—11% .
(hogof)(z) = w

z—1 )

1

(z—1D2*+i(z+1)?
(hogof)(@) =

(z—1)?—-i(z+1)?

h ) 22 +2iz+1
09002 =ty 1

We can see that

s ()=

But we want to make 0. From 3.40 we have for any a in lower half plane then the map

zZ—a

zZ—a

Will suffice as a replacement for h. We can see there

i =7 — 24i
(gof) (E) R
If we change h(z)
-7 — 24
A )
N —7 + 24i
_( 25 )
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Finally if we compose f, g and h then we have

4.2
) 25[;—% + 7+ 24i
(hogof)(z) = — ZHL

25 [z+—1] +7 — 24i

This is conformal bijection and (hogof) (%) = 0.
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CHAPTER 5
CONCLUSION

Finally, instead of working in complicated spaces, Mobius transformations and Riemann
Mapping Theorem provides easier ways to find holomorphic functions between known

spaces. In my future life 1 would like work on this subject.
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