CHAPTER 1

INTRODUCTION AND BASIC DEFINITIONS

1.1 Introduction

In applied mathematics and physics, orthogonal polynomials have an important place.
Moreover, geometrically, orthogonal polynomials are the basic of vector spaces and so

any member of this vector space can be expanding a series of orthogonal polynomials.

Almost four decades ago, Konhauser (1965-1967) found a pair of orthogonal
polynomials which satisfy an additional condition, which is a generalization of
orthogonality condition. These polynomials are called biorthogonal polynomials. After
Konhauser’s study, several properties of these polynomials and another biorthogonal

polynomial pairs was found.

In 2007, Sekeroglu, Srivastava and Tasdelen gave a general definition of g-biorthogonal
polynomials and obtained main properties of them.

After these study, some special properties was obtained for g-biorthogona polynomials.

In 2008, Srivastava , Tagdelen and Sekeroglu studied several generating functions for
g-biorthogonal Konhauser polynomials.

In this work, general and basic properties of biorthogonal polynomials are given and
two types of biorthogonal polynomials which are namely Konhauser polynomials and
Jacobi type biorthogonal polynomials are investigated.

In the first chapter, several basic definitions and theorems about q-analysis theory are

given.

In the second chapter, definition and main theorems of about orthogonal polynomials

theory are given and some specia orthogonal polynomial families are given.



In the third chapter, definition and main theorems of about biorthogonal polynomias
are obtained and some specia biorthogonal polynomial families are given.

In the fourth chapter, definition and main theorems of about
g-orthogonal polynomials theory and some special g-orthogonal polynomial families are

given.

In the fifth chapter, definition and main theorems of about g-biorthogonal polynomials

theory and some g-biorthogonal polynomial families are given.

In the sixth chapter, are given conclusions.

1.2 Gamma Function

The definition of a special function which is defined by using an improper integral is
given below. Thisfunction is called Gamma Function and has several applicationsin
Mathematics and Mathematical Physics.

Definition 1.1(Rainville, 1965)

The improper integral

o0
J t¥le~tdt
0

converges for any x > 0 iscalled “Gamma Function” and is denoted by I'.

o

rx)= j t*"le~tdt.

0



Some basic properties of Gamma function are given without their proofs (Rainville,
1965).

o0

J- thetdt=n!=T(n+1),
0

where n is a positive integer.
nI'(n)=Ir(n+1),

and

r(2b)vm =2*?tr(p)r (b + %) ,
where Re(b) > 0.
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r(2b+n)\/E21—2b—n=r(b+§n)r(b+z,n+z),

where Re(b) > 0 and n is non-negative.

ra = (a)"(”(a;)”!,

where Re(@) > 0 and n is non-negative integer.

Definition 1.2(Askey, 1999)
Let X be areal or complex number and n is non-negative integer,

_I'x+n)

X)), = o) =x(x+1)..(x+n-1),



(x)g=1,
(x)1 =x,
(%), = x* +x,
1s known “Pochammer Symbol”.

There are some properties of Pochammer symbol.

(c 4y =2k,

where c is real or complex number and n and k are natural numbers.

nl  (—n)
(n—k)!  (-DF’

where n and k are natural numbers.

=) (5.

where c isacomplex number and k is a natural number.



= (2,

wherek is a natural number.

There isauseful lemma for Pochammer symbol. Proof of this lemma can be obtained

by directly and elementarily (Raiville, 1965).

Lemmal.l

Let « berea or complex number and n is non-negative integer,

(@) = 22 (%)n . (“ er 1)n, (1.1)

Pr oof

@y, =ala+D)(a+2)...(a+2n—-1)
Q)
=20 (5) (5+1) . Gn-1) () (a4 1)




1.3 g- Analysis

After the systematic development of calculus by Leibniz and Newton in the after half of
the seventeenth century, Mathematicians attempted to improve new techniques. One of

them is g-Analysis, which is an important generalization of standard techniques.

Definition 1.3

Let g€ R\ {1}. Then the g-analogue of a number ais given by

Definition 1.4
For a real or complex number q (|q| < 1), (a; q),, isgiven by

1 ; (n=0)

(a; q)n = 1_[(1 — aqj) ; (‘n €N = {1,2, })
j=0

and

@@ =] [(1-aq’)

Jj=0
Definition 1.5

Let g€ R \{1}. Then the g-Pochhammer symbol is defined by
n—-1
(g = | [ta+ml,

m=0

for areel parameter a.



Definition 1.6

Let g€ R\ {1}. Then the q-analogue of n! is given by

lg! =] [imly . 0l =1

for anatural parameter n.

Definition 1.7

Let g€ R/{1}. The q-derivative operator D, is defined by

flax) = f(x)

@=Dx (1.2)

Dy (f(x)) =

Notation

It is significant to mention about when g — 17, itissaid that [a], — a and [a],, ; —
(@n , [n]y! > nland D, f(x) - % (f(x)) where (a),, is called Pochhammer symbol

for anatural number n and area number a.

Examplel
Let aisareel number then

D,(x%) = [a]x*~ ™.
Solution

If the representation (4.1) is applied to the expression x4, it is deduced that



a

(qo)*—x* 1-—gq La1

ay — — — a-1
Dg(x%) @ —Dx 1—¢ [a]gx% .
Example 2
The g-exponentia functionis
(x) ! i C" (1.3)
e, \x) = = . .
1 ((1-6[)36; q)oo [k]q!

k=0

aisarea number then
D,(e,(ax)) = ae,(x).
Solution

With the help of the representation (1.3) it can be written that,

y() = <z (ax) ) 2 (a ])" Dy (x*).

If example 1 is used in above the equation , it is readily obtained,

Lemmal.2

Let f(x) and g(x) be two piecewise continuous function in (a,b). Then we have
De{f (x)g(x)} = f(x)Dy{g(x)} + g(x)Dg{f (x)}

+(q = 1)xDa{f (x)}Dg{g (x)}- (1.4)



Pr oof

If the representation (1.2) is applied to the left side of the equation (1.4), it iswritten
that,

flgx)g(qx) — f(x)g(x)
(g —Dx

D,(f(x)g(x)) =

if the quantity f(x)g(x) add to and substract from the equation above, the following

relation is found easily.

flax)g(gx) — f(x)g(x) + f(x)g(x) — fF(x)g(x)
(g —Dx

Dy(f()g(x)) =

(9(gx) — g(x)) (f(gx) — f(x))
@-Dx IO T o

= f(x)

= f(x)Dgg(x) + g(qx)Dyf (x)
if the equation
g(qx)=g(x)+(q-1)xDg g (x)

that was obtained with the help of (1.2) isused, the proof will be completed.

Definition 1.8

The g-integral of a piecewise continuous function f(x) in (a,b) is defined as follows:

(0] co

b
[ r@dg =) ®an = ba e - ) (ag" - ag s (ag

n=0 n=0

and



j F)dgx = (1-q) 2 £ (q). (1.5)

J=—00

If f'is a continuous function, the meaning of g-integral exactly equals to Riemann

integral when q approaches to 1. In order to show this, let us take f(x) as x%. assume

xa+1

a+1’

that F(x) is an antiderivative of f(x). There follows F(x)=

> Flba™ (b - bg™)
n=0

— Z(bqn)a(bqn _ bqn+1) — ba+1(1 _ CI) Z q(a+1)n
n=0 n=0

— ba+1 1- q
1-— qa+1
then
1__q ba+1
lim ba+1 — =F(b
q-1" 1-qg*1 a+1 (b)
in the similar way,
lim a1 —— 4 _ F(a)
g1 1 a+1

Consequently,

b b
qli??_ f f(x)dgx = F(b) — F(a) = ff(x)dx.

Theorem 1.1

The g-integral of a piecewise continuous function f(x) in (a,b) is defined as follows:

10
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b © o
[ Fedgr = (ar = ba™ £ - ) (ag™ - aq" ) (aq™
a n=0 n=0

and

[ rodx=a-0 Y ar@)
0

j:—OO

Lemma 1.3 (q-partial integration)

The g-partial integration is defined by

| FeD g dgx = limif@ @™ - F@ 9@
0

(0]

- [ 9DalreNgx = (@ = 1) [ xDy (F I, LgGN g
0

0
for two piecewise continuous f(x) and g(x).

Pr oof

If g-integral is applied to both sides on the expression (1.4) on [0,0), by using the
definition (1.5), it isfound that

ff(x)Dqg(x)dqx = lim ((1 - q) z q"Dq(fg)(q")>
0 k=—n

0

- [ 90D CIdgx = (@ = 1) [ x(04f () (Dag @) dgr. (1)
0 0



If the definition of q-derivative operator is applied to the first term of the right side of

(1.6), it isreached that

lim | (1-q) Z q*Dy(f9)(q")

k=—-n

n n k+1y _ k
=lim|{ (-9 ) ¢“x ) ¢ (fg)(q(q _)m(ligxq )

k=-n k=-n

= tim > (FD @ - F9)@)

k=-n

Lim(f(g™g(@™) — f(@™*g(@™* ).

Definition 1.9

Jackson defined a q-analogue of the gamma function as

Q@):éﬁiﬁf1—@kx 0<q<1.

Note that I, satisfies the functional equation

X _

Q®+D=2_1Q&)

He also showed that lim,_,1- I, (x) = I5,. Askey proved the integral formula

[ x%*dx _I=aor(a+1)
J CO-—x D I, (—a) , 0<qg<1,Re(a)>0. (1.7)
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CHAPTER 2

ORTHOGONAL POLYNOMIALS

In this section, definitions and main properties of orthogonal polynomials which are a
specia case of the biorthogona polynomials are given. (Askey, 1999)

21 ORTHOGONAL POLYNOMIALS
Definition 2.1

A polynomial isafunction pwhosevaueat x is
P(X) = apx™ +a,_x""1 + ... +a,x? + a;x + a,

where a,,a,_4, ..., ay, a; and a,, caled the coefficients of the polynomial, are
constants and , if n >0, then a,, # 0. The number n, the degree of the highest power of x
in the polynomial, is called the degree of the polynomial. (The degree of the zero
polynomial is not defined.)

Definition 2.2

Let w(x) isaweight function and p,,(X) polynomias are defined over the interval [a,b],
if

b
fw(x)pn(x)pm(x) dx =0, m#+n, (2.1)

a

is satisfied, then the polynomials p,,(x) are called orthogonal with respect to the weight

function w(x) are theinterval (a,b), m and n are degrees of polynomials.

There is an additional condition for the orthogonal polynomias which makes them

orthonormal.
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Definition 2.3

If the polynomials p,,(x) are orthogonal with respect to the weight function w(x), over
theinterval (a,b) and

b

b
P12 = j j w@pidx=1 ,  m=n,

a

issatisfied , then the polynomials p,,(x) are called orthonormal.

There is an equivalent condition for the orthogonality relation (2.1) which is given
below.

Theorem 2.1 (Askey, 1999)

It is sufficient for the orthogonality of the polynomials on the interval [a,b] with respect
to the weight function w(x) to satisfy the condition

b
fw(x)qbn(x)xidx =0, i=012..,n—1 (2.2)
a

here, ¢, (x) ispolynomial of degree n.
Pr oof

If the polynomials ¢,,(x) and ¢,,(x) areorthogonal on the interval [a,b] with respect

to w(x) then

b
Jw(x)qbn(x)xidx =0, m#n

a

xt, can be written as linear combinations,
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i
x'=agpo + a1y + Ay, + -+ ap; = Z A P (%),
m=0

substituting thisin (2.2).

b b i

[ weognGaxiax = [ wedga ] Y andm() i

a a m=0

i b
= D an [ W0 u (0B ()dx = 0
m=0 a

for 0O< m < i, ¢, (x) and ¢,,, (x) where 0< m < n. Hence,

b
jw(x) ¢, (x)xtdx =0, i=012..,n—1

a

Orthogonal polynomials have several important properties. In this section, general
definitions of these properties are given and then obtained special form of them for

well-known orthogonal polynomial families.

Definition 2.4 (Askey, 1999)

Any polynomial family ¢, (x), which isorthogonal on theinterval [a,b] with respect to

the weight function w(x), satisfies the recurrence formula

Pni1(x) — (xA, + Bp) P (x) + Cpp,_1(x) = 0 here A,,,B,, and C,, are constants
which depend on n.

Definition 2.5 (Askey , 1999)

Rodrigues Formulafor orthogonal polynomials are written as
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n

u() = Ap s S WO @], n=012,.. (2.3)

here, ¢,,(x) polinomials are orthogonal with respect to the weight function w(x) and u™

isapolynomial of x.

Definition 2.6 (Askey, 1999)

If the two variable function F(x,t) has a Taylor series asin the form of
i
FG6t) = ) ay (01", @24

n=0

with respect to one of its variablest, then the function F(x,t) is called the generating
function for the polynomials { ¢, (x)}.

Definition 2.7 (Bilatera Generating Funtion)

If the three variable function H(x,y,t) hasaTaylor seriesin the form of

HEY,0 = ) eufa(0gn(0t"

n=0

with respect to one of its variables, t, then the function H(x,y,t) isthe bilateral

generating function for the families f,, and g,, .

Definition 2.8 (Bilinear Generating Function)

If the three variable function G(x,y,t) hasaTaylor seriesin the form of
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(0e]

66,9, = ) cnfa()gn()E"

n=0

with respect to one of itsvariables, t , then the function G(x,y,t) isthe bilinear

generating function for the families function f,, and g,, .

2.2 Some Special Orthogonal Polynomial Families

Some well-know orthogonal polynomials families which have several applicationsin
applied mathematics are given at this section. These polynomial families have several

properties which are common and obtainable for any orthogonal polynomial family.

2.2.1 Laguerre Polynomials (Rainville, 1965)

For a > —1, the LSL“) (x) polynomials, which are orthogonal on 0< x < oo with respect
to the weight function w(x)=x%e™ and which are known as Laguerre polynomials are

given by,

n k
b, () = L9 (x) = Z(—nk o Z)% . =012, ..

k=0

The specia casea = 0 ingl“)(x) = L,(X). Let us give thefirst five Laguerre

polynomials,
Lo(x) =1
Li(x)=—-x+1

Ly(x) = 2 (x? — 4x + 2)

L3(x) = = (—x% — 16x2 — 18x + 6)
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L,(x) = i (x* — 16x3 + 72x% — 96x + 24)
Ls(x) = ﬁ (—x® + 25x* — 200x3 + 600x? — 600x + 120)

The graphs of first six Laguerre polynomias Ly (x), L, (x), L,(x), L3(x), Ly(x) and

L<(x) are shown in the figure:

Laguerre Polynomials

20 T T R T
E W i n=0 — = =
o -
15 '... |Ii. ! =2 secennannns |
% h [
I n=4 ————.

Several properties of Laguerre polynomials similar to orthogonal polynomials can be

obtained. One of these properties is that it satisfies second order differential equations.

. d x d . . . :
Starting from = [x*tle— = L, (x)], we obtain Leguerre differential equation,

xy+(@+1—-x)y +ny =0,

where the solution of this differential equation are Laguerre polynomials can be

obtained.

Let us start with the equation below:



d —x d - d? d
e — Ly ()= x%e T [x = Ly(x) + (a+1—x)—Ly(x)]

it can be written as linear combinations,

2 n

L) + (@ +1- x) L, (x) = z a;L; (x).

i=1

X dx

Therefore,

n

[x““e‘x; L (x)] = x%e xZaiLi(x)

i=1

d
dx

by integrate over theinterval (0,%0), it is deduced that

[e9] 00 n

f L;(x) % [x““e‘x:—an(x)] dx = J- Li(x)x%e™™ Z a;L; (%)

0 0 =1

M:

_q f e 2 mdr+ Y @ f e L (x) Ly (x)dx
0 0

i=
j=
€3

~ R

it is known that the Laguerre polynomial are orthogonal, then
Je"‘x“L]-(x)Li(x)dx =0, i #]j
0

Consequently,

o0 [ee]

d . d B
ij(x)&[x““e xaLn(x)] dx = ajf x%e L% (x)dx + 0

0 0

19



f Li(x) dx[ at+l ‘x—Ln(x)] dx
N fo x%e~*12;(x)dx

and;—an(x) =y, deL x)=y" 0

xy ' +Ha+1—-x)y +y=0

A== ()" + (@+1-x))=n,

Then the following differential equation is obtained.
xy +(a+1—x)y +ny=0.

The generating function for the Laguerre polynomials

o

z lea) (x)t" = a i 5 exp (;ftt), (2.5)

n=0

can be written. For obtaining the || LS{") (%) || norm of Laguerre polynomials, the

generating function (2.5) is rewritten asin the form of

o)

Z e *LE ()t = e™* a i )exp (;ftt) , (2.6)

m=0

by multiplying both sides of (2.5) by w(x) = e™ wherem # n . If (2.5) and (2.6) are
multiplied side by side and integrate over the interval (0,)

i Ue_xL%a)(x)L%)(x)dx] fnm 5 jt)zfexp (x21_+1t))

n,m=0 Lo

Is obtained. If left hand side of the last equation is separated for m =n and m # n, and

take the integral at right hand side,

20



n,m=0 nm=0

Z [fe‘xLﬁL(x)dx

t2n 4+ 2 U e‘xLSf)(x)Lgff)(x)dx gntm
0

11—t 1
S (A-02"(1+t) 1-—t2

IS obtained. By using the orthoganality of Laguerre polynomials, for n=m , second

integral at the left hand side is equal to zero.

If the Taylor series,
1 i "
1-t '
n=0
is used on the right hand side of the last equality, then

Z er_xL%(x)dx] t2n = itzn ,
0

nm=0 n=0

is obtained. Thus , equality of the coefficient of t2™ in both sides give the norm of

Laguerre polynomials as

o0

”Lgfc)(x)”2 = J-e"‘L%(x)dx =1.
0

Finally the recurrence relation for Laguerre polynomia L% (x) is given as,

(+ DL (%) + (x-2n-1-2) LSO (x) + (nta) L2, (x) = 0

+ n-1

21



2.2.2 Jacobi Polynomials (Askey, 1999)

Fora > —1,p > —1, the Jacobi ponnomialsPn(“‘ﬁ )(x), which is orthogonal on the
interval -1< x < 1 with respect to the weight function w(x)=(1 — x)*(1 + x)#, are

given by the formula

n

PP =2 ("F ) (T E) oo - e

n—k
k=0
n=0,1,2,...

If a = B, the ponnomiaIsPn(“'ﬁ) (x), arecalled “Ultraspherical Polynomials’.

Some special cases of Jacobi polynomials which depend on the values of @ and 8 are

given below:

1 Fora=p-= —%, the polynomials

A nlx" 2k (x2 — 1)k

(2K)! (n — 2k)!

Pn(_i’_f) (x) =

=T,(x),

arecaled “1. Type Chebyshev Polynomials’.

Some of the polynomials T,,(x) are

To(x) =1

T:(x) =x

T,(x) = 2x%2 =1

T;(x) = 4x3 — 3x

T,(x) = 8x*—8x%2+1
Ts(x) = 16x° — 20x3 + 5x

The graphs of first six I. Type Chebyshev Polynomials T, (x), T; (x), T, (x),
T5(x), T,(x) and T5(x) are shown in the figure:

22



\ T [N | L
I.O:_ =0 :
:: n=1 E
0.5
[ n=4 ]
:_ / X H=/ _:
~~ n .
SN :
= 0.0 - -
- n=3 / .
_0sf ’/ n=5 ]
~1.0 E
| Lo [ I [ | . P T N I
-1.0 -0.5 0.0 0.5 1.0
X
2. Fora =B = 0, the polynomials
[n/2]
PO =27 Y 0k () (B ) ek = hw),
k=0

23

arecaled* Legendre Polynomials’. Let us give the first five Legendre polynomials;

Py(x) =1

P;(x) =X

P,(x) = 2 (3x2 — 1)

Py(x) = %(sz — 3x)

P4(x) = =(35x* — 30x% + 3)

P(x) = %(63965 — 70x3 + 15x).

The graphs of first six Legendre polynomials P, (x), P, (x), P,(x), P3(x), P,(x) and

Ps(x) are shown in the figure:



legendre polynomials

I
1
/”/
-~
p
0.5 — A
yd
///
— ////
kS
= 0
48 -
///
-~
p
e
//
/.t‘
-0.5 e Po(x)
//" Pl(J{:l
/// PE(J{)
/// P3[:J{:]
1 e Pa(x)
i | | | Ps(x)
1 0.5 0.5
Here
n . .
n 5 if niseven,
[E] “In-1
> if nisodd.

If = [(1 — 21— )1+ )P L P (x)], is used to start, the Jabobi differential

equation can be obtain as
L-x2)y" +[f—a—(a+B+2)x]ly +n(n+ L +a+1)y =0,
which has the solutions as Jacobi polynomials.

Generating function for the Jacobi polynomials are given as

24
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oo

> P e

n=0

2a+ﬂ
VI —2tx+ 2 [1—t+V1—2xt + 2][1 +t +VI— 2xt + £2]

Finally, the recurrence relation for Jacobi polynomials are given as

2n+)(nta + B — D2n+B + )PP () - [2n+ a + B+ 1)(a? — B2)(2n + af +

,B)x]Pn(“'B)(x) +2n+a)(a+B)2n+a+p+ Z)Pn(i{f)(x) = 0.

2.2.3 Hermite Polynomials (Askey, 1999)

The H,,(x) Hermit polynomials, which are orthogonal on theinterval -oo < x < oo with

respect to the weight function w(x)=e *" given by,

[n/2]
—1)kn!
B = o) = ) T
k=0

n=0,1,2, ...

Some of the polynomials H,(x) are,
Hy(x) =1

H,(x) = 2x

Hy(x) = 4x% — 2

H3(x) = 8x3 — 12x

H,(x) = 16x* — 48x2 + 12

Hs(x) = 32x° — 160x3 + 120x



The graphs of first six Hermit polynomials H,(x), H,(x), H,(x), H;(x), H,(x) and
Hg(x) are shown in the figure:

Hermite (physicists') Polynomials
50

H_n(z)

Rodrigues formulafor Hermite polynomials

) = (-1 e (e,

The generating function for the Hermite polynomials

[ee]
eth—tz — Z Hn(x) .
n!
n=0

Norm of the Hermite polynomials

(2.7)
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o0

H, (I = f e~ H, (x)dx = 277 n!

— 00

Form the equation

e b
x| ax

The Hermite differential equation can be obtained as
y ' —2xy' +2ny =0,
Which has the solution as Hermite polynomials.
Finally, the recurrence relation for the Hermite polynomials given as
Hp,.q(x) — 2xH,(x) + 2nH,_,(x) = 0. (2.8)

By using generating function, (2.7), we can obtain the recurrence relation above by

following steps.

Take the derivative of both sidein (2.7) with respect to t.

(2x — 2t)e?xt=t* = Z Hn (%) nt" 1

if the indices are manipulated to make all powers of t as t",
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i 2xH () N 2Hnea () 3 i (),

n! (n—1)! n!
n=0

n=0 n=0

and open some terms to start the summations from 1,
S tn - tn
2xHo () = ) (2xHn(x) = 2y 1 (1)) = Ho(®) + ) Hna(0) —
n=1 n=1

is obtained. By the equality of the coefficients of the term %,

2xHy(x) — 2nHp_1(x) = Hpyq(x),

can be written, which gives the recurrence relation (2.8).
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CHAPTER 3

BIORTHOGONAL POLYNOMIALS

In 1951, L.Spencer and U.Fano introduced a particular pair of biorthogonal polynomial
setsin carrying out calculations involving the penetration of gammarays through matter
Spencer and Fano did not establish any general properties of biorthogonal polynomial
sets, but essentially utilized the biorthogonality of polynomialsin x and polynomialsin
x? with respect to the weight function x*e ~*, where a is a nonnegative integer, over
theinterval (0,0).

3.1 Biorthogonal Polynomials
Definition 3.1

Let r(x) and s(x) be real polynomials in x of degree h >0 and k > 0, respectively. Let
R,,(x)and S, (x) denote polynomials of degree m and nin r(x) and s(x) , respectively.
Then R,,,(x)and S,,(x) are polynomials of degree mh and nk in x. Here, the
polynomiasr(x) and s(x) are called basic polynomial.

Notation 3.1

Let [R,,(x)] denote the set of polynomias R, R;, R,, . . . of degree 0,1,2,... in r(x). Let
[S,,(x)] denoted the set of polynomias S, S;,S,, ... of degree0,1,2, . . . in (x).

Definition 3.2 (Konhouser, 1965)

The real-valued function p(x) of the real variable x is an admissible weight function on

thefinite or infinite interval (a,b) if all the moments
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b
I = f PO sV dx, i) =012, ..

a
exist, with

b
lyo = fp(x)dx * 0.

a

For orthogonal polynomials, it is customary to require p(x) be non-negative on the
interval (a,b). This requirement is necessary fot the establishment of certain properties
for biorthogonal polynomials, this is found necessarily to require that p(x) be either

nonnegative or non-positive,, with I, o # 0, on theinterval (a,b).

Definition 3.3 (Konhouser, 1965)

The polynomial sets R,,,(x)and S,,(x) are biorthogonal over theinterval (a,b) with
respect to the admissible weight function p(x) and the basic polynomials r(x) and s(x)
provided the orthogonality conditions

b

0, m#n
_mm=fMﬂ&Aﬂ&&Mx=Lm = Mn=012. (3.1

a

are satisfied.

The orthogonality conditions (3.1) are analogous to the requirements (1.1) for the
orthogonality of asingle set of polynomials. Following (1.9), it was pointed out that the
requirement that the different from m=n was redundant. The requirement in (1.1) that
Jmn bedifferent from zero is not redundant. Polynomial sets[R,,,(x)] and [S,, (X)] exist
such that

iz,mﬁﬂle, and i = 0.
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If the leading coefficient of polynomial is unity. The polynomial is called monic.

Now, let give the alternative definition for biorthogonality condition the following

theorem is the analogue of the Theorem (2.3) which gives an aternative definition for

orthogonality condition.

Theorem 3.1 (Konhouser, 1965)

If p(x) isan admissible weight function over the interval (a,b) and if the basic

polynomials r(x) and s(x) are such that for n=0,1,2,...,

b
[peatreovsawax={% J = 02 n ]

a
and

b
[ peotsVRnGdx = {7 § = 02

a

are satisfied, then

b

[ peoRmIS X =) TI"

a

holds. Conversely, when (3.4) holds then both (3.2) and (3.3) hold.

Pr oof

, m,n=20,1,2, ..

(3.2)

(3.3)

(3.4)

If (2.3) and (2.4) hold, then constants, ¢, ;,j =0,1,...,m, (C;pm # 0), exist such that

R (x) = i jroV.



If m< n, then
b b m
| PRSI = [ P00 Y G lr GOV, ()
a a Jj=0
m b
= emi | OGS, () dx
j=0 a

in virtue of (3.2),

b

[ p@r Vs, cax

a

vanishes except where j=m=n.

If m>n, then constants d,, ;, j=0,1,...,n (d,, ,, # 0), exist such that

5200 = ) dn [5GV,
i=0

]

and the argument is completed asin the casem < n.

Now, assume that (3.4) holds. Then constants e,,, ; and f,, ; exist such that

J
PGV = emi Ri®),

i=0

and

J
[SGOV = ) fusSi@).
i=0

32



33

If 0< j < n, then

b b i
[p@br@Vs,car = [pe Y enikis,ax
J
= emi [ @RS, ).
i=0 p

Ifi=1,2,3,...,j ,j < n, each interval on theright sideis zero since (3.4) holds. Ifj=n
the interval on theright side is different from zero. Therefore (3.2) holds. In like manner
(3.3) can be established.

3.2 Investigation Of Sufficient Conditions Which Ensure The Existence Of

Biorthogonal Polynomials

The determinant A,, depends upon the moments

I; j, whith, in turn, depend upon the basic polynomials r(x)and s(x), the weight
function p(x) and the interval (a,b). It is natural to attempt to attempt to determine
sufficient conditions which ensure that A, # 0, n=1,2,3,... .In this direction, partial

results will be obtained.

Notation

The determinant A,, is given by

Ioo loq - Ion-1
— Lig L1 - I1 -1
Ap= . S .
10 In-11 In_qn-1

If p(x) isan admissible weight function then A, = I, , # 0.
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Theorem

Given the basic polynomials r(x) and s(x) and an arbitrary admissible weight function
p(x) on theinterval (a,b), polynomial sets[R,,(x)] and [S,,(x)] satisfying the
biorthogonality requirement (3.4) exist if and only if the determinant A,, is different
from zero for n=1,2,3,... . Moreover. The polynomials are unique, each to within a

multiplicative constant.

Pr oof

It is convenient to use the equivalent conditions (3.2) and (3.3) in place of (3.4).
Coefficients ¢, g, €1y ooy Cpp @A dy g, Ay 1, oo, A, With ¢, dyy # 0, @re

required such that for n=0,1,2,...

b n
0 ,j=01.,n—1
[p@0Y aureatseovax={* /=0T @)
a =0
and such that
b n
. 0 , j=01.,n—1
[p0Y dntreorseovar={"_ AP EL)
a i=0
In term of the moments ; ;, requirements (3.5) and (3.6) may be written
C 0 = 0,1 1
(0, j=01,..,n—
Cnilij = { %0 ' P (3.7)
i=0
and
- 0 =01 1
(0, j=01,..,n—
Zdn,ili_j _{ Lo LT (3.8)

i=0
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The first n requirements of (3.7) constitute a system of linear equations in the n
unknowns ¢y, /¢ 5, Cp1/Cpnye - - Cyn—1/Cnyn. The system will have a unique solution if

and only if the coefficient determinant, which is precisely 4A,, , is different from zero.

The first n requirements of (3.8) constitute a system of n linear equations in the n
unknowns d,, ,/dy, », Ay 1/dp e - . Ay n—1/d;, . The determinant of this systemisthe
transpose Af of A,, and is nonzero if and only if A,, is nonzero. Therefore, if A,,# 0,
n=1,2,3,..., then polynomials can be found which satisfy the first n requirements of
both (3.7) and (3.8). Moreover, the polynomials are unique, each to within a

multiplicative constant.

The (n+1)st requirements of (3.7) and (3.8) must snow be examined. The (n+1)st

requirement of (3.7) isthat

n
Z Crilin # 0. (3.9)
=0
If we replace c,, ; by its value as determined from the solution of the system of n
equations the left side of (3.9) isc,, ,/A,, timesthe determinant A,,,; must be different

from zero for n=1,2,3,... . 1n life manner, the (n+1)st requirement for (3.8) leadsto the

requirement that

n

_dpnA
Zdn I — nn—n+l n+1 __/:0.
n

=0
Multiplication of the polynomials R,,(x) and S,,(x)

By constants, which are not necessarily the same for every value of n, does not affect
the satisfaction of requirements (3.7) and (3.8). In conclusion, a necessary and sufficient
condition for the existence of biorthogonal polynomials are that the determinants A,, be

different from zero for n=1,2,3,... .

In regard to the basic polynomials r(x) and s(x), it is clear that the biorthogonal

polynomials determined by the basic polynomials r(x)+u and s(x)+v, where y and v
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are constants, are identical because of the orthogonality of R,,(x) and S,,(x) with

respect to the constants S, (x) and R, (x), respectively.

3.3 Some Special Biorthogonal Polynomial Families

After Konhoauser found the general property of biorthogonal polynomials, there was a
riseininterest of thistopic. Then, in 1967 he defined a pair of biorthogonal polynomial
family. This situation had the interest of this topic reached to the top point. The
polynomial family that is called biorthogonal polynomial defined by Laguerre
polynomial is also called Konhouser polynomial. After that year, the mathematicians
were established biorthogona polynomial family defined by the property of classic
orthogonal polynomial.

3.3.1 Biorthogonal Polynomials Defined By L aguerre Polynomials

In this section, it will be mentioned about the pair of biorthogona polynomia defined
by Konhauser in 1967.

ZX(x; k) and Y, (x; k) polynomias are given by, a > —1,

kej

29 (x; k)_l“(kn+a+1)z( 1)] X

F(k] +a+1) (3.10)

and

Y2 (x; k) ——Z Z( 1)1@ (]+“+1)n (3.11)

the expressions (3.10) and (3.11) yield,



f x%e™* 7% (x; k)x'dx = {Sﬁ ) 0.1, 7;111 (3.12)
O )
and
f X%e~* Y (x; k)x*dx = {i ;T 01,. " 711 (3.13)
0 )
respectively. If (3.10) is put in (3.12), there follows,
j x%e ™ Z%(x; k)x‘dx
0
r rkn+a+1) xki .
— a,—x 1 ] i
jxe n! Z( ) F(k}+a+1) xidx
0

e~X k]+a+1dx

F(kn+a+1)
z( 1)] F(k]+a+1)J-

F(kn+a+1)z(_ )] F(k]+a+L+1) (3.14)

] r'kj+a+1)
It can be obtained easily that,

pixkitar| = (it a4 D+ a+i—1)..(kj+a+ Dxkiral

, N : rtkj+a+1)
—(k]+a+l)(k]+a+l—1)...m
_Tkj+a+i+1)

- TIkj+a+1)

By following the quantity that is was obtained above, the expression (3.14) can be
written that,

37



0 n
. rkn+a+1) . o
Ap=X FTA(Are 4 — 1 (. LLKjtati
J x%e X Z%(x; k)xtdx = — EO( 1) (]) (D X |x=1)
0 J=

n

rkn+a+1) . . . .
_ ( — )Dlxaﬂz(_l)](?)xk]lx:l

=0
_F(kn+a+1)

oy Dixa+1(1 _ xk)nlle_

This expression is equal to zero for i=0,1,...,n-1 however it is different from zero for
i=n. This shows that the expression (3.12) is satisfied. In ssimilar way, it shows that
(3.13) is satisfied aswell.

Theorem
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If (3.12) and (3.13) are satisfied, ZZ (x; k) and Y;¥ (x; k) is biorthogonal with respect to

x%e™ over theinterval (0,00) by Theorem 3.2.1.

That is,

0 m¥n
m

20 o (3.15)

J x%e X Zx(x; k)Y (x; k)dx = {
0

is satisfied. In fact for m< n, it iswritten

(0]

Joun = j xe% 78 (x; )Y (x; k) dx

o

i

[ a ey () farcane
0

i=0  j=0
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1 i zl'z( 1’ G) (] et 1)m {fx“e‘fof(x; k)xidx}

i=0 j=0 0

_{O , 1=01,..,.n—1,n+m
“l£0 , i=n=m’

For m > n, it isobtained

Joun = ] xe% 78 (x; k)Y (x; k) dx
0

o

F(kn+a+1) kj

— a,—x _ ] A (e
fxe Z( ) F(k]+a+1) b (6 kydx
0
F(kn+a+1)z 1 1 f“ xya(x k)xld

( ) F(k]+a+1) ¢ TR X XX
_{0 , jJ=01,..n—1n#*m
%0 , j=n=m’

These expressions show that the equation (3.15) is satisfied.

In the definition of (3.10) and (3.11), it is seen that the polynomias ZZ (x; k) and

Y¥(x; k) can be reduced to Laguerre polynomias defined by (3.15) for k=1. In a similar
way the orthogonality relations (3.12) and (3.13) can be reduced to the orthogonality
relation of Laguerre polynomials defined by (3.14) for k=1. So, the polynomials

Z%(x; k) and Y¥(x; k) are called biorthogonal polynomial defined by Laguerre

polynomial and Konhauser polynomials.

3.3.2 Biorthogonal Polynomials Defined By Jacobi Polynomials

At this time, the pair of polynomials that were defined by Madhekar and Thakare and
can be reduced to Jacobi Polynomials for k=1 will be defined.



J.(a, b, k; x) and K,,(a, b, k; x) polynomials are given by

A+ Q. oy (L+a++n)
]”(“'b"“x)=Tk;<‘1)’ O —avag (3.16)
and
K,(a,b, k;x)
AN r+s 1+ B)x s+ta+1 x—1\ /x+1\"
=;;H) (Dn!r!<1+ﬁ>n_r( ), ) () e
respectively.

The polynomial family J,,(a, b, k; x) and K,,(a, b, k; x) that were givenin (3.16) and
(3.17) are biorthogonal with respect to the weight function (1 — x)*(1 + x)# over the
interval  (-1,1).

0, m#n

1
f(l — x)*(1 + x)F ], (a, b, k; x) K (a, b, k; x)dx = {¢ 0, m=n
-1

For k=1, both of J,,(a, b, k; x) and K,,(a, b, k; x) polynomials are reduced to Jacobi
polynomials. Pn(“'ﬁ )(x) and is called biorthogonal polynomials defined by Jacobi

polynomials.

40

:m,n=0,1,..
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CHAPTER 4

g-ORTHOGONAL POLYNOMIALS

4.1 g-Orthogonal Polynomials

g-orthogonal polynomial family is a generalization of classic orthogonal polynomials

family. These generalization has may common properties with orthogona polynomials.

Definition 4.1(q-orthogonal polynomial)

For |q| < 1, let w(x;q) be a positive weight function which is defined on the set
{aq™ bq™;n € Ny}. If the polynomials {P, (x; q) }nen, Satisfy the following property:

b
f Pm(x; q)Pn(x; CI)W(X, Q)dqx = {

a

0 (m#n)

40 (m=n)’ (m,n € N), (4.1)

then the polynomial P, (x; q) are called gq-orhogonal polynomials with respect to the
weight function w(x;q) over the interval (a,b).

For g— 17, (4.1) g-orthogonality condition gives the orthogonality condition (2.1).

4.2 Some Special g-Orthogonal Polynomials Families
4.2.1 g-Laguerre Polynomial

The ordinary Laguerre polynomials are defined as

@+ Dp <O (—n)xk
| 1’
nt 4 (@ + 1)k!

L (x) =

wherea, = a(a + 1)(a + 2) ... (a + k — 1). These polynomials satisfy the
orthogonality relation



B =

n!

°° {F(a+n+1)
0 , m#£n

f LD (%) L9 (x)x%e ™ dx =

0

There is a q-analogue of these polynomials which is defined as

lea)(x; q) = a+1,q)n2(q Q)kq (1 CI) (qn+a+1 )k.

4.2
@ D (@ Dx@ D *2)
Note that lea) (x;q9) » LS{") (x)asq— 1".
One orthogonal relation is:
Theorem 1.
For ¢ > —1, thefollowing integral is given by
(@ @ x“dx
L7 (x;q9) L7 (x;
Oj 06 ) 9 (53 ) g™
Mt DICa)@ SO
= I (=) (4 g™ ’ ’ (4.3)
0 , m# n.
Pr oof
Firstly, it should be shown that
fL(“)(x' )x™ X =0,m<n. (44)
R R L)

0

In fact by (1.7),

42
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o0

fﬁ%m
0

(-1 = @)% )

k+a+m

g%t q)nz (q~ .q)kq (q"*"‘“)"(l Q)" g [ x "
(q Dn @**Y (@ Dy J A= @)x;q)

@ @y Z (@™ gD (@Y (—k—a—m)I (1 +k+a+ m)
CHS 1 - " (g Ok (—k —a —m)

By the reflection formula for the gamma function and the functional equation for the g-

gamma function, it is reached that,

_ (@™ @ cse(=am — mm) {0 (67" @)eq g E () g ),
(@ Oulg(-a—m) L (@5 Or(q D
(g™ @ esc(—am — mm) X (7 )i (2 (qnreryegm (G (qarma; gy,
(@ Only(za—m) L (@ i (g i

_ @S Ol (=)l (@ + 1) (@™ @ ()™
(@ ) (1 — q)" I (—a)

O (@7 k(@™ @) (@™
% Z @*Y k(@ O '

Thereisasum dueto Heine [see 3.p.68],

© c C
(@; Dw(b; Dk (L)k _ (' Deo (3 Do
=R G C R G TN ST

in particular when @ = g™,
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O (47 @i (b D (cq”)" _ (/i@
(G Qe qe \ b (¢ @n

hence the integral (4.4) can be written as the following way.

(o]

f 19 (x; )
0

XMy
(A -Dx 9w

_ @S Ol () (@ + D@ Om(@™™ @n
(@ Duly ()1 — mg=™ ("2 ) (g1, ),

0 Jif m<n
={r(=a)(a+ (@ Q)"
Fq (_a)qan+n2+n(1 _ q)n

)

(_)nqn2+na(1_q)n
(@@n

since L% (x; q) = ( )x" + .-, itisobtained,

[ee]

j(L(“)(x' Oyt Tt D@ qn
0

—A-xqe ()@ g™

which proves the theorem.

The measure can be normalized so that the total massin one, and it is deduced that,

L@ @ XTI, (—a)dx @,
L a . L a . _ — ’ _
’ 0, m # n.

There is another orthogonality relation using Ramanujan’s sum.
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4.2.2 g- Hermite Polynomial

The continuous gq-Hermit polynomials{ H,,(x|q)} are generated by the recursion
relation

2xH,(x|q) = Hypyq(xlq) + (1 — q™)H,—1(x|q), (4.5)
and the initial conditions
Ho(xlq) =1, Hy(xlq) = 2x. (4.6)

Our fist take is to derive generating function for {H,,(x|q)}. Let

[00] tn
Hot) = ) Ha(xlo) .
=" UG On
n=0
Multiply (4.5) by (qf; , add for n=1,2,3,... , and take into account the initial condition

(4.6). we obtain the functional equation
H(x,t) — H(x,qt) = 2xtH(x,t) — t?H(x, t).
Therefore

H(x,qt) H(x, qt)
1—2x+t2 (1—te®)(1—te )’

H(x,t) =

(4.7)

x=cosf.
This suggests iterating the functional equation (4.7) to get

H(cos6,q"t)

H(cosb,t) = (e te 1, ),

Asn- oo, H(x,q"t) = H(x,0) = 1.
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CHAPTER 5

g-BIORTHOGONAL POLYNOMIALS

Firstly in 1983, g-biorthogonal polynomial that is gq-analogue of biorthogonal
polynomials were come out by Al-Salam and Verma (1983) These polynomials defined
by (5.1) and (5.2) are seen as the definition of g-Konhouser polynomials that is g-
analogue of Konhouser polynomial. In 1992, Jain and Srivastava obtained the

alternative definitions of these polynomials.

Basic definitions and general conditions of g-biorthogonality are given by Sekeroglu ,

Srivastava and Tasdelen (2007).
5.1 g-Biorthogonal Polynomials
Definition 5.1

For |q| < 1, let r(x;q) and s(x;q) be polynomials in x of degrees h and k, respectively
(h,k€ N). Also let R,,(x; g)and S,,(x; q) denote polynomials of degreesmand nin
r(x;q) and s(x;q), respectively. Then R,,(x;q) and S, (x; q) are polynomials of degrees
mh and nk in x . The polynomials r(x;q) and s(x;q) are called the g-basic polynomials.

For |q| < 1, let {R,,(x; q)};-, denote the set of polynomials
Ro(x;9), Ry (x; @), ..., R (x5 q), ...
of degrees
01,..,n,.. inr(x;q).
Similarly , let {S,,(x; q)}5=, denote the set of polynomials
So(%;q), $1(%; q), ..., Sn (x5 q), ...
of degrees

0,1,..,n,.. ins(x;q).
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Definition 5.2

For |q| < 1, let w(x;q) be an admissible weight function which is defined on the set
{aq™, bq™;n € Ny}.

If the polynomial sets

{Rn(x; @) }n=0 and {S, (x5 9)}n=o

satisfy the following condition:

b
me(x; Q) Sn (6w (x; Q)dgx = {

a

0. (m#n)

£0 (m=n) (m,n € Ny) (5.1)

then the polynomial sets

{Rn(x; Q)};?:O and {Sn(X; Q)};O:O

are said to be g-biorthogonal over theintegral (a,b) with respect to the weight function
w(x;q) and the g-basic polynomials r(x;q) and s(x;q).

The g-biothogonality condition (5.1) is analogous to the g-orthogonality condition (4.1).
We also note that, when q— 1 —, the g-biorthogonality condition (5.1) gives usthe
usual biorthogonality condition (3.1).

5.2 Some Special g-Biorthogonal Polynomial Families
5.2.1 g-Konhauset Polynomials
Remark 1. If we take the weight function

w(x; q) = x%eq (—x)

over theinterval (0,00), we obtain the following q-Konhauser polynomials:



1, ... .
k. -k skj(kj—1)+kj(n+a+1)
290 k; q) = (™% Q)nkZ(q 50992 & (5.2)
(q 14 & (" 4@ @) ji

and

x qzr(r 1)

(@D (@ 9)r

Z (77 q), (g q")n

Y (x, k; q) = @)
14

, (5:3)

which were considered by Al-Salam and Verma [1], who proved that

co

f 789 (x, k; Q) YO (x, k; @) x%eq (—x)dgx ={
0

0 (n+#m),
# 0 (n=m).

Equation (5.4) doesindeed exhibit the fact that the polynomials Z\* (x, k; q) and

Y,f“) (x, k; q) are g-biorthogonal polynomials with respect to the weight function
x%eq(—x) over theinterval (0,00).

Remark 2. For k=1, the g-Konhauser polynomialsin (5.2) and (1.4) reduce to the g-
Laguerre polynomias given by (4.2)

Remark 3. Just as we indicated in the preceding section, Jain and Srivastava gave

another pair of q-Konhauser polynomials which are defined by

n _ .
@@ D~ @505 (xq)™

(@)
Zy (x,k/q) =
" K @49 (ad; @)y (4% 4%,

48



and

Y9 (x,k/q) =

i+1.

;q)i(aq'™;

n | ,
1 (xq)) (g7’
(4 Dn 44 (45 9) Z

1i=0

(q; 9);

k
q )n q(j_")i.
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CHAPTER 6

CONCLUSIONS

In this thesis, definitions and basic properties of g-biorthogonal polynomialsare given
and g-Konhauser polynomialsY, (x, k; q) and Z,,(x, k; q) are defined.

For k=1, g-Konhauser polynomials give the g-Laguerre polynomials. So, several
properties of q-Laguerre polynomials can be generalized for the g-Konhauser

polynomials.

Moreover , new g-biorthogonal families can be investigated and by using g-

biorthogonality process, they can be obtained.
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