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CHAPTER 1 

INTRODUCTION AND BASIC DEFINITIONS 

1.1 Introduction 

 

In applied mathematics and physics, orthogonal polynomials have an important place. 

Moreover, geometrically, orthogonal polynomials are the basic of vector spaces and so 

any member of this vector space can be expanding a series of orthogonal polynomials. 

 

Almost four decades ago, Konhauser (1965-1967) found a pair of orthogonal 

polynomials which satisfy an additional condition, which is a generalization of 

orthogonality condition. These polynomials are called biorthogonal polynomials. After 

Konhauser’s study, several properties of these polynomials and another biorthogonal 

polynomial pairs was found. 

 

In 2007, Şekeroğlu, Srivastava and Taşdelen gave a general definition of q-biorthogonal 

polynomials and obtained main properties of them. 

 

After these study, some special properties was obtained for q-biorthogonal polynomials. 

 

In 2008, Srivastava , Taşdelen and Şekeroğlu studied several generating functions  for 

q-biorthogonal Konhauser polynomials.  

 

In this work, general and basic properties of biorthogonal polynomials are given and 

two types of biorthogonal polynomials which are namely Konhauser polynomials and 

Jacobi type biorthogonal polynomials are investigated. 

In the first chapter, several basic definitions and theorems about q-analysis theory are 

given. 

In the second chapter, definition and main theorems of about orthogonal polynomials 

theory are given and some special orthogonal polynomial families are given. 
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In the third chapter, definition and main theorems of about biorthogonal polynomials 

are obtained and some special biorthogonal polynomial families are given. 

 

In the fourth chapter, definition and main theorems of about  

q-orthogonal polynomials theory and some special q-orthogonal polynomial families are 

given. 

 

In the fifth chapter, definition and main theorems of about q-biorthogonal polynomials 

theory and some q-biorthogonal polynomial families are given. 

 

In the sixth chapter, are given conclusions. 

 

1.2 Gamma Function 

The definition of a special function which is defined by using an improper integral is 

given below. This function is called Gamma Function and has  several applications in 

Mathematics and Mathematical Physics. 

 

Definition 1.1(Rainville, 1965) 

The improper integral  

 

converges for any  > 0  is called “Gamma Function” and is denoted by . 
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Some basic properties of Gamma function are given without their proofs (Rainville, 

1965). 

 

where n is a positive integer. 

 

and  

 

where Re(b) > 0. 

 

where Re(b) > 0 and n is non-negative. 

 

where Re(a) > 0 and n is non-negative integer.   

 

Definition 1.2(Askey, 1999) 

Let x be a real or complex number and n is non-negative integer, 
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is known “Pochammer Symbol”. 

There are some properties of Pochammer symbol. 

 

1. 

 

where c is real or complex number and n and k are natural numbers. 

 

2. 

 

where n and k are natural numbers. 

 

3. 

 

where c is a complex number and k is a natural number. 
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4. 

 

where k is a natural number.  

There is a useful lemma for Pochammer symbol. Proof of this lemma can be obtained 

by directly and elementarily (Raiville, 1965). 

 

Lemma 1.1 

Let be real or complex number and n is non-negative integer, 

 

Proof 
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1.3 q- Analysis 

 

After the systematic development of calculus by Leibniz and Newton in the after half of 

the seventeenth century, Mathematicians attempted to improve new techniques. One of 

them is q-Analysis, which is an important generalization of standard techniques. 

 

Definition 1.3 

Let q 1}. Then the q-analogue of a number a is given by 

 

 

Definition 1.4 

For a real or complex number q ( ),  is given by  

 

and 

 

Definition 1.5 

Let q {1}. Then the q-Pochhammer symbol is defined by 

 

for a reel parameter a. 
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Definition 1.6 

Let q {1}. Then the q-analogue of n! is given by 

 

for a natural parameter n. 

 

Definition 1.7 

Let q {1}. The q-derivative operator is defined by 

 

 

Notation 

It is significant to mention about when , it is said that  and 

 ,  and  where  is called Pochhammer symbol 

for a natural number  and a real number .  

 

Example 1 

Let a is a reel number then  

 

Solution 

If the representation (4.1) is applied to the expression , it is deduced that 
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Example 2 

The q-exponential function is 

 

a is a real number then 

 

Solution 

With the help of the representation (1.3)  it can be written that, 

 

If example 1 is used in above the equation , it is readily obtained, 

  

 

Lemma 1.2 

Let f(x) and g(x) be two piecewise continuous function in (a,b). Then we have 
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 Proof 

If the representation (1.2) is applied to the left side of the equation (1.4), it is written 

that, 

 

if the quantity  add to and substract from the equation above, the following 

relation is found easily. 

 

 

 

if the equation  

g(qx)=g(x)+(q-1)x  

that was obtained with the help of (1.2) is used, the proof will be completed. 

 

Definition 1.8 

The q-integral of a piecewise continuous function f(x) in (a,b) is defined as follows: 

 

and 



10 
 

 

If f is a continuous function, the meaning of q-integral exactly equals to Riemann 

integral when q approaches to . In order to show this, let us take f(x) as  assume 

that F(x) is an antiderivative of f(x). There follows F(x)  

 

 then 

 

 in the similar way, 

 

Consequently, 

 

Theorem 1.1 

The q-integral of a piecewise continuous function f(x) in (a,b) is defined as follows: 
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and 

 

 

Lemma 1.3 (q-partial integration) 

The q-partial integration is defined by 

 

 

for two piecewise  continuous f(x) and g(x). 

Proof   

If q-integral is applied to both sides on the expression (1.4) on [0, , by using the 

definition (1.5), it is found that 
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If the definition of q-derivative operator is applied to the first term of the right side of 

(1.6), it is reached that 

 

 

 

 

 

Definition 1.9 

Jackson defined a q-analogue of the gamma function as 

 

Note that  satisfies the functional equation 

 

He also showed that  Askey proved the integral formula 
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CHAPTER 2 

ORTHOGONAL POLYNOMIALS 

In this section, definitions and main properties of orthogonal polynomials which are a 

special case of the biorthogonal polynomials are given.   (Askey, 1999) 

 

2.1 ORTHOGONAL POLYNOMIALS 

Definition 2.1 

A polynomial is a function p whose value at x is 

P(x) =  +  + . . . +  +  +  

where  , called the coefficients of the polynomial, are 

constants and , if n >0, then . The number n, the degree of the highest power of x 

in the polynomial, is called the degree of the polynomial. (The  degree of the zero 

polynomial is not defined.) 

 

Definition 2.2 

Let w(x) is a weight function and (x) polynomials are defined over the interval [a,b], 

if  

 

is satisfied, then the polynomials  are called orthogonal with respect to the weight 

function w(x) are the interval (a,b), m and n are degrees of polynomials. 

There is an additional condition for the orthogonal polynomials which makes them 

orthonormal. 



14 
 

Definition 2.3 

If the polynomials (x)  are orthogonal with respect to the weight function w(x), over 

the interval (a,b) and 

 

       

is satisfied , then the polynomials  are called orthonormal. 

There is an equivalent condition for the orthogonality relation (2.1) which is given 

below. 

 

Theorem 2.1 (Askey, 1999) 

It is sufficient for the orthogonality of the polynomials on the interval [a,b] with respect 

to the weight function w(x) to satisfy the condition 

 

here,   is polynomial of degree n. 

Proof 

If the polynomials   and     are orthogonal on the interval [a,b] with respect 

to w(x) then  

 

, can be written as linear combinations, 
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substituting this in (2.2). 

 

 

for 0   and  where 0  Hence, 

 

Orthogonal polynomials have several important properties. In this section, general 

definitions of these properties are given and then obtained special form of them for 

well-known orthogonal polynomial families. 

 

Definition 2.4 (Askey, 1999) 

Any polynomial family  , which is orthogonal on the interval [a,b] with respect to 

the weight function w(x), satisfies the recurrence formula 

  here ,  and  are constants 

which depend on n. 

 

Definition 2.5 (Askey , 1999) 

Rodrigues Formula for orthogonal polynomials are written as   
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here,  polinomials are orthogonal with respect to the weight function w(x) and  

is a polynomial of x. 

 

Definition 2.6 (Askey, 1999) 

If the two variable function F(x,t) has a Taylor series as in the form of 

 

with respect to one of its variables t, then the function F(x,t) is called the generating 

function for the polynomials { }. 

 

Definition 2.7 (Bilateral Generating Funtion) 

If the three variable function  H(x,y,t) has a Taylor series in the form of 

 

with respect to one of its variables, t, then the function  H(x,y,t) is the bilateral 

generating function for the families  . 

 

Definition 2.8 (Bilinear Generating Function) 

If the three variable function  G(x,y,t) has a Taylor series in the form of 
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with respect to one of its variables , t , then the function  G(x,y,t) is the bilinear 

generating function for the families  function   . 

 

2.2 Some Special Orthogonal Polynomial Families 

Some well-know orthogonal polynomials families which have several applications in 

applied mathematics are given at this section. These polynomial families have several 

properties which are common and obtainable for any orthogonal polynomial family. 

 

2.2.1 Laguerre Polynomials (Rainville, 1965) 

For , the (x) polynomials, which are orthogonal on 0  with respect 

to the weight function w(x)=  and which are known as Laguerre polynomials are 

given by, 

 

The special case  is (x) = (x). Let us give the first five Laguerre 

polynomials, 
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The graphs of first six Laguerre polynomials   and 

are shown in the figure:  

 

Several properties of Laguerre polynomials similar to orthogonal polynomials can be 

obtained. One of these properties is that it satisfies second order differential equations. 

Starting from , we obtain Leguerre differential equation, 

 + ( ,          

where the solution of this differential equation are Laguerre polynomials can be 

obtained. 

Let us start with the equation below: 
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 =  

it can be written as linear combinations, 

 

 

Therefore, 

 

by integrate over the interval (0, ), it is deduced that 

 

 

it is known that the Laguerre polynomial are orthogonal, then  

 

Consequently,  
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and    ,       so 

 x  +  = 0 

 -n( ) = n. 

Then the following differential equation  is obtained.  

x  +  = 0. 

The generating function for the Laguerre polynomials 

 

can be written. For obtaining the norm of Laguerre polynomials, the 

generating function (2.5) is rewritten as in the form of 

 

by multiplying both sides of (2.5) by w(x) =  where m  . If (2.5) and (2.6) are 

multiplied side by side and integrate over the interval (0, ) 

 

is obtained. If left hand side of the last equation is separated for m = n and m  n, and 

take the integral at right hand side,  
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is obtained. By using the orthoganality of Laguerre polynomials, for n=m , second 

integral at the left hand side is equal to zero. 

If the Taylor series , 

 

is used on the right hand side of the last equality, then 

 

is obtained. Thus , equality of the coefficient of  in both sides give the norm of 

Laguerre polynomials as 

 

Finally the recurrence relation for Laguerre polynomial is given as, 

(n+1) (x) + (x-2n-1- )  + (n+ )   
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2.2.2 Jacobi Polynomials (Askey, 1999) 

For  the Jacobi polynomials  which is orthogonal on the 

interval -1  with respect to the weight function w(x)= , are 

given by the formula 

 

n=0,1,2,…   .  

If , the polynomials  are called “Ultraspherical Polynomials”. 

Some special cases of Jacobi polynomials which depend on the values of and  are 

given below: 

1. For , the polynomials 

 

are called “I. Type Chebyshev Polynomials”. 

Some of the polynomials  are 

 

  

  

  

  

  

  

The graphs of first six I. Type Chebyshev  Polynomials  

 and  are shown in the figure:  

 



23 
 

 

 

2. For , the polynomials 

 

are called “ Legendre Polynomials”. Let us give the first five Legendre polynomials  

 

  

 x 

  

  

(35 ) 

  

The graphs of first six Legendre polynomials   and 

 are shown in the figure:  
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Here 

 

If  , is used to start, the Jabobi differential 

equation  can be obtain as 

(1- ) ,   

which has the solutions as Jacobi polynomials. 

Generating function for the Jacobi polynomials are given as 
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Finally, the recurrence relation for Jacobi polynomials are given as 

2(n+1)(n+ )(2n+ )  - 

 

 

2.2.3 Hermite Polynomials (Askey, 1999) 

The  Hermit polynomials, which are orthogonal on the interval -  with 

respect to the weight function w(x)=  given by, 

 

n=0,1,2, …   .     

Some of the polynomials  are, 
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The graphs of first six Hermit polynomials   and 

 are shown in the figure:  

 

 

 

Rodrigues formula for Hermite polynomials  

 

The generating function for the Hermite polynomials   

 

Norm of the Hermite polynomials   
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Form the equation 

 

The Hermite differential equation can be obtained as 

 

Which has the solution as Hermite polynomials. 

Finally, the recurrence relation for the Hermite polynomials given as 

 

By using generating function, (2.7), we can obtain the recurrence relation above by 

following steps. 

Take the derivative of both side in (2.7) with respect to t. 

 

 

 

 

if the indices are manipulated to make all powers of t as , 
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and open some terms to start the summations from 1, 

 

is obtained. By the equality of the coefficients of the term  

, 

can be written, which gives the recurrence relation (2.8). 
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CHAPTER 3 

BIORTHOGONAL POLYNOMIALS 

In 1951, L.Spencer and U.Fano introduced a particular pair of biorthogonal polynomial 

sets in carrying out calculations involving the penetration of gamma rays through matter 

Spencer and Fano did not establish any general properties of biorthogonal polynomial 

sets, but essentially utilized the biorthogonality of polynomials in x and polynomials in 

 with respect to the weight function , where  is a nonnegative integer, over 

the interval (0, ). 

 

3.1 Biorthogonal Polynomials 

Definition 3.1 

Let r(x) and s(x) be real polynomials in x of degree h > 0 and k  > 0 , respectively. Let 

 denote polynomials of degree m and n in r(x) and s(x) , respectively. 

Then  are polynomials of degree mh and nk in x. Here, the 

polynomials r(x)  and s(x) are called basic polynomial. 

 

Notation 3.1 

Let [ ] denote the set of polynomials  , , . . . of degree 0,1,2,… in r(x). Let  

[ ] denoted the set of polynomials of degree 0,1,2, . . . in s(x). 

 

Definition 3.2 (Konhouser, 1965) 

The real-valued function p(x) of the real variable x is an admissible weight function on 

the finite or infinite interval (a,b) if all the moments 
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exist, with 

 

For orthogonal polynomials, it is customary to require p(x) be non-negative on the  

interval (a,b). This requirement is necessary fot the establishment of certain properties 

for biorthogonal polynomials, this is found necessarily to require that p(x) be either 

nonnegative or non-positive , with , on the interval (a,b). 

 

Definition 3.3 (Konhouser, 1965) 

The polynomial sets  are biorthogonal over the interval (a,b) with 

respect to the admissible weight function p(x) and the basic polynomials r(x) and s(x) 

provided the orthogonality conditions 

 

are satisfied. 

The orthogonality conditions (3.1) are analogous to the requirements (1.1) for the 

orthogonality of a single set of polynomials. Following (1.9),  it was pointed out that the 

requirement that the different from m=n was redundant. The requirement in (1.1) that 

 be different from zero is not redundant. Polynomial sets [ ] and [  (x)] exist 

such that  

 ,  m,n=0,1,2,…  ,     and  
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Definition 3.4 

If the leading coefficient of polynomial is unity. The polynomial is called monic.  

Now, let give the alternative definition for biorthogonality condition the following 

theorem is the analogue of the Theorem (2.3) which gives an alternative definition for 

orthogonality condition. 

 

Theorem 3.1  (Konhouser, 1965) 

If p(x) is an admissible weight function over the interval (a,b) and if the basic 

polynomials r(x) and s(x) are such that for n=0,1,2,…, 

 

and  

 

are satisfied, then 

 

holds. Conversely, when  (3.4)  holds then both (3.2) and (3.3) hold. 

Proof 

If (2.3) and (2.4) hold, then constants, 0,1,…,m, ( ), exist such that 
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If m , then 

 

 

in virtue of (3.2), 

 

vanishes except where j=m=n. 

If m > n, then constants , j=0,1,…,n ( ), exist such that 

 

 

and the argument is completed as in the case m  

Now, assume that (3.4) holds. Then constants  exist such that 

 

 

and 
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If 0  then 

 

 

 

If i=1,2,3,…,j , j <  n, each interval on the right side is zero since (3.4) holds. If j = n , 

the interval on the right side is different from zero. Therefore (3.2) holds. In like manner 

(3.3) can be established. 

 

3.2 Investigation Of Sufficient Conditions Which Ensure The Existence Of 

Biorthogonal Polynomials 

The determinant  depends upon the moments 

, the weight 

function p(x) and the interval (a,b). It is natural to attempt to attempt to determine 

sufficient conditions which ensure that , n=1,2,3,… .In this direction, partial 

results will be obtained. 

 

Notation 

The determinant  is given by 

 

If p(x) is an admissible weight function then  
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Theorem  

Given the basic polynomials r(x) and s(x) and an arbitrary admissible weight function 

p(x) on the interval (a,b), polynomial sets [ ] and [ ] satisfying the 

biorthogonality requirement (3.4) exist if and only if the determinant  is different 

from zero for n=1,2,3,… . Moreover. The polynomials are unique, each to within a 

multiplicative constant. 

 

Proof  

It is convenient to use the equivalent conditions (3.2) and (3.3) in place of (3.4). 

Coefficients  and  with       , are 

required such that for n=0,1,2,… 

 

and such that 

 

In term of the moments  requirements (3.5) and (3.6)  may be written 

 

and 
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The first n requirements of (3.7) constitute a system of linear equations in the n 

unknowns / , / ,. . . , / . The system will have a unique solution if 

and only if the coefficient determinant, which is precisely  , is different from zero. 

The first n requirements of (3.8) constitute a system of n linear equations in the n 

unknowns / , / ,. . . , / . The determinant of this system is the 

transpose  of  and is nonzero if and only if  is nonzero. Therefore, if , 

n=1,2,3,… , then polynomials can be found which satisfy the first n requirements of 

both (3.7) and (3.8). Moreover, the polynomials are unique, each to within a 

multiplicative constant. 

The (n+1)st requirements of (3.7) and (3.8) must snow be examined. The (n+1)st 

requirement of (3.7) is that  

 

If we replace  by its value as determined  from the solution of the system of n 

equations the left side of (3.9) is   times the determinant  must be different 

from zero for n=1,2,3,… . ın life manner, the (n+1)st requirement for (3.8) leads to the 

requirement that 

 

Multiplication of the polynomials  and  

 By constants, which are not necessarily the same for every value of n, does not affect 

the satisfaction of requirements (3.7) and (3.8). In conclusion, a necessary and sufficient 

condition for the existence of biorthogonal polynomials are that the determinants  be 

different from zero for n=1,2,3,… . 

In regard to the basic polynomials r(x) and s(x), it is clear that the biorthogonal 

polynomials determined by the basic polynomials r(x)+  and s(x)+v,  where and v  
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are constants, are identical because of the orthogonality of   and  with 

respect to the constants  and , respectively. 

 

3.3 Some Special Biorthogonal Polynomial Families  

After Konhoauser found the general property of biorthogonal polynomials, there was a 

rise in interest of this topic. Then, in 1967  he defined a pair of biorthogonal polynomial 

family. This situation had the interest of this topic reached to the top point. The 

polynomial family that is called biorthogonal polynomial defined by Laguerre 

polynomial is also called Konhouser polynomial. After that year, the mathematicians 

were established biorthogonal polynomial family defined by the property of classic 

orthogonal polynomial. 

 

3.3.1 Biorthogonal Polynomials Defined By Laguerre Polynomials 

In this section, it will be mentioned about the pair of biorthogonal polynomial defined 

by Konhauser in 1967. 

 and  polynomials are given by,  

 

 

and  

 

the expressions (3.10) and (3.11) yield, 
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and  

 

respectively. If (3.10) is put in (3.12), there follows, 

 

 

 

 

It can be obtained easily that, 

 

 

 

By following the quantity that is was obtained above, the expression (3.14) can be 

written that, 
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This expression is equal to zero for i=0,1,…,n-1 however it is different from zero for 

i=n. This shows that the expression (3.12) is satisfied. In s similar way, it shows that 

(3.13) is satisfied as well. 

 

Theorem  

If (3.12) and (3.13) are satisfied,  and  is biorthogonal with respect to 

 over the interval (0, ) by Theorem 3.2.1. 

That is, 

 

is satisfied. In fact for m it is written 
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. 

For  it is obtained 

 

 

 

. 

These expressions show that the equation (3.15) is satisfied. 

In the definition of (3.10)  and (3.11), it is seen that the polynomials  and 

 can be reduced to Laguerre polynomials defined by (3.15) for k=1. In a similar 

way the orthogonality relations (3.12) and (3.13) can be reduced to the orthogonality 

relation of Laguerre polynomials defined by (3.14) for k=1. So, the polynomials 

 and  are called biorthogonal polynomial defined by Laguerre 

polynomial and Konhauser polynomials. 

 

3.3.2 Biorthogonal Polynomials Defined By Jacobi Polynomials 

At this time, the pair of polynomials that were defined by Madhekar and Thakare  and 

can be reduced to Jacobi Polynomials for k=1 will be defined. 
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and  polynomials are given by 

 

and 

 

respectively. 

The polynomial family  and  that were given in (3.16) and 

(3.17) are biorthogonal with respect to the weight function  over the 

interval    (-1,1). 

 

For k=1, both of and  polynomials are reduced to Jacobi 

polynomials.  and is called biorthogonal polynomials defined by Jacobi 

polynomials. 
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CHAPTER 4 

q-ORTHOGONAL POLYNOMIALS 

4.1 q-Orthogonal Polynomials 

q-orthogonal polynomial family is a generalization of classic orthogonal polynomials 

family. These generalization has may common properties  with orthogonal polynomials. 

 

Definition 4.1(q-orthogonal polynomial) 

For let w(x;q) be a positive weight function which is defined on the set 

{ }. If the polynomials  satisfy the following property: 

 

then the polynomial  are called q-orhogonal polynomials with respect to the 

weight function w(x;q) over the interval (a,b). 

For q  , (4.1) q-orthogonality condition gives the orthogonality condition (2.1). 

 

4.2  Some Special q-Orthogonal Polynomials Families 

4.2.1 q-Laguerre Polynomial 

The ordinary Laguerre polynomials are defined as 

 

where  These polynomials satisfy the 

orthogonality relation 
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There is a q-analogue of these polynomials which is defined as 

 

Note that  as q . 

One orthogonal relation is: 

 

Theorem 1. 

For  the following integral is given by 

 

 

 

Proof 

Firstly, it should be shown that 

 

In fact by (1.7), 
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By the reflection formula for the gamma function and the functional equation for the q-

gamma function, it is reached that, 

 

 

 

There is a sum due to Heine [see 3.p.68], 

 

in particular when  
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hence the integral (4.4) can be written as the following way. 

 

 

 

 

since  , it is obtained, 

 

which proves the theorem. 

The measure can be normalized so that the total mass in one, and it is deduced that, 

 

There is another orthogonality relation using Ramanujan’s sum. 
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4.2.2 q- Hermite Polynomial 

The continuous q-Hermit polynomials { } are generated by the recursion 

relation 

 

and the initial conditions 

 

Our fist take is to derive generating function for { }. Let 

 

Multiply (4.5)  by  add for n=1,2,3,… , and take into account the initial condition 

(4.6). we obtain the functional equation 

 

Therefore  

 

x=cos . 

This suggests iterating the functional equation (4.7) to get 

 

As n  , H(x, )  H(x,0) = 1. 
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CHAPTER 5 

q-BIORTHOGONAL POLYNOMIALS 

Firstly in 1983, q-biorthogonal polynomial that is q-analogue of biorthogonal 

polynomials were come out by Al-Salam and Verma (1983) These polynomials  defined 

by (5.1) and (5.2) are seen as the definition of q-Konhouser polynomials that is q-

analogue of Konhouser polynomial. In 1992, Jain and Srivastava obtained the 

alternative definitions of these polynomials. 

Basic definitions and general conditions of q-biorthogonality are given by Şekeroğlu , 

Srivastava  and Taşdelen (2007). 

5.1 q-Biorthogonal Polynomials 

Definition 5.1 

For , let r(x;q) and s(x;q)  be polynomials in x of degrees h and k, respectively 

(h,k ). Also let  denote polynomials of degrees m and n in 

r(x;q) and s(x;q), respectively. Then  and  are polynomials of degrees 

mh and nk in x . The polynomials r(x;q) and s(x;q) are called the q-basic polynomials. 

For , let  denote the set of polynomials 

 

of degrees 

 

Similarly , let  denote the set of polynomials 

 

of degrees 
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Definition 5.2 

For , let w(x;q) be an admissible weight function which is defined on the set 

 

If the polynomial sets 

 and  

satisfy the following condition: 

 

then the polynomial sets 

 and  

are said to be q-biorthogonal over the integral (a,b) with respect to the weight function 

w(x;q) and the q-basic polynomials r(x;q) and s(x;q). 

The q-biothogonality condition (5.1) is analogous to the q-orthogonality condition (4.1). 

We also note that, when q , the q-biorthogonality condition (5.1) gives us the 

usual biorthogonality condition (3.1). 

 

5.2 Some Special q-Biorthogonal Polynomial Families 

5.2.1 q-Konhauset Polynomials  

Remark 1. If we take the weight function 

 

over the interval (0, ), we obtain the following q-Konhauser polynomials: 
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and 

 

 

which were considered by Al-Salam and Verma [1], who proved that 

 

Equation (5.4) does indeed exhibit the fact that the polynomials  and 

 are q-biorthogonal polynomials with respect to the weight function 

 over the interval (0, ). 

 

Remark 2. For k=1, the q-Konhauser polynomials in (5.2) and (1.4) reduce to the q-

Laguerre polynomials given by (4.2) 

 

Remark 3. Just as we indicated in the preceding section, Jain and Srivastava  gave 

another pair of q-Konhauser polynomials which are defined by 
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and 
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CHAPTER 6 

CONCLUSIONS 

In this thesis, definitions and basic properties of q-biorthogonal polynomials are  given  

and q-Konhauser polynomials  and  are defined. 

For k=1, q-Konhauser polynomials give the q-Laguerre polynomials. So, several 

properties of q-Laguerre polynomials can be generalized for the q-Konhauser 

polynomials. 

Moreover , new q-biorthogonal families can be investigated and by using q-

biorthogonality process, they can be obtained. 
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