
ABST~J\CT 

Heat transfer mechanism divided into three main parts; conduction, convection and 
radiation. Conduction is an energy diffusion process in materials which does not contain 
molecular convection. Kinetic energy exchanged between molecules results in a net transfer 
between regions of different energy levels; these energy levels are commonly called temperature. 
Particularly, heat conduction in metals is mainly attri-buted to the motion of free electrons and in 
solid electrical insulators to the longitudinal oscillations of atoms. In fluids. The elastic impact of 
molecules is considered as heat conduction process. 

By Working on the unsteady heat conduction theory to create a program by usmg 
Microsoft excel, this program can solve any one-dimensional unsteady heat conduction problem 
by finding: 

T (x, t): Temperature at any given distance & time. 

Or 

t (x, T): Time at any given distance & temperature . 
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Chapter 1: INTRODUCTION 

The most basic problem of time dependent conduction is the calculation of the 
temperature history inside a conducting body that is immersed suddenly in a bath of fluid at a 
different temperature. This problem finds application in many areas, for example, in the heat 
treating ( e.g., quenching) of special alloys. The temperature of such a body, in general, varies 
with time as well as position. In rectangular coordinates, this variation is expressed as T(x, y, z, 
t),where (x, y, z) indicates variation in the x, y and z directions, respectively, and t indicates 
variation with time. In the preceding chapter, we considered heat conduction under steady 
conditions, for which the temperature of a body at any point does not change with time. This 
certainly simplified the analysis, especially when the temperature varied in one direction only, 
and we were able to obtain analytical solutions. In this chapter, we consider the variation of 
temperature with time as well as position in one dimensional system. 

Transient conduction occurs when the temperature within an object changes as a function 
of time. Analysis of transient systems is more complex and often calls for the application of 
approximation theories or numerical analysis by computer. 

Moreover, there is a special case that we are going to show in the program where the 
system is lumped, where Bi is too small to actually make a difference in the values of the 

b 

temperature in the system, thus, the temperature becomes uniform during the entire process. 

Interior temperatures of some bodies remain essentially uniform at all times during a heat 
transfer process. The temperature of such bodies are only a function of time, T = T(t). The heat tra 
-nsfer analysis based on this idealization is called lumped system analysis. 
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Chapter 2: TRANSIENT HEAT CONDUCTION 

2-1 Transient Heat Conduction In Large Plane Walls, Long Cylinders, 
And Spheres With Spatial Effects 

In general, however, the temperature within a body changes from point to point as well as 
with time. In this section, we consider the variation of temperature with time and position in one­ 
dimensional problems such as those associated with a large plane wall, a long cylinder, and a 
sphere. 

Consider a plane wall of thickness 2L, a long cylinder of radius ro, and a sphere of radius 
r0 initially at a uniform temperature Ti, as shown in Fig. 2-2. At time t = 0, each geometry is 
placed in a large medium that is at a constant temperature T 00 and kept in that medium fort > 0. 
Heat transfer takes place between these bodies and their environments by convection with a 
uniform and constant heat transfer coefficient h. Note that all three cases possess geometric and 
thermal symmetry: the plane wall is symmetric about its center plane (x = 0), the cylinder is 
symmetric about its centerline (r = 0), and the sphere is symmetric about its center point (r = 0). 
We neglect radiation heat transfer between these bodies and their surrounding surfaces, or 
incorporate the radiation effect into the convection heat transfer coefficient h. The variation of 
the temperature profile with time in the plane wall is illustrated in Fig. 2-3. When the wall 
is first exposed to the surrounding medium at T 00 < Ti at t = 0, the entire wall is at its initial 
temperature Ti but the wall temperature at and near the surfaces starts to drop as a result of heat 
transfer from the wall to the surrounding medium. This creates a temperature gradient in the wall 
and initiates heat conduction from 

I 
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FIGERE 2-1: Schematic of the simple geometries in which heat transfer is one-dimensional. 
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the inner parts of the wall toward its outer surfaces. Note that the temperature at the center of the 
wall remains at Ti until t = t2, and that the temperature profile within the wall remains symmetric 
at all times about the center plane. The temperature profile gets flatter and flatter as time passes as 
a result of heat transfer, and eventually becomes uniform at T = T 00 That is, the wall reaches 
thermal equilibrium with its surroundings. At that point, heat transfer stops since there is no 
longer a temperature difference. Similar discussions can be given for the long cylinder or sphere. 

2.1.1 N on-Dimensionalized One-Dimensional Transient 
Conduction Problem 

The formulation of heat conduction problems for the 
determination of the one-dimensional transient temperature distribution 
in a plane wall, a cylinder, or a sphere results in a partial differential 
equation whose solution typically involves infinite series and 
transcendental equations, which are inconvenient to use. But the 
analytical solution provides valuable insight to the physical problem, and 
thus it is important to go through the steps involved. Below we demonstrate 
the solution procedure for the case of plane wall. 

01 L x ,, I Initially T,,, 
T= T. 

h I , 

FI GERE 2- 2: transient 
temperature profiles in a 
plane wall exposed to 

convection from its surfaces 
for Ti>Too. Consider a plane wall of thickness 2L initially at a uniform 

temperature of Ti, as shown in Fig. 2-2a. At time t = 0, the wall is immersed 
in a fluid at temperature T 00 and is subjected to convection heat transfer from both sides with a 
convection coefficient of h. The height and the width of the wall are large relative to its thickness, 
and thus heat conduction in the wall can be approximated to be one-dimensional. Also, there is 
thermal symmetry about the midplane passing through x = 0, and thus the temperature distribution 
must be symmetrical about the midplane. Therefore, the value of temperature at any - x value in 
-L $ x $ 0 at any time t must be equal to the value at + x in O $ x $ L at the same time. This 
means we can formulate and solve the heat conduction problem in the positive half domain O $ 
x $ L , and then apply the solution to the other half. 

Under the conditions of constant thermo physical properties, no heat generation, thermal 
symmetry about the midplane, uniform initial temperature, and constant convection coefficient, 
the one-dimensional transient heat conduction problem in the half-domain O $ x $ L of the plain 
wall can be expressed as 

Differential equations: 

Boundary conditions: 
ax 

aT(L, t) 
and - k - = h[T(L, t) - T00] = h (2-1 b) 
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Initial condition: T{x, O) = Ti (2-1 c) 

Where the property a = kl p Cp is the thermal diffusivity of the material. 

We now attempt to non-dimensionalize the problem by defining a dimensionless space 

variable X = x/L and dimensionless temperature B(x, r) = T(x'.t)-Too . These are convenient 
Tl-Too 

choices since both X and 8 vary between O and 1. However, there is no clear guidance for the 
proper form of the dimensionless time variable and the h/k ratio, so we will let the analysis 
indicate them. We note that 

ee are L er 
ax = ax; L = Ti - T 00 ax ' 

ae2 
ax2 

L2 ar2 ee 1 er 
---- and - = --- 

Ti =T« ox2 ot Ti -Too ot 

Substituting into Eqs. 2-la and 2-lb and rearranging give 

ae2 L2 ee aec1, t) hL 
axz = -;;Tc and ax = k 8(1, t) (2-2) 

Therefore, the proper form of the dimensionless time is T = at/L2, which is called the 
Fourier number Fo, and we recognize Bi= k/hL as the Biot number. Then the formulation of the 
one dimensional transient heat conduction problem in a plane wall can be expressed in 
non-dimensional form as 

Dimensionless differential equation: (2-3 a) 

Dimensionless BC's: aeco,r) = 0 and aec1,r) = -Bi8(1, r) 
ax ax (2-3 b) 

Dimensionless initial condition: 8(X,O) = 1 (2-3 C) 

Where, 

8(x, r) = T(x,t)-Too 
Ti-Too 

Dimensionless temperature 

X =:. 
L 

Dimensionless distance from the center 

Bi= hL 
k 

Dimensionless heat transfer coefficient (Biot number) 

at 
T = Lz Dimensionless time (Fourier number) 
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The heat conduction equation in cylindrical or spherical coordinates can be non­ 
dimensionalized in a similar way. Note that non-dimensionalization reduces the number of 
independent variables and parameters from 8 to 3 from x, L, t, k, a, h, Ti, and T 00 to X, Bi, and Fo 
(Fig. 2-3). 

8 = f(x, Bi, T) (2-4) 

This makes it very practical to conduct parametric studies and to present results in graphical form. 
Recall that in the case of lumped system analysis, we had 8 = f (Bi, Fo) with no space variable. 

I 2.1.2 Exact Solution of One-Dimensional Transient Conduction Problem 

The non-dimensionalized partial differential equation given in Eqs. 2-3 together with its 
boundary and initial conditions can be solved using several analytical and numerical techniques, 
including the Laplace or other transform methods, the method of 
separation of variables, the finite difference method, and the 
finite-element method. Here we use the method of separation of 
variables developed by J. Fourier in 1820s and is based on 
expanding an arbitrary function (including a constant) in terms 
of Fourier series. The method is applied by assuming the 
dependent variable to be a product of a number of functions, 
each being a function of a single independent variable. This 
reduces the partial differential equation to a system of ordinary 
differential equations, each being a function of a single 
independent variable. In the case of transient conduction in a 

plain wall, for example, the dependent variable is the solution 
function 8(X, r}, which is expressed as 8(X, r) = F(X)G(r), 
and the application of the method results in two ordinary 
differential equation, one in X and the other in T. 

ia) Ori,i;inat hc-.at oonducuon problem: 

[!:I = !. ~ T_ H,,c. Ol = T 
fix~ a di . ' 

iffttU> i171L t) 
-- =(1. -1.-_- = htnLo- T~l 

11.x nx 
T = n». L, 1. k. Ci. Tr. T,I 

tM Nondime-m;ion:11iz:cd problem: 

,1 ',I'! iHJ 
,1 X' =s> so: O}= I 

,i/thO. T) iil!1;l. Tl 
ilX = Q. -W- = -Bifi{l_ 'Tl 

U=}IX.Bi_r} 

FIGERE 2-3: non-dirnensionalization 
reduces the number of independent 

variables in one-dimensional transient 
conduction problems from 8 to 3, 
offering great convenience in the 

presentation of results. The method is applicable if (1) the geometry is simple 
and finite (such as a rectangular block, a cylinder, or a sphere) so 
that the boundary surfaces can be described by simple mathematical functions, and (2) the 
differential equation and the boundary and initial conditions in their most simplified form are 
linear (no terms that involve products of the dependent variable or its derivatives) and involve 
only one nonhomogeneous term (a term without the dependent variable or its derivatives). If the 
formulation involves a number of nonhomogeneous terms, the problem can be split up into an 
equal number of simpler problems each involving only one nonhomogeneous term, and then 
combining the solutions by superposition. 
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Now we demonstrate the use of the method of separation of variables by ap- plying it to 
the one-dimensional transient heat conduction problem given in Eqs. 2-3. First, we express the 
dimensionless temperature function (} (X, r) as a product of a function of X only and a function of 
t only as 

8(X, r) = F(X)G(r) 

Substituting Eq. 4-14 into Eq. 4-12a and dividing by the product FG gives 

1d2F ldG 

FdX2 G dr 

Observe that all the terms that depend on X are on the left-hand side 
of the equation and all the terms that depend on rare on the right­ 
hand side. That is, the terms that are function of different variables 
are separated (and thus the name separation of variables). The left­ 
hand side of this equation is a function of X only and the right-hand 
side is a function of only r. Considering that both X and T can be 
varied independently, the equality in Eq 2-6 can hold for any value 
of X and T only if Eq.2-6 _is equal to a constant. Further, it must be a 
negative constant that we will indicate by - A 2 since a positive 
constant will cause the function G(r) to increase indefinitely 
with time (to be infinite), which is unphysical, and a value of zero 
for the constant means no time dependence, which is again 
inconsistent with the physical problem. Setting Eq. 2-6 equal to - 
A 2 gives 

whose general solutions are 

(2-5) 

(2-6} 

8n = A11 e-lj,T cos{A11 X) 

4 sin 

For Bi = 5, X = I, and t = 0.2: 

II i\n A,, (:)11 

1.3138 1.2402 0.22321 

2 4.0336 -0.3442 0.00835 

3 6.9096 0.1588 0.00001 

4 9.8928 -0.876 0.00000 

FIGERE 2-4: : the term in the 
series solution of transient 

conduction problems decline 
rapidly as n and thus An increases 
because of the exponential decay 
function with the exponent -An r 

F = c1 cos(AX) + c2 sin(AX) and G = c3e--12r 

(2-8) And 

8 = FG = c3e--12'(c1 cos(AX) + c2 sin(AX)] = e--12'[A cos(AX) + Bsin(AX) 
(2-9} 

Where A= C1C3 and B = C2C3 are arbitrary constants. Note that we need to determine only A 
and B to obtain the solution of the problem. 
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de~o,,r) = O 7 - e-;:2-.(A.itsinO + BJ. ,eosO) = 0 7 B = 0 7 e = Ae-,t· r cos(U) sx 

dG'(l,'f} = -me (Lr) 7' -Ae-i'l"J.sinl = -Bi.A,e-12 .• .cosl 
d..Y 

But tangent is a periodic function with a period of tt, and the equation AtanA = Bi has the 
root AI between O and tt, the root A2 between tt and 2·rr, the root An between (n-1) tt and n tt, 
etc. To recognize that the transcendental equation AtanA = Bi has an infinite number of roots, it is 
expressed as 

{2-10) 

Eq. 2-10 is called the characteristic equation or Eigen function, and its roots are called the 
characteristic values or eigenvalues. The characteristic equation is implicit in this case, and thus 
the characteristic values need to be determined numerically. Then it follows that there are an 

infinite number of solutions of the form Ae-ilh cos(AX), and the solution of this linear heat con­ 
duction problem is a linear combination of them, 

{2-11} 

The constants An are determined from the initial condition, Eq. 2-3c, 

~ 
e(X,.O) = 1 ~ 1 = L Anros(L""?l>.1 

'f"~.11!'.L 

(2-12) 

This is a Fourier series expansion that expresses a constant in terms of an infinite series of cosine 
functions. Now we multiply both sides of Eq. 2-12 by COSAmX, and integrate from X = 0 to X = 
1. The right-hand side involves an infinite number of integrals of the form 

]01 cos(AmX) cos(AnX) dx. It can be shown that all of these integrals vanish except when n = m, 

and the coefficient An becomes 

(2-13) 

This completes the analysis for the solution of one-dimensional transient heat conduction problem 
in a plane wall. Solutions in other geometries such as a long cylinder and a sphere can be 
determined using the same approach. The results for all three geometries are summarized in Table 
2-1. The solution for the plane wall is also applicable for a plane wall of thickness L whose left 
surface at x = 0 is insulated and the right surface at x = Lis subjected to convection since this is 
precisely the mathematical problem we solved. 
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and thus the evaluation of an infinite number of terms to determine the temperant 
location and time. This may look intimidating at first, but there is no need to worry. As 
demonstrated in Fig. 2-5, the terms in the summation decline rapidly as n and thus An increases 
because of the exponential decay function e-ilAT . This is especially the case when the 
dimensionless timer is large.Therefore, the evaluation of the first few terms of the infinite series 
(in this case just the first term) is usually adequate to determine the dimensionless temperature (). 

Summary of the solutions jar one-dimensional transient conduction in a plane wall cf thickness 
2L. a cylinder of radius r0 and a sphere o.fradius r0 subjected to convention from all siafaces. * 
Geometry Solution An's are the roots of 

Sphere 

~ 4 sin A,, ,2 (} = £... e-,..., cos (A x/L) 
,,-1 2A,, + sin(2A,,) n. 

"" 2 J1 (A,,) 2 e = ~ - . e-A.7 J (A r /r) 
n-1 A,, J(j (,\,.) + Jf (A,,) D " 

0 

~ 4(sin A,, - A_,, cos A,,) _ ''~ sin (A,,x/L) e = .£..., e "•' .. .:. , 2). .. - sfo(2A .. ) A .. x IL 

Plane wall 

Cylinder 

I - An cot A,, = B.i 

I 2.1.3 Approximate Analytical Solutions 

The analytical solution obtained above for one-dimensional transient heat conduction 
in a plane wall involves infinite series and implicit equations, which are difficult to evaluate. 
Therefore, there is clear motivation to simplify the analytical solutions and to present the 
solutions in tabular or graphical form using simple relations. 
The dimensionless quantities defined above for a plane wall can also be used for a cylinder or 
sphere by replacing the space variable x by rand the half-thickness L by the outer radius ro. Note 
that the characteristic length in the definition of the Biot number is taken to be the half-thickness 
L for the plane wall, and the radius ro for the long cylinder and sphere instead of V/A used in 
lumped system analysis. 

We mentioned earlier that the terms in the series solutions in Table 4-1 con- verge rapidly 
with increasing time, and for T > 0.2, keeping the first term and neglecting all the remaining terms 
in the series results in an error under 2 percent. We are usually interested in the solution for times 
with r > 0.2, and thus it is very convenient to express the solution using this one-term 
approximation, given as 

Plane wall: 
T(x,t)-Teo -il 2 ( x) 

()wall = . = A1eT 1 cos A1 - Tl-Teo L 
(2-14) 

Cylinder: (2-15) 

Sphere: () 
_ T(r,t)-Teo -il 2 sin(il1..!:..) 

sph - . = A e 1 T ro Tl-Teo 1 il r 1- ro 

(2-16} 
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Where the constants A1 and AI are functions of the Bi number only, and their values are listed in 
Table 4-2 against the Bi number for all three geometries. The function Jo is the zeroth-order 
Bessel function of the first kind, whose value can be determined from Table 4-3. Noting that cos 
(0) = Jo(O) = 1 and the limit of (sin x)/x is also 1, these relations simplify to the next ones at the 
center of a plane wall, cylinder, or sphere[3] : 

Plane wall: e _ T(O)-Too -il 2 
wall - . = A1 er 1 

Ti-Too 
(2-17) 

Cylinder: (2-18) 

Sphere: e T(O)-Too 2 
sph = . = A1 er-il1 

Tl-Too 
(2-19) 

TABLE2-3 --- 
Ooefficier1ts used ill the one-term approximate solution of transierit one- Tile zeroth- and first-order Bessel 
dimensional heat conduction in plane wall&, ,cylinders, and spheres {Bi = hLJk functions ,of the first kind 
for a plane wall of thickness. 2l, and Bi = nr,/kfor a c}rlinder or sphere of 

'ii .fo(ij) 11(71) 
radius ro) 

0.0 LOOOO 0.0000 
Plane Walf Cylinder Sphere 0.1 0.9975 0.0499 

Bi .:1., A, A1 A, i, Ai 0.2 0.9900 0.0995 

0.01 0.0998 1.0017 0.1412 l.0025 0.1730 1.0030 0.3 0.9776 O.l4S3 

0.02 0.14]0 1.0033 0.1'995 1.0050 0.2445 1.0060 0.4 0.9604 0.1950 

0.04 0.1987 1.006'6 0.2814 1.0099• 0.3450 1.0120 0.5 08385 0.2423 
0.05 0.2425 1,0098 0.3.438 1.0148 0.4217 1.017'9 0.6 0.9120 0.2867 
0.08 0.2791 1.0130 0.3'960 1.0197 0.4860 1.023'9 0.7 0.8812 0.3290 
0.1 0.3Ul 1.0161 0.4417 l.0246 0.5423 1.0298 0.8 0.8463 0.3688 
0.2 0.43.28 1.0311 0.6170 l.0483 0.7593 1.059.2 0.9 0.8075 0.4059 
0.3 0.5218 1.0450 0.7465 1.0712 0.9208 1.08:S.O 
OA 0.5932 l.058!0 0.8516 1.0931 1.05.28 1.1[64 1.0 0.7652 0.4400 
0.5 0.6533 l.0701 0.9'408 l.1!43 1.il.656 l. ll44l!. r.i 0.7196 0.4709 
0.6 0.7051 1.0814 1.0184 1.1345 l.2644 L1l713 1.:2 0.6711 0.4983 
0.7 0.7506 1.0918 1.0873 1.1539• 1.3525 l.1978 1.3 0.6201 0.5220 
0.8 0.79'10 l.]!.016 Ll490 1.1724 1.4320 l.2236 1.4 0.5669 0.5419 
0.9 0.8274 i.noz 1.2048 1.190:2 1,5044 l..2488 
LO 0,8603 1.1.191 1.2558 l.2071 l.5708 l..273.2 1.5· 0.5118 0.5579 
2.0 1.0769 LHB5 1.5995, l.3384 2.02BB l.4793 1.6 0.4554 0.5699 
3.0 l.19'.25 1.210.2 1.7887 1.4191 2.2889 l.>6227 l.7 0.3980 0.5778 
4.0 1.2646 l.2287 1.9081 1.4698 2,4556 l.7'202 LB 0.3400 0.5815 
5.0 1.3138 1 .. 2403 1.9898 l.50291 2.5704 1.7870 1.9 0.2818 0.5812 
6.0 1.3496 L2479 2.0490 l.5.253 2.6537 1.8338 
7.0 1 .. 37>66 1.2532 2.0937 1.5411 2..7165 1.8673 .2.0 0.2239 0.5767 
8.0 1.39178 1.2570 2.1.286 l.5526 2.7654 1.8920 2.1 0.1666 0.5683 
9•.0 1.4149 1.2598 .2.15-66 1.5511 2.8044 1.91015 2.2 0.1104 0,5560 
10.0 1.4289 L26:20 .2.1795 1.5677 2.8363 l.'9249 2.3 0.0555 0.5399 
20.0 1.4961 1.269•9 2.2880 1.:5,919 2.9857 1.9781 2.4 0.0025 0.5202 
30.0 1.5202 L.2717 2.32.61 l.5973 3.0372 l.9898 
40.0 1.5325 l.2723 2.345.5 1.5993 3.0632 1.9942 .2.6 -0.0968 -0.4708 
50.0 1.5400 1.2727 .2.3572 1.6002 3.0788 1.9962 2.8 -0.1850 -0.4097 
100.0 1.5552 1.2731 .2.3809 l.6015 3.l102 1.9990 3.0 -0.2>601 -0.3391 

:£ 1.5708 1.2732 .2A048 ].6021 3.1416 2.0mm 3.2 -0.3202 -0.2613 
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Chapter 3: THE PROGRAM 

ForlD unsteady heat conduction simulation program we used the Microsoft excel to create 
the program along fourteen work sheets. 

13 .1 Flow Chart 

t approach T ap,proach 

""C 

~ 

""C - rJ'1 - 
~ 

rJ'1 ~ ~ 
= "C = "C 

ti, =- ti, =- 
~ 

ti, 
~ 

ti, 
"'I "'I 

~ ti, ~ ti, - - - - 

FIGERE 3-1: Flow chart for the program 
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I 3.2 Interface 
In the first sheet we have the interface, where we can choose one of the two approaches: 

_ Case 1: T(x,t): Tat any given distance & time 

_ Case 2: t(x,T): tat any given distance & temperature 

Clicking the arrow moves us to the relative home sheet. 

F33 . (· !, 
·• J C : D. : E i F I G. H I I J .. )n . K ' . l. 1 M j N J O . P .. Q 
' ! 

~ 
3' 

Qoo11111orm1111m1m1B 

10 
11 

11 
13 
14 

15 
16 
17 

18 This approach gives the temperature at any 
chosen time 
T(x,t) 

This approach gives the time at any chosen 
temperature 
t(xJ) 

FIGERE 3-2: Interface sheet of the excel program 
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13.3 Home 

We can choose one of the three geometries (plane wall, cylinder and sphere).By clicking on 
the geometry itself, it moves us to the relative input sheet. 

G \ 0 a M 

'tho:ose:i'f:Jne of the qeometries below 
4 

101 t: lni1i:tlh 
u i 

,. 
T=T; It 

Uf I 13 
1• 
15 ' 0 
16 
17 
18 
19 
20 
21 
22 
13 

r"'I· Initiltlly ! t; h Tr J 1, 

L x or-;--ir., 

FI GERE 3-3: Geometry choosing sheet. 
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13 .4 Case: 1 : In terms of temperature 

I 3.4.1 Input sheets 

In this sheet the inputs of the program which are eight parameters (h.k.x.Lu.t.Ti.Ts.) are 
entered manually, And we have three different Input sheets for Plane wall, cylinder and sphere. 

D58 • (~ /x 
A G 

:,~-~JI 
;111~t~ 

~lk [w/mk] = 

0 
T«I 
h 

Initially 

T 
T<» 
h 

6 ilNPUT 

7 lh lw/n12k1 = 

9~Xfml= 
0 

101L [ml= 
0 

,_:_:1a [m2/s] = 
0 
0 0 L x 

12!! is]= 0 
Bili [k] = 0 
14IT- [k] = 0 

FIGERE 3-4: Input sheet of the plane wall case 1 

A34 . ,. !, 
A 

2QJ~~ 
~ ilflr®t~ 
s· 
6 INPUT 

1 lh [w/m2k] = 0 
B lk [w/mk] = 0 
9 r fml = 0 
10 ro[m] = 0 
11 a lm2/s] = 0 
12 t [s] = 0 
is Ti [k] = 0 
1•IT- [k] = 0 
15 
16 
17 
18 

19 

2, 
21 

iJ) 

Tool Initially I T'R 
h Tr h 

' 

ol-Jr 0 

FI GERE 3-5: Input sheet of the cylinder case 1 
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C49 > (C _ _!:: 
A 

2]~~~ 

'· fr~Ir@ti 
~ 
6' INPUT 
7 h w/m2k] = 
s k [w/mk] = 
s rfml = 
10 ro [m] = 
;1arm2/sl = 
12jt [s] = 
B T;[kJ= 
14 T~[k]= 
1.5-.-- 

16 
17 
18 

19 

2.0 
21 
22 

M_~ 

[ 
~ 

t: 
~ h 

0 
0 '/ ,.0 m \ o• r 
0 - 
0 
0 

FIGERE 3-6: Input sheet of the sphere case 1 

Where, 

h: Convection heat transfer coefficient 

k: Thermal conductivity 

L: Thickness 

x: Distance at any point 

a: Thermal diffusivity 

Ti: Initial temperature 

Too: Fluid temperature 

t: Time at a given point & temperature 

Remark: In the cylinder and sphere x and L inputs are replaced by r and ro . 

Pressing the arrows related to the input sheet of the specified geometry, the program 
moves to the respective output sheet. 

14 



I 3.4.2 Output sheet of case 1 

The output sheet is common for all the geometries. It shows the result of the program: the 
variables of the program which are Bi (Biot Number) and r (Fourier number), and the outputs of 
the program which are(} and T and the graph (8 in as a function of r) . 

f53 . t· 1,1 . 
,: A B J C D E I F I G H I I J K l M N 0 I I "" - p •. 
1 ,_ 
2 - 
3 - 4 
s variables e I 

6 Bi (Biot no. J = I 0.9 
1 .. t (Fourier no.)= I 0.8 
8 0.7 

9 icheck ( r > 0.2) I 0.6 
10 
ujA= 

I I 

0.5 -x=L E 

0.4 -,=o 
11jA= I 

-x=x 

131 
0.3 

14Joutput 

i 

0.2 

1510 = 

I 

OJ 

16JT= 0 
0 0.2 0.4 0.6 0.8 I 

17 
18 C t 
19 
20 
21 
72 .• 

FI GERE 3- 7: Output sheet of case 1 

The above graph shows the three curves: 

• x = L ( at the surface) 
• x = x (at any point) 
• x = 0 ( at the center) 

15 



I 3.4.3 Output Calculation 

In this case we are looking for temperature and 8, we also need to find the variables before that 

B . hL 
1=­ 

k 

We find Bi to extract the A and A 

at 
T = Lz 

We find r to make sure that its applicable for one term equation 

And we can find the temperature for 

Plane wall (3-la} 

Cylinder (3-lb} 

Sphere 
A 2 sin(A1;.) 

T(r, t) = (Ti - Too)A1e- 1 T A,l0 + Too 
ro (3-lc} 

And fore 

e = _T_(x_, t_)_-_T_oo_ 
Ti - Too 

16 



I 3.4.4 How the graph drawn 

The program starts by calculating t initial and t final for (x=O, x=x and x=L) 

M107 . '. 
M 

1 
1 

Plane Wall J__ - 
>1=0 

I ~ 

t{l\1/0! l[lV/1) 
ta\1/0! l[lV/1) 
t[)\1/0! l[lV/1) 
t[)IJ/0! l[lV/1) 
t()V/(1! l[lV/1) 
l[lVIO! l[lV/1) 
l[lVIO! l[lV/1) 
l[lVIO' l[lV/1) 

·-- l[lVIO! l[lV/1) 
l[)\1/0! l[lV/1) 

l[lV/1) l[lV/1) IDr,J/0 
l[lV/1) IDr,Jl!l 
l[lV/1) IDr,J/0 
l[lV/1) IOr,J/0 
l[lV/1) IDr,J/0 
l[lV/1) IOr,J/0 
l[lV/1) fDr,J/1) 
l[lV/1) IQr,J/1) 
l[lV/1) fDr,J/1) 
l[lV/1) fDr,J/1) 

IDr,J/1) l[lVII) 
l[lV/1) l[lV/1) 
fDr,J/1) l[lV/1) 
fDr,J/1) t[lV/1) 

;\I-- j. 
33 ~-·- 35 

"' '37 

+ 

-- +-----'--l--; _ 
i-- -+- ·--- +- 

FIGERE 3-8: Calculation sheet case 1 

• t initial 

Eq 
L2 

t = 0.2 * - a 

By use this code: 

=(0.2*'wall plane'!$B$10*'wall plane'!$B$10)/'wall plane'!$B$11 

• t final 

Eq t= 

By using this code: 

=-LN(0.001/( output!$B$12*COS( output!$B$11 *'wall plane'! $B$9/'wall plane'!$B$1 O)))*('wall 
plane'!$B$101'2)/(output!$B$11A2*'wall plane'!$B$11) 

And then we substitute the value oft for the first cell 

and for the remaining cells we use this code 

=(Fl 7-E4)/9 
17 



.. 

Where, 

Fl 7: t last 

E4: t initial 

9: number of cells in table -1 

Then we find r table by this equation 

at 
T = L2 

and this code 

='wall plane'!Bl 1 *(D76)/('wall plane'!B101'2) 

Then we find T table by this equation 

A 2at ( x) Eq T = (Ti -Too)A1e- 1 
L2 cos A1 L + Too 

And we use this code 

='wall plane'!B14+(('wall plane'!B 13-'wall plane'!B 14)*output!B 12*EXP(-( output!B 11 A2)*'wall 
plane'!Bl 1 *'ss3'!E4/('wall plane'!BIOA2))*COS(output!Bl 1 *'wall plane'!B9/'wall plane'!BIO)) 

Then we can find (J table by use equation 

Eq (J = T(x,t)-Too 
Ti-Too 

And this is the code for the first cell in theta table 

={E76-'wall plane'!B14)/('wall plane'!B13-'wall plane'!Bl4) 

And now after we fill (J and t tables we can draw the graph 

And it's in the same way for cylinder and sphere. 

18 



13.5 Case: 2: In terms of time 

I 3. 5.J Input sheets 

In this sheet the inputs of the program which are eight parameters (h,k,x,L,a,T,Ti,T oo) are 
entered manually. 

For case 2 we have the same geometry, by clicking on any geometry from the home sheet, 
the input sheet for second case appears. 

B47 • c- /x 
A B I ·-··-· C ··-·--·-D 

1 .. ,ft.~Wd 
: *'ml)) 
s'i---------~ 
6 [INPUT T00 I Initially I T00 

h T=T; h 

I 
' Ot- 'L X 

0 
8 [k [w/mk) = 0 
9'IX fml = 0 
101qmJ = 0 

11la!m2/s] = 0 
0 

ll]l"i [k] = 0 

1•/T- [k] = 0 
15 
16 
17 
18 

FIGERE 3-9: Input sheet of the plane wall case 2 

D61 

D I ·'- I -- f ... I . G_._.I __ H ______ 1 -·- J ---~_,._,_;'""'--l-~~ - 

I~= [ 
T®I lnilially T"' 
h T=T1 h 

I 
oW,.() 

l! 

INPUT 
h [w/m2k)= 0 
k [w/mk]= 0 
r ml= 0 
rO[m] = 0 
a ·m2/s] = 0 
T ;k]: 0 
T,'k]= 0 
T-'.k] = 0 

FIGERE 3-10: Input sheet of the cylinder case 2 



C52 !, 
A D H 21.~ 

: @'.([rl/) ii)) 
s+-----~~~~~~~ 
6~INPUT 

s [k [w/mk] = 
0 

Ii 

7lh [w/m2k} = 

,1r fml= 
0 

10\ro [ml= 

0 

111a l'm2/s]= 
0 

12lT [k]= 
0 

13(T; [k]= 
0 

1•JT- [k]: 
0 
0 

15 

1~1 
17 
18 

FIGERE 3-11: Input sheet of the sphere case 2 

Where, 

h: convection heat transfer coefficient 

k: thermal conductivity 

L: thickness 

x: distance at any point 

a: thermal diffusivity 

Ti: initial temperature 

Too: fluid temperature 

T: temperature at a given point & time 

Remark: In the cylinder and sphere x and L inputs are replaced by r and ro . 

Pressing on the arrows related to the input sheet of the specified geometry, the program 
moves to the output sheet. 

20 



I 3. 5 .2 Output sheet of case 2 

The output sheet is again common for all the geometries It shows the result of the 
program: the variables of the program which are Bi (Biot Number) and T (ferriour number), and 
the outputs of the program which are e and t and the graph te' as a function of r). 

A C M N o I 

C58 

s ivariables 
8 1.2 

} \Bi {Biot no.)= 
1 n (Fourier no.)= 
8 
9 j,_ch-ec-k (-t>-0-.2)--.-1----.1 

0.8 +------------------ 

li= 
I I )A= 

! 

0.6 1---------------- 
-r'T 

0.4 +------------------ -r=rO 

141output 
0.2 1----------------- 

0.1 0.4 0.6 0.8 l 1.2 

t 

FI GERE 3-12: Output sheet of case 2 

The above graph shows three curves : 

• x = L (at the surface) 
• x = x (at any point) 

x = 0 (at the center) 
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I 3.5.3 Output Calculation 

In this case we are looking for time and 8 

But we need to find the variables before that 

Bi= hL 
k 

We find bi to extract the il and A 

at 
T = Lz 

We find T to find the time that we need it 

And we can find the time for 

Plane wall 

Cylinder 

Sphere 

And for 8 

T(x, t) - Teo 
8=---­ 

Ti - Teo 

22 
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I 3.5.4 How the graph drawn 

Ml07 

M 0 s 

_ J Plane Wall 
atgiYenH -+-·r,, ........,-1 ,, 

r 11)1/1(1 r IDIVl(I 

r 
l[lVl(I l[lVl(I 
11)1/1(1 l[lVl(I 
11)1/1(1 l[lVl(I 

- 11)1/1(1 l[lVl(I 
11)1/1(1 l[lVl!l 
t[ll/1() l[lV/0 

·- 1[11/1() l[lVl!l 
t[lVI() l[lVICI 
t[lVI() l[lVl!l 
t[lVl!l l[lVICI 

IDIVl!l 

IDIVl(I r 10~1~ 
11)1/1() 
IDIVl(I 
11)1/1() 
11)1/1() 

1- ----'.Tri• Ti,,t, 
'loi\11() 

IOIVI() 

+ 
-t 

+ ; 
.,,_, 

FIGERE 3-13: Calculation sheet case 2 

The program starts by calculating T initial (where the program starts with this value) and 
T final (where the program ends with this value) for (x=O, x=x and x=L) 

• T initial 

By use this code: 

=(('wall plane t'!B13-'wall plane t'!B14)*('output (2)'!Bl2)*(EXP(-'output (2)'!Bl 1 *'output 
(2)'!B 11 *0.2))*COS('output (2)'!Bl 1 *'wall plane t'!B9/'wall plane t'!B 1 O)+'wall plane t'!B 14) 

• T final 

Eq T = (0.001 *(Ti-Too))+ Too 

By use this code: 

=<0.001 *('wall plane t'!Bl3-'wall plane t'!B14))+'wall plane t'!Bl4 

And then e substitute T initial in the first cell 

23 



•. 

and for the remaining cells we use this code 

=(F3 l -E4 )/9 

Where, 

F31 T last 

E4 T initial 

9: number of cells in table -1 

Then we can find (} table by use equation 

Eq g = T(x,t)-Too 
Ti-Too 

And this is the code for first cell in theta table 

=(E4-'wall plane t'!$B$14)/('wall plane t'!$B$13-'wall plane t'!$B$14) 

Then we find t table by this equation 

Eq 

And we use this code 

=-('wall plane t'!$B$10A2/('wall plane t'!$B$11 *'output (2)'!$B$11 A2))*(LN(E16/('output 
(2)'!$B$12*COS('output (2)'!$B$11 *'wall plane t'!$B$9/'wall plane t'!$B$l0)))) 

Then we find r table by this equation 

at 
T = Lz 

and this code 

=F8*'wall plane t'!$B$11/('wall plane t'!$B$10A2) 

And now after we fill (} and r tables we can draw the graph 

And it's in the same way for cylinder and sphere 
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13.6 Tables 

M65 • • .1:-:j v 

_ A B C D E , F. G H ~ ----..,L.,.._,~ ~_L . N O P , Q R S T U V -· \.I _ X Y Z AA "-- 
20 ]bi 1,,1 Al bi .0.2 A2. bi l'I JoCril Jli,J • 
21 "' o.o, o.0338 10011 0.01 o.14'!2 10025 o.o, o.173 um o , o 
22, 0.02 0.141 10033 0.02 0.1395 1.005 0.02 0.2445 tOC6 0.1 0.3975 0.0499 
23~ 0.04 0.1967 10036 0.04 0.2814 10099 0.04 0.345 1.012 0.2 0.99 0.0995 
24 0.00 0.2425 10038 O.Cli 0.3438 10148 0.06 0.4217 t017S 0.3 0.9776 0.1483 
25~ 0.08 0.2791 1.013 0.08 0.396 10197 0.08 0.486 1.0233 0.4 0.$04 0.136 
26. 0.1 o.3m t0l31 0.1 o.«17 t0246 0.1 o.5423 1.0233 o.s o.9385 o.2423 
27 0.2 0.4328 10311 0.2 0.617 10483 0.2 0.7593 10532 0.6 0.912 0.2867 
28~ 0.3 0.5218 1.045 0.3 0.7465 10712 0.3 0.9208 1.088 0.7 0.8812 0.329 
29 0.4 0.5932 1.058 0.4 Q_851j 1.0931 0.4 1.0528 t 1'61 0.8 0.8463 0.3668 
30~ 0.5 0.6533 10701 0.5 O.~ 11143 0.5 11656 11441 0.9 O.E075 0.4059 
31 ~ 0.6 0.7051 10814 0.6 10184 t 1345 0.6 12644 1.17t3 1 0.7652 0.44 
321 0.7 0.7500 10918 0.7 t007J t?i39 0.7 13525 11378 11 0.1'!36 0.4703 
33~ a.a o.791 1-.:ilS a.a t149 tm4 o.e 1432 12236 12 o.s111 o.4963 
34 r 0.9 0.6274 1. T(l7 0.9 1.2048 l "W2 0.9 1.5044 1.2486 1.3 0.6201 0.522 
35 1 0.8603 t 1191 1 t255a t2071 1 tS708 1.2732 14 0.5669 0.5419 
36 .1 2 1.0169 t 11ss 2 1.5995 1.lll4 2 20200 1.479:3 ts o.s1"11 o.5579 
37 3 1.1S25 t21'J2 3 17887 1413"1 3 2.2883 1.6227 t6 0.4554 0.5639 
38, 4 t2S46 12287 4 ln1 14898 4 24556 17202 t 7 0.3$ 05778 
39 ' s 13T38 t2403 s tS898 15029 s 2s704 1. 787 ta o.34 o.sa1S 
401 6 t3496 1247S 6 2049 1.5253 6 2.6537 18338 1.9 0.2818 0.5812 
41 7 1.3766 12532 7 20937 t54T1 7 2. 7115 18673 2 0.0239 0.5767 
42 8 13S76 t257 8 2.1286 15526 8 27654 t832 21 O.l586 0.5683 
43 9 14149 1.2598 9 2.1566 t56T1 9 26044 19"0:i 2.2 0.1Xl4 0.556 

:: ! ~!: 1~ ! 22.: ~~ ! i:; ~~~~ ~; ~:~ ~:= _ ~ 
46 30 15202 12717 30 2.3261 15973 30 3.0372 1S696 26 -0.968 -0.471 
47 40 15325 1.2723 40 2.3455 15993 40 3.0032 1.9:942 20 -0.185 -0.41 

: : t~~ ~;~;~ : i:; ~= : 33~;! 1;: 
3.i :~:;~ ~~.: :. 

50 "E+26 t5706 l.2732 "E+26 2.4048 t6021 'E+26 3.1413 2 _ 

~ T - L ~--- , - - ' I }- , -l-- l- - +---t - I r , 
-- -+· - - -+---l-- -- . ' - i • --i- 

53 ,_ ' ,. j ·j • + r- +I I_ t j'· ' I I i : --1 C l _l t t r ~ -· ,- ~ - I i ' + I j 

56 -, t 1 ~ - I - +· t . > t H· i- 1 ~ l T ~ t-·-+·--T• --i---r-- -+- . C - - 
57 . t ~ - L • + _I ,- - - --1- f- • l· • -- 1 . ~ • • • . • 9 

FIGERE 3-14: Tables for A, A and J 

In the above tables we introduced an equation to solve the interpolation needed to find the 
values of ?c1 and A1 in the three different geometries depending on the values of Bi, and to solve 
the interpolation needed to find Jo needed to solve the one term approximation of the cylinder as 
well. 
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Chapter 4: CASE STUDY 

Here we are going to check the credibility and accuracy of the excel program by comparing 
one of the book's example's result to the program result. 

Example 4-4 from Heat and Mass Transfer by Yunus Cengel. 

EXAMPlE4-4 Heating of Large Brras:s Pla:tres in an Ov-,en, 

Im a production facility. large brass plates of 4 cm thickness that are inilialty at 
a uniform temperature of 20"'C are heatec by passi•ng them through a11 oven 
that is mainlairned at 500"C (Fig" 4-20). The plates remain in the oven for a 
period of 7 min. Taking the combined convection ann radiation heat transfer 
coefticient to be h = 120 W/m2 • "C, determine the surtace temperature of the 
plates when they come out of the oven. 

Ir= 1200 W/m2.nc 
T, = 95'C 

FIGERE 3-7: Schematic 
for Example 4-4 

Assuming the egg as a sphere, the calculations and results obtained are: 

Properties The water ·content of eggs is about 7 4 percent, and th us the ther­ 
mal conductivify and diffusivity of eggs can be approximated by those of water 
at the average temperature of (5 + 70)/2 = 37.5°C, k = 0.627 W/,m . °C and 
a-= klpcP = 0.151 X 10~6 m2Js (Table A;;-9). 
Analysis The temperature wi1:hin the egg varies with radial distance as well as 
time, and the temperature at a specified tocation at a given time can be deter­ 
mined from the Heisler charts or the one-term so.lutions. Here we use the latter 
to demonstrate their use. The Biot number for this problem is 

h-1·,o = 
Bi= k 

1200 -Y..'/m2 • c.C)(0.025 m) 
0.627 W/m · °C = 47· 

which is much great-er than 0.1, and thus the lumped system analysis is no 
applicable. The coefficients>.., and A:i for a sphere corresponding to this Bi are. 
from Table 4---2, 

A1 = 3.0754. A1 = 1.995 

Substituting these and other values into Eq. 4-28 and solving tor. gives 

70- 95 5 - 95 = 1.995"--(30~3 .• - -r: = 0.209 

hich is greater than 0.2. and thus the one-term solution 1s applicable with an 
error of less than 2 percent. Then the cooking tune 1s determ,ned from the de­ 
inition of the Fourier number to be 

rr/ (0 • .209)(0.025 m ,:: 
r=--= - 

er 0.151 X 10-· n,-1 65 ..:J.4 1u.in 
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The result show e e needed for the center of the egg to reach 70 C is 865 sec 

And now for th olution: 

The input sheer o e e example with the same inputs: 

2 Sp here 
: \t"(r, T) 
• INPUT 
7 1h lw/m21<J ; 1200 
8 lk [w/mk) 0.627 
9 1r Iml> 0 
10fr0[m]; 

11 a lm2/sla 
ulT fkJa 

0.025 
l.51E-07 

70 
13!T;fk]a 5 ,,n- fk]a 95 

FIGERE 4-15: excel program's solution. 
And the output sheet is: 

f/1 

Mq-.,.-, N ~.l.- O 

s Jvarlables 
;IBi (Biot no.) a 47.85 
; IT{Fourier no.) a 0.208 
j 

, 1check ( T > 0.2) TRUE 
101 

nlAa 

I 
3.07541 

u1Aa 1.9958 
131 __ 
1, output 
,, e; 

I 
0.278 

16 t: 862.953 
17 
1B ,.. 
"' 21 

FI GERE 

eet shows the 
ec. 

cere we obtained 

= 0.23% 

or 0..23~0 i · fies its credibility 
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prer 5: CONCLUSION 

c:=:e:::;,,.-ronal equations and parameters we used dimensionless ones in 
~y of the output on other terms, and thus to have more accurate 

outputs of 
the program · 

graph of 8 as a function of T for three x values, and shows the 
ified from the approach sheet. And we checked the credibility of 

dy to find that the program works with a negligible error. 

The one il:'rm approximation equations provide a convenient way of accuracy for influence 
of curvature and temperature- dependent thermal properties within a substance used for transient 
heat conduction. This small error arises due to the finite difference approximations are likely to be 
"represent less 1 ~o of the inferred heat conduction for typical transient test conditions. 
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