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ABSTRACT 

 

 

In parallel concatenated convolution coding or also known as turbo codes encoder we have 

the first encoder operating strictly on input information bits to produce first parity bits and 

through the use of an interleaver to other convolutional code encoders for producing second 

parity bits. The output of the encoders comprises of at least some of the information bits 

contained in each of the first and subsequent encoder that has been used in the process after 

correcting the errors in them. Basically the use of the system is to reduce the amount of 

errors in each of the information bits sent into the encoders by interleaving the input bits 

over a block length. The interleaver then interleaves the information bits in groups of N bits, 

where N is an integer that is should be greater than one. A parity bit generator can produce 

additional parity bits which are then worked on by the convolutional code encoders and 

interleavers and also a turbo decoder is present. The parallel concatenated codes, decoded 

through an iterative decoding algorithm of relatively low complexity, has been shown of 

recent to provide good coding gains close enough to the theoretical limits and has been used 

well i a wide variety of applications some which include deep space communications, third 

and fourth generation wireless standards, digital video broadcasting and a lot other benefits 

in the technological world. In this paper we shall characterize the contributions of the 

encoders, interleaver length and the constituent codes give to the overall performance of the 

parallel concatenated convolutional code (turbo codes). 
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CHAPTER 1:  INTRODUCTION 

             

              

            The history of turbo codes, "at first it was a great surprise to observe that bit 

error rate (BER) of these reconstructed symbols was lower than that of decode information. 

We were unable to find any explanation for this literature". Claude Berrou and Alain 

Glavieux (1998). This section gives readers a collection of important materials along the 

turbo codes discovery that begins with a group of scientists which their work was based on 

the contemporary scheme of convolutional encoding and Viterbi algorithm decoding. 

Referring to the “Reflection on the Prize Paper: Near optimum error-correcting coding and 

decoding: turbo codes” published on June 1998 in IEEE information theory society 

newsletter, Claude Berrou, Alain Glavieux and Patrick Adde were mentioned as key people 

prior to the time of turbo codes invention. At the Ecole Nationale Sup´erieure Des 

Telecommunications de Bretagne of France, these scientists started their work focusing on 

the Soft Output Viterbi Algorithm (SOVA). It was based on the literature of G. Battail in 

1987 and of J. Hagenauer and P. Hoeher in 1989. Those were certainly referred to famous 

papers of A.J. Viterbi, “Convolutional codes and their performance in communication 

systems”, and of G.D. Forney, “The Viterbi algorithm”. Initially, their research was to 

transfer the SOVA into hardware platform on MOS transistors in the simplest possible way 

as the target. Consequently, they observed that SOVA can be considered as a signal-to- 

noise (SNR) amplifier. This could be mentioned as the beginning of “turbo codes" concept 

because it stimulated them to consider “feedback” techniques that are commonly used with 

electronic amplifier circuits. To explore that concept, they cascaded that signal-to-noise 

(SNR) amplifier or their SOVA version in order to obtain large asymptotic gains.  

            This connection bases on “concatenation” coding technique of the 

well-known concept in the literature. Their experiments were done on a serial concatenation 

of two ordinary convolutional codes at the early step. It was later concentrated on parallel 

concatenation. Because the idea of two component decoders working with the same clock 

signal matches with that the reason of hardware implementation (in parallel) for clock 

signal distribution. This parallel concatenation with amplifiers was now considered to be 
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meaningful only if the code is systematic, and it was straightforward to use recursive 

systematic convolutional (RSC) codes at the final. During this period of turbo codes 

foundation, a PHD student, Punya Thiti-Majshima, started joining this group to work on the 

distance properties analysis in the year 1989. His dissertation devotes to studying distance 

properties and of error probability of the Recursive Punctured Systematic Convolutional 

(RPSC) codes and their concatenation in serial and parallel styles. Certainly, it is combined 

with iterative decoding. This work is entitled “Les codes Covolutifs Recursifs Systmatiques 

et leur application la concatenation parallel”, as a dissertation at l’Universit de Bretagne 

Occidentale (UBO). Gradually, the construction of original turbo codes was formed with 

related technical blocks. In order to solve obstruction in those initial works which reported 

on weighing problems, the beginning of SOVA was then replaced by 

Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm at the end of the discovery. It was mentioned 

that the first experiment with this novel coding construction was run in 1991. With the 

founding of following well known technical terms of extrinsic information, iterative 

decoding, recursive systematic convolutional codes, parallel concatenation, and non-regular 

interleaving, turbo codes was born finally.  

            There are two other main publications regarding turbo codes which appeared 

to the public after its introduction. First, a part of above dissertation was published in 

“Recursive Systematic Convolutional codes and application to parallel concatenation”, 

which was presented at IEEE Globecom in the 1995 conference by Thiti-Majshima. 

Moreover, at a year later another well-known article was published as “Near optimum error 

correcting coding and decoding: turbo-codes” on the IEEE transactions on communications. 

That was issued on October 1996 and written by Claude Berrou and Alain Glavieux. Since 

1993, the legacy of turbo codes has always opened new technical research areas 

continuously. It sparks new numerous ideas to improve its own performance. Moreover, its 

concept is combined with other communication techniques in order to improve the overall 

systems performance .The source emits a block of information bits which is encoded and 

transmitted over a channel with Additive White Gaussian Noise. The Turbo decoder 

calculates an estimation of the information bits based on the noisy received signal. 
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1.1         Convolutional Code  

 

 

           In telecommunication, a convolutional code is a type of error-correcting code 

that generates parity symbols via the sliding application of a Boolean polynomial function 

to a data stream. The sliding application represents the 'convolution' of the encoder over the 

data, which gives rise to the term 'convolutional coding'. The sliding nature of the 

convolutional codes facilities trellis decoding using a time invariant trellis. Time invariant 

trellis decoding allows convolutional codes to be maximum likelihood soft decision 

decoded with reasonable complexity. The ability to perform economical maximum 

likelihood soft decision decoding is one of the major benefits of convolutional codes. This 

is in contrast to classic block codes which are generally represented by a time variant trellis 

and therefore are typically hard decision decoded. Convolutional codes are often 

characterized by the base code rate and the depth (or memory) of the encoder [n, k, K]. The 

base code rate is typically given as n/k, where n is the input data rate and k is the output 

symbol rate. The depth is often called the "constraint length" 'K', where the output is a 

function of the previous K-1 inputs. The depth may also be given as the number of memory 

elements 'v' in the polynomial or the maximum possible number of states of the encoder 

(typically 2^v).Convolutional codes are often described as continuous. However, it may 

also be said that convolutional codes have arbitrary block length, rather than that they are 

continuous, since most real world convolutional encoding is performed on blocks of data. 

Convolution-ally encoded block codes typically employ termination .The arbitrary block 

length of convolutional codes can also be contrasted to classic block codes, which generally 

have fixed block lengths that are determined by algebraic properties. The code rate of a 

convolutional code is commonly modified via symbol puncturing. For example, a 

convolutional code with a 'mother' code rate n/k=1/2 may be punctured to a higher rate of, 

for example, 7/8 simply by not transmitting a portion of code symbols. The performance of 

a punctured convolutional code generally scales well with the amount of parity transmitted. 
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The ability to perform economical soft decision decoding on convolutional codes, as well 

as the block length and code rate flexibility of convolutional codes, makes them very 

popular for digital communications. 

  1.2         USES OF CONVOLUTIONAL CODES 

 

 

            Convolutional codes are used broadly in many applications in order to gain 

reliable data transfer, including Digital Video Broadcasting, Radio Broadcasting, Mobile  

Phones and Wireless Communication, Satellite and Deep Space Communications. These 

codes are often implemented in concatenation with a hard-decision code, particularly Reed 

Solomon. Prior to turbo codes, such constructions were the most effective, coming closest 

to the Shannon limit based on the Shannon Hartley theorem (which tells us basically the 

amount of information a channel can carry. In other words it specifies the capacity of the 

channel. The theorem can be stated in simple terms as follows given communication system 

has a maximum rate of information (C) known as the channel capacity. If the transmission 

information rate (R) is less than (C), then the data transmission in the presence of noise can 

be made to happen with arbitrarily small error probabilities by using intelligent coding 

techniques. To get lower error probabilities, the encoder has to work on longer blocks of 

signal data. This entails longer delays and higher computational requirements. The Shannon 

Hartley theorem indicates that with sufficiently advanced coding techniques, transmission 

that nears the maximum channel capacity is possible with arbitrarily small errors. One can 

intuitively reason that, for a given communication system, as the information rate increases, 

the number of errors per second will also increase) we would see the details in later 

chapters of this paper. 
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1.2.1        DIGITAL VIDEO BROADCASTING 

 

 

 

            In digital video broadcasting, the aspect of terrestrial broadcasting has 

brought entertainment and media information to mass audiences around the world for 

nearly a century. In the last two decades, the demand for consumption of multimedia 

services anywhere anytime has increased greatly. Because the spectrum resource is limited, 

a new spectrum efficient broadcasting technology is required to meet this demand. Digital 

broadcast technologies, such as the European Digital Video Broadcast -Terrestrial (DVB-T), 

moved terrestrial broadcast into the digital age. While analog broadcast can only deliver 

one program me per channel, digital broadcast namely DVB-T allows multi-programme 

broadcasting where 2 to 4 standard definition TV (SDTV) programme can be transmitted 

with time division multiplexing in a single 8 MHz channel. The bandwidth of DVB-T (from 

12 to 24 Mbit/s) can be allocated to offer different TV qualities, such as enhanced definition 

television (EDTV, requiring about 10 to 12 Mbit/s per programme) or high definition TV 

(HDTV, requiring about 24 Mbit/s per programme). In a nutshell, DVB-T has brought a 

higher quality service to TV program and it helps by reducing the use of spectrum, thus 

allowing other promising wireless technologies to diversity its applications. This leads to 

the development of emergence standard, Digital Video Broadcast - Handheld (DVB-H), 

that takes DVB-T a step further by making mobile reception of digital broad- casting 

possible with small, handheld devices. The governments of different European countries 

have made their plans for analog to digital TV switchover and fully deploying DVB-T/H 

services. United Kingdom, in early 2007, switched off analog TV in one Welsh community 

as an experiment. It is expected that the analog TV is completely phased out by the end of 

2012 nationwide. Meanwhile, analog and digital TV continue to co-exist in such a way to 
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enable a soft transition from analog to digital. This period which is known as the simulcast 

phase will entail increased spectrum needs and this whole idea was made possible in the 

first place by the use of convolutional coding. Digital video broadcasting has a its physical 

layer which includes outer coder/decoder, inner coder/decoder, QAM mapping, Frame 

adaptation and TPS insertion, OFDM and up/down converter and other various steps . This 

is seen in a basic block diagram of DVB system below. 

 

    

 

 

Figure 1: Block diagram of DVB system  
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1.2.2        RADIO BROADCASTING (DIGITAL AUDIO BROADCASTING) 

 

 

             

            In this section, this invention relates to radio broadcasting, and more 

particularly, to forward error correction in FM In-Band-On-Channel (IBOC) Digital Audio 

Broadcasting (DAB) and broadcasting systems utilizing such forward error correction. 

Digital Audio Broadcasting is a medium for providing digital quality audio, superior to 

existing analog broadcasting formats. Both AM and FM IBOC DAB can be transmitted in a 

hybrid format where the digitally modulated signal coexists with the currently broadcast 

analog signal. IBOC requires no new spectral allocations because each DAB signal is 

simultaneously transmitted within the same spectral mask of an existing channel allocation. 

IBOC promotes economy of spectrum while enabling broadcasters to supply digital quality 

audio to their present base of listeners. FM IBOC broadcasting systems uses a hybrid 

modulation format. An Orthogonal Frequency Division Multiplex (OFDM) technique has 

been described for IBOC DAB. OFDM signals consist of orthogonally spaced carriers all 

modulated at a common symbol rate. The frequency spacing for rectangular pulse symbols 

(e.g., BPSK, QPSK, 8PSK or QAM) is equal to the symbol rate. For IBOC transmission of 

FM/DAB signals, a redundant set of OFDM sub-carriers is placed within about 100 kHz to 

200 kHz on either side of a coexisting analog FM carrier. The DAB power (upper or lower 

sideband) is set to about -25 dB relative to the FM signal. The level and spectral occupancy 

of the DAB signal is set to limit interference to its FM host while providing adequate 

signal-to-noise ratio (SNR) for the DAB sub-carriers. First adjacent signals spaced at +-200 
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kHz from the FM carrier can corrupt the DAB signal. However, at any particular location 

within a station's coverage area, it is unlikely that both first adjacents will significantly 

interfere with DAB. Therefore the upper and lower DAB sidebands carry the same 

redundant information such that only one sideband is needed to communicate the 

information. Inherent advantages of OFDM include robustness in the presence of multipath 

interference, and tolerance to non-Gaussian short term noise or notches due to selective 

fading. Forward error correction (FEC) and interleaving improve the reliability of the 

transmitted digital information over a corrupted channel. Complementary Pair Convolution 

(CPC) FEC code techniques were developed for Automatic Repeat Request (ARQ) schemes 

where retransmissions were coded using complementary codes instead of simply 

retransmitting the same coded sequence. CPC codes can be constructed according to 

previously published puncturing techniques like the "High-Rate Punctured Convolutional 

Codes for Soft Decision Viterbi Decoding ,"It is known that the periodic puncturing of bits 

from a convolutional code using Viterbi decoding is an effective means of creating higher 

rate convolutional codes. Rate compatible punctured convolutional (RCPC) codes have 

been conceived as a mechanism to adjust coding gain and bit energy as a function of 

channel capacity in a practical efficient manner. This is useful in a point-to-point 

(non-broadcast) automatic repeat request (ARQ) system where an the intended receiver 

assesses its signal to noise power ratio (Eb/No) and communicates its desire to the 

transmitter (via a return path) to increase or decrease energy per bit (Eb) and coding gain. 

The transmitter responds by adjusting its code rate R. This is accomplished with a 

punctured convolutional code where the transmission of all the bits typically employs an 

"industry standard" K=7, R=1/2 rate code, for example. It is assumed in this non punctured 

case that the maximum Eb and coding gain is achieved. To improve spectral and/or power 

efficiency, the transmitter may elect to eliminate (puncture at the receiver's request, for 

example) the transmission of some of the coded bits, resulting in a higher rate code. This 

puncturing has the effect of lowering the effective Eb and coding gain relative to the 

original unpunctured code; however, this punctured code may still be sufficient to 

successfully communicate the information over the channel in a more efficient manner .For 

best performance at a given code rate, a particular pattern of bits in the coded sequence is 
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punctured. Unfortunately, the puncture pattern for higher rate codes does not include all the 

bits punctured for lower rate codes. It shows that the puncture patterns for RCPC codes can 

include all punctures for lower rate codes with little loss compared to the optimal, but 

rate-incompatible, puncture patterns. Therefore the code rate can be increased from the 

original R=1/2 code simply by puncturing more of the puncturable bits of the same pattern. 

The higher rate codes are a subset of the bits of the lower rate codes. 

            The interference environment in VHF FM-band IBOC DAB channel is 

generally such that a DAB channel can be dichotomized into the following two subsets of 

sub channels: (a) a reliable part composed of regions of spectrum relatively free of 

interference from other stations' signals, characterized as being thermal or background 

noise limited, with multipath fading as an impairment; and (b) an unreliable part composed 

of regions of spectrum with intermittent intervals of heavy interference which corrupts the 

bits transmitted during those intervals, but is at other times (or for most geographical 

locations) similar to the reliable part described above. AM band IBOC DAB can be 

similarly characterized. The prior art utilizes one of two fundamental strategies to transmit 

data in this environment: (1) simply do not utilize the unreliable part of the channel, thus 

those times during which the unreliable part is clear and usable are essentially wasted; or (2) 

utilize a sufficiently low rate code (and appropriately increased coded bit rate) to guarantee 

the required bit error rate (BER), and spread the increased bandwidth across both the 

reliable and unreliable parts of the spectrum evenly. This is done by uniform allocation of 

bits to OFDM carriers in an OFDM system, or increasing the raw bit rate of a single carrier 

system. This utilizes the unreliable part of the channel, but also incurs a BER penalty 

(possibly catastrophic) when severe interference occurs in the unreliable part of the channel. 

Depending on the interference, the second alternative may or may not be better than the 

first. Below is an image of the basic block diagram of a DAB system 
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Figure 2: Simplified Functional Block Diagram of a Transmitter and Receiver Which 

Operate In Accordance With the Method of the Invention 
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1.2.3        SATELLITE AND WIRELESS COMMUNICATION (LTE) 

 

 

 

 

           In this section we shall see that convolutional codes are a major contribution 

in satellite and wireless communication used in mobile phones also known as Long Term 

Evolution (LTE) 4th generation wireless communication and previous generations too(3rd 

generation......). This involves the use of Tail Biting Convolutional Codes (TBCC) and 

turbo codes. TBCC which ensures that the starting state of the encoder is the same as it's 

ending state (and that this state value does not necessarily have to be the all-zero state). For 

a rate 1/n feed-forward encoder, this is achieved by initializing the m memory elements of 

the encoder with the last m information bits of a block of data of length L, and ignoring the 

output. All of the L bits are then input to the encoder and the resultant L*n output bits are 

used as the codeword.an example is Zero-Tailed Encoding, In comparison, the zero-tail 

termination method appends m zeros to a block of data to ensure the feed-forward encoder 

starts from and ends in the all-zero state for each block. This incurs a rate loss due to the 

extra tail bits (i.e. non-informational bits) that are transmitted. Tail-Biting Decoding is also 

involved in the convolutional coding done in LTE, The maximum likelihood tail-biting 

decoder involves determining the best path in the trellis under the constraint that it starts 

and ends in the same state. A way to implement this is to run M parallel Viterbi algorithms 

where M is the number of states in the trellis, and select the decoded bits based on the 

Viterbi algorithm that gives the best metric. However this makes the decoding M times 

more complex than that for zero-tailed encoding which is much simpler than the maximum 

likelihood approach and yet performs comparably. The scheme is based on the premise that 

the tail-biting trellis can be considered circular as it starts and ends in the same state. This 

allows the Viterbi algorithm to be continued past the end of a block by repeating the 

received code word circularly. As a result, the model repeats the received code word from 

the demodulator and runs this data set through the Viterbi decoder, performing the trace 

back from the best state at the end of the repeated data set. Only a portion of the decoded 
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bits from the middle are selected as the decoded message bits. The Operation mode 

parameter for the Viterbi Decoder block is set to be "Truncated" for the tail-biting case 

while it is set to "Terminated" for the zero-tailed case. While for the turbo codes used in 

LTE is based on two eight-state constituent encoders and one turbo code internal interleaver. 

The sequence of the original input bits (B) is encoded by the first encoder, the input to the 

second encoder is an interleaved version of the first sequence (B); therefore the resulting 

coded sequence is the result of combining the information sequence of bit (systematic bits, 

S) with two sequences of parity bits (p1 and p2).Hence the overall code rate is 1/3 even 

though the rate of each encoder is 1/2, because their outputs is combined with inputs data 

bits. 

            Finally, a trellis termination operation is performed to force the encoders 

back to a zero initial state after coding a transport block. Once all the information bits are 

encoded, the tail bits from the shift register feedback in each encoder are padded after the 

encoded information bits. The tail bits are used to terminate each other constituent encoder 

while the other constituent encoder is disabled ( its correspondent switch in position 2).In 

other to reduce the complexity in both turbo encoder and decoder, a Quadratic Polynomial 

Permutation (QPP) interleaver is used instead of release-6 turbo interleaver (3GPP 36.212). 

This kind of interleaver (Takeshita 2006, 1249) holds the maximum contention free 

property. That is a great advantage from hard ware implementation perspective because 

contention in interleaver memory access is avoided and therefore it is possible to parallelize 

decoding with a single extrinsic memory. The reason for this interleaving process is that the 

performances of turbo and convolutional codes are improved when the errors introduced by 

the radio channel are statistically independent because they are random error correcting 

codes. 
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Figure 3: Turbo Code Coding Scheme for LTE 
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Tail-biting encoding in LTE As of 2014, many LTE supporting mobile phones and tablet 

phones are being released for sale to the public across the world. These shows below 

mentions of only some of the better known models: Apple; iPhone 5C, iPhone 5S, iPhone 6, 

Plus, iPad, iPad, iPad Air, iPad Air 2, iPad Mini (1st generation), iPad Mini 2, iPad Mini 

3,Fujitsu; Arrows NX HTC; HTC Desire Eye, HTC One (2013), HTC One (M8), HTC One 

Mini, HTC One Mini 2 Huawei; Ascend D2 LTE. Ascend P7 Jolla; Jolla / MeeGo Sailfish 

OS LG; G Flex, G Pro, G2, G3, Gx, Isai VL, Nexus 5, Optimus LTE 2, Optimus LTE III. 

Optimus; Vu 2, Vu 3 Lenovo; Lenovo A6000 Motorola; Droid Turbo Moto G Nexus 6 

Nokia; Lumia 830, Lumia 635, Lumia 640, Lumia 2520, OnePlus, One Pantech; Vega Iron, 

Vega N°6, Vega R3, Vega Secret Note Samsung; Galaxy A5, Galaxy Alpha, Galaxy Avant, 

Galaxy Core LTE, Galaxy Golden, Galaxy Grand, Galaxy Light, Galaxy Note 3, Galaxy 

Note 4, Galaxy Note 10.1 LTE, Galaxy Note Edge, Galaxy Note II LTE, Galaxy Pop, 

Galaxy Round, Galaxy S III LTE, Galaxy S4, Galaxy S4 Active, Galaxy S4 mini LTE, 

Galaxy S4 Zoom, Galaxy S5, Galaxy S5 Active, Galaxy S6, Galaxy S6 Edge, Galaxy Win 

Saygus; Saygus V2, Sharp; Aquos Pad, Aquos Zeta, Disney Mobile on docomo Sony; 

Xperia SP M35t, Xperia Z C6603, Xperia Z1, Xperia Z2, Xperia Z2 Tablet, Xperia Z3, 

Xperia Z3 Compact, Xperia Z4 Tablet LTE, Xperia ZL C6506, X-Systems, X-Tel 9500 
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Figure 4: Adoption of LTE technology as of December 7, 2014 

  Countries and regions with commercial LTE service 

  Countries and regions with commercial LTE network deployment on-going or planned 

  Countries and regions with LTE trial systems (pre-commitment) 
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CHAPTER 2:   TURBO CODES ENCODING 

 

 

 

              In this section we shall take a deep and detailed look at turbo codes full 

and the various processes involved with it.From the encoding of the turbo codes to the 

iterative decoding of the codes and the interleaver used in separating them. Basically they 

are error-correcting codes with performance close to the Shannon theoretical limit [SHA]. 

These codes have been invented at ENST Bretagne (now TELECOM Bretagne) as 

explained in early chapters, in France, in the beginning of the 90's [BER]. The encoder is 

formed by the parallel concatenation of two convolutional codes separated by an interleaver 

or permuter. An iterative process through the two corresponding decoders is used to decode 

the data received from the channel. Each elementary decoder passes to the other soft 

(probabilistic) information about each bit of the sequence to decode. This soft information, 

called extrinsic information and is updated at each iteration. A basic block diagram of turbo 

codes process is shown below.  

 

 

Figure 5: A Block Diagram of a Typical Turbo Code System  
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2.1           TURBO ENCODING  

        

 

 

            The basic idea of turbo codes is to use two convolutional codes in parallel 

with some kind of interleaving in between. Convolutional codes can be used to encode a 

continuous stream of data, but in this case we assume that data is configured in finite blocks 

corresponding to the interleaver size. The frames can be terminated - i.e. the encoders are 

forced to a known state after the information block. The termination tail is then appended to 

the encoded information and used in the decoder. The system is illustrated in Figure below. 

 

 

Figure 6: Turbo Encoder  

 

            We can regard the turbo code as a large block code. The performance 

depends on the weight distribution not only the minimum distance but the number of words 

with low weight. Therefore, we want input patterns giving low weight words from the first 

encoder to be interleaved to patterns giving words with high weight for the second encoder. 

Convolutional codes have usually been encoded in their feed-forward form, like (G1, G2) = 

(1+D^2, 1+D+D^2). However, for these codes a single 1, i.e. the sequence ...0001000..., 

will give a code word which is exactly the generator vectors and the weight of this code 
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word will in general be very low. It is clear that a single 1 will propagate through any 

interleaver as a single 1, so the conclusion is that if we use the codes in the feed-forward 

form in the turbo scheme the resulting code will have a large number of code words with 

very low weight. 

            The trick is to use the codes in their recursive systematic form where we 

divide with one of the generator vectors. Our example gives (1, G2/G1) = (1, (1+D+D^2)/ 

(1+D^2)). This operation does not change the set of encoded sequences, but the mapping of 

input sequences to output sequences is different. We say that the code is the same, meaning 

that the distance properties are unchanged, but the encoding is different. 

 

 

 

Figure 7: Recursive systematic encoder 

 

            In Figure 7 we have shown an encoder on the recursive systematic form. The 

output sequence we got from the feed-forward encoder with a single 1 is now obtained with 

the input 1+D^2=G1. More important is the fact that a single 1 gives a code word of 

semi-infinite weight, so with the recursive systematic encoders we may have a chance to 

find an interleaver where information patterns giving low weight words from the first 

encoder are interleaved to patterns giving words with high weight from the second encoder. 
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The most critical input patterns are now patterns of weight 2. For the example code the 

information sequence ...01010...will give an output of weight 5. Notice that the fact that the 

codes are systematic is just a coincidence, although it turns out to be very convenient for 

several reasons. One of these is that the bit error rate (BER) after decoding of a systematic 

code cannot exceed the BER on the channel. Imagine that the received parity symbols were 

completely random, then the decoder would of course stick to the received version of the 

information. If the parity symbols at least make some sense we would gain information on 

the average and the BER after decoding will be below the BER on the channel. One thing is 

important concerning the systematic property, though. If we transmit the systematic part 

from both encoders, this would just be a repetition, and we know that we can construct 

better codes than repetition codes. The information part should only be transmitted from 

one of the constituent codes, so if we use constituent codes with rate 1/2 the final rate of the 

turbo code becomes 1/3. If more redundancy is needed, we must select constituent codes 

with lower rates. Likewise we can use puncturing after the constituent encoders to increase 

the rate of the turbo codes.   

             Puncturing is used to delete one or more coded parity bits from a code 

word in a code. This well-known technique helps to obtain high-rate codes without 

modifying the structure of the encoder and the decoder circuit for an existing 

encoder/decoder circuit. Although punctured codes makes a system flexible by allowing the 

change in the code rate they usually suffer from performance degradation as compared to 

the unpunctured codes. Now comes the question of the interleaving. A first choice would be 

a simple block interleaver, i.e. to write by row and read by column. However, two input 

words of low weight would give some very unfortunate patterns in this interleaver. The 

pattern is shown in Figure 8 for our example code. We see that this is exactly two times the 

critical two-input word for the horizontal encoder and two times the critical two-input 

pattern for the vertical 
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. . . . . . . . . . . . . . 

. . . 0 0 0 0 0 . . .  

. . . 0 1 0 1 0 . . .  

. . . 0 0 0 0 0 . . .  

. . . 0 1 0 1 0 . . .  

. . . 0 0 0 0 0 . . .  

. . . . . . . . . . . . . 

Figure 8: Critical pattern in block interleaver 

 

encoder as well. The result is a code word of low weight (16 for the example code) not the 

lowest possible, but since the pattern appears at every position in the interleaver we would 

have a large number of these words. This time the trick is to use a pseudo-random 

interleaver, i.e. to read the information bits to the second encoder in a random (but fixed) 

order. The pattern from Figure 8 may still appear, but not nearly as often. On the other hand 

we now have the possibility that a critical two-input pattern is interleaved to another critical 

two-input pattern. The probability that a specific two-input pattern is interleaved to another 

(or the same) specific two-input pattern is 2/N, where N is the size of the interleaver. Since 

the first pattern could appear at any of the N positions in the block, we must expect this 

unfortunate match to appear 2 times in a pseudo-random interleaver of any length. Still the 

pseudo random interleaver is superior to the block interleaver, and the pseudo-random 

interleaving is standard for the turbo codes. It is possible to find interleavers that are 

slightly better than the pseudo-random ones, some papers on this topic are included in the 

literature list. We will end this section by showing a more detailed drawing of a turbo 

encoder, Figure 9. Here we see the two recursive systematic encoders, this time for the code 

(1, (1+D4)/ (1+D+D^2+D^3+D^4)). Notice that the systematic bit is removed from one of 

them. At the input of the constituent encoders we see a switch. This is used to force the 

encoders to the all-zero state i.e. to terminate the trellis. The complete incoming frame is 

kept in a buffer from where it is read out with two different sets of addresses - one for the 

original sequence and one for the interleaved one. This way output 1 and output 2 

correspond to the same frame and can be merged before transmission. 
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Figure 9: Turbo Encoder Example  
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2.2            TRELLIS TERMINATION  

 

 

             For turbo codes, appending five additional zero bits at the end of each N bit 

input Sequence does terminate the trellis in the all zero state due to the presence of 

feedback in The encoder structure. The insertion of extra bits for the recursive encoder to 

terminate in the null state depend on the current state of the encoder which is not 

predictable. In order to overcome this problem a simple technique as shown in Figure 10 

for a (1, 5/7, 5/7) encoder is employed to accomplish trellis termination. Keeping the switch 

to position A(output 1) encodes the input sequence, in order to terminate the trellis in the 

zero memory state the switch position is simply moved to second location or position 

B(output 2) 

 

 

 

 

   

Figure 10: Trellis Termination Strategy for A RSC Encoder 
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2.3            STATE DIAGRAM 

 

 

    

             The state diagram completely describes the encoding of turbo codes for a 

particular generator polynomial. The memory contents of the encoder define the state of the 

encoder at a particular time instant. If (V) denotes the overall encoder memory, the total 

number of states is 2^V. The current state and the output of the encoder are uniquely 

determined by the previous state and current input. The encoder undergoes a state transition 

when the bits in the message block are shifted into the encoder. The state diagram is a graph 

that consists of nodes, representing the encoder states with the arrow direction representing 

the state transitions. Each directed line is labeled with the input/output pair. Given a current 

encoder state, the information sequence at the input determines the path through the state 

diagram and the output sequence. 
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2.4            INTERLEAVING  

 

 

 

             An interleaver is a device which scrambles the symbols from several code 

words so that the symbols from any given code word give a random effect. When the 

deinterleaver reconstructs the code word by arranging the received sequence to its original 

order, error bursts introduced by the channel are broken up and spread across several code 

words. Before the discovery of turbo codes interleavers were mostly used in serially 

concatenated codes and in multipath fading channels to enhance the overall error correcting 

capability of the coding scheme. They were used differently for the first time in parallel 

concatenated turbo codes and proved to reduce the number of code words with small 

distances in the code distance spectrum (that is it generates less code words with minimum 

hamming distance). Hence, understanding the behavior of interleavers is essential to obtain 

improved performance in the error floor region of turbo codes. A comparative analysis of 

turbo codes using different interleavers was carried out and described below are the 

different types of interleavers. 

 

 

2.4.1          RANDOM INTERLEAVERS         

 

 

 

            A random interleaver scheme uses a fixed randomly generated permutation 

scheme to map the information sequence to the permutation order. A random interleaver 

scheme having a size of 12 is shown below in figure 11    

 Data index            1  2   3  4  5  6   7   8  9   10  11   12  

Interleaved data index    9  5  11  2  1  7   3  10  8  12   4    6  

      Original data index Interleaved data index  

Figure 11: A Random Interleaver. 
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2.4.2          BLOCK INTERLEAVERS 

 

 

 

            The block interleaver is one of the most basic and commonly used types of 

interleaver in communication systems. It scrambles the information sequence by writing it 

row wise and reading it column wise. In general a block interleaver can be described in 

terms of a (N × M) matrix. There exist four variations for this scheme. The schemes vary 

according to the order in which columns are read (LR: left to right or RL: right to left) and 

the order in which rows are read (TB: top to bottom or BT: bottom to top). A (4×4) block 

interleaver is shown in Figure 12, where the matrix elements represent the index of the 

information sequence. All of the four possible schemes of a block interleaver are shown in 

Figure 12   

 

 

 

  

(a) A (4x4) LR/TB block interleaver.   

 

 

12  8   4  0  13  9  5    

 

(b) A (4x4) LR/BT block interleaver.  

 

 

 

(c) A (4x4) RL/TB block interleaver.   
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0   1   2   

 

(d) A (4x4) RL/BT block interleaver.  

 

Figure 12: Four Different Strategies For Block Interleaving. 

 

 

 

 

 

 

 

Table 1: For the Block Interleaver Above 

   

 

 

2.4.3          ODD EVEN INTERLEAVER 

 

 

 

            This interleaver design is specially used with a punctured rate 1/2 turbo code, 

which is obtained by applying the puncturing operation on the two parity output sequences 

of a rate 1/3 turbo code. This interleaving strategy is useful in uniformly distributing the 

error correcting capability of the code. This interleaver picks the odd positioned coded 

parity bits from the sequence c2 as shown in Table 2, here the subscript denotes the position 

of the bit sequence  

 

  X0   X1   X2  X3   X4   X5   X6   X7   X8 

  C20    -   C22   -  C24   -   C26   -    C28 

 0 1 2 3 

 4 5 6  7 

 8 9 10 11 

 12 13 14 15 
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Table 2: Odd Coded Parity Digits of the First Encoder 

 

The data for the second encoder is assumed to be interleaved (using as 3x3 LR/TB block 

interleaver as shown in Table 3) 

 

0    1   2 

   3    4   5 

   6       7   8 

 

Table 3: A (3×3) LR/TB block interleaver. 

 

The second component encoder is used to generate the even positioned coded parity bits. 

Table 4 shows the block-interleaved data in the first row, whereas the even parity bits are in 

the second row. 

 

 

 

  X0   X1   X2   X3   X4   X5   X6   X7   X8 

  C20   C33   C26   C31   C24   C37   C22   C35   C28 

 

Table 4: Multiplexed Coded Sequence 
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2.4.4          INTERLEAVER TYPES BASED ON GOLDEN SELECTION 

 

 

 

            The golden section has application in many mathematical problems. The 

golden section principle states that for a given line segment of unit length, the aim is to 

divide it into a long segment of length g, and a shorter segment of length 1-g in such a way 

that the relation of the longer segment to the entire segment is equal to the relation of the 

shorter segment to the longer segment. Figure 13 below illustrates this principle      

Using this principle the golden section value is calculated to be g = 0.618. This value of g 

will be used in the definition of two subsequent interleaver definitions which are Golden 

Relative Prime Interleaver and Golden Interleaver and we see them in details in subsequent 

sub chapters. 

                   1 

             G                1-g       

             

                           

  0                                      1 

Figure 13: Illustration of Golden Section Principle 

 

 

 

2.4.4. a.        GOLDEN RELATIVE PRIME INTERLEAVER  

 

 

 

             The golden relative prime interleaver computes the scrambler indexes using 

the following relation (i (n) =s + np mod N, n=0....N-1) where, s is an integer starting index, 

p is an integer index increment, and N is the interleaver length. The values of N and p must 

be relative primes in order to ensure the uniqueness of each index element. The starting 
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index s is usually set to 0, but other integer values can also be selected. The relative prime 

increment p is chosen close to one of the non-integer values of c, which is computed as 

shown below           

        c=n (g^m + j) /r ………………………eqn1 

In the expression of c, g is the golden section value, m is any integer greater than zero, r is 

the index spacing, and j is any integer modulo r. The preferred values of j, m and r are 0, 1 

and 1 respectively.  

 

 

 

2.4.4. b         GOLDEN INTERLEAVER 

 

 

 

             This does not depend on the usage of relative primes and integer modulo 

arithmetic but is rather based on the principle of sorting real- valued numbers derived from 

the golden section value. After computing the value of c as given by equation (1) the 

real-valued golden vector E is calculated as follows:       

E (n) = s+ nc mod N, n=0......N-1.......................................................................eqn 2 

Where, s is any real starting value. After finding the vector e it is possible to find the index 

vector z. If the sorted version of the vector e is denoted by a, then the index vector z and the 

sorted vector a will be relates as shown below: 

A (n) = E [z (n)]....................................................................................................eqn 3 

Finally, the golden interleaver indexes are then computed by the following expression: 

I (z (n)) =n, n=0......N-1........................................................................................eqn 4 

The interleaver design for turbo codes is not an exact science, so the design methods can 

only be validated with the simulation results, we will also analyze the performance of the 

described interleaver through the simulation results in the following chapter.    
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CHAPTER 3    CHANNEL CODING (ADDITIVE WHITE GAUSSIAN NOISE) 

 

 

 

3.1            DEFINITION OF ADDITIVE WHITE GAUSSIAN NOISE  

 

 

              It's a very simple model of the imperfections contained in a 

communications channel. When you transmit a specific signal into deep space or 

atmosphere or copper line to be received at the next end(receiver end ), there are 

disturbances (also called noise) present in the channel(space/atmosphere/copper line) due to 

various reasons and interferences. One such reason is the thermal noise by the virtue of 

electrons' movement in the electronic circuit being used for transmission and receiving of 

the signals. This so called disturbances or noise is modeled here as an Additive White 

Gaussian Noise. Mostly it is also assumed that the channel is Linear and Time Invariant. 

The most basic results further assume that it is also frequency non-selective. 

 

Let' us look at the time-domain behavior of this noise: 

 

Additive: Because the noise will get added to your transmitted signal not multiplied.  So, 

the received signal y (t) = x (t) + n (t), where x (t) was the original clean transmitted signal, 

and n (t) is the noise or disturbance in the channel and y (t) is the new distorted signal. 

 

Gaussian: This thermal noise is random in nature, of course noise can't be deterministic 

otherwise you would subtract the deterministic noise from y (t) as soon as you receive y (t). 

So, this random thermal noise has Gaussian distribution with 0 mean and variance as the 

Noise power. Leaving out the variance part to avoid further complications in this paper ,but 

do remember that if variance of Gaussian is high then it’s dangerous as you may need to 

increase the power of x(t) or be satisfied with higher chances of error in the signal. 0 mean 
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means that the expected value n (t) during any time interval T is 0. But simply put, it also 

means that on an average n (t) will take 0 value. And probability of n (t) = 0 is the highest 

and the probability rapidly decreases as you increase the magnitude of n (t) which is a very 

good thing.  

 

Looking at the frequency domain behavior of this noise:  

White: meaning same amount of all the colors or same power for all the frequencies. 

Which means that this noise is equally present with the same power at all the frequencies. 

So, in frequency domain, Noise level is flat and the same throughout at every frequency this 

white noise is also knows as wideband noise. 

Wideband noise comes from many natural sources, such as the thermal vibrations of atoms 

in conductors (referred to as thermal noise or Johnson-NY Quist noise), noise, black from 

the earth and other warm objects, and from celestial sources such as the Sun. The central 

limit theorem of probability theory indicates that the summation of many random processes 

will tend to have distribution called Gaussian or Normal. 

Additive White Gaussian Noise (AWGN) is often used as a channel model in which the 

only impairment to communication is a linear addition of wideband or white noise with a 

constant spectral density(expressed as watts per hertz of bandwidth) and a Gaussian 

distribution of amplitude. The model does not account for fading, frequency selectivity, 

interference, nonlinearity or dispersion. However, it produces simple and tractable 

mathematical models which are useful for gaining insight into the behavior of a system 

before these other phenomena are considered. 

The Additive White Gaussian Noise (AWGN) channel is a very suitable model for many 

satellite and deep space communication links. It is not a good model for most terrestrial and 

earthly links because of multipath, terrain blocking such as mountains, interference from 

other signals, etc. However, for terrestrial path modeling, AWGN is commonly used to 

simulate background noise of the channel under study, in addition to multipath, terrain 

blocking, interference, ground clutter and self-interference that modern radio systems 

encounter in terrestrial communication operations. 

http://en.wikipedia.org/wiki/Thermal_noise
http://en.wikipedia.org/wiki/Johnson-Nyquist_noise
http://en.wikipedia.org/wiki/Sun
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Central_limit_theorem
http://en.wikipedia.org/wiki/Probability_theory
http://en.wikipedia.org/wiki/Channel_(communications)
http://en.wikipedia.org/wiki/Wideband
http://en.wikipedia.org/wiki/White_noise
http://en.wikipedia.org/wiki/Spectral_density
http://en.wikipedia.org/wiki/Watt
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Bandwidth_(signal_processing)
http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Gaussian_distribution
http://en.wikipedia.org/wiki/Fading
http://en.wikipedia.org/wiki/Frequency
http://en.wikipedia.org/wiki/Interference_(communication)
http://en.wikipedia.org/wiki/Nonlinearity
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3.2            AWGN CHANNEL CAPACITY 

 

 

  

              In this section, we define the information capacity of the AWGN channel 

as the maximum of the mutual information between the input and the output over all 

distributions of the input that satisfy the power constraint defined below. Information 

capacity of an AWGN channel, the information capacity of the AWGN channel with power 

constraint P is defined as; 

C = max I(X; Y) 

F(x): E[X/2] ≤P 

By expanding the common information, we get 

 I(X; Y) = h(Y) −h (Y|X) …………..eqn 5 

       = h(Y) −h(X +Z|X) ………..eqn 6 

        = h(Y) −h (Z) ……………eqn 7 

Where eqn. 7 follows from the result in eqn. (5) (h (Y|X) = h(X + Z|X) = h (Z|X) = h (Z),). 

Recall that if Z ∼N (0, σ2), then its differential entropy is: h (Z) = 1/2 log (2πeσ2). We also 

remark that since X and Z are independent, and using the fact that Var (X) ≤ P, then  

Var (Y) = Var (X) + Var (Z)………….eqn 8   

       ≤ P +σ2 …………….eqn 9 

 Moreover, we use the fact that the Gaussian distribution maximizes the entropy for a given 

variance. Applying this fact to the received signal Y, whose variance is upper-bounded by P 

+ σ2, we get that h(Y) ≤ 1/2 log [2πe (P +σ2)]. This says that the input which maximizes 

this entropy is X ∼N (0, P). We are now ready to upper-bound the mutual information  

I(X; Y) = h(Y) −h (Z) ……….eqn 10 

      ≤ 1/2 log [2πe (P + σ2)] + 1/2 log (2πeσ2)……….eqn 11  



43 

 

      = 1/2 log (1+ P/σ2)…………eqn 12 

By using Eq. 26, we finally got that the information capacity of the AWGN channel is 

C = max I(X; Y) = 1/2log (1+ P /σ^2)……..eqn 13 

F(x): E[X^2] ≤P……..eqn 14 

And this maximum is achieved when X ∼ N (0, P), i.e. f(x) = 1/√2πP e^−(x^2/2). In 

communication theory, the ratio P/σ2 is often called signal-to-noise ratio (SNR).The 

AWGN channel is depicted by a series of outputs Yi at discrete time event index 

represented as i which is the addition of the input Xi to the noise Zi, where Zi is 

independent and identically distributed and is gotten from a zero-mean normal distribution 

with variance N (the noise). The Zi are further assumed to not be correlated with the Xi. 

The capacity of the channel is said to be infinite unless the noise n is at a nonzero state, and 

the Xi are sufficiently constrained. The most common constraint on the input is the 

so-called "power" constraint, requiring that for a code word (X1, X2,..., Xn) transmitted 

through the channel, we have: 

 ………….eqn 15 

Where P represents the maximum channel power. Therefore, the channel capacity for the 

power-constrained channel is given by: 

……….eqn 16 

Thus the channel capacity C for the AWGN channel is given by: 

 ……….eqn 17 

                

              Also the Shannon’s power efficiency limit has to be considered strongly 

and effectively and this has no dependency on BER. Shannon’s limit tells us the minimum 

possible Eb/N0 required for achieving an arbitrarily small probability of error as M→∞. (M 

is the number of signaling levels for the modulation technique, for BPSK M=2, QPSK M=4 

http://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
http://en.wikipedia.org/wiki/Normal_distribution
http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Channel_capacity
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and so on…).It gives the minimum possible Eb/N0 that satisfies the Shannon’s-Hartley law. 

In other words, it gives the minimum possible Eb/N0 required to achieve maximum 

transmission capacity (R=C, where, R is the rate of transmission and C is the channel 

capacity). It will not specify at what BER you will get at that limit. It also will not specify 

which coding technique to use to achieve the limit. As the capacity is approached, the 

system complexity will increase drastically. So the aim of any system design is to achieve 

that limit. As an example, a class of codes called Low Density Parity Codes (LDPC) near 

the Shannon’s limit but it cannot achieve it. The Shannon limit derived above is called 

absolute Shannon power efficiency Limit. It is the limit of a band-limited system 

irrespective of modulation or coding scheme. This is also called unconstrained Shannon 

power efficiency Limit. If we select a particular modulation scheme or an encoding scheme, 

we can calculate the constrained Shannon limit for that scheme. 

  

 

 

3.3            AWGN CHANNEL RELIABILITY 

 

 

 

             With the emergence of wireless and mobile communication systems and 

technology, new channel models and impairment phenomena have appeared. Fading and 

multipath effects are the most severe among these phenomena. The techniques developed 

for communications over a band limited AWGN channels have been applied to fading 

channels. However, performance of these techniques in fading is significantly inferior to 

additive noise channel results. So far, some great improvements have been made, but data 

rates achievable in fading are still quite modest in comparison to those for wire-line 

channels. Due to the extreme difference in reliability between fading and noise channels, 

some fundamental questions arise which causes the creation of a new code which may 

result in an improvement over all other known codes, to check the improvements the limits 

to communications over multipath fading channels should be determined. The channel 
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capacity is a crucial asset that can be found by the use of information theory to determine 

the achievable transmission rates for reliable communication. That is to say, if the 

transmission rate is higher than the channel capacity, reliable communication and arbitrarily 

small decoding error probability cannot be achieved. However, if the transmission rate is to 

be kept below the capacity, we know that reliable communication is possible. The reliability 

of the communication process can be measured by defining the reliability. This measure, in 

fact, exists and is known to information theorists as the ''Random Coding Reliability 

Function''. Also known as the ''Random Coding Error Exponent'', due to Gallager [1965]. 

Gallager has shown that the probability of error of the best block codes of length N and rate 

R decreases exponentially with block length. Gallager's bound determines the behavior of 

the probability of error in terms of the transmission rate as well as the code length N, which 

reflects coding complexity, thus, making the bound an attractive measure of reliability. 

So therefore the random coding reliability function has been derived for various fading 

channels that model current wireless and mobile communication channels. The effects of 

amplitude fading, non-ideal channel state information, space diversity and fading time 

correlation on the reliability function have been considered. Channels with average and 

peak-power-constrained inputs as well as channels with discrete and continuous inputs have 

also been studied. Comparison with the additive white Gaussian noise (AWGN) channel 

has been made in order to determine the amount of degradation due to fading. In addition, 

estimates of the required code lengths for a certain probability of error have often been 

calculated in order to aid in the assessment of the required coding complexity over fading 

channels 

             The performance of the turbo decoding principle depends on the sharing of 

information between the constituent decoders. The more information we will have the 

better the performance of the decoding scheme will become. In order to obtain the channel 

information a variable called the channel reliability introduced in the beginning and is 

defined as follows  

 

Lc =4(Eb/No) a …………eqn 18 
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The value a is defined as the fading amplitude of the channel. It is defined to be a =1 for the 

additive white Gaussian channel as it is a non-fading channel. For fading channel the fading 

amplitude must be obtained by using channel state estimation and since this thesis assume 

that there is no channel state information available the value of a is chosen to be a = 0.8 for 

slow independent Rayleigh fading channel. The value was chosen to be less than one as 

multipath channels have a reliability value less than one.   
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CHAPTER 4   TURBO DECODING  

 

 

 

             Iterative coding is the major type used here and it has been seen to be used 

in the decoding of the class of parallel concatenated codes first introduced in 1993 by 

G.Berrou. An iterative decoder for concatenated codes consist of two soft output decoders 

as mentioned in earlier chapters for the component codes separated by an interleaver 

The component decoders are based on either a maximum a posteriori (MAP) algorithm or a 

Soft Output Virtebri Algorithm (SOVA). The iterative algorithms performs the information 

exchange between the two components decoders. 

            The iterative decoding of turbo codes is based on the soft output maximum a 

posteriori probability (MAP) algorithm .The MAP algorithm was first brought to light by 

Chang and Hancock in 1966 and was proposed for signal detection in channels with 

memory. The same algorithm was also used by Bahl et al in 1974 for decoding of linear 

codes. The MAP algorithm minimizes the symbol (or bit) error probability, while SOVA 

reduces the sequence error probability. The performance of MAP and SOVA algorithms are 

high and identical at signal-noise-ratio (SNR). The performance gain of MAP algorithm 

over the SOVA at low SNR leads to a performance advantage in iterative decoding. 

            The MAP is algorithm is computationally more complex than the SOVA. 

MAP algorithm involves multiplication and exponentiations while SOVA involves adding, 

compare and select operation. However, due to the push for strikingly low bit error rates, 

the MAP or the Log-MAP has been most commonly used in turbo codes since they are 

based on the optimal decoding rule. In contrast, the SOVA is an approximation to the MAP 

sequence decoder and will have a slightly worse bit error performance. Though SOVA 

suffers from performance degradation as opposed to the Log-MAP decoding rules, it has 

much reduced complexity. 
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Figure 14: The iterative structure of a turbo decoding scheme  

 

 

 

The turbo decoder uses a posteriori probability (APP) aslo known as a MAP probability 

decoder as the constituent decoder component. Each System object corresponds to a 

constituent encoder which provides an updated sequence of log-likelihood values for the 

uncoded bits from the received sequence of log-likelihoods for the channel (coded) bits. For 

each set of receiver channel sequences, the decoder iteratively updates the log-likelihood 

channel sequences, the decoder iteratively updates the log-likelihood for the uncoded bits 

until a stopping criterion is met. This simulation in this paper uses a fixed number of 

decoding iterations, as specified by the (Number of decoding iterations) parameter in the 

model's (Model Parameters) block The default number of iterations is set automatically at six 

The (Termination Method) property for the APP Decoder System object is set to be 

"Terminated" to match the encoders. The decoder does not assume knowledge of the tail bits 

and as a result, these are excluded from the 

multiple iteration. The internal interleaver of the decoder is identical to the one the encoder 

uses. It reorders the sequences so that they are properly aligned at the two decoders 
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4.1          MAP ALGORITHM 

 

 

            To first understand the decoding of turbo codes, a preliminary understanding 

of the MAP (BCJR) algorithm is necessary known as Bahl, Cocke, Jelinek and Raviv. In the 

originally  the idea was set out to calculate and estimate the a posteriori probabilities of 

the states and transitions of a Markov sequence which is transmitted through a discrete 

memory-less channel. This work resulted in an algorithm that minimizes symbol error rates 

while trying to decode the block and trellis codes. The purpose of the MAP algorithm is to 

minimize the symbol error rate for the decoding of trellis and block codes. Therefore, after 

receiving the information bits through the channel, the job of the decoder is to determine 

the most likely input bits (original/uncoded information sequence), based on the received 

signals. Since the input is over the binary alphabet, it is conventional to form a 

log-likelihood ratio (LLR) and base the bit estimates on comparisons based on magnitude 

of the likelihood ratio to a threshold. The log-likelihood ratio for the input signal indexed at 

time t is defined as:  

 

Λ (Xt) =In P (Xt= 1|r)/P (Xt=0|r)……..eqn 19 

 

In this expression, P (Xt =i|r) is the a posteriori probability of the information bit, Xt = i, 

where i ∈ {0, 1}, when we have the knowledge of the received data r. The decoder produces 

estimates of the information bits based on the values of the log-likelihood ratio. The 

magnitude of the log-likelihood ratio is defined as the soft output or soft value which can be 

passed after processing to the other decoder as a priority information. Also, the sign of the 

LLR determines the hard estimate of the original information sequence. The estimator 

obeys the following rule:  

Xt= *1   if Λ (Xt) ≥0…………….eqn 20 

    * 0 otherwise  

In order to perform the decoding when the information is received through the channel, the 

log-likelihood ratio must be computed and present. 
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4.2          LOG MAP DECODING  

 

 

 

           The LLR computed by the MAP algorithm is the soft output value which 

must be converted into the a priori information before it can be utilized by the next 

component decoder. The a priori information for the first and second constituent decoder is 

obtained by the following relations below; 

Λ2 = Λ2e –Lc (y) −Λ1…………….eqn 21 

Λ1 = Λ1e –Lc (y) −Λ2……………eqn 22 

Where Λ1e and Λ2e represent the extrinsic information from the first and second decoder 

Respectively. The turbo decoder generally performs the decoding of the noisy, received 

Information sequence through the communication channel in an iterative manner. This 

Iterative decoding structure of the error correcting coding schemes has proved to perform 

Amazingly well in providing low bit error rates and has thus reduced the gap between the 

Channel capacity limit defined by Shannon and the attained bit error rates. In order to 

Decode the data received from the channel, the first decoder should have a priori 

information and since, for the first iteration there is none available, it is assumed as zero. 

This is also called initialization. In section 4.1 the MAP algorithm was discussed in details 

in order to have the understanding of the decoding algorithm. In this work, the Log-MAP 

Decoding algorithm is used which in fact is based on the same idea as the MAP decoding 

Algorithm with the benefit that it simplifies the computation by eliminating the 

multiplicative operations and the need to store small values for the probabilities by 

including the logarithm operator in the computation. The multiplicative operation is 

computationally more expensive than the addition operator in terms of processing speed of 

a microprocessor. Also the requirement for large amounts of memory to store the 

probabilities in the computation of the log-likelihood ratio makes the implementation of 

this algorithm complex. After defining all the entities required in the decoding process the 

complete decoder structure for Log-MAP algorithm is shown below The Log-MAP 

algorithm is implemented as a two part algorithm. These two parts are the forward and 
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backward recursions. Details of each part are explained in what follows 

 

Basically, max-log-MAP algorithm can be divided into four computation tasks, which are 

branch metrics generation, forward metrics generation, backward metrics generation, and 

generation of a soft or hard bit estimate together with new extrinsic information 

Forward recursion: 

Initialize α0 (k) for the states k = 0, MS −1, with α0 (0) = 0 and α0 (k) = −∞for k not = 0. 

For t = 1, 2, τ and the states k = 0, 1... MS − 1 calculate for all the branches in the trellis 

 

………….eqn 23 

 

Figure 15: Trellis of eight state 3GPP constituent code. Transmitted systematic and parity 

bit pairs and corresponds with state changes of the component encoder. 
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 Backward Recursion 

Initialize βτ (k) for the states k = 0... MS −1, with βτ(0) = 0 and βτ(k) = −∞for k not = 0. - 

For t = τ −1... 1,0 and the states k = 0,1,...,MS calculate βt(k) as  

 

 

Figure 16: Shows the Backward Recursion Formula 

Naturally, turbo decoders applying more accurate algorithms like log-MAP instead of 

max-log-MAP require more area and the longer critical path lowers clock frequency. 

 

 

 

4.3           SOFT OUTPUT VITEBRI ALGORITHM (SOVA) 

 

       

             It is basically a modified vitebri decoder, the turbo code decoder is based 

on a modified Viterbi algorithm that incorporates soft-input and soft-output values along 

with the channel reliability values to improve decoding performance. For multistage 

(concatenated) convolutional codes, there are two main drawbacks to the conventional 

Viterbi decoders. First, the inner Viterbi decoder produces bursts of bit errors, which 

degrades the performance of the outer Viterbi decoders. Second, the inner Viterbi decoder 
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produces hard decision outputs, which prohibit the outer Viterbi decoders from deriving the 

benefits of soft decisions. Both of these drawbacks can be reduced and the performance of 

the overall concatenated decoder can be significantly improved if the Viterbi decoders are 

able to produce soft-output values. The soft values are passed on to subsequent Viterbi 

decoders as a priority information to improve decoding performance. This modified Viterbi 

decoder is referred to as the soft-output Viterbi algorithm (SOVA) decoder as mentioned in 

the earlier part of this paper. Inside the decoder, Soft-Output Viterbi Algorithm (SOVA) is 

used to determine the result with maximum likelihood. The process SOVA is similar to that 

Viterbi algorithm. A trellis is formed first. 

 

Figure 17: A Typical Trellis 

 

 

The trellis is to show how the codes are outputted by encoder. The bits in each node 

represents the states of the encoder. Each line represents a transition on receipt of codes 

from encoder the encoder output (decoder input) for all combination of states and input of 

the encoders are summarized as follows. 
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State 1 State 2 Input Output 
Next 

State 1 

Next 

State 2 

Decod

er 

Input 

0 0 0 0 0 0 00 

0 0 1 1 1 0 11 

0 1 0 0 1 0 00 

0 1 1 1 0 0 11 

1 0 0 1 1 1 01 

1 0 1 0 0 1 10 

1 1 0 1 0 1 01 

1 1 1 0 1 1 10 

We the determine the Accumulated Maximum Likelihood for Each State from the above 

table, each state has its own input bit pattern. When bit streams are inputted to decoder, they 

can be compared to the input (x0 x1) to see whether they are matched. The result is represent 

by likelihood of input: 

Li 

= 

-

1 

if no bits are 

matched 

  0 if 1 bit are matched 

  1 
if all 2 bits are 

matched 

 

The overall likelihood of a transition is sum of likelihood of input and a-prior likelihood 

information (Lp). 

L = Li + Lp ………….. eqn 25 

 

Lp= 

0.5 x a-prior information 

Lan 

if x0 are 

1 

  
-0.5 x a-prior information 

Lan 

if x0 are 

0 
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The algorithm is as follows: Start from state 00, the overall likelihood of each transition are 

evaluated. The overall likelihood of each node is obtained by the maximum accumulated 

likelihood. With this algorithm, the following will be obtained. 

 

Figure 17: Another Trellis Diagram 

Then you find the Surviving Path; The surviving path is thus derived by tracing back from 

last stage (stage 5) to the first one (stage 0) and is the results of hard-output Viterbi 

Algorithm. 

[1 0 1 0 1] 

The next step is that you determine the Soft Output, to find the soft-output, non-surviving 

paths are considered. We consider the non-surviving path the one that is product by making 

different decision in one of the stage in tracing back. For example, when tracing back from 

(last stage) stage 5, one of the non-surviving path is found by tracing back to state 00 

instead of state 01 from stage 5 to stage 4. Following the arrows, bit 1 is also 1. We found 

that bit 1 will have the following results when decision is changed in different stages: 

Stag 1 2 3 4 5     



56 

 

e 

Bit 1 X X 0 1 1   where X means cannot trace back to state 00 in stage 0 

Delt

a 
- - 3 1 2     

 

Here we define a function delta to describe the tendency to have non-surviving path. It is 

the difference in overall likelihood when a different decision in a particular the stage. 

The soft-output of bit 1 is evaluated by the following formula: 

Bit_value x min (delta which make bit 1 change to value other than bit_value) 

 

bit_value = 1 for bit output = 1 

  -1 for bit output = 0 

 

In bit one, the decision only changes when a state changes in stage 3. The minimum delta is 

3. Thus the soft-output of the bit one is 3. 

Repeat it for bit two (originally bit two = 0), 

 

Stag

e 
2 3 4 5     

Bit 1 X 1 1 1   
where X means cannot trace back to state 00 in 

stage 0 

Delt

a 
- 3 1 2     

 

From the above results, in bit two, the decision changes when a state changes in stage 3, 4 

and 5. The minimum delta is 1. Thus the soft-output of the bit two is -1. 

Using this algorithm, the soft-output will become 

[3 -1 1 -1 2] 
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4.3a          FEEDING DATA TO ANOTHER DECODER 

              

             

            After the soft-output is evaluated by SOVA decoder, the data will be passed 

to the second decoder for further decoding. Before passing to data to the second decoder, 

two processes are performed to the decoder output: 

 

 
the a-prior information (La2) and the systematic data (x0) are 

subtracted 

d1 3 -1 1 -1 2 

L

a2 
0 0 0 0 0 

x0 1 1 1 -1 1 

L

e1 
2 -2 0 0 1 

  

The result is multiplied by the scaling factor called channel reliability Lc. The 

reason of the factor is because the SOVA algorithm suffers a major distortion 

which is caused by over-optimistic soft outputs. The factor is used to compensate 

this distortion. 

 

Lc = mean (Le1) x 2 / var (Le1)……….eqn 26 
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4.3. b          ITERATIVE DECODING IN SOVA 

             The data from first decoder LcLe1, placed together with the systematic data 

a (xk) and code information from of second encoder (y2), are then fed into the second 

decoder for the decoding process, the decoding algorithm is the same as the first one. After 

decoding, the output of second decoder is processed in the same way and fed back to the 

first decoder. The process continues. The number of iterations depends on the designer that 

which I set. Usually, the larger the iteration, the more accurate the data but the longer the 

time its takes for decoding. Decision of Output: After iterations of decoding, the decoding 

results is the sign of the soft-output of the last decoder. Take the example, for the results of 

first decoder, the output become: 

decoder output 3 -1 1 -1 2 

Result 1 0 1 0 1 

 

Which is the same as the input bit stream u. i.e., the error can be recovered. 
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 Figure 18: Turbo code decoding scheme for SOVA 
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CHAPTER 5   SIMULATIONS RESULTS AND ANALYSIS OF PERFOMANCE        

 

 

 

             In this chapter we shall see different examples of simulations done by 

myself on the Mat lab working template by running a giving command which carries out 

the simulation in it and displays the result as an information bit after calculating a specific 

error by comparing the information sent into the system and the information gotten from 

the decoder in the presence of an Additive White Gaussian Noise(AWGN).Then a graph is 

plotted where by it is the bit error rate (BER) against bit energy to noise power spectral 

density measured in decibels. As i started up with the simulations i took note of the time to 

ensure that it was factor and I noticed how long the simulations takes even as the various 

model parameters are being changed. Below we shall see a block diagram of the parallel 

concatenated convolution as I used it 

 

 

Figure 19: The Block Diagram Of My Parallel Concatenated Convolutional Code Model 

  

For the all simulations below I used the code COMMPCCC in the MATLAB software or 

surrounding to run the model of simulation and the idea is to repeat the process till it cannot  

Correct any more errors depending on the number of iterations put in the model parameter. 

To set the model parameter I had to double click on the yellow box which says model 
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parameter then set the number of code block legnths also known as the bits to a suitable 

amount for that simulation and I would give each code block legnth below the result of the 

simulation after plotting it.An error rate is calculated by the comparison of the initail 

information and the processed and final information which has been influenced by the noise 

put into the system(AWGN).For the graph to be plotted I had to use the help of the bit error 

rate analysis tool to analyse the BER against the bit energy to noise power spectral density. 

In the bit error rate analysis tool you have to use the Monte Carlo first of to run the 

simulation and mark out the points on the graph or you could use this code that I wrote 

below inserting it into matlab and running it. Here you change the parameters by changing 

the values of the parameters manually in the code and running the simulations 

simultaneously, after you change the parameters you want for each simulation you would 

get your different results. Below you would see the code necessary for this operation and 

the parameters highlighted in red. 

 

 

%% Parallel Concatenated Convolutional Coding: Turbo Codes 

% 

% MATLAB(R) version of the Turbo coding example.  

% Refer to <html/commpccc.html> for system details. 

 

% Notice: Supply of this software does not convey a license nor imply any 

% right to use any Turbo codes patents owned by France Telecom, 

% Telediffusion de France and/or Groupe des Ecoles des Telecommunications 

% except in connection with use of the software for the purposes of design, 

% simulation and analysis. Code generated from Turbo codes technology in 

% this software is not intended and/or suitable for implementation or 

% incorporation in any commercial products. 

%  

% Please contact France Telecom for information about Turbo Codes Licensing 

% program at the following address: France Telecom R&D - PIV/TurboCodes 

% 38-40, rue du General Leclerc 92794 Issy-les-Moulineaux Cedex 9, France. 

 

%   Copyright 2010-2012 The MathWorks, Inc. 

%   $Revision: 1.1.6.5.4.1 $  $Date: 2012/12/15 20:24:59 $ 

 

%% System configuration includes Communications System Object constructions 

numIter    = 3;                  % Number of decoding iterations 

blkLength  = 6144;               % Block length 

EbNo       = [0 0.5 1 1.5 2];            % Eb/No values to loop over 



62 

 

maxNumErrs = 100;                % maximum number of errors per Eb/No value 

maxNumBlks = 2000;                % maximum number of blocks per Eb/No value 

 

% Turbo Encoder 

%   Internal Interleaver indices 

intrlvrIndices = commExamplePrivate('lteIntrlvrIndices', blkLength); 

hTEnc = comm.TurboEncoder('TrellisStructure',... 

        poly2trellis(4, [13 15], 13), 'InterleaverIndices', intrlvrIndices); 

 

% AWG Noise - with variance to be reset in the processing loop 

hAWGN = comm.AWGNChannel('NoiseMethod', 'Variance', 'Variance', 1); 

 

% Turbo Decoder 

hTDec  = comm.TurboDecoder('TrellisStructure', poly2trellis(4, [13 15], 13),... 

         'InterleaverIndices', intrlvrIndices, 'NumIterations', numIter); 

 

% BER measurement 

hBER = comm.ErrorRate('ResetInputPort',true); 

 

%% Processing loop 

ber = zeros(length(EbNo),1); numBlks = ber; numErrs = ber; 

R   = blkLength/(3*blkLength + 4*3); 

for ebNoIdx = 1:length(EbNo) 

     

    disp(['Processing EbNo = ' num2str(EbNo(ebNoIdx))]); 

    noiseVar = 1./(2*R*10.^(EbNo(ebNoIdx)/10)); 

    hAWGN.Variance = noiseVar; 

 

    while (numErrs(ebNoIdx) < maxNumErrs && numBlks(ebNoIdx) < maxNumBlks)     

        data = randi([0 1], blkLength, 1); 

        % Encode random data bits 

        yEnc = step(hTEnc, data); 

         

        % Add noise to real bipolar data 

        rData = step(hAWGN, 1-2*yEnc); 

         

        % Convert to log-likelihood ratios for decoding 

        llrData = (-2/noiseVar).*rData; 

         

        % Turbo Decode 

        decData = step(hTDec, llrData); 

 

        % Calculate errors - for the final iteration only 

        berTemp = step(hBER, data, decData, 1); 

        numErrs(ebNoIdx) = numErrs(ebNoIdx) + berTemp(2); 



63 

 

        numBlks(ebNoIdx) = numBlks(ebNoIdx) + 1;         

    end 

     

    ber(ebNoIdx) = numErrs(ebNoIdx)/(blkLength*numBlks(ebNoIdx)); 

 

end 

 

%% Display results 

figure; semilogy(EbNo, ber, '*-'); 

grid on; xlabel('E_b/N_0 (dB)'); ylabel('BER'); title('LTE Turbo-Coding');  

axis([-0.5 4.5 9e-10 1]);  

legend(['N = ' num2str(blkLength) ', ' num2str(numIter) ' iterations']); 

 

% [EOF] 
 

 

 

After I ran the simulations with BER Tool, I used the BER Figure window to plot 

individual BER data points. For me to fit a curve to a data set that contains at least four 

points, I had to select the box in the Fit column of the data viewer. The plot in the BER 

Figure window responds immediately to your choice. After that I have graphs of such 

below with their different parameters specified under them. 
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N = 2048, 10 iterations

  

Here we start with a graph of iteration 10 and range of Eb/No to be (0:0.5:2) 

And code block of 2048 bits 
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N = 2048, 6 iterations

 

This is for a 2048 code block length and for 6 iterations and a range of (0:0.25:2) for 

(Eb/No) signal to noise ratio. Here we see another graph as we reduce the iterations leaving 

the code block length same and we would have such a graph; 

 

 For 
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N = 2048, 3 iterations

 

For code block length of 2048 with a reduced iteration of 3 this one took less time for the 

simulation. Below we have another simulation graph with same axis parameters and 

different iteration of 2 but same code block length of 2048 and this was a quick simulation  
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N = 2048, 2 iterations

 

The number of iterations being 2 but same block code length. And noticing this we can see 

that the graph moves from left to right at the base meaning an increase in error as the 

iterations are being reduced. 

 

Now we are going to run other simulations using lower block code lengths such as 512 and 

48 but using the same iteration values of the above graphs being (10, 6, 3, and 2) and 

compare the graphs to notice and comment on the effects of the change in parameters 
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N = 512, 10 iterations

 

Here we see that the iteration is 10 but for a code block length of 512 bits and this 

simulation was short based on time description. The next graph is below but for the same 

code block length but different and lower iteration of 6 and we have  
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N = 512, 6 iterations

 

And as we see the end of the graph starts slowly drifting to the right once again showing the 

increase in error rate as the iteration begins to drop 
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N = 512, 3 iterations

 

Next we see the iteration of 3 for a code block length of 512 bits and the end point of the 

graph still shifts to the right therefore showing an increase in error rate as the iteration 

drops 
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N = 512, 2 iterations

 

Here we have a low iteration of 2 and number of code block length stays the same as  

512 the same result as above occurs causing it to shift to the right more 
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N = 48, 10 iterations

 

 

Here we have a code block length size of 48 bits which is very low and number of 10 

iterations 
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N = 48, 3 iterations

 

Here the iteration is as low as 3 and the code block length too is low 48 
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N = 48, 2 iterations

 

Here the iteration is 2 and the code block length size is 48. Therefore we can generally say 

that the for the same size of code block, we notice from the graph that as the iteration is 

increased the bit error rate performance to increases. To show that as the block lengths size 

is increased the bit error rate performance increases too ill show a graph of size of code 

length 6144 and iteration was 5 it is seen below  
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N = 6144, 3 iterations

  

 

 

And we can see that this bit error rate performance is really heightened as it is more to the 

left than simulations from lower block sizes and this took a long time. Therefore also 

increase in block length an iteration size increases the amount of time the simulation takes  
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CHAPTER 6               CONCLUSION  

 

 

 

             In this paper, turbo code, a very powerful error correcting coding scheme, 

which is formed by the parallel concatenation of two recursive non-systematic 

convolutional codes, is presented. The conclusions drawn from the work carried out: The 

simulation results clearly depicts that the code has the capability of reaching very low bit 

error rates at even small signal to noise ratios with an increase in the iterations. The main 

objective of increasing the iterative process or number of iterations is to further reduce bit 

errors. However, the evaluation of the number of iterations necessary for optimal results has 

proven to be a difficult task. In general, the increase in iterations improve performance, 

however, it is based on the channel conditions and the size of the input frame or block 

lengths. From the simulation results we observed that for a fixed turbo encoder the 

performance of the decoder improves as the data frame size is increased. This implies that 

the data frame size or size of block length is also an important factor in the performance of 

parallel concatenated convolutional codes: turbo codes and as the size of block length is 

increased the code gives better performance, which on the other hand is not the case with 

the conventional Viterbi decoder. Note also that the increase in block lengths gives a better 

performance at the expense of a quicker simulation and from the plots of simulation viewed 

we see that the error reduces as a single graph tends to go to the left. Although interleaver 

design is crucial in the performance of the turbo code, unfortunately there is no analytical 

closed form expression that describe which interleaver design will perform better than the 

other one and minimum distance and its multiplicity of turbo codes are used to estimate the 

error performance in high SNR region. The factor of iterations also become irrelevant at a 

point such that the error calculation tends to zero, meaning the error in the information bits 

Is corrected to a point that there is no more error so other iterations after this point produce 

no effect or result what so ever. Also note that there are specifications for the block length 

size when inputting your desired parameters and this data must be inserted accurately for 

good error correction or good simulation to be induced. 
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             The turbo codes in this paper is used largely in the world now and is 

speedily on the rise we can see it in wireless communication (mobile phones), satellite and 

deep space communication, LTE (4th generation wireless communication) WI-max and a lot 

of other advanced technological areas and it is has been seen as very important technology 

for advanced technologies and future works.  
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