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ABSTRACT

The thesis deals with the numerical solutionsof various forms ofnonlinear Riccati
Differential Equation. In doing that, several different numerical methods are used and for
each numerical method a nonlinear Riccati Differential Equation was used as an illustrative
example.The work provides an opportunity to judge and compare the adequacy of the
numerical methods compared with the available close form solutions. The use of excel
worksheet provides an easy way for implementing the numerical algorithms and also an
easy and interactive way to see the effect of the step sizel graphically and immediately.

In each case a graphical representation for both exact and numerical solutions are
presented and the results compare very well for majority of the cases without any need for

finer step size @.

Keywords: Riccati differential equation; Runge-Kutta method; absolute and % Relative

errors; graphical figure representations.



OZET

Bu tez dogrusal olmayan Riccati tirev denkleminin gesitli yonlerinin sayisal ¢ozimleriyle
ilgilenmektedir. Bunu yaparken bircok farkli sayisal metodlar kullaniimistir ve her bir
sayisal metod i¢in dogrusal olmayan Riccati tiirev denklemi, tanimlayici bir érnek olarak
kullanilmistir. Calisma en yakin c¢ézimleriyle karsilastiriimis yeterli sayisal metodlari
yargilamak ve Kkarsilastirmak icin olanak saglar. Excel sayfasinin kullanimi sayisal
algoritmalari uygulamaya koyarak kolay bir yon saglamistir ve ayrica grafiksel ve hizli bir

sekilde basamak degerinin etkisini gérmek icin kolay ve interktif bir yon olmustur.

Her bir bulguda dogru ve sayisal ¢ozimler icin grafiksel gosterimler uygulanmistir ve

sonuclar bulgular detayli bir basamak degeri kullanmaya gerek kalmadan karsilastirmistir.

Anahtar sozcikler:Riccati tirev denklemi, Runge-Kutta metodu, mutlak ve yizdelik

oransal hatalar, grafiksel gosterimler.
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CHPTER 1

INTRODUCTION

This thesis investigates an interesting type of Ordinary Differential Equations (ODES)
known as Riccati Differential Equations (RDE). The general form of the RDE together

with its initial condition make a Riccati Initial value problem (RIVVP) which is represented

by

YV=ptytrqty+rt , yitg =¥, bstsiby, (1.1)
, to refers to the initial value of t, ¢, = t, + i@landt,,, = t,+ @, Bis the step size.

Provided thatp t % 0 , where p, g, r are continuous functions [1], [4], [11], [14]. This
equation is nonlinear first order differential equation because it containsy“anddy/dt. In
fact that, to solve the Riccati differential equation by using someknown numerical methods
that are used for solving Initial VValue Problems (IVP) to identify the approximate solution
[14], after that | will compare its solution to the exact solution so that we will judge the
performance of these methods and judge them accordingly. This way we may gain the
experience of judging which method is more suitable for any particular I\VP.

It is known that most of the RDEs do not have the exact solution [21], that is, general
solution cannot be obtained by the classical methods of solving ODEs or by direct
integration using the elementary calculus or functionmanipulations [22]. However, general
solutions may be obtained for some forms of RDE by knowing/guessing a particular
solution first and hoping that this leads to a general solution [1], [2], [6], [11], and [12].
With the recent advancement in computer hardware and software developments, it is more
efficient to seek numerical approximations to the solutions of 1\VP than going through hard
working and tedious manipulations [28]. In fact this piece of work demonstrates exactly
that. This is particularly so if Excel Spread Sheet is utilized as we can see later in the
following chapters. One important point about Excel Sheet is that it is available almost in
every desk/laptop and even in many smart mobile phones. | hope that the reader will
appreciate what | mean they finish reading this thesis. The actual work starts in chapter two
and onwards, with using the well-known classical numerical methods to bring the greatest
and most appropriate methods to the reader in a simple and interesting way.

1



In the chapters that follow, numerical methods used here include. Euler’s Method [3], [5],
[7], [8], [10], [15], [16], [18], [19], Taylor’s Method [3], [17], Runge-Kutta-Method [17],
Runge-Kutta-Fehlberg Method [3], Runge-Kutta-Verner Method [3], and Adams-
Bashforth Explicit Method [3]. In all the methods mentioned above, the absolute and the
relative error between the numerical and the close form solutions are presented for the sake

of comparison.

1.1 Literature Review

The Riccati Differential Equation (RDE), named after the Italian mathematician and
nobleman Jacopo Francesco Riccati (1676-1754) [26]. One way to solve a RDE, need to
have a particular solution. If we don't have at least one particular solution, then it cannot be
possible to determine the general solution or no chance to solve such differential equation
exactly [27]. Anequation (1.1) may be possible to take the integration by using some
methods like the linear or separable variables, or it may have coefficients that are
homogenous and of the same degree. If the RDE is not considered in the case of
elementary function then we cannot find the integration by using the mentioned methods,
may be solve by power series.Sometimes possible to determine a solution of a RDE by
trail, such as v = at? ,or v = ae™ , with unspecified constants @ and b . If the integral can
be achieved then the general solution is available from it [1].Another work that we have
seen over RDE is solved by a succession for two substitutions provided that we have the
particular solution y,of the given equation, normally by obtaining ¥ = ¥, + u then we can
reduce Riccati’s Equation into a Bernoulli equation and then reduce to the linear equation
by usingw = u~*, the reduction can be fulfilled provided that the particular solution is
known [2]. Assume that some of the particular solution of the equation (1.1) is known then
the general solution can be found by using substitution ¥ = ¥, t + 1/u(t), after that we
must verify that u t satisfies the linear equationu’ = - g+ 2py, u- p. Observe that
u t will include a unique arbitrary constant [11]. Another way for solving RDE is to
assume that u t is a solution of equation (1.1) then we can use substitution ¥ = u+ 1/v
in order to reduce the (1.1) into the linear equation in v [12].In actually we have seen some
works that a number of mathematicians have studied RDE, involving several of the

Bernoulli, Riccati himself, and his son Vincenzo. At the end of 1723, it was known that



equation (1.1) cannot be solved in the case of elementary functions, after that, Euler stated
that if the particular solution of (1.1) is known then by using the substitution v = u + 1/v,
converts the RDE in to the linear Differential Equation in v, and then we can get the
general solution, he also said that, if the two particular solutions are available then the
general solution is considerable in case of simple quadrature [6]. There are some works in
the literature on the RDE that we have seen throughout investigation of this research, they
are tried to determine the approximate solution to the fractional Riccati differential
equation [21]. Another work for solving RDE is generalized Chebyshev wavelet
operational matrix, in fact that used operational matrix with collocation points converts the
fractional order RDE into a system of algebraic equations, also presented the accuracy and
efficiency of the method computed by numerical examples [4]. Also in another paper
thatthe author studied the general RDE by using the iterative decomposition method, the
given equation includes one with variable coefficient and one in matrix form, constructed
the consideration of comparison between the decomposition method and some existing
methods, observe that the solution by computing some numerical examples [20]. Finally
we can state that probably there are more works on the numerical solution of the Riccati
Differential Equations but maybe, it is impossible to consult all the available research and

that would be beyond the scope of this dissertation.

1.2 purpose

Our purpose here is to present a variety of numerical solutions to the RDE using Excel
spread sheet and compare the result in each case with available close form solutions. A
graphical representation is used to illustrate the comparison of each numerical solution
with the exact solution, in fact, in most of the cases, the numerical and close form solutions

compare very well.



CHAPTER 2

NUMERICAL METHODS

Numerical methods have been developed to provide an approximate solutions to ODEs that
have no analytical solutions which is the case in most real life applications or as an easy
alternative method for problems with complicated algebraic and/or functional
manipulations. Often, even in these situations one still needs to seek some computer soft
wares that are capable of algebraic and functional manipulations. This is particularly truein
the caseof RiccatiDifferential Equation [23]. So if we cannot solve RIVP or any other
differential equation analytically, then we must rise to seek another method for solving
them approximately [7]. If the RDE has no solution exactly then we are going to use the
numerical methods to find approximate solution. It is clear that if it has the actual solution
then it is not necessary to evaluate the numerical solutions for ODEs [25]. Also in actually
if we have the differential equation together with an initial condition then we can constitute
the initial value problem or sometimes it can be written briefly as IVP, in our case because
we are interested in the RDE then we can consider as an Riccati InitialVValue Problem
RIVP.

2.1 Euler’s Method

Euler’s method is a common and basic method for solvinglVVPs but it is not very precise
and also it is not very accurate numerical method, but it is mostly used forpresenting many
ideas that are contained in the numerical methods for solving the initial value problems
[19]. In this case,we will show how to apply Euler’s Methodto a form of RDE that
represents Riccati Initial Value Problem (RIVP). Next we apply Euler's Method to RIVPas
an example and use Excel to implement the method and use its graphical facility to present

the results.



2.1.1 Algorithm and Truncation Error of Euler’s Method

Since the general form of the ordinary differential equation with initial condition has the
form;

_}"II = f t,}' ) t|_-_| <t< tl) }' t|_-_| = }'[] (2111)
And also the general form of the RDE given as;

[

}'=pt}'2+qt}'+rt, tns t< I--L, }"tn = ¥ (2112)

We can see that the left hand side of the Riccati Differential Equation (2.1.1.2) with the left
hand side of the equation (2.1.1.1) are equal, this means that the right hand sides are equal.
Since in the point (t;,, ¥(t,)) and let t,,4 = t, + @ then the general form of the Euler’s
method was given as follow;

Yier= W+ Bf £, ¥, (2.1.1.3)

This formula can be obtained from Taylor’s series when n = 1, the benefit of this formula
is need not to take the differentiation for the function f [30].
Then we can substitute the right hand side of the RDE in the equation (2.1.1.3), this yields;

Vi =N+ Bptyi+qty+rt (2.1.1.4)

Since t;,4 = t;+ @,thenputi = 0,1,2, ..., Nto get

top1 =g+ A=ty = ta= ty + = t3= t;+ @ andsoon,

Now we can consider the algorithm of Euler’s formula over the RDE for 10 steps as
follows;

Yig+ B =yty +Bpty Wt))*+qgtyyty +1(tg)},

Yo+ B =yt +8pt ()P gty + Tt}

Y+ B =yt +Bpt; Wt))P+qtzyty +1(ts)}),

Vig+ =Yty + B{pty (Vta))*+ gt ¥ty + 7(t)}
2

Truncation Error = ?}'” & , < E< t)+ (2.1.1.5)



The above relation is obtained by taking the first and second terms from the Taylor’s series
Zz
and truncating the third term involving %y” ¢ [5], [7], and [19]. This term is known as

the truncation error.

2.1.2 Calculation of Absolute and Relative Percentage of Errors

The absolute error is computed by the form|y(t,) - w;|, where the y(t,) value denote the
exact solution and w; value denote to the approximation solution at t = t;, as we can see in
the formulation of absolute error, It is the absolute value of the difference between the
approximate solution and the exact solution [3], [9].

Another formula for measuring the error is the percentage relative error which is calculated
by this formula

% RelativeError = M 100 (21.2)
¥(t)
Hopefully, if the error is small it indicate that the method used to determine the

approximation solution is very good the results are near to the actual solution [9].

2.1.3 Error Bounds for Euler’s Method.

A detailed analysis of the error bound for Euler's method is given in [1], however, only an
outline of the analysis will be given here to help the reader to compute the error bound

when they wish doing so. The actual error bound is given by:

?

M
lv &, —wy < ol

el tia — 1 (2.1.3)

Where: |¥(t;,) — w; | represents the error between Numerical and exact solution.Mis a
constant satisfies |¥"(t)| < M, forallt (a,b).

L is the Lipschitz constant and h is the step size.

It is generally accepted that, the smaller the step size h, the better the accuracy. But we
have to be careful with this. There is a limit for, how small h should be to obtain the best
solution. If we take a step size smaller than this limit we may get less accurate solution [1].

The other problem with small step size is more computation and more round of errors.



2.1.4 Application of Euler’s Formula by Using Microsoft Office Excel
(MOE) over the RDEs

If the step size @ = 0.1and lett; = O, then we can consider the algorithm of Euler’s
Method by using Excelas the following constraint steps:
i. Devote the first column to count the iteration numbers starting fromi =
0,12..,10.
ii.  Dedicate the second column to put the value of step size [.
iii.  Assign the third column to adding the initial variable tywith the step size @in order
to make the new variablest,, t-, ..., t;;.
iv.  Devoted the forth column to the exact solution.
v.  Fifth column assigned to obtaining the Euler’s formula beside the column of the
exact solution to ease the comparison.

vi.  Compute the f(t,, w;)in the possible column of excel sheet.

The following table illustrates all the steps above and to see more detail of the implementations see
(Appendix A).

Table 2.1: Illustration of the exact solution and Euler’s Method by Excel.

Iteration t, Exact Solution Euler's Methodw, f(t,wy)
0 0.1 L Inter the exact Wo= Yo f (to, Wo)
1 01 | ty=ty+ solution in the | Wi = Wo+ B{f(to,wg)} | J(t;, W)
2 0.1 | tz= ¢+ firstcelland | Wz = Wy + B{f(ty,wy)} | f(tz W)
3 01 | t3=t;+ thendragto | Wa= wa+ B{f(tz,wz)} | [f(t3Ws)
4 01 | ty=ty+ down with Wy = Wy + B{f(t5,wa)} | [t W)
5 01 | t5=t,+ respecttothe | wys = wy+ B{f(t;, wq)} | JF(ts ws)
6 0.1 | ty= ts+ desired We = We + B{f(ts,we)} | f(ts We)
7 01 | to;=tg+ interval to wo = We + B{f(ts, W)} | SF(t5,ws)
8 01 | tg=t;+ compare With | v = w. + B{f(t;, w;)} | f(tg ws)
9 01 | ty= tg+ @ | thenumerical |y, "=y s BUF(ts W)} | f(ts, Wo)
10 | 01 | b= to+ solution. 4y "=y + B{f (ta, Wa)} | f(Erg, W)




Example [1]: (Form 1 of RIVP)
Use Euler's Method to determine the approximate solutions of the following RIVP

And compare it with the actual solution given as ¥ = (3 + 3t — t%)/(3t - t%).
Solution: we recognized the given differential equation is the Riccati differential equation.
Now we are ready to allying the equation (2.1.1.4) and then see the table (2.2) and figure

(2.1) to realize how to create the tabulations and figures using Microsoft Excel.

Table 2.2: Illustration of the exact solution and Euler’s Method.

Exact Euler’s Absolute % Relative
£y Solution Method .y ) Error Error
01| 1 2.500000 2.500000 -0.750000 0.000000 0.00
0.1 | 1.1 | 2.435407 2.425000 -0.560284 0.010407 0.43
0.1 | 1.2 | 2.388889 2.368972 -0.407536 0.019917 0.83
0.1 | 1.3 | 2.357466 2.328218 -0.279249 0.029248 1.24
0.1 | 14| 2.339286 2.300293 -0.166799 0.038993 1.67
0.1 | 15| 2.333333 2.283613 -0.063822 0.049720 2.13
0.1 | 16| 2.339286 2.277231 0.034780 0.062055 2.65
0.1 | 1.7 | 2.357466 2.280709 0.133499 0.076757 3.26
0.1 | 1.8 | 2.388889 2.294059 0.236745 0.094830 3.97
0.1 | 1.9 | 2.435407 2.317733 0.349334 0.117673 4.83
01| 2 2.500000 2.352667 0.477041 0.147333 5.89

Exact Solution Euler's Method
2,550000
2,500000
., 2:450000
é 2,400000
>
2,350000
2,300000
2,250000
0 0,5 1 15 2 2,5
T-axis

Figure 2.1:Euler’s Methodand exact solution when @ = 0.1.
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Calculation for Truncation Error in Euler’s Method

In this case computed TE of Euler’s method by using equation (2.1.1.5), also in the table

(2.2.1) illustrated the computation which is presented in the below;

Table 2.2.1: lllustration of Truncation Error of Euler’s Method.

t Euler’s Method (w) y' y” Truncation Error
0.1 1 2.50000 -0.75000 2.25000 0.01125
0.1 11 2.42500 -0.56028 1.77726 0.00889
0.1 1.2 2.36897 -0.40754 1.46477 0.00732
0.1 1.3 2.32822 -0.27925 1.25966 0.00630
0.1 14 2.30029 -0.16680 1.13134 0.00566
0.1 1.5 2.28361 -0.06382 1.06224 0.00531
0.1 1.6 2.27723 0.03478 1.04321 0.00522
0.1 1.7 2.28071 0.13350 1.07119 0.00536
0.1 1.8 2.29406 0.23675 1.14848 0.00574
0.1 1.9 2.31773 0.34933 1.28298 0.00641
0.1 2 2.35267 0.47704 1.48985 0.00745




2.2 Taylor’s Method

In the previous section, we introducedan illustration of Euler’s method applied to a form of
RDE.As it is expected the Euler's method produced a poor approximation compared with
the exact solution Figure 2.1.Next, Taylor's method is presented to solve an RDE. This
method is based on Taylor's series truncated at n™ term leaving the (n+ 1) *term and
onwards as the error terms by which we judge the accuracy of the method. Since the first
of these terms namely (1 + 1) *is the largest of the error terms it is used to judge the size
of the error in the approximation and it is called the truncation error. The decision of how
many terms should be included in the approximation and where to truncate the Taylor
Series is a matter of striking a balance between the accuracy required and the availability
of real and computer time [23]. In the following sections we present two approximations
based on Taylor’s series [25], they are Taylor's approximation of order two and of order
four.

A Riccati differential equationy't = pt ¥*+ gt y+rt with the initial
conditiony t; = ¥, can be formulated and used to demonstrate the Taylor's method for
approximating the solution of IVP.WE will attempt to establish a good procedure for the
implementation in Excel program. Depending on the order of the Taylor’s method we
select, it is required to computey’(t), ¥'(t), ¥""'(t) .... as necessary.Great accuracy can be
achieved by using higher order Taylor methods but this may be on the account of some
laborious and tedious algebraic manipulations involving higher derivatives of f (&, w;)
[24]. Therefore, one should strike balance between the need for the accuracy and the
demand for real and computational time when choosing a numerical approximation.

Next we look in to the Taylor’s approximation of order two;

The general Taylor approximation of order n[3], [8] is given by

Wi = wy+ T ™ (t,w,) ,Foreachi=0.1,.. N- 1
Where

2 il 1

?
T™ t,wy = f t,w, +§f" Ly, W +§f” bWy + oot

=Y 71 t,wy

In fact that if the initial condition is known and the derivatives of f(t,, w,) ata pointt = t;
is defined we can compute the solution to the RDE at any selection of the value t [7], a
detailed procedure on how to implement the Taylors method in an easy to follow bullet

10



point steps and tabulations followed by graphical presentation of the approximations
compared with the available exact solutions.

2.2.1 Algorithm and Truncation Error of Taylor’s Method of Order-Two

The Riccati deferential equation in the form of the initial value problem is
Y=fty =pty*+qty+trt ¥ty = ¥

In the interval tg, b ;

Select the stepsize = (b— ty)/ N .t = t; + , 1=012,.....N-1

Use the following second —order Taylor series method formulas;

Wi = W+ BT 2 £, w,

(2.2.1.1)
TG t,wy = f t,w + Ef" Ly, Wy
z?!
Truncation Error = ay’” ¢ , <<t +0(221.2)

Which is taken from the general Taylor series expansion [3], [7]. In this formula contain an
initial point or initial condition which is consist ofy t; , also we have ¥’ t; which is take
to the Riccati differential equation which is denoted by RDE, it clear that each of the initial
condition with the Riccati differential equation are make the initial value problem which is
denoted by IVP, and also contain ¥ t; we are necessary to take a derivative for RDE.
For explain this type of approximation, by bring the following example we can give the
more illustration about it.

Since it is known that taking the derivatives to general RDE may be seldom or it tis the
hard work because the Riccati differential equation is nonlinear. Consequently, we should
be make the derivatives and construct the algorithm over the specific example. (See

Appendix B.1) to understand the desired method.

11



2.2.1.1 Application of an Order Two Taylor’s MethodtoRDE Using

Microsoft Office Excel

Assuming a step size @= 0.1, we summarize the procedure of the algorithm by the

following steps.

i.  Repeat the first and second steps of section (2.1.3).

ii.  Assign the first column to adding the initial variable tywith the step size @in order

to make the new independent variablety, t, ...

vt]l’l'

iii.  In the second column calculate the numerical approximation w; to ¥; according to

Taylor’s Method of order two.In the next column calculate the exact solution y; for

comparison purpose.

iv.  Third and fourth columns devoted to the f t, v t;

f'(t, v t,) respectively.

Last column is used to evaluate T t,, w;, = f t,w, + Ej’ t,w .

Table 2.3: A tabulated illustration of Taylor’s Method for order two by using

Excel.
Tylor's .

t, Method (order 2) f(t,wy) fitawy) | T2 (t,w)

Ly Wy [t wy) I (tg, wo) T to,wg
t, = to+ wy = wot BT 2 tgwy | f(Ewy) | f(tawy) | TO t,w,
t,= 1 + wy= wy+ BT 2 t,w [tz wy) I'(tz,ws) TG t;w,
by = &+ Wy = wy+ BT 2ty w, [tz ws) I'(t3,wa) TG t3,wy
ty=ty+ W= Wa+ BT % t3wy J(ts, wy) I(tq,wy) T ty,w,
b= b+ We= Wyt BT 2 tow, | f(tsws) | f(tsws) | T@ tgwg
b = by + We= Ws+ BT 2 to,ws | f(teaWe) | f(taWe) | TO tew,
By = B+ Wo= Wet+ BT 2 towg | ftnwy) | F(tnwy) | TO t,w,
tg =t + W= Wo+ BT 2t wy f(tg, wg) I (ts, wa) T tg wy
ty = tg+ Wy = Wa+ BT 2 tg wy f(tg, wa) J'(tg, wa) T tg,wy
tig = tg+ Wyo = Wo + BT 2 to,wy | f(tig.Wig) | ['(tigWig) | T® ty,wyg

12




An example [11]:

Determine the approximate solution of the given IVRP using Taylor’s Method of order two
y'=y*-2ty+t*+1 , y0=-, 0sts<1

When the actual solution is given by: v= t+ 1/(2 - t).

Solution:
We recognize that the given differential equation is the Initial Value Riccati Problem.
Now we are ready to apply the equation (2.2.1.1) and then see the table (2.4) and figure

(2.2) to see how to construct the tabulations and figures by Microsoft office excel.

Table 2.4: lllustration the tabulation of Taylor’s Method for order two.

Tylor's
fy | ECSOMON | Method ) | £, ye) | £(6y 8) | T2 (Y &)

(order2)
0.1 0 0.500000 0.500000 1.250000 0.250000 1.262500
0.1 0.1 0.626316 0.626250 1.276939 0.293478 1.291613
0.1 0.2 0.755556 0.755411 1.308482 0.358668 1.326415
0.1 0.3 0.888235 0.888053 1.345806 0.460705 1.368841
0.1 04 1.025000 1.024937 1.390546 0.616133 1.421353
0.1 05 1.166667 1.167072 1.444985 0.843675 1.487169
0.1 0.6 1.314286 1.315789 1.512354 1.165475 1.570628
0.1 0.7 1.469231 1.472852 1.597300 1.609249 1.677763
0.1 0.8 1.633333 1.640628 1.706656 2.212069 1.817259
0.1 0.9 1.809091 1.822354 1.850737 3.027362 2.002105
0.1 1 2.000000 2.022565 2.045638 4.138466 2.252562
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—e—Exact Solution Taylor's Method (order 2)
2,500000

2,000000
2,000000 1.809091 5 023505
1,633333
! 1,822354
1,469231 /
1,314286 1,640628
500000 1,166667 ~/ 1,472852
2 1,025000 : 1,315789
Ni 0,888235
1,167072
1.000000 0,755556
0,626316 1,024937
0,500000 0888053
0,755411
0,500000 0 E2670
0,500000
0,000000
0 0.2 0.4 0,6 0.8 1 1,2

T-axis

Figure 2.2:Taylor’s Method of order twoand exact solution when @ = 0.1.

It is clear from the figure that there is a very good agreement between the numerical and

the exact solutions. This is better than our expectations for the following reasons. Firstly

the method is not of higher order, hence we do not expect an accurate solution, and

secondly the step size is not small. Therefore, for any reason, if we seek to improve the

approximation further, we can either choose a higher order method or use a finer step

size [
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2.2.2 Taylor’s Method of Order Four

One of the ways to improve the accuracy of the approximation of the numerical method is
to go for higher order Taylor approximation. In this case we chose a fourth order Taylor’s
series expansion,Of course this demands more effort, real and computingtime. A Taylor
method of order four [23], [25] will have the form:

Wieq = W+ BT ? t,w, (22.21)
2 513
T t,wy = f t,wy + Ef t,w + af” tpwy ++ 1" t,w

With the truncation error

v (&) 5
5 O

Error = wlent; < & <t (2.2.2.2)

The truncation error can be used as an indication to the accuracy of the method prior to the
implementation of the method [15], [30]. A detailed procedure of implementing the
method in a tabulated form is presented and a graphical representation of the numerical and

the close form results are presented for comparison.

2.2.2.1 Application of an Order Four Taylor’s method to RIVP Using
Microsoft Office Excel

Again assuming 2= 0.1 and t; = Oand in a procedure similar to that of section (2.2.1.1)

we can summarize the algorithm of Taylor’s Method of order four, noting that, here we

need additional derivativesf"'andf'''to compute a fourth order Taylor approximation (See
Appendix B.2).
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Table 2.5: Comparison of the exact and 4" order Taylor’s Solution

) . Tylor's
Iteration t Exact Solution
Method (order 4)
0 0.1 ty Wy

1 0.1 ty = ty+ Inter the exact wy = wot BT 4t wy

2 0.1 t,= t, + solution in the Wy = wy+ BT 4 £, w,

3 01 ty= t,+ first cell and then Wa= W+ OT % £, W,
drag to down

4 01 | ty=ta+ g Wy = Wa+ BT * to Wy
with respect to

5 0.1 te = £, + _ We = Wy+ BT % t,w,

the desired

6 0.1 te=ts+ 0O , We= wg+ BT * to,w

v interval to 8~ e » 8

= . = = ? 4 . .

! 0.1 b= te* compare with the Wy = We+ BT 7 L6 We

8 01 tH = t?+ numerlcal WB = W?+ T 4 t?, W-;

9 0.1 tg = tg+ solution. Wy = Wyt BT %t wy

10 0.1 tig=tg+ Wig= Wo+ BT * tg,wy

Table 2.5.1: Illustration of coefficientsf, f*, f'', and f""'related to the table

2.5.
Sty wy) f(t, wy) f(t, wy) £t wy) T*(tyy t)
f(tg, wp) f'(to, W) I (to, wo) I (tg, wp) T to,wy
f(ty,wy) F(ty,wy) I (t,wy) J(E, wy) T ty,w
f(tz,w3) f'(tz,ws) J"(tz wa) J(tz, wa) T tw,
f(t3,w3) f'(t3,ws) I (3, ws3) J(t5, W) T* t;w,
f(ts,wy) f'(tg, wy) I (g, W) f (g wy) Tty w,
f(ts, ws) f'(ts, ws) f"(ts, ws) [ (ts, we) T* tswg
f(tg, We) f'(ts we) I (ts We) [ (te We) T* tewg
f(ty, wy) f'(tz, wy) [ (t7,w5) f(ts, W) T t;w,
f(tg, wg) f'(tg, wg) I (g wg) J" (tg, wg) T tgwy
f(tg, ws) f'(tg, ws) I (g, wo) J (tg, ws) T tg,wy
f(tioWig) | f'(ti0, Wio) J"(t10, Wig) J(E0, Wig) T tig,wig
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An example [11]:

Determine the approximate solutions by Taylor’s Method of order four for the following

initial value problem

y“=y2-£--l~
t t2

When the actual solution is given as

yit

2t

3-t?

1
+ —
t

,¥ 05 = 2.36364for 05<t< 15

Solution: we recognize the given differential equation is the Riccati differential equation.

Now we are ready to apply the equation (2.2.2.1) to the problem and then see the results in

table (2.6) and figure (2.3) to judge the approximation against the exact solution.

Table 2.6: illustration of Tylor’s Method of order four and Exact solution

when @= 0.1
ty i . f(tawy) | fi(Eawy) | fU@Ew) | (W) T
(exact) | (Taylor)

05 236364 2.36364 -3.14050 16.88956 -93.15429  776.02091 -2.41894
0.6 212121 212174 -1.81222 10.48321 -42.42832  321.25278 -1.34539
0.7 198634 1.98720 -0.93070 7.51701 -19.50609 163.12418 -0.58056
0.8 192797 1.92915 -0.25233 6.26240  -6.51118 107.34904  0.05441
0.9 193303 1.93459 0.35852  6.12069 3.57110 101.07003  0.67472
1 2.00000 2.00206 1.00618 7.02476  15.13626  138.92983  1.38844
11 213814 214090 1.81075 9.37910  33.86855  254.89504  2.34677
1.2 237179 237558 2.96929 1444027 72.68880  578.33880  3.83655
1.3 2.75396 2.75924 4.89917 25.81036 171.76864 1619.16498 6.54344
14 340659 3.41358 8.70405 55.67720 496.70020 6019.94789 12.5665
15 4.66667 4.67024 18.25317 160.9926 2075.0475 35821.2171 31.2537
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—#- Actual Solution e Taylor's Method (order 4)
5,00000 pp—
3,40659
¢
4,50000 |
2,75396
4,00000 1,92797 1,93303 " 2,00000
it 4,67024
350000 198634 , P
2,12121 2,13814 R -
3,00000
2,36364
$ 2,50000 /27504
> P _ﬁ
w o
200000 P 2,37558
1,50000 2,14090
2,00206
1,00000
2,36364 212174 93450
0,50000 1,98720  1,92915
0,00000
0 0,5 1 15 5
T-axis

Figure 2.3: Taylor’s Method of order four and exact solution when h = 0.1.

Again as the figure shows the exact and the numerical solutions compare very well with an

absolute error around 7%.
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2.3 Runge-Kutta Method

In the earlier sections, we have given some illustrations about the Euler’s method, the
improved Euler method and the Taylor’s method and used all these methods to find the

approximate solution of the RDE in the form of an initial value problem

V=pty*+qty+rt, Yty = ¥ (2.3)

In using the above methods we have come across some difficulties that we highlight here
and because of these difficulties we begin to think of exploring better and more efficient
methods. To summarize the difficulties;

1. The Euler’s method is not a good method because it is not accuracy method when
we compare it to the other methods and the Euler’s formula is cheap on computer
timewhen applied to RDE; so if you need to achieve more accurate solution then
you will need to take the smaller step size.However, it may be impossible to
achieve that every time [7].

2. The Taylor’s method involvessome tedious differentiation, which can be difficult to
implement. Depending on the form of RDE this can be hard work and may be
impossible. [7], [13].

Because of the above reasons, we will explore another class of methods for solving
IVPsknown as Runge-Kutta (R.K)methods [25]. These methods produce very good results
almost all the time and they are reasonably easy to implement, furthermore, they do not
require very small step size & [17], therefore they are regarded to be the most popular

methods for solving I\VPs.

2.3.1 Runge-Kutta Method of Order Two or Improved Euler Method

For solving the initial value problem by using the Runge-Kutte method of order two, we

can use the following formula

ky = BF(t;, )
ky = Bf(t, + O,y + Bk;)

1
Y= Mt > ky + kg (23.1)
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Also the above formulas are known by motivated Euler’s method. This is the simplest of
(R.K) class of methods. Before we begin to explore the higher order of these methods [5],

[71, [8], [17], [18], weusean R.K of order two and apply the method to approximate the
solution of RDE.

2.3.1.1 Application of RK-Method ofOrder Two to RDEs Using Excel

Let @ = 0.1 then to apply this method we must perform the following steps.

i.  Generate the time sequence, t, ty,ts, ..., ;4. By adding the increment value
to the initial variablet;,.
ii.  Evaluate the coefficient k, = Bf(t; w;) in one of the Excel columns.
iii.  Evaluate the coefficient k; = Bf (t, + B, w, + Bk,) in another Excel column.

iv.  Evaluate the numerical values w; of RK-Method of order two w;,, = w; +
1
w kl + -{Cz .

v.  Calculate the exact solution for comparison.

See Appendix C.1 in order to understand the illustrations.
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Table 2.7: illustration of RK- Method for order two.

Runge-Kutte method (order 2).

L, s = W!+% kt+ ,!'.,:2 k, = f(t!, W) ks = f(t!+ @, wy + Rt)
ty Wy = ¥ ky = Bf (tg, wy) ks = Bf (tg + B, wy+ Bk,)
ty Wy = Wyt % ki + ks ky = Bf(ty, wy) ks = Bf(t, + 8w, + Bk,)
B | = +% ko + ke, k= Bf(tpwy) | ko= Bf(Es+ Bw,+ Oky)
ts | wys WZ+% ke + k, ky = Bf(tsws) | ky = Bf(ts+ Bws+ Bky)
| we= wﬂg ke + K, ke = Bf(taws) | ko= EF(ts+ Bw, + Oky)
te | wes .,-.,-4+% ko + ke, ky = Bf(tawe) | ky= Bf(ts+ Bws+ Bk,)
te | we= w_,;+% ke + K, ky = Bf(towe) | ky = Bf(te+ Bwe+ Bky)
t, | w,= wﬁ+% ke + ky = Bf(tnws) | Ky = BF(E,+ B,wy+ Bk,)
ty Wy = w?+% ki + ks ky = Bf (tg, wg) ks = Bf (tg + B, wg+ Bk,)
b | wes= WB+% Ky + &, k= Bf (tows) | kg = Bf(Es + B wo + Bky)
tia Wyg = Wy + 1 ky+ ks, ky = Bf (tyg, W) | ke = Bf (o + B wy + Bky)
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An example [7]:
Approximate the solution of the given IVP by using RK-Method of order two
1

i - _¥_ .3
Y =577 )

When the actual solution given as ¥ = - 1/t.

y1=-1, 1<t<?

Solution: we recognized the given differential equation is the Riccati differential equation.
Now we are ready to apply the equation (2.3.1) as a result we can observe the table (2.8) to
compare the numerical and exact solutions. These results are also presented graphically in
figure (2.4) to indicate that how to make the tabulations and figures by Microsoft office

excel.

Table 2.8: illustration of tabulation of RK- Method for order two and exact

solution when @ = 0.1.

%

(o | oy | | k| Cpee | Relaive

Error
0.1 1 -1.000000 -1.000000  0.100000 0.091645  0.000000 0.00
01 1.1 -0.909091 -0.904178  0.083089 0.079430  0.004913 0.54
01 12 -0.833333 -0.822918  0.070302 0.069671  0.010415 1.25
01 13 -0.769231 -0.752932  0.060399 0.061738  0.016299 2.12
01 14 -0.714286 -0.691864  0.052572 0.055188  0.022422 3.14
01 15 -0.666667 -0.637984  0.046274 0.049705  0.028683 4.30
01 16 -0.625000 -0.589994  0.041128 0.045056  0.035006 5.60
01 1.7 -0.588235 -0.546902  0.036863 0.041071  0.041333 7.03
0.1 1.8 -0.555556 -0.507936  0.033283 0.037618  0.047620 8.57
01 19 -0.526316 -0.472485  0.030244 0.034599  0.053831 10.23
0.1 2 -0.500000 -0.440064  0.027638 0.031935  0.059936 11.99
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—e—Exact Solution —+—RK-Method (order 2)
0,000000
0 0,5 1 1,5 2 2,5
-0,440064
-0,200000 0472485
-0,507936
-0,546902
-0,589994
-0,400000 -0,637984
-0,691864
-0,500000
2 -0,752932
& -0,600000 -0,526316
>_ )
-0,822918 -0,555556
-0,588235
-0,800000 -0,904178
-0,625000
-0,666667
-1,000000
-0,714286
1000000 10,769231
-0,833333
-1,000000 -0,909091
-1,200000
T-axis

Figure 2.4: RK-Method of order two and exact solution when & = 0.1.

The figure shows a comparison between the numerical and the exact solutions. There is an
error of 12% at the end of the time interval. In many situations this approximation is no
acceptable. Therefore, one should either use a smaller step size h or choose a higher order

than two say R.K of order three or order four that will be discussed later.
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2.3.2 Runge-Kutta Method of Order Four:

The initial value problem has the form

y=fty ., Ytg =¥ (2.3.2.1)
And the general form of IVRP has the form

YVepxy*+tgxy+rx , ¥ty =¥,
t,=t+B , i20 (23.2.2)

Then one can apply an R.K method of order four directly. The order four R.K method we
use here has the form [3], [7], [8], [15], [16], [17], [18], [19], [25], [30].

e N
ky=Bf t, ¥

ky= Bf t,+ ~By+ —k
2~ b ] E'! i E 1
< > (23.23)

1 1
ks=Bf t+ El}’e‘" Ekz

\_ ky= Bf(t+ By + k) Yy,

1
Wit = W+ 5(.#51 + 2k; + 2k, + k) (23.2.4)
2.3.2.1 Application of Order Four RK-Method to RDE Using Excel
Let® = 0.1, then to apply this method we must perform the following steps;
i.  Repeat the first and second steps of section (2.3.1.1).

ii.  Evaluate the coefficient k;, ks, ksand k, as considered in the table (2.3.2.1).

iii.  Atthe end, compute the numerical values for the given formula of RK-Method of

order fourw,, ; = w; + :—11 ky+ 2k, + 2k + Ky, .

For further details of RK-Method of order four see (Appendix C.2).
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Table 2.9: Illustration of RK- Method ofOrder Four.

Runge-Kutte method (order 4).

A Wiep = Wy + % ky+ 2k, + 2ky + ky k= oG
to Wy = ¥ ky = Bf (tg, wy)
t, Wy = W, + % ky+ 2k, + 2ks + kg ky = Bf (t;, wy)
ts Wy = Wy + % ky+ 2k, + 2ks+ ky ky = Bf (tz W)
ty W = Wy + % ky+ 2ky + 2ks+ kg ky = Bf (t3,w3)
ta Wa = Wa+ % ky+ 2k, + 2ks + ky ky = Bf (4, W)
Be We = Wy + % ky + 2ky + 2y + ky ky = Bf (ts, wg)
te We = We + % ky+ 2ky + 2ks+ kg ky = Bf (ts, We)
ts Wo = We + % ko + 2k + 2ky + Ky ky = Bf (t7, wy)
Eg Wg = Wy + % ky+ 2k, + 2ky+ K, ky = Bf (tg wa)
tq Wg = Wy + % ky+ 2k, + 2k + K, ky = Bf (tg, ws)
to 1 ky = BF (t0, Wyo)

l"'llﬂ: Wg'l'g kt+ 2k2+ 2!11:':!"' kq_

26




Table 2.9.1: lllustration of coefficientsks, k5, k4 related to the table 2.9.

1 1 1 1 kq = Bf(t + 8w
k, = Bf t.+§,wg+§.ﬁ:t ks = Bf t!"'zyw.!"'zkz + k)
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ke = Bf tﬂ+%,wn+%kt ks = Bf tn+%,wn+%k2 k“:f(tn+,l::)
ke=Of ta+ %’“’"Jr %kt ks= Bf ty+ %,wt+ %kz ko= Bf ";Z)
k, = Bf t2+%,wz+%kt k= Bf t2+%,wz+%k2 k“:f(tz+,l::)
k2= Of t3+%’w“+%kt ks = Bf t3+%,wg+%k2 k“:‘f(t“+’::)
ko= B ta+ %’w"-l- %kf ky= Bf t,+ %,l-b'4+ %kz ko= Bf (s ::)
kp = Bf ts+ %’WE-‘- %kf ky= Bf tg+ %,w5+ %kz ke = B (85 + ::)
k., = Bf tﬁ+%,wﬁ+%kt ks = of tﬁ+%ywﬁ+%k2 k, = f(tﬁ+,|::)
ks = Bf t?*%,“‘?"’%kt ks = Bf t?+%,w?+%k2 k“:f(t?"’,'l::)
k, = Bf tﬂ+%,l|,wg+%ﬁct ks = Bf tﬂ+%,wﬂ+%k2 k4:f(tﬂ+,|::)
k, = Bf tg+%,wq+%kt ky= Bf tg+%ng+%k2 k4=f(tg+,|:2)

1
kzz f tlﬂ+ E’wlﬂ

+§.I.:,E

1
k::g: f tlﬂ+ E’wlﬂ

+§.T.:2

k‘i = f(tlﬂ + 0, Wig

+ k)
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An example [8]:
Here we use the same equation that we have used in an order two R.K method and also we
use the same step size @ = 0.1, this way we can directly see the accuracy between an order

two an order four R.K method, the RDE equation is

o1y
ety o yreot

With the actual solution given as y = — 1/t.

Solution: we know that the given differential equation is the Riccati differential equation.
Now we are ready to apply the equation (2.3.2.4) and then see the numerical and the exact
solutions table (2.10) a graphical representation of the results are also presented in figure

(2.5) for the purpose of comparison.

Table 2.10: Illustration of RK- Method of order four and exact solution

when @ = 0.1.
h | t; | Exactsolution RK-Method [ ko ks k.,
(order 4)

01 1 -1.000000 -1.000000 0.100000 0.090929  0.090497  0.082607
0.1 1.1  -0.909091 -0.909090 0.082645 0.075770  0.075472  0.069421
01 1.2 -0.833333 -0.833332  0.069445 0.064111 0.063898  0.059156
01 13 -0.769231 -0.769229 0.059172 0.054951  0.054795 0.051010
01 14  -0.714286 -0.714283  0.051021 0.047623  0.047506  0.044437
01 15 -0.666667 -0.666664 0.044445 0.041670  0.041580  0.039057
01 16 -0.625000 -0.624997 0.039063 0.036767  0.036697  0.034598
01 1.7 -0.588235 -0.588232 0.034602 0.032681  0.032627  0.030861
0.1 1.8  -0.555556 -0.555552  0.030864 0.029241  0.029197  0.027699
01 1.9 -0.526316 -0.526312 0.027701 0.026317 0.026281  0.024998
01 2 -0.500000 -0.499996 0.025000 0.023810 0.023781  0.022675
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—e—Exact Solution —o—Runge-Kutta Method (order 4)

Y-axis

0,000000
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-0,500000
10,200000 -0,526316
-0,555556
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10,400000 5595000
-0,666667 -0,499996
oG00000 D
-0,769231 -0,555552
0800000 0833333 -0,588232
-0,624997
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-1,000000 -0,714283
-1,000000 10,769229
-0,833332
-1,000000  -0,909090
-1,200000

T-axis

Figure 2.5: RK-Method of order four and exact solution when & = 0.1.
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2.4 Runge-Kutta-Fehlberg method

Another method that is used for solving the initial value problem is the RKF-Method. The
Runge-Kutta method of order five with local truncation error given as

16 6656 28561 9 2

1351 * 128253 " 5ga30 4~ 50t g5ie (24D
, use to compute the error in a Runge-Kutta method of order four given as

25 1408 2197 1

W1 = Wt

Wis1 = Wit orekit opse kst 2102 5% (242)
Where
ky = Bf t;,w;,
1 1
kzzf t!+leE+ZRI )
3 3 9
= — [ — —
ks=0Bf t;+ 8l,wi+ 32k1+ 325:2 :
12 1932 7200 7296 | (243)
= + — + ——=k; - + —= o
ko= 0f & 13 2Wi* 51977 21972 * 2197
439 3680 845
= N - —
ks= Bf t+ Bwit oreks = 8kt ks = Zog ke
1 8 3544 1859 11
g = — - — - e —
ko= OF tixp0wim gkt 2ke - ongs st J10a™ " 20

The above formula is known as RKF-Methods [3].
Now, to see the application of the Runge-Kutta-Fehlberg method to the Riccati differential
equation visit the (Appendix D).

2.4.1 Application of R.K Fehlberg to RDE Using Excel

Let @ = 0.1 then to apply this method we must be perform the following steps;

I.  Repeat the first and second steps of section (2.3.1.1).

ii. Compute k,, ks, ks, k; ksand k.and organize their columns in a sequential
order because the computation of any ki depends on the values of the previous
key_q,.. kg

ii.  Finally, compute the approximate w; for RKF-Method of order five using (2.4.1)
and also to find RKF-Method of order four use equation (2.4.2).
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An example [1]:
Determine the approximate solutions by RKF-Method of order four and five over the

following initial value problem

! = 1+2 2+2 + y? 1-5 1<sts<?2
}l_ t t}l_}’l y _‘.!"I _2a = L =

When the actual solution givenas y = (3 + 3t — t#)/(3t - t%).

Solution: we recognized the given differential equation is the Riccati differential equation.
Now we are ready to apply the equation (2.4.1), (2.4.2) and (2.4.3) and then see the table
(2.11) and figure (2.6), (2.7) to understand that how to make the tabulations and figures by

Microsoft office excel.

Table 2.11: Illustration of RKF- Method for order four and five and exact

solution when 2 = 0.1.

[ t; Exact solution RKF (Order 4) RKF (Order5)
0 | 01 1 2.5 2.5 2.5
1101 11 2.435407 2.435407 2.435407
2 101 ] 12 2.388889 2.388889 2.388889
3 /01| 13 2.357466 2.357466 2.357466
4 1 01| 14 2.339286 2.339286 2.339286
5 ] 01 1.5 2.333333 2.333333 2.333333
6 | 01 | 16 2.339286 2.339286 2.339286
7101 17 2.357466 2.357466 2.357466
8 | 01| 18 2.388889 2.388889 2.388889
9 | 01| 19 2.435407 2.435407 2.435407
10 | 0.1 2 2.5 2.500001 2.5
Table 2.11.1: Hlustration of Coefficients related to the table (2.11).
k1 | k2 | k3 | k4 | k5 | k6
-0.075 -0.06961 -0.06694 -0.05631 -0.05489 -0.06442
-0.05494 -0.05063 -0.04846 -0.03972 -0.03853 -0.04641
-0.03858 -0.03495 -0.03311 -0.02557 -0.02453 -0.03136
-0.02457 -0.02137 -0.01972 -0.01288 -0.01191 -0.01815
-0.01196 -0.00898 -0.00743 -0.00089 4.68E-05 -0.00595

-1.2E-08 0.002914 0.004448 0.011045 0.01201 0.005925
0.011958 0.014967 0.016571 0.023586 0.024632 0.018122
0.02457 0.027843 0.029611 0.037465 0.038659 0.031326

0.03858 0.042326 0.044376 0.053618 0.055049 0.046368

0.054944 0.059441 0.061937 0.073347 0.075149 0.064364
0.075 0.08066 0.083847 0.098624 0.101007 0.086947
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Y-axis

—e—Exact Solution  —*—Runge-Kutta-Fehlberg Method (Order 4)
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244 2.435407103
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24 2.388888889
2357466131 2357466282
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2,36 233928588
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2,34 2,339285714
2,333333459 2,333333333
232
0 0,5 1 1,5 2 2.5
T-axis

Figure 2.6: RKF-Method of order fourand exact solution when & = 0.1.
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—e—Exact Solution —e—Rynge-Kutta-Fehlberg Method (Order 5)

2,52

Y-axis
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2,38 2 357466003
2 357465939
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2339285609
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2.34 2339285714
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2,32
0 0,5 1 1,5 2 2,5

T-axis

Figure 2.7: RKF-Method of order five and exact solution when @ = 0.1.
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2.5 Runge-Kutta-Verner Method

The following formula known as Runge-Kutta-Verner method.
The Runge-Kutta -Verner method for fifth-order is given by

13 2375 5 12

160 " 5oga s * 16" * gs kst

= wy +
Wis1 = Wi 164" 85

3
ﬂkﬁu

The Runge-Kutta -Verner method for sixth-order is given by

w +3k+875k+23+264k+125k+43k
Wis1 = WiT 70" ™ Soa2 ™3™ 7247 195575 7 1150277 " 616 ©
Where the coefficients consist of
k'l: Jf t!!wi y
1 1
ky = Bf ta+glwe+gk1 .
4 4 16
kf:!: f t!+1_5!wi+%kl+7_5k2!
2 5 8 5
k, = Bf ta+§|we+6k1_§k2+§k3 '
5 165 55 425 85
= — 0w, - — —k, - — —
ke = Bf t!+6l,wE 4 ky + sz 62 k3+96k4,
12 4015 11 88
ke = Bf t;+ lw£+€k1_ 8"552"'@'{53_% 4+ﬁk5 ,
k. = i 4 1 8263 N 124 643 81 N 2484
7= 4 15 ™7 15000 T 75 "2 680"~ 250" 10625

3501 300 297275 319 24068
kg = Bf t,+ B,w+ ky -

+ - +
1720 43 ¢ 52632 % 2322 % 84065
3850

¥ 267037

5

5

—

(2.5.1)

(2.5.2)

The above formulas can be used to determine the approximation solutionof the Riccati

Differential Equation [3]. In fact that six order Runge-Kutta -Verner method use for

calculating the error in a five order Runge-Kutta -Verner method. See (Appendix E).
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2.5.1 Application of RK-Verner Method TO RDE Using Excel

Let @= 0.1 (or can be choose any value of ) then to apply this method we must be

perform the following constraints;

i.  Generate the step size by adding the increment value @ to the initial variable t;in
order to make t,, ts, ..., ty.

ii. Compute k,, ki, ks, k, ks, ke ksand kgrespectively provided that for any
coefficients k;must be assign the identified column in the excel sheet.

iii.  Apply the equation (2.5.1) to achieve the RKV-Method of order five and also
Apply the equation (2.5.2) to achieve the RKV-Method of order six provided that
for any desired formula must specified the one column in the excel sheet.

iv.  Finally, sometimes putted the one column to the exact solution in order to indicate

the comparison between the actual and the numerical solutions.

Notice that because the formulas and the coefficients are too long, we tried to apply the
method over the examples to generation the tabulations by using MOE, keep your mind to

get further more the expositions about the computations (see Appendix E).

An example [1]:
Determine the approximate solutions by RKV-Method of order five and six over the
following initial value problem

2+t 2+ t- t? 4 1
t1+t2_t1+t }'I+ 1+t}’l y _}’Il:__ 1St$3

When the actual solution givenas ¥ = —1/(1 + t).

y'=-

Solution: we recognized the given differential equation is the Riccati differential equation.
Now we are ready to applying the equation (2.5.1), (2.5.2) and (2.5.3) and then see the
table (2.12) and figure (2.8) and (2.9) to understand that how to create the tabulations and

figures by Microsoft office excel.
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Table 2.12: Illustration of Runge-Kutte —Verner method of order five and six

and Exact solution when @ = 0.05.

t, Exact Solution R f;ax?)md R I?OYAZ/:%;] od
0.05 1 -0.50000 -0.50000 -0.50000
0.05 1.05 -0.48780 -0.48486 -0.48510
0.05 1.1 -0.47619 -0.47109 -0.47151
0.05 1.15 -0.46512 -0.45847 -0.45902
0.05 12 -0.45455 -0.44682 -0.44746
0.05 1.25 -0.44444 -0.43601 -0.43671
0.05 13 -0.43478 -0.42591 -0.42664
0.05 1.35 -0.42553 -0.41643 -0.41718
0.05 1.4 -0.41667 -0.40750 -0.40826
0.05 145 -0.40816 -0.39906 -0.39981
0.05 1.5 -0.40000 -0.39104 -0.39178
0.05 1.55 -0.39216 -0.38342 -0.38414
0.05 1.6 -0.38462 -0.37614 -0.37684
0.05 1.65 -0.37736 -0.36919 -0.36986
0.05 1.7 -0.37037 -0.36252 -0.36317
0.05 1.75 -0.36364 -0.35612 -0.35674
0.05 1.8 -0.35714 -0.34997 -0.35056
0.05 1.85 -0.35088 -0.34405 -0.34461
0.05 1.9 -0.34483 -0.33834 -0.33887
0.05 1.95 -0.33898 -0.33283 -0.33333
0.05 2 -0.33333 -0.32750 -0.32798
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Table 2.12.1: lllustration of Coefficients related to the table (2.12).

k1 k2 k3 k4 k5 k6 K7 k8
0.01250 -0.02459 0.01364 -0.00180 0.07778 -0.02497 0.01900 -0.02135
0.01151 -0.02263 0.01252 -0.00120 0.06919 -0.02196 0.01738 -0.01868
0.01068 -0.02077 0.01159 -0.00065 0.06183 -0.01933 0.01600 -0.01635
0.00999 -0.01903 0.01080 -0.00016 0.05548 -0.01703 0.01481 -0.01432
0.00939 -0.01740 0.01012 0.00027 0.04998 -0.01502 0.01377 -0.01254
0.00888 -0.01590 0.00953 0.00065 0.04519 -0.01325 0.01286 -0.01097
0.00843 -0.01451 0.00901 0.00099 0.04101 -0.01168 0.01205 -0.00960
0.00803 -0.01324 0.00855 0.00128 0.03735 -0.01030 0.01134 -0.00838
0.00767 -0.01207 0.00814 0.00153 0.03412 -0.00908 0.01070 -0.00731
0.00734 -0.01099 0.00777 0.00174 0.03127 -0.00800 0.01012 -0.00636
0.00705 -0.01001 0.00744 0.00193 0.02874 -0.00703 0.00960 -0.00552
0.00678 -0.00911 0.00713 0.00209 0.02649 -0.00617 0.00912 -0.00477
0.00653 -0.00829 0.00685 0.00222 0.02448 -0.00541 0.00869 -0.00411
0.00630 -0.00753 0.00659 0.00233 0.02269 -0.00473 0.00829 -0.00351
0.00608 -0.00685 0.00634 0.00242 0.02107 -0.00412 0.00792 -0.00299
0.00588 -0.00622 0.00612 0.00250 0.01962 -0.00357 0.00758 -0.00252
0.00569 -0.00564 0.00591 0.00256 0.01831 -0.00308 0.00726 -0.00210
0.00551 -0.00512 0.00571 0.00261 0.01712 -0.00264 0.00697 -0.00172
0.00534 -0.00464 0.00552 0.00265 0.01604 -0.00225 0.00670 -0.00139
0.00518 -0.00420 0.00534 0.00267 0.01506 -0.00189 0.00644 -0.00109
0.00502 -0.00380 0.00518 0.00269 0.01417 -0.00158 0.00620 -0.00082
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—e—Exact Solution

Runge-Kutta-Verner Method for order six when h = 0.05.
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Figure 2.8: RKV-Method of order fiveand exact solution when @ = 0.05.
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—eo—Exact Solution

Runge-Kutta-Verner Method for order five when h = 0.05
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Figure 2.9: RKV-Method of order six and exact solution when & = 0.05.
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2.6 System of Differential Equations

This part of our thesis is devoted to discuss the numerical solution of higher-order initial
value problems of ordinary differential equation. So, to deal with this type of problems,we

transform the higher order equation into the system of first-order differential equation.

2.6.1 Transform the Higher Order Differential Equation to The first
Order System OFDifferential Equation
Given the higher-order differential equation of the form

yM=f oyt eyt ..yt (26.1)

It can be transformed into the system of N first-order by using the following substitutions.

Let’{ht:}’t,’ltgt :}I‘It ,'H.gt :}lrft,,,.......-,"I,[,Nlt :}JN'I. t,then
4 du, ™\
dt = fl(t!TtllTI’:z]-n,TI-N)
di,
Ez fz taupuz,...,’l't”

dis
< —7 = fs tun U, U >

W _ pe )
—— = Uy, Uz, ..., U
\ dt 2 y 1y W3 y Ry /
, Where a < t < b with the following initial conditions [9];
Wy 1 = @y Uz £ = A, ... U, T = @,

Indeed, all the numerical methods that mentioned in this thesis can be applied to
approximate the solutions of this system.However, here we choose to use a fourth order
Runge-Kutta method approximate the solution to this system.Because this method has been

proven to be one of the most accurate methods for systems.
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The following formulas used for solving the system of first order initial value problems;
- N

1
Wije1 = Wyt 6(""51 + 2k; + 2k3 + ky)

1
Wgie1 = Wzt 6(!1 + 2+ 213+ 1)

- J
Where the coefficients given as the following form; Wherei = 0,1,2,..., N - 1.

/ k'l. = afy Ly Uy Uz \

ly = Bf; t, Uy Uz
k [
k,= Bf, t,+ > Uit ?1 g+ El
k'l. !'I.
< !2: JF-Z t!+51111,l+?|u‘2,l+§ >
k [
kg = Jf.[ t!+ E ,‘u“+ ?2 ,112’|+ EE
k [
ly=Bf, t,+ > Uyt ?2 JUgt Ez
ky= Bfy 6+ B+ kg ugg+ U5

\ ly= Bf; tj+ Bug;+ ks ug;+ I3 _/

By using these formulas we can generate the numerical solutions to the system of the
differential equations [3], [7], [29]. Note that equations (2.6.3), (2.6.4) are used for solving

a second order DE.

2.6.2 Application ofRK-Method of Order Four to a System of DEs Using

Excel

Let @ = 0.1 then to apply this method we must be perform the following steps;
I.  Select the suitable value of @ here we use @ = 0.1.

ii.  Generate the sequence ty, ty,t5, ..., 5 by adding hto to and so on.
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ii.  Evaluate all the required coefficients in a sequential order, so that the computation

of each of ky, 1, ks, 1, ks, 15, ksand L, are possible as they depend on the

previously calculated ones.

iv.  Compute the numerical solutions using equation (2.6.3).

v.  Note that we are explained the method by giving the example (F.1) and Also

observe that we used RKV-Method to find the numerical solution in the example

(F.2) of Appendix F.

Table 2.13lllustration Of RK-Method Of Order Four Applied to System Of

Differential Equations Using Excel.

1
Wyjeq1 = Wyt g(kt + 2k; + 2kt ky)

RK (order 4)

1
WE’!‘-E = WE,! + g(it + 2!2 + 21':! + !4)

RK (order 4)

tn wl,l:l = }"[]

Wzo = ¥o

1
ty Wi = Wypt é(kt + 2k; + 2k3 + ky)

1
Wzq= Wzpt E(Ift + 21+ 215+ 1)

1
tz Wiz = Wyt é(kt + 2k; + 2k3 + ky)

1
Waz= Wzqt E(Ift + 21+ 215+ 1)

1
ts Wiz = Wzt é(kt + 2k; + 2k3 + ky)

1
Waz= Wzat E(Ift + 21+ 215+ 1)

1
By | Wyg= Wyt é(kt + 2ky + 2k3 + ky)

1
W2,4 = w23+ é(it + 212'{' 2!-;'{' 14)

1
tg Wys= Wy + g(k‘[ + 2'!;:2 + 2'{':':! + k‘i-)

1
Wzs= Wyt g(it + 20+ 2i5+ 1)

1
te | Wyg= Wyg+ g(kt + 2ky + 2R3+ k)

1
Wz = Wipst g(it + 21+ 215+ 1)

1
ty Wiz = Wygt g(kt + 2k; + 2ks + ky)

1
War= Wegt g(it + 21+ 215+ 1)

1
by | Wyg= Wi+ g(kt + 2ky + 2k; + ky)

1
Wag = Wzp+ g(ft + 21+ 215+ 1)

1
tg Wig= Wygt g(kt + 2ky + 2k3 + ky)

1
Wag = Wygt E(It + 2+ 215+ 1)

1
tig | Wygg= Wygt g(kt + 2ky + 2k3 + ky)

1
Wai10= Wao t E(It + 21+ 215+ 1)
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Table 2.13.1: Illlustration of coefficients k4, [; related to the table 2.13.

Ky = Bf; Ly Up g Uag Ly = Bf; Ly Uy Uz
ky = @f; Lo, Uy Uzp Ly = Bf; Lo, Uy Uzp
ky = af; by, Uy, Uz ly = Bf; Ly, Uy, Uz g
ky = @f; {3, Uy2, Uz 2 Ly = Bf; {2, Uy 2, Uz 2
ky = @f; {3, Uy 3, Uz Ly = @f; {3, Uy 3, Uz
ky= Bf; tytyq Uz ly = Bf; 4 U4 Uzq
ky = Bf; t5 U5 Uzs ly = Bf; tgUy5 Uz
ky = @f; L Up g Uzp Ly = @f; lg U1 Uzp
ky = Bfy ty, U7, Uz Ly = Bf; ty, Uy 7, Uz
ky = @f; by Uy Uzg ly = Bf; I, Uy Uz g
ky = af; g, Uy, Uzg Ly = @f; tg, Uy Uzg
ky = @f; t10, Uy,10) Uz 10 ly = Bf; f1g, Wy10, Uz 10
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Table 2.13.2: Illustration of coefficients k-, [srelated to the table 2.13.

K, = af, t,+ut-+E o+ L, = &f, t+u-+ﬂu-+l—t
2! N | 2 Uz | 2 2 2 (] 2! 1.1 2 Uz | 2

, ey I, , 7 I,

k; = Bf; tD+§vut,n+?au2,D+E ;= 0f; tn+§aut,n+?yuz,n+§
) E‘E I‘E g I':.'E -.'E

k; = af; tt+§aut,t+?vu2,t+5 l; = @f; tt+§vut,t+?au2,t+5
| Tox i, | 7 I

k= Bf; t2+§1ut,2+?)u2,2+§ ;= @f; t2+§)ut,2+?1u2,2+§
_ ey i, _ 7 I,

k; = @f; t3+§vut,3+?au2,3+5 ;= @f; t1+§aut,3+?yuz,3+§
| Tox i, | 7 I

ky = Of; t4+§:ut,4+?)u2,4+§ I, = Bf; t4+§,ut,4+?,u2,4+—
_ ey i, _ 7 I,

ky = Bf; tq+§vut,5+?au2,5+5 l; = Bf; tq+§aut,5+?yuz,5+§
| Ty I | oy I

k; = Bf, th+§1ut,ﬁ+?)u2,ﬁ+§ l; = Bf; th+§)ut,ﬁ+?vu2,ﬁ+§
| Tox I | Tox I

ky = Bf; t;+ 5ot t o5 Ugrt o I, = Bf; t;+ 5oty t S lgy b o
| T i | T i

k; = @f; t[—]+§vut,8+?au2,ﬂ+5 l; = @f; t[—]+§vut,8+?au2,ﬂ+5
k; = Of, tg"‘ Htl;»"'E uz&"'l_t l; = Bf; tg"‘ Htl;»"'E uza"'l_t
2" 2 2 2" 2 ® 2
| % I | % I
ky= Bf; tig+ > Uyt > Uz 10 > ;= Qf; ti+ > Uyt > Uz 0t >

Table 2.13.3:Illustration of coefficients k5, lsrelated to the table 2.13.
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K;= 0f; t,+,ut,.-+%, 21 %2 Ly = Bf; t!+1ut,i+E’u’2,l %2
ks = Bf, tn"'aut,n"'%auz,n*'%z I3 = 3f; tn+vut,n+k_auz,n+%
ks = Qf; tt"'yut,t"'%,uz,t"'%z I3 = @f; tt"',ut,t"'k_yuz,t"'%z
ks = Bf, tz"'aut.z"'%auz,z*'%z I3 = Bf; t2+,ut.2+k—,u22+%z
ks = @f, t3+,ut,3+%,uz,3+% I3 = Bf; ta*‘ﬂt,a*‘%auz,a‘*%
ks = Of, t4+,ut,4+%,uz,4+!§2 5= Bf; t4+,ut,4+%,uz4+%
ky=0f; ts+ 5 U5t % Uz + %2 l3=08f; ts+ = U+ & yUgs t %2
ky= Bfy te+ = Uyg+ % JUg g+ %2 l3= 0Bf; tg+ = Uyt ac Uzt %2
ks = Bf, t:-"",ut,?"'%,uz?*'%z 3= Bf, t?*’v”t,?*’%’uz.?‘*%
ks = @f, tH+,Ut,a+%,uz,ﬂ+!§2 3= @f; t[—]+vut,ﬂ+%!u2,[—]+%
ks = Af; tg+,ut,g+%,uz,g+% I3 = Of; tr_n"',ut,r_-"'%vuz,r_-*'%z
ks = Bf, tm"‘%ﬂt,m*‘%ﬂz,m*‘% 3= 0f; tig+ ,ut,m"'%auz,m"'-%z
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Table 2.13.4:1llustration of coefficients k4, Isrelated to the table 2.13.

Koe=Bfy t;+ B,uy+ kg uz;+ I3 Ly= 0f; t;+ Buyg+ kg Uzt I3
ky=0f; to+ B, uyo+ ks Ugp+ I3 la= 0f; to+ B, ujo+ ks Uzpt I3
ky= Bfy ty+ Buy g+ ks, Uugq + s ly= Bf; ty+ B uyy + k3, ug,; + U3
ky=0f; tz+ B, uyz+ k3 Ugp+ I3 ly=0f; tz+ B, uyz+ k3 Uzz+ I3
ky=0f; t3+ B, uyz+ k3 uzz+ I3 ly= 0f; tz3+ B, uyz+ k3 Uzz+ I3
ky= Ofy tg+ B U+ k3 ugyt+ U3 la=Bf; ty+ B uyq+ k3 Uzt I3
ky= Bf; tg+ B, uyg+ k3, uzs+ I3 la=0Bf; ts+ B, uyg+ kg uzs+ Iy
ky= Of te+ B, U+ k3, Uget I3 la= 0f; tg+ B, U+ k3 Uge+ I3
ko= Bf; t;+ B, uyq+ k3, ugz+ I3 = Bf; tz+ B, uy 7+ k3, uzz + I3
ky= Bfy tg+ B, Uyg+ Ky Ugg + U3 ly=Bf; tg+ B uyg+ k3 ugg+ I3
ky= Bfy to+ B, U9+ kg, Ugg + I3 ly= Bfy to+ B, Uyq+ k3, Ugg + I3
ky= Bfy tig+ B, Uyi0+ k3 Uz + 3 ly= Bf; tig+ B Uyyq+ k3 Uz + U3

An example [13]:
Solve the second-order initial value problem

ty"'-y'-tly=0 , for 1st<2 ,y1 =2776347 ,y'1 = 2169817
By transforming to the system of the first-order initial value problems and use a fourth
order R.K method to approximate the solution with @ = 0.1, Tolerance =10~% , given that

the actual solutions are given by

; 3 £2 +1 $2

y()—zeXp > S8Xp -~ 5
e _3t t2 1t t?

¥y =5 exp > > exp 5

Solution: Applying the equation (2.6.2), (2.6.3) and (2.6.4) and organizing the numerical
and the exact in a table (2.14) this show an easy way for comparison. A graphical

representation is also presented in figure (2.10).
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Table 2.14: Illustration ofRK Method for Order Four andExact Solution

When 2= 0.1.

{ t! Yito=uy, Wy Vo= Uy, Wy

exact RK (order 4) exact RK (order 4)
0 |01 1 2.776347 2.776347 2.169817 2.169817
1 /01 11 3.019916 3.019913 2.721225 2.721223
2 |01 12 3.325026 3.325020 3.405928 3.405923
3 |01 13 3.706745 3.706734 4.260344 4.260334
4 101 14 4.184340 4.184321 5.332640 5.332622
5 |01 15 4.782652 4.782621 6.686999 6.686967
6 |01 16 5.533978 5.533931 8.409506 8.409454
7 |01 17 6.480651 6.480580 10.616339 10.616255
8 |01 138 7.678585 7.678478 13.465235 13.465100
9 |01 19 9.202194 9.202034 17.171668 17.171450
100 |01 2 11.151252 11.151011 22.031833 22.031481

Table 2.14.1: lllustration of Coefficients related to the table (2.14).

Ky

Ly

K

Ly

Ky

Ly

Ky

Ly

0.216982
0.272122
0.340592
0.426033
0.533262
0.668697
0.840945
1.061626
1.346510
1.717145
2.203148

0.494616
0.612793
0.762630
0.954156
1.201028
1.521888
1.942277
2.497373
3.235888
4.225695
5.561979

0.241712
0.302762
0.378724
0.473741
0.593314
0.744791
0.938059
1.186494
1.508304
1.928430
2.481247

0.548256
0.680649
0.849122
1.065294
1.344994
1.709862
2.189607
2.825236
3.673680
4.814484
6.359513

0.244394
0.306155
0.383048
0.479298
0.600512
0.754190
0.950426
1.202887
1.530194
1.957869
2.521124

0.552173
0.685625
0.855561
1.073758
1.356272
1.725067
2.210322
2.853724
3.713200
4.869752
6.437401

0.272199
0.340685
0.426148
0.533409
0.668889
0.841203
1.061978
1.346998
1.717830
2.204120
2.846888

0.612963
0.762858
0.954470
1.201469
1.522514
1.943176
2.498672
3.237776
4.228452
5.566021
7.385073

48




—eo—y(t)=ul Exact solution
y'(t)=u2 Exact solution

—o—u(1,i) RK (order 4)
—o—u(2,i) RK (order 4)

Y-axis

25,000000

17,171450

20,000000 13,465100

10,616255

15,000000 8,409454

6,686967
5,332622
10,000000
4,260334

3,405923

5,000000
2,721223

2,169817
2,776347

22,031481

11,151011
11,151252

9,202034
9,202194

7,678478
7,678585
6,480580
6,480651

5,533931
5,533978

4,782621
4,782652
4,184321
4,184340
3,706734
3,706745

0,000000 2776347 3,019916 3,019913 3 3250263.325020

0 0,5 1

1,5 2

T-axis

2,5

Figure 2.10: RK-Method of Order Four for System of Differential
Equationand Exact Solution When & = 0.1.

49




2.7 Adams-Bashforth Explicit Methods

Another class of methods for numerically approximating the solution of I\VP are known as

Multistep Methods. Among these, few of these methods are very well known. They are:

Adams-Bashforth 2-Step explicit method:

1
Wieq = W + 5 3f tiywy, — f it Wiy, wlerei= 123,...... N- 1

Adams-Bashforth 3-Step explicit method:
1
Wis1 = We"'E 23f t,wy — 16f t;_q, Wiy +5f ti_z Wiz

wlerei= 234,.... N-1

Adams-Bashforth 4-Step explicit method:
1
Wisq = We"'ﬂ S5f t,wy — 39f tj_q, Wiy + 37f tiz Wiz — 9f ti_3 Wiz

wlerei= 345,..... N-1

Adams-Bashforth 5-Step explicit method:

1
720 1901f t,wy — 2774f t; 4, Wy + 2616f t; 5w, ;

- 1274f t; 3wz + 251f b4 Wiy
wlerei= 456,.... N-1

Wier = Wy

Any of the above Schemes can be considered for determining the approximate solutions of
the Riccati Differential Equation [9]. See (Appendix G).
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2.7.1 Application of Adams Bashforth Explicit Method to RDE Using
Excel

Let @ = 0.1 then to apply this method we must be perform the following steps;

I.  Generate the time sequencety, ty,ts, ..., tyq, by adding the increment value & to the

initial variable t,in order to calculate ty, t5, ..., tyq.

ii.  Use the numerical methods to determine the approximate solution. A drawback of

the multistep method is that they require extra initial values compared to the single

initial value in the case of R.K methods. For instance an Adam-Bashforth explicit

method there is the need for values ofwg,w;,, w; before we can computew,. For that

one can use a single step method such as Euler’'s method or R.K method to evaluate

the required initial values.

iii.  Calculate the exact solution to the given Riccati differential equation in one of the

columns of excel sheet next to the column of Runge-Kutta Method, for easy

comparison..

iv.  Finally, compute the numerical solution using the preferred formula of ABE-

Method. In this case the selected methods is the three step ABE given by:
1
Wi = Wy t E 23f t,wy — 16f t;_q, Wiy +5f ti_z Wiz

wlRerei= 234,...., N- 1.

The procedures are presented in table (2.15) and for further details see the Appendix G.
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Table 2.15: Illustration of Three Step Adams-Bashforth Explicit Method.

RK-
Adams-Bashforth t,w
t, | Method @-Sten) ‘:; ; '!;
-Step -Ste
(order 4) i

to | Wo= ¥ Taken from the RK-Method — wy, I (tg, wy)

ty Wy Taken from the RK-Method ~— w; f(ty,wy)

i, Wy Taken from the RK-Method — w, f(ts, wy)
1

t'{ w'} w:'g - WZ + E 23; tz, WE - 16; tl! Wl + 5; tn, W[] f(t-:;, w"!)
1

t4 1I""'4. H-"q, - w':g + E 23; t::;, W3 - 16f tz, WE + 5; tll Wl f(tnp 1IIi“'lq.)
1

tq Wg We = Wy + E 23f tq_, Wy — 16f tg, Wao + 5; tz, Wo Jr(tﬁl WE)
1

th wh WH = Wq + E 23!- t!:“ WE - 16!- tq_, “-"4 + 51- t::!, W".g Jr(tﬁl wﬁ)
1

ts Wo Wy = We+ 58 23f twe — 16f t5,ws + 5f ty,w, f(t7,wy)
1

tﬁ WH WH = W? + E 23f t?, W? - 16; tl-'u WH + 5; tg, WE I(tﬂl WH)
1

tl.} w'.] WQ - WH + E 231- tﬂy WH - 16!- t?, W? + 51- tﬁ, Wﬁ Jr(t';h w';l)
1

tio Wia Wig = Wg + E 23f tg,wg — 16f tywg + 5f t;wy J(t10, Wig)

An example:

Determine the approximate solutions by ABEM of the given initial value problem

t

[

}.l:

+
1+ t2

2

Ye_ ¥
t ot 1+ t?

When the actual solution given by v = (t% - t)/(t + 1).

¥vy1 =0 1<t<?2

Solution: we recognized the given differential equation is the Riccati differential equation.

Now we are ready to apply the method of three step ABEM to the given IVP The table

(2.16) shows this approximation, an order 2 R.K method and the exact solution. The figure

(2.11) gives a graphical representation of the ABEM and the exact solution. As we can see

the results compare extremely well.
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Table 2.16: Illustration of Three Step Adams-Bashforth Explicit Method,
RK-Method and The Exact solution.

Exact RK-Method Adams-Bashforth
Ly ] f(t,wy)
Solution (order 2) (3-Step)
0.1 1 0.000000 0.000000 0.000000 0.500000
0.1 11 0.052381 0.052211 0.052381 0.546485
0.1 1.2 0.109091 0.108764 0.109091 0.586777
0.1 1.3 0.169565 0.169091 0.169525 0.621893
0.1 14 0.233333 0.232720 0.233255 0.652713
0.1 15 0.300000 0.299252 0.299888 0.679911
0.1 1.6 0.369231 0.368353 0.369088 0.704034
0.1 1.7 0.440741 0.439736 0.440569 0.725528
0.1 1.8 0.514286 0.513156 0.514087 0.744761
0.1 19 0.589655 0.588403 0.589431 0.762040
0.1 2 0.666667 0.665292 0.666417 0.777620
Exact Solution Adams-Bashforth Explicit Method (3-Step)
0,800000
0,700000 0565067
’ 0,589655

0,600000 0,514286
g 0,369231
< 0,400000 0,300000
>

0.300000 0,233333

0,169565
0,200000 0,109091
0,100000 0,052381
0,000000
0,000000
0 0,5 1 15 2 2,5
T-axis

Figure 2.11: Adams Bashforth Explicit Method for three step and exact

solutions when @1 = 0.1.
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CHAPTER 3

RESULTS AND DISCUSSIONS

In this section we will attempt to present an overall two way comparison for a range of
known numerical methods and their performance in solving RIVVPs. On the other hand we
will demonstrate the effect of varying the step size on their performance. The overall
results are summarized and presented in a tabulated format and also graphically for ease of
comparison.

The one-step numerical methods that are used for this comparison study include; Euler’s
Method, Taylor’s Method of order four, Runge-Kutta Method of order four, Runge-Kutta-
Fehlberg Method of order four and Runge-Kutta-Verner Method of order five. Among the

multi-step methods, we chose to use the Adams-Bashforth Explicit Method.

3.1 Numerical Method’s Capability with the Various Step Size h

Case 1: Stepsizel@= 0.5

Taking the step size = 0.5and the interval 0 < t < 1thent; = O, t; = 0.5andt; = 1.
The approximate solutions shownin table (3.1). The last row of the table gives the
numerical solutions at t = t;and these are;Euler’s Method = 1.820313, Taylor’s Method
of order four = 1.839480, Runge-Kutta Method of order four = 1.999419, Runge-Kutta-
Fehlberg Method of order four= 2.000069, Runge-Kutta-Verner Method for order
five = 2.000019 and Adams-Bashforth Explicit Methods of order five = 1.937500. The
exact solution at t =t is 2.0.

Notice that each of the Euler’s Method and Taylor’s Method give poor performance and
this is in line with our expectations of these methods. On the other hand theRunge-Kutta
Method, Runge-Kutta-Fehlberg, and Runge-Kutta-Verner Method produced solutions that
compare extremely well with exact solution. While Adams-Bashforth Explicit Methods
gave solutions that lie somewhere between the two groups of the methods. These results

are also presented graphically for the ease of comparison figure (3.1) to figure (3.6).
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Table 3.1: Illustration Of Ex

act Solution, Euler’s Method, (Taylor, RK

andRKF) Methods for Order Four and (RKV andABE) Methods for Order
Five when @ = 0.5.

Taylor

Exact Euler (order 4)

Runde- Runge- Runge-
KUt Kutta- Kutta- ABEM
(order 4) Fehlberg Verner (order 5)

(order 4) (order 5)

0.500000 0.500000 = 0.500000

1.166667 @ 1.125000 @ 1.133789

2.000000 | 1.820313 1.839480

0.500000 = 0.500000 0.500000 0.500000

1.166610  1.166674 1.166669 1.166667

1.999419  2.000069 2.000019 1.937500

Exact Solution

Euler's Method

2,500000

2,000000

1,500000
0,500000

Y-axis

1,000000

0,500000

0,000000

2,000000
1,166667
0,4 0,6 0,8 1 1,2
T-axis

Figure 3.1: Euler’s Method and exact solution when @ = 0.5.
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—e—Exact Solution Taylor's Method (order 4)
2,500000

2,000000
2,000000
1,166667

" 1,500000
5 0,500000
> 1,000000

0,500000

0,000000

0 0,2 0,4 0,6 0,8 1 1,2
T-axis

Figure 3.2: Taylor’s Method of order four and exact solution when & = 0.5.

—e—Exact Solution Runge-Kutta Method (order 4)
2,500000

2,000000
2,000000

1,166667
1,500000

Y-axis

0,500000
1,000000

0,500000

0,000000
0 0,2 0,4 0,6 0,8 1 1,2

T-axis

Figure 3.3: RK-Method of order four and exact solutions when @ = 0.5.
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Exact Solution

Runge-Kutta-Fehlberg Method (order 4)

2,500000

2,000000

1,500000

Y-axis

1,000000

0,500000

0,000000

0,500000

2,000000
1,166667
0,4 0,6 0,8 1 1,2
T-axis

Figure 3.4: RKF-Method of order four and exact solutions when & = 0.5.

Exact Solution

Runge-Kutta-Verner Method (order 5)

2,500000

2,000000

1,500000

Y-axis

1,000000

0,500000

0,000000

0,500000

2,000000

1,166667

04 0,6 0,8 1 1,2

T-axis

Figure 3.5: RKV-Method of order five and exact solutions when @ = 0.5.
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—e—Exact Solution Adams-Bashforth (2-Step)
2,500000

2,000000
2,000000

1,166667
1,500000

0,500000

Y-axis

1,000000

0,500000

0,000000
0 0,2 0,4 0,6 0,8 1 1,2

T-axis

Figure 3.6: Adams Bashforth Explicit Method for two step and exact solutions
when & = 0.5.

58



Case 2: Stepsize @ = 0.25

In this case after reducing the value of & from the h = 0.5 to h = 0.25 then we would expect
that the accuracy of the solutions are increased and the size of error also decreased.
Fortunately, all the methods above except Euler's method showed better results. This is also
in line with our understanding of the methods because Euler's method is the most
elementary among the others.

Table (3.2) summarizes these results with @ = 0.25. The rows give the solutions at the
timesto=0,t; = 0.25,t, = 05,t;= 0.75and t, = 1.

At the last row of the table shows the solutions at t = 1 and the values are;

Euler’s Method = 1.883090, Taylor’s Method of order four = 1.968497, Runge-Kutta
Method of order four= 1.999956, Runge-Kutta-Fehlberg Method of order four=
2.000007, Runge-Kutta-Verner Method of order five = 2.000001 and Adams-Bashforth
Explicit Methods for order five = 1.995931.See figures (3.7) to figure (3.12).

Table 3.2: Hlustration Of Exact Solution, Euler’s Method, (Taylor, RK
andRKF) Methods for Order Four and (RKV andABE) Methods for Order
Five when = 0.25.

Tavior's Runge- Runge- Runge-
Exact Euler’s Mztho q Kutta Kutta- Kutta- ABEM
Solution Method (order 4) Method Fehlberg Verner (order 5)

(order 4) (order 4) (order 5)

0.500000 = 0.500000 @ 0.500000 | 0.500000 0.500000 0.500000 = 0.500000

0.821429 = 0.812500 0.818176  0.821428 0.821429 0.821429  0.821429

1.166667 1.141602 @ 1.155969 @ 1.166663 1.166667 1.166667  1.166667

1.550000 @ 1.494515 1.528939 @ 1.549987 1.550002 1.550000 = 1.550000

2.000000 = 1.883090 @ 1.968497  1.999956 2.000007 2.000001 = 1.995931
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—e—Exact Solution —e—Euler's Method

2,500000
2,000000

1,550000
2,000000
1,166667
" 1,500000 0,821429 1,883090
3
g 1,000000 0.500000 1A9Ls
’ 1,141602
0,500000 0,812500
0,500000
0,000000
0 0,2 0,4 0,6 0,8 1 1,2
T-axis
Figure 3.7: Euler’s Methodand Exact Solutions When 2 = 0.25.
—e—Exact Solution —e—Taylor's Method (order 4)
2,500000
2,000000
1,550000

2,000000 1,166667

1,500000 0,821429 1,968497
% 0500000 1,528939
- 1,000000

1,155969
0,500000 0,818176
0,500000
0,000000
0 0,2 0,4 0,6 0,8 1 1,2
T-axis

Figure 3.8: Taylor’s Method of Order Fourand Exact Solutions, @ = 0.25.
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Exact Solution

Runge-Kutta Method (order 4)

Y-axis

2,500000

2,000000

1,500000

1,000000

0,500000

0,000000

0,500000

0,2

2,000000
1,550000

1,166667
0,821429

0,4 0,6 0,8 1

T-axis

1,2

Figure 3.9: RK-Method of Order Four and Exact Solutions, @ = 0.25.

Exact Solution

Runge-Kutta-Fhelberg Method (order 4)

Y-axis

2,500000

2,000000

1,500000

1,000000

0,500000

0,000000

0,500000

0,2

2,000000
1,550000

1,166667

0,821429

0,4 0,6 0,8 1

T-axis

1,2

Figure 3.10: RKF-Method of Order Fourand Exact Solutions, @ = 0.25.
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Exact Solution

Runge-Kutta-Verner Method (order 5)

2,500000

2,000000

1,500000

0,500000

Y-axis

1,000000

0,500000

0,000000

2,000000
1,550000

1,166667
0,821429

0,4 0,6 0,8 1 1,2

T-axis

Figure 3.11: RKV-Method of Order Five and Exact Solutions, @ = 0.25.

Exact Solution

Adams-Bashforth Explicit Method (4-Step)

2,500000

2,000000

1,500000

Y-axis

1,000000

0,500000

0,000000

0,500000

2,000000
1,550000

1,166667
0,821429

04 0,6 0,8 1 1,2

T-axis

Figure 3.12: Four Step Adams Bashforth Explicit Method and Exact

Solutions, @ = 0.25.
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Case 3: Stepsize@= 0.1

We further reduced the step size to @ = 0.1 and carry out the computations as in the case
of @ = 05and @ = 0.25and as we expect there are improvements in results as we can
see from the table (3.3). The results at the last row of the table are at t = 1 and the values
obtained are; Euler’s Method = 1.942205, Taylor’s Method for order four = 2.012006,
Runge-Kutta Method for order four = 1.999999, Runge-Kutta-Fehlberg Method for order
four = 2.000000, Runge-Kutta-Verner Method for order five = 2.000000 and Adams-
Bashforth Explicit Methods for order five = 1.999829. The graphical representations
aregiven in figure (3.13) to figure (3.18).

Table 3.3: lllustration of Exact Solution, Euler’s Method, (Taylor, RK and
RKF) Methods of Order Four and (RKV and ABE) Methods ofOrder Five
when &= 0.1.

Runge- Runge-

Kutta- Kutta- ABEM
Fehlberg Verner (order 5)
(order 4) (order 5)

Taylor’s Runge-
Method Kutta
(order 4)  (order 4)

Exact Euler’s
Solution Method

0.500000 = 0.500000 @ 0.500000 0.500000  0.500000 0.500000 = 0.500000
0.626316 = 0.625000 @ 0.626139 0.626316  0.626316 0.626316 @ 0.626316
0.755556 = 0.752563 = 0.755105 0.755556 @ 0.755556 0.755556 = 0.755556
0.888235 = 0.883095 0.887448 0.888235  0.888235 0.888235 @ 0.888235
1.025000 1.017095 @ 1.023904 1.025000 1.025000 1.025000 | 1.025000
1.166667 1.155176  1.165441 1.166667 1.166667 1.166667 @ 1.166662
1.314286 1.298101 @ 1.313335 1.314286 1.314286 1.314286 @ 1.314272
1.469231 1.446836  1.469263 1.469231 1.469231 1.469231 @ 1.469203
1.633333 1.602612 1.635465 1.633333 1.633333 1.633333 | 1.633281
1.809091 1.767031 = 1.814975 1.809090 1.809091 1.809091 = 1.808996
2.000000 1.942205 2.012006 = 1.999999 2.000000 2.000000 = 1.999829
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—e—EXxact Solution —e—Euler's Method
2,500000 1,809091
1,633333 2,000000
2000000 1 3142%%69231
1166667 1,942205
1,500000 1,025000 1,767031
" . 7552,58688235 1,602612
E: ’ 1,446836
§ 1000000 0626316 1208101
0,500000 1,155176
1,017095
0,500000 0.883095
0,752563
2 H
0,000000 0,500000  0,625000
0 0,2 0,4 0,6 0,8 1 1,2
T-axis
Figure 3.13: Euler’s Method and exact solutions when &= 0.1.
—e—Exact Solution —e—Taylor's Method (order 4)
2,500000 1,809091
1,633333
o000 A 21é 26923 A 2,000000
’ 1,166667 2012006
1.025000 1,814975
1,500000 0,888235 1,635465
2 0.755556 1,469263
§ 1000000 0626316 1,313335
> 0,500000 1,165441
’ 1,023904
0,500000 0,887448
0.500000 0,755105
0,000000 0,626139
0 0,2 0,4 0,6 0,8 1 1,2
T-axis

Figure 3.14: Taylor’s Method of order fourand exact solutions when & = 0.1.
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—e—Exact Solution

—e—Runge-Kutta Method (order 4)

2,500000 1.809091
1 4692:’}%'1633333 2,000000
2,000000 1,314286 ’
0 88812’??525 1,999999
1,500000 0,755556 1,809090
» 1,633333
= 0626316 1,469231
S0 1,000000 1,314286
0,500000 1,166667
1,025000
0,500000 0,888235
0,755556
0,626316
0,000000 0,500000
0 0,2 0,4 0,6 0,8 1 1,2
T-axis

Figure 3.15: RK-Method of order four and exact solutions when @ = 0.1.

—e—Exact Solution

—o—Runge-Kutta-Fehlberg Method (order 4)

2,500000

1,809091
) 9%??133333 2.000000
2,000000 E36314]288 2.000000
1.025006° 1,809091
1,500000 g ?688235 1,633333
R% 0,755 1,469231
< 0,626316 1,314286
& 1,000000 1166667
0,500000 1,025000
0,500000 0,888235
0,755556
0000000 | :5000000,626316
0 0,2 0,4 0,6 0,8 1 1,2
T-axis

Figure 3.16: RKF-Me

thod of Order Fourand Exact Solutions, 2 = 0.1.
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—e—Exact Solution

—o—Runge-Kutta-Verner Method (order 5)

Y-axis

2,500000

1,809091 2,000000
1 4692%%’16 33333
2,000000 1,314286
. 025(1361066667 2,000000
1,500000 0,838235 1635338
0,755556 1,469231
1,000000 0,626316 1.314286
0,500000 1,166667
1,025000
0,500000 0,888235
0,755556
0.000000 | 0.500000 0,626316
0 0,2 0,4 0,6 0,8 1 1,2
T-axis

Figure 3.17: RKV-Method of Order Fiveand Exact Solutions, &= 0.1.

—e—Exact Solution ——Adams-Bashforth Explicit Method (5-step)

Y-axis

2,500000 1 809001
1363333’??0909 2,000000
2,000000 1 166%’63714218%692 !
1,0250’00 1,999829
1,500000 0,888235 1,808996
0,755556 1,633281
1,469203
1,000000 0,626316 1,314272
0,500000 : 0250%),0166662
0,500000 0,888235
0,755556
0.000000 0:500000 0,626316
0 0,2 0,4 0,6 0,8 1 1,2
T-axis

Figure 3.18: Five SepAdams Bashforth Explicit Method Exact Solution

when 2= 0.1.
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CHAPTER 4

CONCLUSIONS

The lessons we have learned from this interesting piece of work can be summarized as
follows; The very basic Euler's method is very simple easy to implement therefore, it is
useful for learners of numerical analysis and also beginners programmers to use the
method as a practice aiming to further improve their numerical knowledge and also their
programming skills. Another area that we recommend the use of this method is to compute
additional starting values that required when using Multistep methods for solving IVPs.
Otherwise if an accurate result is required for academic or scientific purposes, certainly
this method is not recommended.

Regarding the Taylor method, Reasonable results can be achieved if higher order Taylor’s
method is employed, but this is often very costly because the need for evaluating higher
order derivatives, where some times can be very tedious and even impossible to obtain.
Hence this group of methods are also not recommended for serious scientific or academic
work. Coming to Linear Multistep methods it is fairly easy to implement, the drawbacks
are that they require additional initial values that are not readily available, therefore by the
time you program a single step method to obtain these additional values one will be
tempted to continue with this method to produce the full solution of the problem in hand.
The method that stands out among all the numerical methods are the fourth order Runge-
Kutte method. These methods produce very good and impressive results, they are easy to
implement and do not require additional starting values. Therefore definitely they are our

choice of recommendation.
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Appendix A. Approximation Solution from RDE by Euler’s Method

Example (A.1):

By using Euler’s method find the approximate solution for the Riccati differential
equationy’ = x*+ 1 - 2xy + y*when the initial condition consist of ¥ 0 = % and its
interval is 0 < t < 1, also use step size = 0.1 and B = 0.01to indicate that which

one can give us the best accurate solution, if you know that the exact solution considered

as
1
2-t
A.1.1 Solution of example (A.1) when (h= 0.1)

Euler’s method is given by ¥, = ¥, + f(tyyt;),when i>0

y=——+t

Since t; = 0 and @ = 0.1 then for finding nextt; we can use the formulat, = ¢, { + @ as:
t,=ty+ B t;=0+01=01
t;= t; + t;=01+01=0.2, and so on until to get the upper bound of the
required interval, whichist;; = t;+ = 09+ 0.1 = 1.
To illustrate the procedure, note that the value of step size @ = 0.1 is used to calculate ¢,
with respect to the interval 0 < t < 1 , which is specified in this experiment the value
of t, = 0 and we foundt,, t; and t,,, also notice that we stopped when the value of t = 1
which is t,; and all these t; values are being use for identifying the approximate solution
of the points which are denoted by ¥, , ¥-, . . . , ¥. To make the procedure
approximation, Euler’s formula which is
V1= W+ f(t, v t; ), Andsince v, = 1/2 with B = 0.1, we obtain
Vi= Vot B f tg ¥ty Vi= Vot B t3+ 1- 2tgve+ VA
=05+01 0+1- 2 0 05 +05° =
¥y = 0.625,
Y2= 3t B fyt ¥z
= 0625+ 01 01*+1- 2 01 0625 + 0.625° = 0.752563;
So
Vig= Ve+ B f ty,¥t, = 1767031+01 09%+ 1-2 09 1767031+
1.767031% =
yi0 = 1.942205.
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From the preceding calculation, it is found the approximation solution by used each
ofty= 0,@=021and vy,= 1/2 then by used the Euler’s formulay, = y;+
[ ty, ¥ ty , could be found the value of ¥, = 0.62500.

For find the value of ¥, , can be constructed the second step by take a result of the first
Euler step and applying the formula of y; = ¥, + [ ty, vty ,itis found that v, =
0.75256.

These computation are continued for evaluating all values of ¥(t,) until we found ¥4,
finally the formula of y,; = ¥g + [ tq, ¥ ty  give the approximation value of ¥, =
1.94220.

With regarded to the calculation above and by observe that the table (A.1) that explained
how can find the approximate solution of the initial value problem of the example (A.1)
which is computed by (MICROSOFT OFFICE EXCEL) and compared with the actual
solution, reminder that in here all these statements are computed when the step size
@= 0.1, and clearly the approximation solution is near to the close form solution,
therefore, we can say that the method that used to construct the implementation by this

software is mostly succeeded but not very accurate comparably with exact solution.

Table (A.1): Hlustration of Euler’s Method and the exact solution

When 2= 0.1.
I t Exact solution Euler's method (L, w(ti))
0 | 01 0 0.50000 0.50000 1.25000
1 0.1 0.1 0.62632 0.62500 1.27563
2 0.1 0.2 0.75556 0.75256 1.30533
3 /01 03 0.88824 0.88310 1.34000
4 0.1 0.4 1.02500 1.01710 1.38081
5) 0.1 0.5 1.16667 1.15518 1.42926
6 0.1 0.6 1.31429 1.29810 1.48735
7 0.1 0.7 1.46923 1.44684 1.55776
8 | 01 08 1.63333 1.60261 1.64419
9 | 01 09 1.80909 1.76703 1.75174
10 | 0.1 1 2.00000 1.94220 1.88775
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So in the table (A.2) generated the part of error by subtracting the approximation solution
from the exact solution, notice that the computation of absolute error at the last step when
= 0.1 is 2.00000 - 1.94220 = 0.05780 and calculated the percentage relative error
which is 2.89.

Table (A.2): Hlustration the relative and relative percentage of errors

When @ = 0.1.
Iterations Absolute error % Relative Error
0 0.00000 0.00
1 0.00132 0.21
2 0.00299 0.40
3 0.00514 0.58
4 0.00790 0.77
5 0.01149 0.98
6 0.01618 1.23
7 0.02240 1.52
8 0.03072 1.88
9 0.04206 2.32
10 0.05780 2.89
—e—Exact Solution Euler method
2,50000 8090 100000
2,00000 1 46974555
1.50000 1,1666173V
£ . 75550688821402500 e
> 1,00000 062632 __—
0,50000
0,00000
0 0,2 0,4 0,6 0,8 1 1,2
T-axis

Figure (A.1): Approximate and exact solutions for example (A.1).
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A.1.2 Solution of example (A.1) when (h= 0.01)

Continuously in the table (A.3), we found the approximation solution by using the Euler’s
method when @ = 0.01, note that all computation by this method has been repeated like
the previous illustrations but in this situation we just changed the value of & with respect
to the intervalO < t < 1. Accordingly, by addition the value of step size @ = 0.01 for the
lower bound of our interval, it seems each oft, = t; + 0.01 = 0+ 0.01 = 0.01, and so on
for finding t5, t5 until getting the upper bound with regarded the given interval ast, g =
tyg+ 0.01= 099+ 001 = 1.

As we have seen that from the preceding implementations of Euler’s formula and if we
take the smallest step size which is @ = 0.01 and since vy = 1/2, then the value of ¥, =
Yo+ ftyyt, =05+001 125000 = 0.51250, and so on for finding each of
the vz = 0.56275,¥,4 = 0.62617, and the last one is ¥; 59 = 1.99321.

Also with the calculations of approximation solution, evaluated the error part when
= 0.01 by using subtracting the approximate solution from the exact solution as

Error part = |actual solution —approximate solution|
For instance that, in the last step of table (A.3), the error part is2.00000 - 1.98646 =
0.00679.
From the above illustrations observe that the approximation solution is very accuracy
because the value of @ is small and it is near of the actual solution. And also the error is a
small when we have taken the value of @ is small. Finally throughout using Euler’s
method, we understand that although the Euler’s method is not more accurate, the results
are fortunately good and we can say that it is wonderful because the value of step size @is
small. Also the Microsoft office excel is indeed available to compute the solution because
it can give us the mostly restriction and accurate results.
To see more information about computation of the Euler’s method, visit the tabulation
interpretation in the below that considered each of the exact solution with numerical
solution and relative error.Note that the tolerance = 10~ and we are taken the some steps
of the solution as you can see in the tabulation because all the rows have the same

computations.
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Table (A.3): Hlustration of Euler’s Method and the Exact solution and also

represented the absolute and relative percentage errors when 2= 0.01.

Exact Euler's Absolute % Relative

II . solution method S8, () Error Error

0 0.01 0 0.50000 0.50000 1.25000 0.00000 0.00

1 0.01 0.01 0.51251 0.51250 1.25251 0.00001 0.00

5 0.01 0.05 0.56282 0.56275 1.26292 0.00007 0.01
10 | 0.01 01 0.62632 0.62617 1.27686 0.00014 0.02
15 | 0.01 0.15 0.69054 0.69031 1.29194  0.00023 0.03
20 | 0.01 0.2 0.75556 0.75523 1.30828 0.00032 0.04
25 | 001 025 0.82143 0.82100 1.32604 0.00043 0.05
30 | 0.01 03 0.88824 0.88768 1.34537  0.00056 0.06
35 | 001 035 0.95606 0.95536 1.36646 0.00070 0.07
40 | 001 04 1.02500 1.02414 1.38955 0.00086 0.08
45 | 0.01 045 1.09516 1.09411 1.41488 0.00105 0.10
50 | 0.01 0.5 1.16667 1.16540 1.44276 0.00126 0.11
55 | 0.01 0.55 1.23966 1.23814 1.47354 0.00151 0.12
60 | 0.01 0.6 1.31429 1.31249 1.50764 0.00180 0.14
65 | 0.01 0.65 1.39074 1.38861 1.54555 0.00213 0.15
70 | 0.01 O.7 1.46923 1.46672 1.58786 0.00251 0.17
75 | 0.01 0.75 1.55000 1.54704 1.63527 0.00296 0.19
80 | 0.01 038 1.63333 1.62984 1.68864 0.00349 0.21
85 | 0.01 085 1.71957 1.71545 1.74900 0.00412 0.24
90 | 0.01 09  1.80909 1.80424 1.81764  0.00485 0.27
95 | 0.01 0.95 1.90238 1.89665 1.89614  0.00573 0.30
100 | 0.01 1 2.00000 1.99321 1.98646 0.00679 0.34
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In the figure (A.2) note that the graph is plotted by Microsoft office excel and putted
= 0.01 when constructed the graph as started at t; = 1 and at the end &,; = 2 ,also in
this graph represented the approximate solution which is showed by the blue color and it is
mostly approach to the exact solution which is plotted by the orange color. As illustrated
earlier the numerical solution normally computed by Euler’s method to determine the
approximate solution, in fact that, these approximate and the exact solutions are not very
different when we arrive that at ¥,, = 2.00000 andy,, = 1.99321 respectively.

Exact Solution Euler Method

2,50000

2,00000

1,50000

Y-axis

1,00000

0,50000

0,00000

T-axis

Figure (A.2): Approximate and exact solutions for example (A.1)
When @ = 0.01.
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Appendix B. Approximation Solution from RDE by Taylor’s Method

B.1 Approximation Solution from RDE by Taylor’s Method of Order-

Two
Example (B.1): Apply Tylor’s method of order two to the initial value problem

V=1+t- 1+ 2t y+ ty?, vy0 =3 forO0<st<1

Using @ = 0.1 and @ = 0.01 and find the accuracy of the solution between the exact and

approximate solutions, when the actual solution is
po1e Lt

t+1- %e‘

B.1.1 Approximation solution when (h= 0.1)

This simple example is selected to explain the Tylor’s method so that we can arise to verify

the calculation algorithm. The exact solution that obtained in the table (B.1) in order to

compare with our numerical approximation result and to indicate that the relativity error

throughout the computations.

Since the initial condition is considered, then the first part is known from the initial

condition is ¥ 0 = 3. Subsequently, we can compute the second term which is the first

derivative by substituting t = 0, ¥ = 3 in the Riccati differential equation of the example

(B.1):

ftavityg =¥ty =1+ ty— 1+ 2ty Yo+ LoV
=1+0- 1420 3+ 0 3%=-2
In order to apply a Tylor’s method of order two, we must be go to find the second
derivative from the first derivative equation f t, ¥t =y'=1+t- 1+ 2t y+

ty“with respect to the independent variable t , as we obtain in the following steps:

Y'=1- 1+ 2t y'+ 2y + 2tyy'+ y*
=1- 1+2t 1+t- 1+2t y+ty? +2y +2ty(L+t—- 1+ 2t y+ ty?)+ y?
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=1-1-3t-2t°+ y+ 4ty + 4t%y— ty* - 2t°y? - 2v+ 2ty + 2t%y - 2ty
_4t2_}'2+ 2t2},3+},2
¥'= -3t- 2t% - y+ 6ty + 6t%y - 3ty? - 6t7Ty* + 2tTyF + ¢
f toye = ¥" tg
= =3ty - 2t§ - Yo+ 6tg¥y + 6t%yy — Bte¥i - 6t7yF + 2t7y5 + ¥§
=-30-20%-3+60 3+60%3-303%-60%3%+20%3°3%
+ 3%=6;

Then, we can compute the first three steps as the following steps;

0.1
TG to,wy = [ to,wy +§fftnlwu = _2"'7 6 =-17;

Since the initial condition given as;
Wo=¥t; =0 =3,
SO Wl = W[]+ T 2 tn, W[] = 3+ 01 - 17 = 283,

0.1
T t,wy = f ty,wy + > f't,w; = —-1.49511+ - 4.29679974

= -1.280270013;
w,= wy+ BT2 t,,w,; =283+ 01 -1280270013 = 2.701973;

0.1
T towy = f tow, + > fftawy, = -1122631+ - 3.255068 = -0.959877

wa=w,+BT2? t,w, = 2701973+ 0.1 -0.959877 = 2.605985;

And the last step is;
0.1
TE to,wg = f tg,wg + > f' tg, Wy = 0528602 + - 3.156990 = 0.686451

Wyo= We+ BTZ tgw, = 2502116+ 0.1 0.686451 = 2.570761.

All the calculation of approximation and the actual solutions are shown in the table (B.1),
it also again computed by Microsoft office excel. Note that, in this kind of our tabulation
obtained the exact solution in the fourth column whose results indicate the comparison
with the approximate solutions. The solutions which was tabulated consist of 10 steps as
presented in the below. And also a plot of the approximate and the exact solutions are
explained in the figure (B.1).
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Table (B.1): illustration of Tylor’s Method and Exact solution when = 0.1

) Tylor's
Exact solution .
L Ly Method (wy) | f(t, ¥(t)) | f'(t,y &) | T2 (t,¥ t;)
)
(order 2)
0 |01 O 3.000000 3.000000 -2.000000  6.000000 -1.700000
1 /01 01 2.826769 2.830000 -1.495110 4.296800 -1.280270
2 101 0.2 2.696933 2.701973 -1.122631  3.255068 -0.959877
3 /01 03 2.599819 2.605985 -0.832229  2.609489 -0.701754
4 101 04 2.528847 2.535810 -0.592325  2.223278 -0.481161
5101 05 2.480080 2.487694 -0.381077 2.027384 -0.279708
6 |01 06 2.451504 2.459723 -0.181248  1.994553 -0.081521
7 101 0.7 2.442744 2.451571 0.023370 2.131180 0.129929
8 |01 0.8 2.455118 2.464564 0.251394 2.482645 0.375526
9 /101 09 2.492095 2.502116 0.528602 3.156990 0.686451
10 | 0.1 1 2.560405 2.570761 0.896530 4.387231 1.115892

Exact Solution

Taylor's Method (order two)

Y-axis

3,500000,, g67c02,696933 2509819 2480080

3,000000
2,500000
2,000000
1,500000
1,000000
0,500000
0,000000

0,2

2,528847

0,4

T-axis

0,6

2,451504

0,8

2,442744
2,455118

2,492095
2,560405

1,2

Figure (B.1): Approximate and exact solutions for example (B.1)
when @ = 0.1.
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B.1.1.1 Calculation of absolute and relative percentage of errors:

The absolute error is computed by this form|w(t,) - w;|, when w(t,) denote the exact
solution and w; value denote the approximate solution, as we can see in the formula of
absolute error, we can compute it by subtracting the approximation solution from the exact
solution.

Normally, if we subtract w;, = 2.570761 which is the approximate solution from
Y10 = 2.560405 which is the exact solution then the absolute error is 0.010356.
Subsequently, we hope that any case of finding the solution by using a numerical methods,
if the error is small or keep the error small, then meaning that the method that used to find
the approximate solution is good and the result is more accuracy. Also the better
measurement of finding the accuracy of the solution is percentage relative error which is
calculated by this formula

t) - w
% Relative Error = M 100
¥(t)
As we showed in the table (B.2), the relative percentage error in the first step is 0.00, in the
second step is 0.11, and in the third step is 0.19 and so on until we get the last step which is

the 0.40.
Table (B.2): Illustration the relative and relative percentage of errors

when @ = 0.1.

Iterations Absolute error % Relative Error
0 0.000000 0.00
1 0.003231 0.11
2 0.005040 0.19
3 0.006166 0.24
4 0.006963 0.28
5 0.007614 0.31
6 0.008219 0.34
7 0.008827 0.36
8 0.009446 0.38
9 0.010021 0.40
10 0.010356 0.40
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B.1.2 Approximation solution when (h = 0.01)
All these computations of this case are generated like the previous case, we just are
changed the value of step size & which is equal to 0.01. Successively, it has achieved more

accuracy of the solution compare to the first case. Also we choose only some of the steps

of the solutions because the table is too long and it is need to devote more places.

Table (B.3): Illustration of Tylor’s Method and Exact solution & = 0.01.

_ Exact Tylor's method

I ty Sl ) (W) Fax@)) | ffty ) | T2 (¥ t)
0 0 3.000000 3.000000 -2.000000 6.000000 -1.970000
1 0.01 2.980296 2.980300 -1.941084 5.785794 -1.912155
5 0.05 2.907071 2.907087 -1.725238 5.033199 -1.700072
10 0.1 2.826769 2.826797 -1.493078 4.284756 -1.471655
15 | 0.15 2.757213 2.757250 -1.294061 3.699793 -1.275562
20 | 0.2 2.696933 2.696976 -1.121031  3.239815 -1.104832
25 | 0.25 2.644771 2.644821 -0.968462 2.877424 -0.954075
30 0.3 2.599819 2.599873 -0.831995 2.592937 -0.819030
35 | 0.35 2.561363 2.561420 -0.708109  2.372183 -0.696248
40 | 04 2.528847 2.528908 -0.593884  2.205049 -0.582859
45 | 0.45 2.501853 2.501917 -0.486827 2.084527 -0.476405
50 | 0.5 2.480080 2.480146 -0.384730  2.006106 -0.374699
55 | 0.55 2.463329 2.463398 -0.285555  1.967420 -0.275717
60 0.6 2.451504 2.451576 -0.187333 1.968091 -0.177492
65 | 0.65 2.444607 2.444681 -0.088064 2.009777 -0.078015
70 0.7 2442744 2.442820 0.014391 2.096408 0.024873
75 | 0.75 2.446132 2.446210 0.122432 2.234684 0.133606
80 0.8 2.455118 2.455198 0.238882 2.434912 0.251057
85 | 0.85 2.470206 2.470287 0.367196 2.712351 0.380758
90 0.9 2.492095 2.492177 0.511755 3.089368 0.527202
95 | 0.95 2.521734 2.521814 0.678308 3.598900 0.696302
100 1 2.560405 2.560482 0.874622 4.290148 0.896073
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In the other hand, in this situation it is need to take the smallest step size [ because the
Taylor’s method is not very stronger method to accomplish the accuracy of the solution
and because its formula contained the nth order derivatives of the function probably it
cannot possible to use this method as generally. See the table and observe that recorded all
the information about everything that founded by the Taylor’s method for order two which

was desired in the preceding of this case.

Table (B.4): Illustration the relative and relative percentage of errors
When & = 0.01.

Iterations Absolute error % Relative Error
0 0.000000 0.00
1 0.000004 0.00
5 0.000016 0.00
10 0.000028 0.00
15 0.000037 0.00
20 0.000044 0.00
25 0.000049 0.00
30 0.000054 0.00
35 0.000058 0.00

40 0.000061 0.00
45 0.000064 0.00
50 0.000067 0.00
55 0.000069 0.00
60 0.000072 0.00
65 0.000074 0.00
70 0.000076 0.00
75 0.000078 0.00
80 0.000080 0.00
85 0.000081 0.00
90 0.000081 0.00
95 0.000080 0.00
100 0.000077 0.00
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A plot of the exact and numerical approximate solutions are presented in the figure (B.2) ,
notice that we cannot think that by the difference or distinct between the approximate and
the actual solutions because the founded results are mostly accurate solutions and
fortunately the numerical approximation result is too near of the exact solution.
Occasionally, if we return to the first case then you think that this distinction of the results

refer to the using the small step size & and sometimes to the usage of methods.

Exact solution —e—Taylor’s method (order 2) when h=0.01
3,500000

3,000000

2,500000

2,000000

Y-axis

1,500000

1,000000

0,500000

0,000000
0 0,2 0,4 0,6 0,8 1 1,2

T-axis

Figure (B.2): Approximate and exact solutions for example (B.1)
when @ = 0.01.
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B.2 Approximation Solution from RDE by Taylor’s Method
Of Order-Four

Example (B.2):

Apply Taylor’s method of order four to approximate the solution to the following initial-

value problem
ftyt =y“:y2—%—515 , for 05<t< 15
the initial conditionatt = 0.51is ¥ = 2.363636 . Recall that the actual solution is given by
2t 1
yt=g3-@*y

Solution:

In fact that, this normally an interest example is taken to explain the method and we
recognized the example that the Riccati differential equation which is one of the important
and wonderful type of the ordinary differential equations. Since our initial condition which
is the first term with respect to the desired RDE is known, and it is given in the
example ¥ 0.5 = 2.3636362.

To compute the fourth order of Taylor’s method and because we have the ordinary
differential equation that it is specified in the example which is f(t,, ¥ t; ) then we are

working to calculate the required first three derivatives by differentiating the given

equation f t,y t = y'= y*- %— l—t_,with respect to the independent variable t

Since
y 1
t t = L T
fty YEY-ITaE
Take the first derivative to the above equation to obtain that;
j A
frayt =2yy'- —3— +3
Z_¥ L
y 1 t¥-iTeE - 2
? t t = 2_ = _  _ + —
f a_}’l 2}"' }'I t tg tz t';
2_y- 21
:Zﬂ—ziz—zz—t}l ¥ £ J"‘I.|._2,_
t t? t? t3
2y 2y y* ¥ y
=2 -G Ttatatata



. 3y 3
] = "= 3 _ + —
fftyt y'=2y <&

And take the second derivative to the previous equation to achieve that;

i .3 2tyy' -y 9
freyt =y3 =6y*y' - 7 "R

¥ 1
oz 2 Y L 3 Y iTm Y o
¥y t t? t2 t4

Zy
6 . 6y7 6y 32y°-29*--yF o
¥ t t2 t2 t4

6y 6y? 3 2ty’- 2}-'2—2—:'—}#2 9
t  tZ t2 t4
3 2 3 2
6y4—6y _Gy _6y +9;u +§E__?.
t t? t t2 t3 4
3 2
12y° 3y 6y 9
t t? t3 4

4

1
(o))
bt

freyt =y? =6y

And also take the third derivative to the previous equation to achieve that;
f(-"!) tyt =y*
12 3ty*y' - y* . 3 2tyy' - 2v4t . 6 t3y' - 3yt?

= 24}":!}III_ tz tq, th
36
T
¥ 1 : ¥ 1
=24 ':!( Z_ E_ _l_ _ 12 31:‘}.'2(}.12— I_ E)_ }ﬁ + 3 ZtZ}’I(}’IE_ I_ E)_ 2}"2t
ST YT t2 t4
¥ 1
6 t*(y*-7- %) - 3Wwt* 36
i £ s
3y
. 24yt 24y3 12 3ty'-4yT- S5 323 4y%- 2y
= 24y° - ra Pz + v
6 t*y*- 4t*y-t 36
+ 7z t oy
24y*  24y* 36y* 48y* 36¥* 6y 12y* 6% 6¥° 24y 6
:24}’5_ t B tz_ t + t2+ t3+t2_ 3 _FJ’_ﬁ'_—tﬁ"_fﬁ
36
T
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60y* 30y 30¥¢ 30y 30
t ez B o B
Now, we substitute each of ¥*, ¥, ¥ 3®in the equation (3.2.1), as follows;

f@tyt =y* =24y°-

(4) z 2 I 3 7]
™ t,wy = f t,w + Ef tywy + gf t,w + mf Ly, Wy

y 1 3y¢ 3 12y* 3y¢ 6% 9
= Lo - — +-E o —+ — + =0 e — + —+ =- —
t t2 2 a2y t t3 6 3 6y t t2 t3  t4

1 60y* 30y* 30y¢ 30y 30

+ — 5 - + + - + —

24. 24y t L2 t3 t4 t=

Since the initial condition ¥ t; = ¥ 05 = w, = 2.363636 then again by equation
(2.2.2.1) we obtain;

Wy = Wyt BT * tgwy ]

Yo 1 1 3ys 3
S W+ B yE-- = +IE 2y /4 =
Wl W[] d J"'II] tl.‘.l tg_ 2 d 2}"[1 tl.‘.l t[:?
1 12y5  3¥5 6y 9
+ =@ 6yi- + + - —
6 Y0 to t2 o3 ot}
1 60y} 30vS 30y: 30 30
4 2435 - Yo | .3"[1 4 ',]:U 3 i"n+ -
24 ty L5 th to th

w; = 2.363636

+ 0.1 2.363636 % - 2303636 1
05 05 2

3 2.363636 2+ 3
05 05 #

12 2.363636 3+ 3 2.363636 “
0.5 054

1
+ 5 01 2 2363636 *-

1
+ & 01 6 2363636 *-

. 6 2.363636 9

05 3 05 4
N 1 01 24 2363636 5 60 2.363636 * N 30 2.363636 *
24 ' 05 05 2
N 30 2.363636 * 30 2.363636 N 30 191740
05 3 05 * 055 7 ’

Or we can use another technique to calculate w;as the following steps;

; . Yo 1 » 363636 2 2.363636 1 3.140496:
f toaYe =¥ t tg_ : 05 052" . ’
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3y 3 32363636 ¢ 3

¢ = 3_ <Y + — = . 3 _ + = . .
I’ ta, ¥ 2¥4 o B 2 2.363636 05 053 16.889557;
12}’[?:! 3}% 6ve 9
i - 4 _ + + _
.IF- tl.'.l!}'l[] 6}![] tn tg t[:': tg
- 62363636 4 12 2.363636 * . 3 2.363636 2+ 6 2.363636
- ' 05 05 2 05 3
- 9 = —-903.154293;
054 ' '
60y+ 30y 30vE 30y, 30
O = 24y5 - —2+ 24 I _ +
f o Yo ¥a t t2 t['? e tg
24 9363636 5 60 2.363636 * . 30 2.363636 *
- ' 05 05 2
. 30 2.363636 “ ~ 30 2.363636 X 30 476.020913
05 3 05 # 055 '
So
wy= wo+ BT tgw
/ nz o nq 7]
= Wyt B f tywy + Ef Lo, Wy + §f to,Wo + mf Lo Wy
0.1 14
= 2363636 + 0.1 -3.14049 + > 16.889557 + -93.154293

3

24
wy= W+ BT t,w

+

776.020913 = 2121742,

H @3
= wp t ftywy + EI‘I ty,wy + gf” fy, Wy + Efr” Ly, Wy

2z

01 :
= 2121742+ 01 -1.812225 + - 10.483215 + 5 -42.428321

3

+ 321.252784 = 1.987203;

W= W+ BT* tow,

z° o
=W+ B f tpw, + EJ” iy, W + §f” Lz, W, + m;’”” La, Wy
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7%

= 1987203+ 01 -0.930702 +§ 7.517007 + 3 —-19.506091

F!
+ il 163.124181 = 1.929147,
And so on, until to get the last step which is w;; with respect to the required interval.

Wig= Wot BT* t5,wy
73

' 2 " - "
= wgt+ B f tg, Wy +§f tg, Wg +§f tg, Wy +Ef Ly, Wy

2%

= 3413579 + 0.1 8.704045 +§ 55.677199 + 5 496.700200

E
+ 2 6019.947886 = 4.670236.

Table (B.5) contains the numerical approximation of Taylor’s method of the forth order
and it is clear that it is superior. In fact that, it is interested that the method will give the
successive approximation and more accurate result sufficiently when we are using the step
size @ = 0.1, also it can be observed that the errors decrease when we are using the
smallest step size & otherwise the errors will be increase when we will include the greatest
value of [.

Furthermore in the table (B.5) calculated the exact solution as it is shown in second
column, and computed each of the first, second and third derivatives with respect to the
independent variable t or in the other words, we must take the derivatives by repeated the
differentiation of this function with respect to the desired derivatives as it is obtained in the
algorithm. This work of differentiations are very messy and we should be able to create
this work out for each equation and this approximation not often applied in practice,
however we must be working strictly with this differentiation because it sometimes need to
take more extra time to complete the steps of our working. In order to attain the precisely
approximation result, we used the step size @ = 0.1 which is a small positive increment
int ,as indicated in the exposition of the tabulation, computed that,t, = t;+ B= 0.5+
01=06,t;=t;+@=06+01=07,t3=t,+B@=07+01=08  until we
support the last specified node point with respect to the interval which ist;; = t; + B =
14+ 01=15.
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All the illustrations above about the technique of this method with comparing with the

exact solution interpreted in the table (B.5). Also in the figure (B.3), plotted the Taylor’s

method of order four with the exact solution and because the step size & is small then, the

distance between the exact and the approximate solutions are not appear and also meaning

that the numerical method is very superior.

Table (B.5): illustration of Tylor’s Method of order four and Exact solution

when 2= 0.1

Exact Taylor . . o
i FQe,wy) | fiEawy) | FUwy) | T wy) T

M Wy
05 236364 2.36364 -3.14050 16.88956 -93.15429  776.02091 -2.41894
0.6 212121 212174 -1.81222 10.48321 -42.42832 321.25278 -1.34539
0.7 198634 198720 -0.93070 7.51701 -19.50609 163.12418 -0.58056
0.8 1.92797 1.92915 -0.25233 6.26240 -6.51118 107.34904  0.05441
0.9 1.93303 1.93459 0.35852 6.12069 3.57110 101.07003 0.67472
1 2.00000 2.00206 1.00618 7.02476 15.13626 138.92983  1.38844
1.1 2.13814 2.14090 1.81075 9.37910 33.86855 254.89504  2.34677
1.2 2.37179 2.37558 2.96929 14.44027 72.68880 578.33880  3.83655
1.3 2.75396 2.75924 4.89917 25.81036 171.76864 1619.16498 6.54344
1.4 3.40659 3.41358 8.70405 55.67720 496.70020 6019.94789 12.5665
15 4.66667 4.67024 18.25317 160.9926 2075.0475 35821.2171 31.2537
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—o- Actual Solution

~o-Taylor's Method (order 4)

Y-axis
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Figure (B.3): Approximate and exact solutions for example (B.2)

when h =0.1.
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B.2.1.1 Calculation of absolute and relative percentage of errors:

As mentioned earlier, the formula to find the absolute error is|w(t,) = wy|, since the close
form solution denoted by w(t,) and the approximate solution is represented byw;.
Normally, we thought that any step of the approximation solution contains its error,
however, with respect to the table (B.6), first step is computed by subtracting the
approximate value which is w, = 2.36364 from the exact solution which is w(t,) =
2.36364 then by used the above formula as|2.36364 — 2.36364| = 0.000000 , the
absolute error is 0.00, second step calculated as|2.12121 - 2.12174| = 0.000530, third
step computed as |1.98634 — 1.98720| = 0.000863, and so on, until we get the last step
which is computed as |4.66667 — 4.67024| = 0.0035609.

As presented the formula of percentage relative of error in the preceding sections, therefore it is not
necessary to repeat this formula, we just indicate the results errors which founded by it. The
percentagerelative error is 0.00 in the first step, it is 0.02 in the second and in the end step it is
0.08. Since it is perfect that, if the numericalresult is approach to the actual solution then the value
ofpercentage Relative and absolute errors are decreased, recall that if the exact solution

equal to zero then the %Relative error is undefined.

Table (B.6):Illustration the relative and relative percentage of errors.

i Absolute Error % Relative Error
0 0.000000 0.00
1 0.000530 0.02
2 0.000863 0.04
3 0.001180 0.06
4 0.001559 0.08
5 0.002060 0.10
6 0.002762 0.13
7 0.003785 0.16
8 0.005271 0.19
9 0.006985 0.21
10 0.003569 0.08
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Appendix C. Approximation Solution from RDE by Runge - Kutta
Method

C.1  Approximation Solution from RDE by Runge - Kutta Method of
Order-Two (Improved Euler Method)

Example (c.1): Find the approximate solution for the following initial value problem

2

,_ b Y ¥ _
y_mg+¥+t(l—+t55 : y1 =0, 1l<t<?2
, by using Runge-Kutte method of order two, after that compare with actual solution which
IS given as
y=(t"2-t)/(t+ 1) , and also determine the error with explain its solutions by

graphical representation.

Solution:

We accepted this form of the ordinary differential equation is a Riccati differential
equitation which is nonlinear and first order differential equation, so we apply the Runge-
Kutte method for order two for computing the approximate solutions.

Since t; = 1 and ¥; = Othen

t,= ty+ B=1+01= 11,

t,=t,+B=11+01= 12

ty=t3+ @=12+01= 13,

tig=ty+B=19+01= 2
Consequently, we can continue to calculate k,, k; and because the initial condition is
known then, fortunately we can compute the formula of the Runge-Kutte method for order

two as follow;
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t 2
0o, }*’[J_l_ ¥a

k, = Bf tg, = —t=F——
1 f to Yo 1+t§ t t._-_,1+t§

1 0 (0)2
01—t ——
1+ (D2 171 1+ (12
= 0.05000,
iy + Yot ky (Vo + ky)?

k= Bf tog+ By, + Bky = {

+ + }
1+ (tg+ @) (tg+ B) (tp+ B) 1+ (ip+ B)?

- o1 1+01  0+005000 0+ 0.05000 ?
ST 1+ (1+ 041)2 1+ 0.1 1+01 1+ 1+012 "'
= 0.05442,
1 1
}"ert:}*'e"'z ky+ ks ¥i= Mt > ky+ kg,

y, = 0+ 05 {0.05000 + 0.05442} = 0.05221

And to find v, then we obtain again the above formula as;

ty + M 4 ¥i

by=Bf ty¥% =B ——+t4 L
1 JFI}I'I. l+t12 tl t11+t$

11 0 (0)#
=01 _  + —+ ,
1+(11)% 11 11 1+ (11)%
= 0.05463,
ty + + k + k)2
k;=0f t,+ By, + Bk, =0 { ! X1 LI (V4 1)

T+ (B2 (48 (G+B) 1+ G+ 0)2)

- o1 11+01 005221+ 005463 0.05221 + 0.05463 “
e 1+ (11+0.1)%? 1.1+ 01 11+01 1+ 11+01°%2"°
= 0.05847,
1 1
}"2 = }I'I. + E k'[ + kz }"2 = 005221 + E 005463 + 005847
¥z = 0.10876,
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And also each of the results of the ¥, ¥4, ... ... , ¥ specified as;

¥4 = 0.16909,
¥y = 0.23272,
¥ = 0.29925,
Vg = 0.36835,
V- = 0.43974,
¥s = 0.51316,
¥s = 0.58840,

So, the calculation to last step which is v, interpreted in the following statements as;

t 2
g +}"9 ¥

k, = Bf tg, =0 T
1 f 'EP}'I'J 1+t.§ tg tgl+t§

19 0.58840 (0.58840)*

=01 + +
0 1+ (1.9)% 19 19 1+ (192 '

= 0.07614,
ko= Bf to+ By, + Bk,

t, + @ Vg + Ry Yot Ky 2
=0 + + ,
1+ (tg+ )2 ty+ @ ty+ B 1+ ta+ @2

o1 19+ 01 058840+ 007614 0.58840 + 007614 2
T T 1+ (19+01)2 19+ 0.1 19+ 01 1+ 19+012 '
= 0.07764,
1 1
Vie= Yo+ 5 kit Yig = 058840+ > 007614+ 007764,
Y0 = 0.66529.
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From the preceding computations and with observe or look that on the table (C.1), we can
understand that Runge-Kutte method is one of the essential method to achieve the best
accurate result although the step size is not a smallest value. Notice that, it is not necessary
to put the small step size @ because this method itself can give the strictly and accurate
solution through the implementation.

Fortunately, if we compare the approximate and the exact solutions then we are agreed that
there is no more the difference between both of the results, also meaning that if we cannot
solve the problem analytically then we can use this type of numerical method immediately
to realize the solution.

Also, in the table (C.1) computed the errors between the actual and the approximate
solutions, the last two column of this table, obtained the absolute and percentage relative
errors respectively, for instance that, the absolute error at the end row of the solutions
between both the actual and approximate solutions consist of 0.00137 which is calculated
by subtracting the approximate solution from the exact solution.

Finally, at the end column, computed the percentage relative errors as we have seen in the
previous sections, the amount of the percentage relative error in the last step consist of
0.21.

See all the computations through the table (C.1) in the next page with graphical

representation.
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Table (C.1): llustration of Runge-Kutte method for order two and Exact

Runge-
Exact Kutte Absolute | % Relative
[ t, ) [ ko
solution method Error Error
(order 2)
0 01 1 0.00000 0.00000 0.05000 0.05442 0.00000 Undefined
1 |01 1.1 0.05238 0.05221  0.05463 0.05847  0.00017 0.32
2 |01 1.2 0.10909 0.10876  0.05865 0.06201  0.00033 0.30
3 0.1 1.3 0.16957 0.16909 0.06215 0.06511 0.00047 0.28
4 |01 14 023333 0.23272 0.06523 0.06784  0.00061 0.26
5 |01 15 0.30000 0.29925 0.06794 0.07026  0.00075 0.25
6 0.1 16 0.36923 0.36835 0.07035 0.07242 0.00088 0.24
7 |01 17 0.44074 0.43974  0.07249 0.07435  0.00100 0.23
8 |01 18 051429 051316 0.07441 0.07608  0.00113 0.22
9 |01 19 05896 0.58840 0.07614 0.07764  0.00125 0.21
10 | 0.1 2 0.66667 0.66529  0.07769 0.07906  0.00137 0.21
solution when 1= 0.1.
Exact Solution Runge-Kutta Method (Order 2)
080000 0,66667
0,70000 0,58966
0,60000 0,51429
0,44074
o 090000 0,36923
& 0,40000 0,30000
> 0,23333
030000 0,16957
0,20000 0,10909
0,10000 0.05238
’ 0,00000
0,00000
0 0,5 1 . 15 2 2,5
T-axis

Figure (C.1): Approximate and exact solutions for example (C.1)
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when & = 0.1.
C.2 Approximation Solution from RDE by Runge - Kutta Method of

Order-Four

Example (C.2): Find the approximate solution for the following initial value problem

= 1+2 2+2 + y? 1-5 1<sts<2
¥ = F F YTy , yi=s =is

, by using Runge-Kutte method of order four, after that compare with actual solution which
is given as ¥y = (3+ 3t- t¥)/(3t+ t*) , and determine the error with explain by

graphical representation.

C.2.1 Approximation Solution of example (C.2) when (h= 0.1)

Since t; = 1 then byusing this formt,,, = t, + [, we obtain
t,=ty+@A=1+01= 11,
t;=t;+@=11+0.1= 1.2, andsoon

tig=tg+ @=19+01= 2.
Now, we are continue to compute the approximate solution and since the initial condition

givenas ¥ 1 = 52 then, we find that

2 2
ky=Bf tgyo =01 1+ — - 2+ — Yo+ ¥§
(W]

0

_ o1 1+2 2+2 5 N 5 “
- 1 1 2 2
= —-0.07500
1 1
ky= Bf t;+ El}"e*' Ekl ,
2 2 1 1. Z
= O 1+ ——— - 2+ ——— }"[]+§k1 + }"[]"'5-{'51 )

1
+ - + -
to+ -0 to+ -0
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1
+ > —-0.07500

]

o
=
=

+

|

N

+
NI o1

2

- 1+—1 - 2+ 1 Yot sk + Yot Sk )
to+ ;0 th+ -0 2 2
2 2
2 2 5 1
-0l dx 1 - 2t > +5 —006468
1+501 1+ 01
2 2
2
5 1
+ 5 +5 —006468 = -0.06415
2 2
k'qu t!+’}"£+k3|
2
_ b B .
B to+ 2% Ei + Yo+ k3 + Yo+ k3 ®
=01 1+ P— > L 006415 + 2 + 006415
S 1+01 1+01 5 0. 5 0.
= -0.05490

Thus, we can apply the equation (2.3.2.4) to achieve the next v, as follow;

1

Yier = }*’e"'g ky+ 2k + 2k + ky
1

¥i= }"n"'g ky+ 2k + 2k + ky

5. 1
W= (E) + 6~ 0.07500 + 2(-0.06468) + 2(-0.06415) + —0.05490 ,

= 243541
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Now, we are going to find ¥, by using the entire information of?y; , naturally, we must be
find each of the k,, ks, ks, k,; as we have seen in the previous calculations, after that it can
be easy to compute v in order to complete the calculations;

Since ty = 1.1 theny, = 2.43541 , subsequently we find that;

2 2
k= 0f tyys =01 L1+ = 24—yt

1 1

2 2
=01 1+-— - 2+-— 243541 + 243541 ? = -0.05494,
11 1.1
1 1
k;= Bf t1+§:F1+§k1 :
2 2 1 1, *
=0 1+—1 - 2+—1 y1+_k1 + y1+_k1 )
t,+ -0 t,+ -0 2 2
2 2
2 2
=01 - 2+
11+ 05 0.1 1.1+ 05 0.1

1 1
243541+ - -0.05494 + 243541+ - -0.05494

2 2
= -0.04663,
1 1
ks = Bf t1+§,_}11+§k2 ,
2 2 1 1 ¢
= o 1+ ——a— - 2+ ——7— F1+§kz+ FH‘Ekz )
t,+ -0 t,+ -0
2 2 1
=01 1+ : - 2+ : 2.43541 + 5~ 0.04663
11+ - 01 11+- 01
2 2
1 2
+ 243541 + > —-0.04663 = -0.04618

101



k-ﬂ-: f ll’-'L+ ,_}11+k3,

2
= [? - 2
@ L+ O 2+ . Wt ks + yt+lg?,
=01 1+ 2 2+ 2 2.43541 + 0.04618
- 11+ 0.1 11+ 01 ' '

+ 243541+ -004618 - = -0.03854

Thus, we can apply the equation (5.5) to achieve the next v, as follow;

1
}"2:}‘1"'6 ky+ 2k; + 2k + ky

1
}"2:}‘1"'6 ky+ 2k; + 2k + ky

1
= 243541 + 5 -0.05494 + 2 -0.04663 + 2 -0.04618 + -0.03854

= 2.38889
Because the calculations of the next ¥, values same as the preceding calculations then we

only refer to their values as follow;

V3= 235746, ¥y, = 2.33928 , v = 2.33333 , ¥ = 2.33928,y, = 2.35746,
Vg = 2.38889,¥; = 243540, ¥, = 2.49999.

After we found the last ¥, which is ¥, with respect to the desired interval, fortunately we
have achieved the interested result to this type of the differential equation which is Riccati
differential equation. And also indicated that the Runge-Kutte method that it was used
through the implementation of this method to find the approximation solution is a mostly
accurate method compare to the all these method that used to find the approximation
solution, notice that, it is not necessary to take the small step size E.

As mentioned earlier, all the computations are indicated in the table (C.2) with
representation of the actual solution which is obtained in the third column. Nate that, this
tabulation applied by using the (Microsoft Office Excel)which is putted by one of the most

important program that it can give us a best and accurate solution.
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Table (C.2): Illustration of Runge-Kutte method for order four and Exact

) Runge-Kutte method

t; | Exact solution (order 4) [ ks K ('R

1 2.50000 2.50000 -0.07500 -0.06468 -0.06415 -0.05490
1.1 2.43541 2.43541 -0.05494 -0.04663 -0.04618 -0.03854
1.2 2.38889 2.38889 -0.03858 -0.03156 -0.03115 -0.02454
1.3 2.35747 2.35746 -0.02457 -0.01833 -0.01796 -0.01193
1.4 2.33929 2.33928 -0.01196 -0.00613 -0.00576  0.00003
15 2.33333 2.33333 0.00000 0.00573 0.00613  0.01198
1.6 2.33929 2.33928 0.01196 0.01791 0.01835  0.02460
1.7 2.35747 2.35746 0.02457 0.03108 0.03160  0.03861
1.8 2.38889 2.38889 0.03858 0.04606 0.04671  0.05498
1.9 2.43541 2.43540 0.05494 0.06396 0.06482  0.07504

2 2.50000 2.49999 0.07500 0.08639 0.08759  0.10084

solution when @ = 0.1
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C.2.1.1 Absolute and Percentage Relative Errors:

In the preceding sections, we indicated that how can find the absolute and relative
percentage errors and given their formulas that use to find the amount values between the
actual and the numerical solutions. So, we don’t like to write their rules again, only we
arise to interpret the errors with respect to the desired example.

As presented in the table (C.3), the absolute error in all situations equal to zero except the
last step (situation) that the amount value of its error equal to the 0.00001. In actually,
these all amounts are attained by subtracting the numerical solution from the actual
solution. Note that, in this case, taken the tolerance equal to10~% and @ = 0.1.

Evidently we have expressed in the table (C.3), the percentage relative error through the all
situations equal to zero because firstly: the method that used to find the numerical solution
Is more extremely accurate method although the step size & is not too small. Secondly: this
amount of error is percentage relativity which its tolerance equal to 10~# and keep in your
mind always, it can be measured the percentage relative error by subtracting the numerical

solution from the exact solution and divide by the exact solution.

Table (C.3) illustration the relative and relative percentage of errors

i Absolute Error % Relative Error
0 0.00000 0.00
1 0.00000 0.00
2 0.00000 0.00
3 0.00000 0.00
4 0.00000 0.00
5 0.00000 0.00
6 0.00000 0.00
7 0.00000 0.00
8 0.00000 0.00
9 0.00000 0.00
10 0.00001 0.00
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Exact Solution Runge-Kutta (order 4)

2,52000 2,50000 2,50000
2,50000 243541 243541
2,48000
2,38889
2,46000
2,38889
2,44000
g%
£ 5 42000 2,35747
>_
2 40000 2,35747
2,38000 2,33929
2,36000 2:33929
2,34000
2,32000
0 0,5 1 Taxis 1.5 2 2,5

Figure (C.2): Approximate and exact solutions for example (C.2)
When @ = 0.1.

C.2.2 Approximation Solution of example (C.2) when (h = 0.01)

In actually, there is no necessary to use the smallest step size & when we bring the Runge-
Kutte method for solving the initial value problem for ordinary differential equation,
because the method naturally can give us the accurate result although the value of step size
is not very small. But in this example we take the smallest step size @ only for indicate the
mostly accurate in the approximate solution and for give more representation about the
illustrations of this method.

In fact that, in the previous case we explained the method widely then, in this case we do
not write all of the steps of the solution again, because we changed only the value of step
size @ and also we take the some steps of the tabulation because it is too long which is
consist of one hundred iterations . In the next page expressed each of the tabulation and

figure of this case when & = 0.01.
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Table (C.4) illustration of Runge-Kutte method for order four and Exact

Exact

Runge-Kutte

ky

ks

ks

ks

solution when = 0.01.
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solution Method
(order 4)

0 1 2.50000 2.50000 -0.00750 -0.00739 -0.00739 -0.00728

1 1.01 2.49261 2.49261 -0.00728 -0.00717 -0.00717 -0.00706

5 | 1.05 2.46520 2.46520 -0.00644 -0.00634 -0.00634 -0.00624
10 1.1 243541 2.43541 -0.00549 -0.00541 -0.00540 -0.00532
15 | 1.15 241011 241011 -0.00464 -0.00456 -0.00456 -0.00448
20 | 1.2 2.38889 2.38889 -0.00386 -0.00378 -0.00378 -0.00371
25 | 1.25 2.37143 2.37143 -0.00313 -0.00307 -0.00306 -0.00300
30 | 1.3 2.35747 2.35747 -0.00246 -0.00239 -0.00239 -0.00233
35 | 1.35 2.34680 2.34680 -0.00181 -0.00175 -0.00175 -0.00169
40 14  2.33929 2.33929 -0.00120 -0.00114 -0.00113 -0.00107
45 | 1.45 2.33482 2.33482 -0.00059 -0.00053 -0.00053 -0.00047
50 | 1.5  2.33333 2.33333 0.00000 0.00006 0.00006  0.00012
55 | 1.55 2.33482 2.33482 0.00059 0.00065 0.00065  0.00071
60 | 1.6  2.33929 2.33929 0.00120 0.00126  0.00126  0.00132
65 | 1.65 2.34680 2.34680 0.00181 0.00188 0.00188  0.00194
70 1.7  2.35747 2.35747 0.00246  0.00252 0.00252  0.00259
75 | 1.75 2.37143 2.37143 0.00313 0.00320 0.00321  0.00328
80 | 1.8 2.38889 2.38889 0.00386  0.00393  0.00393  0.00401
85 | 1.85 241011 241011 0.00464 0.00472 0.00472  0.00480
90 19 243541 2.43541 0.00549 0.00558 0.00558  0.00568
95 | 1.95 2.46520 2.46520 0.00644  0.00654 0.00654  0.00664
100 2 2.50000 2.50000 0.00750 0.00761 0.00761  0.00773
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—o-Exact Solution ~®-Runge-Kutta Method (order 4)

Y-axis

2,52000

2,50000

2,48000

2,46000

2,44000

2,42000

2,40000

2,38000

2,36000

2,34000

2,32000

T-axis

Figure (C.3): Approximate and exact solutions for example (C.2)
When h = 0.01
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Appendix D.  Approximation Solution from RDE by Runge - Kutta-
Fehlberg Method

Example (D.1): Use the Runge-Kutta-Fehlberg method to determine the approximate
solution to the initial value problem

y=90t+ 3-18t y+ 9t-3y* , ¥y0 =2 ,60<st<1,
, with @ = 0.1 and compare to the exact solution which is given as

v=(3+ 3t- t%)/(3t- t%).

Solution:
We recognized the given example is one type of the ordinary differential equation which is
Riccati differential equation, so we are ready to apply the desired method as;
Since, we have the initial condition wy then we can determine w; by using 2 = 0.1,
ky = Bf towy = (01)(9ty+ 3- 18t ¥g+ 9ty— 3 w)?

=(01)90 + 3-180 (2)+ 9(0)-3 2 * = -0.6000000;

1
g

1
ko = Bf tn"'Z,Wu"' !

1 1 1
=(01) 9 0+ 7 01 + 3-18 0+ 7 01 2+ 7 -06000000

1 1
+ 9 0+ 2 01) -3 2+ 2 - 0.6000000 = —-0.4554938;

3 3 9
ks= Bf t+ =Bw,+ =k, +

8 32 ﬁkﬁ

3
=(01) 9 0+ £ (0.1)
3
+ 3-18 0+ £ (01) 2+ o5 -0.6000000

9
% 0.4554938

+

+

90+3 01

3
-3 2+ 2 -0.6000000 + ey —-0.4554938

-0.4218215;
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G = o s 12!1# N 1932 7200 N 7296
+= B 13 " 2197 ' 2197 ¢ 2197 ¢

= (01) 9 0+ % (0.1)

¢ 3-18 0+ 22 (01) 2+ 232 56000000
13 O 2197
7200 _ 14554938 + 1220 _ (4218215
2197 2197
+ 90+ 2 (01
3 2+ 23256000000 - 220 _ (4554938
2197 2197
2
2% 04218215 = -0.2383604
2197 ' S ’
439 3680 845
= [ N - —
ks= Bf t+ Bwit greks = 8kt ks = 277k

= (01) 90+ 01

439
3-180+01 2+ —= -0.6000000 - 8 —0.4554938

+

216
+ 3680 04218215 845 0.2383604
513 ' 4104 '
+ 90+01
439
-3 2+ —— -0.6000000 - 8 —0.4554938
216
z
3680 845
-04218215 - —— -0.2383604 = -0.1763148;

513 4104
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2 _ o2 g, lo 8\, 3544, 1850 11
6= Bf & Iy 2 2565 ° 4104 ' 40 "
~01 9 0+ I o1
“o =X
1
+ 3-18 0+ 01 2- — -06000000 + 2 -0.4554938
3544 4218215 + 0.2383604
2565 4104
_ = _0176314
o 01763148
+ 90+ Io1
=X
-3 2- 5= -06000000 + 2 -04554938
3544 4218215 + 0.2383604
2565 4104
2z
11
- 55 -01763148 = ~0.3962347
., , 16, 6656 28561 0. .2,
Wi= Wot 735%™ 158253 " 56430 4 50 0 ' 55
= 24 06000000 + 282° 04218015 + 2801 _(53a3604
135 12825 56430
9 2
- £5 ~01763148 + - -03962347 = 16063597
And
.25, 1408 2107 1
Wi= Wot 516" " 25652 " 21044 55

216

1
- = -0.1763148

5

2+ 25 0.6000000 + 1408
' 2565

2197
-0.4218215 +

2104 0.2383604

1.6066671
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All the calculations of algorithm above are shown in the table (D.1), the accuracy has been
happened from the fourth and fifth order of the RKF-Method compare to the actual
solution meaning that it is appear the increasing of the accuracy to get the certain of the
calculation. Also in the table (D.3) expressed each of the absolute and the percentage
relative errors with respect to the Runge-Kutta-Fehlberg method for order four and order
five respectively.it is clear that the percentage relative error through the Runge-Kutta-
Fehlberg method of order five is less than the percentage relative error through the Runge-

Kutta-Fehlberg method of order four.

Table (D.1): Hlustration of Runge-Kutte —Fehlberg method for order four and
five and Exact solution when 1= 0.1.

i t Exact solution RKF (order4) RKF (order 5)
0| 01 0 2.0000000 2.0000000 2.0000000
1| 01 0.1 1.5883330 1.6066671 1.6063597
2 0.1 0.2 1.3781808 1.4133309 1.4128873
3 0.1 0.3 1.2551537 1.2981237 1.2975965
4 0.1 0.4 1.1772976 1.2217283 1.2211448
5 0.1 0.5 1.1255748 1.1677040 1.1670803
6 | 01 0.6 1.0900958 1.1279539 1.1273003
7 0.1 0.7 1.0652216 1.0979977 1.0973213
8 0.1 0.8 1.0475142 1.0751165 1.0744226
9 0.1 0.9 1.0347712 1.0575272 1.0568196
10 | 0.1 1 1.0255290 1.0439824 1.0432642
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Table (D.2): Hlustration of the Coefficients with respect the Runge-Kutte —
Fehlberg method.

ky k. k- k., ke ke
-0.6000000  -0.4554938  -0.4218215  -0.2383604  -0.1763148  -0.3962347
-0.2591190  -0.2174694  -0.2040951  -0.1457141  -0.1334662  -0.1916635
-0.1443233  -0.1268853  -0.1205083  -0.0938403  -0.0894146  -0.1143513
-0.0919359  -0.0829493  -0.0794298  -0.0647615  -0.0625769  -0.0759800
-0.0634091  -0.0581108  -0.0559497  -0.0468705  -0.0455915  -0.0538129
-0.0459367  -0.0425026  -0.0410663  -0.0349645  -0.0341332  -0.0396373
-0.0343008  -0.0319174  -0.0309052  -0.0265580  -0.0259793  -0.0298935
-0.0260708  -0.0243346  -0.0235909  -0.0203670  -0.0199453  -0.0228452
-0.0200005  -0.0186941  -0.0181324  -0.0156794  -0.0153630  -0.0175679
-0.0153994  -0.0143968  -0.0139656  -0.0120718  -0.0118304  -0.0135317
-0.0118562  -0.0110791  -0.0107453  -0.0092739  -0.0090881  -0.0104094

Table (D.3): Hllustration the relative and relative percentage of errors.

Absolute Error
(RKF- Order 4)

Absolute Error
(RKF- Order 5)

% Relative Error
(RKF- Order 4)

% Relative Error
(RKF- Order 5)

©O©| O N| O O &l Wl N | O

=
o

0.0000000
0.0183341
0.0351501
0.0429700
0.0444307
0.0421292
0.0378581
0.0327761
0.0276024
0.0227561
0.0184534

0.0000000
0.0180267
0.0347065
0.0424428
0.0438472
0.0415054
0.0372044
0.0320997
0.0269084
0.0220485
0.0177352

0.00
1.15
2.55
3.42
3.77
3.74
3.47
3.08
2.64
2.20
1.80

0.00
1.13
2.52
3.38
3.72
3.69
3.41
3.01
2.57
2.13
1.73
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—e—Exact Solution —o—Runge-Kutta-Fehlberg (order 4)
2,5000000

1,6066671
1,4132160

1,2979108 1,0975312
1,2214355  1,1275373 1,0746059

1,1673446 1,0569775
1,0433985

2,0000000

1,5000000

Y-axis

1,0000000 15883330
’ 1,0255290

1,3781808
0,5000000 1,2551537 - 4751’1913247712

1,1772976 1,0652216
1,1255748 1,0900958

0 0,2 0,4 0,6 0,8 1 1,2

0,0000000

T-axis

Figure (D.1): Approximate and exact solutions for example (D.1)
when & = 0.1.

—e—Exact Solution —o—Runge-Kutta-Fehlberg (order 5)

2,5000000
1,6063597

1,4128873
1,2975965
1,1670803 1,0973213
1,2211448 1,1273003 1,0744226

1,0568196
1,0432642

2,0000000

1,5000000

Y-axis

1,5883330
1,0000000

1,3781808 1,0255290
1,2551537 1,0347712
1,1772976 ]| 0652211{3’475142
11255748 1 0900958

0,5000000

0,0000000
0 0,2 0,4 0,6 0,8 1 1,2

T-axis

Figure (D.2): Approximate and exact solutions for example (D.1)
when @ = 0.1
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Appendix E.  Approximation Solution from RDE by Runge - Kutta-
Verner Method

Example (E.1): Use the Runge-Kutta-Verner method to determine the approximate
solution to the initial value problem
¥=1+2y-y* , »0 =0483649 , 0<st<1,
, and compare to the actual solution for this Riccati differential equation which is given as
_ _ 1 V2-1
t =1+ V2tanh V2 t+ -log— :
Y 2 ‘q\/2+ 1

Solution: let @ = 0.1 and, since the initial condition is given then we can compute all the

desired coefficients as;
ky=Bf t,w, =011+ 2 0483649 - 0.483649 ¢ = 0.173338125;

1 1
kzz f £, + élw£+ Ekl

1
=011+ 2 0483649+ 5 0.173338125

1
- 0483649 + 6 0.173338125 = 0.17623811,;

4 4 16
k::;:f t!+_,wi+_k1+

15 75 7_5‘!‘2

4 16
=011+ 2 0483649+ 7 0.173338125 + 7 0.17623811

4 16
0.483649 + 7 0.173338125 + 75 0.17623811

0.17795611;

5 8 5
kg = ko + Shy

k,= 10 t+2 +
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5
= 01{1+ 2 0.483649 + G 0.173338125 - 3 0.17623811
5
+ > 0.17795611
8
- 0.483649 + 6 0.173338125 - 3 0.17623811
5 2
+ > 017795611 = 0.184241,

165 55 425 85
l!‘li:l‘l' _kz_ _kg'{' %

ks = & t+5 -
5= Bf t 2, Wy 6 64

5 7 Ky

165 55
=01 1+ 2 0483649 - 4 0.173338125 + 5 0.17623811

425 0.17795611 + 85 0.184241
64 ' 9%

165 55
- 0.483649 - 4 0.173338125 + 3 0.17623811

425 0.17795611 + 8 0.184241 = 0.186580:
64 96 T ’

4015 11 88

12
k!.]:f t!'{' ,WE+€RI_8!{C2+W!{C3_

S + —k
36 %t 2557

12
=01 1+ 2 0483649+ = 0.173338125 - 8 0.17623811

4015

11 88
12 0.17795611 - 36 0.184241 + >e8 0.186580

12
- 0.483649 + 3 0.173338125 - 8 0.17623811

4015

11 88
12 0.17795611 - 36 0.184241 + >e8 0.186580

0.188799;

116



8263 124 643 81 2484

k2~ 580 %3~ 250 %4 * Topas K

1
o= B £+ —B W - — .+ 2
7= Bf L+ g B Wi Teaag et 75

8263 124
=01 1+2 0483649- ——— 0173338125 + —— 0.17623811

15000 75

0.17795611 81 0.184241 + 0.186580
680 250 10625
0.483649 8263 0.173338125 + 124 0.17623811

' 15000 75 '

0.17795611 81 0.184241 + 0.186580

680 250 10625
= 0.174517;

3501 300 297275 319 24068

= [ - -
kg = Bf t+ Bwit oon k= ket e ks = oaos ket G065 K
3850
+ =
26703
=01 1+ 2 0483649+ 0.173338125 300 0.17623811
o ' 1720 43
+ 297275 0.17795611 319 0.184241
52632 2322
+ 24068 0.186580 + 3850 0.174517
84065 26703
0.483649 + 0.173338125 300 0.17623811
' 1720 43
+ 297275 0.17795611 319 0.184241
52632 2322
+ 24068 0.186580 + 3850 0.174517 2 = 0.188798
84065 26703 T '

Now, we are continue to applying the Runge-Kutta method for fifth-order as;

13 2375 5 12

160%1 " 5oga st gkt gskst

3
85 Vi

44

Wy = Wyt
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13 5
= 0.483649 + 160 0.173338125 + 0.17795611 + I 0.184241

5984

12 3
+ — 0. + — 0 = U :
85 0.186580 22 0.188799 0.665150

And then we obtain the Runge-Kutta method for sixth-order as;

3 875 23 264 125 43

W, = + —ky+ —— k. + —k, + +
Wi= Wo 4o'£Cl 2244'!‘:“ 721 1955'£CE 11592k?616

kE:i

= 0.483649 + 3 0.173338125 + 875 0.17795611 + 23 0.184241
S 40 2244 72

264
——— 0.186580 +

43
+ . i - o |
1955 11502 0.174517 616 0.188798 0.665150

As we have seen from the previous algorithm, we solved the nonlinear Riccati differential
equation by using the Runge-Kutta-Verner method until we represent that how to find the
solution for this type of ordinary differential equation. Clearly, for any ODEs in the form
of the initial value problem, it can be find the approximate solution by obtaining one of the
technique from the numerical methods.

All the evaluations of the coefficients and the Runge-Kutta-Verner method of order five
and six are considered in the table (E.1), (E.2) respectively. Observe that, if we focus on
the results that is explained within the tabulation then we can understand that there is no
any deferent between the actual and the approximate solutions because the method that
used to solve the problem was super numerical method.

Although the value of step size B is not too small,weattained the mostly accurate and
fortunateapproximate solutions because this technique is more extremely developed
compared with the other numerical methods.
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Table (E.1): lllustration of Runge-Kutte —VVerner method for order five and

six and Exact solution when &= 0.1.

[ t, Exact Solution | R KV - (Fifth order) | R KV - (Sixth order)
0 0.1 0 0.483649 0.483649 0.483649
1 0.1 0.1 0.665150 0.665150 0.665150
2 0.1 0.2 0.859142 0.859142 0.859142
3 0.1 0.3 1.058640 1.058640 1.058640
4 0.1 0.4 1.255827 1.255827 1.255827
5 0.1 0.5 1.443240 1.443240 1.443240
6 0.1 0.6 1.614845 1.614845 1.614845
7 0.1 0.7 1.766694 1.766694 1.766694
8 0.1 0.8 1.897050 1.897050 1.897050
9 0.1 0.9 2.006074 2.006074 2.006074
10 0.1 1 2.095286 2.095286 2.095286

Table (E.2): Illustration of the Coefficients with respect the Runge-Kutte —

Verner method.

k1 k2 k3 k4 k5 k6 K7 k8
0.17334 0.17624 0.17796 0.18424 0.18658 0.18880 0.17452 0.18880
0.18879 0.19080 0.19193 0.19574 0.19698 0.19802 0.18962 0.19802
0.19802 0.19884 0.19923 0.19999 0.19994 0.19966 0.19837 0.19966
0.19966 0.19916 0.19875 0.19636 0.19500 0.19346 0.19948 0.19346
0.19346 0.19170 0.19057 0.18539 0.18295 0.18035 0.19278 0.18035
0.18035 0.17760 0.17592 0.16867 0.16550 0.16218 0.17928 0.16218
0.16220 0.15880 0.15679 0.14837 0.14486 0.14118 0.16086 0.14118
0.14122 0.13755 0.13543 0.12670 0.12319 0.11946 0.13978 0.11947
0.11953 0.11592 0.11385 0.10549 0.10223 0.09868 0.11811 0.09870
0.09878 0.09544 0.09356 0.08599 0.08312 0.07992 0.09747 0.07993
0.08003 0.07709 0.07545 0.06889 0.06646 0.06369 0.07888 0.06371
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[ Absolute Error Absolute Error % Relative Error % Relative Error
(RKV- Order 4) (RKV- Order 5) (RKV- Order 5) (RKV- Order 6)
0 | 0.0000000000 0.0000000000 0.00 0.00
1 0.0000000048 0.0000000007 0.00 0.00
2 | 0.0000000072 0.0000000004 0.00 0.00
3 | 0.0000000079 0.0000000001 0.00 0.00
4 0.0000000075 0.0000000002 0.00 0.00
5 | 0.0000000052 0.0000000005 0.00 0.00
6 | 0.0000000015 0.0000000001 0.00 0.00
7 0.0000000157 0.0000000019 0.00 0.00
8 | 0.0000000392 0.0000000061 0.00 0.00
9 | 0.0000000704 0.0000000114 0.00 0.00
10 | 0.0000001058 0.0000000165 0.00 0.00
Table (E.3): Illlustration the relative and relative percentage of errors.
—e—Exact Solution R-K-Verner (Fifth order)
2,500000
1766694 1,89705%006074 2,095286
2,000000 1,614845
1,443240

1,500000 1,255827
ES 1,058640
> 1000000 0,859142

’ 0,665150
0,483649
0,500000
0,000000
0 0,2 04 L. 06 038 1 1,2
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Figure (E.1): R-K Verner method of the fifth order and exact solutions for
example (E.1) when @ = 0.1.

—e—Exact Solution R-K-Verner (sixth order)
2,500000
2,006074
2,095286
1,897050
1,766694
2,000000
1,614845
1,443240
1,255827
1,500000
1,058640

2
3
> 0,859142

1,000000 = 0,665150

0,483649

0,500000

0,000000

T-axis
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Figure (E.2): R-KVerner method of the sixth order and exact solutions for
example (E.1) when @ = 0.1.
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Appendix F.  Approximation Solution from System of Differential

Equations

Example (F.1):
By using the Runge-Kutta method of the fourth order transform the second-order initial
value problem

ty"'-y'-tly=0 , for 1<st<2 ,y1 =2776347 ,y'1 = 2169817
Into the system of the first-order initial value problems, to determine the approximate

solution when @ = 0.1, Tolerance =10~ , and if the actual solutions given as follows

ne 3 e, 1 t?

:.v()—zexp 5 T3P -3
i =35 £= 1, t?

¥y =3 exp > > exp >

Solution:
Let uy, t = ¥ t anduy(t) = ¥(t) , then by an assumption of the transformation as

mentioned earlier, then it can be transform the second-order equation into the system of the
first order as;

't mu t = f tugu,

1
't = —u,+ tu, = f t,u,,u
2 t 2 1 2 1 2

, with the initial conditionu, 1 = v 1 = 2776347 andu, 1 = ¥' 1 = 2.169817.
Now, we are ready to implement the Runge-Kutta method of the order four which its
formulas is given in the equation (4.5.3),(4.5.4) as;

ky = Bf, tguy,u; = 01 u, =01 2169817 = 0.216982;
1 1

l, = 8f, ty,uy,u; = 0.1 Tzt tauy = 0.1 1 2169817 + 1 © 2.776347
0

= 0.494616;
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k, I4 1
k, = Bf, t,+ St = Ut o = 0.1 u,+ 511

1
= 01 2.169817 + > 0494616 = 0.241712;

k4 44
I, = af, t._-_,+§,ul+?,ug+5
= [ ! +li + 1:+12 +lk
=L t._-_.+‘-l_ Uz 5 0% St Tty 5
1
=01 —g 2.169817

1 1 1
+ > 0494616 + 1+ > 01 2776347 + 5 0.216982

= 0.548256;
k., b 1 1
ky= Bf, to+ = U+ — U+ — =B uy+ =1, = 0.1 2169817 + = 0.548256
2 2 2 2 2
= 0.244394;
l
l;=0f tg+ 5 Uy + ?2 ,'x.-,2+52
1 +1I +t+12 +1.|!s:
=0 — Uzt - -0 ut+ =
t+ % 2T 5tz 0t 5 1T 5tz
1 1
=01 — 2169817+ = 0.548256
1+21 01 2
2z
1 “ 1
+ 1+ 5 01 2776347 + 5 0.241712 = 0.552173;

ky= 0f to+ B, uy+ kg, uz+ 13 = Bu,+ I3 =01 2169817 + 0.552173
= 0.272199;
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ly= Bf tg+ Buy+ kg Uy + 13 = U+ I3 + tg+ B2 uy+ ky

to+ O

1

+ 1+ 0.1 % 2776347 + 0.244394 = 0.612963.

So by equation (4.5.3), we obtain;

1
Wiq = Wygt 5 ky+ 2k, + 2ks+ Ky

1
2776347 + 5 0.216982 + 2 0.241712 + 2 0.244394 + 0.272199

3.019913

1
wz,l = WE,L-.|+ 6 !1 + 2!2"' 2!':;"' !4

1
2.169817 + 6 0.494616 + 2 0.548256 + 2 0552173 + 0.612963

2.721223.

From the algorithm above, Observe that to the evaluation of the coefficients we must be
calculate Kk beforel,, k;before l,and so on, because [, l-depended on the k,,
krespectively, after that we were agreed to calculating each of the w; ;and w;; and then
because in this example especially the differential equation in the situate of the second
order then naturally it is transformed only to the two first order differential equation.
Normally, we have done successfully the computations by using the Runge-Kutte method
for the fourth order to calculate the value of w; ; = 3.019913 since the actual solution
corresponded to the amount value isu;; = 3.019916and w,; = 2.721223 since the
actual solution corresponded to this amount value is tu;; = 2.721225 and so on until
preserved the last stage which is wy = 11.151011 however the exact solution
corresponded to this approximate solution is ;= 11.151252and also wyq =
22.031481 however the exact solution corresponded to this approximation solution is
Uz = 22.031833, it is meaning or indicate that we can evaluate each ofw;, ; and w; for
=012, ... ... ,10,as represented the calculations from the table (F.1). Finally,
considered the illustrations above by graphical representation in the figure (F.1), also
measured the absolute and relative percentage of errors in the table (F.3). Thus, we are

fortunately conserved the accurate numerical solution compared to the exact solution.
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Table (F.1): Hlustration of R-K method for order four and Exact solution

when @ = 0.1.

, . ¥i o= Uy Wy | Vi o= Uy W3

exact RK (order 4) exact RK (order 4)
0 |01 1 2.776347 2.776347 2.169817 2.169817
1 /01 11 3.019916 3.019913 2.721225 2.721223
2 |01 12 3.325026 3.325020 3.405928 3.405923
3 |01 13 3.706745 3.706734 4.260344 4.260334
4 101 14 4.184340 4.184321 5.332640 5.332622
5 |01 15 4.782652 4.782621 6.686999 6.686967
6 |01 16 5.533978 5.533931 8.409506 8.409454
7 |01 17 6.480651 6.480580 10.616339 10.616255
8 |01 138 7.678585 7.678478 13.465235 13.465100
9 |01 19 9.202194 9.202034 17.171668 17.171450
10 |01 2 11.151252 11.151011 22.031833 22.031481

Table (F.2): Hlustration of the Coefficients with respect the Runge-Kutte

method.

Ky Ly Kz Ly Ky La Ky Ly
0.216982 0.494616 0.241712 0.548256 0.244394 0.552173 0.272199 0.612963
0.272122 0.612793 0.302762 0.680649 0.306155 0.685625 0.340685 0.762858
0.340592 0.762630 0.378724 0.849122 0.383048 0.855561 0.426148 0.954470
0.426033 0.954156 0.473741 1.065294 0.479298 1.073758 0.533409 1.201469
0.533262 1.201028 0.593314 1.344994 0.600512 1.356272 0.668889 1.522514
0.668697 1521888 0.744791 1.709862 0.754190 1.725067 0.841203 1.943176
0.840945 1.942277 0.938059 2.189607 0.950426 2.210322 1.061978 2.498672
1.061626 2.497373 1.186494 2.825236 1.202887 2.853724 1.346998 3.237776
1.346510 3.235888 1.508304 3.673680 1.530194 3.713200 1.717830 4.228452
1717145 4.225695 1.928430 4.814484 1.957869 4.869752 2.204120 5.566021
2.203148 5561979 2.481247 6.359513 2521124 6.437401 2.846888 7.385073
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Table (F.3): Hlustration the relative and relative percentage of errors.

Absolute Error

Absolute Error u;

% Relative Error

% Relative Error

1y ; R-K method R-K method Uy, ; R-K method Uz ; R-K method
(order 4) (order 4) (order 4) (order 4)
0 0.000000 0.000000 0.00 0.00
1 0.000003 0.000002 0.00 0.00
2 0.000006 0.000006 0.00 0.00
3 0.000012 0.000011 0.00 0.00
4 0.000019 0.000019 0.00 0.00
5 0.000030 0.000031 0.00 0.00
6 0.000047 0.000051 0.00 0.00
7 0.000071 0.000083 0.00 0.00
8 0.000107 0.000135 0.00 0.00
9 0.000160 0.000218 0.00 0.00
10 0.000240 0.000352 0.00 0.00
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—e—y(t)=ul Exact solution ——w(1,)) RK (order 4)

Y-axis

y'(t)=u2 Exact solution ——w(2,)) RK (order 4)
25,000000
17,171450 22,031481
20,000000 13,465100 11,151011
10,616255 11,151252

15,000000 8,409454

9,202034

9,202194
7,678478
5,332622 7,678585

6,480580
4,260334 6,480651
5,533931

3,405923 5,533978
4,782621
5,000000 4,782652

2,721223 4,184321
4,184340

2,169817 3,706734
2,776347 3,706745

0,000000 2776347 3,019916 3,019913 3 3250263:325020
O 0,5 1 1,5 2 2'5

6,686967

10,000000

T-axis

Figure (F.1): Approximate and exact solutions for example (F.1)
when @ = 0.1.
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Special solution of the example (F.1):

In actually we bring this example because the equation is a second order and it’s linear
equation therefore it can be transformed to the Riccati differential equation. In fact that, the
general purpose of our working throughout of this thesis is the investigation over this type
of the ordinary differential equations. So, we want show that how to convert this linear
equation into the Riccati differential equation by take a some assumptions;

Since the equation is given as;

t}"”_ }I!_ tq}-‘: 0

y=e Wyt , }"llz Vi€ Wyt : },Hz }JIZE Madt _}"FIE Wyt
, then by substitute the right hand side of each of ¥ ,¥" and ¥"in the linear second order

equation, we can get the Riccati differential equation as follows;

t }flzﬁ' yadt 4 },-' & wpdt Vi€ ¥yt _ tE & yydt  — 0
1
t}JIEE Madt 4 }J{ te Mydb _ Vi€ Mqdb _ t?!{:_. ¥adt — 0
e M tyl+yit-y-tP =0
tyi+ yit— v, - t? = 0, both sides divide by ( t), and then

1
}Jf+}f{—;y1—t2=0

¥=1t%+ %}:1— ¥i , and we sety, =t to be a solution of the Riccati differential

equation, to verify that substitute the value of w,in the RDE and also take the
differentiation of the v, and then note that;

vi= t2+%t— t?=1
And
¥i=1
then, clearly the right hand sides are equal meaning that v, = t when it is devoted as a
solution of the Riccati differential equation has been verified [13]. Accordinglyto the
illustration of the given example in the above then we can state that although the given
equation in the situate of second order, we can make the Riccati differential equation from
the second order DE by substitute the desired assumption in the equation of second order
and then we are achieve the RDE. Note that this illustration considered only for explain
that how to make the RDE from the second order differential equation.
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Example (F.2):
By using the Runge-Kutta-Verner method of the fifth and sixth orders in order to transform
the second-order initial value problem

t2y"+ ty' - 4y=t* | for 1<st<2 ,y1 =2 ¥'1=1
Into the system of the first-order initial value problems, to determine the approximate
solution when @ = 0.1, Tolerance =10% , and if the actual solutions given as follows

4 1 8 3
— $2 4 " 4-2 4 43 ' - - Z2p=34 22
yt =t 5t 5t and y't =2t 5t 5t

Solution: the given second order differential equation can be expressed as the easier form;

tz |'|'+t |'_4 _t':! |'|'+l |'__4:- _t n'__} |'+_4:- +t
¥ ¥ y= Y r3¥ - gE¥s y=-3¥y+tzy
Letu, t = y t andu(t) = ¥(t), and by take the differentiation, yields;

W't =u;t = f; tug,u,

1 4
u' t = - Euz+ EEI£1+ t=f, t,uy, U,

Now, the system of the first-order equations has been succeeded then we can apply the
preferred Runge-Kutta-Verner method, at the beginning, we can calculate the coefficients
as follows;

Since the initial conditions given as

Win= ¥tg =¥1 =2andw,,= " t; = ¥ 1 = 1, thus

ky = Bf, tyuy,U; = Bu; =011 = 0.10000;

B N 1 4 B 1
Ly = Bf; tg, Uy, Uy = —Euz+ F”'-'u‘-l- t =01--1+

. 73(2)+ 1 = 0.80000;

1 1 1 1 1
k= Bf, to+ é,ul+ gkl,uz+—!1 =0 u,+ 6!1 = 0.1 1+ = 0.80000

6 6
= 0.11333;
1 1 1
l,=0f, ty+ 6'”1+ Ekl,fuz+ 5!1
1 4 1

= - Uz + =, + = ut =k

t+ h 6 t+ -0 6

(=]

+ t+1
6 h
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1 1
= 01 - 1+6 0.80000
1+ 01
=1
4 1 1
+ 5 2+€ 0.10000 + l+€ 0.1 = 0.78363;
1+ 01
=1
4 16 16
ks = Bf, tn"'E,T51+%k1+%k2,112+ﬁ!1+%!2
ko= B u,+ 4! + 16! =011+ 4 0.80000 + 16 0.78363 = 0.12098;
S TR - e 75 75 e ’
4 4 16 4 16
3= Bf; to+ E,Th"' ﬁ-{ﬁ"' ﬁkz.'”»z*' %!1"' ﬁiz
1 16 4 4 16
l;= 0 + =+ =, + — + —k,+—k
3=t A e e R A T
15

(tg+ —=0)

+t+4
07 15"

= 01 ! 1+ 4 0.80000 + 16 0.78363
15
+ 4 2+ 4 0.10000 + 16 0.11333
4 = 75 75
1+ — 01
15
+ 1+ 4 0.1 = 0.75501,;
s~ !
2 5 8 5 5 8 5
k4: JrI tﬂ+51111+6k1_§k2+ Ek::;,ﬂ.z"' 6!1—5124' z!-;!
k,= 0 +5!—8!+5 =01 1+5080000—8078363 +5075501
4 — L 'I"-'z 6 1 3 2 2 3 - ' 6 . 3 . 2 .
= 0.14645;

2 5 8
!4: fg tn+ §,T£1+ Ekl— §k2+

8

5
3l

2

5
5"

5

§k3,112 + Ly
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1 5 8 5

.= - — + =, - =L+ =1
4 (tn""‘:) Uz 61T 32T 513
4 5 8 5 2
+ — +—ky— kot zky + ty+ =0
1 5 8 5
l,= 01 i 1+ 5 0.80000 - 3 0.78363 + > 0.75501
1+-01
3
4 5 8 5
+ —— 2+ = 010000 - 5 011333 + 5 0.12098
z 6 3 2
1+-01
3
2
+ 1+ 3 0.1 = 0.70188;
5 165 55 425 85 165 55 425
ks = Of; tn"'gJh‘ah"'g'ﬁfz‘6_4""53"'%'{'54,“2_6_4!1"'?!2_6_4!3
N 85!
96 *
165 55 425 85
k!;: Uz — a!l'i' E!g‘a!g"' %!4
= 01 1- 165 0.10000 + >> 0.78363 - 425 0.75501
- 64 6 64
+ 8 0.70188 = 0.17286;
9% e !

5 165 55 425 85 165 55 425
=0 + =0 - —k+ —k - —k+ — -—bL+ =, - —
lc = Bf, t, 6l,fu1 o4 k, 5 [ o2 [ 96'{{4’“2 o4 Ly 5 ki o4 L5

N 85!
96 *
=g 1 = 165!+55! 425!+85!
T t,+2m - 6477 67 647 96°
&
4 165 55 425 85 5
tr 111—6—4k1+€k2—6—4k3+ %-{C,q + tyt 6
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ls= 01 ! 1 165 0.80000 + 2> 0.78363 425 0.75501
5 = . - - . — . - .
1+_§ 0.1 64 6 64
+ 85 0.70188
9%
+ 4 2 165 0.10000 + > 0.11333 425 0.12098
—3 [ — . JE— . B — .
1+ %@ 64 6 64
+ 85 014645 + 1+ > 01 = 0.66701
96 . 6 . - . 3
12 4015 11 88 12
k!.]: JF-I I-|_-_|+ ,T!1+€k1_8k2+ mkq_% 4+ ﬁkﬁ,ﬂg'{' ?!1_812

4015 11 88
+ a— ==l + —
612 36 255

k-u+12! 8!+4015! 11 +88
6o - T gt 27 612 * 36 % 255

I

I

12 4015
=011+— 080000 -8 0.78363 + 0.75501
5 612
= EE 0.70188 + jﬁi 0.66701 = 0.16198;
36 255 ’
le = Af; tg+ ,ul+1—52k1—8k2+ %RR—% 4t %k5,1£2+ 1—52!1—8!2
N 4015!;— l}!4+ jﬁi!q
612 © 36 255
le=0 - 1 1¢2+E!—8!+ﬁ!—21+§!
to+ O 51 612 % 36 % 255 °
ul+1—52k1—8k2+%k3—%k4+28—§5k5

+ ty+ B
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l.= 01 ! 1+ 12 0.80000 - 8 0.78363 + 4015 0.75501
- 1+ 0.1 5 ' 612
11 0.70188 + 88 0.66701
36 255
_ 4 2+—12 0.10000 - 8 0.11333 + 4015 0.12098
1+012 5 ' 612

11 88
- == 014645 + — 017286 + 1+ 0.1 = 0.67082;

36 255
1 8263 124 643, 81 2484
ko= Bf, to+ —0 - ky + - [ k,+ k
7= Bl to* 758U~ Toa00 K1+ 75 %27 50"~ 250 4 * Toe2s 5 U2

8263 124 643 81 2484
- Iy + 2z~ I3- 47 5
15000 75 680 © 250 10625

8263 124 643 81 2484

k7= B u2= 755000t 75 2~ 6803~ 250 * 10625 5
8263 124 643 81
k;= 01 1- == 080000 + == 0.78363 - o= 0.75501 - - 070188
+ 2384 66701 = 0.10695:
10625 ’
1 8263 124 643 81 2484
b= Bfy ta+ 7501 = 75aa5 K1+ 75 K2~ ggg e~ 250 %4 * Top2s ks U2

8263 124 643 81 2484

- Iy + - I - + !
15000 ' 75 ¢ 680 * 250 * 10625 °
L 1 8263 | 124 643, Bl 2484
e t+Lg 2 15000 75 % 807 250 ' 10625 °
15
4 8263 124 643 81

+ — —_— —
680 ° 250 *

- —_— + —
(to+ =12 %17 150001 " 75 "2
2484

+ s +
10625

ty+ L a
0 15 1
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l,= 01 1 1 8263 (08000O)+ 124 (078363)
o= 0. - e il
1+;201 15000
0.75501 81 0.70188 0.66701
680 ( ) 250( )+ 10625( )
+ 4 2 8263 0.10000) + 124 0.11333
3 2 15000 ( ) ( )
1+— 0.1
15
0.12098 81 0.14645 0.17286
680 ( ) 250( )+ 10625( )
+ 1+ ! 0.1 = 0.78815;
15(') - ' '
ko= Of: to+ 8.1+ 501k ~ 300 +_297575 319 N 24068k
BT R0 TR 17207 43 7% 52632 ¢ 23221 84065
3850 3501 300 297575 319 24068
7, Uy + ly - 2t 5 4T 5
* 26703 1720 43 52632 2322 84065
3850
+ 7
26703
b = DL + 3501! 3001 N 297575 319 N 24068 N 38501
8= P{u; 1720 ' 43 ¥ 52632 ? 2322 % 84065 ° 26703 7}
ka= 01 1+ 3501 0.80000 300 0.78363 + 297575 0.75501
S 1720 43 52632
_ 319 0.70188 + 24068 0.66701 + 3850 0.78815 = 0.16337
2322 84065 26703 T '
Lo g bt B G 3501k 300 N 297575 319 N 24068
6= Bz to+ O, 1720 ' 43 "¢ 52632 % 2322 % 84065 °
3850 3501 300 297575 319 24068
t Sagng 7. Uz t ly - g+ 3~ 4t 5
26703 1720 43 52632 ¢ 2322 84065
3850

+—
26703 7
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3501 300 297575 319 24068

lg=0 - ly - -
o= 8~ Y2t 1720t T 432" 52632 0 23224 " 84065 °

, 3850 ]
26703
4 3501 300 297575 319
roz Wt T T 73 et Baean Ko 230 K
, 24068 3850 S v br D
84065 ° 26703 ' ¥
1 3501 300 297575
ly= 0.1 - T7o1 1t 195 080000 - —=- 078363 + = 0.75501

319 24068 3850
- =—=== 0.70188 + —— 0.66701 + ——= 0.78815

2322 84065 26703
4 2+ 3501 0.10000 300 0.11333
1+ 0.1 2 1720 43
+ 297575 0.12098 - 319 0.14645 + 24068 0.17286
52632 2322 84065
+ 3850 010695 + 1+ 01 = 0.67193
26703 A '

So The Runge-Kutta-Verner method for fifth-order is given as follows;

13 2375 5 12 3

160" * 598"t 6% T 5515 w2

16 85 o

Wi = Wygt

= 200000+ = 010000 + 251> 012098 + — 014645 + == 017286
W1 = & 160 = ' 16 85 =

5984
+ 3 0.16198 = 2.13736
44 - '

And

13 2375 5 12 3

m!l —!:’4‘ E!h

= + g+ — 1, +
Wz1 = Wao 5084 %" 164" 85"

1.00000 + 13 0.80000 + 2375 0.75501 + > 0.70188 + 12 0.66701
' 160 5984 16 85

=
L)
1

3
+ — 0. =1 ,
12 0.67082 1.72390

Also the Runge-Kutta -Verner method for sixth-order is given as follows;
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3 875 23 264 125 43
207 oag ket 75 kat Togg ks 11595 K7 616 e

Wi = Wygt

_ 3 875 23 264
W; ;= 2.00000+ — 0.10000 + ——— 0.12098 + -- 0.14645 + —— 0.17286

40 2244 72 1955
£ 0.10695 + ﬁ 0.16337 = 2.13736.
11592 616
And
_ 3 875 23 264 125 43
Wzq= Wgpt 4_0!1 + m!r—;"' 514"' ﬁiﬁ‘* @I?m!ﬁ

N 3 875 23 264
fz; = 100000+ 75 0.80000 + 0.75501 + — 070188 +

2244 72 1955 0.66701

125 0.78815 + 43 0.67193 = 1.72408
* 11502 616 - '

As illustrated the computations from the algorithm above, notice that we must be calculate
k,beforel,, ksbefore l,and so on because each of the coefficients Iy, 15,15, .... |
lodepended on the coefficients ki, ko, ks, ... , kgrespectively. Also observe that for
computing the Runge-Kutta-Verner method should be able to evaluating the sixteen
coefficients if you were converting the second-order to the first-order differential
equations, therefore if the order of differential equations changed then the procedure of the
constructing the system of the differential equations is also changed.

Accordingly, we can expect that the six order Runge-Kutta-Verner method obtained to
estimate the error in the order five in their method, the whole calculations registered in the
table (F.4) offered the huge exposition through the numerical solutions.

So the amount value of the approximate solution is w;; = 2.13736 with respect to the
order fifth and W, = 2.13736 with respect to the order sixth since normally the exact
solution corresponded to those amount values is t;; = 2.13736 , the value of the
approximate solution is w;; = 2.34114 with respect to the fifth order and W, ;=
2.34116 with respect to the order sixth since typically the exact solution corresponded to
those amount values is u;; = 2.34116 and so on until to do the last stage which is the
amount value of the approximate solution is w; ;4 = 5.79982 with respect to the fifth
order and W;, = 5.80000 with respect to the order sixth since fortunately the exact

solution corresponded to those amount values is t; ;4 = 5.80000.
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And also the value of the approximate solution is w ; = 1.72390 with respect to the order
fifth and W, = 1.72408 with respect to the order sixth since normally the exact solution
corresponded to those amount values is uz4 = 1.72390 , the value of the approximate
solution is w3z = 2.33807 with respect to the fifth order and W, ; = 2.33822 with respect
to the order sixth, since typically the exact solution corresponded to those amount values is
Uz = 2.33807 and so on until to do the last stage which is the amount value of the
approximate solution is w;,q = 6.19994 with respect to the fifth order and i, =
6.19742 with respect to the order sixth since fortunately the exact solution corresponded to
those amount values is u; ;4 = 6.20000.

Finally, throughout the table (F.6), (F.7) described the relative and percentage relative of
errors, recall that in the preceding sections interpreted their formulas. And also within the
figure (F.2) and (F.3) plotted the graphical depictions.

Table (F.4): Hlustration of Runge-Kutte-Verner method for order (5 and 6)

¥(t) = uy Wy j Wy ¥(t) = ug, Wy | Wy

[ t Exact R-K-V R-K-V Exact R-K-V R-K-V

solution (5 order) | (6 order) solution (5 order) | (6 order)
0 |01 1 2.00000 2.00000 2.00000 1.00000 1.00000  1.00000
101 11 213736 2.13736  2.13736 1.72390 1.72390  1.72408
2 |01 12 234116 2.34114  2.34116 2.33807 2.33807 2.33822
3 101 13 260277 2.60275 2.60278 2.88573 2.88573  2.88571
4 101 14 291696 2.91692 2.91697 3.39291 3.39290  3.39263
5101 15 3.28056 3.28050 3.28056 3.87593 3.87591  3.87534
6 |01 16 3.69170 3.69162 3.69171 4.34538 4.34536  4.34444
7 101 17 414942 414931 4.14942 4.80833 4.80830 4.80701
8 |01 18 465331 4.65319 4.65332 5.26965 5.26961 5.26793
9 |01 19 520341 520326 5.20341 5.73273 573268  5.73059
10 |01 2 5.80000 5.79982 5.80000 6.20000 6.19994  6.19742

and exact solutions of example (F.2) when &= 0.1.
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Table (F.5): Hlustration of the Coefficients with respect the Runge-Kutte-

Verner method.

k, I ks I, ks » Ky Iy
0.10000 0.80000 0.11333 0.78363 0.12098 0.75501 0.14645 0.70188
017239 0.65985 0.18339 0.72335 0.19134 0.63158 0.19238  0.61897
023381 057548 0.24340 0.70412 0.25190 0.55678 0.23320  0.56999
028857 0.52406 0.29731 0.71118 0.30654 051104 0.27036  0.54208
033929 049294 034751 0.73594 0.35762 0.48337 0.30496 0.52765
038759 047481 0.39550 0.77312 0.40662 0.46736 0.33783  0.52207
0.43454 046523 0.44229 0.81940 0.45450 0.45909 0.36957 0.52244
048083 0.46146 0.48852 0.87259 0.50191 0.45611 0.40062 0.52688
052696 046171 053466 0.93125 0.54929 045682 0.43131 0.53416
057327 046482 058101 0.99437 059696 0.46017 0.46188 0.54344
0.61999 0.46999 0.62783 1.06122 0.64514 046542 0.49252 0.55416

ks I ke I, k; 5 ke I
0.17286 0.66701 0.16198 0.67082 0.10695 0.78815 0.16337 0.67193
030074 0.51368 0.16523 0.64461 0.18787 0.65051 0.17434  0.63425
041161 0.41557 0.17083 0.63254 0.25712 056615 0.18641 0.61486
051402 0.34949 0.17616 0.63105 0.31957 0.51350 0.19767 0.60815
0.61254 0.30310 0.18030 0.63701 0.37809 0.48052 0.20755 0.61010
070974 0.26942 0.18300 0.64812 0.43445 046017 0.21600 0.61792
0.80710 0.24431 0.18433 0.66275 0.48975 0.44819 022314 0.62973
0.90551 0.22518 0.18440 0.67977 054474 044192 022917 0.64427
1.00551 0.21039 0.18340 0.69840 059991 0.43963 0.23427 0.66066
110747 0.19882 0.18148 0.71810 0.65559 0.44020 0.23862 0.67832
121161 0.18972 0.17877 0.73850 0.71203 0.44284 0.24235 0.69683
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Table (F.6): Hlustration the relative and relative percentage of errors.

Absolute Error

Absolute Error

% Relative Error

% Relative Error

Wy j Wy Wy j Wy
RKV (5 order) RKV (6 order) RKV (5 order) RKV (6 order)

0 0.00000 0.00000 0.00 0.00

1 0.00000 0.00000 0.00 0.00

2 0.00001 0.00000 0.00 0.00

3 0.00002 0.00000 0.00 0.00

4 0.00004 0.00001 0.00 0.00

5 0.00006 0.00001 0.00 0.00

6 0.00008 0.00001 0.00 0.00

7 0.00010 0.00001 0.00 0.00

8 0.00013 0.00001 0.00 0.00

9 0.00015 0.00000 0.00 0.00

10 0.00018 0.00000 0.00 0.00

Table (F.7): Hlustration the relative and relative percentage of errors

I Absolute Error Absolute Error % Relative Error | % Relative Error

Wy j Wy Wy Wy
RKV (5 order) RKV (6 order) RKV (5 order) RKV (6 order)

0 0.00000 0.00000 0.00 0.00

1 0.00000 0.00019 0.00 0.01

2 0.00000 0.00015 0.00 0.01

3 0.00000 0.00002 0.00 0.00

4 0.00001 0.00028 0.00 0.01

5 0.00001 0.00059 0.00 0.02

6 0.00002 0.00094 0.00 0.02

7 0.00003 0.00132 0.00 0.03

8 0.00004 0.00172 0.00 0.03

9 0.00005 0.00214 0.00 0.04

10 0.00006 0.00258 0.00 0.04
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——Y(t) Exact solution
—o—Y’ (t) Exact solution

w(1,)) RKV (5 order)
——w(2,J)) RKV (5 order)

7,00000

6,00000 5,26961
5,26965
4,80830
4,80833
5,00000 4,34536
434538
3,87591
3,87593
4,00000
2 3,39290
(3]
3 3,39291
3,00000 288573
288573
2,33807
2,00000 2,33807
1,72390
1,72390
1,00000
1,00000
1,00000
0,00000
0 05

6,19994

6,20000
5,73268
5,73273

5,80000

5,20341

4,65331

4,14942

3,69170

3,28056

2,91696

2,60277
2,34116

2,13736
2,00000

1 1,5 2
T-axis

2,5

Figure (F.2): Approximate and exact solutions for example (F.2)

when @ = 0.1.

143




—o—Y (t) Exact solution w (1,)) RKV (6 order)

—o—Y"’ (t) Exact solution ——w (2,)) RKV (6 order)
7,00000 6.30000
5,73273 6,19742
6,00000 5,26965
5,26793
4,80833 5,20341
500000 4,80701
4,34538 4,65331
4,34444

4,00000 3 87593 4’14942
% 3,87534

! 3,69170
> 3,39201

3,00000 3,39263

3,28056
2,88573
2,88571
2.00000 2,91696
2,33807
2,33822 2,60277
1,72390
1,00000 5 1270
1, 2,00000 :
0,00000 00000
0 0,5 1 15 2 2,5
T-axis

Figure (F.3): Approximate and exact solutions for example (F.2)
when 2= 0.1.
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Appendix G.  Approximation Solution from RDE by Adams-Bashforth
Explicit Methods

Example (G.1): find the numerical solution by using Adams-Bashforth (2-Step, 3-Step, 4-

Step, 5-Step) methods to the initial value problem

1y
Y=g 1o 2 y1=-1, 1<t<?

, and it compare to the exact solution which is given by v = -1/t .

Solution:

Firstly, we recognized the given equation is a Riccati differential Equation, secondly
because it is specified in the form of the initial value problem then normally we can solve
it by Adams-Bashforth-explicit methods as desired in the example.

The first five approximation solution where found by Runge-Kutta method of the order
fourth is consist ofw,=v%1 =-1, w, =y 11 = -0909090, w,=y 12 =
-0.833332, w;= ¥ 1.3 = -0.769229, w,= v 14 = -0.714283 then we can use
those approximation solutions to determine the (One-Two-Three-Four-Five)-Steps of the
Adams-Bashforth Method as follows;

First: computation for the Adams-Bashforth 2-Step Method;

1
Wz = Wy + E(O-l) 3f ty,wy — [ oWy

0.1
vy 12 = w; = -0.909090 + - 3 0.826447 - 1.000000 = -0.835123;
1
Wig = W + 5(0-1) 3f tg,Wg — [ tg Wy
And
0.1
V2 = w=-0535011+ - 3 0.272356 - 0.304139 = -0.509365

Second: computation for the Adams-Bashforth 3-Step Method,;

01
W3= WE+ E 23f tz,w:z - 16f tl,wl + 5f tn,wU
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01
wy = —0.833332 + 12 23 0.694446 - 16 0.826447 + 5 1.000000

y13 =

= -0.768756;

And
01
Wig = Wy + 12 23f tg,wg — 16f tgwy + 5f t;w;
01
V2 = wyy = —0524446 + 1z 23 0.277989 - 16 0.309593 + 5 0.346929
= —0.497988;

Third: computation for the Adams-Bashforth 4-Step Method,;

1
= W3+_ 55; tE,WE - 59f tE,WZ + 37; tl,wl - 9f tn,W[]

W = 24
01
}'(14) = 1."1"4 = W3+ ﬂ 55}- tg, W3 - 59; tz, Wz + 37f I‘-'I.!q""‘;'l. - 9; tn, W[]

01
—-0.769229 + e 55 0591718 - 59 0.694446 + 37 0.826447 - 9 1.000000

= - 0.714434;
And
0.1
V(2) = Wy = Wy t >4 S5f tg,Wg — 59f tg,wy + 37f t;,wy; — 9f tg We
0.1
= -0.526809 + 24 55 0.276748 - 59 0.308392 + 37 0.345786 - 9 0.390413
= -0.500532.

Forth: computation for the Adams-Bashforth 5-Step Method;

WEZ 1"1"4'{' 720 1901f tq_, 1"1"4 - 2774; tg, WE + 2616; tz, WZ - 1274f tl,wl

+ 251f tg, wy
¥(15) = wg= wy

01
+ % 1901f tq_, 1"1-"4 - 2774f tg, W3 + 2616f tz, WE
- 1274f tl,Wl + 251;- tn, W[]
0.1
= -0.714283 + 720 1901 0.510206 - 2774 0591718 + 2616 0.694446

- 1274 0.826447 + 251 1.000000 = -0.6666009;
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And
¥(2) = wig= Wy

1
20 1901f tq, wt_, - 2774f tﬂ, WH + 2616f t?, W-;

.
— 1274f t., wg + 251f to, ws
= - 0526159 + 7;0 1901 0.277091 - 2774 0.308720 + 2616 0.346091
- 1274 0.390687 + 251 0.444483 = -0.499831,

As presented earlier the algorithm to the Adams-Bashforth Method to the deferent steps
(orders) can be achieved by applying its formulas, and then by using a one of the
programing of computer that it can available to implement this method. Fortunately, as we
have reviewed from the preceding evaluations then we understand that it must be calculate
some steps of the approximation solutions before we are starting to compute the required
step throughout implementing the Adams-Bashforth Explicit Method. In this case, we were
evaluated the some steps of the approximate solution by using the R-K Method. In the
table (G.2) through the next page devoted the first column to the calculation of t; which
were starting from t;=1,t;,=11, t;=12, ..... , ti0 = 2with respect to the
selected interval 1 < £ < 2.

Also the second column assigned to the exact solution so that we bring it to compare with
approximate solution, the third column involved the computation of the Runge-Kutta
method for the four order and also remain columns obtained to the calculations of the
deferent steps to the Adams-Bashforth Methods. Consequently, we have achieved the
mostly accurate numerical solutions compared to the actual solution although the value of
the step size @is not too small. Nate that, the tolerance which was taken in here is TOL=
107". And also in the extension of the table (G.2) obtained the associated functions to the
deferent orders (steps) of the Adams-Bashforth methods.

Within the table (G.1), interpreted each of the absolute and percentage relative errors,
normally the absolute error calculated by subtracting the approximate solution from the
actual solution were in the first case is|- 1.000000 - (- 1.000000)| = 0.000000 , in the
second case is |-0.909091 - (-0.909090)| = 0.000001, and so on until the end
situation is |-0.500000 - (-0.499831)| = 0.000169. And also considered the

percentage relative error which is assigned by the important form to determine the errors.
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In the first situation, the % Relative Error is 0.00, the second situation is 0.00 and the last
situation is 0.03. It is indicate the method could be give us the best accurate solution. Note
that these amount values had been taken with respect to the fifth order Adams-Bashforth
methods.

All these illustrations are structured by the graphical interpretation in the figure (G.1) with
identified all its points inside the figure.

Table (G.1): Hlustration the relative and relative percentage of errors.

Iteration Absolute Error % Relative Error
0 0.000000 0.00
1 0.000001 0.00
2 0.000002 0.00
3 0.000002 0.00
4 0.000002 0.00
5 0.000057 0.01
6 0.000099 0.02
7 0.000120 0.02
8 0.000140 0.03
9 0.000157 0.03
10 0.000169 0.03
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Table (G.2): Hlustration of ABE-Method for order (2, 3, 4 and 5), RK-Method

(order 4) and exact solutions of example (G.1) when &= 0.1.

Exact R Adams- Adams- Adams- Adams-
L Sellifor (order 4) Bashforth Bashforth Bashforth Bashforth
(2-Step) (3-Step) (4-Step) (5-Step)
1 -1.000000 -1.000000 -1.000000 -1.000000 -1.000000  -1.000000
1.1 -0.909091 -0.909090 -0.909090 -0.909090 -0.909090  -0.909090
1.2 -0.833333 -0.833332 -0.835123 -0.833332 -0.833332  -0.833332
1.3 -0.769231 -0.769229 -0.772503 -0.768756 -0.769229  -0.769229
14 -0.714286 -0.714283 -0.718772 -0.713431 -0.714434 -0.714283
15 -0.666667 -0.666664 -0.672185 -0.665534 -0.666932  -0.666609
1.6 -0.625000 -0.624997 -0.631423 -0.623643 -0.625338  -0.624901
1.7 -0.588235 -0.588232 -0.595475 -0.586687 -0.588634  -0.588116
1.8 -0.555556  -0.555552 -0.563547 -0.553838 -0.556005  -0.555416
19 -0.526316 -0.526312 -0.535011 -0.524446 -0.526809  -0.526159
2 -0.500000 -0.499996 -0.509365 -0.497988 -0.500532  -0.499831
Related to the table (G.2)
J(t,wy) F(t,wy) F(t,wy) f(t,wy)
(2-Step) (3-Step) (4-Step) (5-Step)
1.000000 1.000000 1.000000 1.000000
0.826447 0.826447 0.826447 0.826447
0.692950 0.694446 0.694446 0.694446
0.589188 0.592081 0.591718 0.591718
0.506979 0.510814 0.510098 0.510206
0.440735 0.445198 0.444268 0.444483
0.386569 0.391471 0.390413 0.390687
0.341710 0.346929 0.345786 0.346091
0.304139 0.309593 0.308392 0.308720
0.272356 0.277989 0.276748 0.277091
0.245230 0.251002 0.249734 0.250085
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—e—Exact Solution

RK-method (order 4) —e— Adams-Bashforth (5-Step)

0,000000

0 0,5 1,5 2 2,5
-0,200000 -0,588116 -0,555416 -0,526159 -0,499831

-0,624901
-0,400000
L
x
Ni -0,666609 -0,500000
0,600000 0,526316
e -0,714283 -0,555556
-0,588235

-0,769229 10,625000

-0,800000
-0,666667
0.838332 0,714286
-0,769231
-1,000000 5 909090 -0,833333
-0,909091

-1,000000 -1,000000

-1,200000
T-axis

Figure (G.1): Approximate and exact solutions for example (G.1)

when 2= 0.1.
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Abstract

The thesis deals with the numerical solutions of various forms
of nonlinear Riccati Differential Equation. In doing that,
several different numerical methods are used and for each
numerical method a nonlinear Riccati Differential Equation
was used as an illustrative example. The work provides an
opportunity to judge and compare the adequacy of the
numerical methods compared with the available close form
solutions. The use of excel worksheet provides an easy way for
implementing the numerical algorithms and also an easy and
interactive way to see the effect of the step size h graphically
and immediately.
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‘ (Abstract cont.) ‘

In each case a graphical representation for both exact and numerical
solutions are presented and the results compare very well for majority of

the cases without any need for finer step size h.
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> Introduction

This thesis investigates an interesting type of Ordinary
Differential Equations (ODEs) known as Riccati Differential
Equations (RDE). The general form of the RDE together with
its 1nitial condition make a Riccati Initial value problem
(RIVP) which is represented by

v =p@)y*+q@®y+r@®), vyt =y,

whent; =ty +ihandt;,; = t; + h, h1s the step size.
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\ (Introduction cont.) ‘

Provided that p(t) # 0 , where p, g, r are continuous functions
[1], [4], [11], [14]. This equation 1s nonlinear first order
differential equation because it contains y? and dy/dt . In fact
that, to solve the Riccati differential equation by using some
known numerical methods that are used for solving Initial
Value Problems (IVP) to identify the approximate solution
[14], after that I will compare its solution to the exact solution
so that we will judge the performance of these methods and
judge them accordingly. This way we may gain the experience

of judging which method 1s more suitable for any particular
IVP.
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Literature Review

The Riccati Differential Equation (RDE), named after the Italian
mathematician and nobleman Jacopo Francesco Riccati (1676-1754)
[26]. In actually we have seen some works that a number of
mathematicians have studied RDE, involving several of the Bernoulli,
Riccati himself, and his son Vincenzo. At the end of 1723, 1t was known
that equation (1.1) cannot be solved in the case of elementary functions,
after that, Euler stated that if the particular solution of (1.1) is known
then by using the substitution y = u + 1/v, converts the RDE 1n to the
linear Differential Equation in v, and then we can get the general
solution, he also said that, if the two particular solutions are available
then the general solution 1s considerable in case of simple quadrature

[6].
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‘ (Literature Review cont.) ‘

If we don’'t have at least one particular solution, then it cannot be
possible to determine the general solution or no chance to solve such
differential equation exactly [27].




» Methodology

1. Euler’s Method.

2. Taylor’s Method:
2.1 Taylor’s Method for order two.
2.1 Taylor’s Method for order four

3. Runge-Kutta Method:
3.1 Runge-Kutta Method for order two.
3.2 Runge-Kutta Method for order four.
3.3 Runge-Kutta-Fehlberg Method.
3.4 Runge-Kutta-Verner Method.

4. System of Differential Equations.
5. Adams Bashforth Explicit Methods.




1. Euler’s Method

Euler’s Method assigned by the basic and common method that
used to 1dentify the approximate solution for solving RDE. The
general formula of Euler’s Method considered by

Vi+1 = Yi + hf (&, ;) (1.1)

When the RDE expressed in the form of initial value problem
then we can use the desired method to determine the numerical
solution.
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Example:

An example:

Determine the approximate solutions by Euler’s Method over
the given Riccati initial value problem

y'=(1+3)=(2+3)y+y? ,y) =2, 1<t<2
When the actual solution given as

y = (3+ 3t —t%)/(3t — t%).
Solution:
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2. Taylor’s Method

Taylor’s Method Is an another method that use for identify the
approximate solution for RDE, in this method we must be take
the derivatives for the given differential equation as desired In
the question.




2.1 Taylor’s Method for order two

The formula of Taylor’s Method for order two 1s considered by

/‘

Wiyt1 = W; + hT(z) (ti},lwi)
T(Z) (ti! Wi) - f(ti; Wf) + Ef (tixwf)
Wheni=0,1,2,....N — 1.

\

- (2.1)
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Example:

Determine the approximate solutions by Taylor’s Method of
order two over the following 1nitial value problem

y' = (1+t) - (1+2t)y +ty* , y(0)=3,0<t< 1.
where the actual solution is
y=1+(1/(t+1))
Solution:

Microso ft Excel
Worksheet
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2.2 Taylor’s Method for order four

The formula of Taylor’s Method for order four 1s considered by

/‘

Wit1 = W; + hT@)(ti;WI‘)

2

Wheni =0,1,2,....N — 1.

Numerical Solutions for RDE Reviewing and lllustrating by Excel

h h h3
TW(t;, wy) = F(t;, w;) +§f'(filwf) +§f”(ff:: w;) + +Ef'”(tf,:wi)

> (2.2)
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Example: ‘

Determine the approximate solutions by Taylor’s Method of
order four over the given Riccati initial value problem

y' =y° -~z »¥(05)=236364 for 05<t<15
When the actual solution given as
(t) = 2t 1
=32

Solution:

Worksheet
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3. Runge-Kutta Method

Since the solution obtained by Euler’s Method 1s not accurate and the
results by Taylor’s Method need to take the Derivatives then we must be
bring the best alternative method that it can be use instead of the
preceding methods. Normally Runge-Kutta Method 1s one of the
important method for solving Riccati initial value problems compared to
the each other numerical methods because its solution is more extremely
accurate and 1t 1s not necessary to take mostly small value h.
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|3.1 Runge-Kutta Method for order two

The formula of RK-Method for order two (Modified Euler’s
Method) is given by

key = hf(t;,y;)
ky = hf(t; + h,y, + hky)

1
yH_l :yf-l_z(kl +k2)

Wheni =0,1,2,....N — 1.
o _/

~ (3.1)
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Example

Determine the approximate solutions by RK-Method of order
two over the following initial value problem

Y = y- , y@1)=-1, 1<t <2

When the actual solution given as y = —1/t.

-
Solution: e
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3.2 Runge-Kutta Method for order four ‘

The formula of RK-Method for order four is given by

-~

o

ki = hf(t;, i)

1 1

1 1
k3 = hf (ti +§h:}'1 +§k2)

ko =hf(t; +h,y; +k3)

1
Wit1 = W; + g(kl + Zkz + 2k3 + k4)

Wheni =0,1,2,....N — 1.

Numerical Solutions for RDE Reviewing and lllustrating by Excel
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Example

Determine the approximate solutions by RK-Method of order
four over the following initial value problem

y’=1 4 y: y(1) =-1, 1<t<?2
e -
When the actual solution given as y = —1/t.

Solution: eeotec

Numerical Solutions for RDE Reviewing and lllustrating by Excel
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3.3 Runge-Kutta-Fehlberg Method

Runge-Kutta method of order five with local truncation error given as

o _ .16 6656 28561 9
Wil = Wi Tyae 1 Tiogoe 3

2
56430}(4_%]{'5 +Ek6 (3.3.1)

to estimate the local error in a Runge-Kutta method of order four given as

25, 1408 2197 1, o)
Wike = Wi T Toege "8 3104 ~ 55 (5:5:4)
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|(Runge-Kutta—Fetherg Method cont.) ‘

Where ki = hf(t;,wy),
ks, =hf(ri+%h,w,;+%k1),
3 3 9
k3 = hf (ti +§h,w5 +§k1 +Ek2),
12 1932 7200 7296
Ko = BF (t" t Wit o197 " 21972 T 2197 k?*)’

439

1 8
kﬁ — hf(t,_ﬂ-zh,wl —Ekl +2k2—2565k3 +

3680 845 )

3544 1859 11

‘)

2104+ ~ 20"
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| Example ‘

Determine the approximate solutions by RKF-Method of order
four and five over the following initial value problem

2 2 5
y' = 1+? — 2+? y + y*° ,y(1)=§,1£t52

When the actual solution given as

y = (3 + 3t —t%)/(3t — t?).

Microsoft Excel
Worksheet

Solution:
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3.4 Runge-Kutta-Verner Method

The Runge-Kutta-Verner method for fifth-order 1s given by

e g g DA B Tl Y 3.4.1
Wit = Wi T 760" T 59843 T 164 T g5 "5 T 44 %6 - (34.0)

The Runge-Kutta -Verner method for sixth-order is given by

__ .3, 875 23 264 125 43
Wit = Wit M T 5043 T 72 T 19555 T 1150277 " 616 8"

. (3.4.2)
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|(Runge-Kutta—Verner Method cont.) ‘

ki = hf(t;,w)),
i 1
k2=hf fi‘l'gh,wi‘l‘gkl
k2 = h 4}1 4&: 16k
3 =R\t chwit ook + o0k
2 5 8 5
kq,=h,f fi+§h,wi+gk1—§k2+zk3 »
. +5h 165k +55k 425k +85k
s =HhF\ 4 Wi T Teq 1T g 2T g 3 T gg e )
ke = hflt: +h +12k 8k +4015k “k + ng
6 =0\ & HRWp R — Bt Ky ar ks v
=kl 2 1h 8263k 124;: 643k BIR 2484k
= i T 15 MWi " T5000 1 T 75 680 3 " 250 T 106255 )’

3501k 300k +297275k 319k +24068k
17201 43 "% " 52632 2 2322 * 84065 °

:hf ti+h,wi+
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Example

Determine the approximate solutions by RKV-Method of order

five and six over the following initial value problem
2+t  24t-—t°

= 1+t)y* |,
Y t(1+t)2 t(1+1t) y+( )y
il
y(1)=—z, 1<t<?2
When the actual solution givenasy = —1/(1 + t).

Solution: .=

Worksheet
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4. System of Differential Equations |

The following formulas use for transforming the second-order
into the first-order initial value problems by RK-Method for
order four and Let u,(t) = y(t), u, (t) = y'(t) then

4 1 N
Wi,i-l—l = Wl,i -+ E(kl -+ 2k2 + 2k3 + k4)

1
< Woi+1 = Wp,;i t+ g(ll + 201, + 215 + 1) - (4.1)

Wherei =0,1,2,..., N —1
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| (system of differential equations cont.) ‘

Where

a ki = hfy (ti: U i M2,1)

l4 = hf; (ti: Uq i Hz,i)

h k4 l4
ky = hfy by g T ig Ty
h k1 l4
[, = hf ti+5:u1,i+?ru2,i+5
h ks [,
ks = hfy Lt Sttt +
h k, L,
lgzhfz ti+§,uljj+?,u2’i+5

k4 — h‘fl(tl - h,ul’i + kg ,uzlj 4 l3 )

\lél-: hfZ(t[ ‘I‘h,ul,i"‘kg,uz’i‘l‘lg)/
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Example

Use RK-Method for order four to transform the second-order initial value problem
ty" —y' —t3y =0 for 1<t<?2
y(1) = 2.776347 y'(1) = 2.169817.

Into the system of the first-order initial value problems, when the actual solutions

given as follows
3 = ' 1 t?
y(t) =7 exp| - |+ exp| =

,(t)_Bt t*\ 1 £
y —2 exp 2 Ztﬁ"}{p 7 |

- X
Solution:  vicosrexe

Numerical Solutions for RDE Reviewing and Illustrating by Excel




5. Adams Bashforth Explicit Methods (4-Step)

The formula of Adams Bashforth Explicit Methods (4-Step) Is
given by

1
Wipg = W; ﬁ{55f (£, ;) = 59f (b Wio1) +37f (b Wieg) = 9f (Eig Wis))

wlere 1= 345,.....N-1
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Example

Determine the approximate solutions by Adams Bashforth Explicit

Methods (4-Step) over the given 1nitial value problem
t oy, ¥
- F = ,y(1)=0 ,1<t<2
Y T 1x e Tt (1 +62) y(1)

When the actual solution given as
y=(t*—-t)/(t+1)

Solution:

Microsoft Excel
Worksheet

Numerical Solutions for RDE Reviewing and lllustrating by Excel 32




Result and discussion

In this section we will attempt to present an overall two way comparison for a
range of known numerical methods and their performance in solving RIVPs. On
the other hand we will demonstrate the effect of varying the step size on their
performance. The overall results are summarized and presented in a tabulated
format and also graphically for ease of comparison.

The one-step numerical methods that are used for this comparison study include;
Euler’s Method, Taylor’s Method of order four, Runge-Kutta Method of order
four, Runge-Kutta-Fehlberg Method of order four and Runge-Kutta-Verner
Method of order five. Among the multi-step methods, we chose to use the
Adams-Bashforth Explicit Method.




Case 1: When the value of step size h = 0.5

Exact

solution

0.500000

1.166667

2.000000

Euler’s
Method

0.500000

1.125000

1.820313

Taylor’s
Method
(order 4)

0.500000

1.133789

1.839480

Runge-
Kutta
(order 4)

0.500000

1.166610

1.999419

Runge-
Kutta-
Fehlberg
(order 4)

0.500000

1.166674

2.000069

Runge-
Kutta-
Verner

(order 5)

0.500000

1.166669

2.000019

ABEM (2-
step)

0.500000

1.166610

1.937388




Case 2: When the value of step size h = 0.25

Exact

Solution

0.500000

0.821429

1.166667

1.550000

2.000000

Euler’s
Method

0.500000

0.812500

1.141602

1.494515

1.883090

Taylor’s
Method
(order 4)

0.500000
0.818176
1.155969
1.528939

1.968497

Runge-
Kutta
Method
(order 4)

0.500000
0.821428
1.166663
1.549987

1.999956

Runge-Kutta-

Fehlberg
(order 4)

0.500000
0.821429
1.166667
1.550002

2.000007

Runge-

Kutta-

Verner
(order b)

0.500000
0.821429
1.166667
1.550000

2.000001

ABEM (3-
Step)

0.500000
0.821428
1.166663
1.546822

1.986924




Case 3: When the value of step size h = 0.1

Exact
Solution
0.500000
0.626316
0.755556
0.888235
1.025000
1.166667
1.314286
1.469231
1.633333
1.809091
2.000000

Euler’s
Method

0.500000
0.625000
0.752563
0.883095
1.017095
1.155176
1.298101
1.446836
1.602612
1.767031
1.942205

Taylor’s
Method
(order 4)
0.500000
0.626139
0.755105
0.887448
1.023904
1.165441
1.313335
1.469263
1.635465
1.814975
2.012006

Runge-
Kutta
(order 4)
0.500000
0.626316
0.755556
0.888235
1.025000
1.166667
1.314286
1.469231
1.633333
1.809090
1.999999

Runge-Kutta-

Fehlberg
(order 4)
0.500000
0.626316
0.755556
0.888235
1.025000
1.166667
1.314286
1.469231
1.633333
1.809091
2.000000

Runge-Kutta-

Verner (order

5)
0.500000
0.626316
0.755556
0.888235
1.025000
1.166667
1.314286
1.469231
1.633333
1.809091
2.000000

ABEM (4-

Step)

0.500000
0.626316
0.755556
0.888235
1.024988
1.166633
1.314221
1.469116
1.633139
1.808765
1.999452



Conclusion

The lessons we have learned from this interesting piece of work
can be summarized as follows; The very basic Euler's method is
very simple easy to implement therefore, it is useful for learners of
numerical analysis and also beginners programmers to use the
method as a practice aiming to further improve their numerical
knowledge and also their programming skills. Another area that we
recommend the use of this method is to compute additional starting
values that required when using Multistep methods for solving
I\VVPs. Otherwise If an accurate result is required for academic or
scientific purposes, certainly this method Is not recommended.




(Conclusion cont.)

Regarding the Taylor method, Reasonable results can be achieved if
nigher order Taylor's method is employed, but this is often very costly
pecause the need for evaluating higher order derivatives, where some
times can be very tedious and even impossible to obtain. Hence this
group of methods are also not recommended for serious scientific or
academic work. Coming to Linear Multistep methods it is fairly easy to
Implement, the drawbacks are that they require additional initial values
that are not readily available, therefore by the time you program a single
step method to obtain these additional values one will be tempted to
continue with this method to produce the full solution of the problem in
hand.




(Conclusion cont.)

The method that stands out among all the numerical methods
are the fourth order Runge-Kutte method. These methods
produce very good and impressive results, they are easy to
Implement and do not require additional starting values.
Therefore definitely they are our choice of recommendation.
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