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ABSTRACT 

 

This thesis gives a review of the methods for solving systems of nonlinear equations 

and unconstrained minimization of real-valued functions. An analysis of the pertinent 

mathematical theories andminimization methods are presented and tested using a well-

known setof benchmarkproblems. Methods forsolving systems of nonlinear algebraic 

equations include; Newton’s method, Quasi-Newton’s method and Diagonal Broyden-

like and Homotopy and Continuation method.  

 

For unconstrainedminimization it covers; the Steepest Descent method, the Fletcher-

Reeves and Polak-Ribière Conjugate Gradient methods, the Modified Newton’s method 

and the Quasi-Newton BFGS and DFP method using Analytic line search method to 

calculate the step length.  

 

Traditionally researchers use one of two computationaltools when seeking 

approximations to their numerical analysis and optimization problems. They either use 

readily available software packages or write their own tailor made programs using some 

high-level programming languages. Both of these are capable of handling fairly 

complicated and large problems effectively. The disadvantages of both methods are 

highlighted in the introduction chapter. In this thesis we used the EXCEL spread sheet 

to carry out the calculations because in our opinion, from teaching view point, it strikes 

a balance between the other two methods. The capabilities and the limitations of Excel 

as a computational tool is also studied and presented. 

 

Keywords: Optimization, Convergence, Minimization, Excel, Maximization 
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ÖZET 

 

 

Bu tez, lineerolmayan denklemlerin ve reel değerli fonksiyonların kısıtlamasız 

minimize sistemlerini çözmek için kullanılan yöntemleri içerir. İlgili matematiksel 

teoriler ve minimizasyon yöntemlerinin analizileri  Benchmark problemleri kullanılarak 

test edilidi. Lineer olmayan denklem sistemlerinin çözüm yöntemleri şunlardır: Newton, 

Quasi-Newton , Diagonal Broyden ve Homotopy  ve SüreklilikYöntemi. 

Serbest – Sınırsız- Kısıtlı  (Unconstrained) minimizasyon yöntemi ise şunları 

kapsamaktadır: Dik İniş Yöntemi, Fletcher-Reeves ve Polak-Ribiere Eşlenik Gradyan 

Yöntemi, Değiştirilmiş Newton Yöntemi, Quasi-Newton BFGS ve DFP Yöntemi. 

Bununla birlikte adım sayısını hesaplamak için de analitik hat arama yöntemi 

kullanılmıştır. 

Sayısal analiz ve optimizasyon problemlerine yaklaşımları ararken geleneksel olarak 

araştırmacılar iki hesaplama araçlarından birini kullanırlar. Araştırmacılar hazır yazılım 

paketlerini veya bazı üst düzey programlama dillerini kullanarak, yeni programlar 

yazarlar. Bunların her ikisi de etkili ancak karmaşık olduklarından, söz konusu 

yöntemlerin kullanılmasıbüyük sorunları da beraberinde getirmektedir. Her iki 

yöntemin dezavantajları “Giriş Bölümü”nde vurgulanmıştır. Bu tezde, EXCEL 

kullanılmanın yukarıda belirtilen iki program arasında bir denge oluşturduğu sonucuna 

varılmıştır. 

 

 

AnahtarSözcükler: Optimizasyon, Denklem, Minimizasyon, Excel, Maximizasyon 
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CHAPTER 1 

 

INTRODUCTION 

 

 

1.1 About Optimization 

 In general the numerical optimization is classified in to two branches; constrained and 

unconstrained optimization. In this thesis we are only concerned the second part namely the 

unconstrained optimization that involves the minimization of real-valued objective function 

f(x), that is finding:  

                                           min f(x) or max(-f(x)). 

 

These types of problems arise practically in almost every branch of science and also in other 

disciplines. An engineer needs to design a structure that can carry maximum load with 

possibly minimum cost. Manufacturers aim to design their products to maximize revenue and 

minimize cost. Scientists and other designers often look for mathematical functions that 

describe their data with minimum discrepancy. All these are just few examples on how the 

minimization problems come about and finding the best solutions is one of their top 

priorities. 

 

These problems can vary from a simple function of single independent variable to functions 

of n independent variables. Solutions of the problem for n=1 is simply dealt with by 

differentiating the function and finding the critical points. The complexity of the solution 

depends on the nonlinearity of function and the size of n that can reach 100 or more, in 

which case the problems have no exact close form solutions. It is then, where approximate 

numerical solutions are sought. The numerical methods in general are based on sequences 

generated by iterations with the hope that the sequence will converge to the exact solution. 

 

The number of iterations required to solve such an optimization problem, depending on its 

complexity, can reach thousands of iterations demanding vast amount of computer resources 

in terms of cpu time and storage. Therefore, the research area in dealing with various aspects 
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of the optimization is immense and it is ongoing. Generally instructors and researchers use 

one of two computing methods for solving optimization problems.  

They either use a readily available software packages such as Maple, Mathematica, 

Matlab…etc or they write their own programs using Fortran, Basic, Pascal, …etc. 

 

From the teaching point of view, the software packages work like a box where the user 

enters information from one end to get the answers from the other end, without him realizing 

or understanding what has happened between the two ends and how the results were 

obtained. While writing own program in Fortran … etc demands a lot of programming skills 

that the user has to learn and a class room time is never enough for that. In addition often 

these programs need to be purchased and can be costly.  However, in this work we 

extensively demonstrate in detail how the Excel sheet can be used to solve a variety of 

problems with some easy to learn procedures and with the advantage that the user is 

involved in the step by step implementation of the numerical methods, hence striking a 

balanced alternative between the two options above. 

     

1.2 About this thesis 

 This thesis gives an in-depth review of the classical methods for solving systems of 

nonlinear equations and unconstrained minimization of real-valued functions. Mathematical 

theory is presented and Excel spread sheet is used for implementing and testing these 

methods using some benchmark problems. An extensive set of numerical test results is also 

provided. It covers a range of methods for Solving Systems of Nonlinear Equations and 

Numerical Optimization. For Solving Systems of Nonlinear Equations, it includes the 

methods of Newton’s, Quasi-Newton’s, Diagonal Broyden-like and Homotopy and 

Continuation. For Optimization it covers, the Steepest descent method, the Fletcher-Reeves 

and Polak-Ribière conjugate gradient methods, the Modified Newton’s method and the 

quasi-Newton BFGS and DFP method, using Analytic line search method to calculate the 

Steplength. In addition, some benchmark problems are used to describe the methodology.  

 

Chapter 2 surveys the theoretical background and the literature review of the methods that 

are covered by this thesis. An outline of the derivation of each method is given with their 
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respective algorithms. The characteristic properties of these methods and their connections to 

practical implementations are discussed. Since different methods are discussed in the thesis, 

then some methods are to be preferred than the others in many respect such as their speed of 

convergence, work needed to apply the method and problems that may arise with respect to 

convergence and singularity etc. Convergence Analysis of the methods and their rate of 

convergence are discussed in Chapter 3. 

 

The main contribution of this thesis is the implementation of procedure and algorithm using  

Excel spread sheet. The availability of Microsoft Excel on most personal computers makes 

optimization so much easier to teach and learn. The programming with excel is very simple 

and straight forward and error and algorithm failure detection is also straightforward and 

visible immediately. The effect of changing a value such as the initial guess is instantaneous 

without the need for the processes of loading, compiling and executing as in some high level 

programs such as FORTRAN,C++… for example. An overview of the characteristics of 

Excel spreadsheet is also given in Chapter 3. 

 

Due to the computational nature of solving problems involving systems of nonlinear 

equation and unconstrained Optimization, testing of algorithms is an essential part of this 

thesis. Different approaches for evaluating performances of the algorithms are presented in 

Chapter 4. A comprehensive performance comparison of the reviewed algorithms is given. 

Also the specific characteristics of each algorithm are analyzed experimentally with 

illustrations using some benchmark problems. Some of their theoretical results are also 

experimentally verified. Finally, Chapter 5 summarizes this thesis and gives some 

recommendations as per as teaching Numerical Analysis and unconstrained Optimization 

using Excel is concerned. 
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CHAPTER 2 

 

BACKGROUND AND LITERATURE REVIEW 

 

2.1 Systems of Nonlinear Equations 

 Consider the system of nonlinear equations  

 

    

     (    ,    ,    , …,    ) = 0  

 

              (    ,    ,    , …,    ) = 0  

  . 

  . 

  . 

 

      (    ,    ,    , …,                                                                  (2.1) 

 

The above system can be denoted by F(x) = 0, where x, 0 and F in bold face print are vectors 

with  F = (   ,    ,…,   ):      is continuously differentiable in an open neighborhood    

   of a solution     of the system, where F(    = 0 and the Jacobian matrix of F at    is 

given by  (     (  ) that is a nonsingular matrix. There are many iterative methods for 

solving (1) which include Newton’s method, Quasi-Newton’s method, Diagonal Broyden-

like method, and Homotopy and Continuation method.  

 

2.1.1 Newton’s Method: Around 1669, Isaac Newton (1643-1727) gave a new algorithm for 

solving a polynomial equation [1], His algorithm was illustrated by the example y
3
  2y  5 

= 0. He first used a starting value y = 2 with an absolute error being 1. Then he used y = 2 + 

p to get,   
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Newton assumed the p value to be very small, hence he neglected p
3 

+ 6p
2
 and used 10p - 1 

and the above equation gives p = 0.1, therefore a better approximation of the root is y = 2.1 

with an absolute error being 0.061 a big improvement. It is possible to repeat this process 

and write  

y = 2.1 + q, the substitution gives:                          

Again assuming that q is small and ignoring the terms with higher order of q. 

gives q =  
      

     
 = - 0.0054..., and a new approximation is y =  2.0946 with an absolute error 

being 0.000542, and so on, the process can then be repeated until the required accuracy is 

attained. Newton used this method only for polynomial equations. 

And as it can be seen, he did not use the concept of derivative at all. 

 Raphson's iteration: - In 1690, a new step was made by Joseph Raphson (1678-1715), He 

proposed a method [2] which circumvented the substitutions in Newton's approach. His 

algorithm was on the equation x
3   bx + c = 0, and starting with an approximate solution of 

the above equation say g   x, a better approximation was given by  

                                      
       

     
 

Note, that the denominator of the fraction is the negative of the derivative of the function.  

This was the historical beginning of Newton-Raphson's algorithm.  

Later studies: The method was then studied and generalized by other mathematicians like 

Simpson (1710-1761), Mourraille (1720-1808), Cauchy (1789-1857), Kantorovich (1912-

1986) ... The aspect of the choice of the starting point was first tackled by Mourraille in 1768 

and the difficulty to make this choice is the main drawback of the algorithm [3]. 
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Newton-Raphson Iteration: Nowadays, Newton-Raphson's method is a generalized process 

to find an accurate root of a single equation f(x) = 0. Suppose that f is a C
2 

function on a 

given interval and x
*
= x + h, then using Taylor's expansion about x:  

             (      (      (    (    

Truncating after the second term,   

             (      (        (      (   

 

giving,  

                          
 (   

  (  
 

                             
 (   

  (  
 

The convergence is quadratic (Convergence analysis will be discussed in Chapter 3) 

Newton's method for several variables: Newton's method can also be used to find a root of 

a system of two equations  

 (                       (       

Where f and g are C
2 

functions on a given domain. Using Taylor's expansion of the two 

functions near (x, y)  assuming x
*
= x + h  and y

*
= y + h one gets,  

  (          (      
  

  
  

  

  
  (       

  (          (      
  

  
  

  

  
  (       

 

 Truncating after the first order terms, means the couple (h,k) are such that, 
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  (            (      
  

  
  

  

  
 

  (            (      
  

  
  

  

  
 

Hence, it's equivalent to the linear system  

 

    [

  

  

  

  

  

  

  

  

] [
 
 
]   (

 (    
 (    

) 

 

The (2×2) matrix is called the Jacobian matrix and it is denoted as, 

 

      [

  

  

  

  

  

  

  

  

] 

The equation of generating the sequence xn and yn is given by: 

 

 

[
    
    

]  [
  
  
]     (      [

 (      
 (      

] 

      The procedure above can be extended in a similar manner to 3 or n variables. 

The rate of convergence is Quadratic for an initial point    in the neighborhood of the 

solution say    when the Jacobian matrix is nonsingular (Dennis (1983) as it was 

referred in [3]) (Convergence analysis will be discussed in Chapter 3). 

 



8 

 

Algorithm Newton’s Iteration  

1. For a single nonlinear equation given x0, 

Step 1: Compute  (             k = 0,1,2,… 

Step 2: Compute   (    

Step 3:          
 (   

  (   
  

2. For a system of non-linear equations given x0, 

     Step 1: Compute     = -    (    F (  ) for k = 0, 1, 2… 

 

    Step 2: Update      =    +     

Where  (     is the Jacobian matrix of F at    ,    is the correction to the previous iteration. 

From a computational point of view Newton’s method can be too expensive for large 

systems due to,   

 

 The computation of the Jacobian elements, which are n
2
 first derivatives, if    

performed analytically can be expensive.  

 The Jacobian may be singular at xk. 

 The computation of the next step requires for problems with full Jacobian O (n
3
) 

multiplications [5] and [6] which may be costly for large n. 

 

 

 

 

 

 



9 

 

2.1.2 Broyden’s Class of Quasi-Newton Methods for Non- Linear System of Equations 

Broyden was a Physicist working in an electric industry company. He had to solve a problem 

involving non-linear algebraic equations. Broyden was well aware of the shortcomings of the 

Newton’s method and thought of the way to overcome them. He realized that he doesn’t 

necessarily need to work with the true inverse Jacobian, but with a suitable approximation 

Hk to it. Thus one would get an iteration of the form, 

   

                              (   . 

 

He noticed that, from the Taylor expansion if truncated at first term, where     (   , one 

gets the relation 

 

                               (         

 

Or alternatively, with 

 

                                

 

            
        

 

Broyden proposed Hk for the approximation of the inverse Jacobian and that the following 

equation to be satisfied, which He called the quasi-Newton equation and other 

mathematician, called it the secant equation. 

 

                                          

 

The above equation is a system of n linear equations in n
2
 variables, the components of the 

approximate Jacobian of gk. Therefore it is an underdetermined linear system with an infinite 

number of solutions. The general solution appears in [7] and is further generalized to the 

case with some fixed elements by Spedicato and Zhao [8]. First consider how Broyden 
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derived the Broyden class, where Hk is updated by a simple rank-one correction, a class that 

contains all quasi-Newton methods for nonlinear algebraic systems in the literature. Then 

look at some results on optimal conditioning obtained by Spedicato and Greenstadt [9] and 

at a surprising result on the finite termination of methods of Broyden class. 

 

The solution for the quasi-Newton equation that Broyden [10] considered, is the special one 

given by correction to Hk, where H1 is an arbitrary nonsingular matrix, most of the time the 

i d e n t i t y  m a t r i x .  B r o y d e n  c o n s i d e r e d  t h e  u p d a t e 

                                           

    Hk+1 = Hk −  uk vk
T
, 

 

where uk, vk are n-dimensional vectors. 

 

From the above formula and also from the quasi-Newton formula he got the following 

formula, which defines the Broyden class of quasi-Newton methods for nonlinear algebraic 

equations. 

 

                                              
(          

 

  
   

  

 

The above is a class of methods with vk a free parameter with the condition that the matrices 

remain nonsingular. Broyden considered in his 1965 paper [10] only three parameter choices 

for   , which leads to the following three methods: 

  

 First Update formula with      
    gives, 

 

        
(          

   

  
     

 

 

 Second Update formula with        gives, 
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(          

 

  
   

 

 

 Symmetric Update formula with    (         gives, 

 

 

        
(        (        

 

(        
   

 

 

Broyden’s first update formula which he defines as the good method is the most used for this 

class. Broyden defined the second method as the bad method, because its performance was 

bad. Other numerical analyst found the performance not very worse than that of the first 

update formula. The third method, known as SR1 method, was initially considered 

unsuitable because it can lead to a division by zero. Such a method however, occurs also in 

Broyden’s rank-two class of quasi-Newton methods, being therefore an intersection of the 

two classes, and lot of work has been done to make use of some of its special properties [11] 

and [12]. 

 

Broyden thought that methods in his class had no finite termination on a linear system. Until 

when first Gay [13], then O’Leary [14] and Ping [15] proved that such methods under mild 

conditions find the solution of a general linear system in no more than 2n steps. The result 

was fruit of a rather complex analysis. In [16], Broyden’s method was shown to be a special 

case of the finitely terminating class of ABS methods [17]. This result follows by proving 

that two steps of the Broyden class can be identified with one step of a certain ABS method, 

though the formula for the ABS parameter is not explicitly available. 

 

The convergence analysis for Broyden’s class is available in his definitive paper [18]. It is 

shown that the methods converge from a starting point sufficiently close to the solution, with 

a q-superlinear rate of convergence. The rate worsens with the increase of dimension. 

Results on the convergence of the sequence {Hk} are still a subject for investigation. Detail 

of this convergence will be discussed in Chapter 3. 
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The Shortcoming of Broyden’s method is that, the quadratic convergence in Newton’s 

method is lost been replaced by Superlinear convergence. 

 

2.1.3 Diagonal Broyden-Like Method for Systems of Nonlinear Equations 

The most critical part of Quasi-Newton’s method is on the formation and storage of a full 

matrix approximation to the Jacobian matrix at every iteration. Some alternative methods are 

proposed to take care of the short-comings of Newton’s method. These weaknesses, together 

with some other weaknesses of Newton’s like methods especially when handling large-scale 

systems of non-linear equations, leads to the innovation of this method by Waziri et al [19]. 

It is important to note that, the diagonal updating strategy has been applied in unconstrained 

optimization problems [20], [21], [22], [23], and [24]. 

 

This method attempts to provide a different approximation to the Newton’s step via diagonal 

updating by means of variational techniques. It is worth mentioning that the new updating 

scheme has been applied to solve (1) without the cost of computation or storage of the 

Jacobian matrix. This may reduce: computational cost, matrix storage requirement, CPU 

time and eliminates the needs of solving n linear equations at each iteration. The diagonal 

updating method works very efficient and the results are very reliable. In addition, this 

method can also solve some problems, which cannot be solved by methods involving 

Jacobian matrix computation [19]. 

 

Algorithm DBLM (Diagonal Broyden-Like method) 

Given   , and   , set k = 0 

 

Step 1: Compute  (   and            (    

 

Step 2: If             (           stop. Else go to Step 3. 
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Step 3: If             compute     , else,         . Set k = k+1 and go to step 1. 

 

The update (    ) formula is given by, 

 

       =    
(  
      

      

  (  
  

        (4) 

 

Where     = diag (  
(   

,   
(   

  …,  
(   

), Tr (  
 ) = ∑   

(    
    and Tr (.) is the trace operator. 

 

 To safeguard the possibly very small       and   (    it is required that            

for some chosen small    . Else set        , hence, 

 

 

     is given as:      {
   

(  
      

      

  (  
  

             

                                                             
 

 

The Convergence analysis will be discussed in Chapter 3. 

 

2.1.4   Homotopy and Continuation Method 

A Homotopy is a continuous deformation; a function that takes a real interval continuously 

into a set of functions. 

 

Homotopy or continuation, methods for nonlinear systems embed the problem to be solved 

within collection of problems. Specifically, to solve a problem of the form  

 

    (     

Which has the unknown solution   , we consider a family of problems described using 

parameter a  that assumes value in [0, 1]. A problem with a known solution x (0) 

corresponds to the situation where    , and the problem with the unknown solution 

 (      corresponds to    . 
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For example, suppose x (0) is an initial approximation to the solution of  (       

Define 

   G: [0, 1]       

By 

 

   G (, x) = F(x) + (1- ) [F (x) - F(x (0))] = F(x) + (-1) F(x (0)). 

 

Then for various values of  the solution to G (, x) = 0, can be found. 

 

When     this equation assumes the form 

  

   0 = G (0, x) = F(x) – F(x (0)), 

 

And x (0) is a solution. when    , the equation assumes the form  

 

   0 = G (1, x) = F(x) 

And x (1) =    is a solution. 

The function G, with parameter  , provides us with a family of functions that can lead from 

the known value x (0) to the solution x(1) =   . The function G is called a homotopy 

between the function G (0, x) = F(x) – F(x (0)) and the function G (1,x) = F(x). 

The Continuation problem is to determine a way to proceed from the known solution x(0) of 

G(0,x) = 0 to the unknown solution x(1) =    of  G(1,x) = 0, that is the solution to F(x) = 0. 

 

We first assume that x () is the unique solution to the equation 

 

   G (, x) = 0, 

 

For each   [0,1]. The set {x()| 0       1} can be viewed as a curve in    from x(0) to  
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x(1) =    parameterized by . A continuation method finds a sequence of steps along this 

curve corresponding to   (      
  where             . 

 

If the function    (  and G are differentiable then differentiating G(,x) = 0, with 

respect to  gives  

 

    
  (  (  

 
 

  (  (  

  
  (  

And solving for    gives 

 

    (   [
  (  (  

  
]
    (  (  

 
 

 

This is a system of differential equations with the initial condition x (0). 

 

Since,  

 

                    G(,x) = F(x) + (-1)F(x(0)).  

 

We can determine both 

  

                                     
    (   

  
  ( (   

 

The Jacobian matrix, and  

 

  
  (  (  

 
  ( (     

 

Therefore, the system of differential equation becomes 

 

    (      ( (     ( (  )      for      , 
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with the initial condition x (0). The following theorem gives conditions under which the 

continuation method is feasible. 

 

Theorem 1: Let F(x) be continuously differentiable for x   . Suppose that the Jacobian 

matrix J(x) is nonsingular for all x     and that a constant M exists with || J(        M, 

for all x     . Then for any x (0) in   , there exists a unique function x (), such that  

 

   G (, x) = 0 

For all   [0,1]. Moreover, x() is continuously differentiable and  

 

               (      ( (     ( (  )       for each   [0,1]. 

 

The Continuation method can be used as a stand-alone method, and does not require a 

particular good choice of x (0). However the method can be used to give an initial 

approximation for Newton’s or Broyden’s method [25]. 

 

2.2 Unconstrained Optimization 

Optimization can be defined in a classical sense, as the art of obtaining best policies to 

satisfy certain objectives, sometimes satisfying some fixed requirements. Optimization can 

be categorized into constrained and unconstrained optimization. In this thesis we are only 

concerned with unconstrained optimization. 

Unconstrained Optimization: Unconstrained Optimization is the problem of finding a 

vector x that is a local minimum or maximum to a scalar function f(x): 

                                                           (           (  (    

The term unconstrained means that no restriction is placed on the range of x. 
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Basics for Unconstrained Optimization: Although many methods exist for unconstrained 

optimization, the methods can be broadly categorized in terms of the derivative information 

that is used. Search methods that use only function evaluations are most suitable for 

problems that are not smooth or have a number of discontinuities. Gradient methods are 

more efficient when the function to be minimized / maximized is continuous in its first 

derivative. Higher order methods (such as Newton's method) are only suitable when the 

second-order derivative can easily be calculated, this is because the calculation of second-

order derivative, using numerical differentiation, is computationally expensive.  

                                           To minimize f (x), 

 The basic Iteration for all the methods here can be written as follows: 

             
                                       

Where    is known as the descent direction, and    is a scalar known as the steplength. The 

starting point    is chosen arbitrarily. At each iteration    and   are chosen such 

that  (       (   .  

The iteration is terminated when the given convergence criteria is attained. Since the 

necessary condition for the minimum of unconstrained problem is that, its gradient is 0 at the 

optimum, the convergence criterion is given as: 

                                              (           . 

Where the tolerance (tol) is a small number (e.g.      . 

Descent Direction: For a given direction to be a direction of descent, the following 

condition must be satisfied, 

    (       (   .  

Or     (      
    (    
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Using Taylor series expansion, 

   (        ( 
       (    

Or       ( 
        

If the steplength    is restricted to positive values, then the following is the criteria for   at 

a descent direction when given point   :   

    (         

Furthermore, the numerical value of the product   (       indicates how fast the function 

is decreasing along this direction. 

Example: Use Excel to check for the following function, if the given directions d1, d2, are 

directions of descent at the given point   : 

 (   (  
        

  (     
     

           (         (             (     

Solution: 

   [
          

       
       

     
] 
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Table 1.1: Excel showing descent direction calculation result 

 

From the Excel result,                                                

Numerical Optimization Method: At each iteration of a numerical Optimization method, 

there is need to determine two things 1) Descent direction (   , and 2) Step length (   : 

     =    +      

There are various methods for Step-length calculation, such as Analytic line search, Equal 

interval search, Section search, Golden section search, Quadratic interpolation method, and 

approximate line search. However in this thesis, Analytical line search method is considered 

and the solution is obtained using Newton-Raphson method. 

Analytic Line Search: If an explicit expression for ( ) is known, the optimum step length 

can easily be calculated using the necessary and sufficient conditions for the minimum of a 

function of 1 variable. The necessary condition is  
 

  
 = 0    and the sufficient condition is 

 
  

   
 > 0 

Algorithm Analytic Line Search (solution using Newton-Raphson method) 

Given   , calculate f (     and   , to find     

Step 1:  Calculate ( ) = f (  +   ) 
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Step 2: Evaluate 
 (  

  
 = g ( )  and  

  (  

   
 =   ( ) 

Step 3: Apply Newton Raphson method on g ( ), to find the optimum value of  . 

Descent direction: As in the case of Step length calculation, there are also several methods 

of Descent direction calculation, which includes Steepest Descent method, Conjugate 

Gradient Method, Modified Newton’s Method, and Quasi-Newton Methods.                            

 

2.2.1 Steepest Descent Method 

The steepest descent method, can be traced back to Cauchy (1847), is the simplest gradient 

method for unconstrained optimization: 

 

                                    (  , 

 

Where f(x) is a continuous and differential function in   . The method has the form: 

                                              =   +   (     

 

Where     (      (    is the gradient vector of F( ) at the current iterate point    

and   > 0 is the stepsize. Because the search direction in the method is the opposite of the 

gradient direction, it is the steepest descent direction locally, which gives the name of the 

method. Locally the steepest descent direction is the best direction in the sense that it 

reduces the objective function as much as possible. 

 

The method is very valuable apart from being used as a starting method for solving systems 

of nonlinear systems [25]. 

The algorithm for the method of steepest descent for finding a local minimum for an 

arbitrary function g from    into R can be described as follows: 
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Algorithm of Steepest Descent Method 

Given    

Step 1: Calculate F(    and   F(   . 

Step 2: Calculate the Step length 

Step 3: Update the next value      =    +     . 

 

Definition 1 (Gradient of a function): For g:    , the gradient of g at 

   (           
  is denoted   (    and is defined as  

    (    (
  

   
(   

  

   
(     

  

   
(  )

 
. 

The gradient for a multivariable function is similar to the derivative of a single variable 

function in the sense that a differentiable multivariable function can have a relative 

minimum at x only when the gradient at x is the zero vector. 

Though the convergence of the method is linear, but it converges even for poor initial 

approximations [25]. The analysis of the convergence will be discussed in chapter 3. 

 

2.2.2 Conjugate Gradient Method 

In the steepest descent method for solving nonlinear optimization the steps are along 

directions that nullify some of the progress of the others. The basic idea of the conjugate 

gradient method is to move in the non-disturbance direction. Suppose a line minimization 

along the direction u is done. Then the gradient  Fat that point is perpendicular to u, because 

otherwise one can be able to move further along u. Next, one should move along some other 

direction v. In steepest descent v = − F. In the conjugate gradient method some direction is 

added to − F to become v. v is chosen in such a way that it does not undo the minimization 

along u. In order to be perpendicular to u before and after the movement along v. At least 
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locally the change in  F is needed to be perpendicular to u. Now observe that a small change 

x in x will produce a small change in  F given by 

      (          

 

The idea of moving along non-interfering direction leads to the condition 

 

          (      

 

And the next move should be along the direction v such that 

 

               

 

Even though v is not perpendicular to u, it is   -orthogonal to u. 

    The connection between x and ( F) in terms of the Hessian   is a differential 

relationship. Here it is used for finite motions to the extent that Taylor’s approximation of 

order 2 is valid. Suppose f is expanded around a point y keeping x constant, 

 

   (      (     (     
 

 
      

 

Thus f looks like quadratic equation. If f is assumed to be quadratic, then the Hessian 

  does not vary along directions u and v. Thus the condition above makes sense. With this 

reasoning as background, one develops the conjugate gradient method for quadratic 

functions formed from symmetric positive definite matrices. For such quadratic functions, by 

moving along successive non-interfering directions the conjugate gradient method converges 

to the global minimum in at most n steps. 

For general functions, the conjugate gradient method once near a local minimum, the 

algorithm converges quadratically to the solution. 
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Thus, the descent direction    in the steepest descent method is been corrected as follows; 

 

                             = -  (    +       

Where mostly in practice  is calculated by one of the following formulae, 

 

Fletcher-Reeve’s formula:     = 
[  (  )]

 
  (   

[  (    )]
 
  (     

 

 

Polak-Ribiere formula:         = 
[  (    )    (   ]

 
  (   

[  (    )]
 
  (     

 

The numerator in the Fletcher-Reeve’s formula is the square of the norm of the gradient of f 

at the current point. The case is slightly different in Polak-Ribiere formula because the 

numerator is slightly modified. The denominator is the same in both cases. Polak-Ribiere 

formula usually gives better results than Fletcher-Reeve’s formula [27]. 

Algorithm Conjugate Gradient Method:  

Given    

Step 1:  Compute F(x),  F(x) and set,      as zeros for the first iteration. 

Step 2: Compute    = -     (    +       and also calculate the step length  . 

Step 3: Update the next value      =    +     . 

 

This method gives better result in practice than Steepest descent method, and the 

convergence is also faster. 
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2.2.3 Modified Newton’s Method 

Newton’s method for solving systems of nonlinear equation was discussed in chapter 2.1.1, 

the difference is not much with Newton’s method for Optimization being the Computation of 

Hessian instead of the Jacobian matrix. As in 2.1.1 the Newton method was derived by 

considering quadratic approximation of the function using Taylor series: 

 

      (       (      (       
 

 
(     (       

 

Where  (    is the Hessian matrix at   . Differentiating with respect to   , one gets 

 

  

              (     (        

 

The direction can then be obtained by solving the system, i.e. 

 

         (        (    

 

In its original form, the method was used without steplength calculations. Thus, the iterative 

scheme before, was as follows: 

 

                (        (    

 

However, in this form the method may not converge when started from a point that is far 

away from the optimum. The Modified Newton method uses the direction given by the 

Newton method and then computes an appropriate steplength along the direction. This is 

what makes the method very stable. Thus the iterations are as follows: 

 

             
    k = 0, 1,… 

 

With       (        (    and    obtained from minimizing  (      
  . 
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Algorithm Modified Newton Method 

Choosing a starting value   , 

Step 1: Compute F(x) and   (  . 

Step 2: Compute H(x) and   (       

Step 3: Calculate        ( 
       (    and     

Step 4: Update the next value of X by      =    +     . 

 

The convergence of the method is quadratic. Each iteration, however, requires more 

computations because of the need to evaluate the Hessian matrix and then to solve the 

system of equations to get the direction [27]. 

 

2.2.4 Quasi - Newton’s Method For Optimization 

Consider the Quasi-Newton methods with line searches for finding a local minimum of a 

function  (  , where     . It is assumed that      with positive definite Hessian    at 

a solution  , although only the gradient  (      (    (denoted by   ) is used in 

practice, where    estimates   at iteration k. The Hessian approximation at    is denoted by 

   and its inverse by   . 

 

    At each iteration of quasi-newton’s methods, a positive definite Hessian approximation    

is updated to a new approximation     using   and    defined by       (      

   (     and             respectively, for which the quasi-Newton condition is 

satisfied. To define the update matrix, several formulae have been proposed. The first 

formula has been suggested by Davidon in 1959, in a technical report [28], subsequently 

investigated by Fletcher and Powell, published in 1963, [29], it became known as DFP and 

published with further detail in 1991 [30]. These authors referred to the corresponding DFP 

method as a variable metric method and it is also known as the first quasi-Newton method. 

Other popular quasi-Newton formula is BFGS which was obtained independently by 

Broyden, Fletcher, Goldfarb and Shanno, in 1970  [31]. These formulae belong to the 
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Broyden family of updates which has certain useful properties when the line search structure 

is used. The BFGS method is the most effective, while the DFP method may converge 

slowly in certain cases [32].  

    Several overviews on quasi-Newton methods have been published [33], [34], [35], [36], 

[37], [38] and [39]. 

 

Algorithm Quasi-Newton’s method 

Given the starting point   , 

Step 1: Compute F(x) and   (  . 

Step 2: Determine        
    (    and     Where Q is a Jacobian inverse matrix  

Step 3: Update the next value of X by      =    +     . 

Step 4: Update    for the subsequent iterations. 

Now to update    there are different Quasi-newton’s methods which differ in the way    

matrix is updated which includes DFP, BFGS, and SR1 methods. Here only DFP and BFGS 

methods are considered. 

 

DFP (Davidon, Fletcher, Powell) Update 

The    update, that is      of this method is given by, 

 

       =     
  (    

(      
  

(     (      

(        
 

Where  

        (         (     and                
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BFGS (Broyden, Fletcher, Goldfarb, and Shanon) Update 

The    update, that is      of this method is given by, 

 

     =    (   
(  )

 
    

(  )
 
  
)
  (  )

 

(  )
 
  

 

 
 

(      
 (  (           (        

 

Numerical result shows the efficiency of BFGS formula over DFP (M.A. Bhati, 

2000).Though the effort of computing Hessian matrix in each iteration by Modified 

Newton’s method is been taken care of by Quasi-Newton’s method, but its convergence is 

super linear, hence the rate of convergence is slower than that of Modified Newton’s 

method. 

Detailed of the convergence analysis will be seen in Chapter 3.           
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CHAPTER 3 

 

CONVERGENCE ANALYSIS 

 

3.1.1 Preliminaries : Performance of two or more Algorithms is usually compared by their 

rate of convergence. That is if 

                                              

the interest is usually on how fast it does happen. 

 

 Definition 1: Let        and      be such that     , if              and           

 

                                                            
||       ||

||     ||
                                  

then               

 

Definition 2: Let        and      be such that     , if 

 

   

                                
||       ||

||     ||
   

 

          Super Linearly 

 

 

Definition 3: Let        and      be such that     , then if                   

   

 

                          
|         |

|       |
                                            

 

          Quadratically  
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Quadratic convergence is faster than superlinear convergence, while superlinear convergence 

is faster than linear convergence. 

 

 

Estimating Rate of Convergence: Let the error after n steps of an iterative algorithm be 

        , then             . As     from the above definitions, 

 

                                          
        

       
  

 

                          |           
    and |            

  

 

 

Forming the ratio of the above gives, 

 

       

      
  

    
 

      
 
  |

     

      
|
 

 

Solving for  , gives 

 

  
     

    
  

 

    
  
    

 
 

Using the above, one can approximate the convergence rate   given any two consecutive 

error ratios. 

 Theorem 1 (Taylor’s Theorem): Let        , also let             (     be 

continuous on (a, b). Then there exist   (     such that, 

 

                       (    (     (  (     
   (  

  
(        

 (  (  

  
(     . 
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Lemma 1 (Banach Lemma) :Let        with       then, 

 

                         

 

  
 

     
  (        

 

     
 

 

Lipschitz Condition:  

 

 (   Satisfies Lipschitz condition on an interval I if           

 

          (     (                                  

 

 

3.1.2 Convergence Analysis for Newton’s method of solving equation of one variable   

Theorem 2 (Fixed point theorem): Let          be such that  (        , for all 

       . Suppose in addition that    exists on (a,b) and that a constant 0 < k < 1 exists 

with 

     (                                              (      

 

Then for any              the sequence defined by 

 

      (     ,          

 

Converges uniquely to a fixed point in [a,b] 
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 Newton’s convergence of solving equation of one variable   

Theorem 3: Let          . If   (     is such that  (     and   (    , then there 

exists a     such that Newton’s method generates a sequence        
  converging to p for 

any initial approximation           . 

 

Proof: The proof is based on analyzing Newton’s method as the functional iteration 

scheme    (     ,         with 

 

   (     
 (  

  (  
 . 

Let   (    . First find an interval         that g maps into itself and for which 

   (     , for all   (      . 

 

 Since    is continuous and   (    , it then implies there exists a    , such that 

  (     for              . [a,b]. Thus g is defined and continuous on    

      .  Also  

 

    (     
  (    (    (     (  

    (    
 

 (      (  

    (    
 

 

For            , and, since          , then               . 

 

 By assumption,  (    , so  

 

   

    (   
 (      (  

    (    
    

 

Since    is continuous on   (    , then there exists a , such that 0 <  <  , and  

 

    (                                          . 
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It remains to show that g maps         into          If          , the 

Mean Value Theorem implies that for some number   between x and p,   (    (    

   (          So  

 

   (        (    (       (                       

 

Now since,          , it follows that       , and that   (      . Hence g 

maps         into       . 

 

 All the hypothesis of the fixed point Theorem 2 are now satisfied, so the sequence 

       
 , defined by  

 

     (           
 (     

  (     
   ,  for      

 

Converges to p for any           . 

 

Theorem 4: Let r be a fixed point of the iteration       (    and suppose that   (    , 

but    (    . Then the iteration will have quadratic rate of convergence. 

 

Proof  

 

Using Taylor series expansion about fixed point r 

 

 (    (     (  (     
   (  

 
(      

    (  

 
(      

 

Substitute    for x and       (   ,   (    , and    (     

 

         
   (  

 
(       

    (  

 
(       
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Subtract r from both sides and divide through by (     
  

 

                      
      

(      
 

   (  

 
 

    (  

 
(      

 

As    , then 

 

   
   

        

       
 
    (   

 
 

 

Since    , this implies the iteration will converge quadratically. 

 

The fixed-point iteration function for Newton’s method is given by 

 

   (     
 (  

  (  
 

 

   (     
  (    (    (     (  

    (    
 

 (      (  

    (    
 

 

When evaluated at r,    (     since  (     (as long as   (      

 

 Newton’s method will converge quadratically. 

 

 

Convergence of Newton’s Method of solving systems of Nonlinear Equations 

Lemma 2: Let        be a continuously differentiable in an open convex set     . 

Suppose a constant  exists such that |   (     (   |  |     |               

Then    (    (     (  (       


 
|     |

 
. 

Proof 

 

By the line integration, 
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                        (    (   ∫   
 

 
(   (    )(         

So 

 

  (    (     (  (     ∫    
 

 
(   (    )    (   (         

 

It follows that  

 

|  (    (     (  (     |  ∫     
 

 

(   (    )    (              

 

                  ∫             


 

 

 
        . 

 

Theorem 5: Let        be a continuously differentiable in an open convex set     . 

Assume that                   

 

i)  (     

ii)   (            

iii) |   (     |         

iv) |   (     (   |  |     |                                  

 

Then                      (     the sequence      defined by, 

 

                
 (        (    

 

 

Is well defined, converges to   and satisfies, 

 

  |        |          
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Proof  

 

By continuity of   , choose      { 
 

 
} so that   (   is nonsingular for all    (   . 

 

For k=0, |      |    So,  

 

 |  (    (  (     
 (  )|      (          (     

 (     

 

                       
 

 
. 

By the Banach Lemma, 

 

                         |   (     |   |   (     (  (     
 (  )    | 

 

            
||  (    ||

  ||  (    (  (     (  )||
  |   (     |    

 

 

Now, 

  

            (   
   (          

 (   
  ( (     (    

 

             =   (   
    (    (     

 (   (       

 

 

so, 

  ||    || |   (   
   |  ||  (    (      (   (        

 

                           


 
          

           
  (            
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                                      
 

 
          

 

The proof is completed by induction. 

 

Note: The above theorem shows that the Newton’s method converges quadratically if    (   

is nonsingular and if the starting point is very close to    

 

3.1.3 Convergence of Broyden’s Method 

Lemma 3: Let        be a continuously differentiable in an open convex set     . 

Suppose   constant s.t.  |   (     (   |  |     |             . Then it holds that, 

for all x,y,  ,    (    (     (  (       


 
(|     |  |     |         

 

Proof  

By the line integral, 

 

|  (    (     (  (     |    ∫    (   (       (   (        
 

 

 

 

           ∫      (          
 

 
 

   

           ∫   |     |  (    |     |   
 

 
 

 

Lemma 4: Let        be a continuously differentiable in an open convex set       

Suppose   constant s.t.  |   (     (   |  |     |               Then for 

          holds that  

 

|       
 (   |  |     

 (   |  


 
(|        |  |      |)  

 



37 

 

Proof 

By definition  

 

       (       
 (   

(           
 

  
   

 

 

   (  
    

 

  
   

)    (  (  
    

 

  
   

)  
(     

 (       
 

  
   

 

 

Taking norm 

 

        
 (     |     

 (   | ||  
    

 

  
   

||  ||
(     

 (       
 

  
   

|| 

 

But     ||  
    

 

  
   
||    

 

Therefore, the 3
rd

 term is estimated by, 

 

 

||
(     

 (       
 

  
   

||  ||
   (       (     

 (  (            
 

  
   

|| 

 

      


 
(|        |  |      |)  

(by the above lemma) 
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Theorem 6: Let        be a continuously differentiable in an open convex set       

Suppose      ,, > 0 s.t. 

 

i)  (     

ii)   (            

iii) |   (     |         

iv) |   (     (   |  |     |                                  

 

Then        such that, if |      |        |     
 (   |     then the Broyden’s 

method is well defined, converges to  , and satisfies 

 

   

|        |    |      | 

 

With           (superlinear convergence). 

 

Proof 

   Choose   
 

 
       

 

 
 . Then 

 

                     ||  (       ||    
 

 
 .  

 

By Banach lemma   
   exists. So    can be defined furthermore,  

  

                          
     ||  (   (    

 (  )
  
|| 

 

    
||  (    ||

  |   (     ||      (   |
  



   
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Thus, 

|   |  |      |   |     
  ( (     (  )   |  

 

         
    (     (     (         

 

        
    (     (     (  (      ( 

 (      (        

  

    


   
[


 
|   |

 
  |   |]  



   
           |   | 

 

    


   
 
  

 
|   |  

 

 

  
 

 

 

 
|   |  

 

 
|   | 

From lemma 3 

 

|      (   |  |      (   |  


 
(|      |  |      |) 

 

           


 
(
 

 
|   |   (  



 
 
 

 
 
 

 
  

 

       (  
 

  
)   

 

 
   

Thus  

 

      |   (         |     
 

 
. 

 

By Banach Lemma 

 

  
   exists  

 

    
     

|   (     |

  |   (     ||     
 (   |

 


    
 
 

 
 
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The following estimation can now be made 

 

|   |  |      |   |     
  ( (     (  )   |   

 

                 
    (     (          

 

              
    (     (    

 (     
 (    (  (          

 

  
 

 



 
[|   |

 
 

 

 
 |   |]  

 

 
[


 

 

 
 

 

 
 ] |   | 

 

  
  

 
[


 
 
 

 

 

 
 

 

 
] |   |  

 

 

  

  
|   |  

 

 
|   | 

Continuing 

      
 (  |          (   |  



 
(|   |  |   |  

 

   
   

  
 


 
(
 

 
|   |   (  

 

  
 


 

 

 

 

 

 

 
) 

 

    (  
 

  
 

 

 
 
 

  
)   (  (

 

 
)
 
     

 

The proof is complete by mathematical induction.        

 

3.1.4 Convergence of Diagonal Broyden-like Method 

Theorem 7: Let the following assumptions hold 

i) F is differentiable in an open convex set   in    

ii)   (   is continuous for all x and there exists        such that  (     , 

iii) There exists constants       such that 

 

  |   |
 
     (      |   |

 
  for all            
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iv)      such that the Jacobian matrix satisfies the Lipchitz condition, that is  

 

 

                                       |   (     (   |   |     |                    

 

Then there exists                 such that if     (  and the matrix valued 

function  (   satisfies |    (    (    |   (               (  then the iteration  

 

           (    (    

Converges linearly. 

 

Proof (see Kelly 1995). 

 

Theorem 8: Let      be a sequence generated by            (   , where    is 

defined by  

 

      =     
(  
      

      

  (  
  

        (3.1) 

 

Where     = diag (  
(   

,   
(   

  …,   
(   

), Tr (  
 ) = ∑   

(    
    and Tr (.) is the trace 

operator. 

 

Also let  

 

i) F is differentiable in an open convex set   in    

ii)   (   is continuous for all x and there exists        such that  (     , 

iii) There exists constants       such that 

 

  |   |
 
     (      |   |

 
  for all            
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iv)      such that the Jacobian matrix satisfies the Lipchitz condition, that is  

 

 

                                       |   (     (   |   |     |                    

And there exists constants                  such that if     and    satisfies 

|      
 (    |

 
                 the sequence      converges linearly to   . 

 

Proof
 

It is enough to show that the updating formula    satisfies|      
 (    |

 
   , for some 

constant     and for all k. Since  

 

     
(  
      

      

  (  
  

  , then  

 

                       |      |  |    |                                                                                            (3.2) 

 

Without the lost of generality, by assuming                 , then  

 

  |    |  |    |  |
    | . 

 

Since    is an identity matrix, hence |    |  √ . From the equation  

 

                                    
(  
      

      

  (  
  

          when k = 0 

 

             
(  
   |

  
      

     

  (  
  

  | 

 

          
|  
      

     |

  
(     ∑  (  

  
   

  
(     

. 
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But  
  
(     

∑  (  
  

   

  , then  

 

             
(  
   

|  
   (  ̂      

     |

  
(     

 

By letting                   then  

 

             
(  
   

     (  
    

  
(     

. 

For                 
(   

   
(     

, it follows that  

 

      
(  
   

        
(     

  
(     

, 

And thus 

    

    |    |   
 
        

 

Letting    
 
      , then 

 

   |    |    

 

Substituting in (*) and letting   √  , it follows that 

 

    

   |    |     

 

Since          and it is assumed that at    , |      
 (    |

 
 , then 
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|      
 (    |

 
 |      

 (    |
 
  |   (      |  

 

      |      
 (    |

 
 |    | |

   (    |
 

, 

 

Hence |      
 (    |

 
      , where   |   (    |

 
. Therefore, by induction, 

|      
 (    |

 
            . Hence, from theorem 7, the sequence      

generated by Diagonal Broyden-like method converges linearly to   . 

3.1.5 Convergence of Steepest Descent Method 

Algorithm: Let       be convex and continuously differentiable function. For the 

convex analysis of Algorithm A assume that f satisfies Lipschitz condition with constant L, 

i.e.             

 

         

  (     (      |       |                                                                                            (      

 

        
 . Assume the set      (   set of minimizers of f),    denote the minimum 

value of        . 

 

The general form of the algorithms is given as:         

                                                                                                                                               (     

        

            ( 
                                                                                                             (     

Where      is chosen according to one of the following Algorithms, 

 

Algorithm A: given L, 

 

Let     be positive   

 

  
 

 
                                                                                                         (     
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Take    satisfying, 

 

       
 

 
(                                                                                         (     

 

 

Algorithm B: Let        (                           : 

 

B1)   is convex and continuously differentiable. 

B2)  (     and   (     

B3)          
 (  

  
    

 

Note:   is non decreasing. 

 

For      and      defining   ( for j = 0,1,2,…) as  

 

                                                                                                                         (3.8) 

 

And if   (       ( 
  )   (     (  )|   ( 

   |
 
                                               (     

Then, 

        and the iterations terminates. Otherwise,   

         
  

 
. 

 

Definition 4:  A sequence      is quasi Fejer convergent to a set            

                   ∑    and              |      |
 
          

 

Theorem 9: If       is quasi Fejer convergent to a set      (    then      is bounded. 

If furthermore a limit point y of      is in  , then    
  
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Proof 

Let      Apply definition 1. 

 

            |      |
 
 ∑  

   
    |      |

 
 ∑   

 
    

       is bounded. 

  

Let     be a limit point of      and      Let       be a subsequence of      which 

converges to y. 

 

Using definition 4,         ∑  
 
  

 


 
                   

 

   |       |
 
 



 
            

        

     

               |       |
 
 ∑  

 
     



 
 


 
 

 

    
  

     

 

Theorem 10: Let              

 

i)  (        
          (          

ii) F is continuous in the neighborhood of (        

iii) F is differentiable with respect to the variable u in (       and 
  

  
(       0 

 

This implies, there exist a neighborhood  (    and atleast 1 function     (      

s.t.  (            (   (  )          (                                                               (      
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If furthermore, 

iv) 
  

  
 is continuous at (        

 

Then only the function u satisfies (8) and is continuous at     

 

Let            (       By continuous differentiability of F, G is open. 

 

Proposition 1: Let   satisfy B1, B2, and B3. Then  

 

i)         (           

 

   (   (    (  )   (    ( (  )|   (   |
 
                                      (      

 

And  

 

                     (     (  )   (    (  |   (   |
 
             (              (      

ii)                                

Proof 

 

i) For any fixed                by defining  

 

 (       (     (  )   (    (  |   (   |
 
                              (       

 

By B1, and B2 F(x,.) is convex and continuously differentiable, also 

 

        (                                                                                                                (      

 

        
  (    

  
 |   (   |

 
(  (                                                                  (      
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And  

         (         (    (  |   (   |
 
                                                      (      

 

From 12) and 13) 

 

F(x,.) is negative in some interval to the right of 0, also from (14), B1 and B2. 

 

   
  

 (         

It follows, that   (           

 

     (   (         

     (          from the uniqueness of u(x). 

 

Above was from the complexity of F(x,.), and the fact that a convex function of real variable 

can take a given value different from its minimum, at most at 2 different points, 

while 

 

  (        (   (           

And 0 is not the minimum value of F(x,.) by 12, and 13. 

 

Hence  the proof of 1. 

 

ii) Let     (    given by (i), given    in G. Then, 

 

 (          

 (     is continuous in a neighborhood of (       and also, 

 

   

                  

  (      

  
    (       (   )

 
  (     

 (   |   (   |
 
                                         (      
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As F(      is strictly increasing at   , then 

 

                    
  (      

  
    

 

From (15)  

 

 
  

  
(     is continuous at (       and all the hypothesis of theorem (10) holds, 

 

 u is continuous at   . 

 

Proposition 2:  Let          (            ( 
    then for any  

    |        |
 
 |      |

 
            , Where {    is generated by (2) and (3) 

with any     . 

 

 

Proof  

Let    . Then  

 

 |        |
 
 |      |

 
 |        |

 
 

  

    (      (            (        (    

 

     ( (    ( 
    . 

 

Using (3) in the second equality, the gradient inequality in the first inequality, and definition 

of T. The proof follows. 
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Analysis of Backtracking procedure 

Proposition 3: The backtracking procedure of Algorithm B defined by (6)-(7) stops after a 

finite number of iterations. 

 

    {  
 (  )

 
}            ( 

                                                                    (      

 

Proof 

 

 Consider 2 cases of    

 

1)    (   ( 
    

 

2)     (     

 

Case 1) By Proposition 1 (i),       from (6) and (7), and iterations stops at j = 0. 

 

(16) is then established since      and     (   . 

 

              ( 
               

 

Therefore,  

 

              
 (  )

 
  

 

Case (2)                

 

       (          (                                                                            (      
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Then,   

  
 (  )

 
 

  

  
  (                                                                                            (      

By (6) and (7)  

 

      
  

  
   therefore, from (18), 

 

     
 (  )

 
      (                                                                                       (      

Claim:        

 

From (17) and (18)       (            (     

 

Using Proposition (1), (7) is satisfied by      . 

 

Therefore (16) follows from (19) and the fact that          

 

Proposition 4: From Algorithm A and B, it holds that:  

 

i)           

 

 (       (    |         |
 
                                                                                 (      

 

ii)  {  (       is decreasing and convergent. 

 

iii)   ∑ |         |
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Proof  

 

 For Algorithm A, using Newton-Leibniz formula: 

 (       (      |   ( 
   |

 
   ∫(  ( 

       ( 
     (   )

 
 

 

  (      

 

       (      |   ( 
   |

 
    

 |   (    |
 

∫    
 

 
 

       (      (  
   

 
) |   (    |

 
  (    

 

  
(  

   

 
) |         |

 
 

using  

 

          
 

 
(     

 

        
  (  

   

 
  

  

 (    
 

 

  (20) is established for    
  

 (    
. 

 

For Algorithm B, 

 

  (       (     (   |   ( 
   |

 
  

Then, 

 

 
 (   

  
 |         |

 
 
 (   

  
   

 |   (    |
 
  (       (                       (      

 

Taking  

 

                                      
 (  

  
,  and using B3. 
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By definition of  ,               (         

 

  

 
 (  

  
                                                                                                                           (      

For each k, there are 2 possibilities 

 

a)    (         (     
        (     

 

b)                     (              ( 
       

 

Therefore, from B1 and B2    is increasing  

 

     (     (   

 

   
 (   

  
  

 (  

 
    

 

Taking       {  
 (  

 
 } and using (21) to establish (20) for algorithms B.  

It can be seen that (ii) follows from (i), using  > 0.  

 

To prove iii), by (i)             

 ∑              
    

 


 ( (     (    

 


( (        

 

Letting r  

 

                       ∑                
    

 

Proposition 5: The sequence {    generated by (2) and (3) is convergent to a point     . 
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Proof 

 

By Proposition 2 and 4 iii)  {    is quasi-Fejer convergent to T, with 

 

                   

 

It remains now to show that, there is a limit of {    in T. Using Theorem 9 It can be seen 

that {    is bounded, so it has limit. And by using proposition 4 ii) any cluster point is in T. 

 

Theorem 11: The sequence {    generated by (2) and (3) converges to a minimizer of f. 

Proof: By proposition (5),  

 

        
       

 

Therefore, it is enough to prove       (   set of minimizers of f) 

 

For Algorithm A,  

 

                
 |   (    |

 
  

 |   (    |
 
 by (5) 

Then  

   (      by proposition 4iii) and continuous by   (  , so    is a minimizer of f 

by convexity. 

 

For Algorithm B, 

 

 Suppose      , then by convexity of f,      and |   (    |      

 

By proposition 1,  (      and  (    converges to  (   . this implies                    

 



55 

 

  (    
  (   

 
        |   (    |

 
 

 

 
|   (    |

 
                                               (      

 

let   (   {  
  (   

 
}  

|   (    |
 

 
. Then       

 

               
 |   (    |

 
 (   {  

  (   

 
} |   (    |

 
 

 

 

            (   {  
  (   

 
})
 |   (    |

 

 
                                  (      

 

Using (3) in the first equality, proposition 3 in the first inequality and (23) in the 2
nd

 one. 

Since (24) contradict proposition 4iii), then by contradiction       (   set of minimizers 

of f). 

 

3.1.6 Convergence of Conjugate Gradient Method 

Theorem 12: Let      be the sequence generated by a line search algorithm under the exact 

line search, or any in exact line search, that 

 

  (     (          
(   

   )
 

|    |
                           

If  

 

 ∑          
    

 

Then the sequence is convergent in the sense that 

                                               |    |                                                                       (      
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Furthermore,                              

  if                                , 

 

then the sequence is strongly convergent in the sense that    |    |   . 

 

 

Theorem 13 (convergence of Conjugate gradient): Let      be the sequence generated by 

 

                               (                            

Such that 

 

1)  (     (          
(   

   )
 

|    |
                           

2)    
   (               

   (                                                                        (      

 

If 

i)   (      is bounded below 

 

ii)       is bounded 

 

iii) ∑
 

|    |
   

 
       holds 

 

The method converges in the sense that (1)  holds. 

 

Proof  

 

Suppose that (1) is not true,                

 

  |    |               
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It follows from (2) that, 

 

  
    
     

|      |
        

  
   

|      |
  

which gives that, 

 

      
     

     

|      |
       

   
    

|      |
  

 

       

                      
     

     

|      |
    |   |

|    |
 

|      |
 

     
  

|    |
  

 

          √    
 |   |

 
|    |

 
|      |

  
 √

(    
       

|      |
  

(  
     

|    |
  

 

From the above inequality and from the assumption made, 

           

 

 
(  

    
 

|    |
  

(    
      

 

|      |
                                                                                     (      

 

It then follows from theorem (9) and equation (3) that,  

 

            ∑    [
 

|       |
  

 

|    |
 ]

 
                                                                                     (      

which shows that, 

 

                  [|       |       ]  
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Thus, the definition and the boundedness of         shows that, 

 

 |     |  
 

 
   [|       | |    |]  |    ||       |   

 

            |     |  ( |    |  
 

 
) |       |  

 

It follows from (4) and the boundedness of    that, 

 

 

 ∑ [
 

|     |
 ]

 
      

 

Repeating the above analysis with the indices 2k-1 and 2k replaced by 2k and 2k+1 

respectively. It can be proved that, 

 

 ∑ [
 

|       |
 ]

 
      

Therefore, it follows that, 

 

 ∑ [
 

|    |
 ]

 
      

 

which contradicts the assumption. Hence the theorem is true by contradiction. 

 

3.1.7 Convergence of Newton’s Method for Optimization 

Proposition 6: Suppose that M is a symmetric Matrix. Then the following are equivalent, 

 

1)                       
 

 
 

 

2)               |    |      |   |                             
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Proposition 1: Suppose that  (   is twice differentiable. Then, 

 

   (      (   ∫[ (   (    )](       

 

 

 

 

Theorem 14 (Convergence of Newton’s method for Optimization): Suppose  (   is 

twice differentiable and    is a point for which    (       Suppose  (   satisfies the 

following conditions: 

 

1)      a scalar for which     (       
 

 
 

2)      a scalar and     for which |  (    (   |   |     |   

                |      |       |      |  . 

 

Let x satisfy|      |  , where       and         
  

  
  and let  

      (      (  , then ,  

        |     
  |  |      |

 
(

 

 (   |      | 
) 

ii)     |     
  |  |      |, and hence the iterates converges to   . 

 

        |       |  |      |
 
(
  

  
). 

 

 

Proof  

 

         (      (      

 

             (    (  (      (    

             (    ∫   (   (
 

 
       (         from proposition (2) 
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       (    ∫   (   (
 

 
       (   (          

Therefore, 

 

      
       (      ∫     (   (

 

 

       (                

                      (      ∫   
 

 
           

 

           |      |
 
   (       ∫  

 

 
    

 

           
|      |

 
 | (    |  

 
                                                                                             (      

To bound    (      . Let v be any vector. Then, 

 

|  (    |  |  (     ( (    (      |. 

 

        |  (         ( (    (      | 

 

          |   |  |  (    (    ||   |                                           

  

           |   |           |   | 

 

         (   |      | |   | 

 

Using proposition (1) again, 

 

                              (       
 

   |      |
  

 

Substituting in (*) gives, 
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    |      |

  

 (   |      |)
                                              (      

 

Since  |      |   
  

 
 

  

 
     then, 

          |      |
 |      |

 (   |      |)
 

 
  
 

 (  
  
 
 
|      | 

 

               |      |                                                                                   (      

 

Finally, 

 

       
    |      |

 |      |

 (   |      |)
 |      |

  

 (  
  

 
 
 

 

             |      |
   

  
                                                                                   (      

 

And hence (   (       (                          

     

3.1.8 Convergence of Quasi-Newton’s Method for Optimization 

Wolfe’s Condition: This is a popular inexact line search condition which demands that    

should give sufficient decrease in the objective function f, as measured by, 

 

 (         (          
                                                                                       (      

 

Where    is some fixed constant and   (    . 

Equation (i) requires that for any value of  , the graph of , 

 

                   (    (        lies below  (          
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Using Taylor’s theorem, 

 

   (         (        
     ( 

   

 

And since    is a descent direction i.e.    
     , such   exists. 

 

Condition (i) is only true for very small  .  For all  , there is need for condition (ii), called 

Curvature condition  

 

  (       
         

                                                                                                  (      

 

 

Where    is some fixed constant and   (     . 

Condition (ii) implies that, very large   is chosen such that slope of  (   is larger than 

   (    

         Conditions (i) and (ii) are the Wolfe’s Conditions. 

 

Theorem 15 (Dennis and More): Suppose that        is three times continuously 

differentiable. Consider the iteration, 

 

                               

 

Where    is a descent direction, and    satisfies the Wolfe’s condition with    
 

 
. If {    

converges to   , such that   (      and    (    is positive definite, and if    satisfies 

 

  

      
       

       

      
                                                                                            (      

Then, 

i) The steplength      is admissible      , and 
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ii) If           , then      superlinearly. 

 

Remark: If          , then equation (3) is equivalent to, 

   
  

  (    
        

      
                                                                                             (      

 

This implies, it suffices that    become increasingly accurate approximation of     (    

along the search direction   . Therefore, condition (4) is the necessary and sufficient 

condition for superlinear convergence of quasi-Newton methods. 

 

Theorem 16: Suppose that        is three times continuously differentiable. Consider the 

iteration, 

                                                    . 

Assume, 

i) {       

ii)   (      

iii)    (    is positive definite. 

Then {    converges superlinearly iff equation (4) holds. 

 

Proof 

 

Equation (4) is equivalent to 

 

       
  (     

  (            

 

        (     
  (           

 

         (                 

 

          (|    | . 
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The fact that   (     
     is bounded sufficiently close to    is used. While proving the 

quadratic convergence of the Newton’s method, it is shown that 

 

 |      
     |   (|       |  

Hence, 

 

 |          |  |      
     |         

    

 

         (|     
  |)   (|    | . 

Since, 

 

|     |  |       ( 
   |    ∫   (    (

 

 

      (           

 

       (          

And since   (     
     is bounded sufficiently close to    then, 

 

  |    |   (      
      

Hence, 

 

 |          |   (      
      

 

Giving the superlinear convergence. 
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CHAPTER 4 

 

METHODOLOGY 

 

 

In order to evaluate the performance of excel in handling optimization problems, the step 

by step algorithm of using excel is applied to two popular benchmark problems. Also the 

various methods used both for systems of nonlinear equations and optimizations are 

compared. The comparison of the methods is based on the number of iterations required 

to reach an acceptable solution and also the amount of storage required. 

 

4.1 Bench mark problems 

1. For systems of nonlinear equations (R.L. Burden and J.D. Faires 1996) 

 

  (                 (      
 

 
 

   (             
    (       

             

  (            
            

      

 
  

 

 (   (         
  (                                                 (     

 

2.  For Optimization (Rosenbrock’s Function) 

 

 (          (     
    (     

  

    

 (   (      
  (                                                           (     

 

4.2 Step by Step excel solution of (4.1) 

The methods used for solving (1) are, Newton’s method, Quasi-Newton’ method, 

Diagonal Broyden-like method and Homotopy and Continuation method. 
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 4.2.1 Solution using Newton’s method 

Step 1: Given  (   compute F(  (  )= 

[
 
 
        (      

 

 

  
    (                   

             
      

 ]
 
 
 

 

   By substituting the values of     (   (               

Step 2: Compute the Jacobian and the Jacobian inverse  see table 1, 

 

      

 (   

[
 
 
 
 
   

   

   

   

   

   
   

   

   

   

   

   
   

   

   

   

   

   ]
 
 
 
 

  [

       (           (     

       (             
    

         
       

]         

 

For the Jacobian inverse,  

1) Highlight the appropriate number of rows and columns (here the matrix is 3 by 3), 

and then 

2) Put the following command (= minverse ()) 

3) Inside the parenthesis highlight the matrix that is to be inverted (here the Jacobian 

matrix). 

3) Press   button and then press ctrl, shift, and enter (buttons) together. 

 

Step 3: Calculate       (  
(  )

  
 ( (    as follows, 

1) Highlight the required number of rows and columns (3 by 3 matrix multiplied 

by 3 by 1) 3 by 1. 

2) Put the following command (= mmult ())  

3) Inside the parenthesis highlight the first matrix (the Jacobian inverse matrix), put a 

comma and then highlight the second matrix ( ( (   matrix) and close the bracket.  

3) Press    button and then press ctrl, shift, and enter (buttons) together. 
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Step 4: Calculate   (      (        as follows, 

1) Click on a new cell, put equal sign (=) 

 2) Click on the first cell (of   (    

3) Put addition sign (+) and click on the second cell (of     and press enter. 

4) Drag the cursor down to obtain the rest of the values. 

 

Step 5: Copy and paste until the stopping criterion is attained  

 

The stopping criterion here is based on          and can be obtained using the following 

command, (= max (abs (  
(  
   

(  
), abs(  

(  
   

(  
), abs(  

(  
   

(  
)) . 
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Table 2.1: Benchmark 1 solution using Excel (Newton’s Method) 

 

 

 

 

The solution at iteration number 4  
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4.2.2 Solution Using Quasi-Newton’s Method 

Step 1: Given  (   compute F ( (  ) as in the case of Newton’s method. 

Step 2: Set y (3 by 1) matrix and s (3 by 1) matrix as zeros. 

Step 3: Compute J (  (  ) , J(  (      and    = J(  (       . 

Step 4: For the second iteration compute   (    (      , compute F (  (  ) by copy 

and paste. 

Step 5: Compute y by the command (= F (  
(  

) cell - F(  
(  

) cell )and drag down, and 

compute s by the command (=    
(  
        

(  
      ) and drag down.  

Step 6: Set J (  (    = 0s and compute J(  (             =     
(    

      
   

  
     

 by, 

1) Highlight 3 by 3 matrix     

2) Enter the following command  

( 

   (           (       )  

(     (         (     
         (         (         ( 

       )  

3)  Press    button and then press ctrl, shift, and enter (buttons) together. 

 

Step 7: compute    by copy and paste. 

 

Step 8: Copy and paste until the stopping criterion is attained  
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Table 2.2: Benchmark 1 solution using Excel Quasi-Newton’s method (Broyden’s method) 

 

 

 

 

The Solution at iteration number 6. 
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4.2.3 Solution using Diagonal Broyden-like method 

Step 1: Given   (   compute F ( (  ). 

Step 2: Set y (3 by 1) matrix, s (3 by 1) matrix and A (3 by 3) matrix as zeros. 

Step 3: Compute J (  (  ) , J(  (      and     (  (      . 

Step 4: For the second iteration compute   (   (     , compute F (  (  ) by copy and 

paste. 

Step 5: Compute y by the command (= F (  
(  

) cell - F(  
(  

) cell )and drag down, and 

compute s by the command (=    
(  
        

(  
      ) and drag down.  

Step 6: A is a diagonal matrix: 

       
    

 ,         
    

  ,         
    

  .  

Step 7: Set J(  (    = 0s and compute J(  (      =      =     
(  

      
        

  (   
 by, 

1) Highlight 3 by 3 matrix  

2) Enter the following command 

(      ((     (         (             (         (         (      ) 

(   (   
     

     
    )    ) 

 3) Press    button and then press ctrl, shift, and enter (buttons) together. 

Step 8: compute    by copy and paste 

Step 9: Copy and paste until the stopping criterion is attained. 
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Table 2.3: Benchmark 1 solution using Excel (Diagonal Broyden-like Method)    

 

 

 

 

The Solution at iteration number 6 
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4.2.4 Solution using Homotopy and Continuation method   

Step 1: Given   (   compute F (  (  ) as in the case of Newton’s method and also set  

h =0.25. 

Step 2: Compute J ( (  ), and J( (      as in the Newton’s method and then use it to 

calculate (   = h   ( (     
  

F ( (  )) by: 

1) Highlight 1 by 3 matrix. 

2) Insert the following command ( = h*Mmult( -J  ( (     ,F(  (  )) 

3) Press    button and then press ctrl, shift, and enter (buttons) together. 

 

Step 3: Compute   (     (   
 

 
   and then use it to calculate   ( (    

 

 
     and 

  ( (    
 

 
     

  
 as in the Newton’s method. 

 

Step 4: Compute K2 the same way as K1. 

 

Step 5: Compute   (     (   
 

 
   and then use it to calculate   ( (    

 

 
     and 

  ( (    
 

 
     

  
 as in the Newton’s method. 

 

Step 6: Compute K3 the same way as K2. 

Step 7: Compute   (     (      and then use it to calculate   ( (         and 

  ( (         
  

 as in the Newton’s method. 

Step 8: Compute K4 the same way as K3. 

Step 9: Calculate (  (      (    
 

 
(                       

Step 10: Copy and paste until the stopping criterion is attained  

 

Table 2.4: Benchmark 1 solution using Excel (Homotopy and Continuation Method)  
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The Solution at iteration number 80. 
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4.3 Step by Step Excel Solution of Rosenbrock’s Function 

In general, to solve Problem (2) two things are involved, 1) Step length calculation and 

2) Descent Direction calculation. 

1) Step length Calculation: In general here, the Step length calculation involves 

expanding the equation, computing the equivalent equation in terms of   assuming 

  and    are known, then computing first and second derivative of the equation 

involving  , and then at last applying Newton-Raphson method to solve the equation as 

follows,     

 (      (     
    (     

      Rosenbrock’s function   

     (     
  (     

     (     (                                                 

                            
    

     
        

                     

           (        
       

       
      

         Expansion  

                       (       (           

 

(    [
  
      

 

  
      

 ] 

 

    (      (  
     

       (  
     

       (  
     

   (  
     

   

(  
     

     (  
     

            Equation in terms of   

 

 (   
 (  

  
    (  

     
     

     (  
     

    
     (  

     
    

                    (  
     

    
     (  

     
     

   (  
     

    
     

  

First derivative with respect to   
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  (   
  (  

   

     (  
     

     
        

        
  (  

     
  

      
   

 (  
     

      
   

Second derivative with respect to   

The Solution in each iteration depends on the value of x and d. In each case after computing 

the first iteration, the rest of the iterations follow by copy and paste. 

Given the x and d values,   is given the value 1,  (   
 (  

  
 is calculated and 

also  (   
  (  

   
 is calculated. The next value of    is calculated by the formula 

      
 (  

  (  
 

 

Table 2.5: Example of the Steplength Calculation Using Excel (Newton - Raphson method) 
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2) Descent Direction calculation 

The methods used for Descent direction calculation are, (1) Steepest Descent method, (2) 

Conjugate gradient method, (3) Modified Newton’s method and (4) Quasi-Newton’s 

method (DFP and BFGS). 

4.3.1 Solution Using Steepest Descent method 

Given  (   

Step 1: Compute F(  (  ) by typing the following command (=100*  ^4+100*  ^2 - 

200*  ^2*  +   ^2-2*  +1). 

Step 2: Compute   F(x) = [
     

               

           
 ] by typing the following 

command, first cell (=400*   ^3-400*  *  +2*  -2), and second cell (=200*   - 200*   

^2). 

Step 3: Compute    = -   F(x) as follows, 

1) Highlight 1 by 2 matrix 

2) Enter the following command (= - (highlight   F(x) )) 

3)  Press    button and then press ctrl, shift, and enter (buttons) together. 

Step 4: Compute      ,   is the Step length which is calculated as we have seen before 

(Using Newton-Raphson method). Therefore,     is calculated by the following command 

(=  *(highlight    )) , press f2 and then ctrl, shift and enter together. 

Step 5: Copy and paste until the stopping criterion is attained 

Step 6: Stopping criterion (f(x)       ). 

 

 

 



86 

 

Table 2.6: Benchmark 2 solution using Excel (Steepest Descent Method) 
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Until

 

There are 947 iterations. 
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Note that, the detail of the step length calculation at each iteration is skipped here for the 

sake of convinience. 

 

4.3.2 Solution Using Conjugate gradient method  

Step 1: Given   (    Calculate F (  (  ),   F(x) and          (    as in the Steepest- 

descent method 

Step 2: Set   and       as zeros. 

Step 3: Calculate          (  
          using the following command 

(= (highlight      (    ) +  * (highlight      )). press f2 and then ctrl, shift and enter 

together. 

Step 4: Calculate     as in the steepest descent method. 

Step 5: Copy and paste until the stopping criterion is attained. 

Where    = 
[  (  )]

 
  (   

[  (    )]
 
  (     
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Table 2.7: Benchmark 2 solution using Excel (Conjugate Gradient Method) 

 

 

 

There are 9 iterations 

Note that, the detail of the step length calculation is skipped here for convinience 
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4.3.3 Solution Using Modified Newton’s method 

Given   (   

Step 1: Calculate F(  (  ), and   F(x)  as in the Steepest- descent method. 

Step 2: Calculate   [

   

   
 

   

     

   

     

   

   
 

]  [
      

               
         

] by typing  

the following command,     (= 1200*   ^2 – 400*   + 2),     (= - 400*   ),  

     (= - 400*   ),     (= 200 ). 

Step 3: Calculate H inverse by, 

1) Highlight 2 by 2 matrix. 

2) Write the command (= (Minverse (highlight H))) 

3)  Press    button and then press ctrl, shift, and enter (buttons) together. 

Step 4: Calculate      [ (  (  )]
  
   (  (    by, 

1) Highlight 1 by 2 matrix. 

2) Write the following command (= - Mmult ([ (  (  )]
  

,    (  (    )) 

3)  Press    button and then press ctrl, shift, and enter (buttons) together. 

Step 5: Calculate     as in the Steepest-descent method. 

Step 6: Copy and paste until the stopping criterion is attained. 
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Table 2.8: Benchmark 2 solution using Excel (Modified Newton’s Method)  

 

 

 

There are 7 iterations. 

 

Note that, the detail of the step length calculation is skipped here for convinience 
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4.3.4 Solution Using Quasi-Newton’s DFP (Davidon, Fletcher, Powell) method 

Given   (   

Step 1: Calculate F(  (  ), and   F(x)  as in the Steepest- descent method. 

Step 2: Set   and    as zeros and    [
  
  

] 

Step 3: Calculate        (  (    by, 

1) Highlight 2 by 1 Matrix  

2) Write the following command (= - Mmult (  ,  ( (   )).. 

3)  Press    button and then press ctrl, shift, and enter (buttons) together. 

Step 4: Calculate     as in the Steepest-descent method. 

 For the second iteration, 

Step 5: Compute    by clicking the command (=  F (  
(  

) cell -  F(  
(  

) cell )and drag 

down, and compute    by clicking the command (=    
(  
        

(  
      ) and drag down. 

Step 7: Calculate      =    
  (    

(      
 

(     (      

(        
 by, 

1) Highlight 2 by 2 matrix     

2) Enter the following command 

(     (
     (            (  ) 

     (         (  )    
)  (

(     (     )) (         (     (     )) 

((     (         (  )      (     )) 
))  

3)  Press    button and then press ctrl, shift, and enter (buttons) together. 

Step 7: compute d and  d by copy and paste. 

Step 8: Copy and paste until the stopping criterion is attained  
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Table 2.9: Benchmark 2 solution using Excel (DFP Method) 

 

 

There are 9 iterations. 

 

 

Note that, the detail of the step length calculation is skipped here for convinience. 
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4.3.5 Solution Using Quasi-Newton’s BFGS (Broyden, Fletcher, Goldfarb, and   

   Shanno ) Method          

Given   (   

Step 1: Calculate F(  (  ), and   F(x)  as in the Steepest descent method. 

Step 2: Set   and    as zeros and   as identity 2 by 2 Matrix. 

Step 3: Calculate        (  (    by, 

1) Highlight 2 by 1 Matrix  

2) Write the following command (= - Mmult (  ,  (  (   )).. 

3)  Press    button and then press ctrl, shift, and enter (buttons) together. 

Step 4: Calculate     as in the Steepest-descent method. 

 For the second iteration, 

Step 5: Compute    by clicking the command (=  F (  
(  

) cell -  F(  
(  

) cell )and drag 

down, and compute    by clicking the command (=    
         

       ) and drag down. 

Step 7: Calculate  

      =    (  
(        

(      
)
  (    

(      
   

 

(      
    (             (         by,      

         

1) Highlight 2 by 2 matrix     

2) Enter the following     

Command(      (  (     (         (         (        

     (         (          (     (            (    

     (         (       )  (       (         (       )  
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                                    (         (     (        (         (          

                               (        (         (         ))               

3)  Press    button and then press ctrl, shift, and enter (buttons) together. 

 

Step 7: compute d and  d by copy and paste. 

Step 8: Copy and paste until the stopping criterion is attained  
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Table 2.10: Benchmark 2 solution using Excel (BFGS Method) 

 

 

There are 10 iterations. 

Note that, the detail of the step length calculation is skipped here for convinience. 
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CHAPTER 5 

 

CONCLUSION, DISCUSSION AND RECOMMENDATION 

 

 

In Chapter 3, it was concluded that most of the unconstrained optimization and the nonlinear 

systems of equations algorithms have well established convergence theory. Building 

algorithms on the convergence theory described in 3 lead to efficient implementations that 

behaved predictably according to their theoretical results. Also some of the individual 

strengths and possible weakness of the reviewed algorithms were identified. 

 

The use of Excel spreadsheet was discussed in chapter 4. It was illustrated that the use of 

Excel especially as a teaching tool will enhance the students understanding of the algorithms 

discussed and the way they work. The effect of changing any cell value can be clearly 

observed on all the cells that are dependent on this cell value. Also error can directly be 

traced. The availability and the user friendliness of the Excel spreadsheet were shown to be 

among the advantages of its use. 

 

Evaluating the performance of a certain algorithm is indeed a difficult task. There  is no 

definite answer to which algorithm has the best overall performance. It should be 

emphasized that all test results depend on the choice of the benchmark problems and the 

choice of tolerance for the stopping criteria. For example Tests on high dimensional or noisy 

functions were not carried out in this thesis. 

 

The solutions obtained by the methods for nonlinear systems of equations using the 

benchmark problem, yielded the following results; Newton’s method converges at 4
th

 

iteration, Quasi-Newton’s method converges at 6
th
 iteration, Diagonal Broyden-like method 

converges at 6
th

 iteration, and Homotopy and Continuation method converges at 80
th

 

iteration. The above result implied that Newton method performed better among the 

methods, whereas Homotopy and Continuation method have the worst performance.  

Quasi-Newton’s method and Diagonal Broyden-like method have shown good performances 

given that they do not require the derivative evaluations.  
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On the other hand for unconstrained optimization with Rosenbrock’s function as the 

benchmark problem, it was shown that; steepest descent method converges at 947th 

iteration, conjugate gradient method converges at 9
th

 iteration, modified newton method 

converges at 7
th

 iteration, and both quasi-newton DFP and BFGS methods converges at 10
th

 

iteration. Clearly modified newton’s method performed better, followed by conjugate 

gradient method, and then DFP and BFGS method. 

 

Due to the inconvenience derived by attaching the calculation of steplength at each step 

of unconstrained optimization, it was skipped. It should be noted that the calculation is 

mandatory and it can be done on the same sheet. The algorithm for the calculation was given 

in chapter 4.3. 

 

One Excel spreadsheet contains 1,048,576 rows and 16,384 columns. It is observed that, the 

memory allocated for the rows is independent of the memory allocated for the columns. It is 

also observed that, the number of iterations a sheet can take depends on the number of rows 

used for steplength calculation. Also the number of rows for the steplength calculation 

depends on the dimension of the objective function and the initial/starting point used. For 

example when handling an objective function (Rosenbrock’s function) of dimension 2, 

requiring 21 rows for the steplength calculation Excel was able to produce 45481 iterations. 

Whereas for an objective function (Extended Rosenbrock’s function) of dimension 4, 

requiring 48 rows for the steplength calculation Excel was able to produce only 21,399 

iterations. 
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