
DEEP LEARNING CONSIDERING PATTERN INVARIANCE

CONSTRAINT

A THESIS SUBMITTED TO THE
GRADUATE SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By

OYEBADE KAYODE OYEDOTUN

In Partial Fulfillment of the Requirements for the
Degree of Master of Science

In

Electrical & Electronic Engineering

NICOSIA, 2015



I hereby declare that all information in this document has been obtained and presented in

accordance with the academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all materials and results that are not

original to this work.

Name, last name: Oyebade Kayode Oyedotun

Signature:

Date:



iii

ACKNOWLEDGMENT

I would like to sincerely thank Assist. Prof.Dr. Kamil Dimililer for his guidance,

understanding, patience, and most importantly, his supervision during my graduate studies at

Near East University.

My unreserved gratitude also goes to Assist. Prof.Dr. Ali Serener for providing an academic

platform where students can acquire well-rounded knowledge relating to advance expertise in

Electrical & Electronic Engineering.

I cannot but also acknowledge Prof.Dr. Adnan Khashman, who introduced us to the concept

of machine intelligence, the grace and method with which he presented artificial neural

networks is unrivalled.

I would also like to NEU Grand library administration members, since it provided me with

the appropriate environment for conducting my research and writing my thesis.

The support and love shown by my parents, Dr. & Mrs. Elijah Olusoji Oyedotun, and my

siblings during my thesis are remarkable, and I really appreciate you.

Also, many thanks to my fellow colleague, Ebenezer Olaniyi, whose discussions and interest

were quite important to the success of this work.

In addition, my heartfelt appreciation to Gideon Joseph, Kingsley Agu, Amina Abubakar, and

Tabitha Joseph, for roles played individually.

Lastly, God must be acknowledged for the grace and sound mind, he bestowed on humans to

achieve great things, and to master the universe; He has always reflected that His faith in my

endowment is boundless.



iv

ABSTRACT

The ability of human visual processing system to accommodate and retain clear

understanding or identification of patterns irrespective of their orientations and presentations

is quite plausible. Although, this area of computer vision has recently received a massive

boost in interest by researchers, the situation is far from being resolved. The problem of

pattern invariance in the computer vision world is not one that can be overemphasized;

obviously one’s definition of an intelligent system broadens considering the large variability

with which same patterns can occur and have to be coped with. This research investigates the

performance of feedforward networks against convolutional and deep neural networks when

tasked with recognition problems, considering pattern invariances such as translation,

rotation, scale, and moderate noise levels. The architecture of the considered networks in

relation to the human visual perception processing has also been explored as a reference to

the built-in invariances achievable from these networks due to structure and learning

paradigms. Although, single hidden layer or shallow networks have the capability to

approximate any function, the benefits of having several hidden layers of such networks have

been considered and hypothesized by researchers for some time, but the difficulty in training

these networks has led to little attention given to them. Recently, the breakthrough in training

deep networks through various pre-training schemes have led to the resurgence and massive

interest in them, significantly outperforming shallow networks in several pattern recognition

contests; moreover the more elaborate distributed representation of knowledge present in the

different hidden layers concords with findings on the biological visual cortex. This research

work reviews some of the most successful pre-training approaches to initializing deep

networks such as stacked denoising auto encoders, and deep belief networks based on

achieved error rates, computational requirements, and training time. Also, as it has been

debated among researchers, the results of this research suggest that the optimization effect

obtained from network pre-training dominates the regularization effect, though both effects

are achieved. While, various patterns can be used to validate this query, handwritten Yoruba

vowel characters have been used in this research. Databases of the images containing pattern

constraints of interest were collected, processed, and used to train the designed networks.

Keywords: Artificial neural networks, deep learning, pattern invariance, character

recognition, Yoruba vowel characters
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ÖZET

karşılamak ve net bir anlayış ya da desen kimlik korumak için insan görsel işleme sisteminin

yeteneği ne olursa olsun yönelim ve sunumlar oldukça makuldür. Bilgisayar vizyonu bu

alanda son zamanlarda araştırmacılar tarafından ilgi büyük destek aldı rağmen, durum çok

çözülmüş olmaktan değildir. bilgisayar vizyonu dünyada desen değişmeyen sorunu

gereğinden fazla vurgulanan edilebilir biri değildir; Açıkçası akıllı bir sistem kişinin tanımı

aynı desenler ortaya ve başa gereken hangi büyük değişkenliği göz önünde genişletmektedir.

Bu araştırmalar, çeviri, döndürme, ölçek ve orta gürültü seviyeleri gibi model invariances

dikkate tanıma problemleri ile görevli katlamalı ve derin sinir ağları, karşı ileri beslemeli

ağlar performansını inceler. İnsan görsel algı işleme ilişkin dikkate ağların mimarisi de yapı

ve öğrenme paradigmaları nedeniyle bu ağlardan elde yerleşik invariances bir referans olarak

incelenmiştir. Tek gizli katman veya sığ ağlar herhangi bir işlevi yaklaştığı yeteneğine sahip

olsa da, bu tür ağların çeşitli gizli katmanları olan faydaları kabul edilir ve bir süre

araştırmacılar tarafından hipotez, ama bu ağları eğitimi konusunda zorluk verilen biraz dikkat

yol açtı edilmiştir Onlara. Son zamanlarda, çeşitli ön-eğitim programları aracılığıyla derin

ağları eğitimi konusunda atılım anlamlı birkaç örüntü tanıma yarışmalarında sığ ağları geride

bırakarak, onları yeniden dirilişi ve kitlesel ilgi yol açmıştır; Biyolojik görsel korteks

üzerinde bulguları ile farklı gizli katmanlar concord un mevcut bilginin üstelik daha ayrıntılı

dağıtılmış gösterimi. Bu araştırma çalışmaları gibi elde hata oranları, hesaplama

gereksinimleri ve eğitim süresine göre yığılmış denoising oto enkoderler ve derin bir inanç

ağları gibi derin ağlar başlatılıyor yaklaşımları en başarılı öncesi eğitimin bazı

değerlendirmeleri. Bu araştırmacılar arasında tartışma konusu olmuştur olarak da, bu

araştırmanın sonuçları, her iki etkileri elde olsa ağ öncesi eğitimden elde edilen optimizasyon

etkisi, düzenlilestirme etkisi hakim olduğunu göstermektedir. Çeşitli desenler bu sorguyu

doğrulamak için kullanılabilir iken, el yazısı Yoruba ünlü karakterleri bu araştırmada

kullanılmıştır. Ilgi desen kısıtlamaları içeren görüntülerin Veritabanları toplandığı, işlendiği

ve tasarlanmış ağları eğitmek için kullanıldı.

Anahtar Kelimeler: Yapay sinir ağları, derin öğrenme, desen değişmezliği, karakter tanıma,

Yoruba ünlü karakterler
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CHAPTER ONE
INTRODUCTION

Images, and therefore patterns are very important data to humans. They are invariably one of

the easiest and fastest way human beings assimilate and appreciate information; the ease and

speed with which we process the details of images are very amazing.

The human brain is quite able to capture and analyse images almost effortlessly, recognizing

even intrinsic patterns that are sometimes embedded in the images. The best understanding of

how human beings achieve these tasks are still somewhat subject to some scientific debate

and research is still ongoing .e.g. bottom-to-top or top-to-bottom hierarchical process of

perception or an integration of both. ‘It is a difficult experimental issue to determine the

relative importance of bottom-up and top-down processes’ (Delorme, Rousselet, Mace´,

Fabre-Thorpe, 2004).

Images are arguably one of the most used data formats in the intelligent systems and

computing world; this is evident in the ease with which they can be captured and lend

themselves to the representation of information that needs to be processed for further use. e.g.

control process, database content based search etc.

However, it is very somewhat evident that such tasks are not that too easily achievable in the

computing world; especially computer vision.

Furthermore, the volume of image data that is now available to us from different sources have

grown exponentially recently, especially due to a surge in internet accessibility, large

memory mobile phones and related devices that keep being churned out by electronics

companies. Unfortunately, we more than often require some sense of content-based image

filtering or sorting to make efficient use of these data.

A recognition system is a system that has the intrinsic capability to accept data patterns and

output the corresponding classes to which the inputs belong; actually, the act of matching the

inputs to output classes using perfect examples is known as template matching.

Generally, the pattern to be used in such systems as input are presented as images;

occasionally after some image processing might have been performed on them.
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Character recognition is the process of having a system that has the capability to identify

sample of characters with which it has been trained. The identification process is seen in the

test phase of the system, where new characters are supplied to the system for identification.

The system is meant to accept the characters as input and output the classes of the characters;

this phase is sometimes also known as the simulation phase.

It is worthy of note that such a recognition system would lose its concept of being considered

“intelligent” if it cannot also recognize to an extent characters with which it has not been

trained with but are quite similar to the ones it has been trained with i.e. such a system should

possess good generalization power for characters recognition.

1.1 Contributions of Research

1. Designing intelligent recognition systems for Yoruba vowel characters

2. Investigating the built-in tolerance achieved by the recognition systems to variances in

input patterns such as scale, translation, rotation, and noise.

3. Evaluating the performance of each designed model based on achieved error rates and

computational requirements, and training time.

5. Associate the architecture of the considered networks to the built-in invariances achieved

by the networks.

4. Establishing the optimization (under-fitting) and regularization (over-fitting) effects of pre-

training in deep networks, and therefore also validating which effect is greater.

1.2 Scope of Research

The scope of this research work will be limited to the design of various intelligent recognition

systems for Yoruba vowel characters. Handwritten images of characters will be collected

from selected individuals; processed and used to train the designed systems. Also, validation

of learning will be carried out concurrently during training; after which the systems are

simulated with character images which were not used to train the systems. It is to be noted
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that varying degree of translation, rotation, scale, and noise levels in patterns will be used for

testing.

Hence, the performance of each model will then be evaluated on based on some performance

parameters.

1.3 Approaches to Pattern Recognition and Applications

Intelligent pattern recognition involves using features and the structure of such features

derived from objects in grouping them into their corresponding classes.

Description of objects or pattern is the stage where unique ways to describe objects or

patterns are developed. It is from these features that rules for identifying objects are derived.

It is usually the job of designers to craft such rules and how objects or patterns are to be

represented.

In template matching, a test pattern is presented to a recognition system, which it compares

with the stored templates, then outputs the class of the input pattern based on correlation of

matching. i.e. outputted class of the test pattern belongs to the class of the template to which

it has the highest correlation.

This approach aims to generate a standard perfect object, example or pattern to represent a

group (class) with which other objects, examples or patterns are compared. It is worthy of

note that this method may involve the use of the whole object (pattern) representation (e.g.

whole image) which is considered as global template matching or some regions of the whole

object (pattern) representation (e.g. some regions of an image)  which is considered as local

template matching.

Inasmuch as this suffices in lots of situations for recognition systems, the disadvantage lies in

that only perfect example, therefore perfect data can be correctly classified. The system lacks

flexibility to moderate variations in the presented data for recognition, and hence termed

“non-intelligent”; more technically, one can say that such recognition systems lack tolerance

to translational variance, rotational variance and scale mismatch.

Syntactic approach is also known as feature analysis, in which some important descriptors or

features that allow objects or patterns to be represented as uniquely as possible are extracted.
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The structural combination of such descriptors is what is leveraged on when such a

recognition system is building the identification of patterns. The descriptors are parsed using

some set algorithms so that the whole pattern can be realized.

Two of the methods used for feature analysis are:

 Stroke analysis: patterns are classified from analysing their vertical and horizontal

line structures

 Geometric  feature analysis: using the general form of a pattern and defining some

geometric shapes within the pattern (Khashman, 2014).

More advance feature analysis methods exist in image processing, speech processing and

other complex problems.

Another technique for pattern recognition uses statistical models of patterns that have been

transformed into data. In contrast to using training data to determine suitable algorithms or

heuristics, decision and probability theories are applied.

The features from training data largely determine the choice of statistical model that is

adopted; hence other suitable choices for representing features of interest are therefore

usually exploited. Common techniques to exploring other options of representations are

clustering, principal component analysis, and discriminant analysis.

Intelligent classifiers are recognition systems that have the capability to learn from examples

in a phase known as training. They are shown several examples of task they are required to

learn, during which they gain experiential knowledge. After learning has been achieved, these

systems are tested by supplying them sample images of the ones they have been trained with;

to ascertain that proper training has been achieved and not that the system only memorized

the examples, variants of image samples are then used during the test phase and error rates at

recognition can  be determined.

The most commonly used intelligent recognition systems in the field of machine learning are

artificial neural networks. Their robustness and tolerance to moderate noise is what makes

them very important in intelligent recognition.

Pattern recognition is studied in many fields, including psychology, ethnology, forensics,

marketing, artificial intelligence, remote sensing, agriculture, computer science, data mining,



5

document classification, multimedia, biometrics, surveillance, medical imaging,

bioinformatics and internet search (Kidiyo Kpalma and Joseph Ronsin, 2007).

Intelligent recognition for character recognition has also been used significantly in reading

off bank checks, postal codes and zip codes; this automated process has significantly sped up

the process of check clearing, postal delivery and applications dependent on machine vision.

Recently, intelligent recognition has led to a boom in the field of robotics, as the problem of

robotic navigation of its environment has been greatly improved. More sophisticated robots

which have a better vision grasp of their environment based on the capability to recognize

objects and therefore manoeuvre their path safely  are being developed.

1.4 Thesis Overview

The remaining chapters of thesis describe the approaches and methods that have used to

achieve the aims of the work.

Chapter two presents the literature reviews of image processing, and neural networks related

to this thesis briefly.

Chapter three explains the collection of image data and processing, machine learning

capability of neural networks, methodology and design of considered neural network

architectures.

Chapter four describes in details the topology and particular network parameters used in the

training of the networks.

Chapter five presents the results, analysis and discussions of the simulated networks.

A brief review of the thesis aim, summarizing as conclusion the findings of work and the

recommendations as applicable to the findings are supplied in chapter six.



6

CHAPTER TWO
LITERATURE REVIEW

2.1 Overview

This chapter presents the detailed discussion on computational intelligence, under which is

machine learning as the focus, and briefly the basics of artificial neural networks. Also,

image processing schemes as are essential to this thesis were discussed. More importantly,

this chapter articulates the relationship and importance of the above mentioned sections to the

overall realization of this thesis.

2.2 Computational Intelligence

Computational Intelligence is the study of adaptive mechanisms to enable or facilitate

intelligent behaviour in complex and changing environments (Engelbrecht, 2007).

It embodies any natural or biological inspired computational paradigms which include not

limited to artificial neural networks, evolutionary computing, fuzzy systems, swarm

intelligence etc.

Characteristics of computational intelligence systems are listed below (Gary G. Yen, 2014)

-Biologically motivated behaviour such as learning,

-Reasoning, or evolution (in the sense of approximation)

-Parallel, distributed information processing

-Mysterious power under real-world complications

-Lack of qualitative analysis

-Non-repeatable outcomes

-Stochastic nature

2.2.1 Machine learning

While machine learning on the other hand is a branch of computational intelligence involved

with systems that can act in certain environments by learning from supplied data. The

uniqueness of these systems lie in that they do not have to be domain-specifically

programmed. They have intrinsic self-programming nature that allow the same discovery or
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learning paradigm to be applied to different problems and still be able to perform

satisfactorily.

Learning involves searching through a space of possible hypotheses to find the hypothesis

that best fits the available training examples and other prior constraints or knowledge

(Mitchell, 1997).

These systems are able to discover patterns, sequences, and relationship in supplied data;

hence are very applicable in data filtering or mining.

More significant is the need not to write unique domain specific programming codes each

time a problem is to be simulated as this allows for designers to focus more on understanding

important features of problems which the network is required to learn; in contrast to

convectional digital computing in which enormous time goes into writing huge codes for

complex problems.

Generally, machine learning can be broadly divided into supervised, unsupervised and

reinforced learning. The classes are explicitly listed below.

1. Supervised learning:

The network is given examples and concurrently supplied with the desired outputs;

the network is generally meant to minimize a cost function in order to achieve this,

usually an accumulated error between desired outputs and the actual outputs.

Examples of systems that use this learning paradigm are support vector machines,

neural networks, kernels etc.

2. Unsupervised learning:

The network is given examples but not supplied with the corresponding outputs; the

network is meant to determine patterns between the inputs (examples) accordingly to

some criteria and therefore group the examples thus.

Examples of  learning paradigms that use unsupervised learning are clustering,

dimensionality reduction, competitive learning, deep learning etc.

3. Reinforced learning:

There is no desired output presented in the dataset but there is a positive or negative

feedback depending on output (desired/undesired) (Hristev, 1998).

Markov decision process is an example of learning paradigm that is reinforced.
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2.3 Pattern Constraints in Recognition Systems

This section describes in brief constraints that recognition systems usually encounter in real

life. Even more, is the significance when we consider handwritten recognition, where writing

styles and available domain of input space is quite large. Such constraints as considered in

this thesis are translation, rotation, scale, and noise. Efficient recognition systems are required

to cope fairly well with some of these constraints. i.e. the systems should maintain a

relatively good identification of patterns in situations of moderate variances.

2.3.1 Translational invariance

The is the situation where the patterns to be recognized are not centred in the image; they

have centres that lie in various part of the whole image. Usually, this involves only linear

(horizontal or vertical) shift in the position of patterns in images. It is worthy to state that the

distance relationship between pattern components and the scale are not altered in translational

variance. This is a serious source of recognition error in non-intelligent systems.

Figure.2.1 shows an original image and some translated image versions of the original.

In figure 2.1, the original centred pattern is shown in (a), translated pattern northeast is shown

in (b), and translated pattern south-west is shown in (c).

The depicted problem of translational invariance leads to wrong classification in recognition

systems; the problem is usually resolved in either of the two ways given below.

1. Perform an operation on translated patterns to re-centre them in the image frames

before feeding as inputs into recognition systems.

Figure 2.1: Translational invariance
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Registration algorithms attempt to align a pattern image over a reference image so that pixels

present in both images are in the same location. This process is useful in the alignment of an

acquired image over a template (McGuire, 1998).

2. The other alternative applicable in intelligent recognition systems is training such

systems with translated copies of original images so that experiential knowledge is

now broader, and hence such designed systems can handle translated patterns in

images.

For any specific object, invariance can be trivially “learned” by memorizing a sufficient

number of example images of the transformed object (Leibo1, Mutch, Rosasco, Ullman, and

Poggio, 2010).

Conversely, a more sophisticated system that is translation invariant can be built. i.e. the

centre of patterns in images does not affect recognition. Such systems have built-in structures

that allow for the accommodation of moderate pattern variances.

Convolutional neural networks combine three architectural ideas to ensure some degree of

shift, scale and distortion invariance (LeCunn, Bottou, Bengio, and Patrick Haffner, 1998).

2.3.2 Rotational invariance

Rotational variance is the situation where the patterns to be recognized are rotated spatially

through an angle, either clockwise or counter-clockwise. Recognition systems usually have

problems correctly classifying such patterns. This is shown in figure 2.2 below.

It can be seen from figure 2.2 (b) and (c) which are rotated versions of (a), counter-clockwise

and clockwise, respectively; and that in template matching, recognition error is probable to

occur. Generally, intelligent recognition systems are more robust to rotational variance; this

Figure 2.2: Rotational invariance



10

can usually be built into the system during the learning phase or leveraging on convolutional

neural networks based recognition systems.

2.3.3 Scale invariance

Scale mismatch, also known as scale variance, is the situation where input patterns have

varying scales. Their locations in the images remain the same, and have not been rotated, but

some now appear either blown up or scaled down (smaller). This is shown in Figure 2.3

below.

Figure 2.3 (b) and (c) shows downsized copies of the original pattern (a). When such

downsized or blown up images are fed into non-intelligent recognition systems, problem of

mismatch occurs and patterns may be wrongly identified.

2.3.4 Noise

Figure 2.4 below shows various levels of noise affected patterns; the patterns have been

simulated with varying degree of salt & pepper noise. The noise densities for patterns (a), (b),

and (c) in figure 2.4 are 15%, 25%, and 35% respectively.

Figure 2.3: Scale invariance

Figure 2.4: Noise
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2.4 Image Processing

Digital image processing is the technology of applying a number of computer algorithms to

process digital images (Zhou, Wu, Zhang, 2010). It is a very important aspect of computer

vision field.

An image can be seen as a two-dimensional function f(x,y), where x and y are the spatial

coordinates; the intensity of any part of an image is given by the amplitude of the function at

that point. The intensity at a point in an image is sometimes called the gray level at that point

(Gonzalez, Woods, 2002).

Image processing finds applications in photography, intelligent systems, bio-medical

imaging, remote and forensics. During image processing, we obtain some parameters

describing some characteristics of such images. These characteristics are usually employed in

manipulating or conditioning images as deemed suitable. Some common operations achieved

include translation of colour images to gray scale or binary images (black and white),

filtering, segmentation, enhancements, restoration, compression etc.

For the purpose of this research, the image processing schemes that have been used are

discussed briefly below.

2.4.1 Gray scale of an image

Generally, colour images have three channels, called the RGB channels, corresponding to the

Red, Green, and Blue channels. The three methods for transforming an image from colour

(RGB) to gray scale are listed below.

1. Lightness method: This involves taking the average of the maximum and minimum

values of the RBG channels, the equation below describes the transformation.

2
))min()(max(),(' RGBRGB

yxf


 (2.1)

where, f’(x,y) is the transformed pixel for the original RGB pixels

2. Average method: This method simply takes the average of the pixel values for the

particular RGB channel, and the formula to achieve this is shown below.
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3
)(),(' BGR

yxf


 (2.2)

3. Luminosity method: This approach is quite more elaborate, taking into account the

human visual perception, considering the fact that humans are most sensitive to green,

followed by red, and least to blue colours; hence the weighting of the RGB

transformation to a single intensity pixel is achieved as described by the equation

below.

BGRyxf 07.072.021.0),('  (2.3)

where, f’(x,y) is the transformed gray scale pixel.

2.4.2 Negative of an image

Generally, when gray images are of the range 0 to 1, the 0 pixels represent black and 1 pixels

represent white, values between 0 and 1 represent lighter shades of black.

The negative transform is meant to turn black pixels to white and white pixels to black. This

is usually achieved by the equation given below to transform all the individual pixel values.

),(1),(' yxfyxf  (2.4)

where, f’(x,y) is the transformed negative image of f(x,y).

2.4.3 Binarization of an image

This is the process of obtaining an image with only two possible gray levels. i.e. 0 or 1; there

are no intermediate gray levels in between the level 0 and 1. There exists various ways of

achieving this, but considered in this research is the global thresholding method. This method

entails choosing a gray level value between 0 and 1, a value known as the threshold value,

and deploying an algorithm such that all pixel values less than the threshold value will be

transformed to 0 (black), and all pixels above or equal to the threshold value will be

transformed to 1 (white).

Tyxfforyxf  ),(,1),(' (2.5)

Tyxfforyxf  ),(,0),(' (2.6)

where T is the global threshold value.
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Equations 2.5 and 2.6 describe how binarization of an image can be achieved.

2.4.4 Image filtering

This is an usually an enhancement operation performed on images, often, noisy images. The

operation algorithms are attempts to clean up the image (removing noise). Some of the

techniques for achieving this include using mean filters, median filters, Gaussian filters, etc.

The median filter has been used for this work and will be discussed briefly below.

The median filter, achieves filtering by taking the median of pixel values over a particular

region of the image; usually what is done is that a fixed number of pixels in considered along

both axes of the image to a particular pixel (usually with pixel of interest in the centre of the

mask); the dimension of the pixels considered along both axes is considered the mask or

window size used in the filtering process (e.g.  m×n mask would mean m rows and n columns

along the x and y axes respectively). The median value of the pixels is taken and used to

replace the particular pixel of interest.

2.5 Artificial Neural Network (ANN)

Artificial neural networks as the name indicates are computational networks, which attempt

to simulate, in a gross manner, the network of nerve cells (neurons) of the biological (human

or animal) central nervous system (Graupe, 2007).

These networks simulate the human biological neural system in both structure and function.

The long course of evolution has given the human brain many desirable characteristics not

present in von Neumann or modern parallel computers. These are listed below (Jain, Mao,

and Mohiuddin, 1996).

 Massive parallelism,

 Distributed representation and computation,

 Learning ability,

 Generalization ability,

 Adaptability,

 Inherent contextual information processing,

 Fault tolerance, and low energy consumption.
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By mimicking biological neuron features such as synapses, dendrites, cell body, and their

working principles, corresponding artificial neural network features such as synaptic

weights(memories), inputs, artificial neurons(computational units, especially perceptrons)

and their firing based on thresholds, total potential and activation functions have can be

achieved (Oyedotun and Khashman, 2014).

Figure 2.5: Biological neuron (Wilson, 2012)

Figure 2.5 shows a typical biological neuron, and as it can  be seen from the comparison table

of biological and artificial neurons that biological neurons have lower processing speed

(several MHz) compared to todays convectional computers with processing speed ranging in

GHz.

Table 2.1: Gross comparison of Biological and Artificial Neurons (Eluyode et al., 2013)

Biological neuron Artificial neuron

Attribute Dendrites Inputs
Attribute Cell body Processing

element
Attribute Synapses Weights

(memories)
Attribute Axon Output

Processing speed Slow: Several
milliseconds

Fast: Few
nanoseconds

Processing system Massively parallel:
1014 synapses

Massively
parallel: 108
transistors

The processing power of artificial neural networks does not decisively rely on the processing

speed of each neuron, but in the massively parallel interconnections that exist between such
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individual units and hence incredibly ungraded overall processing power for the network is

achieved. In essence of this, artificial neural networks behave similarly.

Furthermore, another attribute of artificial neural networks that make them of great interest is

in their adaptability to solving problems that are inherently ‘troubles’ for convectional (Von

Neumann) computers; problems such as pattern recognition, noisy data etc.

Also, the ability of these networks to represent complex relationships between parameters

with simple computational rules makes them quite easy to implement (self-programming). It

is also seen that different problems can be solved with the same learning algorithms (e.g.

delta learning rule) in neural networks while in convectional digital computers, for each

unique problem, a different algorithm invariably must be developed. Moreover, while neural

networks are fault tolerant, i.e. the failure of one component or hardware does not mostly lead

to the complete collapse or failure of the whole system (inherent redundancy in neural

networks). The convectional computers are sequential and the failure of one unit or hardware

habitually lead to the failure of the system. It takes the failure of a sufficient number of units

in the neural networks for a collapse of the whole system to occur, a phenomenon regarded as

graceful degradation (Eluyode and Akomolafe, 2013).

Research and advances in medicine and psychology over the years has led to a better

understanding of the brain, how activities are achieved, the nature of signals involved and

how these reflect in our expressions of such processes.

The growth of artificial neural networks therefore as from inception somehow depended on

success of significant researches in medicine and psychology. It is from these new

discoveries that architectures of neural networks are being modified or new ones built.

Conversely, simulation of hypothesized neural network models and learning rules have been

used occasionally to validate findings in medicine and psychology.

The first artificial neuron, perceptron, was presented by F. Rosenblatt, 1958, which marked

the significant era of neural networks in computational intelligence.

The basic building unit for artificial neural networks are perceptrons, these perceptrons are

massively interconnected in the networks. The connections or links between neurons are

called synaptic weights. These weights acts as long-term memory to the network, holding the

values corresponding to the present knowledge of the network due to experience.
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These neurons compute the weighted sum of the products of weights and inputs individually,

and outputs a value known as Total Potential (T.P). The activation of each neuron is then

determined by comparing the computed total potential to a reference value known as the

threshold; the activation of neurons is also referred to as ‘firing’.

Mathematically, it can be shown below that:

-Neuron fires if: T.P ≥ Threshold

-Neuron does not fire if: T.P < Threshold

k
kj

n

k
j xwnet 




1

(2.7)

)( jj netO  (2.8)

where Oj is the output of the neuron, netj is the net input to the neuron, ϴj is the threshold for

the neuron, and ϕ is the activation function for the neuron. i.e. netj is passed through the

activation function ϕ to compute the final output of the neuron.

Figure 2.6: Artificial neuron

Sometimes times a bias term, bj, is added to neurons so that equation 2.7 becomes
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2.5.1 Activation functions used in neural networks

There are several types of activation functions used in artificial neurons; usually, the

application of the network determines which is suitable or more appropriate. Common

activation functions used in neurons are shown below.
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1. Linear activation function

This outputs directly the weighted sum of the products of the inputs and weights.

They are also known as identity functions. i.e.

Figure 2.7: Linear activation function

Mathematically,

jjj netnetO  )(
(2.91)

Sometimes a scalar multiplier is applied in the activation or a bias added so that the

intercept of the graph no longer lies at the origin; the bias can be used to shift the

graph around on the output axis, hence control the decision boundary.

2. Hard-Limit function

This function has binary response, it outputs  1 when the Total Potential (T.P) is

greater or equal to the threshold, and outputs 0 otherwise.

Mathematically,

Figure 2.71: Hard-limit function

Mathematically,

If, PTnet j . , then 1)(  jj netO  (2.92)

if, PTnet j . , then 0)(  jj netO  (2.93)
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The hard-limit function is what is used in the McCulloch-Pitts model of artificial

neurons, and it is sometimes referred to as the Heaviside function.

3. Signum function

The signum function is similar to the hard-limit function save the fact that the output

is either +1 or -1.

Figure 2.72: Signum function

Mathematically,

If, PTnet j . , then 1)(  jj netO  (2.94)

If, PTnet j . , then 1)(  jj netO  (2.95)

4. Log-Sigmoid function

The log-sigmoid function is a non-linear s-shape function, the output range is from +1

to 0. Mathematically, the output of sigmoid function is shown below.

Figure 2.73: Log-Sigmoid function

Mathematically,

)(1
1)(

jnetajj
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netO 
  (2.96)

The log-sigmoid function is one of the most commonly used activation functions in

neural networks. It is sometimes referred to a squashing function because it takes the
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value of the net input and compress it to range from +1 to 0. The variable ‘α’ in

equation 2.96 controls the steepness of the function.

For this reason, it is particularly important for networks applying back propagation

algorithms. For larger values of ‘a’, the log-sigmoid function approximates a hard-

limit function (Debes, Koenig, Gross, 2005).

5. Tan-Sigmoid function

This function, hyperbolic tangent, is quite similar to the log-sigmoid, it is also s-

shaped, but its axis of symmetry passes through the origin and its output range from

+1 to -1.

Figure 2.74: Tan-Sigmoid function

Mathematically,
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Hyperbolic tangent functions can be used in hidden or output layers of neural

networks.

6. Gaussian function

The Gaussian activation function can be used when finer control is needed over the

activation range. The output range is 0 to 1; 0 when x=∞, and 1 when x=0 (Sibi,

Jones, Siddarth, 2013).

Figure 2.75: Gaussian function
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Mathematically,
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where σ is used to control the steepness of the curve.

Gaussian activation functions are commonly used in Radial Basis Function Neural Networks.

2.6 Summary

The fundamental discussions of fields or areas to achieving the aim of this thesis have been

introduced adequately in this chapter. The image process schemes such gray scale

conversion, image negatives, image binarization, image filtering and the algorithms used to

achieve these operations have been discussed. Furthermore, the basic understanding of

artificial neural networks has been presented, comparison with the biological neuron, and

their activations also have been briefly examined.
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CHAPTER THREE
DATA COLLECTION, PROCESSING AND NEURAL NETWORKS

3.1 Overview

This chapter presents how the aim of this research was achieved sequentially, going through

each design stage.

As it is the aim of this work to investigate different neural networks’ responses and tolerance

to some common variances in pattern recognition. The typical single hidden-layer back

propagation neural network (BPNN) has been chosen for examination against convolutional

neural network, and deep networks such as Stacked Auto Encoders (SAEs) and Deep Belief

Networks (DBNs). Recent researches have shown that some emergent deep neural network

architectures perform significantly better with moderate pattern variances such translation,

rotation, scale, and noise, as against single hidden-layer feedforward networks.

Yoruba vowel characters have been used in this research to evaluate the extent to which

performances may vary in the investigation domain.

3.2 Collection of data

The database for this research was gathered by asking different people to write the Yoruba

vowel characters on a graphic drawing software. These images were then saved as jpeg files.

The Figure 3.1 above shows a sample of the 7 unprocessed Yoruba vowel characters. The

characters were handwritten employing several people; 100 samples were collected for each

character.

Figure 3.1: Unprocessed Yoruba vowel characters
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3.3 Datasets and Stages of Design

The logic and sequence of research are shown below.

 Generate a training database of Yoruba vowel characters: A1

 Generate validating database for Yoruba vowel characters: A2

 Generate translated database for Yoruba vowel character patterns: A3

 Generate rotated database for Yoruba vowel character patterns: A4

 Generate scale different database for Yoruba vowel character patterns: A5

 Generate noise affected database for Yoruba vowel character patterns: A6

 Process image databases as necessary
 Train and validate all the different networks with created database A1 and A2

respectively.
 Simulate the different trained networks with A3, A4, A5, and A6.

3.4 Image Processing Phase

The inputs to the recognition system are images that have been processed as described below.

 Conversion of images to gray

The images were checked to ascertain whether conversion to gray is necessary so that image

format, therefore pixel values now lie in the gray scale range (0-255) and the 3-

dimensionality attributes of the images were reduced to 1-dimensionality.i.e. colour

information eliminated. This process is also important in the advent where the designed

system is simulated with colour images, as this part takes care of conversion to gray. Original

unprocessed handwritten characters used in this research work were gray scale images of size

300 × 400 pixels.

 Conversion of images to binary

Recognition systems, which are neural network based, only accepts input in the range 0 to 1;

hence the conversion of images to binary. However, in as much as it is possible to normalize

the gray images to values from 0 to 1 and then feed as inputs to the recognition system, the

use of binary images where suitable greatly reduces computational  requirements.

Figure 3.2 below shows the binarized handwritten characters.



23

 Conversion of images to negative

The binary images were converted to negatives; this is achieved by subtracting pixel values

of images from 1. The output of this process now makes the images’ background black and

foreground white. Figure 3.3 shows the negatives of the binarized images.

 Filtering of images

The images were filtered using a median filter of mask 10 × 10; this has the effect of

smoothening out noises that may be present in the images at this stage and filling in some

missing parts based on neighbourhood operations obtainable from the median filter.

Figure 3.4 shows the outcome of of the filtering the negative images.

 Rotation of images

This done to build some moderate sense of rotational invariance into the network; rotated

samples of the original images were included as input samples. Some samples are shown

below in Figure 3.5.

Figure 3.2: Binary Yoruba vowel characters

Figure 3.3: Negative Yoruba vowel characters

Figure 3.4: Filtered Yoruba vowel characters
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 Cropping of pattern occupied part of images

The character occupied part of the filtered images were then cropped automatically so that a

large portion of the background that contains no relevant information (pattern) are cut away.

This process results in varying sizes of images after cropping.

Figure 3.6 shows cropped handwritten characters.

 Resizing of images

As it is evident from the previous operation that images will be of different sizes (pixels),

hence it will be required that all the images have the same size. Hence, the images were

resized to 32×32 pixels. The downscaling of image sizes also has the effect of reducing the

number of input neurons to the network, which is somewhat related to the number of hidden

neurons that will be suitable enough to serve as long-term memory to the neural network

system. This consequently reduces computational requirements on the whole system.

3.5 Network Output Design and Coding

Yoruba language has 7 vowel characters, hence the designed recognition system should have

7 classes, and therefore 7 output neurons. i.e. each neuron responds maximally to a character.

Figure 3.5: Rotated Yoruba vowel characters

Figure 3.6: Cropped Yoruba vowel characters
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3.6 Neural Network Models

Several neural network architectures exist today, and the choice of a particular network

model to be implemented in solving a particular task depend on the application; some neural

network models lend themselves to some range specific tasks than others.

Neural networks  have become a very important area of computational intelligence and

machine learning over the years; the applications in other diverse fields, even outside of

engineering is a testimony of their significance.

The most common application of neural networks in computing today is to perform one of

these “easy-for-a human, difficult-for-a-machine” tasks, often referred to as pattern

recognition (Shiffman, 2012).

Generally, neural networks can be implemented as a single layer or multilayer, the suitable

number of layers has to be determined by the designer depending on application; also, the

number of suitable neurons in each layer must be determined.

In the following sections, the four models of neural network architectures considered in this

thesis will be further discussed. These architectures include Back Propagation Neural

Networks, Convolutional Neural Networks (CNNs), and Denoising Auto Encoders (DAEs),

Deep Belief Networks (DBNs).

3.6.1 Back propagation neural network (BPNN)

Back Propagation Neural Networks are perhaps the most used neural network models in

practice, they are also known  as feedforward networks. The name back propagation is

derived from the manner in which learning is achieved. These networks use a supervised

learning algorithm; training examples are supplied to the network with corresponding desired

outputs. The actual outputs are computed during the forward pass of the network, errors are

computed at the output layer and propagated back into the network for correction.

This process is repeated until the set error goal is attained or maximum number of epochs

have been executed. After this, how well the network has learnt is obtained by simulating the

network with some examples of the same task on which the network has been trained;

usually, examples that were not supplied as part of training data can be used to see whether

the trained network can cope with such data. The ability of the network to cope with these

examples that were not part of training data or set is called the generalization power of the



26

network. This is done so as to ascertain that the trained network has not only memorized the

training data, while it performs poorly on data that were not part of training set; a

phenomenon referred to over-fitting.

The layers in between are referred to as hidden layers, as they are not directly observable

(Günther and Fritsch, 2010).

The weights determine the function computed. Given an arbitrary number of hidden units,

any Boolean function can be computed with a single hidden layer (Mooney, 2008).

Theoretically, back propagation neural networks can have a number of hidden layers. In

practice, rarely is more than 1 hidden layer used and some researchers have even proved that

the problem of saturation of hidden units (neurons) makes convergence difficult, especially

when training weights are initialized randomly as done classically. On the other hand, the

hard saturation at 0 may completely block the gradients and make optimization harder

(Glorot and Bengio, 2010).

Some important features in multilayer networks are listed below.

 The hidden layer does intermediate computation before directing the input to the

output layer.

 The input layer neurons are linked to the hidden layer neurons; the weights on these

links are referred to as input-hidden layer weights.

 The hidden layer neurons and the corresponding weights are referred to as output-

hidden layer weights (Chakraborty, 2010).

Figure 3.7: Back propagation neural network
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The output layer requires linear separability. The purpose of the hidden layers is to make the

problem linearly separable (Borga, 2011).

The training algorithm for back propagation networks as with other many networks is based

on minimizing a cost function, in this case, the error between the desired output and actual

output. The gradient descent approach, where the error surface is descended till the minimum

point is reached is used; at this point, the weights of the network represent a mapping

function of the input to the output.

Two common error computing functions used in neural networks are Least Mean Square

(LMS) and Mean Square Error (MSE). The latter will be considered in this review of back

propagation networks.

The gradient descent approach for minimizing the error cost function for back propagation

networks come in two flavours as shown below.

)()()( nyndne jjj  (3.1)

Where dj(n) and yj(n) are the desired and actual outputs of output neuron j at iteration n, ej(n)

is the error of output neuron j at the nth iteration.





k

j
ju nenE

1

2 )(
2
1)( (3.2)

Eu(n) is the sum of errors at the output layer when the u-th input pattern is given; or the

accumulated errors of each individual output neuron, it is assumed in equation 13 that the

output layer has k neurons.

3.6.1.2 Standard gradient descent

The standard gradient descent approach accumulates all the errors of the individual training

patterns, then updates the weights of the network accordingly. This process is repeated until

the desired error is reached or the maximum number of epochs has been executed.


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Where, )(


wE is the accumulated error for all training samples p.
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It is the aim of standard gradient method to then minimize )(


wE with respect to the weights

of the network, mathematically
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This type of gradient descent is sometimes referred to as batch training and algorithm is

supplied below.

1. Initial weights and thresholds to small random numbers.

2. Randomly choose an input pattern x(u)

3. Propagate the signal forward through the network

4. Compute δi
L in the output layer (oi = yi

L)

])[(' L
i

L
i

L
i

L
i ydhg  (3.5)

Where hi
L represents the net input to the ith unit in the lth layer, and g’ is the derivative of the

activation function g.

5. Compute the deltas for the preceding layers by propagating the error backwards.
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(3.6)

For l = (L-1),…….,1.

6. Update weights using

1 l
j

l
i

l
ij yw  (3.7)

7. Go to step 2 and repeat for the next pattern until error in the output layer is below the

a pre-specified threshold or maximum number of iterations is reached.

Where wj are weights connected to neuron j, xj are input patterns, d is the desired output, y is

the actual output, t is iteration number, and η (0.0< η <1.0) is the learning rate or step size

(Jain, Mao, Mohiuddin , 1996 ).

New weights update are carried out using the equation below

l
ijoldnew www  (3.8)
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Figure 3.8: Standard gradient descent error surface (Leverington , 2009)

Figure.3.8 above shows the weight space of dimensionality two. i.e. w1 and w2. It is

noteworthy that the weight space can be of far higher dimensionality.

The error surface is shown in the figure above, where each input batch forward pass outputs

are compared against the desired outputs, errors gotten and then weights updated.

3.6.1.3 Stochastic gradient descent

In stochastic gradient method for error minimization, the actual output of the network is

computed during the forward pass, when supplied with a particular pattern at the input, the

computed output is compared against the desired output for that particular pattern, and then

the error propagated back into the network so that weights can be updated. The main

difference to the standard gradient descent method lie in that weights are updated after each

pattern is supplied and error for that particular pattern is computed; as against standard

gradient descent in which all input patterns outputs are processed as a batch, error computed

for the batch, after which weights are updated. The idea behind stochastic gradient descent is

to approximate this gradient descent search by updating weights incrementally, following the

calculation of the error for each individual example.

Equations supporting the stochastic gradient descent are given below (Mitchell, 1997).
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1)(  l
jj

l
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Where, )(


wEu is the sum of errors of j output neurons when the u-th input pattern is supplied.

Final weight updates are achieved using equation 3.8.
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Figure 3.9: Stochastic gradient descent error surface (Yu, 2010)

Figure 3.9 shows a typical error minimization using the stochastic gradient descent approach.

Since the stochastic algorithm does not need to remember which examples were visited

during the previous iterations, it can process examples on the fly in a deployed system. In

such a situation, the stochastic gradient descent directly optimizes the expected risk, since the

examples are randomly drawn from the ground truth distribution (Bottou, 2012).

3.6.1.4 Local and global minima in gradient descent approach

One of the problems with the gradient descent approach for error minimization in back

propagation networks is convergence. It has been seen in many literatures that the algorithm

at times take so long to converge, and even when it does, may not converge to the point of

least error on the error surface. This is the situation when the error surface has more than one

minimum point; the lowest minimum on the error surface is referred to as the true or global

minimum while the other minima points are known as local minima.

Figure 3.10 below exemplifies the problem, it can be seen that there exists various local

minima, some better than the others. In any error surface, there is generally only one global

minimum.

Figure 3.10: Local and global minima on error surface
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From the figure above, it can be seen that gradient descent can be caught up in one of the

local minima, which is not the true or global minimum.

Generally, to overcome the problem of the gradient descent approach being stuck in a local

minimum, another term known as momentum, α, is added to the equations used to update the

weights of the networks. Its value ranges between 1 and 0. i.e. 0 <α < 1.

The momentum term determines the effect of past weight changes on the current weight

change (Bose, Liang, 1996).

The momentum term is meant to push the error past local minima, should the surface have

local minima.

3.6.1.5 Issues with back propagation neural networks

1. Training data dimension: When back propagation networks are used in image

classification, because of the large number of pixels involved, and therefore input neurons,

the number of weights in the network becomes quite large (e.g. thousands).

Hence, such a large number of parameters increases the capacity of the system and therefore

requires a larger training set (LeCun, Bottou, Bengio, and Haffner, 1998).

2. Translation and rotational Invariance: Back propagation networks trained with

gradient descent algorithm suffer from translational variance, which is a recognition problem

associated with moderate linear shifts of patterns in images. Generally, back propagation

networks perform well on training data and classification tasks where images have been

centred but perform relatively poor otherwise.

Alternatively, translational and rotational invariance can be built into these networks by

including translated and rotated copies of the original patterns in the training set.

However, from the engineering perspective, invariance by training has two disadvantages.

First, when a neural network has been trained to recognize an object in an invariant fashion

with respect to known transformations, it is not obvious that this training will also enable the

network to recognize other objects of different classes invariantly. Second, the computational

demand imposed on the network may be too severe to cope with, especially if the

dimensionality of the feature space is high (Haykins, 1999).
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3. Scale invariance: Back propagation networks do have problems in recognition when

trained networks are simulated with same patterns but of varying scales.

Moreover, gradient descent is not scale invariant in the parameters it seeks to optimize

(Agrawal, 2012).

4. Illumination invariance: The problem of illumination variance arises when back

propagation networks are trained, then simulated it same patterns but of varying

illuminations. Since, back propagation networks are trained on pixel values as features for

patterns, it is therefore evident that variation in pixel values due to illumination may lead to a

false representation of patterns, and hence recognition may be affected.

5. Ignored input topology: This is a general problem with fully connected networks, and

therefore back propagation networks in that local structure of inputs are rendered irrelevant.

The input variable can be presented in any (fixed) order without affecting the outcome of the

training. On the contrary, images (or time-frequency representations of speech) have a strong

2D local structure: variables (or pixels) that are spatially or temporally nearby are highly

correlated (LeCun, 1998).

Local correlations of pixels can be used to the advantage that local features are extracted and

combined, hence objects recognition then achieved. i.e. a kind of bottom-top visual

processing.

6. Vanishing gradient: Multilayer neural networks trained with back propagation do

have the problem of vanishing gradient, where error gradients propagated back from higher to

lower layers towards the input become exponentially decreasing and consequently learning

becomes quite slow.  This phenomenon is sometimes referred to saturation, because it is as a

result of saturation of the activation functions of hidden units.

One common problem: saturation when the weighted sum is big, the output of the tanh (or

sigmoid) saturates, and the gradient tends towards 0 (Bengio, 2003).

This problem had made the training of deep neural networks difficult in the past, but

presently several approaches exist to resolve these problems when training deep networks.



33

3.6.2 Convolutional neural network (CNN)

Convolutional neural networks leverage on local feature extractions and combinations to

overcome the above mentioned problems of back propagation networks.

Hierarchical models of the visual system are neural networks with a layered topology. In

these networks, the receptive fields of units (i.e., the region of the visual space that units

respond to) at one level of the hierarchy are constructed by combining inputs from units at a

lower level. After a few processing stages, small receptive fields tuned to simple stimuli get

combined to form larger receptive fields tuned to more complex stimuli (Serre, 2013).

The typical convolutional neural network consists of alternating convolution and sub-

sampling layers, then the last layer is a fully connected network; typically a multilayer

perceptron  or classifier (e.g. back propagation network, radial basis function network, or

support vector machine).

The first back convolutional neural network was presented by Yann LeCun et al, it was

trained with back propagation and they applied it to the problem of handwritten digit

recognition (LeCun, Boser, Denker, Henderson, Howard, Hubbard, and Jackel, 1990).

CNNs take translated versions of the same basis function, and “pool” over them to build

translational invariant features. By sharing the same basis function across different image

locations (weight-tying), CNNs have significantly fewer learnable parameters which make it

possible to train them with fewer examples than if entirely different basis functions were

learned at different locations (untied weights). Furthermore, CNNs naturally enjoy

translational invariance, since this is hard-coded into the network architecture (Le et al.,

2010).

Convolutional neural networks, fix some weights to be equal. In particular, they encode the

2d translational covariance, i.e filters applied in the top right patch will also be applied in the

bottom left. Invariance and covariance are essential to the success of convolutional neural

networks (Sauder, 2013).

Convolutional neural networks are apt for image applications, the extraction of local features

and combinations to form higher feature objects makes them quite suitable.

Filters are used to extract some features from the data, in image processing, this could be

edges, lines, corners, points etc. Some common filters used in image processing, hence can be
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used in convolutional neural networks are Mexican hat filters, Gabor filters, Sobel, Canny

etc. Note that filters are interchangeably used as kernels.

Figure 3.11: Line detection kernels  (Gonzalez, Woods, and Eddins, 2004)

Figure 3.11 shows some kernels that can be used in extracting local features such as lines; (a),

(b), (c), and (d) are horizontal , +45ᶱ , vertical, and -45ᶿ line detectors respectively.

These kernels are used to convolved the whole image so that localized features can be

extracted. The size of the kernels used fixed and known as the receptive field.

Neuron units are arranged in subsequent layers in planes (2-dimensional), and all units in a

particular plane share same set of weights (i.e. kernel weights).  Units in a particular plane

perform a specific operation on all regions of the input; a kernel or filter is used to convolve

the whole image. i.e. each neuron is connected to the weights of the kernel.

Convolution operation is mathematically expressed below.

When two functions f(x) and v(x) are convolved,  mathematically, the output

)()()'()'()( xfxvdxxxfxvxg  




(3.11)

When the v(x) is non-zero only across a finite interval -n v(x) n, and f(x) and v(x) are

discrete, we can then re-write the equation above as shown below.
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For two variable functions, equation can be re-expressed as,

(c)(b)(a)
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The figure below shows the basic architecture of a convolutional neural network, it will be

seen that each convolution layer is followed by a sub-sampling layer.

3.6.2.1 Convolution and sub-sampling

The whole image is convolved with different kernel masks of size a×a (receptive field); when

a particular kernel is used so that a particular local feature can be extracted, the output is

contained in a respective feature plane. i.e. each unit or neuron in a particular feature plane

has its weights as a×a. The number of different kernels of size a×a used will determine the

number of different feature planes obtained. i.e. each feature plane contains a particular

extracted local response to the filter. It is worth bearing in mind that during convolution, the

kernel is not meant to fall outside the image at any rate, hence the sizes of feature planes are

generally smaller than that of the image (in the no padding convolution). i.e. (i×i) < (K×L).

During convolution, kernel masks generally overlap by a constant margin as it is shifted

through the image.

It is remarkable that due to the fact units in each feature plane in C1 share same set of

weights, there is a drastic reduction in the number of trainable weights, connections, and

therefore overall training time for these networks as when compared to back propagation

networks where all units’ trainable weights are distinct.

The convolution, combination and implementation of feature maps can be achieved by using

the relation given below.
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Where j is the particular convolution feature map, Mj is a selection of input maps, kij is the

convolution kernel, bj is the bias of each feature map, l is the layer in the network, and f is the

activation function.
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Figure 3.12: Convolutional neural network architecture

Figure 3.12 shows the convolutional neural network, with two 3 convolution layers and 2

sub-sampling layers. The last layer is a regular multi-layer network classifier. Each layer has

grouped as composing a convolution layer and corresponding sub-sampling layer.

After feature map C1 has been obtained by convolving the input with the kernels, sub-

sampling of the feature maps in C1 is then achieved by sweeping a mask of size j×j all over

each feature plane in C1, hence, S2 has the same number of feature maps as C1. i.e. each

feature map in C1 has a corresponding sub-sampling map in S1.

It is noteworthy that two approaches can be employed in the pooling operation for the sub-

sampling layer S1; the average or max-pooling approach. The max-pooling used is described

below.

Since each neuron in each S2 plane has j×j weights connected to the feature planes in C1,

sub-sampling is achieved for neurons in each S2 plane by taking the maximum value of the

inputs j×j, multiplied by a trainable coefficient, bias added, and passed through an activation

function. It is to be noted that during sub-sampling, adjoining neurons’ receptive field do not

overlap as in the convolution from the input image to C1. The usefulness of sub-sampling

includes reducing the resolution of the extracted local features in C1, damping of the

response of the outputs to moderate equidistant translation and deformation. Since there is no

overlap in during sub-sampling, it then follows that the size of feature maps in S1 is a factor

1/b of the feature maps in C1.

The table below shows the parameters of a typical convolutional neural network in Figure

3.12, and the relationship between each parameter and layers are further discussed below.
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-Input image size: K×L

Table 3.1: Convolutional neural network parameters
Attributes First layer Second layer Convolution

map layer
Kernel size a×a a×a N/A

Sub-sampling mask size b×b b×b N/A

Number of feature maps n M N/A

Each convolution feature map size C1: i×i C2: d×d N/A

Each sub-sampling plane size S1: j×j S2: e×e N/A

Number of convolution maps p

Each convolution map feature plane size e×e

It is also important to state that usually all the feature planes in C2 are not convolved with the

feature planes in S1. Generally, a convolution table is developed to select which planes in S1

are convolved with which feature planes in C2. This technique greatly reduces again the

number of connections in the network, and therefore trainable weights.

The application of the above approach forces different feature maps to extract different

(hopefully complementary) features because they get different inputs; it also ensures that

symmetry is broken in the network (LeCun, Bottou, Bengio, and Haffner, 1998).

The same process is repeated for layer 2 in figure 3.12; albeit that the last convolution layer,

C3, has full connections to the sub-sampling layer, S2, and each plane is of the same size in

S2, so that after convolution, each output would be a 1×1.

This hierarchical image processing has been adapted from the visual computation analogy

found in the biological visual cortex.

Generally, the last layer in convolutional neural networks is the classifier layer; any suitable

classifier can be adopted at this stage, but common options include back propagation

networks, radial basis functions, support vector machine, etc. The number of neurons in the

output layer of the classifier will be the number of patterns or objects for recognition.

Some mathematical equations relevant to these networks are provided below.
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Where, ( n
xM , n

yM ) is the feature map size of each plane, ( n
xK , n

yK ) is the kernel size shifted

over the valid input image region, ( n
xS , n

yS ) is the skipping factor of kernels in x and y-

directions between subsequent convolutions, n indicates the layer. Each map in Ln is

connected to at most Mn-1 maps in layer Ln-1 (Cires¸an, Meier, Masci, Gambardella, and

Schmidhuber, 2011).

It will be noticed that in figure 3.12, square feature maps have basically been assumed, but

the above equations can be used in any general case; also, the number of layers in the

network may vary according to application and design.

At times, a contrast normalization scheme is implemented in the convolution map layer

which significantly improves the network performance.

3.6.3 Deep learning

Deep learning is a response to some of the issues encountered in back propagation networks

as mentioned in sections 3.6.1.5. These networks are ‘basically’ multilayer networks, but

differ from the classical back propagation in the analogy in which training is achieved.

Deep learning is a term that has been in use recently, meaning training feedforward networks

of more than one hidden layer; features are learnt in a hierarchical way from the input image

to the classifier, each layer extracts more meaningful features from the previous layer. Also,

this architecture allows sharing low level representation.

The problem of feedforward networks getting stuck in local minima is another situation

generally as a result random initialization of weights in these networks. Some sense of

features correlation or prior knowledge can be built into the hidden layers of these networks

by supervised or unsupervised pre-training schemes.

3.6.3.1 Auto encoder (AE)

An auto encoder is basically a feedforward network that accepts the inputs as corresponding

target outputs. They are used to learn compressed encoding of the training data. i.e. as
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implemented when feedfoward networks are used in image compression (See figure 3.13 &

3.14 below).

Generally, many auto encoders can be layered on top of each other, in which case it referred

to as stacked auto encoders. The approach to training this type of architecture build up is

known as greedy layer-wise training because each hidden layer is “hand picked” for pre-

training of weights; each layer is trained as in single hidden layer feedforward networks.

Since, an auto-encoder is an unsupervised learning scheme, we can leverage on the

availability of  large unlabelled data for the pre-training, then use the available labelled data

for fine tuning the whole network.

Figure 3.13: Auto encoder

Figure 3.14: Stacked auto encoder
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The auto encoder can be seen as  an encoder-decoder system, where the encoder (input-

hidden layer pair) receives the input, extracting essential features for reconstruction; while

the decoder (hidden-output layer pair) part receives the features extracted from the hidden

layer, performing reconstruction at its best (figure 3.13).

Since, the auto encoder is basically a feedforward network, it can be shown that,

)())(()(1 )1()1( xWbsigmxmgxL L
encoder

L  (3.17)

))(1())(( )1()( xLWbsigmxnzy L
decoder

y  (3.18)

Where, m(x) and n(x) are the pre-activations of the hidden and output layers L1 and y

respectively; b(L1) and b(y) are biases of the hidden and output layers, L1 and y respectively.

Generally, the number hidden units in layer L1, j, is smaller than the number of units at the

input, k (figure 3.13) . i.e. some sort of compression of representation.

The objective of the auto encoder is to perform reconstruction as cleanly as possible, which is

achieved by minimizing a cost functions such as given below

 
k

kk xyyxC
1

2)(),( (3.19)

 
k

kkkk yxyxyxC
1

))1log()1()log((),( (3.20)

Equation 3.19 is used when the range of values for the input are real, and a linear activation

applied at the output; while equation 3.20 is used when the inputs are binary or fall into the

range 0 to 1, and sigmoid functions are applied as activation functions. Equation 3.19 is

known as the sum of Bernoulli cross-entropies.

In the greedy layer-wise training, the input is fed into L1 as the hidden layer and L2 as the

output; note that L2 have target data as the input. The network is trained as in back

propagation and weights connection between the input layer and L1 saved or fixed (Figure

3.14).

The input layer is removed and L1 made the input, L2 the hidden layer, and output follows

last. The activation values of L1 acts as now input to the hidden layer L2, and the output layer

made the same as the training data, weights between L1 and L2 are trained and saved.
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Finally, the pre-trained weights obtained from the greedy layer-wise training are coupled

back to the corresponding units in the network so that final weights fine-tuning for the whole

network can now be carried out using back propagation algorithm. i.e. the original training

data is supplied at the input layer and the corresponding target outputs or class labels are

supplied at the output layer. Note that the weights between the last hidden layer and the

output network is randomly initialized as usual before final network fine-tuning or maybe

discriminately pre-trained.

Another variant of auto encoders, known as denoising auto encoders which are very similar

to the typical auto encoder, save that the input data is intentionally corrupted by some

moderate degree (setting some random input data attributes to 0) and the targets are correct,

unaltered data. Here, the denoising auto encoder is required to learn the reconstruction of

corrupt input data; this greatly improves the performance of initialized weights for deep

networks.  Note that stacked auto encoders belong to the unsupervised learning pre-training

approach in deep learning. i.e. it is a generative model.

3.6.3.2 Deep belief network (DBN)

This learning scheme allows these networks to have weights that are initialized with some

level of correlation to the task the overall designed network is to learn.

These networks are built on unsupervised learning weights pre-training approach, and the

basic units found in such networks are Restricted Boltzmann Machines (RBMs).

Restricted Boltzmann machines have visible and hidden layers, with undirected connections.

The input layer is referred to as the visible layer and computation can proceed in either

visible to hidden layer or hidden to visible layer; note that there is full connection between all

units in both layers.

Figure 3.15: Deep Belief Network
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A restricted Boltzmann machine has only two layers (figure 3.16); the input (visible) and the

hidden layer. The connections between the two layers are undirected, and there are no

interconnections between units of the same layer as in the general Boltzmann machine. We

can therefore say that from the restriction in  the interconnections of units between layers,

units are conditionally independent.

The RBM can seen as a Markov network, where the visible layer consists of either Bernoulli

(binary) or Gaussian (real values usually between from 0 to 1) stochastic  units, and the

hidden layer of stochastic Bernoulli units (Deng and Yu, 2013).

Figure 3.16 below shows an RBM, the backbone of DBNs.

Figure 3.16: Restricted Boltzmann Machine

The main aim of a RBM is to compute the joint distribution of v and h, p(v,h), given some

model specific parameter, ϕ.

This joint distribution can be described using an energy based probabilistic function as shown

below.
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Where, E(x,h;ϕ) is the energy associated with the distribution of x given h; x and h are input

and hidden units activations respectively, i is the number of units at the input layer, j is the
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number of units at the hidden layer, bi is the corresponding bias to the input layer units, bj is

the corresponding bias to the hidden layer units, Wij is the weight connection between unit xi

and hj, P(x,h;ϕ) is the joint distribution of variable x and h, while Z is a partition constant or a

normalization factor (Li Deng and Dong Yu) [45] (Yoshua Bengio et al., 2007).

For a RBM with binary stochastic variables at both visible and hidden layers, the conditional

probabilities of a unit, given the vector of units variables of the other layer can be written as,

)();|1( ji
i

ijj bxWvhp   (3.24)

)();|1( ij
j

iji bhWhxp   (3.25)

Where σ is the sigmoid activation function.

Deng observed in his work that by taking the gradient of the log-likelihood p(x; ϕ), the

weight update rule for  RBM becomes,

)()( mod jieljidataij hxEhxEW  (3.26)

Where, Edata is the actual expectation when hj is sampled from x, given the training set; and

Emodel is the expectation of hj from x, considering the distribution defined by the model.

It has also been shown that the computation of such likelihood maximization, Emodel, is

intractable in the training of RBMs, hence the use of an approximation scheme known as

“contrastive divergence”, an algorithm proposed to solve the problem of intractability of

Emodel by Hinton (Hinton, Osindero, and Teh, 2006).

Because of the way it is learned, the graphical model has the convenient property that the top-

down generative weights can be used in the opposite direction for performing inference in a

single bottom-up pass (Mohamed, Hinton, and Penn, 2012).

Hence, such an attribute as mentioned above makes feasible the use of an algorithm like back

propagation in the fine-tuning or optimization of the pre-trained network for discriminative

purpose.

Recently, the contrastive divergence algorithm was developed to train these networks, which

is described in details below.
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-Positive phase:

 An input sample v is clamped to the input layer.

 v is propagated to the hidden layer in a similar manner to the feedforward networks.

The result of the hidden layer activations is h.

- Negative phase:

 Propagate h back to the visible layer with result v’ (the connections between the

visible and hidden layers are undirected and thus allow movement in both directions).

 Propagate the new v’ back to the hidden layer with activations result h’.

- Weight update:

)''()()1( TT hvvhatwtw  (3.27)

Where α is the learning rate and v, v’, h, h’, and w are vectors (Vasilev).

The process of sweeping v and h between visible and hidden layers is repeated until there is a

satisfactory reconstruction of the input that sample v is significantly close to h. i.e. Gibbs

sampling. It will be seen from the above figure that the deep belief network is basically a

stacked RBMs. Each layer is trained greedily; the input acts as the visible layer, input data are

propagated between L1_RBM and the input layer (positive and negative phases) as described

above under contrastive divergence algorithm. After the weights have been updated

satisfactorily, input layer is decoupled and weights fixed. Then L1_RBM becomes the visible

layer (input layer) to L2_RBM; the weights between L1_RBM and L2_RBM are updated

using the contrastive divergence algorithm again. This process is repeated for all the hidden

layers of the network, as this initializes the network’s weights to values that give a significant

overall network performance after fine-tuning using a supervised learning algorithm.

Generally, the whole network’s weights are fine-tuned using the typical back propagation

algorithm. It is to be noted that there are no connections between units in the visible-visible

layer or hidden-hidden layer.
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3.7 Summary

This chapter gives good and strong technical insight into the processing of images that were

used in this research; also, the neural network architectures that have been considered were

briefly and sufficiently discussed.

The convectional back propagation neural network was discussed in details, with the learning

algorithm. Furthermore, the problems associated with BPNN networks were presented and

analysed. Convolutional networks, and its structure which simulates the biological visual

perception were also discussed briefly. Deep networks were also discussed in view of the

different architectures and pre-training schemes obtainable.

In all, this chapter presents a thorough technical background and insight into the designs

implemented in the following chapter; lastly, it articulates the whole essence of the thesis

purpose involving some image processing work and neural networks as classifiers.
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CHAPTER FOUR
TRAINING OF NEURAL NETWORKS

4.1 Overview

As it is the aim of this research to investigate pattern invariance and the response or tolerance

of some neural network models presented in chapter 3; the different designed networks will

be trained on a training set, and validated using another data set.

Furthermore, in order to investigate the level of pattern invariance learned by each model, the

designed systems were simulated with rotated, translated, scale varied, and noisy images.

The remaining sections of this chapter present the different neural network architectures,

training parameters and considerations to choosing such parameters.

4.2 Neural Networks

The different neural network architectures considered in this thesis are presented in this

section, with their corresponding training schemes and  parameters which have been obtained

heuristically during training. All the networks were trained, validated, and tested on the same

set of data, hence there is clarity of comparison of training requirements in this chapter, and

test results in the next chapter.

A. DATABASES A1

These database A1 contain the training samples for the different network architectures

considered for this research. The characters in this database, A1, have been sufficiently

processed with the key interest being that images are now centred in the images i.e. most

redundant background pixels removed.

Figure 4.1: Training database characters



47

4.2.1 Back propagation neural network model

The final processed input images are all of 32 ×32 pixels (1024 pixels), it therefore follows

that the number of input neurons is 1024. The suitable number of hidden neurons cannot be

determined at this stage of the network design, but will be obtained heuristically during

training. The number of different characters to be recognized, 7, therefore necessitates the

number of output neurons to be 7.

The table below shows the training parameters used in training the back propagation network.

Table 4.1: Heuristic training of BPNN-1

Number of training samples 14, 000

Number of hidden neurons 65
Activation function at hidden and output

layers
Sigmoid

Learning rate (η) 0.045
Momentum rate (α) 0.72

Epochs 1600
Training time (seconds) 502

Mean Square Error (MSE) 0.1120

A validation set of 2,500 samples was used to control the trained back propagation network

from over-fitting data. i.e. memorizing data and hence losing generalization power.

Hence, the gradient algorithm with learning and momentum rate has been used in the training

of the feedforward networks.

To further observed the performance of BPNN, a network of 2 hidden layers was also

designed and the training parameters are shown below.

Table 4.2: Heuristic training of BPNN- 2

Number of training samples 14, 000

Number of neurons in hidden layer 1 95
Number of neurons in hidden layer 2 65

Activation function at hidden and output
layers

Sigmoid

Learning rate (η) 0.082
Momentum rate (α) 0.65

Epochs 2000
Training time (seconds) 669
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K-fold cross validation has been used during training, such that the error on the validation set

is also monitored and in the advent that the error on the validation set increases for a

specified number of epochs, training is stopped to avoid over-fitting.

4.2.2 Convolutional network neural model

The input image sizes are 32×32, and a kernel or receptive field of 5×5 pixels was used in the

first convolution layer to extract local features; and 6 feature maps were extracted. The

number of pixels (units) for each feature map is calculated below using Equations 4.1 & 4.2.
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Therefore the size of feature maps in C1 is 28×28. The table below shows the full parameters

for the network training.

Table 4.3: CNN units and feature maps

Attributes First layer Second layer Convolution
map layer

Kernel size 5×5 5×5 N/A
Sub-sampling mask size 2×2 2×2 N/A
Number of feature maps 6 12 N/A

Each convolution feature map size C1: 28×28 C2: 10×10 N/A
Each sub-sampling plane size S1: 14×14 S2: 5×5 N/A
Number of convolution maps 12

Each convolution map feature plane
size

5×5

Since the C1 is sub-sampled using a mask of 2×2 and there is no overlap of regions during

sub-sampled, it then follows that the size of each feature map in S2 is calculated below as:
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Therefore the size of each feature map in the sub-sampling layer 1, S1, is 14×14.
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Size of convolution feature maps for layer 2 can be determined using the above formulas

again as shown below.
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Hence, the size of each feature map in the convolution layer 2, C2, is 10×10.

The convolution layer 2 is then again down-sampled using the same mask size as in layer 1.

i.e. 2×2.
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The number of feature maps at the convolution map layer (the layer just before the classifier

layer) is 12, and of the same size as the last before it (i.e. 5×5), so that each convolution

results in a single value.

Table 4.4: Training parameters for CNN

Number of training samples 14, 000

Activation function at hidden and
output layers

Tanh

Learning rate (η) 0.8
Epochs 4500

Training time (seconds) 798
Mean Square Error (MSE) 0.1333

4.2.3 Denoising auto encoder model

This model is more or less the multilayer neural network, with the basic difference in the way

weights are initialized for the network. A single hidden layer network was designed,

therefore, the weights available for pre-training are:

 weights between the input and hidden layer.

 weights between the hidden and output layer.

The number of input neurons remains 1024, the number of input pixels as in the case of back

propagation network, the number of sufficient hidden neurons to encode the inputs was

chosen as 100, and number of output neurons remain 7, the number of desired output classes.

The hidden layer was pre-trained as discussed in section 3.632 until the level of

reconstruction of the input was found to be significantly suitable.
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Table 4.5: Pre-training parameters for DAE

Number of training samples 14, 000

Number of hidden neurons 100
Input Zero Masked Fraction 0.5

Activation function at hidden and
output layers

Sigmoid

Learning rate (η) 0.8
Epochs 10

The auto encoder was first trained by using inputs as corresponding targets, and the error of

reconstruction noted until it became significantly low. i.e. hidden layer now has the capability

to reconstruct inputs with significant performance. The pre-trained network now has weights

initialized to values that favourable for better learning when it is coupled all up and trained as

a back propagation network. i.e. the target outputs are now corresponding input labels.  The

table below, Table 4.6, shows the parameters used to fine-tune the pre-trained network.

Table 4.6: BPNN Parameters to fine-tuning DAE

Number of training samples 14, 000

Activation function at hidden and
output layers

Sigmoid

Learning rate (η) 0.7
Epochs 500

Training time (seconds) 250
Mean Square Error (MSE) 0.1006

4.2.4 Stacked denoising auto encoder model

Table 4.7: Pre-training parameters for SDAE

Number of training samples 14, 000

Number of neurons in hidden layer 1 95
Number of neurons in hidden layer 2 65

Input Zero Masked Fraction 0.5
Activation function at hidden and

output layers
Sigmoid

Learning rate (η) 0.8
Epochs 10

Training time (seconds) 118
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In order to observe how distributed knowledge representation developed in hidden layers may

affect performance of networks,  a 2 hidden layer denoising auto encoder was also designed.

It should be noted that the 2 hidden layer auto encoder will be referred to a Stacked
Denoising Auto Encoder (SDAE) as is standard and common practice; the training
parameters are shown in the table below.

Table 4.8: BPNN Parameters to fine-tuning SDAE

Number of training samples 14, 000

Activation function at hidden and
output layers

Sigmoid

Learning rate (η) 0.7
Epochs 400

Training time (seconds) 377
Mean Square Error (MSE) 0.1046

4.2.5 Deep belief network model

The deep model was designed with two hidden layers which were pre-trained as discussed in

section 3.633. The hidden layers can be seen as stacked restricted Boltzmann machines, and

the pre-training of weights was achieved using the contrastive divergence algorithm. The

number of input neurons in the visible layer (first layer) is 1024, the input pixel size; number

of neurons in the first hidden layer is 200, number in the second hidden layer is 150, while

the number of output neurons remains 7.

Table 4.9: Pre-training parameters for DBN

Number of training samples 14, 000

Number of neurons in first hidden layer 200
Number of neurons in second hidden layer 150

Activation function at hidden and output layers Sigmoid
Learning rate (η) 0.2

Epochs 5
Training time for hidden layer, L1 (seconds) 95
Training time for hidden layer, L2 (seconds) 103

The pre-trained weights were used to initialize the designed feedforward neural network,

which is now favourable to converge faster to a better local minimum.
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Table 4.10: BPNN Parameters to fine-tuning DBN

Number of training samples 14, 000

Activation function at hidden and output layers Sigmoid
Learning rate (η) 0.6

Epochs 1000
Training time (seconds) 170

Mean Square Error (MSE) 0.1024

4.3 Summary

In this chapter, the trainings of the neural networks considered in this research have been

presented, focusing on training parameters such as the number of required epochs, training

time, and the achieved mean square error (MSE). It will be seen that the back propagation

networks have the highest average training time compared to all other networks, after which

comes convolutional networks. The large time required to train the BPNN models can be

associated with some of the problems discussed in chapter three; problems such as saturating

units, vanishing gradients in BPNN2, and the weights generally starting far away from the

weights space that is favourable for fast convergence to a good local minimum. The

convolutional network computational requirement and time is obvious in view of the

convolutional and pooling operations that had to be achieved in the forward and backward

pass of training data and error gradients respectively; with more convolution and pooling

layers added to the network, training time may grow exponentially.

It will also been seen that the deep belief network and denoising auto encoders have the

lowest MSE after training; this can be considered as a result of the pre-training of the

networks, favouring the networks’ weights starting out at a weight spaces that aids fast

convergence, and to a better local minimum.
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CHAPTER FIVE
RESULTS AND DISCUSSION

5.1 Overview

This section shows the validation and testing results of the models discussed in chapter 4; in

this research work, processed databases of size 32×32 were used to observe the performance

of the models. Each database for testing contains images with a particular variance of interest

on which the tolerance of network models is to be observed.

5.2 Learning Curve and Validation of Network Models

The learning curves of the networks described in chapter four are presented here; the

validation databases with which the different constraints have been now applied on were used

to simulate the trained networks, the error rates achieved were then analysed and discussed

accordingly.

5.2.1 BPNN model

The back propagation models were trained as discussed in chapter 4, and the MSE (Mean

Square Error) plot is shown below (figure 5.1 (a) & (b)) . It will be seen that even though the

training the train error (blue curve) kept decreasing, validation error (green curve) had stop

decreasing, likewise the test error (red curve), hence training was stopped to prevent over-

fitting of training data. Six validation checks were used in the training. i.e. the number of

iterations such that the training error kept decreasing, but the validation error was increasing.

Figure 5.1(a): MSE plot for BPNN1
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Figure 5.1(b): MSE plot for BPNN2

The learning curve for the BPNN2 (BPNN network with 2 hidden layers) is shown in Figure

5.1(b)

5.2.2 CNN model

The Convolution network (CNN) whose parameters were described in chapter 4 was trained

and the learning curve is shown below in Figure 5.2.

Figure 5.2: MSE plot for CNN

5.2.3.1  DAE model

The denoising auto encoder was fine tuned using the backpropagation algorithm to further

reduce the error on the network and introduce discriminative feature.



55

Figure 5.3: MSE plot for DAE fine-tuning

It will be seen in the above figure (Figure 5.3) that the train, validation, and test curves lie on

one another indicating that validation did not stop before earlier than optimum learning was

achieved.

5.2.3.1 SDAE model

Figure 5.4 below shows the Mean Square Error plot for the SDAE model, 2 hidden layers

were implemented in the network, and the same denoising mask fraction of 0.5 was also used.

Figure 5.4: SDAE MSE plot for fine-tuning

The deep network was fine-tuned in using the backpropagation algorithm in order that the

network can be used for discriminate tasks.
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5.2.4 DBN model

Figure 5.5 shows the MSE plot for fine-tuning the DBN respectively.

Figure 5.5: DBN MSE plot for fine-tuning

5.3 Databases for Testing/Simulating Trained Networks

A. DATABASE A2

This database contains sample images of the seven vowel characters as in the training

database, and its sole purpose is to verify or ascertain that the trained networks did not over-

fitting during training, and thus possess good generalization power to samples of images

found in the training set, database A1.

Figure 5.6: Validation database characters
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B. DATABASE A3

For the purpose of evaluating the tolerance of the trained networks to translation a separate

database was collected with the same characters and other feature characteristics in databases

A1 and A2 save that the characters in the images have now been translated horizontally and

vertically. The figure below describes these translations.

Figure 5.7: Translated database characters

C. DATABASE A4

This database contains the rotated characters contained in database A1 and A2. Its sole

purpose is to further evaluate the performance of trained networks on pattern rotation. See

Figure 5.8 for samples.

Figure 5.8: Rotated database characters

D. DATABASE A5

This database is essentially databases A1 and A2 except that the scales of characters in the

images have now been purposely made different in order to evaluate the performance of the

networks on scale mismatch. It will be seen that some characters are now bigger or smaller as

compared to the training and validation characters earlier shown in chapter 4, Figure 4.1.

Figure 5.9 shows samples contained in this database.

Figure 5.9: Scale varied database characters
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E. DATABASE A6

In order to assess the performance of the networks on noisy data, sub-databases with added

salt & pepper noise of different densities were collected as described below.

Database A6_1: 2.5% noise density
Database A6_2: 5% noise density
Database A6_3: 10% noise density
Database A6_4: 20% noise density
Database A7_5: 30% noise density

The figure below show character samples of database A6_4.

Figure 5.10: Database A6_4: characters with 20% salt & pepper noise density

5.4 Test Performances of Trained Network Models on Databases

This section details the performance of the trained networks on the validation and test

databases as described in section 5.3. The trained networks were supplied with the databases,

so that the corresponding classes of each image can be simulated.

14,000 samples were used as training set, 2500 samples as validation set, and 700 samples as

test set on the variances.

The definition of recognition rates for the simulation or testing of database is given below.

Recognition rate can be obtained from error rate using the equations provided below.

samplestestofnumberTotal

samplesclassifiedcorrectlyofNumber
ratecognition Re (5.1)

Or

ratecognitionrateError Re1 (5.2)
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Table 5.1: Recognition rates for training and validation data

Network models Training data
(14,000)

Validation data
(2,500)

BPNN – 1 layer 95.67% 92.66%
BPNN – 2 layers 97.23% 93.61%

ConvNet 98.34% 97.98%
DAE – 1 layer 99.53% 93.21%

SDAE – 2 layers 99.72% 94.33%
DBN - 2 layers 99.77% 96.23%

The trained networks were firstly simulated on the training data and the recognition rates

achieved are can be seen in table 5.1; also, the networks simulated on databases which

contain translated, rotated images, and Scale varied images as described in section 5.3. The

table below shows the performance of the different networks to the variances.

Table 5.2: Recognition rates for network architectures on variances

Network models Translation (700) Rotation (700) Scale (700)

BPNN – 1 layer 14.29% 68.6% 64.29%

BPNN – 2 layers 17.14% 72.71% 63.42%

ConvNet 32.86% 86.29% 72.00%

DAE – 1 layer 20.00% 75.14% 69.43%

SDAE – 2 layers 25.71% 77.86% 72.57%

DBN - 2 layers 18.57% 80.14% 76.71%

The networks were also simulated on different levels of noise added to the images. i.e.

database A6. The table below shows the recognition rates obtained.
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Table 5.3: Recognition rates for networks on various noise densities

Network models 2.5% 5% 10% 20% 30%

BPNN – 1 layer 67.86% 65.14% 65.29% 58.71% 51.71%

BPNN – 2 layers 70.57% 68.42% 65.86% 55.14% 44.14%

ConvNet 83.57% 81.43% 79.86% 71.43% 68.29%

DAE – 1 layer 71.57% 67.57% 56.43% 40.14% 31.57%

SDAE – 2 layers 74.14% 69.57% 61.43% 46.14% 36.29%

DBN - 2 layers 76.29% 72.29% 61.57% 35.86% 22.71%

The figure below shows the performance of the different network architectures against 0%,

2.5%, 5%, 10%, 20%,  and 30% noise densities. i.e. Figure 5.11.

Figure 5.11: Performance of networks on various noise levels

5.5 Discussion of results

This research is meant to explore and investigate some common problems that occur in

recognition systems that are neural network based. It will be seen that the convolutional

neural network performed best compared to the other networks on variances like translation,

rotation, scale mismatch, and noise; followed by the deep belief network on the average,
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while its tolerance to noise decreased noticeably as the level of noise was increased as shown

in Table 5.3, and Figure 5.11.

A noteworthy attribute of the patterns (Yoruba vowel characters) used in validating this

research is that they contain diacritical marks which increases the achievable variations of

each pattern, and as such, recognition systems designed and described in this work have been

tasked with a harder classification problem.

The performance of the denoising auto encoder (DAE-1 hidden layer) and stacked denoising

auto encoder (SDAE-2 hidden layer), on the average with respect to the variances in

character images seems to second the deep  belief network.

The performance of  the denoising auto encoder is lower than that of the stacked denoising

auto encoder, it can be conjured that the stacked denoising auto encoder is less sensitive to

the randomness of the input; of course the training and validation errors for the SDAE are

lower to the DAE, and the tolerance to variances introduced into the input significantly

higher. i.e. a kind of higher hierarchical knowledge of the training data achieved.

5.6 Summary

This chapter presents the simulation of the different designed network architectures; the

considered invariances of interest to this research were simulated and achieved recognition

rates reported in the tables above. Also, a graph showing the tolerance of the networks to

various level noise of densities is herein supplied.
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CHAPTER SIX
CONCLUSION AND RECOMMENDATIONS

6.1 Conclusion

It is the hope that machine learning algorithms and neural network architectures which, when

trained once, perform better on variances that can occur in the patterns that they have been

trained with can be explored for more robust applications. This also obviously saves time and

expenses in contrast to training many different networks for such situations.

Furthermore, building invariances by the inclusion of all possible pattern variances in the

training phase, which can occur when deployed in applications is one solution; unfortunately

this is not always feasible as the capacity of the network is concerned. i.e. considering

number of training samples enough to guarantee that proper learning has been achieved.

It can be seen that the major problem in deep learning is not in obtaining low error rates on

the training and validation sets (i.e. optimization) but on the other databases which contain

variant constraints of interest (i.e. regularization). These variances are common constraints

that occur in real life recognition systems for handwritten characters, and some of the

solutions have been constraining the users (writers) to some particular possible domains of

writing spaces or earmarked pattern of writing in order for low error rates to be achieved.

It is noteworthy that from the recognition rates obtained in Table 5.1, 5.2, and 5.3, it can be

inferred that pre-training while has both optimization and regularization effect as has been

observed by researchers, this research reinforces that the optimization effect is larger; this is

seen in that lower error rates were obtained from the deep networks that were pre-trained

(DAE, SDAE, DBN) compared to the networks without pre-training (BPNN 1-layer and

BPNN 2-layers). In addition, it will be seen that as the level of added noise was increased, the

errors on the deep networks began to rise; at 30% noise level, the shallow network (BPNN 1-

layer) has the second best highest recognition rate, which can be explained by the fact that it

has the lowest number of network units (neurons) and therefore a lower possibility of over-

fitting data (see Table 5.3). It will be noticed that even though the stacked auto encoder has

more units than the denoising auto encoder, hence should have had higher error rates as noise

was increased (i.e. due to overfitting) as observed in the deep belief network, the SDAE was

pre-trained using the drop-out technique, and which success in fighting over-fitting can be

seen in Table 5.3, and Figure 5.11.
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It has been shown that a flavour of neural networks, “convolutional networks” and its deep

variant give very motivating performance on some of these constraints, however the

complexity and computational requirements of these networks are somewhat obvious.

This work reviews the place of deep learning, a simpler architecture, in a more demanding

sense, that is, a “train once-simulate all” approach; and how well these networks

accommodate the discussed variances. It is the hope that with the emergence of better deep

learning architectures and learning algorithms that can extract features that are less sensitive

to these constraints,  a new era in deep learning, neural networks and machine learning field

could emerge in the near future.

6.2 Recommendations

This thesis has reviewed the performance of some neural network models on some common

problems that occur in pattern recognition systems, pattern invariance, based on the built-in

structure of such networks in accommodating or tolerating the pattern constraints considered.

It is the view that the number of hidden layers of the BPNNs without pre-training can be

increased to ascertain if there will be any appreciable improvement in performance

considering the discussed invariances; also, the convolutional and stacked denoising auto

encoder networks hidden layers can be increased in view of improvements in performance

but bearing in mind the rapid increase in computational power that will be required in

achieving training in reasonable time. e.g. processors of many cores may be required.

Furthermore, other types of generative networks that can be used in the pre-training of the

deep networks, restricted Boltzmann machine, may be considered.

Lastly, in recent times, the pre-training of convolutional neural networks have been strongly

considered, with the hope of initializing the weights to values that are favourable in

converging to better local minimum; the auto encoder pre-training scheme can be exploited

more for this purpose, but network initialization from deep Boltzmann machines could be

quite a promising option as well.
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APPENDIX A

BPNN ARCHITECTURE
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APPENDIX B

CNN ARCHITECTURE

K×L   =   32×32

a×a  =  5×5

n  =  6

C1:  i×i  =  28×28

b×b  =  2×2

S1:  j×j  =  14×14

m  =  12

C2:  d×d =  10×10

S2:  e×e   =  5×5

p  =  12

C3:  e×e   =  5×5
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APPENDIX C

DBN ARCHITECTURE
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APPENDIX D

IMAGE PROCESSING CODES

%Training data ….character

for k=1

eyed = strcat('Train_data_vowels\A\A_', num2str(k), '.jpg');

a1 = imread(eyed);

b1=rgb2gray(a1);

b1=im2bw(b1);

c1=(1-b1);% covert image to negative

m1=medfilt2(c1,[10 10]);% median filter of mask 10 by 10

[v,w]=find(m1~=0);% crop out pattern from image

xmin=min(w);

xmax=max(w);

ymin=min(v);

ymax=max(v);

width = xmax - xmin;

height = ymax - ymin;

m3 = imcrop(m1,[xmin,ymin,width,height]);

m4=imresize(m3,[32 32]);% pixel no = 1024

d1=round(m4);

e1=reshape(d1,[ ],1);

for i=15:15:345

f=imrotate(m1,i,'nearest','crop');% rotate images at 15degrees counterclockwise,23 images

[v,w]=find(f~=0);% crop out pattern from rotated images

xmin=min(w);

xmax=max(w);

ymin=min(v);

ymax=max(v);

width = xmax - xmin;

height = ymax - ymin;

m3 = imcrop(f,[xmin,ymin,width,height]);

m4=imresize(m3,[32 32]);% pixel no = 1024

m5=round(m4);

g=reshape(m5,[ ],1);% reshape 32 by 32 1 to 1024 by 1 matrix

h=[e1 g];% concatenate reshaped images horizontally

e1=h;% safe images for reuse

s1=e1;% safe e1 into s1,incase

end
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end

for k=2:85

eyed = strcat('Train_data_vowels\A\A_', num2str(k), '.jpg');

a1 = imread(eyed);

b1=rgb2gray(a1);

b1=im2bw(b1);

c1=(1-b1);% covert image to negative

m1=medfilt2(c1,[10 10]);% median filter of mask 10 by 10

[v,w]=find(m1~=0);% crop out pattern from image

xmin=min(w);

xmax=max(w);

ymin=min(v);

ymax=max(v);

width = xmax - xmin;

height = ymax - ymin;

m3 = imcrop(m1,[xmin,ymin,width,height]);

m4=imresize(m3,[32 32]);% pixel no = 1024

d1=round(m4);

e2=reshape(d1,[ ],1);

for i=15:15:345

f=imrotate(m1,i,'nearest','crop');% rotate images at 15degrees counterclockwise,23 images

[v,w]=find(f~=0);% crop out pattern from rotated images

xmin=min(w);

xmax=max(w);

ymin=min(v);

ymax=max(v);

width = xmax - xmin;

height = ymax - ymin;

m3 = imcrop(f,[xmin,ymin,width,height]);

m4=imresize(m3,[32 32]);% pixel no = 1024

m5=round(m4);

g=reshape(m5,[ ],1);% reshape 32 by 32 1 to 1024 by 1 matrix

h=[e2 g];% concatenate reshaped images horizontally

e2=h;% safe images for reuse

r=e2;

end

q=zeros(1024,1);% zeros matrix for concantenation

u=[e1 r];% concantenation with k=1

e1=u;

end
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A1=u;

t1=ones(1,2040);

t2=zeros(6,2040);

A_target=[t1;t2];

Ai=[A1;A_target];

S1=Ai;% safe Ai
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APPENDIX E

BPNN-1 CODES

% Solve a Pattern Recognition Problem with a Neural Network
% This script assumes these variables are defined:
inputs = A1_train;
targets = A1_target;
% Create a Pattern Recognition Network
numHiddenNeurons = 65;
net.trainParam.lr=0.045
net.trainParam.mc=0.72
net = newpr(inputs,targets,numHiddenNeurons);
% Set up Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 5/100;
% Train the Network
[net,tr] = train(net,inputs,targets);
% Test the Network
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
% figure, plotperform(tr)
% figure, plottrainstate(tr)
% figure, plotconfusion(targets,outputs)
% figure, ploterrhist(errors)
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APPENDIX F

BPNN-2 CODES

% Solve a Pattern Recognition Problem with a Neural Network
inputs = A1_train;
targets = A1_target;
% Create a Pattern Recognition Network
numHiddenNeurons = [95 65];
net.trainParam.lr=0.082
net.trainParam.mc=0.65
net = newpr(inputs,targets,numHiddenNeurons);
% Set up Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 5/100;
% Train the Network
[net,tr] = train(net,inputs,targets);
% Test the Network
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)
% View the Network
view(net)
% Plots
% Uncomment these lines to enable various plots.
% figure, plotperform(tr)
% figure, plottrainstate(tr)
% figure, plotconfusion(targets,outputs)
% figure, ploterrhist(errors)
net = newpr(inputs,targets,numHiddenNeurons);
% Set up Division of Data for Training, Validation, Testing
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 5/100;
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APPENDIX G

CNN CODES

%Train CNN
train_x=A1_train';
train_y=A1_target';
test_x=A1_test';
test_y=A1_test_desired';
train_x = double(reshape(train_x',32,32,14280));
test_x = double(reshape(test_x',32,32,2520));
train_y = double(train_y');
test_y = double(test_y');
%% ex1 Train a 6c-2s-12c-2s Convolutional neural network
%will run 1 epoch in about 200 second and get around 11% error.
%With 100 epochs you'll get around 1.2% error
rand('state',0)
cnn.layers = {

struct('type', 'i') %input layer
struct('type', 'c', 'outputmaps', 6, 'kernelsize', 5) %convolution layer
struct('type', 's', 'scale', 2) %sub sampling layer
struct('type', 'c', 'outputmaps', 12, 'kernelsize', 5) %convolution layer
struct('type', 's', 'scale', 2) %subsampling layer

};
cnn = cnnsetup(cnn, train_x, train_y);
opts.alpha = 0.8;
opts.batchsize = 60;
opts.numepochs = 20;
cnn = cnntrain(cnn, train_x, train_y, opts);
[er, bad] = cnntest(cnn, test_x, test_y);
%plot mean squared error
figure; plot(cnn.rL);
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APPENDIX H

DAE CODES

% Train SDAE
train_x=A1_train';
train_y=A1_target';
test_x=A1_test';
test_y=A1_test_desired';
train_x = double(train_x);
test_x  = double(test_x);
train_y = double(train_y);
test_y  = double(test_y);
%%  ex1 train a 100 hidden unit DAE and use it to initialize a FFNN
%  Setup and train a stacked denoising autoencoder (DAE)
rand('state',0)
sae = saesetup([1024 100]);
sae.ae{1}.activation_function       = 'sigm';
sae.ae{1}.learningRate = 0.8;
sae.ae{1}.inputZeroMaskedFraction   = 0.5;
opts.numepochs =   10;
opts.batchsize = 60;
sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)')
% Use the SDAE to initialize a FFNN
nn = nnsetup([1024 100 7]);
nn.activation_function              = 'sigm';
nn.learningRate                     = 0.7;
nn.W{1} = sae.ae{1}.W{1};
% Train the FFNN
opts.numepochs =   80;
opts.batchsize = 60;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.16, 'Too big error');
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APPENDIX I

SDAE CODES

% Train DAE
train_x=A1_train';
train_y=A1_target';
test_x=A1_test';
test_y=A1_test_desired';
train_x = double(train_x);
test_x  = double(test_x);
train_y = double(train_y);
test_y  = double(test_y);
%%  train a 95 and 65  hidden units for 1st & 2nd hidden layers respectively and use it to initialize a FFNN
%  Setup and train a stacked denoising autoencoder (SDAE)
rand('state',0)
sae = saesetup([1024 95 65]);
sae.ae{1}.activation_function       = 'sigm';
sae.ae{1}.learningRate              = 0.8;
sae.ae{1}.inputZeroMaskedFraction   = 0.5;
opts.numepochs =   10;
opts.batchsize = 60;
sae = saetrain(sae, train_x, opts);
visualize(sae.ae{1}.W{1}(:,2:end)')
% Use the SDAE to initialize a FFNN
nn = nnsetup([1024 95 65 7]);
nn.activation_function              = 'sigm';
nn.learningRate                     = 0.7;
nn.W{1} = sae.ae{1}.W{1};
% Train the FFNN
opts.numepochs =   80;
opts.batchsize = 60;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.16, 'Too big error');
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APPENDIX J

DBN CODES

% Train DBN
train_x=A1_train;
train_y=A1_target;
test_x=A1_test;
test_y=A1_test_desired;
train_x = double(train_x');
test_x  = double(test_x');
train_y = double(train_y');
test_y  = double(test_y');
%%  ex2 train a 200-150 hidden unit DBN and use its weights to initialize a NN
rand('state',0)
%train dbn
dbn.sizes = [200 150];
opts.numepochs =   5;
opts.batchsize = 60;
opts.momentum  =   0;
opts.alpha     = 0.2;
dbn = dbnsetup(dbn, train_x, opts);
dbn = dbntrain(dbn, train_x, opts);
%unfold dbn to nn
nn = dbnunfoldtonn(dbn, 7);
nn.activation_function = 'sigm';
%train nn
opts.numepochs =  20;
opts.batchsize = 60;
nn = nntrain(nn, train_x, train_y, opts);
[er, bad] = nntest(nn, test_x, test_y);
assert(er < 0.10, 'Too big error');



CHAPTER FOUR

METHODOLOGY

Image processing and design of the neural network

Overview

In this chapter we will consider the method we used to carry out our image processing for the

thesis. We focus on the images of the thesis and also the design of the artificial neural network

used in this thesis. We employ two models of neural network which are supervised learning and

unsupervised learning. We considered backpropagation neural network for supervised learning

and competitive neural network for unsupervised learning.

4.1 Image Acquisition

Image Acquisition is the process before the image processing. It involves capturing of images

required for the thesis. In capturing images, there are conditions that need to be considered.

Some of the conditions are the illumination, the optical sensor (camera), the scene of the image

and the image itself.

The illumination is a vital point in capturing an image. There is a need for a scene of the location

of the image to be captured to be illuminated. This illumination serves as a source of energy

which has to be reflected on the image to be captured by the camera. The illumination can be

sunlight. Also, in capturing the images care must be taken in order to avoid any reflected object

around the images from falling on the images.

The images are placed on the black background one after each other in illumination position on

top of the images which helps the brightness of the images when captured. The scene is

conserved to avoid unnecessary constraint that may occur, such as unnecessary reflected object

that may form another illuminated on the object of interest.

The camera used to capture these images has 960 x 720 pixels which is equal to 691200 picture

elements with a resolution of 96dpi. The camera is positioned at angle 45° in the image.  The

camera is used to capture both sides of the images. The first side is captured, then the banana is



then turned to capture the other side, this will help in making the algorithm to have a better

decision.

4.1 Database

The database used in this thesis are the images of banana captured using a CCD camera. The

images comprise of healthy banana and the defective banana. The healthy banana was bought

and captured by the camera and then kept for a month in order to get defective so as to have

another set of database for defective banana. The total number of databases is made up to 200

images of captured banana. The figure below shows the banana grouped together.

Fig 4.1 The database for the defective banana

Fig 4.2: The database for healthy banana

The images were rotated to build what is referred to as scale invariance. The rotation of the

images will enable the system to be intelligence in able to identify any images at different angles.

The banana images are rotated at 00, 900 and 1800. These rotations make the database to increase

to 600 images. Out of this 600 banana images 420 banana images were brought out for the



training of the network and 180 banana images were used to test the network. The figure 4.3

below show the rotation of the images:

Fig. 4.3 Rotation of banana images

4.3 Grayscale Conversion

After acquisition, these images are stored in JPEG format which are given in batch as an input to

the MATLAB software. These images are true colour (RGB) and needed to be converted into

grayscale images. The formula for the conversion of the images to grayscale is shown below:

[x,y] = 0.21R + 0.72G + 0.07B 4.1

R is the red component of the image, G is the green component of the image  and B is the Blue

component of the images.



Fig 4.4 The defective Image Fig 4.5 The healthy image

Fig 4.6 Grayscale of defective banana Fig. 4.7 Grayscale image of the healthy banana

4.3 Filtering of Image

Images are corrupted by random variation in intensity values, illumination, and poor contrast

known as noise. These are due to non perfect camera acquisition or environmental condition(

E.G.M Petrakis). The basic idea of filtering is the replacement of the intensity value with a new

value taken over a neighbourhood of fixed size. In this thesis, median filter was employed to

filter the noises present in the images as a result of variation in intensity of the pixel or

environmental condition.

4.3.1 Median filter

This is a non-linear filter. It works in a way by replacing distorted pixel with the median of the

gray value in a region of the pixel. The window of operation of the median filter will be chosen.

In this thesis, we choose 3 x 3 window with a region centred around the pixel (I, j), then the

intensity value of the pixels in the region will be sorted out in ascending order to determine the

middle intensity value of the pixels. This middle intensity value will then used to replace the

center pixel(i,j). This median filter takes input as grayscale and give the output as filtered

grayscale image.



The figure 4.8 and 4.9 below show the output  image of the median filter

Fig. 4.8 Median filter of defective banana Fig 4.9 Median of healthy banana

4.4 Thresholding

This is an image processing technique used in segmentation of an image. It is the simplest and

widely used in separation of the region corresponding to object of interest from the image. The

object of interest in an image is the foreground and the other region is the background. Basically,

the foreground is usually in white pixel and the background is in the black pixel. Thresholding

has an input of grayscale image and converts this input image to the binary image.

The working principle of thresholding is thus; whenever a grayscale or true colour image is

passed for segmentation, this segmentation is achieved by a single attribute called an intensity

threshold. When this grayscale or colour image is passed, each pixel in the image is compared

with the threshold pixel, if the pixel intensity in the image is greater or equal to the threshold

pixel, then the object turns white which is denoted as the foreground, but if the pixel intensity in

the image is less than the threshold pixel it turn to black which is the background.

The thresholding can be represented mathematically as shown below:

g(x) =




  11

0

Tif

otherwise

4.2

The diagram below shows the grayscale image for the defective banana and the healthy banana

with their corresponding thresholding operation.



Fig 4.10 Thresholding of defective banana at 0.5 graylevel Fig 4.11 thresholding of healthy

banana at 0.5 graylevel

4.5 Edge Detection

Edges can be described as the boundaries in an image. Due to the significance of bringing out the

interest area in an image, this has made edge detection to be a significant operation or technique

in image processing. Edge detection can be described as the means or way of identifying and

locating discontinuous pixel intensity in an image. This discontinuity of the pixels is

characterized by the boundary of the interested object in an image. Edge detection reduces the

amount of data in an image that are not useful and remain only the valuable information. It helps

to suppress noise as much as possible in an image by applying filtering techniques. There are

different types of edge detection operator such as Prewitt, Canny, Sobel, LoG. All this edge

detection operator may be grouped into two which are: gradient based edge and Laplacian based

edge detection. The gradient based edge detection looks for the maximum and minimum of the

first derivation while Laplacian based edge detection operator looks for the zero crossing of the

second derivative. Sobel operator is grouped under the gradient edge detection and it is used for

this research work.

4.5.1 Sobel Operator

The Sobel operator makes use of a pair of 3 x 3 convolution kernel (Sushma, 2013). The first

mask is normal while the second mask is rotated at angle 90 degrees. It is grouped as a gradient

based edge detection that looks for the maximum and minimum of the first order differentiation.

The mask is designed in such a way that it can respond maximally to edge running vertically and

horizontally to the pixel grid. The Sobel operator is insensitive to noise and its mask is relatively



small (Sushma, 2013). This is the main reason why it is being used in this thesis. The figure

below shows the Sobel operator mask.
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In this thesis, the input of the edge detection techniques is the binary images obtained from the

thresholding of the grayscale images of the defective and the healthy banana. The figure below

shows the thresholded images with its corresponding Sobel edge detection operation.

Fig. 4.12 Sobel edge detection on defective banana      Fig. 4.13 Sobel edge detection on healthy

banana

4.6 Morphological Operation

Morphological image processing is a collection of non-linear operations related to the shape or

morphology of features in an image (Delmas, 2014). Morphological operation depends only on

the pixel of the images, this has made it to be relevant in the processing of the binary images.

Also, morphological operation can be used to process grayscale images in a way that light

transfer function is unknown and therefore absolute pixel values are of no or minor interest.



Morphological techniques examine an image thoroughly with a small template or shape known

as structuring element. The structuring element is placed at all possible positions in the image

and it is checked with the same neighbourhood of pixels. There are two fundamental operations

of morphological techniques; these are dilation and erosion. Dilation was used in this thesis for

final extraction of the features in the images by adding more pixels to the pixel of the images

obtained in the edge detection.

4.6.1 Dilation

Dilation is an operation that grows or thicken object in a binary image and the specific manner

and extent of this thickness is controlled by a shape known as a structuring element (Huiyu et.al,

2010).

The mathematical operation of dilation A by B can be represented as AB

   ABZBA Z)ˆ/( 4.3

Where  is the empty set

B is the structure element

In words, the dilation of A by B is the set consisting of all the structure element origin where the

reflected and translated B overlaps at least some position of A.

We can describe the dilation operation by considering, the structure element as a mask. The

reference point of the mask (structure element) is placed on all those pixels in the image that

have value 1. All the image pixels that correspond to black pixels in the structure element are

given the value 1 in BA .

The input image of a dilation is a binary image, it will produce another new input binary image

by comparing the positioned structuring element on the image.

The images below shows the operation of the dilation on the edge detection images.



Fig. 4.14 Edge detection of healthy banana Fig. 4.15 Dilation of healthy

banana

4.8 Feature Extraction

In order to feed the images to the neural network the images have to be resized to reduce the

redundancy of the pixel and to be able to have a dominant of the object of interest which is the

foreground from the image. This image is resized using bilinear interpolation which found the

weight average of the pixel in the nearest  4 x 4 neighbourhoods. This works in a way that it uses

this 4 x 4 window to sum up all the pixels that fall in this window size, then find the average.

The average obtained will now be used to for a new image.

The size of the original banana images is 128 X 128 that is x and y coordinates are equal x = y =

128. The window size of 4 x 4 is used to obtain an average image of 32 x 32 pixels.

))(( n
Y

m
X = 32 x 32

This result obtained determined the number of neurons that was presented into the network for

training and also for the same testing of the network. The global pattern averaging have its

advantage in a way that its reduce the data necessary for training the network. By so doing, it

increases the speed at which the network learns, it enhances the recognition and saves time.

4.9 Texture Feature Extraction

To extract the features in the images, the properties of gray-level co-occurrence matrix (GLCM)

was considered. GLCM is the matrix that defined by calculating how often a pixel with gray

level (greyscale intensity) value i occurs horizontally adjacent to a pixel with the value j. The

statistical properties of texture analysis were used to extract features. The following are the

properties of statistical texture: Entropy, Contrast, Correlation, homogeneity, and energy.



Entropy: This commonly used in thermodynamics or statistical mechanics. Entropy can be

described as the measure of the level of disorderliness in a system. Entropy is a statistical

measure of randomness that can be used to characterize the texture of the input image. Image of

highly homogenous scenes has high associated entropy while images of low homogenous scenes

have low entropy. The equation below is the

Entropy = ∑ , ( ( , )) 4.4

Contrast: This is commonly used to measure the difference in the intensity value of the

neigbouring pixels. It favours contribution of pixels located away from the diagonal of M( i,j).

The equation below

Contrast =  
ji

jipji
,

2 ),(// 4.5

Homogeneity: This measures how a given region is structured uniformly with respect to its

graylevel variation.

Homogeneity =  ji ji
jip

, //1
),( 4.6

Correlation: This measures the linear dependency of the graylevels. Whenever there is an high

correlation values,this indicate a certain local order of the graylevels. Correlation returns a

measure of how correlated a pixel to the neigbour over the whole image.

 


ji ji

jipjjiiCON
,
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

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Energy: this returns the sum of squared element in gray level co-occurrence matrix.

Energy = 
ji

jip
,

2),( 4.8

The table below shows first five of the normalized statistical texture feature extraction of the

defective bananas



Table 4.1 Statistical texture feature extraction of first five defective bananas

Contrast 0.169537 0.169537 0.15139 0.15139 0.16966

Correlation 0.933317 0.940502 0.930052 0.940173 0.940173

Energy 0.259503 0.259503 0.266991 0.269664 0.279673

Homogeneity 0.92964 0.92964 0.936049 0.936049 0.930997

Entropy 0.988699 0.988699 0.993651 0.993651 0.993651

The table below also shows the statistical texture feature extraction of the healthy banana for first

five samples of healthy bananas.

Table 4.2 Statistical texture feature extraction of first five healthy bananas

Contrast 0.088583 0.096703 0.096949 0.086368 0.149237

Correlation 0.989649 0.988754 0.988723 0.989947 0.982365

Energy 0.413717 0.412472 0.412381 0.411324 0.37584

Homogeneity 0.964357 0.964357 0.961086 0.961045 0.963526

Entropy 0.965202 0.965202 0.965202 0.954434 0.954434

4.10 Design of Artificial neural network

In this thesis, two different models of artificial neural network were used. These are

backpropagation neural network and competitive neural network. The backpropagation neural

network is made up of three layers which are the input layer, hidden layer and the output layer.

 INPUT LAYER: This is the layer where the patterns that needed to train the network is

input. This layer is a non processing layer. It does not make up of summing function and

activation function.

 HIDDEN LAYER: the hidden layer is a processing layer which is made up of summing

function and activation function. In this hidden layer, the summing function summed up

all the synaptic weights that connect the input and the hidden layer together. When these

weights are summed up, they are passed to the activation function which has a threshold



value that determine which of the neurons to be fired based on the threshold value. The

activation function used in this thesis is called sigmoid transfer function. This sigmoids

function has value between 0 and 1. The outputs from the activation function is then

becomes the input in the output layer.

 OUTPUT LAYER: The  output layer receives the pattern from the synaptic weight

between the hidden layer and the output layer. The output layer is also the processing

layer just as hidden layer. It is also made up of summing function and activation

function. In this output layer, the actual network output is given out.

In this thesis, after processing the images, we have in total 600 images obtained from 200 initial

images that was rotated. These images were divided into training set and testing set. The training

set that we used for this thesis comprises 420 images, these were obtained by using a ratio 70:30

The size of the images that was fed into the neural network was 32 x 32 pixels which is equal to

1024 pixels, this form the following input training matrix with the corresponding target on the

input layer of the network and input testing matrix and corresponding target of the network. The

number of the pixels is equal to the number of the neurons used.

At the hidden layer, several experiments were carried out in selecting the best hidden neuron that

can helps in generalization of the problem we want to solve. The neurons were selected from a

smaller number to the number that solve the task at hand. In this research work, 40 hidden

neurons were finally introduced which help us to solve the task.

At the output of the network, we have two neurons which denote the healthy banana and

defective banana.

Defective banana

1               0

Healthy banana

0             1



4.11 Backpropagation neural network topology

The network was created on the Matlab software using the back propagation algorithm. The first

step was to create a basic network and train it for simple operation such as ‘AND” or ‘OR’ in

order to reduce the mean sum error value to 0.00. All training is done using backpropagation

with both adaptive learning rate and momentum; with the function ‘traingdx’ and with the

transfer function ‘logsig’. The network was fed with the normalized datasets for the two sets and

their output targets respectively. Figure 4.16 illustrates a multilayer neural network with 1024

neurons in the inputlayer, 40 neurons in the hidden layer, and 2 neurons in the output layer. We

ran the experiments for 3000 iterations.

Original size of
banana 128 x

128

Downsample
banana 32 x32

Input layer        Hidden layer     Output layer

Fig. 4.16 Architecture of backpropagation neural network

The arrow represents inputs of the network. The connections between the neurons called

the weights. Each neuron in the input layer is connected to the succeeded neurons in the hidden

layer. Moreover, each neuron in the hidden layer is connected to the two output neurons.

Sigmoid function is used as a transfer function for the network.



Input layer                Hidden layer      Output layer

4.11.1 The Training System

To create a network that can handle such classification task, it is best to train the network on

simple tasks first. To do this, the network is first trained on ideal vectors until it has a low sum

squared error. In order to decrease the error value to 0.00, we have to start training the neural

network on simple and mathematical operations such as ‘AND’ or ’OR’ operations.

The network was trained using backpropagation algorithms with both learning rate and

momentum rate with the function ‘’traingdm’’. After making sure that the error is minimized; we

started feeding the neural network with the input images and their targets respectively

The network was trained on 420 banana images: 210 defective images, and 210 healthy images.

The table 4.2 represents the training set of images which consists of 2 types of banana images:

defective images and healthy images. It also shows the total number of databases of banana

images used for training and testing phase.



Table 4.3: The division of the dataset for training and testing

Defective images Healthy images Total number of

images

Training set 210 210 420

Testing set 90 90 180

Total number of

images

300 300 600

Table 4.2: Performance parameter for Processed image

Number of input neurons 1024

Number of hidden

neurons

40

Number of output

neurons

2

Learning rate 0.005

Momentum rate 0.77

Number of Epoch 3000

Training Time 02:27

Error 0.00

Activation function Sigmoid

Table 4.2 shows the parameters used in training the network, the learning rate of 0.005 was

finally used with a momentum rate of 0.77 to give optimum result.

The statistical texture feature extraction was also trained with backpropagation neural networks.

Only five extracted features were used to train and test the neural network. These features are

entropy, energy, correlation, homogeneity and contrast. The hidden neurons in the hidden layer

was varied until the best neurons that generalize the pattern was achieved. The table 4.3 below

shows the parameter used in training the network to give optimum results.



Table 4.3: Performance parameter for statistical texture feature extraction

Number of input neurons 5

Number of hidden

neurons

11

Number of output

neurons

2

Learning rate 0.005

Momentum rate 0.77

Number of Epoch 2000

Training Time 0:27

Error 0.00

Activation function Sigmoid

4.11 Summary

In this chapter, we have discussed on the image acquisition, which means the process of

obtaining the images. We also discussed about the database of the thesis, which is the

combination of both the defective banana and the healthy ones. We discussed about the methods

that we used in processing the images such as conversion of the images to graycolour and from

graycolour to binary. We discussed about thresholding of the images. We discussed about the

edge detection and we are particular about the operator that we used which is Sobel. We

discussed morphological operation and we discussed more with diagram illustration on the

dilation output that we obtained. We also consider statistical texture feature extraction where we

extracted the texture properties. The second part of this chapter is the design of neural network.

In this part we discussed on the design of the backpropagation neural network. We explain each

layer of the design and we also discussed the parameter that we used in training the network.

Also, we discussed the competitive neural network.
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