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ABSTACT 

 

Mathematics has always benefited from its involvement with developing 

science, each successive interaction revitalizes and enhances the field. 

Biomedical science is clearly the premier science of the foreseeable 

future.This work introduces a mathematical models for biological systems, 

and presents the mathematical theory and techniques useful in analyzing 

those models. Material is organized according to the mathematical theory 

rather than the biological application. Undergraduate courses in calculus, 

linear algebra, and differential equations are assumed. In this thesis, We 

first describe the prey- predator model and how differential equations 

relates to prey- predator. We consider Lotka-Volterra’s model, Lotka-

Volterra model as a classical application of mathematics in biology, models 

based on differential equations for interactions between species, comprising 

a set of two ordinary differential equations governing the local dynamics 

present of prey and predator densities.  

Analysis of the equations resulting from the introduction of a time lag in the 

response of the predator to changes in the prey population shows an arrey 

of possible solutions . The form of the solution is dependent upon the size 

of the time lag and the ratio of the equilibrium value for the prey population 

in the absence of predation to the equilibrium value with predation.While 

the equations analysed in this thesis were assumed to have terms, It is 

possible to introduce non linear interactions. Once reasonable values are 

known for the many parameters, population equations of this degree of 

complexity are most easily handled by approximation on a computer  

Keywords: Prey; Predator; Model; Equilibrium; Maturity; Stability; 

Analysis  and Population 
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ÖZET 

 

Bilimi geliştirmede Matematiğin  herzaman büyük katkıları olmuştur. 

Birbirini izleyen her bir etkileşim canlılık kazandırır ve saha artırır. 

Biyomedikal bilim gerçekten öngörülebilir gelecekte en önde gelen 

bilimdir. Bu çalışma, biyolojik sistemler için matematiksel modeller 

tanıtmaktadır ve bu modellerin analizinde yararlı matematiksel teori ve 

teknikleri sunmaktadır. Bu çalışmanın içeriği biyolojik uygulamadan ziyade 

matematiksel teoriye göre düzenlenmiştir. Analiz , lineer cebir ve 

diferansiyel denklemler dersleri temel olarak alınarak bu tez yazılmıştır. İlk 

olarak bu çalışmada av-avcı modelini tanımladık. Sonra diferansiyel 

denklemlerle nasıl ilişkili olduğunu açıladık. Av ve avcı yoğunlukları 

mevcut yerel dinamiklerin yöneten iki adi diferansiyel denklemlerin bir dizi 

içeren biyoloji, matematik, türler arasındaki etkileşimleri diferansiyel 

denklemler dayalı modeller, klasik bir uygulama olarak Lotka-Volterra 

modeli örnek alınarak bu tez geliştirilmiştir. Av popülasyonunda 

değişikliklere avcının karşılık olarak bir zaman aralığı dahil edilmesinden 

kaynaklanan denklemlerinin analizi ve çözümleri bu tezin ana konusudur. 

Çözümün formu zaman gecikmesinin boyutu ve avlanma ile denge değerine 

avlanma yokluğunda av nüfus için denge değerinin oranına bağlıdır. Bu 

tezde analiz edilen denklemlerde koşullar kabul ederken, bu doğrusal 

olmayan etkileşimlerle karşılaşmak mümkündür. Uygun değerler, birçok 

parametre için biliniyor olsa da, karmaşıklıklığın bu seviyesindeki nüfus 

denklemleri kolayca bir bilgisayar yardımıyla çözüm bulacağımızı bu tezde 

işlemiş bulunmaktayız. 

 

Anahtar Kelimeler: Av; Avc;, Model; Denge; Olgunluk; Kararlılık; Analiz 

ve Nüfus  
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CHAPTER 1 

INTRODUCTION 

 

In this chapter, definition of mathematical model, latest development, 

limitations and some definitons dealing with the predator-prey models are 

discused. Then a description of what the predator-prey model is, and also 

how differential equations relate to predator-prey.  

In chapter 2, fucus on the study of the predator-prey model which are 

Lotka-Volterra models was made, where two species are involved in the 

interaction.Thus, the differential equations describing the population 

dynamics must have two unknown variables which are x(t) for prey and y(t) 

for the predator, creating a system of differential equations. These dynamics  

present two times. We then study this model and its equilibrium points and 

also the  stability analysis. finally, the effect of introducing time lags into 

the equations for the growth of the prey and non linear functions for the 

prey-predator interaction is considered, it could be seen that these equations 

swiftly become too difficult for analytical methods. However, the stability 

analysis for the steady state point is to be comsidered.  
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1.1 Some Definitions 

1.1.1 What is Mathematical Modeling? 

Mathematical modeling is the application of mathematics to describe and 

investigate an important questions that arise from it in a real-world 

problems (Banerjee, 2014). 

In the 1920’s Vito Volterra was asked whether it would be possible to 

explain the fluctuations that had been observed in the fish population of the 

Adriatic sea– fluctuations that were of great concern to fishermen in times 

of low fish populations(Doust & Gholizade, 2014). Volterra in 1926 

constructed the model that has become known as the Lotka-Volterra model 

(because A.J. Lotka (1925) constructed a similar model in a different 

context about the same time), based on the assumptions that fish and sharks 

were in a predator–prey relationship(Brauer & Castillo-Chávez, 2012). A 

mathematical model, as stated, is a mathematical description of a real life 

situation. So, if a mathematical model can reflect or mimic the behavior of 

a real life situation, then we can get a better understanding of the system 

through proper analysis of the model using appropriate mathematical tools. 

Moreover, in the process of building the model, we discover various factors 

which govern the system, factors which are most important to the system 

and that reveal how different aspects of the system are related. 

Mathematical modeling is an area of great development and research. In 

recent years, mathematical models have been used to validate hypotheses 

made from experimental data, and at the same time the designing and 

testing of these models has led to testable experimental predictions. There 

are impressive cases in which mathematical models have provided fresh 

insight into biological systems, physical systems, decision making 

problems, space models, industrial problems, economical problems and so 
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forth. The development of mathematical modeling is closely related to 

significant achievements in the field of computational 

mathematics(Banerjee, 2014). Real-world systems are complex and a 

number of inter-related components are involved. Since models are 

abstractions of reality, a good model must try to incorporate all critical 

elements and inter-related components of the real-world system. This is not 

always possible. Looking at a limitations of mathematical model, an 

important inherent limitation of a model is created by what is left out. 

Problems arise when key aspects of the real-world system are inadequately 

treated in a model or are ignored to avoid complications, which may lead to 

incomplete models. Other limitations of a mathematical model are that they 

may assume the future will be like the past, input data may be uncertain or 

the usefulness of a model may be limited by its original purpose. 

1.01.2 Modeling cycle;  

 

Figure 1.1: Modeling Circle 
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1.2 What is the  Predator-Prey Model ? 

There are many instances in nature where one specie of animals feeds on 

another specie(s) of animal(s), which in turn feeds on other things. The first 

specie is called the predator and the second is called the prey. 

Theoretically, the predator can destroy all the prey so that later it becomes 

extinct. However, if this happens the predator will also become extinct 

since, as we assume, it depends on the prey for its existence.           

Predator-prey modeling is a population modeling with two distinct 

populations, one of which is a source of food for the other.  

1.3 Differential Equations and how it Relates  to Predator-Prey 

The differential equations are very much helpful in many areas of science. 

But most of interesting real life problems involve more than one unknown 

function. Therefore, the use of system of differential equations is really 

useful.  

One of the most interesting applications of sytems of differential equations 

is the prey-predator problem. In this thesis without loss of generality, we 

will concentrate on sytems of two differential equations and we will 

consider an environment containing two related populations a prey 

population, such as rabbits and a predator population, such as foxes. 

Clearly, it is reasonable to expect  that the two populations react in such a 

way as to influence each other’s size (Casillas etal., 2002). 
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1.4  A General Predator-Prey Model   

Consider two populations whose sizes at a reference time t  are denote by 

x(t), y(t), respectively. The functions  x  and  y might denote population 

numbers or concentrations (number per area) or some other scaled measure 

of the populations sizes, but are taken to be continuous functions. Changes 

in population size with time area described by the time derivatives  ̇  
  

  
  

and  ̇  
  

  
 , respectively and a general model of interacting populations is 

written in terms of two autonomous differential equations: 

 ̇          

 

 ̇          

 

(i.e the time t does not appear explicitly in the functions         and 

       ). The functions f  and  g denote the respective “per capita growth 

rates of two species”. It is assumed that 
       

  
    and 

       

  
  . This 

general model is often called Kolmogorov’s prey-predator model 

(Hoppensteadt, 2006).  

1.5 Exponential  Growth  

Under simplified conditions, such as a constant environment (and with no 

migration), it can be shown that change in population size     through time 

    will depend on the difference between individual birth rate      and 

death rate     , and is given by: 
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                                                                   (1.1) 

 

where: 

             instantaneous birth rate, births per individual per time period    . 

                 instantaneous death rate, deaths per individual per time period 

(t) and    current population size.                                                                     

The difference between birth and death rates         is also called   ,  the 

intrinsic rate of natural increase, or the Malthusian parameter. It is the 

theoretical maximum number of individuals added to the population per 

individual per time. By solving the differential equation 1.1 we get a 

formula to estimate a population size at any time:        

                        

                   
                                                                       (1.2) 

 

where                          

This equation shows us that if birth and death rates are constant,  population 

size will grow exponentially. If you transform the equation to natural 

logarithms     , the exponential curve becomes linear, and the slope of that 

line can be shown to be    :          

                        

                                                                            (1.3) 
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and                                                                            

                                ⁄                                              (1.4) 

 

where        . The population growth rate,  , is a basic measure in 

population studies, and it can be used as a basis of comparison for different 

populations and species. 

1.6 Fixed Points or Critical Points (Sometimes Called an Equilibrium 

Points) 

A fixed point of a dynamical system is a state vector x such that if the 

system is ever in the state x, it will remain in that state for all time 

(Scheinerman, 2007) 

1.7 Stability of an Equilibrium Points  

Let            be the eigenvalues of an equilibrium point (x,y), then the 

fixed point is 

1.7.1  Stable;   

 (a) if Re(  ) < 0 and Re(    ) < 0 (Re(λ) denotes the real part of λ), 

 then  the trajectories form a stable node. 

 (b) If             are complex conjugate pair, the trajectories form a stable 

focus.(Louzoun & Solomon, 2001)  
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1.7.2 Node;  

If             are of the same signs. 

1.7.3 Spiral;  

If both             are complex conjugate with non zero real parts. The 

spiral is locally stable if the real parts of the eigenvalues are negative, and 

unstable if the real parts of the eigenvalues are positive. 

1.7.4  Unstable; 

 If                are real and positive. 

1.7,5 A Saddle Point;  

if             are real and have opposite signs. a saddle is unstable(Louzoun 

& Solomon, 2001)   

1.7.6 A centre;  

if             are purely imaginary(Louzoun & Solomon, 2001). 

 In other words, for asymtoticity, a fixed point is said to be stable if the 

system at any point     near x (the fixed point) is converging to 

x.marginally stable or neutral if foe all starting points     near the fixed 

point x the system stays near it but never converge to it, while it is unstable 

if it is neither stable no marginally stable. These are illustrated by figure  

respectively(Scheinerman, 2007) 
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Figure 1.2: Stable, Marginal and unstable 

 

1.7.7 Limit Cycle;  

Is a closed trajectory that is eventually reached by a system. It occurs only 

in a non linear system. 

1.8  Logistic Growth 

We need to modify the basic  equation 1.1 so that birth and death rates are 

no longer constants through time, but decrease and increase respectively as 

population size increases : 

 

              
  

  
                                                  (1.5) 

 

where      and     are the density-dependent birth and death rate constant 

respectively. This equation predicts that a population will stop growing 

(zero population growth) when birth rate equals death rate, or: 
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                                                                             (1.6) 

 

This can be converted into an equation showing the size at which the 

population reaches a steady state: 

 

                
       

       
                                                                    (1.7)   

 

  The value of     when the population is at steady state is the carrying 

capacity of the environment, or  . This can be simplified:     

                       

                
 

       
                                                                    (1.8) 

 

Since        . If we combine this new form of the carrying capacity 

equation with 1.5 we get the familiar form of the logistic growth 

equation(Toronto,1997). 

  

 

              
  

  
   *

     

 
+.                                                           (1.9)  
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1.9 Taylor Series: 

A Taylor series is a series representation (expansion) of a function about a 

point. A one dimensional Taylor series expansion of a real function       

about a point      is given by 

                           
      

  
       

       

  
   

                                           

  
                                      (1.10) 

1.10 Exponential Decay:  

If a quantity decreases at a rate proportional to its value, then it is said to be 

subject to exponential. Symbolically, this process can be modeled by the 

differentiam equation below where N is the quantity and λ (lambda) is a 

positive constant called the decay constant:  

                
  

  
                                                                        (1.11)                                                                                

The solution to this equation is:  

                      
                                                               (1.12)                                       

Here       is the quantity at time  , and         is the initial quantity, 

i.e the quantity at time    . 

1.11 Delay Model: 

In general, if we consider a population to be governed by 
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                                                                        (1.13)                                                                                                   

where typically      is a nonlinear function of  .  

One of the deficiencies of single population models like 1.13 is that the 

birth rate is considered to act instantaneously whereas there may be a time 

delay to take account of the time to reach maturity, the finite gestation 

period and so on. We can incorporate such delays by considering delay 

differential equation models of the form 

 

               
   

  
               ,                                            (1.14)    

                                                                                  

where      , the delay is a parameter . 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Models 

In this chapter, fucus on the study of the predator-prey model which are 

Lotka-Volterra models was made,where two species are involved in the 

interaction.Thus, the differential equations describing the population 

dynamics must have two unknown variables which are x(t) for prey and y(t) 

for the predator, creating a system of differential equations. These dynamics  

present two times. We then study this model and its equilibrium points and 

also the  stability analysis. 

2.2 Lotka Volterra  Model 

The Lotka-Volterra equations,in other words the prey-predator equations, 

are  pair of non-linear first-order,ordinary differential equations usually 

used to describe the dynamics of biological systems in which two species 

interact,where one is predator and the other is a prey. The equations were 

proposed independently by Alfred J. Lotka in 1925 and Vito Volterra in 

1926 as stated in the previious chapter. 

The model describes the following; 

1. How the population of the prey changes 

2.Shows the changes in predator population. 

All with respect to time according to the pair of equations below: 
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        ( 2.1) 

  

  
            

 

where     

              x  represent the number of  prey  

              y  the number of predator  

              
  

  
     and  

  

  
   represent the growth rate of the two populations with 

respect to time t.             

and also, 

                             
 are positive constants representing the interaction of 

the two species. 

 

2.3 The  Physical Meanings of the Models 

The equations could take more usefull form when multiplied out for 

interpretation physically, considering the origin from a general framework,   
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                                                                                               (2.2)  

  

  
         

 

where both  functions represent per capita growth rates of the prey and 

predator respectively. 

Becouse these functions are in general form, a Taylor series approximation 

is performed to come up with a linearized per capita rates, 

 

                                                                           

                                                                                                 (2.3)                                                                                                         

                                    

 

The signs of the coefficients were from an assumptions of population 

regulation, and by choosing non zero coefficients apporopriately, an 

ecologist can obtain prey-predator competition, disease and mutualism 

models that provide general insight into ecological systems. 

The following are some assumptions made: 

       1. There is an ample food for the prey population at all times 
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       2. The predator population depends entirely on the prey populations for 

its food 

       3. The rate of change of population is proportional to its size 

       4.There is no change in favour of any specie and the genetic adaptation 

is sufficiently slow by the environment during the process. 

 

2.4 Prey 

The  prey equation becomes 

 

                      
   

  
                                                        (2.4)  

                             

The prey are assumed to have an unlimited food supply and to reproduce 

exponentially unless subject to predation, this exponential growth is 

represented in the equation above by the term    . The rate of predation 

upon the prey is assumed to be proportional to the rate at which the 

predators and the prey meet this is represented above by     , if either   or 

  is zero then there can be no predation. 

With these two terms the equation 2.4 above , can be interpreted as:the 

change in the prey’s population given by its own growth minus the rate at 

which it is preyed upon. 
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2.5 Predators 

The predator equation becomes 

 

                        
   

  
                                              (2.5) 

                            

In this equation,       represents the growth of the predator population by 

interacting with the prey,      represents the natural death of the predators 

which is in the absense of the prey, it is an exponential decay.  

Hence the equation represents the change in the predator population as the 

growth of the predator population minus natural death.  

2.6 The Dynamics of the System 

According to the system, the population of predators increases when there 

are many prey to feed on, but ultimately, outstrip their food supply and 

decline. As the population of the predator is low the prey population will be 

higher. These dynamics continue in a pattern of growth and decline. 

2.7 Equilibrium Analysis  

When neither of the population levels is changing then the population 

equilibrium occurs in the model, in other words, when both of the 

derivatives are equal to 0. Thus, for the prey-predator model above,  we 

equate the derivatives to zero     
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          and              

  

  
  . 

 

It results in a system of non linear algebraic equations to solve.let   ̂  ̂  be 

the equilibrium solutions for the prey and predator populations respectively, 

then the system of algebraic equations that need to be solved is given by 

 

            

 

                                                             

 

The solutions are of the forms; 

 

                                                             

                                                          and  

                                                     
  

  
    

  

  
) 

 

Hence, two equilibria exist.The first solution effectively shows the 

extinction of both the prey and the predator.which means If both 

populations are at 0, then it will continue to be so indefinitely.And the 

second solution represents a fixed point at which both populations of the 
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species sustain a current, non-zero numbers, and in the simplified model, 

also so indefinitely. The levels of population at which this equilibrium is 

achieved depend on the chosen values of the parameters                   

 

2.8 Stability of the Fixed Points 

By performing a linearization using partial derivatives the stability of the 

fixed point at the origin is determined. while a more slight sophisticated 

method could be employed for the other fixed point.  

Jacobian matrix is used below for the prey-predator model, 

 

                       [

  

  
         

  

  

  

  
          

  

  
 
]  [

          
          

]. 

 

Consider the first fixed point; 

When evaluated at the steady state of        ,   the Jacobian matrix J  

becomes 

 

                                                         [
   
    

]. 
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The eigenvalues of this matrix are        and         . In the 

model     and    are always greater than zero, and as such the sign of the 

eigenvalues above will always differ. This shows that fixed point at the 

origin is a saddle point. 

This fixed point has a sigmificant stability. If it were stable, non-zero 

populations might be attracted towards it, and as such the dynamics of the 

system might lead towards the extinction of both species for so many cases 

of initial population levels. However, as the fixed point at the origin is a 

saddle point, and hence unstable, This shows that in the model,the 

extinction of both species is very hard. (In fact, this is only possible if the 

prey are completely eradicated artificially, which causes the predators to die 

of starvation. When the predators are eradicated,there will be a growth in 

prey’s population without bound. 

Consider the second fixed point; 

Evaluating  J at the second fixed point we get 

 

 (
  

  
 
  

  
 )  

[
 
 
 
   

    

  

    

  
 

]
 
 
 
 

 

 

which yields the two complex conjugate eigenvalues     √       and  

     √    . The real parts of these two eigenvalues are both equal to 0. 

Thus the linear stability analysis is  inconclusive. It turns out that the 
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equilibrium is neutral stable and this system of equations exhibits neutral 

oscillations (Wiens, 2010). 

 

2.9 Consumer-Resource  Model (a non linear system) 

Consider the following non linear, autonomous systems of the form 

 

   

  
               

   

  
                 

  

   

  
                

 

where each of the functions       i=1,2,3,...,n  are real-valued functions in n 

variables.in the analysis the restriction is on system of two variables.. 
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2.10 The Stability Analysis Of The Equilibria 

Consider the system of two autonomous differential equations 

 

  

  
        

                                                                                             (2.6)                                                                                                                                             

  

  
        

 

The first step is to find the equations of the zero isoclines (for finding the 

equilibrium point), which are defined as the set of points that satisfy 

 

         

 

                                                            

 

Each equation results in a curve in the x-y space. Point equilibria  occur 

where the two isoclines intersect Figure 2.1. A point equilibrium   ̂  ̂  of 

2.6  therefore simultaneously satisfies the two  equations 

 

   ̂  ̂      and       ̂  ̂    
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The equilibrium is simply called “equilibria”.  

 

                 

Figure 2.1: Zero isoclines corresponding to the two differential equations. 

Equilibria occur where  the isoclines intersect. 

 

The stability from an analytical approach relies on analysis of the effects of 

small perturbations. If the system returns to    ̂  ̂  after a small 

perturbation then the equilirium   ̂  ̂  is locally stable, otherwise unstable. 

Mathematically, the analysis can be made through linearization of the right-

hand side of each the two differential equations in 2.6  about the 

equilibrium. 

The equations 2.6  can be written in matrix form as follows 

 

x 

y 

0),( yxg

0),( yxf

Equilibrium 
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[
    
    

]  [
      
      

] 

 

The right-hand side is a vector-valued function that maps a point in    into 

a point in   . Linearizing a vector-valued function means linearizing each 

component separately. Also linearizing a function of two variables about a 

specific point means  finding the tangent plane at that point (which, of 

course, may not always be possible). The equation of a tangent plane of  

f(x,y) about   ̂  ̂  is; 

 

          ̂  ̂  
    ̂  ̂ 

  
    ̂  

     ̂  ̂ 

  
    ̂  

 

We thus find for the linearization of the vector-valued function [
      
      

] 

 

[
      
      

]  [
      
      

]  

[
 
 
 
 
    ̂  ̂ 

  

     ̂  ̂ 

  
     ̂  ̂ 

  

     ̂  ̂ 

  ]
 
 
 
 

[
    ̂ 
    ̂ 

] 

 

Now, considering      ̂  and       ̂  the perturbations, then with 

   ̂  ̂      and    ̂  ̂   , we find  
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                 [

  

  
  

  

]  [

    ̂  ̂ 

  

     ̂  ̂ 

  

     ̂  ̂ 

  

     ̂  ̂ 

  

] [
 
 
]                                       (2.7)   

                                                                                    

The matrix 

 

       

[
 
 
 
 
       

  

        

  
        

  

        

  ]
 
 
 
 

 

 

is called the Jacobian matrix. 

The system 2.7 is a linear system of two equations, and we can use the 

results from linear systems of two differential equations to determine the 

stability of the equilibria.  

 

2.11 The Density Model:– Dependent Growth of the Prey 

To stabilize the prey-predator model a density-dependant growth of the 

prey in the form of logistic growth can be included. Which takes the form 

 

 

 



26 

 

 
  

   
   (  

 

 
)           

                                                                                                 (2.8)                                                              

  

  
        

 

where all parameters are positive. In the absence of the predator, the prey 

dynamics reduce to logistic growth in 2.8. Namely,  if we set     ,  then  

 

  

  
   (  

 

 
) 

 

The system of equations 2.8  has the nontrivial equilibrium      , which is 

always unstable. In addition, it has the prey only equilibrium      , which 

is locally stable provided    
 

  
 . If     

 

  
 , an additional nontrivial 

equilibrium in the first quadrant appears, which is locally stable. If   
 

  
 , 

the prey only equilibrium is unstable. 
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CHAPTER 3 

THE REACTION TIME LAG 

 

3.1 The Time Lagi In Prey-Predator Population Models 

The conventional set of differntial equations used to described the 

relationship in a prey predator population model are;  

 

     

  
                       

                                                                                              (3.1) 

     

  
                        

 

Where             

                                        

                                            

                                           

                 = coefficient of effect of predation on      
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Thus, the term                                               the prey 

is predation alone and that this predation is linearly proportional to the 

product of prey and predator, in the same manner the growth of the predator 

population is considered to be linearly proportional to the product of the 

population and the only limitation on the growth of the predator population 

is the number of prey. These equations give rise to the familiar Lotka-

Volterra  prey predator cycles. 

3.2 The Equations 

The defect in this mathematical treatment of population have been 

discussed by many ecologists. Most notably by F. E Smith (1952). The 

equations describe ideal populations whose members can react 

instantinously to any change in the environment. İn real population both 

prey and predator require reaction time lags. However,in order to keep the 

equations simple enough for mathematical analysis, the effect of 

introducing a time lag into the predator’s reaction to change in the prey 

population will be the only one considered in this thesis.The equations in 

this form become 

 

     

  
                          

                                                                                                           (3.2) 

            
     

  
                (    )        
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That is to say the change in the number of matured predators depends on 

the number of  prey and matured predator present at same previous time. 

This type of equations was found to have no stable solutions as long as the 

term              was considered to be linear. 

In biological terms, If prey and predator interact in a linear fashion, then 

predation can not be the only limit on the growth of the prey in a stable 

system. This would seem to confirm the theory of  Nicholson and Balley. 

In order to consider prey predator system with linear interaction as well as 

those systems where a limitations upon the growth of the prey other than 

predation is evident, it is necessary to include a density dependant term in 

the equation of the prey. The equations then become 

 

 
     

  
            {  

       

  
}               

                                                                                                         (3.3)                   

             
     

  
                (    )        

 

Where          

 

And simplifyimg by combining terms  
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                                       (3.4) 

              
     

  
                (    )                       (3.5) 

 

 

Where  

                                              
    

  
        

                                     

For these equations there are equilibrium conditions or steady state at which 

both    
     

  
  and 

     

  
 are equal to zero simulteneously. 

 

These are; 

 

              1.  x(t) =                                                         

              2.  x(t) =    
    

 
                                    

              3.  x(t) =    
    

    
                            

*
    
  

+
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The kinds of solutions near each steady state can be found by studying 

equations 3.4 and 3.5. It is simplest to nomalize the equations by 

introducing the following definitions 

 

  
 

 
              

    

  
             

    

  
                

  

  
              

                

If the coefficients are all positive as assumed and if the requirement is made 

that    be positive, as it must be , to be biologically meaningfull, then 

              and the ratio z is greater than unity. 

If the coefficient C is made smaller than    and an increase in the ratio z 

towards infinity occurs, C  goes to zero. 

By using these definitions, equatimons 3.4 and 3.5 can be put into the form 

 

              r            *
 

     
      

 

     
    +                   

 

                                                               (3.7) 

 

Where primes indicates differenciation with respect to p. 

The steady states now occur at 
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1.           

2.                           

3.           

                                                     

Table  3.1: Steady State Points 

 

The region of particular interest is that where the solutions are near steady 

state 3 as in table 3.1. This region can be explored by studying the 

variational equations formed by replacing r by (1+u) and s by (1+v) where 

u and v are small compaired with unity. The equations 3.6 and 3.7 become 

 

                            
     

     
       ]                                        (3.8) 

 

                                                          (3.9) 

 

Where only linear terms are retained. 

Becouse the algebra gets involved from this point on, it is well to use the 

definitions, 

 

                         A=                   B=             and     C=  
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All of which are dimensionless numbers. It is possible to eliminate v from 

equations 3.8 and 3.9 to give 

 

                                                                      

(3.10) 

 

This differential equation is difficult to solve directly, However, some 

knowledge of its solutions indicates that the delay of one unit in variable p 

is in many cases of interest relatively small compared with the interval of p 

necessary for significant changes to occur in the solution. 

This observation allows just the first three terms of a Taylor’s series to be 

used as  

 

                                       

 
 +...                          (3.11) 

 

                                                                   (3.12)  

 

Where derivatives only to the second order are retained. Putting this series 

into equation 3.10 gives the pure differential equationas featured in 

equation 3.13 

                    

 
                                     (3.13) 
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Where all terms are evaluated at p. 

 

3.3 Stability Analysis 

A number of conclusion can be drawn  from equation 3.13 regarding 

solutions near steady state 3 in table 3.1. The possible solutions depend 

upon values of z and    with the relations being illustrated in figure 3.1. 

 

 

                          Figure 3.1: : Types of solution for equation 3.13  

  

Figure 3.1: Types of solution for equation 3.13 or equation 3.4 and equation 

3.5 near (       as determined by values of  z =    

  
  and     Three particular 

values of z are chosen for a single value of    
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A. If         then there are no stable solutions. 

B. If        a monotonic approach to equilibrium occurs.This is 

illustrated by 1 in both figures.The boundary    is found by the complicated 

relationship  

 

     
    √            

 
  

  

 
      

(  
 

  
   

 
   )

  

 

The point of intersection of this boundary with the z axis is at 

 

    √
      

     
 

It evidently depends upon exact values of the parameters and could occur at 

a value of z larger than that shown in figure 3.1. Figure 3.1 is intended to be 

typical of a biologically reasonable situation. 

C. if         where        

  
) a damped oscillation about  

   occurs. This is illustrated by II in both figures  

D. If  z =    then, it occurs about the steady state, a steady state oscillation 

with angular frequency in terms of time variable p that can be written 

 

  √
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The period in terms of real time t is  

 

  
   

 
 

 

In certain cases of practical interest, the coefficients in the original 

equations are of such value that 

                                                        

 
  

    
  1 

 

And as a result, typically B  , If this is so, C   and approximately 

 

  √
  

     
 

 

E. If  z    , a growing oscillation about steady state 3 exists featured in 

table 3.1. A limit cycle representing a steady state oscillation appears to 

arise. This is illustrated by III in both figures. 

F. If z becomes infinite, corresponding to c = 0 in equation 3.4, the system 

is unstable and the solutions ultimately becomes infinite. 
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G. If   = 0, a growing oscillation is possible and only stable solutions may 

exist. These solutions are of the Lotka-Volterre type. 

H. If z is held constant and   increased, then the outcome depends upon the 

value of z chosen. If         at    , an increase in   may change the 

solution from a damped oscillation to a monotonic approach to equilibrium. 

If 2      at     an increase in   may change the damped oscillation to 

a growing oscillation and finally to limit cycle. 

The work clearly indicates that there is not just one solution for the 

mathematical prey-predator population model. But a whole array of 

solutions. The proper solution in a given case depends upon the type of 

prey-predator interaction.The density-dependant limitation on the growth of 

the prey and the reaction time lag of the predator. The type of oscillation 

proposed by Lotka-Volterra for      is also for       but only for a very 

narrow range of values for the parameters as represented in figure 3.1 by 

the line z =     

This type of solution does not seem likely to occur in nature, since it is to 

be expected that in any natural population the value C    holds true. The 

growing oscillation assumed by Nicholson-Bailey, for some prey parasite 

populations should eventually give rise to a limit cycle. The three main 

types of solution to be expected are described in b,c and e as illustrated in 

figure 3.1. 
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Figure 3.2 : Types of solution for equations 3.3 and 3.4 

II.

III. Limit Cycle
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Figure 3.2; types of solutions for equations 3.4 and 3.5. Showing the 

relation between x and y as t increases in the direction of the arrows. The 

steady state at (       and delay time   are fixed, while z and thus 

   varied. Three fundamentally different kinds of solutions are shown 

corresponding to points I, II and III of figure 3.1. 

If the effect of introducing time lags into the equation for the growth of the 

prey and non linear functions for the prey-predator interaction is 

considered, it can be seen that these equations swiftly become too difficult 

for analytical methods. Even the simplified equations presented here are of 

sufficient complexity to make numerical calculations impossible. However, 

if there are reasonably good estimate of the several parameters available it 

is possible to set up equations of this type on a computer and thus drive  

some idea of the type of solution. 

This technique of handling populations can be expanded to three or more 

interacting populations and is limited mainly by the size of the computer 

programme and by the accuracy of the biologist in selecting and evaluating 

the important parameters in a population.  
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CHAPTER 4 

CONCLUSION  

4.1: Conclusion 

Lotka-Volterra Predator-Prey Model is a rudimentary model of the global  

complex ecology. It assumes just one prey for the predator, and vice versa. 

It also assumes no outside influences like disease, changing 

conditions,pollution and so on. However, the model can be expanded to 

include other variables, and we have Lotka-Volterra Competition Model, 

which models two competing species and the resources that they need to 

survive. 

We can modify the equations by adding more variables and get a better 

picture of the ecology. But with more variables, the model becomes more 

complex and would require more brains or computer resources. 

This model is an excellent tool to teach the principles involved in ecology, 

and to show some rather counter-initiative results. It also shows a special 

relationship between biology and mathematics. 

Analysis of the equations resulting from the introduction of a time lag in the 

response of the predator to changes in the prey population shows an arrey 

of possible solutions . The form of the solution is dependant upon the size 

sof the time lag and the ratio of the equilibrium value for the prey 

population in the absence of predation to the equilibrium value with 

predation.While the equations analysed in this thesis were assumed to have 

terms,It is possible to introduce non linear interactions. Once reasonable 

values are known for the many parameters, population equations of this 
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degree of complexity are most easily handled by approximation on a 

computer. 
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