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CHAPTER 1  

INTRODUCTION 

 

 

In this chapter, background of the study, definition of some basic terms, application of 

mathematical model, limitations of the study and overview of the thesis are explained. 

 

1.1 Background of the Study  

Mathematical models can be used to validate hypotheses made from experimental data, the 

designing and testing of these models has led to a testable experimental predictions. There 

are impressive cases in which mathematical models have provided an insight into biological 

systems, physical systems, decision making problems, space models, industrial problems, 

economical problems and so forth. The development of mathematical modeling is closely 

related to significant achievements in the field of computational mathematics. Real-world 

systems are complex and a number of inter related components are involved. In fact, 

infectious diseases causes mortality and suffering in many underdeveloped and developing 

countries, references go to some pioneers in the study of mathematical modeling of 

infectious diseases, in persons of Ronal Ross and Walliam Hammer, who in the beginin of 

twentieth century used the law of mass action to give an insight about the epidemic 

behaviour. The reed frost epidemic model was developed by Lowell Reed and Wade 

Hampton in the year 1927 to identify the relationship between the compartment of 

susceptible, infected and recovered individuals in a population. Throughout the history, 

communicable diseases play major effects on the development of mankind, since epidemic 

diseases some times causes deaths before it disappear and some times new diseases may 

appear and become endemic, some communicable disease such as cholora, tuberclosis and 

measles are threat in a modern life, diseases like chicken pox, usually has less symptoms and 

disappear on their own by their own accord (Diekmann et al., 2000).  

Some diseases causes higher number of mortality within a short period of time, the occurance 

and problem cause by such diseases have become a great danger to many underdeveloped 

and developing countries where there are lack of technological and economical 

advancement. Anually people died in millions as a result of measles, respratory track 

infection, diarrhea and many more which can be easily control but left carelessly, some 
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diseases seem to stay permanently in some african countries, like maleria, cholora and 

sleeping sickness, the rate of problems which these diseases are causing interms of death and 

economic destruction has to be considered. Improvement of sanitation, effectiveness of 

antibiotics, as well as vaccination programs gave confidence that infectious diseases might 

be eliminate (Hallam & Gross, 2009).  

The continuous emerging and spread of infectious diseases necessitate the issue of 

mathematical models which are considered as important tools of controlling the spread of 

diseases such as SIS, SIR, SEIR and so on. Models of infectious diseases can be identified 

as the description of the way infectious diseases spread into a population, according to the 

parameters and the initial conditions describing the environmental properties and the 

behavior of the disease (Vargas-de-le, 2011).  

 

1.2 Definitions of Basic Terms 

1.2.1 Mathematical Modelling 

Can be defined as the process of applying mathematics to solve a real world problem with 

the view of making assumptions, predictions as well as interpretation of the solution from 

the mathematical models. 

 

 

Figure: 1.1: Shows some stages of mathematical modelling 
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1.2.2 Some Approches of Mathematical Modelling 

 Emperical Modelling: it involves using the data related to a problem in order to 

formulate or construct a mathematical relationship between the variables. 

 Simulation Modelling: it consist the use of computer programs or technological tool 

in order to get a scenario base on a set of rules, the rules arise from an interpretation 

of how a process is supposed to progress or evolve. 

 Deterministic Modelling: it involve the use of equation or set of equations to predict 

the value of aquantity or the out come of an event. 

 Stochastic Modelling: is the extension of deterministic modelling in which the 

probabilities and randomness of an events happening are taking into consideration in 

formulating the equations of the model (Murray, 2002). 

1.2.3 Infectious Diseases 

Communicable or infectious diseases are caused as a result of virus, bacterium or parasite, 

or as a result of invation by a host organism generally micoorganisms which are invisible to 

the naked eye. It can easily comunicate from one person to another. 

 

 

Figure: 1.2  Shows different stages of infection 
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1.3 Models 

 

i) Exponential  Growth  

In a simplified conditions, such as a constant environment in which the population are fixed, 

the population size with respect to time depend on the difference between individual birth 

rate (𝐵0) and death rate (𝐷0), and given by: 

                                                    

𝑑𝑁

𝑑𝑡
= (𝐵0 − 𝐷0)𝑁                                                                      (1.1) 

 

where:  

             𝐵0 = represents the birth rates of individuals at a time t . 

              𝐷0 = represent the death rate of an individuals in a given time period, and                               

           𝑁 =  the present population size.                                                                     

The difference interm of birth and death rates (𝐵0 − 𝐷0) is called  𝑘,  the rate of natural 

increase. It is the maximum number of individuals added to the population per unit time. 

Solving the differential equation (1.1) results to a formula that estimate a population size  

                                               

                                                𝑁 = 𝑁0𝑒
𝑘𝑡                                                                       (1.2) 

This equation gives the analysis that if birth and death rates are fixed, the population size 

grow exponentially. when transforming the equation into a natural logarithms, the 

exponential curve becomes linear, in which the slope of that line can be shown to be 𝑘  

                                  

                             

                          𝐼𝑛(𝑁) = 𝐼𝑛(𝑁0) + 𝐼𝑛(𝑒)𝑘𝑡                                                               (1.3) 

 

                        and  

                                                                             

                           𝑘 = [𝐼𝑛(𝑁) − 𝐼𝑛(𝑁0) ] 𝑡⁄                                                                (1.4) 

 

where 𝐼𝑛(𝑒) = 1. The population growth rate 𝑘, is a basic measure in population analysis, 

and it can also be used as a basis which compare between different populations and species. 

ii) Logistic Growth 
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Equation (1.1) can be modified so that birth and death rates are not constant in a time t, but 

decreases or increases respectively as the population size increases : 

                           

                                 
𝑑𝑁

𝑑𝑡
= 𝑁[(𝐵0 − 𝑟𝑏𝑁) − (𝐵0 + 𝑟𝑑𝑁)]                                                 (1.5) 

 

where  𝑟𝑏  and 𝑟𝑑  are the density-dependent birth and death rate constants. equation (1.5) 

predicts that a population stop growing when birth rate equals death rate, 

 

                                𝐵0 − 𝑟𝑏𝑁 = 𝐷0 + 𝑟𝑑𝑁                                                                   (1.6) 

 

And (1.6) is simplified to an equation showing the size at which the population is at steady 

state 

 

                                   𝑁 =
(𝐵0−𝐷0)

(𝑟𝑏+𝑟𝑑)
   ,                                                                               (1.7)  

   

  When the population is at steady state 𝑁 is the carrying capacity of the environment, or 𝐶. 

This can be simplified: 

                                

                                𝐶 =
𝑘

(𝑟𝑏+𝑟𝑑)
                                                                                     (1.8) 

 

Since 𝐵0 − 𝐷0 = 𝑘. If  this new form of carrying capacity is combine with (1.5) it results to 

a familiar form of the logistic growth equation: 

 

                              
𝑑𝑁

𝑑𝑡
= 𝑘𝑁 [

(𝐶−𝑁)

𝐶
].                                                                               (1.9)   

       

 iii) Taylor Series: 

A Taylor series is a series expansion of a function about a point. A one dimensional Taylor 

series expansion of a real function 𝑓(𝑥)  about a point 𝑥 = 𝑏  is given by 

𝑓(𝑥) = 𝑓(𝑏) + (𝑥 − 𝑏)𝑓′(𝑥) + (𝑥 − 𝑏)2
𝑓′′(𝑎)

2!
+ (𝑥 − 𝑏)3

𝑓(3)(𝑏)

3!
+ ⋯ 
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                             +(𝑥 − 𝑏)𝑘 𝑓(𝑘)(𝑏)

𝑘!
+ ⋯                                                                         (1.10) 

 

 

  iv) Exponential Decay:  

A quantity is subject to exponential decay if it only decreases at a rate that is proportional to 

its value. This process can be described by the following equation, where N is the quantity 

and y is a positive number called the decay constant:   

                                          
𝑑𝑁

𝑑𝑡
= −𝑦𝑁.                                                                               (1.11)                                                                                

The solution to this equation is: 

                                     𝑁(𝑡) = 𝑁0𝑒
−𝑦𝑡                                                                        (1.12)                                       

Here 𝑁(𝑡)  is the quantity at time t, and 𝑁0 = 𝑁(0) is the initial quantity (Wiens, 2010). 

v) Delay Model: 

In general let consider a population change 

                                              
𝑑𝑁

 𝑑𝑡
= 𝑓(𝑁)                                                                       (1.13)                                                                                                                  

 

where 𝑓(𝑁) is a nonlinear function of 𝑁.  

The main problems with single population models like (1.13) is that, the birth rate is 

considered to act at instant whereas there may be a time delay to take control of the time to 

reach maturity. We can also incorporate such delays by considering delay differential 

equation models of this form 

 

                                             
 𝑑𝑁

𝑑𝑡
= 𝑓(𝑁(𝑡), 𝑁(𝑡 − 𝑇)),                                                     (1.14)                                                                                      
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with  𝑇 > 0 , the delay, is a parameter (Harko et al., 2014). 

vi) SIR Model: 

Kermack and Mckendrick in 1927 formulated a deterministic model for epidemic outbreak 

known as (SIR) Susceptible-Infected-Recovered model, or Kermack-Mckendrick epidemic 

model and is also called as a proposed special case of epidemic model.  

 

Figure: 1.3 Flowchart of (SIR) Susceptible-Infected-Recovered model 

 

The model consist systems of nonlinear ordinary differential equation with mathematical 

representation as  

              
𝑑𝑆

𝑑𝑡
= −𝑘𝑆(𝑡)𝐼(𝑡)         

 

𝑑𝐼

𝑑𝑡
= 𝑘𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡)                   (1.15) 

 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡)  

 

respectively, with the constants 𝛾 as the mean recovery rate and 𝑘 as infection rate or can be 

regarded as rates of transition (probabilities) with the range 0 ≤ 𝑘 ≤ 1 and 0 ≤ 𝛾 ≤ 1, in 

which a fixed population that consist of only three classes of compartments is considered. 

(a) The function 𝑆(𝑡) represents the compartment of the susceptible individuals at 

time t when the disease is latent. 

 

I RS
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(b) The function 𝐼(𝑡) represents an infective compartment of individuals who have 

already been infected with the disease at a time t. 

(c) The function 𝑅(𝑡) represents the compartment of individuals that are dead or 

recovered from the disease at a time t. 

While the initial conditions 

𝑆0 = 𝑆(0) ≥ 0, 𝐼0 = 𝐼(0) ≥ 0, 𝑅0 = 𝑅(0) ≥ 0, 

Satisfies the intuition 

𝑆0 + 𝐼0 + 𝑅0 = 𝑁 (Murray, 2002). 

vi)The Threshold Quantity:  

The threshold quantity or basic reproduction number denoted as 

 

𝑅𝑜 =
𝑘𝑆𝑜

𝛾
 

 

determines whether the epidemic is present or not. If  𝑅𝑜 < 1 there is no infection, but if 

𝑅𝑜 > 1 the epidemic is present. Also 𝑅𝑜 as in the case of Kermack-Mckendrick epidemic 

model, can be regarded as secondary infection number caused as a result of single infective 

into a susceptible population of size N (Brauer & Castillo-Chavez, 2012). 

 

vii)Equilibrium Point:  

Equilibrium occurs in the model of infectious diseases when neither of the disease levels is 

changing, i.e. when all of the derivatives are equal to 0. 

      

𝑑𝑆

𝑑𝑡
= 0,          

𝑑𝐼

𝑑𝑡
= 0      and             

𝑑𝑅

𝑑𝑡
= 0. 

 

The stability of the equilibrium point can be determined by linearizing the system of non-

linear differential equations, while the other point requires a more sophisticated method. 

The Jacobian matrix of the SIR model is 
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𝐽(𝑆, 𝐼) = [

𝜕𝑓

𝜕𝑆

𝜕𝑓

𝜕𝐼
𝜕𝑔

𝜕𝑆

𝜕𝑔

𝜕𝐼

] 

  

A state of a system which does not change is the equilibrium point of the system. If the 

equations of a system is refresented by a differential equation, then the equilibria of the 

system can be estimated by setting all derivatives to zero. 

An equilibrium point of a system is considered as locally asymptotically stable, if the system 

always returns to the equilibrium point after small disturbances. If the system moves far 

away from the equilibrium point after small disturbances, then the equilibrium is unstable 

(Van Den Driessche & Watmough, 2002).  

 

1.4 Application of Mathematical Model 

Mathematical models are used to validate hypotheses made from experimental data and 

testing of these models has led to testable experimental predictions. There are impressive 

cases in which mathematical models provid an insight into biological systems, physical 

systems, decision making problems, space models, industrial problems, economical 

problems and so forth. The development of mathematical modeling is closely related to 

significant achievements in the area of computational mathematics.   

 

1.5 Scope and Limmitation of the Study 

The scope of this study is to discuss the role of the threshold quantity on local stability of 

SIR model with equal birth and death rates. The reed frost epidemic model was developed 

by Lowell Reed and Wade Hampton to identify the relationship between the compartment 

of susceptible, infected and recovered individuals in a population. Throughout the history, 

communicable diseases play major effects on the development of mankind, since epidemic 

diseases some times causes deaths before it disappear and new diseases may appear and 

become endemic. some communicable disease such as cholora, tuberclosis and measles are 

threat in a modern life, diseases like chicken pox, usually have less symptoms and disappear 
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on their own by their own accord. Looking at a limitations of mathematical model, an 

important inherent limitation of a model is created by what is left out. Problems arise when 

key aspects of the real-world system are inadequately treated in a model or are ignored to 

avoid complications, which may lead to incomplete models. Other limitations of a 

mathematical model are that they may assume the future will be like the past, input data may 

be uncertain or the usefulness of a model may be limited by its original purpose. 

 

1.6 Overview 

chapter one, presents the background of the study, definition of some basic terms, application 

of mathematical model as well as scope and limitations of the study. 

Chapter two presents the literature related to the topic. In which some models such as the 

simple SIR model, the threshold quantity of simple SIR model, the SIRS model, the 

threshold quantıty of SIRS, the relatıon between 𝛾 the recovery rate and 𝛽 the average length 

of ınfectıon, the equılıbrıum analysıs of SIRS model and the SIR model wıth ınduced 

vaccınatıon are also discussed. 

Chapter three, introduces the SIR model with birth and death rates equal, the steady states 

of the model and the role of threshold quantity on the local stability of the model. 
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CHAPTER 2 

RELATED RESEARCH 

 

Chapter two presents the literature related to the topic, the simple SIR model, the threshold 

quantity of simple SIR model, the SIRS model, the threshold quantity of SIRS, the relation 

between 𝛾 the recovery rate and 𝛽 the average length of infection, the equilibrium analysıs 

of SIRS model and the SIR model with induced vaccination are also discussed. 

 

2.1 Review of Some Related Literature 

Communicable diseases has been questioned and studied in years. In fact, infectious diseases 

causes mortality and suffering in many underdeveloped and developing countries. 

Improvement of sanitation, effectiveness of antibiotics, as well as vaccination programs gave 

confidence that infectious diseases might be eliminated (Diekmann et al., 2000).  

The continuous emerging and spread of infectious diseases brings about the issue of 

mathematical models which are considered as important tools of controlling the spread of 

diseases such as SIS, SIR, SEIR and so on. Models of infectious diseases can be identified 

as the description of the way infectious diseases spread into a population, according to the 

parameters and the initial conditions describing the environmental properties and the 

behavior of the disease.    

 

2.2 The Simple SIR Model 

Kermack and Mckendrick (1927) formulated a deterministic model for epidemic outbreak 

known as (SIR) Susceptible-Infected-Recovered model, or Kermack-Mckendrick epidemic 

model and is also called as a proposed special case of epidemic model, figure below 

represents a simple S-I-R model. 

 

Figure: 2.1 Represents a simple S-I-R model 

S I R
 k
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The model consist systems of nonlinear ordinary differential equation with mathematical 

representation as  

𝑑𝑆

𝑑𝑡
= −𝑘𝑆(𝑡)𝐼(𝑡)                                                              (2.1) 

 

𝑑𝐼

𝑑𝑡
= 𝑘𝑆(𝑡)𝐼(𝑡) − 𝛾𝐼(𝑡)                                                    (2.2) 

 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼(𝑡)                                                                        (2.3) 

 

respectively, with the constants 𝛾 as the mean recovery rate and 𝑘 as infection rate or can be 

regarded as rates of transition (probabilities) with the range 0 ≤ 𝑘 ≤ 1 and 0 ≤ 𝛾 ≤ 1, in 

which a fixed population that consist of only three classes of compartments is considered. 

(a) The function 𝑆(𝑡) represents the compartment of the susceptible individuals at 

time t when the disease is latent. 

(b) The function 𝐼(𝑡) represents an infective compartment of individuals who have 

already been infected with the disease at a time t. 

(c) The function 𝑅(𝑡) represents the compartment of individuals that are dead or 

recovered from the disease at a time t. 

While the initial conditions  

𝑆0 = 𝑆(0) ≥ 0, 𝐼0 = 𝐼(0) ≥ 0, 𝑅0 = 𝑅(0) ≥ 0, 

satisfies an intuition  

𝑆0 + 𝐼0 + 𝑅0 = 𝑁. 

 

Adding (2.1)-(2.3) of the above equations gave an important conclusion in the formulation 

of epidemic model, that is 

 

𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 0 

 

 Implies,                 

 

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 𝑁 
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where N represents total of population size and  𝑆, 𝐼, 𝑅 are all bounded by N(Murray, 2002). 

 

2.3 The Threshold Quantity of Simple SIR Model 

The threshold quantity or basic reproduction number denoted as 

 

𝑅𝑜 =
𝑘𝑆𝑜

𝛾
 

 

determines whether the epidemic is present or not. If  𝑅𝑜 < 1 there is no infection, but if 

𝑅𝑜 > 1 the epidemic is present. Also 𝑅𝑜 as in the case of Kermack-Mckendrick epidemic 

model, can be regarded as secondary infection number caused as a result of single infective 

into a susceptible population of size N (Brauer & Castillo-Chavez, 2012). 

The epidemiologist conclude that, many infectious diseases are more complicated compared 

with the suggestion of simple SIR model. Rigorous observations and statistical methods 

almost tackled the complexity in behavior, biological and environmental properties of the 

disease. Also compartment is added to a model as the better way to overcome or mimic the 

disease (Ozcaglar et al., 2012).  

 

2.4 The SIRS Model 

Kermack and Mckendrick’s epidemic model is an SIR (Susceptible Infected Recovered) 

model, without some vital dynamics (births and deaths). But the figure below represents the 

modified case in which a recovered individuals return back to the susceptible class, 

 

Figure: 2.2 Flowchart of SIRS model 

 

 

I RSbirths

deaths
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The systems of nonlinear ordinary differential equation representing this situation is given 

by, 

𝑑𝑆

𝑑𝑡
= −𝑘𝑆𝐼 + 𝛼(𝑁 − 𝑆)                                               (2.4) 

 

𝑑𝐼

𝑑𝑡
= 𝑘𝑆𝐼 − (𝛾 + 𝛼)𝐼                                                    (2.5) 

 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝛼𝑅                                                               (2.6) 

with the initial conditions 

 

𝑁1 = 𝑆(0) ≥ 0, 𝑁2 = 𝐼(0) ≥ 0, 𝑁3 = 𝑅(0) ≥ 0, 

 

satisfying the equation  

 

𝑁1 + 𝑁2 + 𝑁3 = 𝑁 (Harko, Lobo, & Mak, 2014). 

 

2.5 The Threshold Quantıty of SIRS 

The threshold quantity or basic reproduction number denoted as 

 

𝑅𝑜 =
𝑘

𝛾+𝛼
                                                        (2.7) 

 

determines whether the endemic is present or not. If  𝑅𝑜 =
𝑘

𝛾+𝛼
 < 1 the disease is stable 

meaning there is no infection, but if 𝑅𝑜 =
𝑘

𝛾+𝛼
 > 1 the disease is unstable meaning the 

endemic is present. 

Note that the model with the parameter α, which represent the births and deaths is called a 

model of an endemic disease, while a model without a parameter α, is called a model of an 

epidemic disease (Adda & Bichara, 2011). 
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2.6 Relation Between 𝜸 The Recovery Rate and 𝜷 The Average Length if Infection 

Suppose that 𝑆𝑜 = 𝑆(0) is the number of individuals examined to have contacted the disease 

at time t. 

Let 𝑆(𝑡) be the number of individuals who remain sick after a time t. consider γ as per capital 

rate of recovery, then the rate at which 𝑆(𝑡) changes is 

 

𝑑𝑆

𝑑𝑡
= −𝛾𝑆(𝑡)                                                           (2.8) 

 

Using the computation, ∑ 𝑡𝑓(𝑡)    𝑡 with 𝑓(𝑡) representing the proportion of scores in t values, 

to determine the average infection length of the disease. 

  Let [0, ∞) be divided into sub-intervals by  

 

0 = 𝑡𝑜 < 𝑡1 < 𝑡2 < 𝑡3 < ⋯ 

 

Where, 

𝑡𝑛+1 − 𝑡𝑛 = Δ𝑡   For all n ≥ 0. 

 

Number of those recovered between 𝑡𝑛 and 𝑡𝑛+1 is 

 

𝑆(𝑡𝑛)−𝑆(𝑡𝑛+1) 

with the approximate infection length 𝑡𝑛. 

The proportion of cured susceptible individuals is 

 

𝑆(𝑡𝑛)−𝑆(𝑡𝑛+1)

𝑆𝑜
, 

 

which implies the infection mean value k is approximately, 

 

𝛽 ≈ ∑   𝑡𝑛  (
𝑆(𝑡𝑛)−𝑆(𝑡𝑛+1)

𝑆𝑜
)

∞

𝑛=0
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=  
1

𝑆𝑜
∑   𝑡𝑛  (

𝑆(𝑡𝑛)−𝑆(𝑡𝑛+1)

Δ𝑡
) Δ𝑡∞

𝑛=0                                            (2.9) 

 

Note that as Δ𝑡 ⟶ 0,  

 

the proportion     
𝑆(𝑡𝑛)−𝑆(𝑡𝑛+1)

𝑆𝑜
  approaches  −

𝑑𝑆

𝑑𝑡
 

 

and equation (2.8) approaches 

 

1

𝑆𝑜
∫ 𝑡

∞

0
(−

𝑑𝑆(𝑡)

𝑑𝑡
)𝑑𝑡 = −

1

𝑆𝑜
∫ 𝑡

∞

0
𝑑𝑆(𝑡)                                   (2.10) 

 

Which implies, 

 

𝛽 = −
1

𝑆𝑜
∫ 𝑡

∞

0
𝑑𝑆(𝑡)                                                             (2.11) 

 

Using equation (2.8) and applying integration by part in equation (2.11), results to  

 

𝛽 =
1

𝛾
                                                                           (2.12) 

Equation (2.12) gave the required result, meaning that the recovery rate γ is related to the 

average length of infection β (Rhodes & Anderson, 2008). 

The idea of equilibrium and stability points of the epidemic outbreak, make it possible for 

the epidemiologists to carry out some analysis on the epidemic outbreak.   

 

2.7 The Equilibrium Analysis of SIRS 

At equilibrium equation (2.4) to (2.6) are all equal to zero, which implies 

 

−𝑘𝑆𝐼 + 𝛼(𝑁 − 𝑆) = 0                                                  (2.13) 

 

𝑘𝑆𝐼 − (𝛾 + 𝛼)𝐼 = 0                                                     (2.14) 
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        𝛾𝐼 − 𝛼𝑅 = 0                                                                  (2.15) 

 

The incident rate 𝐻 = 𝑘𝑆𝐼  is the transition rate of individuals from the susceptible class to 

the class of infected individuals. The threshold number 𝑅𝑜 =
𝑘

𝛾+𝛼
, determines the rate at 

which individual is infected with the disease. 

From equation (2.5) 

 

𝑑𝐼

𝑑𝑡
= 𝑘𝑆𝐼 − (𝛾 + 𝛼)𝐼 

 

=
𝑘

𝛾 + 𝛼
(𝛾 + 𝛼)𝑆𝐼 − (𝛾 + 𝛼)𝐼 

 

= 𝑅𝑜(𝛾 + 𝛼)𝑆𝐼 − (𝛾 + 𝛼)𝐼 

 

= [𝑅𝑜𝑆 − 1](𝛾 + 𝛼)𝐼 

 

Here 𝑅𝑜 > 0, which implies 
𝑑𝐼

𝑑𝑡
> 0, meaning that there will be an epidemic outbreak with 

the significant number of individuals infected with the disease, and the free equilibrium state 

of the disease is unstable. Also for 𝑅𝑜 < 0, implies,  
𝑑𝐼

𝑑𝑡
< 0, meaning that there will be no 

proper outbreak of epidemic in the population. 

From equation (2.14)  

 

(𝑘𝑆 − (𝛾 + 𝛼))𝐼 = 0, 

 

This implies, either 

𝐼 = 0 or 𝑘𝑆 − (𝛾 + 𝛼) = 0 

 

Solving for 𝐼 = 0 in equation (2.7) and (2.9), results to 
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𝑅 = 0 and 𝑆 = 𝑁, 

 

meaning that the free equilibrium of the disease is 

 

𝐸𝑜 = [𝑁, 0,0]                                                                 (2.16) 

 

Also solving  

 

𝑘𝑆 − (𝛾 + 𝛼) = 0, 

 

implies  

𝑆 =
𝛾+𝛼

𝑘
 (2.7.5) 

 

Substituting equation (2.7.5) in (2.7.1), implies, 

 

−𝑘
𝛾 + 𝛼

𝑘
𝐼 + 𝛼 (𝑁 −

𝛾 + 𝛼

𝑘
) = 0 

 

(𝛾 + 𝛼)𝐼 =
(𝛾 + 𝛼)

𝑘
− 𝛼𝑁 

 

And 

 

𝐼 =
𝛼(𝛾+𝛼−𝑘𝑁)

𝑘(𝛾+𝛼)
                                                  (2.17) 

 

Substituting equation (2.17) in (2.15), implies, 

 

𝛾 [
𝛼(𝛾 + 𝛼 − 𝑘𝑁)

𝑘(𝛾 + 𝛼)
] − 𝛼𝑅 = 0 

 

𝑅 =
𝛾(𝛾+𝛼−𝑘𝑁)

𝑘(𝛾+𝛼)
                                                               (2.18) 

 

Thus the secnd equilibrium point of the epidemic is 
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𝐸1 = [
𝛾+𝛼

𝑘
 ,

𝛼(𝛾+𝛼−𝑘𝑁)

𝑘(𝛾+𝛼)
 ,

𝛾(𝛾+𝛼−𝑘𝑁)

𝑘(𝛾+𝛼)
]                                         (2.19) 

 

Equation (2.19) gave the required result, by showing the equilibrium point of  the SIR model 

with the equal birth and death rates (Momoh, 2012). 

The role at which the vaccination program plays on the disease free equilibrium point and 

epidemic equilibrium point, is of considerable important, which can be easily seen in the 

process of controlling many epidemic outbreak, such as measles, polio and so on. 

 

2.8 The SIR Model with Induced Vaccination 

Now, another SIR model with induced vaccination is considered and presented as follows, 

 

𝑑𝑆

𝑑𝑡
= −𝑘𝑆𝐼 + 𝛼(𝑁 − ℎ − 𝑆)                                (2.20) 

 

𝑑𝐼

𝑑𝑡
= 𝑘𝑆𝐼 − (𝛾 + 𝛼)𝐼                                          (2.21) 

 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 − 𝛼𝑅                                                      (2.22) 

 

𝑑𝑉

𝑑𝑡
= 𝛼ℎ − 𝛼𝑉                                                    (2.23) 

 

where S,I,R represent the compartments of susceptible, infected, recovered population and 

V represent the group of individuals that have been vaccinated, h is the vaccination rate, k  

represents the infection rate, 𝛼 is the mortality rate and 𝛾 represents the recovery rate (Vargas 

et al., 2011). 
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CHAPTER 3  

MODEL AND IT IS ANALYSIS 

 

This chapter introduces the SIR model with birth and death rates equal, the steady states of 

the model and the role of threshold quantity on the local stability of the model. 

 

3.1 Model 

Kermack and Mckendrick’s epidemic model is an SIR (Susceptible Infected Recovered) 

model, based on simple assumptions, without some vital dynamics (births and deaths). But 

in some infectious diseases new susceptible individuals arrive into the population, for this 

case deaths has to be included in the model. In modelling this case, the population is divided 

into three compartments that is S-I-R and a death rate α is considered equal to the birth rate, 

the figure below represents a modified susceptible-infected-recovered epidemic model in 

which the birth and death rates are considered to be equal. 

 

Figure: 3.1 Represents a flowchart of a modified susceptible-infected-recovered epidemic 

model in which the birth and death are considered to be equal. 

 

In this compartmental model, t is an independent variable, and the rate at which individual 

is moving from one class to the other are mathematically expressed as derivatives, the system 

of nonlinear ordinary differential equation representing this situation is given by 

 

 

𝑑𝑆(𝑡)

𝑑𝑡
= 𝛼 − 𝑘𝑆𝐼 − 𝛼𝑆                                                    (3.1) 

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑘𝑆𝐼 − (𝛾 + 𝛼)𝐼                                                (3.2) 

S I R
 k

birth

death death death
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𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼 − 𝛼𝑅                                                          (3.3) 

 

with the constants 𝛾 as the mean recovery rate and 𝑘 as infection rate or can be regarded as 

the rates of transition (probabilities) with the range (0 ≤ 𝑘 ≤ 1) and (0 ≤ 𝛾 ≤ 1), in which 

a fixed population that consist of only three compartments is considered. 

(a) The function 𝑆(𝑡) is the fraction that represents the compartment of the susceptible 

individuals at time t, when the disease is at latent state. 

(b) The function 𝐼(𝑡) is the fraction that represents an infective compartment of individuals 

who have already been infected with the disease at a time t. 

(c) The function 𝑅(𝑡) is the fraction that represents the compartment of individuals that are 

dead or recovered from the disease at a time t. 

The population density is fixed, so that 

 

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1 

 

And 

 

 
𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+

𝑑𝑅

𝑑𝑡
= 0           

 

In line with previous researches like (Hallam & Gross, 2009) and (Brauer & Castillo-

Chavez, 2012), this model is developed base on the following assumptions: 

(i) The population is considered to be fixed. 

(ii) The only way an individual can leave the susceptible class is to be infected and 

the only way an individual can leave the infected compartment is to recover 

from the disease. Once an individual recovered, the person possessed immunity. 

(iii) Sex, social status and the race has no effect on the probability of being infected. 

(iv) There is no inherited immunity from the disease. 

(v) The degree of interactions between the members of the population is the same. 

(vi)  The birth and death rates are included. 

(vii) The birth and death rates are equal so that the population is stationary.    
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3.2 The Equilibrium Analysis  

At equilibrium equation (3.1) to (3.3) are all equal to zero, which implies 

 

   −𝑘𝑆𝐼 + 𝛼(1 − 𝑆) = 0                                                         (3.4) 

 

      𝑘𝑆𝐼 − (𝛾 + 𝛼)𝐼 = 0                                                          (3.5) 

 

         𝛾𝐼 − 𝛼𝑅 = 0                                                                     (3.6) 

 

solving for 𝐼 = 0, 𝑅 = 0 and 𝑆 = 1 in equation (3.4) to (3.6), results to the first steady state 

that is a zero steady state, which is also called as the free- disease equilibrium point  

 

            𝐸𝑜 = [1,0,0]                                                                    (3.7) 

 

Most of the interests are at non zero steady state, for which 𝐼, 𝑅 are non-zero and 𝑆 are not 

equal to 1, now let go about non zero steady state by considering a situation where there 

are infected individuals in a given population. 

From equation (3.6) 

 

𝛾𝐼 − 𝛼𝑅 = 0 

 

The equation for the recovered individuals is 

 

𝑅 =
𝛾𝐼

𝛼
                                                            (3.8) 

 

Also from equation (3.5) 

 

(𝑘𝑆 − (𝛾 + 𝛼))𝐼 = 0 
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Implies,   

 

𝑘𝑆 − (𝛾 + 𝛼) = 0 

 

since it is already known that, the class of infected individuals is not zero, which implies 

 

𝑆 =
𝛾+𝛼

𝑘
                                                           (3.9) 

 

from the fact that the sum of susceptible, infected and recovered individuals in a given 

population is equal to the total population, leads to 

 

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1                                            (3.10) 

 

Equation (3.10) gives 

 

                  
𝛾 + 𝛼

𝑘
+ 𝐼 +

𝛾𝐼

𝛼
= 1 

 

And 

 

𝐼 =
1−

𝛾+𝛼

𝑘

1−
𝛾

𝛼

                                                     (3.11) 

 

Thus the non-zero steady state which is the second steady state is 

 

  𝐸1 = [
𝛾+𝛼

𝑘
,
1−

𝛾+𝛼

𝑘

1−
𝛾

𝛼

 ,
𝛾𝐼

𝛼
 ]                                               (3.12) 

 

which is the endemic equilibrium point, for 𝐸1 to be the real steady state, the values of 𝑆, 𝐼 

and 𝑅 in equation (3.12) has to be greater than zero, at this second steady state, let consider 

 

                    
1 −

𝛾 + 𝛼
𝑘

1 −
𝛾
𝛼

 > 0     
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Which means that 

 

                   1 −
𝛾 + 𝛼

𝑘
> 0 

 

                   1 >
𝛾 + 𝛼

𝑘
 

 

𝑘

𝛾+𝛼
> 1                                                   (3.13) 

 

Remark: the endemic equilibrium point of the disease exists only when 𝑘 > 𝛾 + 𝛼. i.e. the 

rate of infection must be bigger than the infected individuals for the disease to be endemic  

(Vargas et al., 2011).  

 

3.3 The Threshold Quantity 

The threshold quantity or basic reproduction number is regarded as the average number of 

secondary cases brought by infected individual in his entire life as infectious when 

introduced into a susceptible population and is denoted by 

 

  𝑅𝑜 =
𝑘

𝛾+𝛼
                                                          (3.14) 

 

determines whether the endemic is present or not (Ozcaglar et al., 2012).  

If  𝑅𝑜 =
𝑘

𝛾+𝛼
 < 1 the disease is stable meaning there is no infection, but if 𝑅𝑜 =

𝑘

𝛾+𝛼
 > 1 

the disease is unstable meaning the endemic is present. 

Also from equation (3.2) 

 

              
𝑑𝐼

𝑑𝑡
= 𝑘𝑆𝐼 − (𝛾 + 𝛼)𝐼 

 

=
𝑘

𝛾 + 𝛼
(𝛾 + 𝛼)𝑆𝐼 − (𝛾 + 𝛼)𝐼 
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= 𝑅𝑜(𝛾 + 𝛼)𝑆𝐼 − (𝛾 + 𝛼)𝐼 

 

 = [𝑅𝑜𝑆 − 1](𝛾 + 𝛼)𝐼                                                    (3.15) 

 

From equation (3.15) 𝑅𝑜 > 0, implies 
𝑑𝐼

𝑑𝑡
> 0, meaning that there will be an epidemic 

outbreak with the significant number of individuals infected with the disease, and the free 

equilibrium state of the disease is unstable. Also for 𝑅𝑜 < 0, implies,  
𝑑𝐼

𝑑𝑡
< 0, meaning that 

there will be no proper outbreak of epidemic in the population(Van Den Driessche & 

Watmough, 2002). 

 

3.4 Stability Analysis 

Now, let study the linear stability of the disease free-equilibrium and endemic disease 

equilibrium points.  For simplicity, consider the total population density 

 

𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡) = 1 

Implies 

 

𝑅(𝑡) = 1 − 𝑆(𝑡) − 𝐼(𝑡) 

 

Therefore it is enough to use 

 
𝑑𝑆

𝑑𝑡
= 𝛼 − 𝑘𝑆𝐼 − 𝛼𝑆 = 𝐹(𝑆, 𝐼)                                        (3.16) 

 

 
𝑑𝐼

𝑑𝑡
= 𝑘𝑆𝐼 − (𝛾 + 𝛼)𝐼 = 𝐺(𝑆, 𝐼)                                       (3.17) 

 

Then, the jacobian matrix of the equation (3.16) and (3.17) is 

 

𝐽(𝑆, 𝐼) = [

𝜕𝐹(𝑆, 𝐼)

𝜕𝑆

 𝜕𝐹(𝑆, 𝐼)

𝜕𝐼
 𝜕𝐺(𝑆, 𝐼)

𝜕𝑆

 𝜕𝐺(𝑆, 𝐼)

𝜕𝐼

] 
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Which implies 

 

𝐽(𝑆, 𝐼) = [
−𝑘𝐼 − 𝛼 −𝑘𝑆

𝑘𝐼 𝑘𝑆 − (𝛾 + 𝛼)
] 

 

The jacobian matrix at the first steady state (the disease free-equilibrium point) is evaluated 

as 

 

 

𝐽(1,0) = [
−𝛼 −𝑘
0 𝑘 − (𝛾 + 𝛼)

] 

 

and the characteristic equation corresponding to the first steady state is also evaluated as 

 

[
−𝛼 − 𝜆 −𝑘

0 𝑘 − 𝛼 − 𝛾 − 𝜆
]=0 

 

which implies, 

 

 (−𝛼 − 𝜆)(𝑘 − 𝛼 − 𝛾 − 𝜆)=0 

 

𝜆2 + (2𝛼 − 𝑘 + 𝛾)𝜆 + (𝛼2 − 𝛼𝑘 + 𝛼𝛾) = 0 

 

=
−(2𝛼 − 𝑘 + 𝛾) ± √(2𝛼 − 𝑘 + 𝛾)2 − 4(𝛼2 − 𝛼𝑘 + 𝛼𝛾)

2
 

 

=
−(2𝛼 − 𝑘 + 𝛾) ± √(𝑘 − 𝛾)2

2
 

 

=
−(2𝛼 − 𝑘 + 𝛾) ± (𝑘 − 𝛾)

2
 

 

which gives the eigenvalues 𝜆1 = −𝛼 and 𝜆2 = 𝑘 − 𝛼 − 𝛾. 
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𝜆1 < 0. Let consider 𝜆2, if 𝑘 − 𝛼 − 𝛾 < 0 then 𝑘 < 𝛼 + 𝛾 or 
𝑘

𝛾+𝛼
 < 1 or  𝑅𝑜 < 1 as both 

the eigenvalues are negative then, the disease free-equilibrium point is locally 

asymptotically stable, meaning that there will be no outbreak of epidemic in the population 

but if 𝑘 > 𝛼 + 𝛾 the infected class exists. 

The jacobian matrix at the second steady state (the disease endemic equilibrium point) is 

evaluated as 

 

 

𝐽 (
𝛾 + 𝛼

𝑘
,
1 −

𝛾 + 𝛼
𝑘

1 −
𝛾
𝛼

) =

[
 
 
 
 −(

𝛼(𝑘 − 𝛼 − 𝛾)

𝛼 − 𝛾
) − 𝛼 𝛼 − 𝛾

𝛼(𝑘 − 𝛼 − 𝛾)

𝛼 − 𝛾
0

]
 
 
 
 

 

 

And the characteristic equation corresponding to the second steady state is also evaluated as 

 

[
 
 
 
 −(

𝛼(𝑘 − 𝛼 − 𝛾)

𝛼 − 𝛾
) − 𝛼 − 𝜆 𝛼 − 𝛾

𝛼(𝑘 − 𝛼 − 𝛾)

𝛼 − 𝛾
−𝜆

]
 
 
 
 

= 0 

 

−𝜆(−(
𝛼(𝑘 − 𝛼 − 𝛾)

𝛼 − 𝛾
) − 𝛼 − 𝜆)) − 𝛼(𝑘 − 𝛼 − 𝛾) = 0 

 

𝜆2 +
𝛼𝑘

𝛼 + 𝛾
𝜆 + 𝛼(𝑘 − 𝛼 − 𝛾) = 0 

 

𝜆 =
1

2
[−

𝛼𝑘

𝛼 + 𝛾
± √(

𝛼𝑘

𝛼 + 𝛾
)
2

− 4𝛼(𝑘 − 𝛼 − 𝛾)] 

 

Or  

𝜆 =
1

2
[−𝛼 𝑅𝑜 ± √𝛼2 𝑅𝑜

2 − 4𝛼(𝑘 − 𝛼 − 𝛾)] 

 



28 

 

If 𝛼2 𝑅𝑜
2 < 4𝛼(𝑘 − 𝛼 − 𝛾) the eigenvalues are both complex with the real part −𝛼 𝑅𝑜 

which is negative and if 𝛼2 𝑅𝑜
2 > 4𝛼(𝑘 − 𝛼 − 𝛾) the real part is also negative, since the 

real part of each eigenvalue is negative, it is concluded that the endemic equilibrium point 

of the disease is stable  (Chauhan et al., 2014).  
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CHAPTER 4  

CONCLUSIONS 

 

In this study, the SIR model with equal birth and death rates is considered. The analysis 

shows that the local stability of the SIR model is obtained by the threshold number. If the 

threshold number is less than one, there will be a disease-free steady state and is locally 

stable in a feasible region, meaning, the disease will die out from the population. But if the 

threshold number is greater than one, there will be a unique disease steady state which is 

locally stable in the interior of the feasible region and the disease is present in the population. 

The proof is based on the method of linearization. Materials are organized according to the 

mathematical theory not the biological applications.  
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ABSTRACT 

 

 

In this study, the simple SIR epidemic model is modified, and the analysis shows that the local 

stability of the model is obtained by the threshold number. If the threshold number is less than 

one, there will be a disease-free steady state and is locally stable in a feasible region, meaning, 

the disease will die out from the population. But if the threshold number is greater than one, 

there will be a unique disease steady state which is locally stable in the interior of the feasible 

region and the disease is present in the population. The proof is based on the method of 

linearization. Materials are organized according to the mathematical theory not the biological 

applications.  
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ÖZET 

 

 

Bu araştırmada, basit bir SIR epidemik model modifiye edilmiştir ve modelin yerel stabilitesi 

eşik sayısı tarafından elde edilen analiz gösterilmiştir. Eşik sayısı birden az ise, orada hastalık 

barındırmayan kararlı bir durum olabilir ve uygulanabilir bir bölgede yerel olarak kararlı olacak 

, yani,  populasyon dışında ölecek şekilde kararlı durum olacaktır. Eşik sayısı birden büyük 

olursa, uygun bölgenin içinde bölgesel olarak istikrarlı olan kararlı olan tek hastalık olacak ve 

hastalık populasyonda mevcut bulunacaktır. İspat lineerleştirme yöntemine dayalıdır. Bu 

çalışma matematiksel teori üzerine kurulmuş olup bioloji uygulamaları içermemektir. 
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