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ÖZET 

Bitki tanıma, biyolojik ve tıp bilim alanlarında önemli bir rol oynar. Şifali bitkiler 

yüksek bir kesinlikle tanınıp sınıflandırılmalıdırlar. Sınıflandırmada meydana gelen 

bir hata kötü sonuçlar doğurabilir. Örneğin, zehirli bir bitkinin yaprağı, şifa nitelikli 

bir bitki ile karıştırılrsa, ölümcül sonuçlar meydana gelebilir.  Yada şifa özelliği 

olmayan bir bitkinin yaprağı önemli şifa nitelikleri olan bir bitki ile karıştırılabilinir. 

Bu nedenle doğru sınıflandırma çok önemlidir. Normal şartlarda bitki 

sınıflandırılması elle ve tecrübeye dayalı olarak uzman bireyler tarafından yapılır. 

Fakat bu şekilde sınıflandırma uzmanın tecrübesi ve bilgisi ile sınırlı olur. Bu 

bakımdan bilgisayar teknolojisinin sunduğu hız ve kesinlik özelliklerinden 

faydalanıp daha iyi sınıflandırma yapılabilir. Bu fikirden yola çıkılarak, bu çalışma 

ile yaprak tanıyan yapay sinir ağlarına dayalı bir otomatik bitki tanımlama sistemi 

önerilmektedir. 

Son 50 sene içerisinde, sinir ağları kullanımı bilimde büyük bir devrim olarak 

görülmüştür. Sinir ağları, yüksek verimlilik ve düşük gider özelliklerinden dolayı, 

değişik bilimsel uygulamalarda sıkça başvurulan bir yöntemdir. Özellikle biometrik 

sistemler ve kontrol sistemleri gibi tanıma ve sınıflandırma gerektiren alanlarda sıkça 

kulanılmaktadırlar. Bitki tanımada da tavsiye edilen metodlar arasındadırlar.  

Bu çalışma özel olarak, bitki tanıma ve sınıflandırma için, “yaprak tanıyan geri 

yayılım tipi sinir ağı” üzerinedir. Çalışmada değişik bitkilerin yaprak görüntüleri elde 

edilip yapay sinir ağı sistemine girdi olarak verildi. Eğitilmiş sinir ağı, eğitim safhası 

sırasında elde ettiği bilgi sayesinde, değişik yaprak görüntülerini tanıma yetisi elde 

etti. Bazı eğitim safhalarında görüntülere değişik tipte gürültü katıldı ve sistemin 

gürültülü görüntü tanıma yeteneği iyileştrilmeye çalışıldı. 

Değişik bilimsel çalışmalarda [12-15, 17, 19] alınan iyi sonuçlar, yapay sinir 

ağlarının yaprak tanımadaki yüksek verimliliğini göstermektedir. Bu çalışmada 

gürültülü görüntüler üzerine yapılan deneylerde %97 tanıma oranı elde edildi. 

Gürültüsüz görüntülerle yapılan deneylerde ise %95 tanıma oranı elde edildi. 
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ABSTRACT 

Plant identification is an important field of biological and medical sciences. 

Medicinal plants must be classified and recognized with high accuracy. 

Classification errors can lead to high costs and losses. For example if a poisonous 

plant is classified as medicinal plant, this can lead to fatal cases. Also it can be 

dangerous, if a plant that has no medicinal property is classified as a medicinal plant. 

The classification is done normally manually and based on the experience of the 

human classifier. In this case the classification process is limited by the experience 

and the knowledge of the human expert. On the other hand exploiting the accuracy 

and speed of the computer technology can be very useful in creating high 

performance plant classification system based on the leaf recognition. Based on this 

idea, this thesis proposes an automatic plant identification process using an artificial 

neural network that can recognize leaf images of the plants.  

The use of neural networks in science has seen a huge revolution in the last decades. 

Neural networks have been introduced in different scientific applications and proved 

their high efficiency with minimum costs. It is used mostly in different classification 

and recognition tasks as like as biometrics and control systems. They are proposed 

also in the field of plants identification. 

This thesis proposes the use of artificial neural network back propagation algorithm 

for leaf recognition. The images of different plants are acquired and are processed as 

an input to the artificial neural network. The trained network recognized leaf images 

based on the information gained during the training process. Noise is added to 

several image sets in order to test the ability of the artificial neural network in 

recognizing noisy images. The results obtained from the different scientific 

researches [12-15, 17, 19] showed the high efficiency of artificial neural networks 

for leaf recognition. In this thesis two different sets of experiments are designed to 

assess the performance of the proposed leaf recognition system. In the first set of 

experiments noise is added to the leaf images. The system achieved 97% recognition 

rate with the noisy images. In the second set of experiments several different images 

are used for the same plant leaf, varying in size, orientation and shape. The system 

achieved 95% recognition rate in the second experiment. 
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CHAPTER 1 

 

INTRODUCTION 

 
The classification of plants and different types and classes of creatures is one of the 

most important fields of biology. All creatures are classified into classes and sub-

classes based on the similarity and dissimilarity among them. The word “taxonomy” 

is derived from the Ancient Greek: τάξις which means arrangement or classification; 

and νομία which means method. So it means the science that is interested in the 

methods of classification of plants and animals.  

The classification of plants is very important in grouping plants into different ranks 

and classes based on different classifiers or categories. It puts each group of plants 

having some common properties into classes. Also the classes are then divided into 

sub-classes and types to differentiate among the elements of the class. This 

classification is very important to help scientists to study the common behaviors and 

properties of the plants. Especially those plants used in the medicine or medical 

plants.  

In the past before the invention of digital cameras and computerized systems; people 

were using their own absolute experience in defining different types of medical 

plants. The risqué of using the wrong plant for medicine extraction increases with the 

lack of experience and can cause fatal error that can cause the death of some patients. 

The existence of digital devices and possibilities of computer vision has encouraged 

the botanists and computer scientists to develop computerized systems or semi 

automatic systems for plant classification or recognition based on different features. 

Different researches have treated the problems of the plant classification and 

mentioned different methods of recognition for these plants. Expert systems were 

considered also in the plant recognition and classification task. 

The last century has seen a very great development in artificial intelligence and 

machine vision where a lots of pattern recognition and classification tasks were 

investigated by using automatic computer systems. These applications include finger 

print recognition which has been developed and face recognition which is developing 

increasingly. 

 

Artificial neural networks have entered the race of pattern recognition and 

classification for decades due to their simplicity of implementation and ease of use; 

http://en.wikipedia.org/wiki/Ancient_Greek
http://en.wiktionary.org/wiki/%CF%84%CE%AC%CE%BE%CE%B9%CF%82
http://en.wiktionary.org/wiki/%CE%BD%CF%8C%CE%BC%CE%BF%CF%82
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in addition to their flexibility for different applications and the high efficiency that 

they achieved. The development of digital processors has also encouraged the use of 

neural networks in many sciences. Neural networks use mathematical equations to 

imitate the structural construction and functional principle of the biological brain. 

Neural networks implement a structure similar to human brain to learn the pattern 

among different elements and apply themselves based on the acquired knowledge. 

This knowledge is then applicable on other elements that may have the same pattern 

or not. 

Neural network systems gain their knowledge and develop their experience over the 

time by using examples to reinforce the weights of connections between their 

neurons. They use the example and error in repetitive check and adaptation or 

rearrangement of themselves to suit the system they are trying to describe. This 

repetitive task is called training or learning of neural networks. Whenever the 

networks develop a correct relation between their input and output examples then 

they are called to be trained.  

This thesis concentrates on the employment of ANN system to classify different 

medical plants and differentiate among them using their leaves. Different leaves 

collected arbitrary from different medical plants and their images were taken using a 

digital camera. The images were then processed and used in the training of a neural 

network computer system. Results and methods are described and discussed in the 

thesis [1].The aim of this thesis is the development of artificial neural networks for 

recognition of leaves. Thesis includes five chapters and conclusion. Chapter 1 

presents a brief introduction to Artificial Intelligence and also describes fuzzy logic, 

expert systems, genetic algorithms and neural networks. Chapter 2, explains briefly 

Artificial Neural Networks. It describes the history and the back propagation learning 

algorithm. Chapter 3 presents a brief historical overview on leaves recognition and 

mentions different methods on the foliage plant identification systems, which 

incorporate shape, vein, color, and texture features for classification. Chapter 4, 

includes the methodology of the research and the different steps of it; starting by 

collecting the data base and ending with the testing stage. The implementation of the 

noise and processing of the images is an important stage in the recognition 

procedure. The processing of the images is done by using MATLAB which includes 

adding the noise to the images in addition to resizing and changing the type of 

images to reduce processing expenses. The pre-processing stage is a very important 
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stage for a prosperous recognition rule. The choice of image size is important as it 

affects directly the results of the program in addition to the running time. 
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CHAPTER 2 

ARTIFICIAL INTELLIGENCE 

2.1 Overview 

This chapter presents a brief introduction to Artificial Intelligence and also describes 

fuzzy logic, expert systems, genetic algorithms and neural networks. 

2.2 Artificial Intelligence 

Artificial Intelligence is one of the branches of the Computer Science that tries to 

develop systems that can think like human beings to solve complex problems. The 

intelligence that is the ability to reason in the system is “artificial” that is designed by 

man. In general Artificial Intelligence has strong ties with other branches of Science 

like Philosophy, Biology, Maths, Psychology, and Cognition [2]. 

2.3 Why Artificial Intelligence? 

Computers are suitable to carry out computations, using unchangeable programmed 

principles. This property permits artificial systems to operate efficiently and correctly 

in high speed over and over again, whereas for human beings doing so is not easy. 

But on the other hand contrary to human intelligence, computers have difficulties in 

knowing exact conditions and conforming to new conditions. Artificial Intelligence 

helps to make better machine behavior in tackling complex tasks [2]. 
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2.4 The characteristics of Artificial Intelligence System 

Data and information employed to grow computer systems that show features of 

intelligent behavior. 

Intelligent behavior has numbers of various parts to it, containing the capacity to:  

 Learning from trial and implementation, which is the information that is 

gathered from those trials  

 handling complicated conditions 

 solving problems where time and data lost are essential 

 calculating what is worth  

 moving quickly and adapt to  new conditions  

 understanding and perceiving 

 being methodological and operating together 

 being inventive and creative  

These things as like people are natural better at since that is how human brains work. 

The basic computer is better at performing easy duties at very high speed. So that 

does creating a computer system with intelligent behavior [2]. 

2.5 Expert System 

The Expert System is basically a computer program that has inside a knowledge base 

and a set of algorithms. An expert system is an artificial intelligence implementation 

that employs a knowledge basis of people knowledge to help to solve troubles.. The 

extent of  trouble finding a solution is based on degree of the data and systems 

prevailed from the people expert. Expert systems are patterned to carry out  at a 

people expert degree In repeated performance will  carry out  they good lower , good 

over that of a separate expert. The expert system have as origin its replies to start by 

running the knowledge basis  to the end of an inference engine, a software 

programming that moves with someone and methods the ending from the systems 

and data in the knowledge base. The figure 2.1 shows the general structure of an 

expert system that was explained above [5]. 

Expert systems are employed in implementation like as medical diagnosing, 

machines reparation, investing analysis, financial, housing and indemnify planning, 

way programming for deliverance vehicles, make an agreement wishes, advising for 

self-service clients, creation limitation and learning [4]. 

http://dictionary.reference.com/browse/knowledge%20base
http://dictionary.reference.com/browse/algorithms
http://click.reference.com/click/nn1ov4?clkpage=dic&clksite=dict&clkld=0&clkdest=http%3A%2F%2Fdictionary.reference.com%2Fbrowse%2Finference+engine
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Figure 2.1: Expert System[4] 

2.6 Genetic Algorithm 

Genetic Algorithm is adaptive discovery research algorithm based on development 

opinions nature choice and genes. As like Gens display an intelligent development of 

a randomly investigate employed to find solution improvement trouble. Genetic 

Algorithm no signify randomly, in place of their  use to advantage  the past 

knowledge to straight the research  inside of regional better carrying out between the 

research area. 

The basis methods of Genetic Algorithms are fashioned to imitate methods in nature 

organized approach required for development, in special way these move behind the 

basic rules initial laid lower by Charles Darwin of “survival of the fittest” till in 

nature, competitions between persons for insufficient finances outcome in the fittest 

persons predominant above the not stronger ones [2]. 

2.6.1 Why Genetic Algorithms? 

Genetic algorithms superior than usual Artificial Intelligence in that Genetic 

algorithm is greater strong. Different not newer Artificial Intelligence systems, They 

do not break easy ,if enters altered very little, or in the manner of person noise. And 

also, in researching a big condition-area, multi-modal condition-area, or n-

dimensional outer side, a genetic algorithm may suggest with meaning advantages 

above greater normal research of making the best methods like linear program 

development, depth-first, breath-first implementation [5]. 
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2.7 Fuzzy Logic 

Fuzzy logic is approaching to compute based on “level of truth” prefer other the 

normal “true or false” (1 or 0) Boolean logic of the present time computer is based. 

Dr. Lotfi Zadeh’s opinion of the fuzzy logic was initially advancing the University of 

California at Berkeley in 1960s. Dr. Zadeh worked on troubles of computer 

understand of nature languages. Nature language (as greatest others activity in 

existence and in truth the world) is not easy to translate inside of  the complete 

periods of 0 and 1. (if all things is basically expressible in binary points is a 

philosophic matter of having the value of following, yet in apply a lot of information 

people might desire to feed a computer is in a few condition in among and such, 

often, ends of data calculation). Fuzzy logic contains 0s and 1s, like farthest 

instances of truth (other “the condition of problems” other “true”) and also but 

contains some conditions of fact among because, for instance, the ending of 

comparing among two stuffs could not be “tall” other “short” but “38 of tallness”. 

Fuzzy logic appears nearer to the technique human brains operate. People summed 

information and shape a number of incomplete facts that people summed very far in 

much high from facts that successively, only if sure beginnings are went over, reason 

inevitable very far ends so like machine action as a result.  A like type of methods is 

employed in artificial computer neural network and expert systems. It may aim to 

understand fuzzy logic like the technique use of reason in fact be employed and 

Boolean logic other binary is very easy exceptional instance of it [6]. 

2.7.1 Applying truth values 

In figure 2.2 statements cold, warm, and hot are displayed functions drawing a 

temperature measurement [7]. A detail on system of measurement has tree “true 

values” for one each of three functions. The vertical row in figure displays specific 

temperature three arrows (true values) for measurement. Red arrow details to zero, 

temperature understand like “not hot”, orange arrow (detailing at 0.2) may defined it 

like In figure, the meanings of the expressions cold, warm, and hot are represented 

by functions mapping a temperature scale. A point on that scale has three “truth 

values” — one for each of the three functions. The vertical line in the image 

represents a particular temperature that the three arrows (truth values) gauge. Since 

the red arrow points to zero, this temperature may be interpreted as “not hot”. The 

http://searchnetworking.techtarget.com/definition/neural-network
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orange arrow (pointing at 0.2) may describe it as “a little warm” and the blue arrow 

(pointing at 0.8) “more or less cold” [10]. 

 

 

Figure 2.2 Fuzzy Logic[10] 

2.8 Neural Networks. 

It is a concept of processing data based on the way neurons in brains process 

information and communicates with each other. Neural computing is performed 

using Artificial Neural Networks (ANN). The brain consists of neurons. It is highly 

complex, on linear and parallel computer. In figure 2.3 below, Basic ANN 

architectures can be seen. It has the capability to organize the neurons so as to 

perform. Certain computations many times faster that the fastest digital computer in 

existence. Example applications of neural networks can be found in the fields of 

pattern recognition, perception and motor control while driving a car [11]. 

 

 

 

Figure 2.3: Basic Artificial Neural Network architectures (Single layer on the left 

and multi layer on the right)[11].  
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2.9 Summary 

This chapter introduced briefly Artificial Intelligence and explained its branches like 

expert system, genetic algorithms, fuzzy logic and neural networks. 
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CHAPTER 3 

ARTIFICIAL NEURAL NETWORKS 

3.1 Overview 

This chapter explains briefly Artificial Neural Networks. It describes the history and 

the back propagation Learning algorithm. 

3.2 Brief History of Neural Networks 

When we trace the history of Neural Networks, we can see that the origin of the field 

goes back to the 1940's when McCulloch and Pitts, for the first time introduced the 

neural network as a computing model. Next milestone comes when, in 1950's, 

Rosenblatt created the “perceptron”, the two-layer neural network that could do some 

learning by classification. The “perceptron” was good at pattern classification. But it 

was not a general classifier, for example it was having trouble in solving classic 

XOR problems. Although at that time, this limitation of the “perceptron” caused the 

decline of the neural network research, later became the foundation of the field. The 

decline in the research of neural networks lasted till early 1980s. In 1982 John 

Hopfield introduced “Hopfield networks”. Few years later the discovery of “back 

propagation” and the work of Kohonen on “Self-Organizing Maps” created new 

wave of the research in Neural Networks [8]. 

3.2.1 Neural Networks 

Neural networks can be seen like machines that are designed to model the way in 

which the brain performs a particular task or function of interest. The neural network 

is usually implemented using electronic components or more commonly simulated in 

software. A neural network is massively parallel distributed processor that has the 

neural propensity of storing experimental knowledge and making it available for later 

use. Neural Network resembles the brain that knowledge is acquired by the network 

through a learning process. Inter neuron connections strengths known as synaptic 

weights are used to store the knowledge. The procedure used to perform the learning 

process is called Learning algorithm. The function of which is to modify the synaptic 

weights of the network in an orderly manner so as to attain a designed design 

objective [8]. 
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3.2.2 Why use Neural Network? 

Neural network can be used to take out models and notice fashions these are 

excessively complex detected by people or other computer techniques. A trained 

neural network can be idea of like an “expert” in the type of knowledge it has been 

given to analyze. This expert can then be used to furnish projections given new 

conditions of interest and response “what if” questions [8]. 

Other Advantages: 

Adapt learning: A capability to learn how to make duties based the data given for 

training or first experiment. 

Self-Organization: Artificial Neural Network represent of knowledge it takes in for 

the duration of learning. 

Real  Time Operation: Artificial Neural Network computations may be implemented 

in parallel and especial hardware devices are being  planned and produced taking 

advantage of this capability. 

Fault Tolerance in that manner Redundant Knowledge Coding: Partial destruction of 

a network leads to the corresponding degradation of performance. 

3.3 Biological Human Brain 

Human brain  is setup to perform in the way we use it mostly in the first 2 years after 

birth, senses and the understanding of what is around us one all Learnt by the brain 

then. Afterwards more complex perceptions  around us one slowly learnt other the 

years. This learning process is quite vital in the development of Neural Network and 

certainly differentiates Neural Network traditional computing systems. 
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Figure 3.1: Biological neuron cell[11] 

 

In the figure 3.1, a neuron cell is shown. The synapse is a small gap dividing 

neurons. Knowledge flows from one neuron to another across a synapse. 

Neurotransmitter leaves the axon terminal of one neuron and crosses the synapse to 

the dendrite of another neuron. The axon is the output lines of the neuron. 

Knowledge flows through the axon in electrical signal called action potential. The 

axon carries knowledge away from the cell body. Neurotransmitters are released 

from these terminals, sending a signal to the next cell. Soma, also known as the cell 

body, is the metabolic center of the neuron. The soma  contains a nucleus. Dendrites 

carry information to the soma and axons carry information away from the soma. 

Dendrites are part of a neuron. They carry information to the cell body. The 

Artificial Neural Network is similarly made up of artificial neurons on a smaller 

scale [2]. 
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3.3.1 From Human Neurons to Artificial Neurons 

These neural networks by first aspiring to infer the important characteristics of 

neurons and their connections. Then they try to program a computer to reproduce 

these characteristics despite that because our information of neurons is unfinished 

and our computer force is restricted [9]. 

 

                                         Cell body 

                     Dendrites                   Threshold    

                                                       

 

 

                                                                          Axon 

                                   Summation 

 

Figure 3.2: Architecture of an artificial neuron[9]  

 

3.4 Artificial Neuron Models 

Computational neurobiologists have built display computer method of neurons 

working to operate extensive computer of specific electrical devices in the brain. 

Like that Computer Scientists, human are extra stimulated in the usual properties of 

neural networks, free of how they are truly “applied” in the brain. This signifies that 

human can employ easier, not concrete “neurons” probably capturing essentially of 

neural computation and if they leave out collectively of how biological neurons 

work. In figure 3.2, a simplistic architecture of an artificial neuron can be seen. 

Human have applied pattern neurons in hardware like electronic circuits. Keep in 

mind thought that computers run much faster than brains. People can so that run rules 

big  networks of easy method neurons like software simulated in intelligent time. 

This has advantages over having to se special “neural” computer hardware [10]. 
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3.4.1 A Simple Artificial Neuron 

Our basic computational element (model neuron) is often called a node or unit. It 

receives input from some other units, or perhaps from an external source. In the 

figure 3.3 the basic mathematical approximation of an artificial neuron can be seen. 

Each input has an associated weight w, which can be modified so as to model 

synaptic learning. The unit computes some function f of the weighted sum of its 

inputs: 

 

Its output, in turn, can serve as input to other units. 

 

 

Figure 3.3:A simple neuron[10] 

  The weighted sum    is called the net input to unit i, often 

written neti.  

 Note that wij refers to the weight from unit j to unit i (not the other way 

around).  

 The function f is the unit's activation function. In the simplest case, f is the 

identity function, and the unit's output is just its net input. This is called a 

linear unit [10]. 
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3.5 Learning in Artificial Neural Networks 

Artificial neural network inspired by the biological nervous system, in particular, the 

human brain. One of the most interesting characteristics of the human brain is its 

capability to learn. We should note that our understanding of how exactly the brain 

does this is still very primitive, although we do still have a basic understanding of the 

process. It is believed that during the learning process the brain's neural structure is 

altered, increasing or decreasing the strength of its synaptic connections depending 

on their activity. This is why more relevant information easier to recall than 

information that hasn’t been recalled for a long time. More relevant information will 

have  stronger synaptic connections and less relevant information will gradually have 

its synaptic connections weaken, making it harder to recall. Although simplified, 

artificial neural networks can model this learning process by adjusting the weighted 

connections found between neurons in the network. This effectively emulates the 

strengthening and weakening of the synaptic connections found in our brains. This 

strengthening and weakening of the connections is what enables the network to learn. 

Learning algorithms are extremely useful when it comes to certain problems that 

either can't be practically written by a programmer or can be done more efficiently 

by a learning algorithm. Facial recognition would be an example of a problem 

extremely hard for a human to accurately convert into code. A problem that could be 

solved better by a learning algorithm, would be a loan granting application which 

could use past loan data to classify future loan applications. Although a human could 

write rules to do this, a learning algorithm can better pick up on subtleties in the data 

which may be hard to code for [11]. 

3.6 Learning Types 

The learning process inside artificial neural networks is an outcome of changing the 

network’s weights, with a few type of learning paradigms. The object is to learn a set 

of weight matrices that when implemented to the network should expectantly map 

any input output. to make corrections output. 

 

3.6.1 Supervised Learning 

In a supervised learning process, the input data  and its corresponding output are 

presented to the neural network. The network will accord a defined low, change its 
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weights in order to be able to reproduce the correct output, when an input is given. 

Example of neural network based on supervised Learning. 

3.6.1.1 The Perceptron 

A perceptron model can be trained and can make decisions. During the training 

phase, pairs of input and output vectors are used to train the network. With each 

input vector, the output vector is compared with the desired output(target),and the 

error between the actual output and the target is used to update the weights. 

3.6.1.2 Back propagation Algorithm 

A multilayer network can be trained using the back propagation learning algorithm. 

This involves presenting pairs of input and output vectors. The actual output for a 

given input vector is compared with the target output. If there is no difference, the 

weights do not change. Otherwise, the weights are adjusted to reduce the difference. 

This learning algorithm uses a gradient search technique to minimize the cost 

function that is equal  to the mean square difference between the target and the actual 

output .The network is initialized by setting random weights and thresholds. 

3.6.1.3 The Hopfield Algorithm 

A Hop Field network is essentially used with binary inputs. Weights are initialized 

using training samples. In the decision making phase the cost data is presented to the 

network at a certain time. Following the initialization the network iterates in discrete 

time steps using some mathematical function. The network is considered to have 

converged when the outputs no longer change on successive intentions. 

3.6.2 Unsupervised Learning 

An unsupervised learning process requires only input vectors to train the network. 

Once the input data is presented the neural network, the weights are adjusted in an 

order way according to some defined figure of merit. Below it is given examples of 

Unsupervised Learning processes. 

3.6.2.1 Kohonen’s Self-Organizing Maps 

Kohonen suggested that one of the important Learning mechanisms in the human 

brain is the placement of neurons in an orderly manner. Kohonen’s algorithm creates 

a feature map by adjusting weights from input nodes to output node in a two layer 



17 
 

network. The first layer is the input layer; the second is the competitive layers, and it 

organized as a two dimensional grid. The two layers are fully connected. Input 

vectors are sequentially presented to the input layer. Each unit computers the dot 

product of its weight with input vector value. This and its neighbor are allowed  to 

learn. 

3.6.3 Reinforcement Learning 

Reinforcement learning is similarity to supervised learning in that a few feedback is 

given, Despite that in place of supplying a target output a prize is given based on 

how good the organize approach performed. The goal of reinforcement learning to 

make large the prize the system takes in through trial and error. This example tells 

powerfully with how learning works in naturally. 

3.7 Adaptive Networks and Systems 

In this section activation function Types will be explained. 

3.7.1 Activation function Types 

The most important unit in neural network structure is their net inputs by using a 

scalar-to-scalar function called “the activation function or threshold function or 

transfer function”, output a result value called the “unit's activation”.  An activation 

function for limiting the amplitude of the output of a neuron. Enabling in a limited 

range of functions  is usually called squashing functions . It squashes the permissible 

amplitude range of the output signal to some finite value. Some of the most 

commonly used activation functions are to solve non-linear problems. These 

functions are:  Uni-polar sigmoid, Bi-polar sigmoid, Tanh, Conic Section, and Radial 

Bases Function (RBF). We did not care about some activation function such as 

identity function, step function or binary step functions as they are not used to solve 

linear problems [12]. 

3.7.1.1  Uni-Polar Sigmoid Activation function 

The logarithmic sigmoid function is defined by its formula is given. In the figure 3.4 

graph of the Uni-Polar Sigmoid is shown. 
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Sigmoid function is very useful to use in neural networks trained by back 

propagation algorithms. Because of function is very simple to recognize in an 

interesting to decrease the computation limit for training .The word sigmoid signifies 

“s-formed ‘logistic shape of the sigmoid graph [12]. 

 

Figure 3.4: Uni-Polar Sigmoid Function[12] 

3.7.1.2 Bipolar Sigmoid Function  

Activation function of Bi-polar sigmoid function is defined by its formula is given. 

In the figure 3.5 graph of the Bipolar Sigmoid is shown. 

 

Bipolar sigmoid function is similarity to the sigmoid function .This activation 

function represented in Figure 3.3,it is advantages to use implementations that 

produce values in the range of [-1,1] [12]. 

 

Figure 3.5: Bi-Polar Sigmoid Function[12] 

 

 

3.7.1.3 Hyperbolic Tangent Function  

Tangent function is simple described as the rate between the hyperbolic sine and the 

cosine functions enlarged as the rate of the half-difference and half-sum of two 

exponential functions in the points x and –x, is defined by its formula as follows: 
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In the figure 3.6 graph of the Hyperbolic Tangent Function is shown. Hyperbolic 

Tangent Functions is similarity to sigmoid function. Its range outputs between -1 and 

1 as represented in Figure 3.6.The following is a graphic of the hyperbolic tangent 

function for real values of its argument x [12]. 

 

Figure 3.6: Hyperbolic Tangent Function[12] 

 

3.8 Back propagation Artificial Neural Network 

The back-propagation algorithm is applied in feed-forward artificial neural networks 

(ANNs). The nodes are organized in layers, and send their signals forward with 

errors propagated backwards. The network receives inputs by neurons in the input 

layer, and the output of the network is obtained by the neurons on an output layer. 

There may be several hidden layers. Each stage is connected to the next layer as 

shown in figure 3.7a below. The back-propagation algorithm uses supervised 

learning method, which means that we provide the algorithm with examples of the 

input and outputs we want the network to compute, and then the error is computed. 

The aim of the back-propagation algorithm is to reduce the error, until the ANN 

learns the training data. The training starts with random weights, and aim is to adjust 

them to arrive at minimal error. The number of layers and the number of artificial 

neurons per layer are important decisions to make when applying this architecture. 

The complexity between the input data and desired output determines the number of 

nodes in the hidden layer. Also, the amount of training data sets set an upper bound 

for the number of nodes in the hidden layer. This upper bound is calculated by 

dividing the number of input-output pair’s examples in the training set by the total 

number of input and output nodes in the network. Then divide the result by scaling 

factor between five and ten [12]. 
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Figure 3.7a: A Feed Forward Back-Propagation Network [12] 

 

 

 

 

 

 

 

Figure 3.7b: Output calculation in the Feed Forward Back-Propagation Network 

 

The activation function jA
is a weighted sum of the inputs ix

 multiplied by their 

respective weights jiw
. 
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sigmoid function: 
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The output depends on the activation function, which depends on the weighted value 

of the inputs. This can be seen in the figure 3.7b above.  
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The aim of the training process is to obtain a desired output when certain inputs are 

given. Since the error is the difference between the actual and the desired output the 

error depends on the weights, and we need to adjust the weights in order to minimize 

the error (equation 3.4). The error function  jE  of the output of each artificial neuron 

is given as: 

2

)),((),,( jjj dwxOdwxE                  (3.3) 

The square of the difference between the output and the desired output is used in 

order to have always positive result and higher precision. The error E  of the network 

is the sum of the errors of all the artificial neurons in the output layer: 

2

)),((),,( jj

j

dwxOdwxE                  (3.4)  

The weights are adjusted depending on their impact on the error E using the method 

of gradient descendent: 

ji

ji
w

E
w




                     (3.5) 

Equation (3.5) is applied until we find appropriate weights resulting to minimum 

error. The goal of the back-propagation algorithm is to find the derivative of E  with 

respect to jiw
 and since we need to achieve this backwards. First, we need to 

calculate how much the error depends on the output jO , which is the derivative of E  

with respect to jO from equation (3.3): 
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We then calculate how much the output depends on the activation, which also 

depends on the weights from equation (3.1) and equation (3.2): 
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From equations (3.6) and (3.7):  
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The necessary adjustment to each weight is gotten from equations (3.5) and (3.8): 

ijjjjji xOOdOw )1()(2                  (3.9) 

Equation (3.9) is applied in training an ANN with two layers. Some additions will be 

made in order to train the network with one extra layer. If we want to adjust the 

weight of a previous layer, we first calculate how the error depends on the input from 

the previous layer. Here we use ikv  as the adjusted weight, and then we simply replace ix

 with  jiw
 in equations (3.7), (3.8), and (3.9). We then determine how the error of the 

network depends on the adjustment of ikv .  

Thus we have:  
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Where: 
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Assuming that there are set of inputs ix  into the neuron with ikv  and then we have 

from equation (3.7): 
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If we want to add yet another layer, we can do the same, calculating how the error 

depends on the inputs and weights of the first layer (equation 3.3) [20]. 

 

3.9 Summary 

In this chapter a brief discussion on Artificial Neural networks is given and also back 

propagation algorithm and its formulas, some Learning algorithms (supervised and 

unsupervised) are explained in detail. 
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CHAPTER 4 

ARTIFICIAL NEURAL NETWORKS APPLICATIONS FOR LEAVES 

RECOGNITION 

4.1 Overview 

This reports provided brief historical leaves recognition and the different 

experiments in testing performance of the foliage plant identification system, which 

incorporated shape, vein, color, and texture features and used as a classifier. The 

result shows that the combination of the features can improve the performance 

compared to the original work, testing. 

4.2 Historical overview of Leaves recognition 

There has been substantial work in recent years in the field for leaf biometric 

recognition. Initially it was approached by Petry. He classified weed species based 

on shape and structure of leaves to automatically. This morphological feature 

extraction technique has been used many times. (Stephen Gang Wu, 2007) used 

twelve morphological features (including vein features)and a neural network to 

achieve 90.3% classification accuracy. By using eleven morphological features 

Knight (2010) achieved a classification accuracy of 80%. This approach was 

implemented as a mobile application designed for field guides. S. Prasad (2011) has 

worked on leaf recognition using support vector machine with relative sub image 

based features. T. Beghin (2010) used a number of morphological features and a 

fuzzy surface selection technique to achieve 99% classification accuracy even with 

leaves that are deformed and oriented incorrectly. Madhusmita Swain (2012) 

performed plant classification by using the full color of the leaf in conjunction with 

support vector machine achieved 95% accuracy. However, this has the disadvantage 

that dry leaves cannot be used as they will be a different color from a leaf that has 

just been picked. Ehsanirad (2010) used a Gray-Level Co-occurrent Matrix (GLCM) 

and Principal Component Analysis (PCA) to achieve classification accuracies of 

78.46% and 98.46% respectively. Using a Probabilistic Neural Network with, K. 

Singh (2010) achieved 91% classification accuracy.  J. S. Cope (2010) compared 

four different texture methods for classification Gabor filters, Fourier descriptors, 

Co-ocurrent matrices and Gabor Co-occurrences to achieve classification with 

accuracies of 50.78%, 82.42%, 69.14% and 85.16% respectively. Finally, some 

researchers have combined both morphological and texture-based techniques. T. 
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Beghin (2010) worked on Contour signature method for shape classification and the 

Sobel operator for texture classification. The result was a classification rate of 

81.1%, significantly better than either of the methods when used alone. The problem 

with a number of these techniques is that they require some manual intervention such 

as correctly orienting the image or identifying the end points of the leaf’s main vein. 

S. R. Deokar (2013) has worked on leaf recognition by extracting 28 and 60 Feature 

point. These features are extracted by vertical and horizontal splitting of the leaf 

images. ANN is used to compare performance of leaf recognition [13]. 

4.3 Why Leaves Recognition 

 

Plants are an inherent of ecosystem. A lot of plant samples are into the danger of 

annihilation. Plants are very important beneficial for humanity being and other living 

vitals. Plants are beneficial to  nourishment, to  medical and also into a lot of 

industries. Plants Identifying  supports insure to protective and survive of all natural 

life. Plant identification can be implemented a lot of various methods using the 

plant’s leaves. . Classify plants to leaves are useful, Leaves are a lot of easily 

opportunity the other biometric elements the same as flowers are opportunity for 

duration of time. Different Biometric qualities of leaf as the same as color, venation, 

tissue, shape, in Plant classification needs to use. Identification guide is taking more 

time and costly. Leaves can classify as on color that inclusion semblance among both 

of two images the support of color, but color classification is related impression of 

sunlight on season [13]. 
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4.4. Find the leaf venation pattern 

Canny edge detection method is utilized for finding the venation pattern of the 

leaves. In the first stage of this method the leaf images are smoothed in order to 

remove the noise. Next stage involves finding the gradients with high magnitude by 

local maxima for identifying veins. Then veins are highlighted where high values of 

spatial derivatives are found. Edge candidates are selected after double thresholding. 

Finally veins are detected by eliminating veins that are not connected to strong veins 

[13]. 

 

 

 
Figure-4.1: Leaf Images a) original b) gray scale c) venation 

pattern[13] 

 

Leaf images are converted to gray scale images to avoid the potential negative effects 

of the variations in the color caused by the sunlight. 

4.5. Detection of unhealthy region of plant leaves and classification of plant leaf 

diseases using texture features  

Through texture feature we can identify and classify the diseases in plants and can 

find the diseases in the initial stage. and with the help of pest control we can control 

the disease to some extent the reason why we misclassify the diseases are as follow. 

The symptoms of the affected plant leaves keep on changing (at the initial stage, tiny, 

dark brown to black spots, then letter on, it has the symptoms of withered leaf, black 

or part leaf deletion). If we want to remove the disease identification rate at various 

stages, the training samples can be increase in number and shape feature and color 

feature along with the optimal features can be given as input condition of disease 

identification. Examples of leaves with some diseases like early scorch, yellow spots, 

brown spots, late scorch, bacterial and fungal diseases are shown in Figure 4.  
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Figure 4.2: Sample images of infected leaves [14] 

If we take some sample of leaves we can find out that they contain with various 

diseases like early scorch, yellow spots, brown spots, late scorch, bacterial and 

fungal diseases. Just taking as a sample, a rose leaf that is infected by bacterial 

disease is given as input to the algorithm. Color transformation structure on the input 

image can be performed and the results can be seen. Then the green pixels are 

masked and removed using a specific threshold value. Then the R, G, B components 

are mapped to the thresholded image. These steps are shown in Figure 4. Table 1 lists 

the set of leaves that are affected by various diseases [14]. 
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Figure 4.3: Detection of infected region for a rose leaf [14] 

 

Table 4.1: Detected diseased region of various leaves [14] 

Species            Input Image                     Hue Content                Thresholded Image                     R component 

mapped out  
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4.6 Disease Detection and Diagnosis on Plant using Image Processing  

Plants get different diseases which decreases their productivity. These diseases can 

be identified according to their color, texture, and shape. Diseases of plants can occur 

in leaves stem. These diseases can cause due to virus, fungi, bacteria. They can be 

transmitted through insects. These diseases can be detected by Support Vector 

Machine (SVM), Artificial Neural Network (ANN), Back propagation (BP) 

Network, Probabilistic Neural Network (PNN), Radial Basis Function (RBF) Neural. 

 

Figure 4.4: Infected leaf of cotton plant [15] 

 

Farmers are qualified critics of the diseases, because of their experiences. But in fact 

they are not precise and correct sometimes. If farmers cannot control the disease then 

they call the experts, but this can be time consuming. Mostly the disease can be on 

leaves and on stem of plants. These diseases can be viral, fungal, bacterial diseases 

infected by insects, nematodes, rust  on plants. It is very important duty for farmers 

to learn these diseases very early. Figure 4.4 shows the cotton plant disease which 

reduces the productivity. Precise and fast system to detect the diseases is needed 

[15]. 
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4.7 Neural Network Application on Foliage Plant Identification 

In some researches for leaf recognition, color is not used as a feature. The first reason 

is the fact that only green colored leaves are used. But for plants with leaves having 

interesting shapes and patterns color and texture properties should be included in 

recognition. As for instance, Epipremnum pinnatum “Aureum” and Epipremnum 

pinnatum “Marble Queen”, they almost have the same as texture, same shape, but 

their color is different from each other. Mixture of shape, texture, color 

characteristics should be included in the recognition for better results. For example in 

[12], three kinds of geometric and Fourier Transform characteristics were used to 

capture shape characteristic. Texture characteristics are removed from GLCMs, 

skewness was used to display color characteristics, and vein characteristics were 

addedl to make better identification. The identification system utilized Probabilistic 

Neural Network (PNN) as a classifier [12]. 

 

Fig 4.5: Illustration of vein processed by using morphological operation [12] 
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4.8 Early Detection of Pests on Leaves  

 

Different image processing methods were used to spot and extract the pests in the 

captured image by early detection and extraction system. It's describing a camera 

filter that identifies pest species. The system then clarifies efficient methods to 

eradicate the threat. The procedures was used to take out of the detected things from 

the captured image is easy way with using shapeless similar segmentation. After that 

on processed image variant texture and color features are extracted. In the end, the 

characteristic values are fed as input to aid Vector Machine classifier, and then 

permit us to truly identify the insects and leaves .This is first step an important  to 

identification of insects to find  the corresponding to solution problem, in the next 

time to detect the different kinds of insects a single advanced method [16]. 

 
 

     

      Figure 4.6: (a) Input image [16]    Figure 4.7: (b) Gray scale [16] 
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4.9 Plant Leaves Disease detection using Image Processing Techniques 

Agricultural products are affected by disease plants. This phenomenon is one of the 

major reasons of economic production losses. Furthermore, diseases reduce the 

quality and quantity of agricultural products. This study presents the simple detection 

system for plant leaves diseases, by using image acquisition, image pre-processing, 

features extraction and neural network based classification. Further discussions on 

similar systems can be found in [14]. 

4.9.1 Plant diseases analysis and its symptoms 

 Bacterial disease symptoms 

The diseases is depicted very small pale green spots early come into view as water 

soaked. The lesions become bigger after that seem like dry dead spots in figure 4.8 

e.g. Bacterial leaf spot have black water-soaked and brown  spots on the leaves. It 

can be yellow  halo, usually exactly the same size. Under dry positions the spots can 

appear as speckled. 

 

 

 
 

Figure 4.8: Bacterial leaf spot [14] 
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 Viral disease symptoms 

Viruses are not easy to diagnose between all plant leaf diseases. In agricultural 

product viruses no revealing signs can be reacting quickly see and frequent readily 

not understand nourishing inadequacy and herbicide act of injuring. Leafhoppers, 

aphids, whiteflies, cucumber beetles and whiteflies pests are often carries disease 

example Mosaic Virus, as appear yellow, green stripes other spots on leaves. in the 

following figure 4.9. Leaves might be curled, growth, wrinkled and stunted. 

 
 

Figure 4.9:  mosaic viruses [14] 

 

 Fungal disease symptoms 

In all plant leaf disease, Fungal reasoned with fungus some of them in show figure 

4.10 below Late blight reasoned by the fungus Phytophthora infesters display in 

figure 4.10 (a). First seems over very small, older leaves as water-soaked, gray-green 

spots. At what time fungal disease, grow up  make darker in color. This spots 

become dark and after that fungal increase forms on the underneath. Early blight is 

reasoned by the fungus Alternaria solani display in figure 4.10 (b). First, seems over 

very small, older leaves like small brown spots with concentric rings that form a 

bull’s eye model. At what time disease grows up, it propagates outside on the leaf 

surface reasoning leaf to turn yellow. In downy mildew yellow to white patches on 

the upper surfaces of older leaves occurs. These areas are covered with white to 

grayish on the undersides as shown in figure 4.10 (c).  

 
 

(a) late blight      (b) early blight       (c) downy mildew 

 
Figure 4.10: Fungal disease on leaves [14] 
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4.10 Summary 

In this chapter, by analyzing the characteristics of plant leaves, it is presented several 

feature extraction methods and classification algorithms. Among those methods are 

the optimized BP neural network and Probabilistic Neural Network, Support Vector 

Machine (SVM), Artificial Neural Network, Radial Basis Function (RBF) Neural 

Network. 
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CHAPTER 5 

LEAVES RECOGNITION AND EXPERIMENTAL RESULTS 

5.1 Overview 

A leaf recognition process must discuss two basic points; the fundamental of the 

most important special features of the leaf, and the recognition of these leaves or the 

classification of them. In neural networks, the network tries to classify the sets of 

leaves based on their color concentration without doing any mathematical or 

statistical studies. 

This chapter introduces a detailed discussion about the back-propagation based leaf 

recognition process. 

 The use of the back propagation in the recognition of different leaf images is 

discussed and introduced. 27 different leaves are used in the identification of 27 

trees. These are Alligator-pear, apple, benjamin1, benjamin2, bougainvillea, 

Cherry laurel, duranta-tree, False-poplar, gale, carob, Israel rubber, kamkuat, 

mandarin orange, new word fruit, okuloptus, oleander, orange, passion-

fruit,pitosporum,solanum-rantonetti,olive,bottle-brush,ficus, Laurus nobilis, lemon, 

Psidium, the spindle tree, the sample of this thesis. 

For the training of neural networks, 9 sets of photos for all the 27 different tree 

leaves were fed to the network. These 9 sets include the original photos in addition to 

8 different noises or noise level. Mainly, the used noises were Gaussian noise, salt 

and pepper, speckle, and Poisson noises with different noise levels. After the training 

of the network all the training sets are  passed through the network to check the 

efficiency of the training process. For the test of the neural networks three different 

testing processes are  arranged. Each process contains the four types of the 

mentioned noises with a preset noise concentration. The set Level III contains the 

higher noise ration compared to the other two sets. The sets of real and noisy images 

are preprocessed and then provided to the ANN using the back propagation learning 

process in the training stage. After that a simple test is applied to check the ability of 

network to recognize processed leaf photos. This chapter includes the methodology 

of the research and the different steps of it; starting by collecting the data base and 

ending with the testing stage. The implementation of the noise and processing of the 

images is an important stage in the recognition procedure. The processing of the 
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images is done by using MATLAB which includes adding the noise to the photos in 

addition to resizing and changing the type of images to reduce processing expenses. 

The pre-processing stage is a very important stage for a prosperous recognition rule. 

The choice of image size is important  as it affects directly the results of the program 

in addition to the running time. 
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5.2 Structure of the System 

Below the block diagram of the process is given. It can be seen the preprocessing 

stages for the image before it is fed to the NN. Figure 5.1 describe this structure of 

design system. The original image that is acquired first converted to gray scale image 

and then scaled to 50x50 size. After that noise is added. Finally the resulting 50x50 

pixel matrix is fed to input layer as column based. So the network has input layer 

with 2500 nodes. After some experiment it has been found the optimum range for the 

number of neurons for the hidden layers as 200 and 240. One of the 27 output 

neurons when it fires, after the processing, specifies the matched leaf number. 

 

 

 

     

 

 

 

 

         

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Block diagram of the System 
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5.3 Methodology 

Two types of experiments were designed. The first one was on images with noise. 

For the first experiment single leaf image of each plant was used to add different 

types and different amounts of noise. 27 different leaves from native plants of the 

Cyprus were collected and their images were digitized. Images of the leaves and their 

names that were used in the first experiment can be seen in Appendix A. 

The second one was on the subset of Flavia Database
1
. For the second part 10 

different copies of each leaf was used without adding any noise. 20 different plants 

were chosen from Flavia Database. Images of the leaves that are selected from Flavia 

Database for the second experiment can be seen in Appendix A. The common names 

of the plants are also listed in Appendix A. The system was tested to see how well 

the recognition can be with variations in the leaf shape, size and orientation.  

After data collection stage was finished, the pre-processing stage starts with applying 

different steps of processing to prepare the different data base sets to be used as 

training and testing inputs and targets of the neural networks. Figure 5.1 represent a 

block diagram of the pre-processing steps before sending the data to the neural 

networks.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
1
 http://flavia.sourceforge.net/ 
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Figure 5.2: Block diagram of the preprocessing phase of the training and test 

images. 

 

The data base represented RGB images of the 27 different tree leaves which are the 

subject of our study. These 27 photos where initially read using MATLAB in RGB 

format. The RGB images were converted then to grey scale image in order to reduce 

the calculation cost and simplify the training and test process. These gray scale 

images are then resized to fit the function of neural network. As large size images 

will take very long time to be trained using neural networks. The size of 50*50 was 

used because it is suitable in terms of calculation cost and keeps enough description 

of the features of images. In the next stage the images were copied into two groups, 

one for training and one for test. The training set contains 9 copies from each of the 

leaf images, giving us 9x27=243 samples. Noise was added to these images to train 

the network for different possible images that can be fed to it.  

Nine copies from each were taken and different types of noise were added to them. 

Read the RGB image 

Convert RGB image to gray 

scale image 

Reduce the size of image to 

50*50 

Add different types of Noise to 

the images 

 
Normalizing the pixel values of the 

images 

Convert the image matrix to vector 

of size 50*50 

Building the input training and test 

matrix containing all images vectors 

Send the input matrix to the network 

training and test processing 
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 The first copy has Gaussian noise with mean 0.02 and variance 0.005, 

 The  second copy has Gaussian noise with mean 0.02 and variance 0.01, 

 The third  copy has Poisson noise, 

 The  fourth copy has Speckle noise with variance 0.04, 

 The  fifth copy has Speckle noise with variance 0.08, 

 The sixth copy has Salt&pepper noise with density 0.01, 

 The  seventh copy has Salt&pepper noise with density 0.04, 

 The  eighth copy has Salt&pepper noise with density 0.08, 

 The ninth copy is the original image without noise. 

 

 

 

Figure 5.3:  50x50 Training set images for the Alligator pear. The order is from left 

to right as it is explained above. The first image on the left has Gaussian noise with 

mean 0.02 and variance 0.005. The last one, the rightmost image is the original 

image. 

 

 

The test set contains three sets containing 4 noisy copies of each leaf image, giving 

us 4x27=108 samples to test for each noise group. The first set, Level I, is low-level 

noise set with the following 4 types and levels of noise: 

 Gaussian noise with mean 0.03 and variance 0.01, 

 Salt&pepper noise with density 0.1, 

 Speckle noise with variance 0.12,  

 Poisson noise, 

 

Figure 5.4:  50x50 Level I Test set images for the Alligator pear. The order is 

from left to right as it is explained above. The last one, the rightmost image is 

with Poisson noise. 
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The second set, Level II, is mid-level noise set with the following 4 types and levels 

of noise: 

 Gaussian noise with mean 0.03 and variance 0.02, 

 Salt&pepper noise with density 0.12, 

 Speckle noise with variance 0.22,  

 Poisson noise, 

 

Figure 5.5:  50x50 Level II Test set images for the Alligator pear. The order 

is from left to right as it is explained above. The last one, the rightmost image 

is with Poisson noise. 

 

The third set, Level III, is high-level noise set with the following 4 types and levels 

of noise: 

 Gaussian noise with mean 0.03 and variance 0.03, 

 Salt&pepper noise with density 0.15, 

 Speckle noise with variance 0.28,  

 Poisson noise, 

 

 

Figure 5.6:  50x50 Level III Test set images for the Alligator pear. The order 

is from left to right as it is explained above. The last one, the rightmost image 

is with Poisson noise. 
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Table 5.1: Below are shown noise parameters for testing images. Same Poisson 

noise added to all levels. 

 Level I Level II  Level III 

Gaussian m=0.03 

var=0.01 

 

m=0.03 

var=0.02 

 

m=0.03 

var=0.03 

Salt&Peppper d=0.1 d=0.12 d=0.15 

 

Speckle var=0.12 var=0.22 var=0.28 

 

 

Level I has images with low level noise, but higher than the training images, while 

Level II has more noise ratio, and the Level III group contained the highest level of 

noise. As the neural networks perform better when their inputs are limited to a 

defined period of values, the pixels of the different sets of images were normalized to 

such that their values be limited to the interval [-1,1]. Each one of the images was 

converted to a vector containing 2500 elements to simplify the process of training 

and testing. Using the one dimensional representation of the images, the input matrix 

was built containing all training inputs and a target matrix was also prepared 

presenting one code for each image.  The input and output matrices can then be sent 

to the network to complete the training process. Related matlab codes for the 

generation of these images and for the testing-training of the ANN, can be found in 

Appendix B. 

For the second part of the thesis subset of 200 leaves (20 plants and 10 different 

leaves from each plant) from the Flavia Database is used to perform experiments. All 

the images are scaled to 50x50 gray scale images as in the first part. But in the 

second part of the experiments noise was not added. The same algorithm is tested to 

see the classification capacity. 7 images out of 10 are used for training and remaining 

3 are used for testing. The version of matlab code that is used for the second 

experiment can also be found in Appendix B. 
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5.4 Database Collection 

The first of all in this work was the data base collection. All the images where to 

collect from the trees of  plant center in Nicosia. The photos of leaves of 27 trees 

were collected using a digital camera. A distance of arbitrary cm was chosen 

between the camera’s lens and the leaves with perpendicular angle of shot. The 

photos were then matched up and processed using Photoshop program and Paint. The 

photos were arranged such that just the special features of the leaves appear in the 

picture.  Any empty spaces or other special features where manually removed from 

the photos. The preprocessing stage include changing the images to gray scale 

images, resizing images, normalization of images data, and adding noise to images as 

explained earlier in this chapter. In the training process of the neural network 9 sets 

of normal and noisy images were used. The first set represented the normal images of 

the leaf. The other sets were noised using MATLAB program. Different types of 

noises were used in the training like Gaussian and salt and pepper noise. 

After processing all images and preparing the input and output matrices, all  special 

features of training examples are introduced to ANN. The next weights of neural 

network that are provided from training stage will be used to test the network. The 

results are compared to original classes to get study of the system. 

5.5 General Experiment 

Various experiments were applied on the sets of images until arriving suitable 

parameters of the neural network in the training process. In the training process of 

the neural network, 9 sequences of normal and noisy images were used. The first 

sequence displayed the normal images of the leaves. The other sequences were 

noised using MATLAB program. Different examples of noises were used in the 

training like Gaussian and salt and pepper noise. The MATLAB code used for 

adding different examples of noise is added in Appendix A, An Example of the 

original and noisy images (salt and pepper noise with density 0.08) is shown in figure 

5.7.  As we can see from the figure, the noise added to the training images was low. 

The images of the figure 5.7 display the training example of the first, second, third, 

and fourth Leaves. These images were preprocessed before being fed to the network. 

The preprocessing of the images passes by different stages. The first stage after 

reading the image in RGB scale is to change it into gray scale image. The gray scale 
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image displays each pixel of the image by an unsigned eight bit integer (0-255). This 

count is the concentration of white color in the pixel. The pixel is black if its value is 

zero, increasing the value increase the white concentration until it maximum in the 

white color with the value of 255. In the RGB scale images each pixel is represented 

using 4 different values; each one of these three values represents the concentration 

of the 

 

 

 

 

 

 

    
 

Figure 5.7: Sample of the images used in the training (Alligator_pear, Apple, 

Benjamin1, Benjamin2). 

 

three base colors, red, green, and blue. Using the gray scale image reduces the image 

size by two thirds of its original RGB scale size. That operation reduces the 

calculation efforts continued by the program with absolutely no effect on the 

accuracy of the program. 

After the process of changing image scale, the size of the image has to be reduced to 

an acceptable size to make easier the operations on smaller images in addition to 

reduce the processing cost of the program. Figure 5.8 shows the original RGB image 
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and gray scale image. In figure 5.9 it can be seen the resized (50x50) image of the 

same leaf. 

 

Figure 5.8: Original RGB image and Gray scale image. 

 

 

Figure 5.9: Resized gray scale image. 

 

The resized image is after that normalized in order to limit the inputs of the ANN to 

[-1..1] range. This operation reduces the processing costs and learning time. The 

processed images must be tested and fed to the neural network such that the one leaf 

RGB image Gray scale image
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information is processed in each repetition. In the next repetition, an image of a 

different leaf should be represented to the network until the last image finish. After 

finishing all images, the operation must be repeated from the beginning until the 

network learns. In order to make easier the discussed operation, a small routine was 

written using MATLAB to provide each image’s pixels in a vector. The vectors are 

then providing in a big matrix which will be fed column by column to the network. 

The desired output of the network was chosen according to the input vector, in other 

words to the order which the training images are put to the input vector. During the 

training of the neural networks a target error was chosen to be 1* 410 , and the 

maximum epoch was chosen to be 1500. A stop condition of training is to reach one 

of these two parameters.  

In the target matrix the columns presents 

1. 'alligator_pear.jpg' 

2. 'apple.jpg' 

3. 'benjamin1.jpg' 

4. 'benjamin2.jpg' 

5. 'bottle_brush.jpg' 

6. 'bougainvillea.jpg' 

7. 'cherry_laurel.jpg' 

8. 'duranta_tree.jpg' 

9. 'false_poplar.jpg' 

10. 'ficus.jpg' 

11. 'gale.jpg' 

12. 'harrup.jpg' 

13. 'israel_rubber.jpg' 

14. 'kamkuat.jpg' 

15. 'Laurus_nobilis.jpg' 

16. 'lemon.jpg' 

17. 'mandarinorange.jpg' 

18. 'new_world_fruit.jpg' 

19. 'okuloptus.jpg' 

20. 'oleander.jpg' 

21. 'orange.jpg' 

22. 'passion_fruit.jpg' 

23. 'pitosporum.jpg' 

24. 'Psidium.jpg' 

25. 'Solanum_rantonetti.jpg' 

26. 'the_spindle_tree.jpg' 

27. 'zeytin.jpg' 

respectively. 
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5.6 Training process 

After many trials using different training parameters, the best parameters of the 

neural networks were found and the back-propagation (for the training Gradient 

Descent with momentum and adaptive learning method was used) process was 

started with following parameters 

Table 5.2: Training parameters of the ANN used for the first experiment. 

Number of input neurons 2500 

Number of neurons  for the first hidden layer 200 

Number of neurons  for the second hidden layer 240 

Number of output neurons 27 

Learning rate 0.05 

Momentum factor 0.9 

Error tolerance 1e-4 

Minimum performance gradient 1e-5 

Training time 169 second 

Max Epochs 1500 (reached) 

Target error 5* 710  

 

In the figure 5.6 the ANN architecture that was used can be seen. For the hidden 

layers logsig transfer functions are used whereas for the output layer linear transfer 

function is used for better resolution of the output values.  

 

 

Figure 5.10: Curve of the MSE during the training. 
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Figure 5.11: MATLAB interface of neural networks during training process. 

 

A recognition ratio of 100% was obtained during the training and no images were 

misrecognized. The fact that the error goal was very small ameliorates the results 

during the training process.  

After the end of training, single repetition test was applied to check the ability of 

trained network to recognize other than the training sequence.  The test was applied 

with three different groups of original images with different noise parameters. Each 

sequence contains 4 leaf images of each of the 27 trees. Table 5.3 displays the testing 

results of the Level I, Level II and Level III comparatively.  
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Recognition rate for the test of the first set of images, namely for Level I, was 97.2% 

where 105 images out of 108 were recognized. Concerning the second set, namely 

Level II, 99 images out of 108 were recognized rightly with a rate of 91.7% which 

seems to be a good rate given the high noise conditions. In the test of the third set, 

which was Level III, the system was able to recognize 86 images out of 108 images 

contained in the set, achieving a rather good recognition ratio of 79.6% given the 

existence of the high noise ratio. Each of the Level I, II and III contains 4 different 

images each having different types of noise. 

Table 5.3: Overall results for the Level I, II and III. 

Level I Level II Level III 

 

97.2% 

 

91.7% 

 

79.6% 

 

For the Flavia Database Subset experiments 7 images are separated for training and 3 

are separated for testing. Total 60 images are used for testing as there were 20 

different plants and from each 3 images are separated. Some parameters are updated 

from the original code that was used for noise experiments for the Flavia 

experiments. Error tolerance (net.trainParam.goal) was set to 1e-7 where as it was 

1e-4 for the noise experiments. Minimum performance gradient 

(net.trainParam.min_grad) was set to 1e-6 where as it was 1e-5. Finally epoch 

number (net.trainParam.epochs)  was set to 2000 for the Flavia experiments. The 

recognition rate was 95% (57 out of 60 test images were recognized). 
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5.7 Some results from other researches 

Below, in the table 5.4, it is given a collection of the recognition results along with 

the explanations about the method and the scale of the leaf database used in the 

research. The results shown in these researches are neither the best nor the worst 

results. But they are chosen on the bases of the diversity of the methods utilized in 

the recognition tests. The selection of these works is based on the work done by 

Amlekar et al [13].  

Table 5.4: Some recognition results from different recent researches 

Work Method Database Rate 

S. Gang Wu et al, 2007 [17] Morphological features 

and PNN 

32 different 

plant leaves 

90.3% 

S. Prasad et al, 2011 [18] Support vector machine 23 different 

plant leaves 

95% 

A. Ehsanirad, S. Kumar, 

2010 [19] 

Gray-Level Co-occurrent 

Matrix (GLCM) 

13 different 

plant leaves 

78.46% 

J. S. Cope et al, 2010 [20] Gabor Co-occurrences 32 different 

plant leaves 

85.16% 

The implemented method 

(noise experiments) 

50x50 leaf image fed to 

NN with Back propagation 

27 different 

plant leaves 

97.2% 

The implemented method 

(Flavia Subset experiments) 

50x50 leaf image fed to 

NN with Back propagation 

20 different 

plant leaves 

95% 

 

 

 

5.8 Summary 

In this chapter explanation about Leaves recognition is presented. The methodology 

for the training and for the testing of leaf images is explained. The recognition rates 

and results were also given and explained. This system used real-life images. The 

testing results show us this system can be used in real-time applications where 

detects leaves recognizes. This thesis illustrates that the characteristics of the selected 

parameters for neural network are feasible and practical in the classification of plant 

leaves. 
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CONCLUSIONS 

Leaves recognition has been discussed in different scientific papers and researches. It 

can contribute strongly in the science of plants classification. This work has been 

carried out in the goal of introduction of leaves identification or classification using 

ANNs. The neural networks have proved their ability to give high efficiency in 

different applications. A leaf recognition process must discuss two basic points; the 

fundamental of the most important special features of the leaf, and the recognition of 

these leaves or the classification of them. In neural networks, the networks tries to 

classify the sets of leaves based on their color concentration without doing any 

mathematical or statistical studies. From the experiments carried out in this thesis 

and the results obtained we conclude that the use of the neural network for leave 

recognition and plants classification was successful. The application of different 

noise on the leaves’ images has led to different recognition rates. Different 

experiments including training and test of networks have been carried out in this 

work.  In the training process 9 set of images were prepared and fed to the neural 

network. The process of back propagation has been started until an acceptable error 

was achieved. For the purpose of testing the obtained network’s efficiency with 

different images out of the training sets; 3 different groups of images were prepared 

with different noises. These groups were divided into Level I, II, and III containing 4 

sets of images each. These three groups were then fed to the network and their results 

were obtained. 100% out of the 243 training images were recognized correctly; 

whereas 104/108 images were recognized from the first group of images. That shows 

that the recognition rate was 97.2%. In the Level II group, 99 images out of 108 were 

recognized rightly with a rate of 91.7% which seems to be perfect under the high 

noise conditions. In the test of the Level III, the system was unable to recognize 22 

images out of 108 images contained in the set. The recognition ratio was 79.6% in 

this experiment, which is considered very high under high noise ratio parameters of 

images. For the Flavia Subset experiment recognition rate was 95%. 57 of the 60 

testing images were recognized correctly. Flavia database subset has provided a data 

set for testing the effect of the variations in the shape, texture and orientation on the 

recognition performance. The results obtained in this work proved that the use of 

ANN for classification of plants based on the images of their leave is a promising 
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idea. It is proving the ability to use neural networks for leave recognition tasks and 

for machine vision use in the classification process. 
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Appendix A 

Pictures of leaves used for noise experiments 

 

Alligator_pear 

 

Apple 

 

Benjamin1 

 

Benjamin2 

 

Boungainvillea 

 

Cherr_laurel 

 

Duranta_tree 

 

False_poplar 

 

Gale 

 

Carob 

 

Israel_rubber 

 

Kamkuat 

 

Mandarinorange 

 

New_world_fru it 

 

Okuloptus 

 

Oleander 

 

Orange 

 

Passion_fruit 

 

Pitosporum 

 

Solanum_rantonetti 
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Olive 

 

Bottle_brush 

 

Ficus 

 

Laurus_nobilis 

 

Lemon 

 

Psidium 

 

The_spindle_tree 
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Pictures of leaves used for Flavia databse subset experiments 

 

Pubescent 

bamboo 

Chinese horse 

chestnut 

 

Anhui Barberry 

 

Pure indigo Japanese maple 

Japan Arrow 

wood 

 

Tangerine 
Canadian poplar               

 

 

Golden rain tree 

Chinese cinnamon 

 

Big-fruited 

Holly 

 

Japanese 

cheesewood 

 

Winter sweet 

 

Camphortree 
 

Ginkgo, 

maidenhair tree 

 

Crape myrtle, 

Crepe myrtle 

Oleander 

 

Beale's barberry 

 

Castor aralia 

 

 

Ford Wood lotus 
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Appendix B 

The following is the matlab code written for generating training and the testing 

images for the noise experiments. 

%Creating noisy images for training and testing 

 

clear all; 

clc; 

clear; 

 

%list of trees 

 

 

leafnames={ 

'alligator_pear.jpg' 

'apple.jpg' 

'benjamin1.jpg' 

'benjamin2.jpg' 

'bottle_brush.jpg' 

'bougainvillea.jpg' 

'cherry_laurel.jpg' 

'duranta_tree.jpg' 

'false_poplar.jpg' 

'ficus.jpg' 

'gale.jpg' 

'harrup.jpg' 

'israel_rubber.jpg' 

'kamkuat.jpg' 

'Laurus_nobilis.jpg' 

'lemon.jpg' 

'mandarinorange.jpg' 

'new_world_fruit.jpg' 

'okuloptus.jpg' 

'oleander.jpg' 

'orange.jpg' 

'passion_fruit.jpg' 

'pitosporum.jpg' 

'Psidium.jpg' 

'Solanum_rantonetti.jpg' 

'the_spindle_tree.jpg' 

'zeytin.jpg' 

}; 

 

 

imgdir='/home/yucel/Downloads/Tezim/tez-matlab/50x50-gray/'; 

cd (imgdir); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%            adding noise for training data                   % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%sp noise with 0.01 

noisedir='sp-0.01'; 

mkdir(noisedir); 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

    img=imnoise(img,'salt & pepper',0.01); 
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    noisefname=strcat(imgdir,noisedir,'/',leafnames(i)); 

    imwrite(img,noisefname{1}); 

end 

 

 

%sp noise with 0.04 

noisedir='sp-0.04'; 

mkdir(noisedir); 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

    img=imnoise(img,'salt & pepper',0.04); 

    noisefname=strcat(imgdir,noisedir,'/',leafnames(i)); 

    imwrite(img,noisefname{1}); 

end 

 

%sp noise with 0.08 

noisedir='sp-0.08'; 

mkdir(noisedir); 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

    img=imnoise(img,'salt & pepper',0.08); 

    noisefname=strcat(imgdir,noisedir,'/',leafnames(i)); 

    imwrite(img,noisefname{1}); 

end 

 

 

%gaussian noise with 0.02 0.005 

noisedir='gs-0.005'; 

mkdir(noisedir); 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

    img=imnoise(img,'gaussian',0.02, 0.005); 

    noisefname=strcat(imgdir,noisedir,'/',leafnames(i)); 

    imwrite(img,noisefname{1}); 

end 

 

  

%gaussian noise with  0.02 0.01 

noisedir='gs-0.01'; 

mkdir(noisedir); 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

    img=imnoise(img,'gaussian', 0.02, 0.01); 

    noisefname=strcat(imgdir,noisedir,'/',leafnames(i)); 

    imwrite(img,noisefname{1}); 

end 

 

%speckle noise with 0.04 

noisedir='s-0.04'; 

mkdir(noisedir); 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

    img=imnoise(img,'speckle',0.04); 

    noisefname=strcat(imgdir,noisedir,'/',leafnames(i)); 

    imwrite(img,noisefname{1}); 

end 
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%speckle noise with  

noisedir='s-0.08'; 

mkdir(noisedir); 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

    img=imnoise(img,'speckle',0.08); 

    noisefname=strcat(imgdir,noisedir,'/',leafnames(i)); 

    imwrite(img,noisefname{1}); 

end 

 

%poisson noise 

noisedir='p'; 

mkdir(noisedir); 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

    img=imnoise(img,'poisson'); 

    noisefname=strcat(imgdir,noisedir,'/',leafnames(i)); 

    imwrite(img,noisefname{1}); 

end 

 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%            adding noise for testing data                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

imgdir='/home/yucel/Downloads/Tezim/tez-matlab/50x50-gray/'; 

cd (imgdir); 

 

%Group A 

 

%creating directories 

noisedir='A'; mkdir(noisedir); 

 

noisedir='A/1'; mkdir(noisedir); 

noisedir='A/2'; mkdir(noisedir); 

noisedir='A/3'; mkdir(noisedir); 

noisedir='A/4'; mkdir(noisedir); 

 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

     

    img1=imnoise(img,'gaussian',0.03, 0.01); 

    noisefname=strcat(imgdir,'A/1/',leafnames(i)); 

    imwrite(img1,noisefname{1}); 

     

     

    img2=imnoise(img,'salt & pepper',0.10); 

    noisefname=strcat(imgdir,'A/2/',leafnames(i)); 

    imwrite(img2,noisefname{1}); 

     

     

    img3=imnoise(img,'speckle',0.12); 

    noisefname=strcat(imgdir,'A/3/',leafnames(i)); 

    imwrite(img3,noisefname{1}); 
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    img4=imnoise(img,'poisson'); 

    noisefname=strcat(imgdir,'A/4/',leafnames(i)); 

    imwrite(img4,noisefname{1}); 

end 

 

%Group B 

 

%creating directories 

noisedir='B'; mkdir(noisedir); 

 

noisedir='B/1'; mkdir(noisedir); 

noisedir='B/2'; mkdir(noisedir); 

noisedir='B/3'; mkdir(noisedir); 

noisedir='B/4'; mkdir(noisedir); 

 

 

 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

     

    img1=imnoise(img,'gaussian',0.03, 0.02); 

    noisefname=strcat(imgdir,'B/1/',leafnames(i)); 

    imwrite(img1,noisefname{1}); 

     

     

    img2=imnoise(img,'salt & pepper',0.12); 

    noisefname=strcat(imgdir,'B/2/',leafnames(i)); 

    imwrite(img2,noisefname{1}); 

     

     

    img3=imnoise(img,'speckle',0.22); 

    noisefname=strcat(imgdir,'B/3/',leafnames(i)); 

    imwrite(img3,noisefname{1}); 

     

    img4=imnoise(img,'poisson'); 

    noisefname=strcat(imgdir,'B/4/',leafnames(i)); 

    imwrite(img4,noisefname{1}); 

end 

 

 

 

%Group C 

 

%creating directories 

noisedir='C'; mkdir(noisedir); 

 

noisedir='C/1'; mkdir(noisedir); 

noisedir='C/2'; mkdir(noisedir); 

noisedir='C/3'; mkdir(noisedir); 

noisedir='C/4'; mkdir(noisedir); 

 

 

 

for i=1:27 

    fname=strcat(imgdir,leafnames(i)); 

    img=imread(fname{1}); 

     

    img1=imnoise(img,'gaussian',0.03, 0.03); 

    noisefname=strcat(imgdir,'C/1/',leafnames(i)); 

    imwrite(img1,noisefname{1}); 



62 
 

     

     

    img2=imnoise(img,'salt & pepper',0.15); 

    noisefname=strcat(imgdir,'C/2/',leafnames(i)); 

    imwrite(img2,noisefname{1}); 

     

     

    img3=imnoise(img,'speckle',0.28); 

    noisefname=strcat(imgdir,'C/3/',leafnames(i)); 

    imwrite(img3,noisefname{1}); 

     

    img4=imnoise(img,'poisson'); 

    noisefname=strcat(imgdir,'C/4/',leafnames(i)); 

    imwrite(img4,noisefname{1}); 

end  

 

The following is the matlab code written for generating feed forward neural network 

for the training and the testing of the images. 

 

%Training and testing the ANN 

 

clear all; 

clc; 

clear; 

  

%list of trees 

 

leafnames={ 

'alligator_pear.jpg' 

'apple.jpg' 

'benjamin1.jpg' 

'benjamin2.jpg' 

'bottle_brush.jpg' 

'bougainvillea.jpg' 

'cherry_laurel.jpg' 

'duranta_tree.jpg' 

'false_poplar.jpg' 

'ficus.jpg' 

'gale.jpg' 

'harrup.jpg' 

'israel_rubber.jpg' 

'kamkuat.jpg' 

'Laurus_nobilis.jpg' 

'lemon.jpg' 

'mandarinorange.jpg' 
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'new_world_fruit.jpg' 

'okuloptus.jpg' 

'oleander.jpg' 

'orange.jpg' 

'passion_fruit.jpg' 

'pitosporum.jpg' 

'Psidium.jpg' 

'Solanum_rantonetti.jpg' 

'the_spindle_tree.jpg' 

'zeytin.jpg' 

}; 

 

imgdir='/home/yucel/Downloads/Tezim/tez-matlab/training-images/'; 

cd (imgdir); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%  9 training directories each with 27 images % 

%  243 samples of 50x50 images                % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% gs-0.005   

% gs-0.01  

% p   

% s-0.04   

% s-0.08   

% sp-0.01   

% sp-0.04   

% sp-0.08  

% without-noise 

 

traindirs={ 

'gs-0.005' 

'gs-0.01' 

'p' 

's-0.04' 

's-0.08' 

'sp-0.01' 

'sp-0.04' 

'sp-0.08' 

'without-noise' 

}; 
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%array of images  

img_matrix = zeros(2500,243); 

img_matrix_temp = zeros(2500,243); 

img_data = zeros(2500,1); 

 

%load train data 

sample=1; 

for j=1:9 

      

    for i=1:27 

        fname=strcat(imgdir,traindirs(j),'/',leafnames(i)); 

   

        img=imread(fname{1}); 

     

        x=1; 

        for r=1:50 

            for c=1:50 

                img_data(x,1)=img(c,r); 

                x=x+1; 

            end 

        end 

        

        img_matrix_temp(:,sample)=img_data(:,1); 

        sample=sample+1; 

         

     

     

    end 

end 

 

%normalize inputs to [-1..1], 

 

[img_matrix,PS] = mapminmax(img_matrix_temp,-1,1); 

 

 

 

    

%  output_vector size 27x243 
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output_vector=[eye(27) eye(27) eye(27) eye(27) eye(27) eye(27) 

eye(27) eye(27) eye(27)];   

 

 

%One hidden layer generally produces excellent results,  

%but you may want to try two hidden layers, if the results with one  

%are not adequate. Increasing the number of neurons in the hidden 

%layer 

%increases the power of the network,  

%but requires more computation and is more likely to produce 

%overfitting. 

      

         

% training functions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% trainlm  Levenberg-Marquardt 

% trainbr  Bayesian Regularization 

% trainbfg BFGS Quasi-Newton 

% trainrp  Resilient Backpropagation  

% trainscg Scaled Conjugate Gradient 

% traincgb Conjugate Gradient with Powell/Beale Restarts 

% traincgf Fletcher-Powell Conjugate Gradient 

% traincgp Polak-Ribiére Conjugate Gradient 

% trainoss One Step Secant 

% traingdx Variable Learning Rate Gradient Descent 

% traingdm Gradient Descent with Momentum 

% traingd  Gradient Descent 

 

% As a note on terminology, the term "backpropagation" is sometimes 

% used  

% to refer specifically to the gradient descent algorithm, 

% when applied to neural network training. 

%  

% Also, the multilayer network is sometimes referred to as a  

% backpropagation network. However, the backpropagation technique  

% that is used to compute gradients and Jacobians in a multilayer  

% network can also be applied to many different network 

%architectures.  

 

%for a single hidden layers uncomment the line below 
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%net = feedforwardnet(240,'traingdx'); 

       

%for 2 hidden layers uncomment the line below 

net = feedforwardnet([200 240],'traingdx'); 

  

  

 %net = patternnet([200 240],'traingdx'); 

  

% Feedforward networks often have one or more hidden layers of 

%sigmoid 

% neurons followed by an output layer of linear neurons. Multiple 

% layers of neurons with nonlinear transfer functions allow the 

% network to learn nonlinear relationships between input and output 

% vectors. The linear output layer is most often used for function 

% fitting (or nonlinear regression) problems. 

% On the other hand, if you want to constrain the outputs of a 

%network 

% (such as between 0 and 1), then the output layer should use a 

% sigmoid transfer function (such as logsig). This is the case 

% when the network is used for pattern recognition problems 

% (in which a decision is being made by the network). 

%  

    

% Transfer function of the hidden layers. incase single layer use 

%only 

% net.layers{1}.transferFcn 

 

 net.layers{1}.transferFcn = 'logsig'; 

 net.layers{2}.transferFcn = 'logsig'; 

 

 

% use logsig for output layer since values are 0 or 1 

% in case of a single hidden layer layers{2} is the output layer 

% in case of  2 hidden layers  layers{3} is the output layer         

% remember logsig(0) gives 0.5!!! 

% for this we must use purelin and also input must be normalized to 

%[-1..1] 

 

net.layers{3}.transferFcn = 'purelin'; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Training parameters                                              % 
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% with default values                                              %        

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% net.trainParam.epochs   1000 Maximum number of epochs to train              

% net.trainParam.goal 0 Performance goal                               

%net.trainParam.showCommandLine false Generate comm-line output                   

% net.trainParam.showWindow       true  Show training GUI                              

% net.trainParam.lr               0.01  Learning rate                                  

% net.trainParam.max_fail         6      Maximum validation failures                    

% net.trainParam.min_grad      1e-5  Minimum performance gradient                   

% net.trainParam.show 25 Epochs between disp (NaN for no displays) %  

% net.trainParam.time  inf    Maximum time to train in seconds                                                                                                 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Training parameters specific to traingdx with default values                                 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% net.trainParam.lr_inc        1.05  Ratio to increase learning rate                

% net.trainParam.lr_dec        0.7  Ratio to decrease learning rate                

% net.trainParam.max_fail      6  Maximum validation failures                    

% net.trainParam.max_perf_inc  1.04  Maximum performance increase                   

% net.trainParam.mc        0.9  Momentum constant                              

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Learning rate default 0.01 

net.trainParam.lr = 0.05; 

 

% Error tolerance, stopping criterion 

net.trainParam.goal = 1e-4;   

 

% Minimum performance gradient 

net.trainParam.min_grad = 1e-5; 

 

% Maximum number of epochs to train 

net.trainParam.epochs = 1500;  

 

net = configure(net,img_matrix,output_vector); 

      

  

% do not divide input data for validation and testing 
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net.divideFcn = ''; 

     

% trTraining record (epoch and perf) 

 

net=init(net); 

[net,tr] = train(net,img_matrix,output_vector); 

view(net) 

 

y = net(img_matrix); 

 

perf = perform(net,y,output_vector); 

       

%to save trained network to a file uncomment the following line 

save('/home/yucel/Downloads/Tezim/tez-matlab/training.mat','net'); 

 

%testing with original train input  

outputs = sim(net,img_matrix) ; 

dlmwrite('/home/yucel/Downloads/Tezim/tez-matlab/testing-train-

data.txt',outputs,'delimiter','\t','precision','%.2f'); 

 

% For windows 

%xlswrite('/home/yucel/Downloads/Tezim/tez-matlab/testing-train-

%data.xlsx',outputs); 

 

 

[maxout,idx_of_max]=max(outputs); 

n=size(maxout); 

myfile =fopen('/home/yucel/Downloads/Tezim/tez-matlab/testing-train-

data-idx.txt','wt'); 

match=0; 

 

for i=1:n(2) 

  check=mod(i,27); 

  if check == 0  

      check=27;  

  end 

  if idx_of_max(i) == check 

      match = match + 1;  

  end 

  fprintf(myfile,'%d %.3f %d\n',check, maxout(i),idx_of_max(i)); 

   



69 
 

end 

   

fprintf(myfile,'Recognition rate : %.3f %d of %d\n',((100 * match) / 

n(2)), match, n(2)); 

fclose(myfile); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                Testing 3 Groups I, II, III                      % 

%               Each group has 4 noise type                       % 

%           4x27 = 108 samples of 50x50 testing images            % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

 

uiwait(helpdlg('Training finished! Continue with testing!')); 

 

testdir='/home/yucel/Downloads/Tezim/tez-matlab/testing-images/'; 

 

test_matrix = zeros(2500,108); 

test_matrix_temp = zeros(2500,108); 

img_data = zeros(2500,1); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                 Testing for Level I                              % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% First load image data from files and feed to network 

sample=1; 

for i=1:27 

   noisefname=strcat(testdir,'A/1/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

     

   noisefname=strcat(testdir,'A/2/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 
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   noisefname=strcat(testdir,'A/3/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

     

   noisefname=strcat(testdir,'A/4/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

    

end 

 

%normalize inputs to [-1..1], 

 

[test_matrix,PS] = mapminmax(test_matrix_temp,-1,1); 

 

%testing with images from group A 

outputs = sim(net,test_matrix) ; 

dlmwrite('/home/yucel/Downloads/Tezim/tez-

matlab/testA.txt',outputs,'delimiter','\t','precision','%.2f'); 

 

% lets find the max values of the columns of the output vector 

% and the indices of the max values 

% where indices are the image numbers 

% since we test 4 instances of the same images but different noises 

% the ideal output vector should contain 4 1s in the form 

% of the descending scale! 

 

[maxout,idx_of_max]=max(outputs); 

n=size(maxout); 

myfile=fopen('/home/yucel/Downloads/Tezim/tez-matlab/testAmax-

idx.txt','wt'); 

match=0; 

 

for i=1:n(2) 

  if idx_of_max(i) == ceil(i/4)  

      match = match + 1;  

  end 

  fprintf(myfile,'%d %.3f %d\n',ceil(i/4), maxout(i),idx_of_max(i)); 
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end 

   

fprintf(myfile,'Recognition rate : %.3f %d of %d\n',((100 * match) / 

n(2)), match, n(2)); 

fclose(myfile); 

 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                    Testing for Level II                         % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% First load image data from files and feed to network 

 

sample=1; 

 

for i=1:27 

     

   noisefname=strcat(testdir,'B/1/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

     

     

   noisefname=strcat(testdir,'B/2/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

     

   noisefname=strcat(testdir,'B/3/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

     

   noisefname=strcat(testdir,'B/4/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 
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end 

 

%normalize inputs to [-1..1], 

 

[test_matrix,PS] = mapminmax(test_matrix_temp,-1,1); 

 

%testing with images from group B 

outputs = sim(net,test_matrix) ; 

dlmwrite('/home/yucel/Downloads/Tezim/tez-

matlab/testB.txt',outputs,'delimiter','\t','precision','%.2f'); 

 

 

% lets find the max values of the columns of the output vector 

% and the indices of the max values 

% where indices are the image numbers 

% since we test 4 instances of the same images but different noises 

% the ideal output vector should contain 4 1s in the form 

% of the descending scale! 

 

[maxout,idx_of_max]=max(outputs); 

n=size(maxout); 

myfile =fopen('/home/yucel/Downloads/Tezim/tez-matlab/testBmax-

idx.txt','wt'); 

match=0; 

 

for i=1:n(2) 

  if idx_of_max(i) == ceil(i/4)  

      match = match + 1;  

  end 

  fprintf(myfile,'%d %.3f %d\n',ceil(i/4), maxout(i),idx_of_max(i)); 

   

end 

   

fprintf(myfile,'Recognition rate : %.3f %d of %d\n',((100 * match) / 

n(2)), match, n(2)); 

fclose(myfile); 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%         Testing for Level III                                    % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

sample=1; 

for i=1:27 

     

   noisefname=strcat(testdir,'C/1/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

     

   noisefname=strcat(testdir,'C/2/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

     

   noisefname=strcat(testdir,'C/3/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

     

   noisefname=strcat(testdir,'C/4/',leafnames(i)); 

   img=imread(noisefname{1}); 

   img_data(:,1)=img(:);  

   test_matrix_temp(:,sample)=img_data(:,1); 

   sample=sample+1; 

    

end 

 

%normalize inputs to [-1..1], 

 

[test_matrix,PS] = mapminmax(test_matrix_temp,-1,1); 

 

%testing with images from group B 

outputs = sim(net,test_matrix) ; 

dlmwrite('/home/yucel/Downloads/Tezim/tez-

matlab/testC.txt',outputs,'delimiter','\t','precision','%.2f'); 
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% lets find the max values of the columns of the output vector 

% and the indices of the max values 

% where indices are the image numbers 

% since we test 4 instances of the same images but different noises 

% the ideal output vector should contain 4 1s in the form 

% of the descending scale! 

 

[maxout,idx_of_max]=max(outputs); 

n=size(maxout); 

myfile =fopen('/home/yucel/Downloads/Tezim/tez-matlab/testCmax-

idx.txt','wt'); 

match=0; 

 

for i=1:n(2) 

  if idx_of_max(i) == ceil(i/4)  

      match = match + 1;  

  end 

  fprintf(myfile,'%d %.3f %d\n',ceil(i/4), maxout(i),idx_of_max(i)); 

   

end 

   

fprintf(myfile,'Recognition rate : %.3f %d of %d\n',((100 * match) / 

n(2)), match, n(2)); 

fclose(myfile); 
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The following is the matlab code written for generating training and the testing 

images for the Flavia database subset experiments. 

 

%Training and testing the ANN 

clear all; clc; clear; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%Here you set parameters!!! 

tree_no = 20; %number of trees 

leaf_per_tree = 10; %leaf per tree 

train_no = 7; %number of leaves for training 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% % for yaprak8-gray-50x50/ 

% % 20 trees 

% % 10 copies of each leaf 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

rootdir='/home/yucel/Downloads/yaprak/yaprak8-gray-50x50/'; 

leafdirs={ 'directory1' 

           'directory2' 

           'directory3' 

           'directory4' 

           'directory5' 

           'directory6' 

           'directory7' 

           'directory8' 

           'directory9' 

           'directory10' 

           'directory11' 

           'directory12' 

           'directory13' 

           'directory14' 

           'directory15' 

           'directory16' 

           'directory17' 

           'directory18' 

           'directory19' 

           'directory20'}; 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%next these parameters will be calculated 

test_no = leaf_per_tree - train_no;  

%number of leaves for testing 

 

train_leaf_no = tree_no * train_no;  

%total number of leaves for training 

 

test_leaf_no = tree_no * test_no;   

%total number of leaves for testing 

 

fprintf('We have %d different trees.\n', tree_no); 

fprintf('We have %d different leaves per tree.\n', leaf_per_tree); 

fprintf('For train using %d leaves of each tree.\n', train_no); 

fprintf('For train using %d samples.\n', train_leaf_no); 

 

fprintf('For testing using %d leaves of each tree.\n', test_no); 

fprintf('For testing using %d samples.\n', test_leaf_no); 

fprintf('press any key\n'); 

pause; 

 

 

%array of images  

train_matrix = zeros(2500,train_leaf_no); 

train_matrix_temp = zeros(2500,train_leaf_no); 

temp_img_data = zeros(2500,1); 

test_matrix = zeros(2500,test_leaf_no); 

test_matrix_temp = zeros(2500,test_leaf_no); 

 

train_sample=1; 

test_sample=1; 

for j=1:tree_no 

    %enter tree dir 

     treedirname=strcat(rootdir,leafdirs{j},'/'); 

     %cd(treedirname); 

     fprintf('%s\n', treedirname); 

     %read leaves to matrix 

     %load train array 

    for i=0:train_no-1 

        fname=strcat(treedirname,num2str(i),'.jpg'); 

        fprintf('train %d: %s\n', train_sample,fname); 

        img=imread(fname); 
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        x=1; 

        for r=1:50 

            for c=1:50 

                temp_img_data(x,1)=img(c,r); 

                x=x+1; 

            end 

        end 

        train_matrix_temp(:,train_sample)= temp_img_data(:,1); 

        train_sample=train_sample+1; 

    end 

     

     %load test array 

    for i=train_no:leaf_per_tree-1 

        fname=strcat(treedirname,num2str(i),'.jpg'); 

        fprintf('test %d: %s\n', test_sample, fname); 

        img=imread(fname); 

        x=1; 

        for r=1:50 

            for c=1:50 

                temp_img_data(x,1)=img(c,r); 

                x=x+1; 

            end 

        end   

        test_matrix_temp(:,test_sample) = temp_img_data(:,1); 

        test_sample=test_sample+1; 

    end 

end 

 

%normalize inputs to [-1..1], for training 

%mapminmax works on rows!!!!! 

%for this reason work on transpose matrix!!!! 

[transpose_train_matrix,PS] = mapminmax(train_matrix_temp',-1,1); 

train_matrix = transpose_train_matrix'; 

 

%normalize inputs to [-1..1], for testing 

 

[transpose_test_matrix,PS] = mapminmax(test_matrix_temp',-1,1); 

 

test_matrix = transpose_test_matrix'; 
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output_vector=zeros(tree_no , tree_no * train_no); 

 

%first -1 everywhere 

for i=1:tree_no 

  for j=1:(tree_no * train_no) 

        output_vector(i, j)= -1; 

  end 

end 

 

%then put 1s for the train image like a steps of a scale 

row = 1; 

ones = 0; 

  for j=1:(tree_no * train_no) 

    if (ones ~= train_no)  

        output_vector(row, j)= 1; 

        ones = ones + 1; 

    else 

        row = row + 1; 

        output_vector(row, j)= 1; 

        ones = 1; 

    end 

end 

%One hidden layer generally produces excellent results,  

%but you may want to try two hidden layers, if the results with one  

%are not adequate. Increasing the number of neurons in the hidden 

%layer 

%increases the power of the network,  

%but requires more computation and is more likely to produce 

%overfitting.     

         

% training functions 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% trainlm  Levenberg-Marquardt 

% trainbr  Bayesian Regularization 

% trainbfg BFGS Quasi-Newton 

% trainrp  Resilient Backpropagation  

% trainscg Scaled Conjugate Gradient 

% traincgb Conjugate Gradient with Powell/Beale Restarts 

% traincgf Fletcher-Powell Conjugate Gradient 
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% traincgp Polak-Ribiére Conjugate Gradient 

% trainoss One Step Secant 

% traingdx Variable Learning Rate Gradient Descent 

% traingdm Gradient Descent with Momentum 

% traingd  Gradient Descent 

 

% As a note on terminology, the term "backpropagation" is sometimes 

%used  

% to refer specifically to the gradient descent algorithm, 

% when applied to neural network training. 

% Also, the multilayer network is sometimes referred to as a  

% backpropagation network. However, the backpropagation technique  

% that is used to compute gradients and Jacobians in a multilayer  

% network can also be applied to many different network 

%architectures.  

 

%for a single hidden layers uncomment the line below 

%net = feedforwardnet(300,'traingdx'); 

       

%for 2 hidden layers uncomment the line below 

 net = feedforwardnet([200 240],'traingdx'); 

  

% Feedforward networks often have one or more hidden layers of % 

%sigmoid 

% neurons followed by an output layer of linear neurons. Multiple 

% layers of neurons with nonlinear transfer functions allow the 

% network to learn nonlinear relationships between input and output 

% vectors. The linear output layer is most often used for function 

% fitting (or nonlinear regression) problems. 

% On the other hand, if you want to constrain the outputs of a % 

%network 

% (such as between 0 and 1), then the output layer should use a 

% sigmoid transfer function (such as logsig). This is the case 

% when the network is used for pattern recognition problems 

% (in which a decision is being made by the network). 

% Transfer function of the hidden layers.  

% incase single layer use only 

net.layers{1}.transferFcn = 'logsig'; 

net.layers{2}.transferFcn = 'logsig'; 

 

% use logsig for output layer since values are 0 or 1 
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% in case of a single hidden layer layers{2} is the output layer 

% in case of  2 hidden layers  layers{3} is the output layer         

% remember logsig(0) gives 0.5!!! 

% for this we must use purelin and also input must be normalized to 

%[-1..1] 

 

net.layers{3}.transferFcn = 'purelin'; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Training parameters with default values                                               

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% net.trainParam.epochs  1000  Maximum number of epochs to train 

% net.trainParam.goal  0   Performance goal 

% net.trainParam.showCommandLine  falseGenerate comm-line output                   

% net.trainParam.showWindow       true  Show training GUI                              

% net.trainParam.lr               0.01  Learning rate                                  

% net.trainParam.max_fail         6      Maximum validation failures                    

% net.trainParam.min_grad   1e-5  Minimum performance gradient                   

% net.trainParam.show  25 Epochs between displays (NaN for no 

%displays)   

% net.trainParam.time  inf    Maximum time to train in seconds                                                                                          

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Training parameters specific to traingdx with default values     % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% net.trainParam.lr_inc  1.05  Ratio to increase learning rate                

% net.trainParam.lr_dec  0.7  Ratio to decrease learning rate                

% net.trainParam.max_fail    6  Maximum validation failures                    

% net.trainParam.max_perf_inc  1.04  Maximum performance increase                   

% net.trainParam.mc         0.9  Momentum constant                              

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%         

% default 0.9  Momentum constant 

% net.trainParam.mc = 0.85;        

 

% Learning rate default 0.01 

net.trainParam.lr = 0.05; 

 

% Error tolerance, stopping criterion 

net.trainParam.goal = 1e-7;   

 

% Minimum performance gradient 

net.trainParam.min_grad = 1e-6; 
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% Maximum number of epochs to train 

net.trainParam.epochs = 2000;  

 

net = configure(net,train_matrix,output_vector); 

  

% do not divide input data for validation and testing 

net.divideFcn = ''; 

     

% trTraining record (epoch and perf) 

net=init(net); 

[net,tr] = train(net,train_matrix,output_vector); 

view(net) 

 

y = net(train_matrix); 

 

perf = perform(net,y,output_vector); 

       

%to save trained network to a file uncomment the following line 

save('/home/yucel/Downloads/yaprak/training.mat','net'); 

 

%testing with original train input  

outputs = sim(net,train_matrix) ; 

dlmwrite('/home/yucel/Downloads/yaprak/testing-train-

data.txt',outputs,'delimiter','\t','precision','%.2f'); 

 

% For windows 

% xlswrite('/home/yucel/Downloads/Tezim/tez-matlab/testing-train-

data.xlsx',outputs); 

 

[maxout,idx_of_max]=max(outputs); 

n=size(maxout); 

myfile =fopen('/home/yucel/Downloads/yaprak/testing-train-data-

idx.txt','wt'); 

match=0; 

 

for i=1:n(2) 

  check=ceil(i/train_no); 

  if idx_of_max(i) == check 

      match = match + 1;  

  end 
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  fprintf(myfile,'%d %.3f %d\n',check, maxout(i),idx_of_max(i)); 

   

end 

   

fprintf(myfile,'Recognition rate : %.3f %d of %d\n',((100 * match) / 

n(2)), match, n(2)); 

fclose(myfile); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                          Testing                                % 

%       test_no x tree_no samples of 50x50 testing images         % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

uiwait(helpdlg('Training finished! Continue with testing!')); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%                           Testing                               % 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%testing with images 

 

% to test the process use train_matrix and uncomment the following 

%line for 

% debugging puposes!!! 

% outputs = sim(net,train_matrix) ; 

 

outputs = sim(net,test_matrix) ; 

dlmwrite('/home/yucel/Downloads/yaprak/test.txt',outputs,'delimiter'

,'\t','precision','%.2f'); 

 

% lets find the max values of the columns of the output vector 

% and the indices of the max values 

% where indices are the image numbers 

% since we test 4 instances of the same images but different noises 

% the ideal output vector should contain 4 1s in the form 

% of the descending scale! 

 

[maxout,idx_of_max]=max(outputs); 

n=size(maxout); 

myfile =fopen('/home/yucel/Downloads/yaprak/testmax-idx.txt','wt'); 

match=0; 
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for i=1:n(2) 

  if idx_of_max(i) == ceil(i/test_no)  

      match = match + 1;  

  end 

  fprintf(myfile,'%d %.3f %d\n',ceil(i/test_no), 

maxout(i),idx_of_max(i)); 

end 

   

fprintf(myfile,'Recognition rate : %.3f %d of %d\n',((100 * match) / 

n(2)), match, n(2)); 

fclose(myfile); 
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