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ABSTACT 

Mathematics has always benefited from its involvement with developing

science, each successive interaction revitalizes and enhances the field.

Biomedical science is clearly the premier science of the foreseeable

future.This work introduces a mathematical models for biological systems,

and presents the mathematical theory and techniques useful in analyzing

those models. Material is organized according to the mathematical theory

rather than the biological application. Undergraduate courses in calculus,

linear algebra, and differential equations are assumed. In this thesis, We

first describe the prey- predator model and how differential equations

relates to prey- predator. We consider Lotka-Volterra' s model, Lotka­

Volterra model as a classical application of mathematics in biology, models

based on differential equations for interactions between species, comprising

a set of two ordinary differential equations governing the local dynamics

present of prey and predator densities.

Analysis of the equations resulting from the introduction of a time lag in the

response of the predator to changes in the prey population shows an arrey

of possible solutions . The form of the solution is dependent upon the size

of the time lag and the ratio of the equilibrium value for the prey population

in the absence of predation to the equilibrium value with predation.While

the equations analysed in this thesis were assumed to have terms, It is

possible to introduce non linear interactions. Once reasonable values are

known for the many parameters, population equations of this degree of

complexity are most easily handled by approximation on a computer

Keywords: Prey; Predator; Model; Equilibrium; Maturity; Stability;

Analysis and Population
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ÖZET 

Bilimi geliştirmede Matematiğin herzaman büyük katkıları olmuştur.

Birbirini izleyen her bir etkileşim canlılık kazandırır ve saha artırır.

Biyomedikal bilim gerçekten öngörülebilir gelecekte en önde gelen

bilimdir. Bu çalışma, biyolojik sistemler için matematiksel modeller

tanıtmaktadır ve bu modellerin analizinde yararlı matematiksel teori ve

teknikleri sunmaktadır. Bu çalışmanın içeriği biyolojik uygulamadan ziyade

matematiksel teoriye göre düzenlenmiştir. Analiz , lineer cebir ve

diferansiyel denklemler dersleri temel olarak alınarak bu tez yazılmıştır. İlk

olarak bu çalışmada av-avcı modelini tanımladık. Sonra diferansiyel

denklemlerle nasıl ilişkili olduğunu açıladık. Av ve avcı yoğunlukları

mevcut yerel dinamiklerin yöneten iki adi diferansiyel denklemlerin bir dizi

içeren biyoloji, matematik, türler arasındaki etkileşimleri diferansiyel

denklemler dayalı modeller, klasik bir uygulama olarak Lotka-Volterra

modeli örnek alınarak bu tez geliştirilmiştir. Av popülasyonunda

değişikliklere avcının karşılık olarak bir zaman aralığı dahil edilmesinden

kaynaklanan denklemlerinin analizi ve çözümleri bu tezin ana konusudur.

Çözümün formu zaman gecikmesinin boyutu ve avlanma ile denge değerine

avlanma yokluğunda av nüfus için denge değerinin oranına bağlıdır. Bu

tezde analiz edilen denklemlerde koşullar kabul ederken, bu doğrusal

olmayan etkileşimlerle karşılaşmak mümkündür. Uygun değerler, birçok

parametre için biliniyor olsa da, karmaşıklıklığın bu seviyesindeki nüfus

denklemleri kolayca bir bilgisayar yardımıyla çözüm bulacağımızı bu tezde

işlemiş bulunmaktayız.

Anahtar Kelimeler: Av; Ave;, Model; Denge; Olgunluk; Kararlılık; Analiz

ve Nüfus
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CHAPTER 1 

INTRODUCTION 

In this chapter, definition of mathematical model, latest development,

limitations and some definitons dealing with the predator-prey models are

discused. Then a description of what the predator-prey model is, and also

how differential equations relate to predator-prey.

In chapter 2, fucus on the study of the predator-prey model which are

Lotka-Volterra models was made, where two species are involved in the

interaction.Thus, the differential equations describing the population

dynamics must have two unknown variables which are x(t) for prey and y(t)

for the predator, creating a system of differential equations. These dynamics

present two times. We then study this model and its equilibrium points and

also the stability analysis. finally, the effect of introducing time lags into

the equations for the growth of the prey and non linear functions for the

prey-predator interaction is considered, it could be seen that these equations

swiftly become too difficult for analytical methods. However, the stability

analysis for the steady state point is to be comsidered.
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1.1 Some Definitions 

1.1.1 What is Mathematical Modeling? 

Mathematical modeling is the application of mathematics to describe and

investigate an important questions that arise from it in a real-world

problems (Banerjee, 2014).

In the 1920's Vito Volterra was asked whether it would be possible to

explain the fluctuations that had been observed in the fish population of the

Adriatic sea- fluctuations that were of great concern to fishermen in times

of low fish populations(Doust & Gholizade, 2014). Volterra in 1926

constructed the model that has become known as the Lotka-Volterra model

(because A.J. Lotka (1925) constructed a similar model in a different

context about the same time), based on the assumptions that fish and sharks

were in a predator-prey relationship(Brauer & Castillo-Chavez, 2012). A

mathematical model, as stated, is a mathematical description of a real life

situation. So, if a mathematical model can reflect or mimic the behavior of

a real life situation, then we can get a better understanding of the system

through proper analysis of the model using appropriate mathematical tools.

Moreover, in the process of building the model, we discover various factors

which govern the system, factors which are most important to the system

and that reveal how different aspects of the system are related.

Mathematical modeling is an area of great development and research. In

recent years, mathematical models have been used to validate hypotheses

made from experimental data, and at the same time the designing and

testing of these models has led to testable experimental predictions. There

are impressive cases in which mathematical models have provided fresh

insight into biological systems, physical systems, decision making

problems, space models, industrial problems, economical problems and so

2 



forth. The development of mathematical modeling is closely related to

significant achievements in the field of computational

mathematics(Banerjee, 2014). Real-world systems are complex and a

number of inter-related components are involved. Since models are

abstractions of reality, a good model must try to incorporate all critical

elements and inter-related components of the real-world system. This is not

always possible. Looking at a limitations of mathematical model, an

important inherent limitation of a model is created by what is left out.

Problems arise when key aspects of the real-world system are inadequately

treated in a model or are ignored to avoid complications, which may lead to

incomplete models. Other limitations of a mathematical model are that they

may assume the future will be like the past, input data may be uncertain or

the usefulness of a model may be limited by its original purpose.

1.01.2 Modeling cycle; 

,'1odifı.ca.cioctı

I No I , ..::.._:Y.«'l,:::__11 Verificn:Lion

Figure 1.1: Modeling Circle
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1.2 What is the Predator-Prey Model? 

There are many instances in nature where one specie of animals feeds on

another specie(s) of animal(s), which in tum feeds on other things. The first

specie is called the predator and the second is called the prey.

Theoretically, the predator can destroy all the prey so that later it becomes

extinct. However, if this happens the predator will also become extinct

since, as we assume, it depends on the prey for its existence.

Predator-prey modeling is a population modeling with two distinct

populations, one of which is a source of food for the other.

1.3 Differential Equations and how it Relates to Predator-Prey 

The differential equations are very much helpful in many areas of science.

But most of interesting real life problems involve more than one unknown

function. Therefore, the use of system of differential equations is really

useful.

One of the most interesting applications of sytems of differential equations

is the prey-predator problem. In this thesis without loss of generality, we

will concentrate on sytems of two differential equations and we will

consider an environment containing two related populations a prey

population, such as rabbits and a predator population, such as foxes.

Clearly, it is reasonable to expect that the two populations react in such a

way as to influence each other's size (Casillas etal., 2002).

4 



1.4 A General Predator-Prey Model 

LIBRARY 

Consider two populations whose sizes at a reference time t are denote by

x(t), y(t), respectively. The functions x and y might denote population

numbers or concentrations (number per area) or some other scaled measure

of the populations sizes, but are taken to be continuous functions. Changes

in population size with time area described by the time derivatives x = ::
and y = dy , respectively and a general model of interacting populations is

dt 

written in terms of two autonomous differential equations:

x = xf(x,y) 

y = yg(x,y) 

(i.e the time t does not appear explicitly in the functions xf (x, y) and

yg(x, y)). The functionsf and g denote the respective "per capita growth

rates of two species". It is assumed that df(x,y) < O and dg(x,y) > O. This
dy dx 

general model is often called Kolmogorov's prey-predator model

(Hoppensteadt, 2006).

1.5 Exponential Growth 

Under simplified conditions, such as a constant environment (and with no

migration), it can be shown that change in population size (N) through time

(t) will depend on the difference between individual birth rate (b0) and

death rate (d0), and is given by:

5



dN = (ho - do) N 
dt 

(1. 1)

where:

h0 = instantaneous birth rate, births per individual per time period (t). 

d0 = instantaneous death rate, deaths per individual per time period

(t) and N = current population size.

The difference between birth and death rates (h0 - d0) is also called r, the

intrinsic rate of natural increase, or the Malthusian parameter. It is the

theoretical maximum number of individuals added to the population per

individual per time. By solving the differential equation 1. 1 we get a

formula to estimate a population size at any time:

(1.2)

where approximately e = 2.718 ...

This equation shows us that if birth and death rates are constant, population

size will grow exponentially. If you transform the equation to natural

logarithms (In), the exponential curve becomes linear, and the slope of that

line can be shown to be r : 

In(N) = In(N0) + In(ert) (1.3)

6



and

r = [In(N) - In(N0) ]/t (1 .4)

where In(e) = 1. The population growth rate, r, is a basic measure in

population studies, and it can be used as a basis of comparison for different

populations and species.

1.6 Fixed Points or Critical Points (Sometimes Called an Equilibrium 

Points) 

A fixed point of a dynamical system is a state vector x such that if the

system is ever in the state x, it will remain in that state for all time

(Scheinennan, 2007)

1.7 Stability of an Equilibrium Points 

Let -11 and A2 be the eigenvalues of an equilibrium point (x,y), then the

fixed point is

1.7.1 Stable; 

(a) if Re(-11) < O and Re( -12) < O (Re(A)denotes the real part of A),

then the trajectories form a stable node.

(b) If ,11 and -12 are complex conjugate pair, the trajectories form a stable

focus.(Louzoun & Solomon, 2001)

7



1.7.2 Node; 

If A1 and Az are of the same signs.

1.7.3 Spiral; 

If both A1 and Az are complex conjugate with non zero real parts. The

spiral is locally stable if the real parts of the eigenvalues are negative, and

unstable if the real parts of the eigenvalues are positive.

1.7.4 Unstable; 

If A1 and Az are real and positive.

1. 7 ,5 A Saddle Point; 

if A1 and Az are real and have opposite signs. a saddle is unstable(Louzoun

& Solomon, 2001)

1.7.6 A centre; 

if Aı and Az are purely imaginary(Louzoun & Solomon, 2001).

In other words, for asymtoticity, a fixed point is said to be stable if the

system at any point x0 near x (the fixed point) is converging to

x.marginally stable or neutral if foe all starting points x0 near the fixed

point x the system stays near it but never converge to it, while it is unstable

if it is neither stable no marginally stable. These are illustrated by figure

respectively(Scheinerman, 2007)

8
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Figure 1.2: Stable, Marginal and unstable

1.7.7 Limit Cycle; 

Is a closed trajectory that is eventually reached by a system. It occurs only

in a non linear system.

1.8 Logistic Growth 

We need to modify the basic equation 1. 1 so that birth and death rates are

no longer constants through time, but decrease and increase respectively as

population size increases :

(1.5)

where kb and kct are the density-dependent birth and death rate constant

respectively. This equation predicts that a population will stop growing

(zero population growth) when birth rate equals death rate, or:

9



(1.6)

This can be converted into an equation showing the size at which the

population reaches a steady state:

(1 .7)

The value of N when the population is at steady state is the carrying

capacity of the environment, or K. This can be simplified:

(1.8)

Since b0 - d0 = r, If we combine this new form of the carrying capacity

equation with 1.5 we get the familiar form of the logistic growth

equation(Toronto, 1997).

dN = rN [(K-N)]. 
dt K 

(1.9)

10



1.9 Taylor Series: 

A Taylor series is a series representation (expansion) of a function about a

point. A one dimensional Taylor series expansion of a real function g (x) 

about a point x = a is given by

g"(a) gC3)(a)
g(x) = g(a) + (x - a)g'(x) + (x - a)2 ...,, + (x - a)3 -· + ... 

+(x - ar 9Cn)(a) + ... 
n! 

(1. 10)

1.10 Exponential Decay: 

If a quantity decreases at a rate proportional to its value, then it is said to be

subject to exponential. Symbolically, this process can be modeled by the

differentiam equation below where N is the quantity and A (lambda) is a

positive constant called the decay constant:

dN = -AN. 
dt 

(1.11)

The solution to this equation is:

(1.12)

Here N(t) is the quantity at time t, and N0 = N(O) is the initial quantity,

i.e the quantity at time t = O.

1.11 Delay Model: 

In general, if we consider a population to be governed by

11



dN = f(N) 
dt 

(1.13)

where typically f (N) is a nonlinear function of N. 

One of the deficiencies of single population models like 1.13 is that the

birth rate is considered to act instantaneously whereas there may be a time

delay to take account of the time to reach maturity, the finite gestation

period and so on. We can incorporate such delays by considering delay

differential equation models of the form

dN = f (N(t), N(t - T)), 
dt 

(1.14)

where T > O , the delay is a parameter .

12



CHAPTER2 

LITERATURE REVIEW 

2.1 Models 

In this chapter, fucus on the study of the predator-prey model which are

Lotka-Volterra models was made,where two species are involved in the

interaction. Thus, the differential equations describing the population

dynamics must have two unknown variables which are x(t) for prey and y(t)

for the predator, creating a system of differential equations. These dynamics

present two times. We then study this model and its equilibrium points and

also the stability analysis.

2.2 Lotka Volterra Model 

The Lotka-Volterra equations,in other words the prey-predator equations,

are pair of non-linear fırst-order,ordinary differential equations usually

used to describe the dynamics of biological systems in which two species

interact,where one is predator and the other is a prey. The equations were

proposed independently by Alfred J. Lotka in 1925 and Vito Volterra in

1926 as stated in the previious chapter.

The model describes the following;

1. How the population of the prey changes

2.Shows the changes in predator population.

All with respect to time according to the pair of equations below:

13



dx = x(aı - /3ıY)
dt 

( 2.1)

dy 
dt = y(-a2 + f32x)

where

x represent the number of prey

y the number of predator

dy 

dt 
and :: represent the growth rate of the two populations with

respect to time t.

and also,

a:1, a:2,/31 and /Jz are positive constants representing the interaction of

the two species.

2.3 The Physical Meanings of the Models 

The equations could take more usefull farın when multiplied out for

interpretation physically, considering the origin from a general framework,

14



dx 
dt = xf(x,y)

(2.2)

dy 
dt = yg(x,y)

where both functions represent per capita growth rates of the prey and

predator respectively.

Because these functions are in general form, a Taylor series approximation

is performed to come up with a linearized per capita rates,

f(x,y) = P - Qx - Ry

(2.3)

g(x,y)=S+Tx-Uy

The signs of the coefficients were from an assumptions of population

regulation, and by choosing non zero coefficients apporopriately, an

ecologist can obtain prey-predator competition, disease and mutualism

models that provide general insight into ecological systems.

The following are some assumptions made:

1. There is an ample food for the prey population at all times

15



2. The predator population depends entirely on the prey populations for

its food

3. The rate of change of population is proportional to its size

4.There is no change in favour of any specie and the genetic adaptation

is sufficiently slow by the environment during the process.

2.4 Prey 

The prey equation becomes

dx dt = aıx - /3ıXY (2.4)

The prey are assumed to have an unlimited food supply and to reproduce

exponentially unless subject to predation, this exponential growth is

represented in the equation above by the term a1 x. The rate of predation

upon the prey is assumed to be proportional to the rate at which the

predators and the prey meet this is represented above by {31xy, if either x or

y is zero then there can be no predation.

With these two terms the equation 2.4 above , can be interpreted as:the

change in the prey's population given by its own growth minus the rate at

which it is preyed upon.

16



2.5 Predators 

The predator equation becomes

dy = -azy + /32XY 
dt 

(2.5)

In this equation, {32xy represents the growth of the predator population by

interacting with the prey, a2y represents the natural death of the predators

which is in the absense of the prey, it is an exponential decay.

Hence the equation represents the change in the predator population as the

growth of the predator population minus natural death.

2.6 The Dynamics of the System 

According to the system, the population of predators increases when there

are many prey to feed on, but ultimately, outstrip their food supply and

decline. As the population of the predator is low the prey population will be

higher. These dynamics continue in a pattern of growth and decline.

2. 7 Equilibrium Analysis 

When neither of the population levels is changing then the population

equilibrium occurs in the model, in other words, when both of the

derivatives are equal to O. Thus, for the prey-predator model above, we

equate the derivatives to zero

17



dx = O 
dt 

dy = O. 
dt 

and

It results in a system of non linear algebraic equations to solve.let (x, y) be

the equilibrium solutions for the prey and predator populations respectively,

then the system of algebraic equations that need to be solved is given by

x(a1 - {31y) = O

y(-a2 + {32x) = O 

The solutions are of the forms;

(x = O, y =O)

and

Hence, two equilibria exist.The first solution effectively shows the

extinction of both the prey and the predator.which means If both

populations are at O, then it will continue to be so indefinitely.And the

second solution represents a fixed point at which both populations of the

18



species sustain a current, non-zero numbers, and in the simplified model,

also so indefinitely. The levels of population at which this equilibrium is

achieved depend on the chosen values of the parameters a1, a2, {31 and {32.

2.8 Stability of the Fixed Points 

By performing a linearization using partial derivatives the stability of the

fixed point at the origin is determined. while a more slight sophisticated

method could be employed for the other fixed point.

Jacobian matrix is used below for the prey-predator model,

r

at 
ax 

J(x,y) = ag 
ax 

Consider the first fixed point;

When evaluated at the steady state of (O, O), the Jacobian matrix J

becomes

[a1 O ]j(O,O) = o -a2 .

19



The eigenvalues of this matrix are .?t.1 = a1 and .?t.2 = -a2 • In the

model a1 and a2 are always greater than zero, and as such the sign of the

eigenvalues above will always differ. This shows that fixed point at the

origin is a saddle point.

This fixed point has a sigmificant stability. If it were stable, non-zero

populations might be attracted towards it, and as such the dynamics of the

system might lead towards the extinction of both species for so many cases

of initial population levels. However, as the fixed point at the origin is a

saddle point, and hence unstable, This shows that in the model,the

extinction of both species is very hard. (In fact, this is only possible if the

prey are completely eradicated artificially, which causes the predators to die

of starvation. When the predators are eradicated,there will be a growth in

prey's population without bound.

Consider the second fixed point;

Evaluating J at the second fixed point we get

_ /31a21
/32

o

which yields the two complex conjugate eigenvalues .?t.1 = i-ı./a1a2 and

.?t.2 = -i-Ja1a2. The real parts of these two eigenvalues are both equal to O.

Thus the linear stability analysis is inconclusive. It turns out that the

20 



equilibrium is neutral stable and this system of equations exhibits neutral

oscillations (Wiens, 2010).

2.9 Consumer-Resource Model (a non linear system) 

Consider the following non linear, autonomous systems of the form

where each of the functions [;_ i=1,2,3, ... ,n are real-valued functions inn

variables.in the analysis the restriction is on system of two variables..

21



2.10 The Stability Analysis Of The Equilibria 

Consider the system of two autonomous differential equations

dx 
dt = f(x,y)

(2.6)

dy
dt = g(x,y)

The first step is to find the equations of the zero isoclines (for finding the

equilibrium point), which are defined as the set of points that satisfy

O= f(x,y)

O= g(x,y)

Each equation results in a curve in the x-y space. Point equilibria occur

where the two isoclines intersect Figure 2.1. A point equilibrium (x, y) of

2.6 therefore simultaneously satisfies the two equations

f(x,y) = o and g(x,y) = o
22



The equilibrium is simply called "equilibria".

y 
f(x,y) = O

Equilibrium

g(x,y) = O

Figure 2.1: Zero isoclines corresponding to the two differential equations.

Equilibria occur where the isoclines intersect.

The stability from an analytical approach relies on analysis of the effects of

small perturbations. If the system returns to (x, y) after a small

perturbation then the equilirium (x, y) is locally stable, otherwise unstable.

Mathematically, the analysis can be made through linearization of the right­

hand side of each the two differential equations in 2.6 about the

equilibrium.

The equations 2.6 can be written in matrix forın as follows

23



d [X (t)] [f (X, Y)]
dt y(t) = g(x,y)

The right-hand side is a vector-valued function that maps a point in R2 into

a point in R2. Linearizing a vector-valued function means linearizing each

component separately. Also linearizing a function of two variables about a

specific point means finding the tangent plane at that point (which, of

course, may not always be possible). The equation of a tangent plane of

f(x,y) about (x, y) is;

af(x,y) aıcx,y)
a(x,y) = f(x,y) + ax (x - x) + ay (y-y)

We thus find for the linearization of the vector-valued function[;~::~~]

[

af(x,y)
a(x,y) f(x,y) ax[,ecx,y)] = [g(x,y)] + ag(x,y)

ax

aıcx,y)l
ay (x - x)

ag(x,y) [cy-y)]
ay

Now, considering ( = x - x and r, = y - y the perturbations, then with

f (x, y) = O and g(x, y) = O, we find
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[
d(l [ af(x.SJ)
dt - ax
drı - a9cx.SJ)
dt ax

af(x,y)l
ag~~S) [~]

ay 

The matrix

[

af(x,y)
ax

J(x,y) = ag(x,y)

ax

is called the Jacobian matrix.

(2.7)

af(x,y)l
ay

ag(x,y)
ay

The system 2.7 is a linear system of two equations, and we can use the

results from linear systems of two differential equations to determine the

stability of the equilibria.

2.11 The Density Model:- Dependent Growth of the Prey 

To stabilize the prey-predator model a density-dependant growth of the

prey in the form of logistic growth can be included. Which takes the form
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dX ( X)- = Rx 1 - - - Sxy
dt K

(2.8)

dy = Txy- Uy
dt

where all parameters are positive. In the absence of the predator, the prey

dynamics reduce to logistic growth in 2.8. Namely, if we set y = O, then

The system of equations 2.8 has the nontrivial equilibrium (0,0), which is

always unstable. In addition, it has the prey only equilibrium (K, O), which

is locally stable provided K < .!!.... . If K > .!!.... , an additional nontrivial
TS TS

equilibrium in the first quadrant appears, which is locally stable. If K > .!!.... ,TS

the prey only equilibrium is unstable.
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CHAPTER3 

THE REACTION TIME LAG 

3.1 The Time Lagi In Prey-Predator Population Models 

The conventional set of diffemtial equations used to described the

relationship in a prey predator population model are;

dx(t) = ıl(x)x(t) _ µ(x)y(t)x(t)

(3.1)

dy(t) = -µ(y)y(t) + ıl(y)x(t)y(t)

Where

x(t) = number of matured prey

y(t) = number of matured predator

ıl(x) = rate of increase of prey

µ(x) = coefficient of effect of predation on x(t)

ıl(y) =coefficient of effect of predation on y(t)

µ(y) = death rate of y(t)
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Thus, the term µ(x)y(t)x(t) states that the cause of death of the prey

is predation alone and that this predation is linearly proportional to the

product of prey and predator, in the same manner the growth of the predator

population is considered to be linearly proportional to the product of the

population and the only limitation on the growth of the predator population

is the number of prey. These equations give rise to the familiar Lotka­

Volterra prey predator cycles.

3.2 The Equations 

The defect in this mathematical treatment of population have been

discussed by many ecologists. Most notably by F. E Smith (1952). The

equations describe ideal populations whose members can react

instantinously to any change in the environment. İn real population both

prey and predator require reaction time lags. However,in order to keep the

equations simple enough for mathematical analysis, the effect of

introducing a time lag into the predator's reaction to change in the prey

population will be the only one considered in this thesis.The equations in

this farın become

dx(t) = A(x)x(t - rx) - µ(x)x(t)y(t)

(3.2)

dy(t) = -µ(y)y(t) + A(y)y(t - ry)x(t - ry)
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That is to say the change in the number of matured predators depends on

the number of prey and matured predator present at same previous time.

This type of equations was found to have no stable solutions as long as the

term µ(x)y(t)x(t) was considered to be linear.

In biological terms, If prey and predator interact in a linear fashion, then

predation can not be the only limit on the growth of the prey in a stable

system. This would seem to confirm the theory of Nicholson and Balley.

In order to consider prey predator system with linear interaction as well as

those systems where a limitations upon the growth of the prey other than

predation is evident, it is necessary to include a density dependant tenn in

the equation of the prey. The equations then become

dx(t) { x(t - ix)}dt = .-1.(x)x(t - ix) 1 - Kx - µ(x)x(t)y(t)

(3.3)

dy(t) = -µ(y)y(t) + ..'.l(y)x(t - Ty )y(t - Ty)
dt

Where x, > O

And simplifyiıng by combining terms
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dx(t) = ıl(x)x(t - rx) - cx2(t - rx) - µ(x)x(t)y(t) (3.4)
dt

d:~t) = -µ(y)y(t) + ıl(y)x(t - ry)y(t - ry) (3.5)

Where

il(x) 
C = Kx

For these equations there are equilibrium conditions or steady state at which
dx(t) dy(t) .both -- and -- are equal to zero sımulteneously.

dt dt

These are;

1. x(t) =x1 = O

il(x) 2. x(t) = x2 = - = K;
C

µ(y)
3. x(t) = X3 = il(y)

y(t) = Yı = O

y(t) = Y2 = O

y(t) = y3 = ıl(x){[ı~:3]}
µ(x)
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The kinds of solutions near each steady state can be found by studying

equations 3.4 and 3.5. It is simplest to nomalize the equations by

introducing the following definitions

t
p=~

r = x(t)
X3

Xz 
z=­

X3

s = y(t)
Y3

If the coefficients are all positive as assumed and if the requirement is made

that y3 be positive, as it must be , to be biologically meaningfull, then

x2 exceeds x3 and the ratio z is greater than unity.

If the coefficient C is made smaller than x2 and an increase in the ratio z

towards infinity occurs, C goes to zero.

By using these definitions, equatimons 3.4 and 3.5 can be put into the form

r'(p) = µ(x)ry3 [cz~ı) - s(p) - (z~ı) r(p)] r(p) (3.6)

s'(p) = µ(y)r(r(p - l)s(p - 1) - s(p)) (3.7)

Where primes indicates differenciation with respect top.

The steady states now occur at
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1. r1 = O Sı = Ü 

2. r2 = z Sz = Ü 

3. r3 = 1 S3 = 1 

Table 3.1: Steady State Points

The region of particular interest is that where the solutions are near steady

state 3 as in table 3 .1. This region can be explored by studying the

variational equations formed by replacing r by (1 +u) ands by (1 +v) where

u and v are small compaired with unity. The equations 3.6 and 3.7 become

u'(p) = µ(x)ry3[c~:?-v(p)] (3.8)

v'(p) = µ(y)r[u(p - 1) + v(p - 1) - v(p)] (3.9)

Where only linear terms are retained.

Because the algebra gets involved from this point on, it is well to use the

definitions,

A= µ(y)r C=_B_
(Z-1) B= µ(x)ry3
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All of which are dimensionless numbers. It is possible to eliminate v from

equations 3.8 and 3.9 to give

u"(p) +(A+ C)u'(p) -Au'(p - 1) + ACu(p) + A(B - C)u(p - 1) = O

(3 .1 O)

This differential equation is difficult to solve directly, However, some

knowledge of its solutions indicates that the delay of one unit in variable p

is in many cases of interest relatively small compared with the interval of p

necessary for significant changes to occur in the solution.

This observation allows just the first three terms of a Taylor's series to be

used as

u(p - 1) = u(p) - u'(p) + u\CP) + ... (3.11)

u'(p - 1) = u'(p) - u"(p) + ··· (3.12)

Where derivatives only to the second order are retained. Putting this series

into equation 3. 1 O gives the pure differential equationas featured in

equation 3. 13

[1 +A+ (1)CB-c)Ju" + {C - A(B - C)}u' + ABu = O (3.13)
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Where all terms are evaluated at p.

3.3 Stability Analysis 

A number of conclusion can be drawn from equation 3. 13 regarding

solutions near steady state 3 in table 3 .1. The possible solutions depend

upon values of z and r with the relations being illustrated in figure 3 .1.

1 + Jı.ı(.t~3
4-µ(J•)

z

~ 

I. Unstable 
focus ı, Zo

II. Stable focus 

Z=Zc

Ill. Stable Node 

;::::1 

Unstable 

T 

Figure 3.1: : Types of solution for equation 3.13

Figure 3 .1: Types of solution for equation 3 .13 or equation 3 .4 and equation

3.5 near (x3, y3) as determined by values of z = sa and r. Three particular
X3 

values of z are chosen for a single value of r.
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A. If O < z < 1, then there are no stable solutions.

B. If 1 < z < Zc a monotonic approach to equilibrium occurs.This is

illustrated by 1 in both figures.The boundary Zc is found by the complicated

relationship

(-A+ ~AZ+(ı+A)Z(4;+4tz +AZ))
z; = 1 + z

(4;+4~ +Az)

The point of intersection of this boundary with the z axis is at

z=l+ µ(x)y3
4µ(y)

It evidently depends upon exact values of the parameters and could occur at

a value of z larger than that shown in figure 3. 1. Figure 3. 1 is intended to be

typical of a biologically reasonable situation.

C. if z; < z < z0 where z0 = (2 + f) a damped oscillation about

x3 occurs. This is illustrated by II in both figures

D. If z = z0 then, it occurs about the steady state, a steady state oscillation

with angular frequency in terms of time variable p that can be written

~ 
- C n- ı
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The period in terms of real time t is

T = Zrrr 
rı

In certain cases of practical interest, the coefficients in the original

equations are of such value that

And as a result, typically B« A, If this is so, C« A and approximately

JAB
!1=~(1+A) 

E. If z > z0, a growing oscillation about steady state 3 exists featured in

table 3. 1. A limit cycle representing a steady state oscillation appears to

arise. This is illustrated by III in both figures.

F. If z becomes infinite, corresponding to c = O in equation 3.4, the system

is unstable and the solutions ultimately becomes infinite.
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G. If r = O, a growing oscillation is possible and only stable solutions may

exist. These solutions are of the Lotka-Volterre type.

H. If z is held constant and r increased, then the outcome depends upon the

value of z chosen. If z; < z < 2 at r = O, an increase in r may change the

solution from a damped oscillation to a monotonic approach to equilibrium.

If 2< z < z0 at r = O an increase in r may change the damped oscillation to

a growing oscillation and finally to limit cycle.

The work clearly indicates that there is not just one solution for the

mathematical prey-predator population model. But a whole array of

solutions. The proper solution in a given case depends upon the type of

prey-predator interaction.The density-dependant limitation on the growth of

the prey and the reaction time lag of the predator. The type of oscillation

proposed by Lotka- Volterra for r = O is also for r > O but only for a very

narrow range of values for the parameters as represented in figure 3. 1 by

the line z = z0.

This type of solution does not seem likely to occur in nature, since it is to

be expected that in any natural population the value C > O holds true. The

growing oscillation assumed by Nicholson-Bailey, for some prey parasite

populations should eventually give rise to a limit cycle. The three main

types of solution to be expected are described in b,c and e as illustrated in

figure 3.1.
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I. 

II. 

111. Limit Cycle 

Figure 3.2 : Types of solution for equations 3 .3 and 3 .4
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Figure 3.2; types of solutions for equations 3.4 and 3.5. Showing the

relation between x and y as t increases in the direction of the arrows. The

steady state at (xı, y1) and delay time T are fixed, while z and thus

x2 varied. Three fundamentally different kinds of solutions are shown

corresponding to points I, II and III of figure 3 .1.

If the effect of introducing time lags into the equation for the growth of the

prey and non linear functions for the prey-predator interaction is

considered, it can be seen that these equations swiftly become too difficult

for analytical methods. Even the simplified equations presented here are of

sufficient complexity to make numerical calculations impossible. However,

if there are reasonably good estimate of the several parameters available it

is possible to set up equations of this type on a computer and thus drive

some idea of the type of solution.

This technique of handling populations can be expanded to three or more

interacting populations and is limited mainly by the size of the computer

programme and by the accuracy of the biologist in selecting and evaluating

the important parameters in a population.
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CHAPTER4 

CONCLUSION 

4.1: Conclusion 

Lotka-Volterra Predator-Prey Model is a rudimentary model of the global

complex ecology. It assumes just one prey for the predator, and vice versa.

It also assumes no outside influences like disease, changing

conditions,pollution and so on. However, the model can be expanded to

include other variables, and we have Lotka-Volterra Competition Model,

which models two competing species and the resources that they need to

survive.

We can modify the equations by adding more variables and get a better

picture of the ecology. But with more variables, the model becomes more

complex and would require more brains or computer resources.

This model is an excellent tool to teach the principles involved in ecology,

and to show some rather counter-initiative results. It also shows a special

relationship between biology and mathematics.

Analysis of the equations resulting from the introduction of a time lag in the

response of the predator to changes in the prey population shows an arrey

of possible solutions . The form of the solution is dependant upon the size

sof the time lag and the ratio of the equilibrium value for the prey

population in the absence of predation to the equilibrium value with

predation.While the equations analysed in this thesis were assumed to have

terms,It is possible to introduce non linear interactions. Once reasonable

values are known for the many parameters, population equations of this
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degree of complexity are most easily handled by approximation on a

computer.
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