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ABSTRACT 

 

This research consists of three chapters. In the first chapter, we consider the Historical 

background of the study, also some essential definitions were given. In the second chapter, 

Bessel’s differential equation were obtained via the cylindrical coordinates of Laplace 

equation. In addition, Bessel functions which are the solutions of Bessel’s differential equation 

and their properties were studied. In the third chapter, applications of Bessel functions which 

are solutions of Schrödinger equation to Neumann and Hankel functions were examined and 

the solutions were obtained. 

Keywords: Bessel’s differential equation, Bessel functions, Hankel functions, Neumann 

functions and Schrödinger equation..  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iv 
 

ÖZET 

 

Bu tez üç bölümden oluşmaktadır. Birinci bölümde konunun tarihsel gelişimi ve bazı temel 

kavramlar verilmiştir. İkinci bölümde Laplace denkleminin silindirik koordinatlardaki 

ifadesinden yararlanılarak Bessel denklemi elde edilmiştir. Ayrıca, Bessel denkleminin 

çözümleri olan Bessel fonksiyonları ve onların özellikleri üzerinde durulmuştur. Üçüncü 

bölümde ise, Neumann ve Hankel fonksiyonları Schrödinger denkleminin çözümünü olan 

Bessel fonksiyonlarının uygulamaları incelenmiş ve çözümleri elde edilmiştir. 

Anahtar sözcükler: Bessel diferansiyel denklemi, Bessel fonksiyonları, Hankel fonksiyonları, 

Neumann fonksiyonları, Schrödinger denklemi.. 
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CHAPTER 1 

INTRODUCTION AND DEFINITIONS 

 

This chapter gives historical background of Bessel’s equation, Bessel functions and 

Schrödinger equation, and also some basic definitions were also stated. 

 

Bessel function were studied by Euler, Lagrange and the Bernoulli. The Bessel functions were 

first used by Friedrich Wilhelm Bessel to explain the three body motion, with the Bessel 

function which emerge in the series expansion of planetary perturbation. Bessel function are 

named for Friedrich Wilhelm Bessel (1784-1846), after all, Daniel Bernoulli is generally 

attributed with being the first to present the idea of Bessel functions in 1732. He used the 

function of zero order as a solution to the problem of an oscillating chain hanging at one end. 

By the year 1764, Leonhard Euler employed Bessel functions of both the integral orders and 

zero orders in an analysis of vibrations of a stretched membrane, a research that was further 

developed by Lord Rayleigh in 1878, where he proved that Bessel functions are particular case 

of Laplace functions (Niedziela, 2008). 

Bessel’s differential equation arises as a result of determining separable solutions to Laplace’s 

equation and the Helmholtz equation in spherical and cylindrical coordinates. Therefore, 

Bessel functions are of great important for many problems of wave propagation and static 

potentials. 

Bessel equation were also obtained in solving various classical physics problems. Historically, 

the equation with 𝑣 = 0  was first experience and solved by Daniel Bernoulli in1732 in his 

research of the hanging chain problem. Similar equations emerged later in1770 in the work of 

Lagrange on astronomical problems. In 1824, the German mathematician and astronomer 

F.W.Bessel in his research of the problem of elliptic planetary motion come across a special 

form of equation (9). Influenced by the great work of Fourier that had just emerged in 1822, 

Bessel conducted an efficient research of equation (9) (Asmar, 2005). 
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Bessel while accepting named credit for these functions, did not in participate them into his 

research as an astronomer until 1817. The Bessel function was the outcome of Bessel research 

of problem of Kepler for finding the motion of three bodies travelling under mutual 

gravitation. In 1824, he integrated Bessel functions in a research of planetary perturbations 

where the Bessel functions emerged as a coefficients in a series expansion of the indirect 

perturbation of a planet, that is, the motion of the sun induced by the perturbing body. It was 

like the Lagrange’s work on elliptical orbits that were first proposed to Bessel to study on the 

Bessel functions. 

The notation 𝐽𝑣,𝑛  was first used by Hansen (1843) and afterwards by Schlomilch (1857) and 

later modified to 𝐽𝑛(2𝑣) by Watson (1922). Subsequent research of Bessel functions included 

the works of Mathews in 1895, “A treatise on Bessel functions and their applications to 

physics” written in joint effort with Andrew Gray. It was the first major dissertation on Bessel 

functions in English and covered topics such as, application of Bessel functions to electricity, 

hydrodynamics and diffraction. In 1922, Watson first presented his comprehensive analysis of 

Bessel functions “A dissertation on the theory of Bessel functions”. 

Intermittently, the key to solving such a problems is to identify the form of this equations. 

Thus, leaving employment of the Bessel functions as solutions. The Frobenius method is used 

to obtain a Bessel functions which is a solution to Bessel differential equations with variable 

coefficients. Also we can obtained the Laplace equation in polar coordinates with Bessel 

equation by using the expression, which is the key equation in mathematical physics, 

engineering science and basic science and other related fields are common in finding the 

problems of this equation. 

Applications of Bessel functions to the theory of heat conduction, which include dynamical 

system and heat conduction in spherical or cylindrical objects, which are very large. In the 

theory of elasticity, the solutions of Bessel functions are efficient for all special problems, 

which are the solutions of cylindrical or spherical coordinates, and also for various problems 

relating to the oscillation of plates and equilibrium of plates on an electric foundation, for a 

series of the questions of theory of shells, for the problems on concentration of the stress near 

cracks and others. In each of these fields there are many applications of Bessel functions. 
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Different parts of the theory of Bessel functions are extensively used when solving problems 

of hydrodynamics, acoustics, radio physics, atomic and nuclear physics, quantum physics and 

so on. 

Bessel functions made their first emergence by relating the angular position of a planet 

travelling along a Keplerian ellipse to elapsed time. Though the integral and power series 

appears in other places, generally regarding the radial variable after separating the Laplace’s 

equation in polar or spherical polar coordinates. In diverse problems of mathematical physics, 

whose solution is highly connected with the application of cylindrical and spherical 

coordinates. 

The constant 𝑣 in the Bessel differential equation determines the order of the Bessel functions 

and can take any real numbered value (𝑣 = 𝑛 +
1

2
) while for cylindrical problems the order of 

the Bessel function is an integer value (𝑣 = 𝑛). Bessel functions are also applicable for many 

problems of wave propagation, static potentials and its applications. Heat conduction in a 

cylindrical objects, electromagnetic waves in a cylindrical waveguide, modes of vibration of a 

thin circular or annular artificial membrane, diffusion problems on a lattice and solution to the 

radial Schrodinger equation (in spherical and cylindrical coordinates for a free particle). We 

are going to consider only the last application which is the application of radial Schrodinger 

equation in cylindrical coordinates for a free particle (zero potential) to Neumann and Hankel 

functions respectively (Nuriye, 2012). 

The Schrodinger equation which requires the idea of electromagnetic wave equation   and the 

basic of Einstein’s special theory of relativity is a new criterion in physics which appeared at 

the beginning of the last century and now popularly known as quantum mechanics, and was 

motivated by two types of experimental observations: The “Lumpiness”, or quantization of 

energy transfer in light-matter interactions, and the dual wave-particle nature of both light and 

matter. 

It has been well acknowledged that photon show (exhibits) both wave-like properties, the so-

called wave particle duality in physics. In order to express particle-like nature of light, 

Einstein suggested that the energy 𝐸 and momentum 𝑝 of a photon can be expressed as 

follows: 
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𝐸 = ℎ𝑣 = ℏ𝜔, 𝑝 =
𝐸

𝑐
=

ℎ

𝜆
= ℏ𝑘 

Where 𝑣 is the frequency of a photon, 𝜔 = 2𝜋𝑣 is the angular frequency, 𝜆 is the wavelength 

of a photon, 𝑘 = |𝐾| =
2𝜋

𝜆
  is the wave number (𝑘 is the wave vector) and ℏ =

ℎ

2𝜋
 is the 

reduced Planck constant. 

In 1923, de Broglie postulate that all matter not just photon, possess (acquire) the wave-like 

nature. For a free particle material, de Broglie assumed that the associated wave of the particle 

also has a frequency and wavelength as given by: 

𝑣𝑑 =
𝐸

ℎ
, 𝜆𝑑 =

ℎ

𝑝
 

Where ℎ is the Planck constant, 𝐸 is the energy of the particle and 𝑝 is the momentum of the 

particle. Without considering relativistic effects, the de Broglie wavelength of a particle with a 

mass 𝑚 and a velocity 𝑣 can be easily obtained from the above second equation as follows; 

𝜆𝑑 =
ℎ

𝑚𝑣
=

ℎ

√2𝑚𝐸𝑘
 

Where 𝐸 =
𝑚𝑣2

2
 is the kinetic energy of the particle. 

In 1926, Erwin Schrödinger as a result of his interest by the de Broglie hypothesis created an 

equation as a way of expressing the wave behavior of matter particle, for example, the 

electron. The equation was later named as Schrödinger equation which can be written as: 

(
−ℏ

2𝑚
∇2 + 𝑈(𝑟, 𝑡))𝜓(𝑟, 𝑡) = 𝑖ℏ𝜓(𝑟, 𝑡) 

Where 𝑚 is the mass of the particle, 𝑈(𝑟, 𝑡) is the potential energy, ∇2 is the Laplacian, and 

𝜓(𝑟, 𝑡) is the wave function. Indeed, the Schrödinger equation given above is of most 

important and fundamental equation of the modern physics, the time dependent Schrödinger 

equation for a quantum system is introduced as a powerful analog of Newton’s second law of 

motion for a classical system. However, we consider only the time independent Schrödinger 

equation for a free particle (Griffiths, 1995). 
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Definition 1: (Ordinary and singular point) If the coefficients 𝑃(𝑥)  and 𝑄(𝑥) of an equation 

of the form 𝑦′′(𝑥) + 𝑃(𝑥)𝑦′ + 𝑄(𝑥)𝑦 = 0 are both analytic at the point 𝑥0, then 𝑥0 is called 

an ordinary point for the equation. A point which is not an ordinary point is called a singular 

point.  

Definition 2: (Linear dependent and Linear independent) Two functions 𝑢 and 𝑣 are said to 

be linearly independent on the interval (𝛼, 𝛽) if neither is a constant multiple of the other on 

that interval. If one is a constant multiple of the other on (𝛼, 𝛽) they are said to be linearly 

dependent there. 

Definition 3: (Wronskian determinant) Let  𝑓 and 𝑔 be two differentiable functions. Then, the 

wronskians of 𝑓 and 𝑔 is defined by; 

𝑊(𝑓, 𝑔) = 𝑓𝑔′ − 𝑓′𝑔 

Definition 4: (Orthogonal functions) A functions is orthogonal if a defined inner product 

vanishes between two unlike components of a particular inner product space (an inner 

product) between a function 𝛹(𝑎) and 𝛹(𝑏) shall be depicted mathematically by 

⟨𝛹(𝑎) |𝛹(𝑏) ⟩. It is common to use the following inner product for two functions 𝑓 and 𝑔: 

〈𝑓, 𝑔〉 = ∫ 𝑓(𝑥)𝑔(𝑥)𝑤(𝑥)𝑑𝑥
𝑏

𝑎

 

Here we introduce a nonnegative weight functions 𝑤(𝑥) in the definition of this inner product. 

We say those functions are orthogonal if that inner product is zero. 

∫ 𝑓(𝑥)𝑔(𝑥)𝑤(𝑥)𝑑𝑥
𝑏

𝑎

= 0 

Definition 5: (Norm of function) The norm of a function defined by  ‖𝑓‖ which is equal to 

(∫ 𝑓2(𝑥)𝑑𝑥
1

0

)

1
2⁄

 

Definition 6: (Frequency) Frequency describes the number of waves that pass a fixed place in 

a given amount of time. 
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Definition 7: (superposition principle) For a linear homogeneous ordinary differential 

equation, if 𝑦1(𝑥) and 𝑦2(𝑥) are solutions, then so is 𝑘1𝑦1(𝑥) + 𝑘2𝑦2(𝑥). 

Definition 8: (Heisenberg’s Uncertainty principle) Heisenberg’s uncertainty principle is one 

of the fundamental concepts of quantum physics, and is the basis for the initial realization of 

fundamental uncertainties in the ability of an experimenter to measure more than one 

quantum variable at a time. Attempting to measure an elementary particle’s position to the 

highest degree of accuracy, for example, leads to an increasing uncertainty in being able to 

measure the particle’s momentum to an equally high degree of accuracy. Heisenberg’s 

uncertainty principle is typically written mathematically in either of the two forms: 

∆𝐸∆𝑡 ≥ ℎ
4𝜋⁄   and ∆𝑥∆𝑝 ≥ ℎ

4𝜋⁄  

In essence, the uncertainty in the energy (∆𝑡) times the uncertainty in the time (∆𝑡) or 

alternatively, the uncertainty in the position (∆𝑥) multiplied by the uncertainty in the 

momentum (∆𝑝) is greater or equal to a constant (ℎ 4𝜋⁄ ). The constant ℎ, is called Planck’s 

constant. (where ℎ 4𝜋⁄ = 0.527 × 10−34𝐽𝑠). (Nuriye) 

Definition 9: (The generating function for 𝐽𝑛(𝑥)) Let 𝑓(𝑥, 𝑡) be two variables function and its 

Taylor expansion for one of its variables could be as follows: 

𝑓(𝑥, 𝑡) = ∑ 𝐽𝑛(𝑥)𝑡
𝑛

∞

𝑛=−∞

 

The function 𝑓(𝑥, 𝑡) with {𝑓𝑛(𝑥)}, 𝑛 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 called the generating function for 𝐽𝑛(𝑥). This 

series of functions are not necessarily converge for all 𝑥′𝑠 and 𝑡′𝑠. Let 𝐼 be a closed interval 

and 𝑟 be a positive constant and let |𝑡| < 𝑟 and 𝑥 ∈ 𝐼 is enough for convergence. 
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CHAPTER 2 

BESSEL’S EQUATION AND BESSEL FUNCTIONS 

 

This chapter explains the concept of Bessel’s differential equation and some properties of 

Bessel functions and its application. 

 

2.1 Bessel’s Differential Equation 

 

Bessel’s equation and Bessel’s function occurs in relation with many problems of engineering 

and physics also there is an extensive literature that deals with the theory and application of 

this equation and its solution. 

Bessel’s equation can be used to find a solution of Laplace’s equation (that is the key equation 

in the field of mathematical physics) related with the circular cylinder functions. 

In Cartesian coordinates, the Laplace’s equation is given by: 

∇2𝐾 =
𝜕2𝐾

𝜕𝑥2
+
𝜕2𝐾

𝜕𝑦2
+
𝜕2𝐾

𝜕𝑧2
= 0                                             (2.1) 

Where ∇2 is the Laplacian operator. Now we are more concerned in finding the solution of 

Laplace’s equation using cylindrical coordinates. In such a coordinate system the equation can 

be written as follows: 

1

𝑞

𝜕

𝜕𝑞
(𝑞
𝜕𝐾

𝜕𝑞
) +

1

𝑞2
𝜕2𝐾

𝜕ℎ
+
𝜕2𝐾

𝜕𝑧2
= 0 

Implies; 

𝜕2𝐾

𝜕𝑞2
+

1

𝑞

𝜕𝐾

𝜕𝑞
+

1

𝑞2
𝜕2𝐾

𝜕ℎ2
+
𝜕2𝐾

𝜕𝑍2
= 0                                              (2.2) 

We use separation of variables method to solve this equation, which is a method used to solve 

many kind of partial differential equations. 

We suppose the solution as follows: 
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𝐾(𝑞, ℎ, 𝑧) = 𝑄(𝑞)𝐻(ℎ)𝑍(𝑧) 

By taking the derivatives appropriately, the following equations are obtained: 

𝜕𝐾

𝜕𝑞
= 𝐻𝑍

𝑑𝑄

𝑑𝑞
,     

𝜕2𝐾

𝜕𝑞2
= 𝐻𝑍

𝑑2𝑄

𝑑𝑞2
, 

𝜕𝐾

𝜕ℎ
= 𝑄𝑍

𝑑𝐻

𝑑ℎ
,   

𝜕2𝐾

𝜕ℎ2
= 𝑄𝑍

𝑑2𝐻

𝑑ℎ2
, 

𝜕𝑘

𝜕𝑧
= 𝑄𝐻

𝑑𝑍

𝑑𝑧
,        

𝜕2𝐾

𝜕𝑧2
= 𝑄𝐻

𝑑2𝑍

𝑑𝑧2
 

Substituting these derivatives into equation (2.2), yield the intermediate result as: 

𝐻𝑍
𝑑2𝑄

𝑑𝑞2
+
1

𝑞
𝐻𝑍

𝑑𝑄

𝑑𝑞
+
1

𝑞2
𝑄𝑍

𝑑2𝐻

𝑑ℎ2
+ 𝑄𝐻

𝑑2𝑍

𝑑𝑧2
= 0 

𝑄(𝑞)𝐻(ℎ)𝑍(𝑧) ≠ 0, and dividing the above equation by 𝑄𝐻𝑍 for the two sides, we have: 

1

𝑄

𝑑2𝑄

𝑑𝑞2
+
1

𝑞𝑄

𝑑𝑄

𝑑𝑞
+

1

𝑞2𝐻

𝑑2𝐻

𝑑ℎ2
+
1

𝑍

𝑑2𝑍

𝑑𝑧2
= 0 

Implies: 

𝑄′′

𝑄
+
1

𝑞

𝑄′

𝑄
+
1

𝑞2
𝐻′′

𝐻
+
𝑍′′

𝑍
= 0 

Implies: 

𝑄′′

𝑄
+

1

𝑞

𝑄′′

𝑄
+

1

𝑞2
𝐻′′

𝐻
= −

𝑍′′

𝑍
                                                  (2.3) 

In the equation above, the left hand side depends on 𝑞 and ℎ, while the right hand side depends 

on 𝑧. The only way these sides will be equal for all values of 𝑞, ℎ and 𝑧 is when both of them 

are equal to some constant. Let us defined such a constant as 𝛾2, for this choice of the constant 

by considering the left hand side of equation (2.3), 

i.e. 

𝑄′′

𝑄
+

1

𝑞

𝑄′

𝑄
+

1

𝑞2
𝐻′′

𝐻
= −𝛾2                                                   (2.4) 
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And since   
𝑍′′

𝑍
= +𝛾2, the following equation is obtained: 

𝑍′′ − 𝛾2𝑍 = 0                                                            (2.5) 

And the general solution of equation (2.5) is: 

𝑍(𝑧) = 𝜁1𝑒
𝛾𝑧 + 𝜁2𝑒

−𝛾𝑧 

For this solution, when we consider the specific boundary conditions, will allow 𝑍(𝑧) to go to 

zero for z going to   ±∞, that make physical sense. But if we had taken a constant as negative, 

we would have had periodic trigonometric functions, which will not tend to zero for  𝑧 going 

to infinity. 

Once solved the 𝑧-dependency, we need to take care of 𝑞 and ℎ. Equation (2.3) will now reads 

as: 

1

𝑄

𝑑2𝑄

𝑑𝑞2
+
1

𝑞𝑄

𝑑𝑄

𝑑𝑞
+

1

𝑞2𝐻

𝑑2𝐻

𝑑ℎ2
= −𝛾2 

Implies: 

𝑞2

𝑄

𝑑2𝑄

𝑑𝑞2
+

𝑞

𝑄

𝑑𝑄

𝑑𝑞
+ 𝛾2𝑞2 = −

1

𝐻

𝑑2𝐻

𝑑ℎ2
                                            (2.6) 

Again, the only way this equation can be equal is when both sides are equal to some constant. 

This time around we choose a positive constant, which we called 𝑣2, 

The equation for 𝐻 will becomes: 

−
1

𝐻

𝑑2𝐻

𝑑ℎ2
= 𝑣2 

Implies: 

𝑑2𝐻

𝑑ℎ2
+ 𝑣2𝐻 = 0                                                        (2.7) 
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And the general solution of equation (2.7) can be written as: 

𝐻(ℎ) = 𝑡1𝑠𝑖𝑛(𝑣ℎ) + 𝑡2𝑐𝑜𝑠(𝑣ℎ) 

This solution is appropriate to explain the variation for an angular coordinate like ℎ. Had we 

decided to set both members of equation (2.6) equal to a negative number, we would have 

finished up with exponential functions with a different value assigned to 𝐻(ℎ) for each 360∘ 

turn, which is clearly nonphysical solution. 

The 𝑞-dependency. From equation (2.6) we have: 

𝑞2

𝑄

𝑑2𝑄

𝑑𝑞2
+
𝑞

𝑄

𝑑𝑄

𝑑𝑞
+ 𝛾2𝑞2 = 𝑣2 

Which implies: 

𝑞2
𝑑2𝑄

𝑑𝑞2
+ 𝑞

𝑑𝑄

𝑑𝑞
+ (𝛾2𝑞2 − 𝑣2)𝑄 = 0                                        (2.8) 

Equation (2.8) is a popular equation of mathematical physics called parametric Bessel’s 

equation. By using a simple linear transformation of variable 𝑥 = 𝛾𝑞, equation (2.8) is 

changed into a Bessel’s equation of index 𝑣, and its solution is called cylindrical or Bessel’s 

function. 

That is, 

𝑥2𝑄′′(𝑥) + 𝑥𝑄′(𝑥) + (𝑥2 − 𝑣2)𝑄(𝑥) = 0                                           (2.9) 

Where 𝑄′′(𝑥) and 𝑄′(𝑥) represent first and second derivatives with respect to 𝑥 and we 

assume that 𝑣 to be real, non-negative number. 

 

2.2 Frobenius Method Applied to Bessel’s Differential Equations 

 

Consider the Bessel’s differential equation with order 𝑣. 

i.e. 

𝑥2𝑄′′(𝑥) + 𝑥𝑄′(𝑥) + (𝑥2 − 𝑣2)𝑄(𝑥) = 0                                       (2.9) 
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Equation (2.9) is a linear second order differential equation, thus it is general solution can be 

written in the form: 

𝑢(𝑥) = 𝑐1𝑄1(𝑥) + 𝑐2𝑄2(𝑥) 

Where 𝑄1(𝑥) and 𝑄2(𝑥) are linearly independent partial solutions of equation (2.9). We 

checked that 𝑥 = 0 is a regular singular point. In some application of Bessel’s differential 

equation the parameter 𝑥 will be distance of a point from the starting point in polar 

coordinates. It will be vital to see how the solution acts when 𝑥 is closed to zero, and the point 

is closed to the origin. So that, we shall try to find a solution of equation (2.9) in the form of a 

generalized power series, that is, a Frobenius method in increasing powers of argument 𝑥. 

𝑄(𝑥) = ∑ 𝑎𝑛
∞
𝑛=0 𝑥𝑠+𝑛                                                  (2.10) 

Where 𝑎0 ≠ 0. 

Taking the derivatives of the first and second series, we have: 

𝑄′(𝑥) = ∑ (𝑠 + 𝑛)𝑎𝑛𝑥
𝑠+𝑛−1∞

𝑛=0                                        (2.11) 

And 

𝑄′′(𝑥) = ∑ (𝑠 + 𝑛)(𝑠 + 𝑛 − 1)𝑎𝑛𝑥
𝑠+𝑛−2∞

𝑛=0                            (2.12) 

Replacing equation (2.10), (2.11) and (2.12) with equation (2.9), we obtain: 

∑𝑎𝑛(𝑠 + 𝑛)(𝑠 + 𝑛 − 1)𝑥
𝑠+𝑛

∞

𝑛=0

+∑𝑎𝑛(𝑠 + 𝑛)𝑥
𝑠+𝑛

∞

𝑛=0

+∑𝑎𝑛𝑥
𝑠+𝑛+2

∞

𝑛=0

−∑𝑎𝑛𝑣
2𝑥𝑠+𝑛 = 0

∞

𝑛=0

 

Our next target is to collect equal powers of 𝑥 and set the corresponding coefficients to zero: 

𝑛 = 0  ⇒ 𝑎0𝑠(𝑠 − 1) + 𝑎0𝑠 − 𝑎0𝑣
2 = 0 

𝑛 = 1 ⇒ 𝑎1(𝑠 + 1)𝑠 + 𝑎1(𝑠 + 1) − 𝑎1𝑣
2 = 0 

𝑛 = 2 ⇒ 𝑎2(𝑠 + 2)(𝑠 + 1) + 𝑎2(𝑠 + 2) + 𝑎0 − 𝑎2𝑣
2 = 0 

⋮ 

𝑛 = 𝑘 ⇒ 𝑎𝑘(𝑠 + 𝑘)(𝑠 + 𝑘 − 1) + 𝑎𝑘(𝑠 + 𝑘) + 𝑎𝑘−2 − 𝑎𝑘𝑣
2 = 0 
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After some simplification, we have: 

{
 
 
 

 
 
 

𝑎0(𝑠
2 − 𝑣2) = 0

𝑎1[(𝑠 + 1)
2 − 𝑣2] = 0

𝑎2 = −
𝑎0

[(𝑠 + 2)2 − 𝑣2]⁄

⋮

𝑎𝑘 = −
𝑎𝑘−2

[(𝑠 + 𝑘)2]⁄

⋮
⋮

                                                 (2.13) 

The term corresponding to 𝑛 = 0 is the so-called indicial equation. Thus, the roots are         

𝑠 = ±𝑣. 

The Frobenius method show us that two different solutions each one having form (2.10), can 

be found for equation (2.9) if the difference between these two roots, i.e. 𝑣 − (−𝑣) = 2𝑣, is 

neither zero no an integer. Now, let us consider those cases where 𝑣 is different from a 

multiple of  
1

2
. For 𝑠 = 𝑣, from the second of equation (2.13), we can find 𝑎1 = 0. For the 

remaining equations we can obtain: 

𝑎𝑘 = −
𝑎𝑘−2

𝑘(𝑘+2𝑣)
,    𝑘 = 1,2,3…                                         (2.14) 

Given that 𝑎1 = 0, equation (2.14) yields: 

𝑎2 = −
𝑎0

[2(2 + 2𝑣)]
 

𝑎3 = −
𝑎1

[3(3 + 2𝑣)]
= 0 

𝑎4 = −
𝑎2

[4(4 + 2𝑣)]
 

𝑎5 = −
𝑎3

[5(5 + 2𝑣)]
= 0 

𝑎6 = −
𝑎4

[6(6 + 2𝑣)]
 

⋮ 
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Thus, all odd coefficients are zero. We can re-write even coefficients with an integer value n 

ranging from 1 to ∞ as; 

𝑎2𝑛 = −
𝑎2𝑛−2

[2𝑛(2𝑛 + 2𝑣)]
= −

𝑎2𝑛−2
[22𝑛(𝑣 + 𝑛)]

 

Therefore, the first few coefficients will be; 

𝑎2 = −
𝑎4

22 ∙ 1(𝑣 + 1)
 

𝑎4 = −
𝑎2

22 ∙ 2(𝑣 + 2)
= −

1

22 ∙ 2(𝑣 + 2)
[−

𝑎0
22 ∙ 1(𝑣 + 1)

]

= (−1)2
𝑎0

22∙2(2 ∙ 1)(𝑣 + 2)(𝑣 + 1)
 

𝑎6 = −
𝑎4

22 ∙ 3(𝑣 + 3)
= ⋯ = (−1)3

𝑎0
22∙3(3 ∙ 2 ∙ 1)(𝑣 + 3)(𝑣 + 2)(𝑣 + 1)

 

⋮ 

Finally, extrapolating to the n-th term: 

𝑎2𝑛 =
(−1)𝑛𝑎0

22𝑛𝑛!(𝑣+1)(𝑣+2)⋯(𝑣+𝑛)
,    𝑛 = 1,2,3⋯                              (2.15) 

As of right now we can’t give a specific value to coefficient 𝑎0, in light of the fact that we are 

not dealing with any particular issue and have no limit conditions which would give us the 

likelihood to ascertain it. Historically, however, it has been discovered helpful to standardize 

solutions of Bessel’s equation by assigning a particular value to 𝑎0, and express all its specific 

solution as a function of a standardized ones. 

Let us choose 𝑎0 to be;  

𝑎0 =
1

2𝑣Γ(𝑣+1)
                                                      (2.16) 

Where Γ(𝑥) is the gamma function. 
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With this choice of 𝑎0 equation (2.15) will now be written as: 

𝑎2𝑛 =
(−1)𝑛

22𝑛𝑛! (𝑣 + 1)(𝑣 + 2)⋯(𝑣 + 𝑛)

1

2𝑣Γ(𝑣 + 1)
,    𝑛 = 1,2,3⋯ 

Using recursive property, the above equation is transformed into: 

𝑎2𝑛 =
(−1)𝑛

22𝑛+𝑣𝑛!Γ(𝑣+𝑛+1)
,   𝑛 = 1,2,3⋯                                   (2.17) 

And so an independent solution of Bessel’s differential equation is given by the following 

expression: 

𝐽𝑣(𝑥) = 𝑥𝑣 ∑
(−1)𝑛𝑥2𝑛

2𝑣+2𝑛𝑛!Γ(𝑣+𝑛+1)
∞
𝑛=0                                             (2.18) 

𝐽𝑣(𝑥) is called Bessel’s function of the first kind of order 𝑣. Here we just need to find the 

general solution of Bessel’s differential equation for 𝑣 different from an integer or a semi 

integer. Using Frobenius method we know that, with these values for 𝑣, a second solution for 

Bessel’s function is given by 𝐽−𝑣(𝑥): 

𝐽−𝑣(𝑥) =
1

𝑥𝑣
∑

(−1)𝑛𝑥2𝑛

2−𝑣+2𝑛𝑛!Γ(−𝑣+𝑛+1)
∞
𝑛=0                                       (2.19) 

Therefore, the general solution of Bessel’s differential equation, with 𝑣 different from an 

integer or a semi-integer, is given by: 

𝑄(𝑥) = 𝑐1𝐽𝑣(𝑥) + 𝑐2𝐽−𝑣(𝑥),         𝑣 ≥ 0, 𝑣 ≠ 𝑘
1

2
, 𝑘 = 0,1,2⋯              (2.20) 

The presence of 𝑥𝑣 in equation (2.19) implies that some caution has to be utilized when 

calculating both 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥). First of all, 𝑥 = 0 is ruled out from the general solution 

range because 𝑥𝑣 appears at the denominator. Secondly, powers of negative numbers give real 

numbers only for integer values of the power. No real values are, in general, assigned to non-

integer powers of negative numbers. For example, −20∙2 is real, negative number equal to 

√−2
5

, while −20∙7 = √(−2)7
10

 is a complex number. For this reason it is safer to defined 

solution (2.20) only for positive values of 𝑥, i.e. for 𝑥 > 0. 
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2.2.1 Bessel’s Equation of Order Zero (𝒗 = 𝟎) 

 

For 𝑣 = 0, the Bessel’s differential Equation is equivalent to the equation given by; 

𝑥𝑄′′(𝑥) + 𝑄′(𝑥) + 𝑥𝑄 = 0                                             (2.21) 

Which is called Bessel’s differential equation of index zero. Now, we find the solutions of this 

equation that are useful in an interval 0 < 𝑥 < 𝑅. Clearly, 𝑥 = 0 is a regular singular point, 

and hence, we shall assume a solution of the form: 

𝑄(𝑥) = ∑ 𝑐𝑚𝑥
𝑚+𝑟

∞

𝑚=0

 

By taking the derivatives of the above series twice and substituting into equation (2.21), we 

obtain: 

∑(𝑚+ 𝑟)(𝑚 + 𝑟 − 1)𝑐𝑚𝑥
𝑚+𝑟−1

∞

𝑚=0

+ ∑(𝑚 + 𝑟)𝑐𝑚𝑥
𝑚+𝑟−1

∞

𝑚=0

+ ∑ 𝑐𝑚𝑥
𝑚+𝑟+1

∞

𝑚=0

= 0 

Simplifying, we have; 

∑(𝑚+ 𝑟)2𝑐𝑚𝑥
𝑚+𝑟−1

∞

𝑚=0

+ ∑ 𝑐𝑚−2𝑥
𝑚+𝑟−1

∞

𝑚=0

= 0 

Implies; 

𝑟2𝑐0𝑥
𝑟−1 + (1 + 𝑟)2𝑐1𝑥

𝑟 + ∑[(𝑚 + 𝑟)2𝑐𝑚 + 𝑐𝑚−2]𝑥
𝑚+𝑟−1

∞

𝑚=2

= 0 

Equating the coefficient of the lowest power of 𝑥 to zero in this equation, we have the indicial 

equation 𝑟2 = 0 which has the roots as 𝑟1 = 𝑟2 = 0. Again, equating the coefficients of the 

higher power of 𝑥 to zero in the above equation, we have; 

(1 + 𝑟)2𝑐1 = 0                                                    (2.22) 

And we can have the recurrence relation as follows: 

(𝑚 + 𝑟)2𝑐𝑚 + 𝑐𝑚−2 = 0,     𝑚 ≥ 2                                     (2.23) 
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We let 𝑟 = 0 in equation (2.22), we find 𝑐1 = 0.  

Also if we let 𝑟 = 0 in equation (2.23), we obtained the new recurrence relation which is 

written as; 

𝑚2𝑐𝑚 + 𝑐𝑚−2 = 0,     𝑚 ≥ 2 

Which implies: 

𝑐𝑚 = −
𝑐𝑚−2

𝑚2 ,     𝑚 ≥ 2. 

From this we can obtain; 

𝑐2 =
𝑐0

22
,  𝑐3 = −

𝑐1

32
= 0 (since 𝑐1 = 0),  𝑐4 = −

𝑐2

42
=

𝑐0

22∙42
,  … 

Now, we note that all of the odd coefficients are equals to zero and that the even coefficients 

may be written in general as: 

𝑐2𝑚 =
(−1)𝑚𝑐0

22∙42∙62∙⋯∙(2𝑚)2
,     𝑚 ≥ 1 

We let 𝑟 = 0 in equation (2) and using these values of 𝑐2𝑚, we have the solution 

𝑄1(𝑥) = 𝑐0 ∑
(−1)𝑚

(𝑚!)2
(
𝑥

2
)
2𝑚

∞

𝑚=0

 

If we set 𝑐0 = 1, we obtain a particular solution of equation (2.21). This solution define a 

function which denoted by 𝐽0(𝑥) and is called the Bessel function of the first kind of order 

zero. i.e., 𝐽0(𝑥)  is a particular solution of equation (2.21) which is defined by: 

𝐽0(𝑥) = ∑
(−1)𝑚

(𝑚!)2
(
𝑥

2
)
2𝑚

∞

𝑚=0

 

Writing out some few terms of the above series, we have: 

𝐽0(𝑥) = 1 −
1

(1!)2
(
𝑥

2
)
2

+
1

(2!)2
(
𝑥

2
)
4

−
1

(3!)2
(
𝑥

2
)
6

+⋯ 

= 1 −
𝑥2

4
+
𝑥4

64
−

𝑥6

2304
+⋯ 
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Therefore, since the indicial equation has equal roots. The general solution of equation (2.21) 

must be of the form: 

𝑄 = 𝑥∑ 𝑐𝑚
∗ 𝑥𝑚∞

𝑚=0 + 𝐽0(𝑥)𝑙𝑛𝑥,      for 0 < 𝑥 < 𝑅 

Therefore, after some simplification, we obtain the second solution as: 

Let 𝐴𝑚 = 1 +
1

2
+⋯+

1

𝑚
. Then; 

𝑄2(𝑥) = 𝐽0(𝑥)𝑙𝑛𝑥 + ∑
(−1)𝑚+1𝐴𝑚
22𝑚(𝑚!)2

𝑥2𝑚
∞

𝑚=1

 

Since the solution 𝑄2(𝑥) which is defined in the second solution is linearly independent of 

𝐽0(𝑥), we would write the general solution of the equation (2.21) as a general linear 

combination of 𝐽0(𝑥) and 𝑄2(𝑥). However, this is unusual, instead, we must choose a certain 

special linear combination of 𝐽0(𝑥),  and 𝑄2(𝑥) and we call this special linear combination as 

the “second solution of the differential equation (2.21).  

This special linear combination is defined as: 

𝑌0(𝑥) =
2

𝜋
[𝑄2(𝑥) + (𝛾 − 𝑙𝑛2)𝐽0(𝑥) ] 

Where, 

𝛾 = lim
𝑚→∞

(𝐴𝑚 − 𝑙𝑛𝑚) ≈ 0.5772    Euler’s constant 

Therefore,  

𝑄(𝑥) = 𝑐1𝐽0(𝑥) + 𝑐2𝑌0(𝑥)                                              (2.24) 

Where 𝑐1 and 𝑐2 are arbitrary constant.  

Also, if we use equation (2.18), the solution will becomes: 

𝐽0(𝑥) = ∑
(−1)𝑛

22𝑛 ∙ 𝑛! Γ(𝑛 + 1)
∙ (𝑥)2𝑛

∞

𝑛=0

= 1 −
𝑥2

22
+

𝑥4

22 ∙ 42
−

𝑥6

22 ∙ 42 ∙ 62
+⋯

(−1)𝑛

(𝑛!)2
 

This shows that the series we have derived above defined an important Bessel function 𝐽0(𝑥) . 
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Again for 𝑣 = 1 using the same equation (2.18), implies: 

𝐽1(𝑥) = 𝑥∑
(−1)𝑛𝑥2𝑛

22𝑛+1𝑛! Γ(𝑛 + 2)
=

∞

𝑛=0

𝑥∑
(−1)𝑛Γ(2)𝑥2𝑛

22𝑛+2𝑛! Γ(𝑛 + 2)

∞

𝑛=0

=
𝑥

2
−

1

1! 2!

𝑥3

23
+

1

2! 3!

𝑥5

25
−⋯+

(−1)𝑛

𝑛! (𝑛 + 1)!

𝑥2𝑛+1

22𝑛+1
+⋯ 

The relation between the above series can be summarize as follows, 

𝑑

𝑑𝑥
𝐽0(𝑥) = −𝐽1(𝑥) 

The roots of these series 𝐽0(𝑥) = 0  and 𝐽1(𝑥) = 0 can be obtained by equalizing them to zero. 

That is, by using Frobenius series (power series expansion) and strum theory. Base on the fact 

that each equation has infinitely many real roots. Since the different between these roots are 

getting bigger, the results converging to the number 𝜋. For such a reason the function 𝐽0(𝑥) 

and 𝐽1(𝑥) are called periodic functions 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥) are linearly independent. If 𝑣 = 𝑚 is 

an integer, then 

Γ(𝑚) = (𝑚 − 1)! 

Γ(𝑚 + 𝑣 + 1) = (𝑚 + 𝑣)! 

And the function 𝐽𝑛(𝑥) can be re-written in the form: 

𝐽𝑚(𝑥) = ∑
(−1)𝑛

𝑛! (𝑚 + 𝑣)!
∙ (
𝑥

2
)
2𝑛+𝑚

∞

𝑛=0

 

Re-written equation (2.19), starting from (n+1)-th term, we obtained the following equation as 

follows: 
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𝐽−𝑚(𝑥) = ∑
(−1)𝑛

𝑛! Γ(−𝑚 + 𝑛 + 1)
∙

∞

𝑛=0

(
𝑥

2
)
2𝑛−𝑚

= 𝐽0(𝑥)         = ∑
(−1)𝑛

𝑛! Γ(−𝑚 + 𝑛 + 1)
∙ (
𝑥

2
)
2𝑛−𝑚

∞

𝑛=𝑚

=
(−1)𝑚

𝑚!Γ(−𝑚 +𝑚 + 1)
(
𝑥

2
)
2𝑚−𝑚

+
(−1)𝑚+1

(𝑚 + 1)! Γ(−𝑚 +𝑚 + 2)
(
𝑥

2
)
−𝑚+2𝑚+2

+⋯ = (−1)𝑚 [
(
𝑥
2)

𝑚

0!𝑚!
−

(
𝑥
2)

𝑚+2

1! (𝑚 + 1)!
+

(
𝑥
2)

𝑚+4

2! (𝑚 + 2)!
− ⋯ ] = (−1)𝑚𝐽𝑚(𝑥) 

Therefore, 

𝐽−𝑚(𝑥) = (−1)𝑚𝐽𝑚(𝑥) 

As we can see, 𝐽𝑚(𝑥) and  𝐽−𝑚(𝑥) are linearly dependent when n is an integer. 

Indeed, 

𝑄(𝑥) = 𝐶1𝐽𝑣(𝑥) + 𝐶2𝐽−𝑣(𝑥) = [𝐶1 + (−1)
𝑣𝐶2]𝐽𝑣(𝑥) = 𝐶𝐽𝑣(𝑥)  for   𝑣 = 𝑛 integer. 

 

 

Figure 2.1: Bessel Function of the First Kind 
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2.2.2 Bessel Function of the First Kind for m Equal to Semi-integers 

 

The confinement at equation (2.20) can be considered less strong when we prove that 𝐽𝑣 and 

𝐽−𝑣 are independent when 𝑣 is equal to semi-integer. For such values of 𝑣, the equation can be 

expressed as a combination of algebraic and trigonometric functions. 

Now, consider 𝐽1
2

, from equation (2.18) we obtained: 

𝐽1
2

(𝑥) = √𝑥∑
(−1)𝑛𝑥2𝑛

22𝑛+
1
2⁄ 𝑛!Γ(𝑛+3 2⁄ )

∞
𝑛=0 =

√2

√𝑥
∑

(−1)𝑛𝑥2𝑛+1

22𝑛+1𝑛!Γ(𝑛+3 2⁄ )
∞
𝑛=0                      (2.25) 

To obtain a solution of the above equation we need to simplify the denominator. Firstly, the 

gamma function can be written as: 

Γ(𝑛 + 3 2⁄ ) = (𝑛 + 1 2⁄ ) ∙ (𝑛 − 1 2⁄ ) ∙ ⋯ ∙
3

2
∙
1

2
∙ Γ(1 2⁄ ) 

 

Since 

Γ(1 2⁄ ) = √π 

Thus: 

Γ(𝑛 + 3 2⁄ ) =
1

2𝑛+1
(2𝑛 + 1) ∙ (2𝑛 − 1) ∙ ⋯ ∙ 3 ∙ 1 ∙ √Π                     (2.26) 

From the denominator of equation (2.25) we can also have: 

22𝑛+1𝑛! = 2 ∙ 2𝑛 ∙ 2𝑛 ∙ 𝑛 ∙ (𝑛 − 1) ∙ ⋯ ∙ 2 ∙ 1 = 22𝑛+1 ∙ (2𝑛) ∙ (2𝑛 − 2) ∙ ⋯ ∙ 4 ∙ 2             

(2.27) 

By putting equation (2.26) and (2.27) into (2.25), we obtained: 

𝐽1
2

(𝑥) = √
2

π𝑥
∑

(−1)𝑛𝑥2𝑛+1

(2𝑛 + 1)!

∞

𝑛=0

= √
2

π𝑥
(𝑥 −

𝑥3

3!
+
𝑥5

5!
− ⋯) 
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The expression inside the bracket is McLaurin Series for sin(𝑥). Thus, we have: 

𝐽1
2

(𝑥) = √
2

π𝑥
sin(𝑥)                                                      (2.28) 

Similarly, 

𝐽
−
1

2

(𝑥) = √
2

π𝑥
cos(𝑥)                                                    (2.29) 

From equation (2.28) and (2.29) we see that 𝐽1
2

(𝑥) and 𝐽
−
1

2

(𝑥) are independent functions. Also, 

by using the recurrence relations, we can find the Bessel function for any index of the form 

𝑛 + 1 2⁄ , where n is an integer, and prove that for all integer n the following formulae holds: 

𝐽
𝑛+

1

2

(𝑥) =
(−1)𝑛(2𝑥)

𝑛+
1
2

√Π

𝑑𝑛

(𝑑𝑥2)𝑛
(
sin(𝑥)

𝑥
)                                       (2.30) 

𝐽
−𝑛+

1

2

(𝑥) =
(−1)𝑛(2𝑥)

𝑛+
1
2

√Π

𝑑𝑛

(𝑑𝑥2)𝑛
(
cos(𝑥)

𝑥
)                                     (2.31) 

For the modified Bessel function, we use the same method and we can have: 

𝐼1
2

(𝑥) = √
2

π𝑥
sin(𝑥) 

And 

𝐾1
2

(𝑥) = √
2

π𝑥
𝑒−𝑥 

We can also use 

𝑄(𝑥) = 𝐶1𝐽1
2⁄
(𝑥) + 𝐶2𝐽−1 2⁄

(𝑥) 

As the general solution for Bessel’s differential equation with  𝑣 = 1
2⁄  . Without a doubt, all 

Bessel function with v equal to a half-integer, could be expressed in terms of elementary 

algebraic and trigonometric functions, and for these values of v, 𝐽𝑣 will always be independent 
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of 𝐽−𝑣 . Sometimes we can called Bessel functions for semi- integer values of v as spherical 

Bessel functions. Thus, we can re-write the general solution (2.20), as: 

𝑄(𝑥) = 𝐶1𝐽1
2⁄
(𝑥) + 𝐶2𝐽−1 2⁄

(𝑥) ,       𝑣 ≥ 0, ≠ 𝑘 , 𝑘 = 0,1,2,3,⋯             (2.32) 

And it converges for all real 𝑥 > 0. 

 

2.3 Modified Bessel Function (Cylindrical Functions of a Pure Imaginary Arguments) 

 

Modified Bessel functions are solutions of the modified Bessel’s differential equation. 

Now, consider the Bessel’s differential equation: 

1

𝑥

𝑑

𝑑𝑥
(𝑥

𝑑𝑄

𝑑𝑥
) − (1 +

𝑣2

𝑥2
)𝑄 = 0                                            (2.33) 

This equation will shows up if we make a simple transformation 𝑥 → 𝑖𝑥 because we have to 

observe not only asymptotic at 𝑥 → 0, but also asymptotic at 𝑥 → ∞ .  

(𝑖𝑥)2 (
−𝑑2𝑄

𝑑𝑥2
) +

(𝑖𝑥)

𝑖
(
𝑑𝑄

𝑑𝑥
) + ((𝑖𝑥)2 − 𝑣2)𝑄 = 0 

Implies: 

−𝑥2 (
−𝑑2𝑄

𝑑𝑥2
) + 𝑥 (

𝑑𝑄

𝑑𝑥
) + (−𝑥2 − 𝑣2)𝑄 = 0 

𝑥2 (
𝑑2𝑄

𝑑𝑥2
) + 𝑥 (

𝑑𝑄

𝑑𝑥
) − (𝑥2 + 𝑣2)𝑄 = 0 

𝑥2𝑄′′ + 𝑥𝑄′ − (𝑥2 + 𝑣2) = 0 

Which is called the modified Bessel function. And has a regular singular point at 𝑥 = 0. We 

also use Frobenius method to obtain a solution of Modified Bessel function. One solution 

𝐼𝑣(𝑥) of equation (2.33) is defined by the series 

𝐼𝑣(𝑥) = (
𝑥

2
)
𝑣
∑

1

𝑛!Γ(𝑛+𝑣+1)
∙∞

𝑛=0 (
𝑥

2
)
2𝑛

                                    (2.34) 
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At 𝑥 → 0 

𝐼𝑣 ≈
𝑥𝑣

2𝑣Γ(𝑣+1)
                                                          (2.35) 

At 𝑥 → ∞ 

𝐼𝑣(𝑥) = √
2

π𝑥
𝑒𝑥                                                       (2.36) 

 

𝐼𝑣(𝑥) is the real function of real argument. They are related with Bessel functions of the first 

kind by: 

𝐼𝑣(𝑥) = 𝑒−
π
2
𝑣𝑖𝐽𝑣(𝑖𝑥)                                                   (2.37) 

In particular,  

𝐼𝑚(𝑥) = −𝑖
𝑚𝐽𝑚(𝑖𝑥)                                                   (2.38) 

Modified Bessel functions of second kind are defined by the relation 

𝐾𝑣(𝑥) =
π𝑖

2
𝑒
π
2
𝑣𝑖𝐻𝑣

(1)
(𝑖𝑥)                                                (2.39) 

𝐾𝑣(𝑥) ≈ √
π

2𝑥
𝑒−𝑥   ,   𝑥 → ∞                                            (2.40) 

They have asymptotic at both 𝐼𝑣(𝑥) and 𝐾𝑣(𝑥). 
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Figure 2.2: Modified Bessel Function 

 

2.4 Cylindrical Function of the Second Kind (Neumann or Weber’s Function) 

 

At whatever point v is not an integer, a fundamental system for a solution of Bessel’s 

differential equation for functions of order v is formed by a pair 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥) . In case 𝑣 =

𝑚 (m an integer), the functions 𝐽𝑚(𝑥) and 𝐽−𝑚(𝑥) are linearly dependent, so that 𝐽−𝑚(𝑥) is not 

a second solution of the equation. The second solution can be obtained as a combination of 

𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥) as follows: 

𝑌𝑣(𝑥) =
𝐽𝑣(𝑥) cos(π𝑣)−𝐽−𝑣(𝑥)

sin(π𝑣)
                                                (2.41) 

This is weber’s function (Neumann function) which satisfy Bessel’s differential equation 

because it is linear combination of 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥). When 𝑣 = 𝑚, the second solution is 

given by: 

𝑌𝑚(𝑥) = lim
𝑣→𝑚

𝐽𝑣(𝑥) cos(π𝑣)−𝐽−𝑣(𝑥)

sin(π𝑣)
                                            (2.42) 



 

25 
 

Also the general form of equation (2.42) above has been given by Neumann as: 

𝑌𝑚(𝑥) = 𝐽𝑚(𝑥){log 𝑥 − 𝑆𝑚} − ∑
2(𝑚−𝑛−1)𝑚! 𝐽𝑛(𝑥)

(𝑚 − 𝑛)! 𝑛! 𝑍(𝑚−𝑛)

𝑚−1

𝑛=0

+ ∑
(−1)(𝑛−1)(𝑚 + 2𝑛)𝐽𝑚+2𝑛(𝑥)

𝑛(𝑚 + 𝑛)

𝑚−1

𝑛=0

 

(2.43) 

Where  𝑆𝑚 = 1 + 1 2⁄ + 1 3⁄ +⋯+ 1 𝑚⁄  ,         𝑆0 = 0 . 

 

 

Figure 2.3: Bessel Function of the Second Kind. 

 

2.5 Cylindrical Function of the Third Kind (Hankel Function) 

 

Hankel function is a combination of Bessel’s functions of the first kind (𝐽𝑣(𝑥)) and second 

kind (𝑌𝑣(𝑥)). That is 

𝐻𝑣
(1)(𝑥) = 𝐽𝑣(𝑥) + 𝑗𝑌𝑣(𝑥)                                                (2.44) 
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𝐻𝑣
(2)(𝑥) = 𝐽𝑣(𝑥) − 𝑗𝑌𝑣(𝑥) 

Where 𝐻𝑣
(1)(𝑥) and 𝐻𝑣

(2)(𝑥) represents Hankel functions of the first kind and second kind, 

respectively. Since the functions of the third kind, are linear combination of: 

𝐻𝑣
(1)(𝑥) = 𝐽𝑣(𝑥) + 𝑗𝑌𝑣(𝑥) = 𝑗

𝑒−𝑣π𝑗𝐽𝑣(𝑥) − 𝐽−𝑣(𝑥)

sin(𝑣π)
 

And 

𝐻𝑣
(2)(𝑥) = 𝐽𝑣(𝑥) − 𝑗𝑌𝑣(𝑥) = −𝑗

𝑒𝑣π𝑗𝐽𝑣(𝑥) − 𝐽−𝑣(𝑥)

sin(𝑣π)
 

(2.45) 

So that, as 𝑥 → ∞ they have the following asymptotic; 

𝐻𝑣
(1)(𝑥) → √

2

𝜋𝑥
𝑒𝑗(𝑥−

𝜋𝑣
2
−
𝜋
4
)
 

And 

𝐻𝑣
(2)(𝑥) → √

2

𝜋𝑥
𝑒−𝑗(𝑥−

𝜋𝑣
2
−
𝜋
4
)
 

Apparently, 

𝐻𝑣
−(1)(𝑥) = 𝐻𝑣

(2)
(𝑥) 

The above functions are linearly independent solutions of Bessel equations. Whereby v 

represents the degree of the Hankel functions of the first and second kind. When we add 

𝐻𝑣
(1)
(𝑥) and 𝐻𝑣

(2)
(𝑥) side by side, we obtained: 

𝐻𝑣
(1)(𝑥) + 𝐻𝑣

(2)(𝑥) = 2𝐽𝑣(𝑥) 

𝐽𝑣(𝑥) =
1
2⁄ [𝐻𝑣

(1)(𝑥) + 𝐻𝑣
(2)(𝑥)]                                         (2.46) 

Again, when we subtract the same equation, we can have, 
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𝐻𝑣
(1)(𝑥) − 𝐻𝑣

(2)(𝑥) = 2𝑗𝑌𝑣(𝑥) 

𝑌𝑣(𝑥) =
1
2𝑗⁄ [𝐻𝑣

(1)(𝑥) − 𝐻𝑣
(2)(𝑥)]                                        (2.47) 

Therefore, the first and second kind Hankel functions are multiplied by 𝑒𝑗𝑣π and  𝑒−𝑗𝑣Π 

respectively, and then adding them side by side, we obtained: 

𝑒𝑗𝑣𝜋𝐻𝑣
(1)(𝑥) + 𝑒−𝑗𝑣Π𝐻𝑣

(2)(𝑥) = 2𝐽−𝑣(𝑥) 

𝐽−𝑣(𝑥) =
1
2⁄ [𝑒𝑗𝑣Π𝐻𝑣

(1)(𝑥) + 𝑒−𝑗𝑣Π𝐻𝑣
(2)(𝑥)]                                (2.48) 

 

2.6 Relations Between the Three Kinds of Bessel Functions 

 

The relations express each of the function in terms of functions of other two kinds: 

𝐽𝑣(𝑥) =
𝐻𝑣
(1)(𝑥)+𝐻𝑣

(2)(𝑥)

2
=

𝑌−𝑣(𝑥)+𝑌𝑣(𝑥) cos(𝜋𝑣)

sin(𝜋𝑣)
                                 (2.49) 

𝐽−𝑣(𝑥) =
𝑒𝑗𝜋𝑣𝐻𝑣

(1)(𝑥)+𝑒−𝑗𝜋𝑣𝐻𝑣
(2)(𝑥)

2
=

𝑌−𝑣(𝑥) cos(𝜋𝑣)−𝑌𝑣(𝑥)

sin(𝜋𝑣)
                        (2.50) 

𝑌𝑣(𝑥) =
𝐽𝑣(𝑥) cos(𝜋𝑣)−𝐽−𝑣(𝑥)

sin(𝜋𝑣)
=

𝐻𝑣
(1)
−𝐻𝑣

(2)
(𝑥)

2𝑗
                                    (2.51) 

𝑌−𝑣(𝑥) =
𝐽𝑣(𝑥)−𝐽−𝑣(𝑥) cos(𝜋𝑣)

sin(𝜋𝑣)
=

𝑒𝑗𝜋𝑣𝐻𝑣
(1)
−𝑒−𝑗𝜋𝑣𝐻𝑣

(2)
(𝑥)

2𝑗
                            (2.52) 

𝐻𝑣
(1)(𝑥) =

𝐽−𝑣(𝑥)−𝑒
−𝑗𝜋𝑣𝐽𝑣(𝑥)

𝑗 sin(𝜋𝑣)
=

𝑌−𝑣(𝑥)−𝑒
−𝑗𝜋𝑣𝑌𝑣(𝑥)

sin(𝜋𝑣)
                                (2.53) 

𝐻𝑣
(2)(𝑥) =

𝑒𝑗𝜋𝑣𝐽𝑣(𝑥)−𝐽−𝑣(𝑥)

𝑗 sin(𝜋𝑣)
=

𝑌−𝑣(𝑥)−𝑒
𝑗𝜋𝑣𝑌𝑣(𝑥)

sin(𝜋𝑣)
                                   (2.54) 

 

2.7 Formulae of Differentiation and Recurrence Relations 

 

Let us divide equation (2.18) by 𝑥𝑣, we have: 
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𝐽𝑣(𝑥)

𝑥𝑣
=
1

2𝑣
∑

(−1)𝑛𝑥2𝑛

2𝑛𝑛! Γ(𝑣 + 𝑛 + 1)

∞

𝑛=0

 

After differentiation with respect to 𝑥, we obtain: 

𝑑

𝑑𝑥

𝐽𝑣(𝑥)

𝑥𝑣
=
1

2𝑣
∑

(−1)𝑛

(𝑛 − 1)! Γ(𝑣 + 𝑛 + 1)

∞

𝑛=0

(
𝑥

2
)
2𝑛−1

= −
𝐽𝑣+1
𝑥𝑣

 

Which implies: 

1

𝑥

𝑑

𝑑𝑥

𝐽𝑣(𝑥)

𝑥𝑣
=

−𝐽𝑣+1

𝑥𝑣+1
(𝑥)                                                    (2.55) 

Similarly, 

1

𝑥

𝑑

𝑑𝑥
[𝑥𝑣𝐽𝑣(𝑥)] = 𝑥𝑣−1𝐽𝑣−1(𝑥)                                       (2.56) 

After differentiating equation (2.55) and (2.56), we can obtain: 

𝑑

𝑑𝑥
𝐽𝑣(𝑥) = −𝐽𝑣+1(𝑥) +

𝑣𝐽𝑣

𝑥
(𝑥)                                       (2.57) 

Similarly, 

𝑑

𝑑𝑥
𝐽𝑣(𝑥) = 𝐽𝑣−1(𝑥) −

𝑣𝐽𝑣

𝑥
(𝑥)                                        (2.58) 

Which implies the following recurrence formulae: 

𝐽𝑣−1(𝑥) + 𝐽𝑣+1(𝑥) =
2𝑣𝐽𝑣

𝑣
                                             (2.59) 

And 

𝐽𝑣−1(𝑥) − 𝐽𝑣+1(𝑥) = 2
𝑑

𝑑𝑥
𝐽𝑣(𝑥)                                     (2.60) 

In equation (2.18), we substitute 𝑥 with 𝑘𝑥, and obtain: 

𝐽𝑣(𝑘𝑥) = ∑
(−1)𝑛

𝑛! Γ(𝑣 + 𝑛 + 1)
(
𝑘𝑥

2
)
𝑣+2𝑛∞

𝑛=0

 

Also multiplying the above equation by 𝑥𝑣, we have: 
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𝑥𝑣𝐽𝑣(𝑘𝑥) = ∑
(−1)𝑛

𝑛! Γ(𝑣 + 𝑛 + 1)
(
𝑘𝑥

2
)
𝑣+2𝑛

𝑥𝑣
∞

𝑛=0

= ∑
(−1)𝑛

𝑛! Γ(𝑣 + 𝑛 + 1)
(
𝑘

2
)
𝑣+2𝑛∞

𝑛=0

𝑥2(𝑣+𝑛) 

And then differentiating side by side as follows; 

𝑑

𝑑𝑥
(𝑥𝑣𝐽𝑣(𝑘𝑥)) = ∑

(−1)𝑛

𝑛! Γ(𝑣 + 𝑛 + 1)
(
𝑘

2
)
𝑣+2𝑛∞

𝑛=0

∙ 2(𝑛 + 𝑣) ∙ 𝑥2(𝑛+𝑣)−1

=∑
(−1)𝑛2(𝑛 + 𝑣)

𝑛! (𝑛 + 𝑣)Γ(𝑣 + 𝑛)
(
𝑘

2
)
𝑣+2𝑛

.

∞

𝑛=0

𝑥2𝑛+2𝑣−1

=∑
(−1)𝑛

𝑛! Γ(𝑣 + 𝑛)
(
𝑘𝑥

2
)
𝑣+2𝑛−1

.

∞

𝑛=0

𝑥𝑣𝑘

= ∑
(−1)𝑛

𝑛! Γ((𝑣−)𝑛 + 1)
(
𝑘𝑥

2
)

(𝑣−1)+2𝑛

.

∞

𝑛=0

𝑥𝑣𝑘 

Therefore, we have: 

𝑑

𝑑𝑥
[𝑥𝑣𝐽𝑣(𝑘𝑥)] = 𝑘𝑥

𝑣𝐽𝑣−1(𝑘𝑥)                                             (2.61) 

Similarly, 

𝑑

𝑑𝑥
[𝑥−𝑣𝐽𝑣(𝑘𝑥)] = −𝑘𝑥−𝑣𝐽𝑣+1(𝑘𝑥)                                         (2.62) 

Differentiating equation (61) and (62), we get: 

𝑑

𝑑𝑥
[𝐽𝑣(𝑘𝑥)] = 𝑘𝐽𝑣−1(𝑘𝑥) −

𝑣

𝑥
𝐽𝑣(𝑥)                                         (2.63) 

And 

𝑑

𝑑𝑥
[𝐽𝑣(𝑘𝑥)] = −𝑘𝐽𝑣+1(𝑘𝑥) +

𝑣

𝑥
𝐽𝑣(𝑘𝑥)                                     (2.64) 

So, we can replace 𝐽𝑣(𝑥) in the above formulae by any of the functions; 𝑌𝑣(𝑥), 𝐻𝑣
(1)(𝑥) and 

𝐻𝑣
(2)(𝑥). Again, if we differentiate equation (2.55) and (2.56), we can have; 

(
1

𝑥

𝑑

𝑑𝑥
)
𝑘
[𝑥𝑣𝐽𝑣(𝑥)] = 𝑥𝑣−𝑘𝐽𝑣−𝑘(𝑥)                                           (2.65) 
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(
1

𝑥

𝑑

𝑑𝑥
)
𝑘
[𝑥−𝑣𝐽𝑣(𝑥)] = (−1)

𝑘𝑥−𝑣−𝑘𝐽𝑣−𝑘(𝑥)                                      (2.66) 

For the modified functions, we can have the following relations of differentiation, that are 

obtained as a result of the change of the variable (argument) 𝑥 by 𝑖𝑥 and the representation of 

the functions 𝐽𝑣(𝑥) and 𝐻𝑣
(1)(𝑥) through the functions 𝐼𝑣(𝑥) and 𝐿𝑣(𝑥): 

𝑑

𝑑𝑥
𝐼𝑣(𝑥) =

1

2
[𝐼𝑣−1(𝑥) + 𝐼𝑣+1(𝑥)]                                          (2.67) 

𝑑

𝑑𝑥
𝐿𝑣(𝑥) = −

1

2
[𝐼𝑣−1(𝑥) + 𝐼𝑣+1(𝑥)]                                       (2.68) 

The corresponding recurrence relations has the form: 

𝐼𝑣−1(𝑥) − 𝐼𝑣+1(𝑥) =
2𝑣

𝑥
𝐼𝑣(𝑥)                                            (2.69) 

𝐿𝑣−1(𝑥) − 𝐿𝑣+1(𝑥) = −
2𝑣

𝑥
𝐿𝑣(𝑥)                                          (2.70) 

 

2.8 Wronskian Determinant 

 

The wronskian determinant must be non-zero since 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥) are linearly independent 

solutions of the Bessel equation. 

Let 𝑦1 = 𝐽𝑣(𝑥) and 𝑦2 = 𝐽−𝑣(𝑥), then the wronskian can be obtain as follows; 

𝑊(𝑦1, 𝑦2) = |
𝑦1 𝑦2
𝑦1
′ 𝑦2

′′| = 𝑊(𝐽𝑣(𝑥), 𝐽−𝑣(𝑥)) 

= |
𝐽𝑣(𝑥) 𝐽−𝑣(𝑥)

𝐽𝑣
′ (𝑥) 𝐽−𝑣

′ (𝑥)
| = 𝐽𝑣(𝑥)𝐽−𝑣

′ (𝑥) − 𝐽−𝑣(𝑥)𝐽𝑣
′ (𝑥)                              (2.71) 

Substituting equation (2.71) into equation (2.9), we obtain: 

𝐽−𝑣
′′ (𝑥) +

1

𝑥
𝐽−𝑣
′ (𝑥) + (1 −

𝑣2

𝑥2
) 𝐽−𝑣(𝑥) = 0                                       (2.72) 

𝐽𝑣
′′(𝑥) +

1

𝑥
𝐽𝑣
′ (𝑥) + (1 −

𝑣2

𝑥2
) 𝐽𝑣(𝑥) = 0                                         (2.73) 

If we multiply (2.72) and (2.73) by 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥) respectively, we obtain: 
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𝐽−𝑣
′′ (𝑥)𝐽𝑣(𝑥) +

1

𝑥
𝐽−𝑣
′ (𝑥)𝐽𝑣(𝑥) + (1 −

𝑣2

𝑥2
) 𝐽−𝑣(𝑥)𝐽𝑣(𝑥) = 0 

And 

𝐽𝑣
′′(𝑥)𝐽−𝑣(𝑥) +

1

𝑥
𝐽𝑣
′ (𝑥)𝐽−𝑣(𝑥) + (1 −

𝑣2

𝑥2
) 𝐽𝑣(𝑥)𝐽−𝑣(𝑥) = 0 

If we subtract the above equation side by side, we obtain: 

𝐽𝑣(𝑥)𝐽−𝑣
′′ (𝑥) − 𝐽−𝑣(𝑥)𝐽𝑣

′′(𝑥) +
1

𝑥
[𝐽𝑣(𝑥)𝐽−𝑣

′ (𝑥) − 𝐽−𝑣(𝑥)𝐽𝑣
′ (𝑥)] = 0 

Implies that; 

𝑑

𝑑𝑥
[𝐽𝑣(𝑥)𝐽−𝑣

′ (𝑥) − 𝐽−𝑣(𝑥)𝐽𝑣
′ (𝑥)] +

1

𝑥
[𝐽𝑣(𝑥)𝐽−𝑣

′ (𝑥) − 𝐽−𝑣(𝑥)𝐽𝑣
′ (𝑥)] = 0           (2.74) 

By substituting 

𝑊 = 𝐽𝑣(𝑥)𝐽−𝑣
′ (𝑥) − 𝐽−𝑣(𝑥)𝐽𝑣

′ (𝑥) 

This implies; 

𝑑𝑊

𝑑𝑥
+
𝑊

𝑥
= 0 

By using separation of variables, we get 

𝑊(𝑥) =
𝑘(𝑣)

𝑥
                                                           (2.75) 

Suppose that the above equation has a non-integer index. Now, we should obtain the 

Wronskian as follows: 

𝑊(𝐽𝑣(𝑥), 𝐽−𝑣(𝑥)) =
𝑘(𝑣)

𝑥
                                                (2.76) 

𝑘(𝑣) = 𝑥[𝐽𝑣(𝑥)𝐽−𝑣
′ (𝑥) − 𝐽−𝑣(𝑥)𝐽𝑣

′ (𝑥)]                                  (2.77) 

The value of the constant 𝑘(𝑣) can easily be obtained, if we pass to the limit as 𝑥 → 0 in 

equation (2.71) and using the expansions of the Bessel functions obtained in section [2.2]. 

Notice that, if 𝑣 is non-integer index, and by using equation (2.18) and (2.19), we have: 
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𝐽𝑣(𝑥) = ∑
(−1)𝑛

𝑛! Γ(𝑣 + 𝑛 + 1)
(
𝑥

2
)
𝑣+2𝑛

∞

𝑛=0

= 

(
𝑥

2
)
𝑣 1

Γ(𝑣 + 1)
+∑

(−1)𝑛

𝑛! Γ(𝑣 + 𝑛 + 1)
(
𝑥

2
)
𝑣+2𝑛

∞

𝑛=1

 

And 

𝐽−𝑣(𝑥) = ∑
(−1)𝑛

𝑛! Γ(−𝑣 + 𝑛 + 1)
(
𝑥

2
)
−𝑣+2𝑛

∞

𝑛=0

= 

(
𝑥

2
)
−𝑣 1

Γ(−𝑣 + 1)
+∑

(−1)𝑛

𝑛! Γ(−𝑣 + 𝑛 + 1)
(
𝑥

2
)
−𝑣+2𝑛

∞

𝑛=1

 

This implies, 

𝐽𝑣(𝑥) = (
𝑥

2
)
𝑣 1

Γ(𝑣+1)
(1 + 𝑂(𝑥2))                                         (2.78) 

𝐽𝑣
′ (𝑥) = (

𝑥

2
)
𝑣−1 1

2Γ(𝑣)
(1 + 𝑂(𝑥2))                                        (2.79) 

Similarly, 

𝐽−𝑣(𝑥) = (
𝑥

2
)
−𝑣 1

Γ(−𝑣+1)
(1 + 𝑂(𝑥2))                                    (2.80) 

𝐽−𝑣
′ (𝑥) = (

𝑥

2
)
−𝑣−1 1

2Γ(−𝑣)
(1 + 𝑂(𝑥2))                                   (2.81) 

As 𝑥 → 0, and 𝑂(𝑥2) denotes a quantity, whose ratio to 𝑥2 is bounded as 𝑥 → 0. 

Substituting equations (2.78), (2.79), (2.80) and (2.81) into equation (2.77), we obtain: 

𝑘(𝑣) = 𝑥 [(
𝑥

2
)
𝑣 1

Γ(𝑣 + 1)
(1 + 𝑂(𝑥2)) (

𝑥

2
)
−𝑣−1 1

2Γ(𝑣)
(1 + 𝑂(𝑥2))] + 

𝑥 [− (
𝑥

2
)
−𝑣 1

Γ(−𝑣 + 1)
(1 + 𝑂(𝑥2)) (

𝑥

2
)
𝑣−1 1

2Γ(𝑣)
(1 + 𝑂(𝑥2))] 

As 𝑥 → 0, 𝑂(𝑥2) = 0, therefore 
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𝑘(𝑣) = [
1

Γ(𝑣+1)

1

Γ(𝑣)
−

1

Γ(−𝑣+1)

1

Γ(𝑣)
]                                        (2.82) 

By using the formula of gamma function in (2.82), which is 

Γ(𝑣)Γ(−𝑣 + 1) =
𝜋

sin(𝜋𝑣)
 

This implies: 

𝑘(𝑣) = −
sin(𝑣𝜋)

𝜋
−
sin(𝑣𝜋)

𝜋
= −2

sin(𝑣𝜋)

𝜋
                                (2.83) 

Substituting equation (2.83) into equation (2.76), we obtain: 

  𝑊[𝐽𝑣(𝑥), 𝐽−𝑣(𝑥)] = −2
sin(𝑣𝜋)

𝜋𝑥
                                          (2.84) 

sin(𝑣𝜋) ≠ 0, since 𝑣 is not an integer. 

Therefore, 

𝑊[𝐽𝑣(𝑥), 𝐽−𝑣(𝑥)] ≠ 0                                               (2.85) 

Therefore, the functions 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥) are linearly independent solutions of the Bessel 

equation. 

 

2.9 Integral Representation 

 

Firstly, we have to consider the integral: 

𝐴𝑠(𝑥) =
1

2𝜋
∫ 𝑒𝑖𝑥 sin𝜃−𝑖𝑠𝜃𝑑𝜃
𝜋

−𝜋
                                             (2.86) 

To simplify this, we have to use the Taylor expansion of the exponent: 

𝑒𝑖𝑥 sin𝜃 = ∑
1

𝑚!
(𝑖𝑥 sin(𝜃))𝑚∞

𝑚=0 = ∑
1

𝑚!
(
𝑥

2
)
𝑚

(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)𝑚∞
𝑚=0                 (2.87) 

Note that, the integral: 

𝐼𝑚,𝜋 =
1

2𝜋
∫ (𝑒𝑖𝜃−𝑖𝜃)

𝑚
𝑒−𝑖𝑠𝜃𝑑𝜃

𝜋

−𝜋
                if    𝑚 < 0                       (2.88) 
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Then, we represent m= 𝑠 + 𝑝 . The integrand in the equation (2.88) can be written in the 

form: 

1

2𝜋
(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)𝑠+𝑝𝑒−𝑖𝑠𝜃 = (1 − 𝑒−2𝑖𝜃)𝑠(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)𝑝 

Suppose 𝑝 is odd (𝑝 = 2𝑞 + 1) . All the terms in the first bracket are even powers of  𝑒−𝑖𝜃, 

while all the terms in the second bracket are odd powers (+ 𝑜𝑟 −) on 𝑒−𝑖𝜃. Therefore the 

integral is zero, and we can let 𝑝 = 2𝑞. We obtained the following: 

𝐴𝑠(𝑥) = (
𝑥

2
)
𝑠
∑

1

(𝑠+2𝑞)!
(
𝑥

2
)
𝑞

𝐼𝑞,𝑠
∞
𝑠=0                                         (2.89) 

Where 

𝐼𝑞,𝑠 =
1

2𝜋
∫ (𝑒𝑖𝜃 − 𝑒−𝑖𝜃)

𝑠+2𝑞
𝑒−𝑖𝑠𝜃𝑑𝜃

𝜋

−𝜋
                                   (2.90) 

To evaluate 𝐼𝑞,𝑠, we have to use the binomial expansion in the bracket. In this expansion, we 

are only interested in the single term proportional to 𝑒𝑖𝑠𝜃. All the other terms after the 

multiplication to equation (2.90) and integration over 𝜃 are cancelled.  

Hence,  

(𝑒𝑖𝜃 − 𝑒−𝑖𝜃)
𝑠+2𝑞

≈
(𝑠 + 2𝑞)!

𝑞! (𝑠 + 𝑞)!
(𝑒𝑖𝜃)

𝑠+𝑞
(−𝑒−𝑖𝜃)

𝑞
=
(−1)𝑞(𝑠 + 2𝑞)!

𝑞! (𝑠 + 𝑞)!
𝑒𝑖𝑠𝜃 

And 

𝐼𝑠,𝑞 =
(−1)𝑞(𝑠+2𝑞)!

𝑞!(𝑠+𝑞)!
                                                        (2.91) 

By substituting (2.91) into equation (2.89), we get: 

𝐴𝑠(𝑥) = (
𝑥

2
)
𝑠

∑
(−1)𝑞

𝑞! (𝑠 + 𝑞)!
(
𝑥

2
)
𝑞

∞

𝑞=0

= 𝐽𝑠(𝑥) 

We can now obtain the integral representation for 𝐽𝑠(𝑥) : 

𝐽𝑠(𝑥) =
1

2𝜋
∫ 𝑒𝑖𝑥 sin𝜃−𝑖𝑠𝜃𝑑𝜃
𝜋

−𝜋
                                            (2.92) 



 

35 
 

The result of the above equation is correct for  +𝑠 .  

Note that;                         

𝐽𝑠(−𝑥) = (−1)
𝑠𝐽𝑠(𝑥)                                                  (2.93) 

Bessel functions of even order are even function on 𝑥, while Bessel functions of odd order are 

odd. Now, we can obtain 𝐴𝑠(𝑥) at −𝑠. Let us simultaneously change the signs on 𝑥 and s. 

𝐴−𝑠(−𝑥) =
1

2𝜋
∫ 𝑒−𝑖𝑥 sin𝜃+𝑖𝑠𝜃𝑑𝜃
𝜋

−𝜋

 

Replacing 𝜃 → −𝜃, we restore the previous result. 

Therefore, 

𝐴−𝑠(−𝑥) = 𝐴𝑠(𝑥) = 𝐽𝑠(𝑥) 

𝐴−𝑠(𝑥) = 𝐽𝑠(−𝑥) = (−1)𝑠𝐽𝑠(𝑥)                                          (2.94) 

Finally, for all integrals on, 

𝐴𝑠(𝑥) = (−1)
𝑠𝐽𝑠(𝑥) 

Note that 𝐽𝑠(𝑥) is real. Then equation (7) can be re-written as: 

𝐽𝑠(𝑥) =
1

2𝜋
∫ cos(𝑥 sin 𝜃 − 𝑠𝜃) 𝑑𝜃
𝜋

−𝜋
                                  (2.95) 

Now, taking a look at 𝑒𝑖𝑥 sin𝜃 . This is a periodic function that can be expanded in Fourier 

series.  

Apparently, 

𝑒𝑖𝑥 sin𝜃 = ∑ 𝐽𝑠(𝑥)𝑒
𝑖𝑠𝜃∞

𝑠=−∞ = 𝐽0(𝑥) + ∑ 𝐽𝑠(𝑥)(𝑒
𝑖𝑠𝜃 + (−1)𝑠𝑒−𝑖𝑠𝜃)∞

𝑠=1          (2.96) 

After separating the real and imaginary parts, we obtain: 

cos(𝑥 sin 𝜃) = 𝐽0(𝑥) + 2∑𝐽2𝑞(𝑥) cos(2𝑞𝜃)

∞

𝑞=1

 

sin(𝑥 sin 𝜃) = 2∑ 𝐽2𝑞+1(𝑥) sin((2𝑞 + 1)𝜃)
∞
𝑞=−∞                                (2.97)        
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By introducing 𝑐𝑒𝑖𝜃, we can transform (2.96) to the following: 

𝑒
𝑥

2
(𝑐−

1

𝑐
) = ∑ 𝐽𝑠(𝑥)𝑐

𝑠∞
𝑠=−∞                                                  (2.98) 

This means that 𝐹(𝑥, 𝑐) = 𝑒
𝑥

2
(𝑐−

1

𝑐
)
 is a “generating function” for all Bessel functions of 

integral orders. 

 

2.10 Asymptotic Behavior at 𝒙 → ∞ 

 

To get the asymptotic behavior of the Bessel functions at 𝑥 → ∞, we can use the device 

similar to the one used to obtained the Sterling formula. We present an integral; 

𝐽𝑚(𝑥) =
1

2𝜋
∫ 𝑒𝑖𝑥 sin𝜃−𝑖𝑚𝜃𝑑𝜃
𝜋

−𝜋

 

In the form: 

𝐽𝑚(𝑥) =
1

2𝜋
∫ 𝑒𝑖Φ(𝑥,𝜃)𝑑𝜃
𝜋

−𝜋
                                                (2.99) 

Φ(𝑥, 𝜃) = 𝑥 sin 𝜃 − 𝑚𝜃                                              (2.100) 

If 𝑥 → ∞, the integral is the fast oscillation function everywhere except the two points where 

 
𝑑Φ

𝑑𝜃
= 0. These points are defined by the equation: 

𝑥 cos 𝜃 = 𝑚          at        𝑥 → ∞ 

cos 𝜃 → 0          at     𝜃 → ±
𝜋

2
. 

The contributions of points 𝜃± = ±
𝜋

2
 give the complex conjugated results. Therefore, it is 

enough to study the neighborhood of the point 𝜃 =
𝜋

2
. Now, let us introduce 𝜃 =

𝜋

2
+ 𝜏 for 

small 𝜏,  

Φ(𝑥, 𝜃) ≈ 𝑥 −
𝑚𝜋

2
−
1

2
𝑥𝜏2                                                (2.101) 
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The integral (2.99) can be replace approximately by the following integral: 

𝐽𝑚(𝑥) =
1

𝜋
ℜ𝑒𝑖(𝑥−

𝑚𝜋
2
−
𝜋
4
)∫ 𝑒

−𝑖𝑥
2
𝜏2

∞

−∞

𝑑𝜏 

Where  ℜ = 𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡𝑠. 

Let us make the transformations: 

𝜏 = √
2

𝑖𝑥
𝑦, 

1

√𝑖
= 𝑒

−𝜋𝑖

4  

Then,  

𝐽𝑚(𝑥) =
√2

𝜋√𝑥
ℜ𝑒𝑖(𝑥−

𝑚𝜋

2
−
𝜋

4
)
∫ 𝑒−𝑦

2
𝑖𝜋

4
∙∞

−𝑖𝜋

4
∙∞

𝑑𝑦                               (2.102) 

Integration is going in the complex plane on a straight line at an angle of 450 with respect to 

the real axis. As shown in the figure above. Therefore, the contour of integration can turned 

back to the real axis (to verify this, we have to use some elements of complex analysis. But 

this is true). In the other hand, the integral in equation (2.102) can be replaced by 

∫ 𝑒−𝑦
2∞

−∞
𝑑𝑦 = √𝜋.  

So, we have: 

𝐽𝑚(𝑥) → √
2

𝜋𝑥
cos (𝑥 −

𝑚𝜋

2
−
𝜋

4
)                                          (2.103) 

We derived this expression only for integral 𝑚. In fact, we need to use a more sophisticated 

integral representation for 𝐽𝑛(𝑥) which is valid not only for integral,  

𝐽𝑛(𝑥) → √
2

𝜋𝑥
cos (𝑥 −

𝑛𝜋

2
−
𝜋

4
)                                         (2.104) 

In particular, 

𝐽1
2

(𝑥) → √
2

𝜋𝑥
cos (𝑥 −

𝜋

2
) → √

2

𝜋𝑥
sin 𝑥 
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This is unique Bessel function coinciding with its own asymptotic behavior. 

 

Figure 2.4: Contour of Integration. 

 

2.11 Orthogonality and Fourier-Bessel Series 

 

Let  𝐽𝑛(𝑥) be the Bessel function of index n. let 𝑎𝑀
𝑛  be its zeros, so that 

 𝐽𝑛(𝑎𝑀
𝑛 ) = 0. Suppose that 0 < 𝑟 < 𝑎 is an interval on the real axis. Now, we consider the set 

of function 𝑅𝑀
𝑛 (𝑟) = 𝐽𝑛 (

𝑟

𝑅
𝑎𝑀
𝑛 ). This is the set of functions against the weight r. In the other 

hands; 

∫ 𝑅𝑀
𝑛 (𝑟)𝑅𝑁

𝑛(𝑟)𝑟𝑑𝑟
𝑎

0
= 0            if    𝑀 ≠ 𝑁                              (2.105) 

To verify this fact, we first of all mention that, 

𝑅𝑀
𝑛 (𝑟) = 𝐽𝑛(𝑎𝑀

𝑛 ) = 0                                               (2.106) 

We say that, these functions satisfies the following equations: 
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1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑅𝑀

𝑛

𝜕𝑟
+ (𝐾𝑀 −

𝑛2

𝑟2
) 𝑅𝑀

𝑛 = 0   ,        𝐾𝑀 =
𝑎𝑀

𝑎
                           (2.107) 

1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑅𝑁

𝑛

𝜕𝑟
+ (𝐾𝑁 −

𝑛2

𝑟2
) 𝑅𝑁

𝑛 = 0   ,        𝐾𝑁 =
𝑎𝑁

𝑎
                           (2.108) 

When we multiply these equations by 𝑟𝑅𝑁 and 𝑟𝑅𝑀 respectively, and subtracting the results, 

we can get: 

𝑅𝑁
𝑛 1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑅𝑀

𝑛

𝜕𝑟
− 𝑅𝑀

𝑛 1

𝑟

𝜕

𝜕𝑟
𝑟
𝜕𝑅𝑁

𝑛

𝜕𝑟
= (𝐾𝑁

2 − 𝐾𝑁
2)𝑟𝑅𝑀𝑅𝑁                        (2.109) 

Re-written the left hand side as: 

𝜕

𝜕𝑟
𝑟[𝑅𝑁𝑅𝑀] = (𝐾𝑁

2 − 𝐾𝑁
2)𝑟𝑅𝑀𝑅𝑁                                    (2.110) 

[𝑅𝑁𝑅𝑀] = 𝑅𝑁
𝜕

𝜕𝑟
𝑅𝑁 − 𝑅𝑀

𝜕

𝜕𝑟
𝑅𝑀                                     (2.111) 

[𝑅𝑁𝑅𝑀]Ι𝑟=𝑎 = 0                                                   (2.112) 

Then if 𝐾𝑁
2 ≠ 𝐾𝑁

2, integral from 0 to 𝑎 will leads to the condition of equation (2.105). Note 

that, we can replace the functions 𝑅𝑀
𝑛 (𝑟) by 𝑅𝑀

�̃� (𝑟) = 𝐽𝑛 (
𝑟

𝑎
𝑏𝑀
𝑛 ). They will satisfy the 

condition 𝑅𝑀
′̃ (𝑎) = 0. Then, the Wronskian [𝑅𝑁𝑅𝑀] = 0  at 𝑟 = 𝑎. 

Therefore, the function 𝑅𝑀
�̃� (𝑟) satisfies the orthogonality conditions (2.105). 

Suppose that 𝑓(𝑟), 0 < 𝑟 < 𝑎, is some real or complex function defined on the interval (0,r). 

We can represent this function as a linear combination of  𝑅𝑀
𝑛 (𝑟). 

Let  

𝑓(𝑟) = ∑ 𝑓𝑀𝑅𝑀
𝑛 (𝑟)∞

𝑀=1                                                 (2.113) 

Multiplying this to 𝑟𝑅𝑁
𝑛(𝑟) and integrating we have; 

𝑓𝑀 =
1

𝜆𝑛
2
𝑀

∫ 𝑓(𝑟)𝑟
𝑎

0

𝑅𝑀
𝑛 (𝑟)𝑑𝑟 =

1

𝜆𝑛
2
𝑀

∫ 𝑓(𝑟)𝑟
𝑎

0

𝐽𝑀
𝑛 (
𝑟

𝑎
𝑎𝑀) 𝑑𝑟 

Here,  
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𝜆2𝑀 = ∫ 𝑟
𝑎

0
𝑅𝑀
5 (𝑟)𝑑𝑟 =

1

2

𝑎2

𝑎2𝑀
∫ 𝑥𝐽2𝑥(𝑥)𝑑𝑥
𝑎𝑀

0
=

1

2
𝑎2𝐽2𝑛±1(𝑎𝑀)               (2.114) 

Remarks, all functions  𝑅𝑀
𝑛 (𝑟) → (

𝑟

2𝑎
𝑎𝑀)

𝑛

 at 𝑟 → 0. It means that the series (2.106) 

converges if the function 𝑓(𝑟) behaves at 𝑟 → 𝑎𝑛 

𝑓(𝑟) → 𝑘𝑟𝑛                                                      (2.115) 

If the asymptotic of equation (2.108) holds, the conditions for the convergence of the series 

are similar to the corresponding conditions for the standard Fourier series. In particular, if 

(𝑎) = 0 , |𝑓′(𝑟)| < 𝑘, where 𝑘 is some arbitrary constant, this series converges absolutely and 

uniformly on 0 < 𝑟 < 𝑎. A function 𝑓(𝑟, 𝜃) defined in the disk in the Bessel Fourier series. 

First of all, we present 𝑓(𝑟, 𝜃) as a Fourier series in angles. 

𝑓(𝑟, 𝜃) = ∑ 𝑓𝑚(𝑟)𝑒
𝑖𝑚𝜃∞

𝑚=−∞                                        (2.116) 

𝑓𝑚(𝑟) =
1

2𝜋
∫ 𝑓(𝑟, 𝜃)
2𝜋

0
𝑒−𝑖𝑚𝜃𝑑𝜃                                    (2.117) 

What is asymptotic of 𝑓𝑚(𝑟) if 𝑟 → 0? We now go back to the Cartesian coordinates (𝑥 =

𝑟 cos 𝜃 , 𝑦 = 𝑟 sin 𝜃). Let 𝑓𝑚(𝜃) be written as follows: 

𝑓𝑚 = 𝑓0(𝜃) + 𝑟𝑓1(𝜃) +
1

2
𝑟2𝑓2(𝜃) + ⋯+

1

𝑟
𝑅𝑛−1𝑓𝑛−1(𝜃)                  (2.118) 

𝑓1(𝜃) = 𝑓𝑥 cos 𝜃 + 𝑓𝑦 sin 𝜃 

All other 𝑓𝑚(𝜃) are trigonometric polynomials of order 𝑚− 1.  

So; 

∫ 𝑓𝑐(𝜃)𝑒
−𝑖𝑚𝜃𝑑𝜃

2𝜋

0
       If     𝑐 < 𝑚 

Hence 𝑓𝑚(𝑟) → 𝑃𝑚𝑟
𝑚 as 𝑟 → 0, with 𝑃𝑚 some constant, and functions 𝑓𝑚(𝑟) are good for the 

expansion of series in the Fourier function of order 𝑚. 

Finally,  

𝑓(𝑟, 𝜃) = ∑ ∑ 𝑓𝑚𝑀𝑒
𝑖𝑚𝜃𝐽𝑚 (

𝑟

𝑎
𝑎𝑀)

∞
𝑀=1

∞
𝑚=−∞                                   (2.119) 
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𝑓𝑚𝑀 =
1

2𝜋𝜆𝑚𝑁
2 ∫ 𝑒−𝑖𝑚𝜃𝑑𝜃

2𝜋

0
∫ 𝑟𝐽𝑚 (

𝑟

𝑎
𝑎𝑀) 𝑓(𝑟, 𝜃)𝑑𝑟

𝑎

0
                         (2.120) 

In particular, if 𝑓(𝑥, 𝑦) = 𝛿(𝑥 − 𝑥0)𝛿(𝑦 − 𝑦0) = 𝑟0𝛿(𝜃 − 𝜃0) then, 

𝑓𝑚𝑀 =
1

2𝜋𝜆𝑚𝑛
2 𝑟0𝑒

−𝑖𝑚𝜃𝐽𝑚 (
𝑟0

𝑎
𝑎𝑀)                                        (2.121) 

Equation (2.112) is good and fast converging if 𝑓(𝑟, 𝜃) satisfies the Drichlet condition 

𝑓(𝑎, 𝜃) = 0. If this function satisfies the Weber or Neumann function (𝑓𝑟(𝑎, 𝜃) = 0), we can 

use the following orthogonal functions: 

1, 𝐽𝑚 (
𝑟

𝑎
𝑏1) ,⋯ , 𝐽𝑚 (

𝑟

𝑎
𝑏𝑀) ,⋯ 

2.12 Zeros of Bessel Functions 

 

It is clear from equation (2.104) that is; 

𝐽𝑛(𝑥) → √
2

𝜋𝑥
cos (𝑥 −

𝑛𝜋

2
−
𝜋

4
) 

That the Bessel function 𝐽𝑛(𝑥) has an infinite amount of zeros for half axis 0 < 𝑥 < ∞. Let us 

represent these zeros as 𝑎𝑀
𝑛 , where 𝑀 = 1,2,3,⋯ ,∞. From the equation above, we can 

conclude that the distance between two neighboring zeros will tends to 𝜋. 

𝑎𝑀+1
𝑛 − 𝑎𝑀

𝑛 → π     as   𝑀 → ∞                                   (2.122) 

The first five Bessel functions of integral order are plotted on figure2.5. The first five of each 

zeros are represented in table1. Note that; 

𝑎5
5 − 𝑎4

5 = 3.2377 

While: 

𝑎5
0 − 𝑎4

0 = 3.1394 
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As we can see both values are close to 𝜋. The derivatives of Bessel functions have the 

following asymptotic behavior: 

𝐽𝑛
′ (𝑥) → √

2

𝜋𝑥
sin (𝑥 −

𝑛𝜋

2
−
𝜋

4
)                                           (2.123) 

The derivatives of  𝐽𝑛(𝑥) also have an infinite amount of zeros 𝑏𝑀
𝑛 . 

Also’ 

𝑏𝑀+1
𝑛 − 𝑏𝑀

𝑛 → π    if     𝑀 → ∞                                         (2.124) 

Let us re-write the Bessel equation as follows: 

𝑑

𝑑𝑥
𝑥𝐽𝑛
′ + 𝑥𝐽𝑛 −

𝑛2

𝑥
𝐽𝑛 = 0                                           (2.125) 

Multiplying the above equation by 2𝑥𝐽′, we have; 

𝑑

𝑑𝑥
(𝑥2𝐽2

′2 − 𝑛2𝐽𝑛
2) + 2𝑥2𝐽𝐽′ = 0 

2𝑥2𝐽𝐽′ = 𝑥2
𝑑

𝑑𝑥
𝐽2 =

𝑑

𝑑𝑥
𝑥2𝐽2 − 2𝑥𝐽2 

Finally, 

2𝑥𝐽𝑛
2 =

𝑑

𝑑𝑥
[𝑛2𝐽𝑛

′2 + (𝑥2 − 𝑛2)𝐽𝑛
2]                                       (2.126) 

Integrating equation (2.126) w.r.t. 𝑥 from 0 to 𝑎𝑚, we obtained: 

∫ 𝑥𝐽𝑛
2(𝑥)𝑑𝑥

𝑎𝑚

0
=

1

2
𝑎𝑀
2 𝐽𝑛

′2(𝑎𝑀) =
1

2
𝑎𝑀
2 𝐽𝑛±1

2 (𝑎𝑀)                        (2.127) 

The last part of equation (2.126) follows from the following:  

𝐽𝑛−1(𝑥) =
𝑛

𝑥
𝐽𝑛 + 𝐽𝑛

′ (𝑥)                                              (2.128) 

And  

𝐽𝑛+1(𝑥) + 𝐽𝑛−1(𝑥) =
2𝑛

𝑥
𝐽𝑛                                             (2.129) 
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In virtue of equation (2.128), 𝐽𝑛
′ (𝑎𝑀) = 𝐽𝑛−1(𝑎𝑀). In virtue of equation (2.129), that is 

𝐽𝑛+1(𝑎𝑀) = −𝐽𝑛−1(𝑎𝑀). 

Thus: 

𝐽𝑛+1
2 (𝑎𝑀) = 𝐽𝑛−1

2 (𝑎𝑀) = 𝐽𝑛
′2(𝑎𝑀)                                    9(2.130) 

From table1, we can see that the first zero 𝑎0
𝑚 grows with 𝑚. The following statement is 

correct: the number of zeros of 𝐽𝑛(𝑥) on the interval  

0 < 𝑥 < (𝑐 +
𝑛

𝑥
+
1

4
) 𝜋                                               (2.131) 

Is exactly 𝑐. Putting 𝑐 = 1 into equation (2.131), we get: 

𝑎1
𝑛 < (

3

4
+
𝑛

2
) 𝜋                                                        (2.132) 

For 𝑛 = 5, we get 𝑎1
5 < 10.35. In reality 𝑎1

5 < 8.7715. We can see that this estimation is 

rather accurate. 

 

 

Table 2.1: Roots of Bessel Function 

Zero 𝐽0(𝑥) 𝐽1(𝑥) 𝐽2(𝑥) 𝐽3(𝑥) 𝐽4(𝑥) 𝐽5(𝑥) 

1 2.4048 3.8317 5.1336 6.3802 7.5883 8.7715 

2 5.5201 7.0156 8.4172 9.7610 11.0647 12.3386 

3 8.6537 10.1735 11.6198 13.0152 14.3725 15.7002 

4 11.7915 13.3237 14.7960 16.2235 17.6160 18.9801 

5 14.9309 16.4706 17.9598 19.4094 20.8269 22.2178 
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Table 2.2: Roots of the Derivative of Bessel Function 

Zero 𝐽0
′(𝑥) 𝐽1

′(𝑥) 𝐽2
′(𝑥) 𝐽3

′(𝑥) 𝐽4
′(𝑥) 𝐽5

′(𝑥) 

1 3.8317 1.8412 3.0542 4.2012 5.3175 6.4156 

2 7.0156 5.3314 6.7061 8.0152 9.2824 10.5199 

3 10.1735 8.5363 9.9695 11.3459 12.6819 13.9872 

4 13.3237 11.7060 13.1704 14.5858 15.9641 17.3128 

5 16.4706 14.8636 16.3475 17.7887 19.1960 20.5755 

 

 

 

Figure 2.5: Zeros of Bessel Function 

 

2.13 Heavy Chain 

 

The future of Bessel function showed up in mathematics in 1732, when Daniel Bernoulli 

solved the problem on oscillations of the hung (heavy chain). Let the heavy chain of length 𝑙 

and the linear density 𝜌 be a hung such that 𝑥 = 0 at the free end of the chain. Then the 

deviation from equilibrium state 𝑎 = 𝑎(𝑥, 𝑡) satisfies the equation: 
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𝜕2𝑎

𝜕𝑡2
= 𝑔 (𝑥

𝜕2𝑎

𝜕𝑥2
+
𝜕𝑎

𝜕𝑥
)                                                  (2.133) 

𝑎|𝑥=𝑙 = 0 

By separating of variables: 

𝑎 = 𝑋(𝑥)𝑇(𝑡) 

Where 𝑇(𝑡) = sin(𝑤𝑡 + 𝑅) leads to the equation: 

𝑥𝑋′′(𝑥) + 𝑋′(𝑥) +
𝜔2

𝑔
𝑋(𝑥) = 0                                       (2.134) 

With the boundary condition: 

𝑋(𝑙) = 0 ,   𝑋(0) < ∞ 

By introducing the new variable: 

𝑍 = 2𝜔√
𝑥

𝑔
 

We change equation (2.134) to the Bessel’s equation: 

𝑑2𝑋

𝑑𝑧2
+
1

𝑧

𝑑𝑋

𝑑𝑧
+ 𝑋 = 0                                                (2.135) 

This is the equation for Bessel functions at zero index. Thus, the solution is: 

𝑎 = 𝐴𝐽0 (2𝜔√
𝑥

𝑔
)                                                   (2.136) 

The characteristic frequency 𝜔𝑘 can take consequences of discrete values (𝜔𝑘, 𝑘 =

1,2,3,⋯ ,∞). They can be found from the boundary condition: 

𝑎(𝑙) = 0       𝐽0 (2𝜔𝑘√
𝑙

𝑧
) = 0 

Hence, 

2𝜔𝑘√
𝑙

𝑧
= 𝑎𝑘

0    𝐽0(𝑎𝑘
0) = 0 
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𝜔𝑘 =
1

2
√
𝑔

𝑙
𝑎𝑘
0 

𝑎𝑚
0  zeros of the Bessel function 𝐽0. 

 

2.14 Some Differential Equations Reducible to Bessel’s Equation 

 

1. The modified Bessel’s equation is one of the well-known Bessel’s equation that are reduce 

to differential equation by replacing 𝑥 to −𝑖𝑥. Thus; 

𝑥2𝑄′′ + 𝑥𝑄′ − (𝑥2 + 𝑣2)𝑄 = 0 

The solution of the above equation are expressed via the so-called modified Bessel functions 

of the first and second kind: 

𝑄(𝑥) = 𝑐1𝐽𝑣(𝑖𝑥) + 𝑐2𝑌𝑣(−𝑖𝑥) = 𝑐1𝐼𝑣(𝑥) + 𝑐2𝐾𝑣(𝑥) 

Where 𝐼𝑣(𝑥) and 𝐾𝑣(𝑥) are the modified Bessel functions of the first and second kind 

respectively. 

2. The airy differential equation known in astronomy and physics has the form: 

𝑄′′(𝑥) − 𝑥𝑄(𝑥) = 0 

It can be reduced to Bessel’s differential equation. Its solution is given by the Bessel functions 

of the fractional order 
1

3
: 

𝑄(𝑥) = 𝑐1√𝑥𝐽1
3
(
2

3
𝑖𝑥
3
2) + 𝑐2√𝑥𝐽−1

3
(
2

3
𝑖𝑥
3
2) 

Also, the one dimensional Schrödinger equation for a constant force are airy functions that can 

be transformed into Bessel functions of order  
1

3
 . 

3. The differential equation of type  

𝑥2𝑄′′ + 𝑥𝑄′ + (𝑛2𝑥2 − 𝑣2)𝑄 = 0 
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Differs from the Bessel’s equation only by a factor 𝑛2 before 𝑥2 and has the general solution 

as: 

𝑄(𝑥) = 𝑐1𝐽𝑣(𝑛𝑥) + 𝑐2𝑌𝑣(𝑛𝑥) 
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CHAPTER 3 

APPLICATION OF BESSEL FUNCTIONS: SOLUTION TO SCHRODINGER 

EQUATION IN A NEUMANN AND HANKEL FUNCTIONS 

 

This chapter discussed some applications of Bessel functions to mathematical physics and 

engineering and the solutions of Schrödinger equation to Neumann and Hankel functions were 

obtained. 

 

Bessel’s equation arises as a result of determining separable solutions to Laplace’s equation 

and the Helmholtz equation in spherical and cylindrical coordinates. Bessel’s functions made 

their first appearance by relating the angular position of a planet travelling along a keplerian 

ellipse to elapsed time. Though the integral and power series appears in their places, generally 

regarding the radial variable after separating the Laplace’s equation in polar or spherical polar 

coordinates. In diverse problems of mathematical physics whose solution is highly connected 

with the application of cylindrical and spherical coordinates. 

The constant 𝑣 in the Bessel differential equation determines the order of the Bessel functions 

and can take any real numbered value (𝑣 = 𝑛 +
1

2
) for spherical coordinates, while for 

cylindrical problems the order of the Bessel function is an integer value (𝑣 = 𝑛). Bessel 

functions are also applicable for many problems of wave propagation, static potentials and its 

applications. Heat conduction in a cylindrical objects, electromagnetic waves in a cylindrical 

waveguide, modes of vibration of a thin circular or annular artificial membrane, diffusion 

problems on a lattice and solution to the radial Schrodinger equation (in spherical and 

cylindrical coordinates for a free particle) (Asmar, 2005). In this chapter we are going to 

consider only the last application which is the application of radial Schrodinger equation in 

cylindrical coordinates for a free particle (zero potential) to Neumann and Hankel functions 

respectively. 
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3.1 Derivation of Time Independent From the Time Dependent Schrodinger Equation  

 

The Schrödinger equation is the analog of the second law of motion and describes the motion 

and behavior of systems on the atomic and subatomic levels using   the wave function Ψ(𝑥, 𝑡).  

Consider a particle of mass 𝑚 moving along the x-axis. At any position (x) and momentum (p) 

in time (t), the behavior and motion of the particle is given by the wave function Ψ(𝑥, 𝑡). 

 

Figure 3.1: Wave Function 

 

Where Ψ(𝑥, 𝑡) could take the form of any continues function that can be squared and 

integrated to get a finite answer. It is a fact from quantum mechanics that the wave function 

Ψ(𝑥, 𝑡) is a solution of the Schrödinger equation. (Tarasov, 2016).  

The one dimensional time dependent Schrödinger equation is given by: 

𝑖ℏ
∂Ψ(𝑥,𝑡)

𝜕𝑡
= 𝑢(𝑥)Ψ(𝑥, 𝑡) −

ℏ2

2𝑚
∙
𝜕2Ψ(𝑥,𝑡)

𝜕𝑥2
                                    (3.1) 

From the above equation we can see that if we know what the wave function is at same initial 

time (say 𝑡 = 0), we can use that to determine the behavior of that particle at some future 

time. i.e. if we know that Ψ(𝑥, 0) looks like, we can predict the future of the motion of the 

particle. 

In quantum mechanics, we describe systems using wave functions. When we treat a system as 

a wave, the wave function represent the displacement of the wave. If we treat the system as a 

particle, then the wave function is use to give the probability of finding the particle at same 

point (|Ψ|2). In order to describe any system in quantum mechanics, we must be able to 
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determine what the wave function is numerically. The Schrödinger equation is a differential 

equation that we can use to solve for the wave function quantitatively. In the same way that 

Isaac Newton invented the second law of motion (∑𝑓 = 𝑚𝑎⃗⃗⃗⃗⃗⃗ ). The Schrödinger equation was 

invented and confirmed using experiments. In order to determine what form the equation 

takes, we will use the conservation of energy. We will also assume that the wave function does 

not depend on time and only depends on the spatial position of the system Ψ(𝑥, 𝑡) (Griffiths, 

1995). 

Given; 

Ψ(𝑥, 𝑡) = 𝐴 sin(𝑘𝑥 − 𝜔𝑡) + 𝐵 cos(𝑘𝑥 − 𝜔𝑡) 

Which is a classical wave equation. Since we are assuming time-independent Schrödinger 

equation. 

Let 𝑡 = 0, 

Implies; 

Ψ(𝑥) = 𝐴 sin 𝑘𝑥 + 𝐵 cos 𝑘𝑥                                              (3.2) 

𝑘 =
2𝜋

𝜆
=
2𝜋𝑝

ℎ
=

𝑝

ℎ
2𝜋⁄

=
𝑝

ℏ
 

Which implies, 

𝑘 =
𝑝

ℏ
 

For a particle 𝑢, mass m and velocity 𝑣, the total energy is: 

𝐸 = 𝑘 + 𝑢 =
1

2
𝑚𝑣2 + 𝑢 =

𝑝2

2𝑚
+ 𝑢 

𝑝 = 𝑚𝑣    ⇒ 𝑥 =
𝑝

𝑚
 

Since 𝑝 = 𝑘ℏ   ⇒ 𝐸 =
𝑘2ℏ2

2𝑚
+ 𝑢                                             (3.3) 
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Since we are looking for a differential equation that look like equation (3.3) and has a solution 

that look like equation (3.2); 

⇒ 
𝑑2Ψ

𝑑𝑥2
= −𝑘2[𝐴 sin(𝑘𝑥) + 𝐵 cos(𝑘𝑥)] 

Which implies, 

𝑑2Ψ

𝑑𝑥2
= −𝑘2Ψ(𝑥)                                                     (3.4) 

Now, we multiply equation (3.4) by 
−ℏ

2𝑚
 and we obtain; 

−ℏ

2𝑚

𝑑2Ψ

𝑑𝑥2
=

ℏ2𝑘2

2𝑚
Ψ(𝑥)                                                  (3.5) 

If we take equation (3.3) and multiply both sides by Ψ(𝑥), we have; 

𝐸 ∙ Ψ(𝑥) =
ℏ2𝑘2

2𝑚
Ψ(𝑥) + 𝑢 ∙ Ψ(𝑥) 

Implies; 

𝐸 ∙ Ψ(𝑥) = 𝑢 ∙ Ψ(𝑥) −
−ℏ

2𝑚
∙
𝑑2Ψ

𝑑𝑥2
                                            (3.6) 

The above equation is called one-dimensional time-independent Schrödinger equation. 

Also, we can obtain the time-independent Schrödinger equation from the more general time-

dependent equation using the method of separation of variable as follows: 

Given the time independent Schrödinger equation: 

𝑖ℏ
𝜕Ψ(𝑥, 𝑡)

𝜕𝑡
= 𝑢(𝑥) −

ℏ2𝑘2

2𝑚

𝑑2Ψ(x, t)

𝑑𝑥2
 

Let  

Ψ(𝑥, 𝑡) = Ψ(𝑥) ∙ 𝑓(𝑡)                                                    (3.7) 
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We now substitute equation (3.7) into (3.1), we have: 

𝑖ℏ
𝜕Ψ(𝑥)𝑓(𝑡)

𝜕𝑡
= 𝑢(𝑥)Ψ(𝑥)𝑓(𝑡) −

ℏ2𝑘2

2𝑚

𝑑2Ψ(x) ∙ f(t)

𝑑𝑥2
 

Dividing both sides of the above equation by  Ψ(x) ∙ f(t), we have; 

𝑖ℏ
1

𝑓(𝑡)
∙
𝜕𝑓(𝑡)

𝜕𝑡
= 𝑢(𝑥) −

ℏ2𝑘2

2𝑚
∙

1

Ψ(𝑥)
∙
𝑑2Ψ(x)

𝑑𝑥2
                                   (3.8) 

So, the only way this equation can be equal is when both of them are equal to some constant, 

that is; 

𝑖ℏ
1

𝑓(𝑡)
∙
𝜕𝑓(𝑡)

𝜕𝑡
= 𝐸                                                      (3.9) 

And 

𝑢(𝑥) −
ℏ2𝑘2

2𝑚
∙

1

Ψ(𝑥)
∙
𝑑2Ψ(x)

𝑑𝑥2
= 𝐸                                         (3.10) 

Now, let us take equation (3.10) and multiply both sides by Ψ(𝑥), we obtain; 

𝑢(𝑥)Ψ(𝑥) −
ℏ2𝑘2

2𝑚
∙
𝑑2Ψ(x)

𝑑𝑥2
= 𝐸Ψ(𝑥) 

So that, for a free particle (zero potential) solutions, we have; 

−
ℏ2𝑘2

2𝑚
∙
𝑑2Ψ(x)

𝑑𝑥2
= 𝐸Ψ(𝑥) 

 

3.2 Solution to Schrödinger Equation in a Cylindrical Functions of the Second Kind 

(Neumann Functions) 

 

Consider the functions 𝐽𝑣 and 𝐽−𝑣  which are two linearly independent solutions of the Bessel’s 

equation as representatives of the Neumann or Weber’s functions. That is, 

𝑌𝑣(𝑥) = 𝑁𝑣(𝑥) =
𝐽𝑣(𝑥) cos𝜋𝑣−𝐽−𝑣(𝑥)

sin𝜋𝑣
                                          (3.11) 
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Which in the Schrödinger equation presents: 

−
ℏ2𝑘2

2𝑚
∙
𝑑2𝑌𝑣

𝑑𝑥2
= 𝐸𝑌𝑣(𝑥)                                                   (3.12) 

Now, we differentiate equation (3.11) for the second times and substitute into equation (3.12), 

as follows: 

𝑑𝑌𝑣(𝑥)

𝑑𝑥
=
𝑑

𝑑𝑥
[
𝐽𝑣(𝑥) cos 𝜋𝑣

sin 𝜋𝑣
−
𝐽−𝑣(𝑥)

sin 𝜋𝑣
] 

=
cos 𝜋𝑣

sin 𝜋𝑣
𝐽𝑣
′ (𝑥) −

1

sin 𝜋𝑣
𝐽−𝑣
′ (𝑥) 

Again,  

𝑑2𝑌𝑣
𝑑𝑥2

=
𝑑

𝑑𝑥
[
cos 𝜋𝑣

sin 𝜋𝑣
𝐽𝑣
′ (𝑥) −

1

sin 𝜋𝑣
𝐽−𝑣
′ (𝑥)] 

Implies; 

𝑑2𝑌𝑣

𝑑𝑥2
=

cos𝜋𝑣

sin𝜋𝑣
𝐽𝑣
′′(𝑥) −

1

sin𝜋𝑣
𝐽−𝑣
′′ (𝑥)                                         (3.13) 

Therefore, we substitutes equation (3.13) into equation (3.12), we have; 

−
ℏ2𝑘2

2𝑚
∙
𝑑2𝑌𝑣
𝑑𝑥2

= 𝐸𝑌𝑣(𝑥) 

Implies, 

−
ℏ2

2𝑚
[
cos 𝜋𝑣

sin 𝜋𝑣
𝐽𝑣
′′(𝑥) −

1

sin 𝜋𝑣
𝐽−𝑣
′′ (𝑥)] = 𝐸 [

𝐽𝑣(𝑥) cos 𝜋𝑣 − 𝐽−𝑣(𝑥)

sin 𝜋𝑣
] 

1

sin 𝜋𝑣
[cos 𝜋𝑣 𝐽𝑣

′′(𝑥) − 𝐽−𝑣
′′ (𝑥)] =

−2𝑚𝐸

ℏ2
[

1

sin 𝜋𝑣
] [𝐽𝑣(𝑥) cos 𝜋𝑣 − 𝐽−𝑣(𝑥)] 

cos 𝜋𝑣 𝐽𝑣
′′(𝑥) − 𝐽−𝑣

′′ (𝑥) =
−2𝑚𝐸

ℏ2
[𝐽𝑣(𝑥) cos 𝜋𝑣 − 𝐽−𝑣(𝑥)] 

By letting 𝑟2 =
2𝑚𝐸

ℏ2
, we have: 

cos 𝜋𝑣 𝐽𝑣
′′(𝑥) − 𝐽−𝑣

′′ (𝑥) = −𝑟2 cos 𝜋𝑣 𝐽𝑣(𝑥) + 𝑟
2𝐽−𝑣(𝑥) 
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So that we can obtain; 

cos 𝜋𝑣 𝐽𝑣
′′(𝑥) + 𝑟2 cos 𝜋𝑣 𝐽𝑣(𝑥) = 𝐽−𝑣

′′ (𝑥) + 𝑟2𝐽−𝑣(𝑥) 

And we can re-write the above equation as: 

cos 𝜋𝑣 [𝐽𝑣
′′(𝑥) + 𝑟2𝐽𝑣(𝑥)] = 𝐽−𝑣

′′ (𝑥) + 𝑟2𝐽−𝑣(𝑥)                               (3.14) 

Therefore, the only way this equation can be equal is when both of them is equal to some 

constant. That is; 

𝐽−𝑣
′′ (𝑥) + 𝑟2𝐽−𝑣(𝑥) = 𝑘                                                  (3.15) 

cos 𝜋𝑣 [𝐽𝑣
′′(𝑥) + 𝑟2𝐽𝑣(𝑥)] = 𝑘                                            (3.16)                                       

To simplify equation (3.15) and equation (3.16), we follow the method of undetermined 

coefficient and obtain the solution as follows; 

𝐽−𝑣(𝑥)𝑔𝑒𝑛𝑎𝑟𝑎𝑙 = 𝐽−𝑣(𝑥)𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 + 𝐽−𝑣(𝑥)𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 

So, for equation (3.15), we have: 

𝐽−𝑣(𝑥)𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦:                 𝐽−𝑣
′′ (𝑥) + 𝑟2𝐽−𝑣(𝑥) = 0 

The characteristics equation is 𝜆2 + 𝑟2 = 0, which implies 𝜆 = ±𝑖𝑟. 

Therefore,     

𝐽−𝑣(𝑥)𝑐𝑜𝑚𝑝𝑙𝑒𝑚𝑒𝑛𝑡𝑎𝑟𝑦 = 𝑐1 cos 𝑟𝑥 + 𝑐2 sin 𝑟𝑥                                   (3.17) 

And for  𝐽−𝑣(𝑥)𝑝𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟 , we have: 

By letting  𝐽−𝑣(𝑥) = 𝐴1 ⇒ 𝐽−𝑣
′ (𝑥) = 0 and 𝐽−𝑣

′′ (𝑥) = 0 

∴ 𝐽−𝑣(𝑥) = 𝐴1                                                            (3.18) 

So, the general solution is now written as: 

𝐽−𝑣(𝑥) = 𝑐1 cos 𝑟𝑥 + 𝑐2 sin 𝑟𝑥 + 𝐴1 

But, we know that 𝑟 =
√2𝑚𝐸

ℏ
, therefore; 
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𝐽−𝑣(𝑥) = 𝑐1 cos (
√2𝑚𝐸

ℏ
𝑥) + 𝑐2 sin (

√2𝑚𝐸

ℏ
𝑥) + 𝐴1                             (3.19) 

Similarly, for equation (3.16), we have: 

𝐽𝑣(𝑥) = 𝑐3 cos (
√2𝑚𝐸

ℏ
𝑥) + 𝑐4 sin (

√2𝑚𝐸

ℏ
𝑥) + 𝐴2                           (3.20) 

 

Remark: 

 

Clearly, equation (3.19) and equation (3.20) are similar, this shows that 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥) are 

the two linearly independent solutions of the Bessel’s differential equation which also appears 

in the Neumann (Weber’s) functions. 

 

3.3 Solutions to Schrödinger Equation in a Cylindrical Functions of the Third Kind 

(Hankel Functions) 

 

Here, also we are going to apply the Schrödinger equation to cylindrical functions of the third 

kind (Hankel functions) and obtain the solution of Bessel’s differential equation. The Hankel 

function of the first and second kind are respectively given by: 

𝐻𝑣
(1)(𝑥) = 𝐽𝑣(𝑥) + 𝑖𝑌𝑣(𝑥) = 𝑖

𝑒−𝑣𝜋𝑖𝐽𝑣(𝑥)−𝐽−𝑣(𝑥)

sin𝜋𝑣
                               (3.21) 

And 

𝐻𝑣
(2)(𝑥) = 𝐽𝑣(𝑥) − 𝑖𝑌𝑣(𝑥) = −𝑖

𝑒𝑣𝜋𝑖𝐽𝑣(𝑥)−𝐽−𝑣(𝑥)

sin𝜋𝑣
                             (3.22) 

Again, on applying equation (3.21) and equation (3.22) in the Schrödinger equation, that is; 

  

−
ℏ2

2𝑚
∙
𝑑2𝐻𝑣

(1)(𝑥)

𝑑𝑥2
= 𝐸𝐻𝑣

(1)(𝑥)                                              (3.23) 

We obtain the solutions as follows: 
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Now, we differentiate equation (3.21) for the second time and substitute into equation (3.23), 

we have;  

𝐻𝑣
(1)′(𝑥) =

𝑑

𝑑𝑥
(
𝑖𝑒−𝑣𝜋𝑖𝐽𝑣(𝑥)

sin 𝜋𝑣
) −

𝑑

𝑑𝑥
(
𝑖𝐽−𝑣(𝑥)

sin 𝜋𝑣
) 

=
𝑖𝑒−𝑣𝜋𝑖

sin 𝜋𝑣

𝑑

𝑑𝑥
𝐽𝑣(𝑥) −

𝑖

sin 𝜋𝑣

𝑑

𝑑𝑥
(𝐽−𝑣(𝑥)) 

Which implies,  

𝐻𝑣
(1)′′(𝑥) =

𝑑

𝑑𝑥
(
𝑖𝑒−𝑣𝜋𝑖

sin 𝜋𝑣

𝑑

𝑑𝑥
𝐽𝑣(𝑥)) −

𝑑

𝑑𝑥
(

𝑖

sin 𝜋𝑣

𝑑

𝑑𝑥
𝐽−𝑣(𝑥)) 

=
𝑖𝑒−𝑣𝜋𝑖

sin 𝜋𝑣

𝑑2

𝑑𝑥2
𝐽𝑣(𝑥) −

𝑖

sin 𝜋𝑣

𝑑2

𝑑𝑥2
𝐽−𝑣(𝑥) 

=
𝑖𝑒−𝑣𝜋𝑖

sin𝜋𝑣
𝐽𝑣
′′(𝑥) −

𝑖

sin𝜋𝑣
𝐽−𝑣
′′ (𝑥)                                              (3.24) 

By replacing equation (3.24) into equation (3.23), we have; 

−
ℏ2

2𝑚
(
𝑖𝑒−𝑣𝜋𝑖

sin 𝜋𝑣
𝐽𝑣
′′(𝑥) −

𝑖

sin 𝜋𝑣
𝐽−𝑣
′′ (𝑥)) = 𝐸 (

𝑖𝑒−𝑣𝜋𝑖

sin 𝜋𝑣
𝐽𝑣(𝑥) −

𝑖

sin 𝜋𝑣
𝐽−𝑣(𝑥)) 

Letting   𝑎2 =
2𝑚𝐸

ℏ2
 

Implies; 

𝑖

sin 𝜋𝑣
𝐽−𝑣
′′ (𝑥) −

𝑖𝑒−𝑣𝜋𝑖

sin 𝜋𝑣
𝐽𝑣
′′(𝑥) = 𝑎2 [

𝑖𝑒−𝑣𝜋𝑖

sin 𝜋𝑣
𝐽𝑣(𝑥) −

𝑖

sin 𝜋𝑣
𝐽−𝑣(𝑥)] 

Implies; 

𝑖

sin 𝜋𝑣
𝐽−𝑣
′′ (𝑥) −

𝑖𝑒−𝑣𝜋𝑖

sin 𝜋𝑣
𝐽𝑣
′′(𝑥) =

𝑖𝑎2𝑒−𝑣𝜋𝑖

sin 𝜋𝑣
𝐽𝑣(𝑥) −

𝑖𝑎2

sin 𝜋𝑣
𝐽−𝑣(𝑥) 

𝑖

sin 𝜋𝑣
𝐽−𝑣
′′ (𝑥) +

𝑖𝑎2

sin 𝜋𝑣
𝐽−𝑣(𝑥) =

𝑖𝑒−𝑣𝜋𝑖

sin 𝜋𝑣
𝐽𝑣
′′(𝑥) +

𝑖𝑎2𝑒−𝑣𝜋𝑖

sin 𝜋𝑣
𝐽𝑣(𝑥) 
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Therefore, 

𝐽−𝑣
′′ (𝑥) + 𝑎2𝐽−𝑣(𝑥) = 𝑒−𝑣𝜋𝑖(𝐽𝑣

′′(𝑥) + 𝑎2𝐽𝑣(𝑥))                                (3.25) 

Again, the only way this equation can be equal is when both of them equal to some constant. 

That is: 

Suppose; 

𝐽−𝑣
′′ (𝑥) + 𝑎2𝐽−𝑣(𝑥) = 𝑘1                                              (3.26) 

And 

𝑒−𝑣𝜋𝑖(𝐽𝑣
′′(𝑥) + 𝑎2𝐽𝑣(𝑥)) = 𝑘1                                         (3.27) 

So, we can obtain the solution as follows: 

For equation (3.26), we have; 

𝐽−𝑣(𝑥) = 𝑐5 cos (
√2𝑚𝐸

ℏ
𝑥) + 𝑐6 sin (

√2𝑚𝐸

ℏ
𝑥) + 𝐴3                          (3.28) 

And from equation (3.27), we have; 

𝐽𝑣(𝑥) = 𝑐7 cos (
√2𝑚𝐸

ℏ
𝑥) + 𝑐8 sin (

√2𝑚𝐸

ℏ
𝑥) + 𝐴4                          (3.29) 

 

Remark: 

 

Clearly, 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥) which are presents in equation (3.28) and equation (3.29) are 

linearly independent solutions of Bessel’s differential equation that appears in the Hankel 

functions of the first kind. 

Similarly, for the Hankel functions of the second kind in equation (3.22), we have the solution 

as follows: 

𝐽−𝑣(𝑥) = 𝑐9 cos (
√2𝑚𝐸

ℏ
𝑥) + 𝑐10 sin (

√2𝑚𝐸

ℏ
𝑥) + 𝐴5                        (3.30) 
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And  

𝐽𝑣(𝑥) = 𝑐11 cos (
√2𝑚𝐸

ℏ
𝑥) + 𝑐12 sin (

√2𝑚𝐸

ℏ
𝑥) + 𝐴6                       (3.31) 

 

Remark:  

 

Lastly, the 𝐽𝑣(𝑥) and 𝐽−𝑣(𝑥) which are presents in equation (3.30) and equation (3.31) are 

linearly independent solutions of Bessel’s differential equation that appears in the Hankel 

functions of the second kind. 
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CHAPTER 4 

CONCLUSION 

 

We have discussed the solution of a free particle (zero potential) time-independent 

Schrödinger equation as applied to cylindrical function of the second kind (Neumann 

functions) and cylindrical function of the third kind (Hankel functions of the first and second 

kind). It has been find out that, the solution in each case which are presents in the solution of 

Bessel differential equation are the same. The constants in each of the solution are to be 

determined using application of boundary conditions. This shows that the Bessel function 

appeared in many diverse scenarios, more especially in a situation involving cylindrical 

symmetry.     
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APPENDICES 

 

Appendix 1: Gamma Function 

 

The gamma function is defined for 𝑣 > 0 by; 

Γ(𝑣) = ∫ 𝑡𝑣−1𝑒−𝑡
∞

0
𝑑𝑡                                                        (4.1) 

This integral is improper and converges for all 𝑣 > 0. The basic property of gamma function 

is 

Γ(𝑣 + 1) = 𝑣Γ(𝑣) 

To prove this we use integration by parts as follows: 

Γ(𝑣 + 1) = ∫ 𝑡𝑣𝑒−𝑡
∞

0

𝑑𝑡 = −𝑡𝑣𝑒−𝑡|0
∞ + 𝑣∫ 𝑡𝑣−1𝑒−𝑡

∞

0

𝑑𝑡 = 𝑣Γ(𝑣) 

Where in the first integral we let 𝑢(𝑡) = 𝑡𝑣, 𝑑𝑣 = 𝑒−𝑡𝑑𝑡, 𝑑𝑢 = 𝑣𝑡𝑣−1𝑑𝑡 and 𝑣(𝑡) = −𝑒−𝑡. 

We can easily find the value of gamma function at the positive integers. For example, 

Γ(1) = ∫ 𝑒−𝑡
∞

0

𝑑𝑡 = 1 

The basic property now gives 

Γ(2) = 1Γ(1) = 1! 

Γ(3) = 2Γ(2) = 2! 

Γ(4) = 3Γ(3) = 3! 

⋮ 

Continuing in this manner, we see that  

Γ(𝑛 + 1) = 𝑛!                                                            (4.2) 
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For all 𝑛 = 0, 1, 2, 3, … where we have set 0! = 1. For this reason the gamma function is 

sometimes called the generalized factorial function. Other values of the gamma function can 

be found with various degrees of difficulty. 

From the value of  

Γ(1 2⁄ ) = √𝜋                                                               (4.3) 

And the basic property we find  

Γ(1 2⁄ ) =
1
2⁄ Γ(1 2⁄ ) =

√𝜋
2
⁄  and Γ(5 2⁄ ) = 3 2⁄ Γ(3 2⁄ ) =

3
2⁄
√𝜋

2
⁄ = 3 4⁄ √𝜋  

Although we have defined the gamma function for 𝑣 > 0, it is possible to extent its definition 

to all real numbers other than 0,−1,−2, −3,…  in such a way that the basic property continues 

to hold. To do so, we write the basic property as; 

Γ(𝑣) =
1

𝑣
Γ(𝑣 + 1) 

And then defined the value of the gamma function at 𝑣 from its value at 𝑣 + 1. For example, 

we have; 

Γ(−1 2⁄ ) = −2Γ(1 2⁄ ) = −2√𝜋 

And  

Γ(−3 2⁄ ) = −
2
3⁄ Γ(−1 2⁄ ) = 4 3⁄ √𝜋 

This clearly extends the definition of the gamma function to negative numbers other than 

−1,−2, −3,… 

The graph of the gamma function is sketched in the figure below. Notice that the vertical 

asymptotes at 𝑥 = 0,−1,−2,…  Also, notice the alternating sign of the gamma function over 

negative integers. 

For 𝑛 = 0, 1, 2, … 

Γ(𝑛 + 1) = 𝑛! 
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Γ(1) = 0! = 1 

Γ(−𝑛) is not defined 

Γ(𝑣) > 0 for 𝑣 > 0 

Γ(𝑣)  alternates signs on the negative axis. 

 

Figure 4.1: The generalized factorial function (Gamma function) 
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Appendix 2: The Method of Frobenius 

 

We obtained the solutions of Bessel equation using the method of Frobenius. It is motivated 

by Euler and power series. We will be solving equation of the form: 

𝑥2𝑦′′(𝑥) + 𝑥𝑦′(𝑥) + (𝑥2 − 𝑝2)𝑦 = 0                                          (4.4) 

Putting it in the standard form, we can see that 𝑥 = 0 is not an ordinary point. Therefore, we 

cannot apply the power series method. For application, it is of particular importance to know 

the behavior of the solutions at 𝑥 = 0. To end this, we will develop a generalization of the 

power series method, known as the Frobenius method. 

Consider the homogeneous differential equation 

𝑦′′(𝑥) + 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦 = 0                                             (4.5) 

Notice that, 𝑎 is an ordinary point of the differential equation if 𝑝  and 𝑞 have power series 

expansions at 𝑎. Otherwise, 𝑎 is called a singular point. 

Now, we say that 𝑥 = 0 is a regular singular point of the equation if both of the functions 

𝑥𝑝(𝑥) and 𝑥2𝑞(𝑥) have power series expansions at 𝑥 = 0. The Frobenius method that we now 

describe applies to equations for which 𝑥 = 0 is a regular singular point. We now tri the series 

solution of the form: 

𝑦 = ∑ 𝑎𝑚𝑥
𝑟+𝑚∞

𝑚=0                                                              (4.6) 

Where 𝑎0 ≠ 0. Such a series is called a Frobenius series. By differentiating equation (4.6) 

twice, we obtain; 

𝑦′(𝑥) = ∑ 𝑎𝑚(𝑟 + 𝑚)𝑥
𝑟+𝑚−1

∞

𝑚=0

 

And 

𝑦′′(𝑥) = ∑ 𝑎𝑚(𝑟 + 𝑚)(𝑟 + 𝑚 − 1)𝑥𝑟+𝑚−2
∞

𝑚=0
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Substituting the above series into equation (4.5), we have; 

∑ 𝑎𝑚(𝑟 + 𝑚)(𝑟 + 𝑚 − 1)𝑥𝑟+𝑚−2
∞

𝑚=0

+ 𝑝(𝑥) ∑ 𝑎𝑚(𝑟 + 𝑚)𝑥
𝑟+𝑚−1

∞

𝑚=0

+ 𝑞(𝑥) ∑ 𝑎𝑚𝑥
𝑟+𝑚

∞

𝑚=0

= 0 

We factor 𝑥 from the second series and 𝑥2 from the third to make all exponents the same and 

get 

∑ 𝑎𝑚(𝑟 +𝑚)(𝑟 + 𝑚 − 1)𝑥𝑟+𝑚−2
∞

𝑚=0

+ 𝑥𝑝(𝑥) ∑ 𝑎𝑚(𝑟 + 𝑚)𝑥
𝑟+𝑚−2

∞

𝑚=0

+ 𝑥2𝑞(𝑥) ∑ 𝑎𝑚𝑥
𝑟+𝑚−2

∞

𝑚=0

 

= 0                                                                      (4.7) 

Since by assumption 𝑥 = 0  is a regular singular point, the function   𝑥𝑝(𝑥)   and   𝑥2𝑞(𝑥)  

have power series expansion about 0, say  

𝑥𝑝(𝑥) = 𝑝0 + 𝑝1𝑥 + 𝑝2𝑥
2 +⋯ 

And   

𝑥2𝑞(𝑥) = 𝑞0 + 𝑞1𝑥 + 𝑞2𝑥
2 +⋯ 

Substituting these into equation (4.7), we have; 

∑ 𝑎𝑚(𝑟 + 𝑚)(𝑟 + 𝑚 − 1)𝑥𝑟+𝑚−2
∞

𝑚=0

+ (𝑝0 + 𝑝1𝑥 + 𝑝2𝑥
2 +⋯)∑ 𝑎𝑚(𝑟 + 𝑚)𝑥

𝑟+𝑚−2

∞

𝑚=0

+ (𝑞0 + 𝑞1𝑥 + 𝑞2𝑥
2 +⋯)∑ 𝑎𝑚𝑥

𝑟+𝑚−2

∞

𝑚=0

= 0 

The total coefficient of each power of 𝑥 on the left sied of this equation must be 0, since the 

right side is zero. The lowest power of 𝑥 that appears in the equation is 𝑥𝑟−2. Its coefficient is 

𝑎0𝑟(𝑟 − 1) + 𝑝0𝑎0𝑟 + 𝑞0𝑎0 = 𝑎0[𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0] = 0 

Since 𝑎0 ≠ 0, 𝑟 must be a root of the indicial equation. That is; 
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𝑟(𝑟 − 1) + 𝑝0𝑟 + 𝑞0 = 0                                                       (4.8) 

The roots of this equation are called the indicial roots and are denoted by 𝑟1 𝑎𝑛𝑑 𝑟2 with the 

convention that  𝑟1 ≥ 𝑟2 whenever they are real. Note that, 𝑝0  and 𝑞0 are easily determined, 

since they are the values of  𝑥𝑝(𝑥) and 𝑥2𝑞(𝑥) at 𝑥 = 0. Once we have determined 𝑟1 and 𝑟2, 

we have substitute 𝑟1 in equation (4.7) and solve for the unknown coefficients 𝑎𝑛 as we would 

do with the power series method. This will determined a first solution of equation (4.5). 

Summing up, we have the following result; 

Theorem 1: 

If 𝑥 = 0 is a regular singular point of the equation  

𝑦′′(𝑥) + 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦 = 0 

Then one solution is of the form; 

𝑦1 = |𝑥|𝑟1(𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 +⋯),   𝑎0 ≠ 0 

Where 𝑟1 is a root of the indicial equation (4.8), with the convention that 𝑟1 is the larger of the 

two roots when both roots are real. 

Theorem 2: 

Suppose that 𝑥 = 0 is a regular singular point of the differential equation  

𝑦′′(𝑥) + 𝑝(𝑥)𝑦′(𝑥) + 𝑞(𝑥)𝑦 = 0 

And let 𝑟1 and 𝑟2 denoted the indicial roots. The differential equation has two linearly 

independent solutions 𝑦1 and 𝑦2, as we now describe; 

Case 1: 

If 𝑟1 − 𝑟2 is not an integer, then  

𝑦1 = |𝑥|𝑟1 ∑ 𝑎𝑚𝑥
𝑚

∞

𝑚=0
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And  

𝑦2 = |𝑥|
𝑟2 ∑ 𝑏𝑚𝑥

𝑚

∞

𝑚=0

 

Where 𝑎0 ≠ 0 and 𝑏0 ≠ 0. 

Case 2: 

If 𝑟 = 𝑟1 = 𝑟2, then 

𝑦1 = |𝑥|𝑟1 ∑ 𝑎𝑚𝑥
𝑚

∞

𝑚=0

 

And 

𝑦2 = 𝑦1𝑙𝑛|𝑥| + |𝑥|
𝑟 ∑ 𝑏𝑚𝑥

𝑚

∞

𝑚=1

 

Where 𝑎0 ≠ 0. 

 

Case 3: 

If 𝑟1 − 𝑟2 is a positive integer, with 𝑟1 ≥ 𝑟2, then 

𝑦1 = |𝑥|𝑟1 ∑ 𝑎𝑚𝑥
𝑚

∞

𝑚=0

 

And  

𝑦2 = 𝑘𝑦1𝑙𝑛|𝑥| + |𝑥|
𝑟2 ∑ 𝑏𝑚𝑥

𝑚

∞

𝑚=0

 

Where 𝑎0 ≠ 0, 𝑏0 ≠ 0   (𝑘 may or may not be zero). 
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