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ABSTRACT 

Electrocardiogram that enroll heart's electrical action against duration is known as a bio­

electrical signal. ECG is a significant diagnosis apparatus in order to detecting heart

functions. Electrocardiography is explication of electrical action of the heart after a certain

time, which produces a representation of Electrocardiogram. The Electrocardiogram is a

very important diagnosis device in clinical application. It is particularly beneficial in

diagnosing cadence diseases, alterations in electrical transmission, and myocardial

ischemia and infarction. In noninvasive electrocardiography, the signal is specified by

electrodes annexed to the exterior surface of the skin and saved by a apparatus exterior to

the body. Electrocardiogram signal is effected by different noises kinds as movement

artifacts power line attempt, etc. Electrocardiogram in noise entity is so hard to analyze and

take out requisite data correctly thus to remove data correctly it is essential to filtration

noise existing in signal. For filtering noise there are assorted filters are utilized.

Electrocardiography area has been in existence for over a century, signal processing

techniques and fast digital signal processor, in spite of substantial advances in adult clinical

electrocardiography Fetal Electrocardiogram (ECG) analysis is still very new phenomenon.

This is, partially owing to deficiency of availability of gold canonical databases, partially

because of comparatively low SNR of fetal Electrocardiogram check against .. to the

maternal Electrocardiogram. Fetal heart proportion and its beat-to-beat variability are two

significant signs about the health and status of the fetus. The observed maternal

electrocardiogram (ECG) signal consists of maternal heart signal and fetal heart signal is

often very noisy. Savitzky and Golay Filter gave a procedure in order to smoothing of

datum that is situated on least-squares polynomial prediction. This includes a polynomial

fabrication to an input samples set and then figure out sole point polynomial within

approximation spacing that means discrete convolution whose impulse response is

constant. Adaptive Noise Canceller (Least Mean Square Algorithm) is an alternate process

of forecasting signals damaged by additive noise or interference. In some obscured path

with basic noise, the process utilizes a primary entry having the damaged signal and a

reference input including noise correlated for getting signal forecast, reference entry is

filtered adaptively and removed from fundamental input.

Keywords: Maternal and Fetal ECG Signals; Savitzky and Golay Filter; Adaptive Noise

Canceller; Least Mean Square Algorithm (LMS); Noise Effects; Denoising
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ÖZET 

Elektrokardiyogram (EKG) zamana karşı kalbin elektriksel aktivitesini kaydeden

biyoelektrik bir sinyaldir. Kalp fonksiyonlarını değerlendirmek için önemli bir tanı

aracıdır. Elektrokardiyografı belirli bir süre sonrası, kalbin elektriksel aktivitesinin

yorumlanması olarak kabul edilir. EKG klinik pratikte çok önemli bir tanı aracıdır. EKG,

ritim bozuklukları teşhisinde, elektrik iletimindeki değişikliğinde ve miyokard iskemisi ve

enfarktüsünde yararlı olmaktadır. İnvaziv olmayan elektrokardiyografı sinyali cildin dış

yüzeyine bağlı elektrotlar ile tespit edilir ve vücut dışındaki bir cihaz tarafından kaydedilir.

EKG sinyali çeşitli gürültülerden etkilenir, güç hattı parazitleri ve hastanın, solunum kas

veya diğer hareket tarafından üretilen, bulanık radyografık görüntüleri vb. Gürültülü EKG

sinyallerini analiz etmek ve doğru bir şekilde gerekli bilgileri ayıklamak çok zordur. Bu

yüzden doğru bilgileri ayıklamak için sinyal içinde mevcut gürültüleri filtrelemek

gereklidir. Gürültüyü filtrelemek için çeşitli filtreler kullanılmaktadır. Elektrokardiyografı

alanı yüzyılı aşkın bir süredir varlığını sürdürmektedir, sinyal işleme teknikleri ve hızlı

dijital işlemcilerin erişkin klinik elektrokardiyografısinde önemli ilerlemelere rağmen,

Fetal EKG analizi henüz çok yeni bir olaydır. Bu kısmen altın standart veritabanları

kullanılabilirliği eksikliği, nedeniyle Maternal EKG ile karşılaştırıldığında, kısmen fetal

EKG'nin nispeten düşük bir sinyal-gürültü oranı ortaya çıkmaktadır. Fetal kalp hızı ve

ritmi-atıma değişkenlik, fetüsün sağlığı ve durumu hakkında iki önemli göstergedir.

Gözlenen anne elektrokardiyogram (EKG) sinyali anne kalp sinyal ve fetal kalp sinyalini

oluşturur ve genellikle çok gürültülüdür. Savitzky - Golay Filtre en küçük kareler için

polinom yaklaşımına dayalı verileri düzeltmekte kullanılan bir yöntemdir. Bu set bir giriş

örneklerinin bir polinomuna takılmasını gerektirir ve daha sonra yaklaşım aralığında tek

nokta polinomu hesaplamak ayrık konvolüsyon ve dürtü yanıtının sabit olduğu anlamına

gelmektedir. Adaptif Gürültü Silme yöntemi katkı gürültü veya parazit bozuk tahmin

sinyalleri için alternatif bir yöntemdir. Süreç, bozuk sinyali ve birincil gürültü ile bazı

bilinmeyen bir şekilde ilişkili gürültü içeren bir "referans" girdisi ve "birincil" girişini

kullanır. Referans girişi uyarlamalı süzülür ve tahmin edilen sinyali almak için birincil

girişden çıkarılır.

Anahtar Kelimeler: Maternal ve Fetal EKG Sinyalleri; Savitzky-Golay Filtre; Adaptif

Gürültü Engelleyici; En Küçük Ortalama Kare Algoritması (LMS); Gürültü Etkileri;

Gürültü Temizleme
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CHAPTERl 

INTRODUCTION 

Electrocardiographyis the method that utilized to record of cardiac electrical activity for

examine operation of heart muscle and neural transmission system. These electrodes
specify the diminutive electrical alteration on the skin which originates from the heart

muscle's electrophysiologicalmodel of depolarizingduring eachheartbeat.
Electrocardiogramis the transthoracicexplicationof the electrical action of the heart over

certain duration. Analysis of ECG signal maintains informationconcerning the status of

heart.
DSP is commit of analyzing and changing a signal to optimize or develop its activity or
performance. It covers applying different mathematical and computational algorithms to

analog and digital signals to generate a signal that's of higher standard than the original

signal.Digital SignalProcessingis mainly used to define errors, and to filter and compress

analogsignalsin transit.
Our bodies frequently reports data about our health. This data can be received through

physiological materials which measure heart proportion, oxygen saturation levels, blood

pressure, nerve conduction, blood glucose, brain action and etc. Conventionally, these

kinds of measurementsare received at certainpoints in durationand marked on a patient's
chart.Biomedicalsignal processing includes the analysisof these measurementsto ensure
beneficial data onto those clinicians·can perform verdicts. Engineers discovered new

techniques to manipulate these signals with a diversity of mathematical formulas and

algorithms.
Digital filtering processes can be used for develop the signal quality and mınımıze

fortuitouserrornoise ingredient.

1.1 Contribution of the Thesis 
The fundamentalgoal of this dissertation is to monitor fetal and maternal heart based on

Savitzky&GolayFilteringand AdaptiveNoise Cancellationusing MATLABenvironment.

Savitzky&Golayfilter and Adaptive Noise Canceller acts as a noise canceller and their

task are to extrac!Fetal and Maternal signal.
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The contributions of this thesis include:

• Propose a system that can denoise Maternal and Fetal ECG signals for getting clear,

preferable quality output signals for good recommendations.

• Intend to get hold of and extract the sectional noise influences in an appropriate

way than the other techniques.

• Suggest a Denoising techniques Savitzky-Golay Filter and Adaptive Noise

Cancellation Least Mean Square(LMS) Algorithm to remove all kinds of noise in

Maternal and Fetal ECG signals.

1.2 Thesis Overview 
Other parts of the thesis are as shown below:

• Chapter 2 is about state-of-the-art literature.

• Chapter 3 explains an overview ofElectrocardiogram(ECG) signals.

• Chapter 4 presents general information about Digital Signal Processing(DSP).

• Chapter 5 gives general information related to Biomedical Signal Processing.

• Chapter 6 is about Digital Signal Filtering and Noise Reduction.

• Chapter 7 presents the most important aim of my dissertation the fundamental

objective of this thesis is to monitor fetal and maternal heart based on

Savitzky and Golay Filtering with Adaptive Noise Cancellation using MATLAB

environment.

• Chapter 8 presents conclusions and suggestions,

2



CHAPTER2 

STATE OF THE ART REVIEW 

2.1 Overview 

State of the art review on Fetus and Maternal Electrocardiogram (ECG) signals before and

during will be discussed in section 2. Because of the quite ancient history of the trouble

and the generous literature in this area; it is not feasible to lid all the current techniques in

their particulars. Thus because of the difficulty of the trouble, many of the available

techniques have used a combination of approaches, some of that have been raised a loan

from other statuses. That's why, in this section a choice of the existing literature with

private focal on the most substantial ones will be monitored, that have been especially

improved for the trouble of interest.

2.2 Historic Criticism of the Fundamental Studies 
In 1906 fetus electrocardiogram was first watched by M. Cremer. Initial work in this field

was performed utilizing a galvanometer tool of that time; it was restricted to fetus signal

very low amplitude. As measuring and amplification methods developed, Fetus

electrocardiogram was more comfortable and popular (Lindsley, 1942). Restricting factor

was then low fetus Signal Noise Ratio, particularly in asset of potent maternal cardiac

interventions trouble that exists up to the present time. After several decades, with

progresses in computer science and processing of signal methods, automatic processing of

signal and adaptive filtration methods were utilized in order to fetus R-wave identification

(Farvet, 1968). and maternal heart attempt annulment (Oosterom, 1986; Widrow et al.,

1975). The subject matter has since been thought as a challenging trouble with a view to

both signal processing and biomedical societies.

For give an opinion of previous and present study relevance in this area, publications

number in fetus electro- and magneto-cardiography area, those have been listed in a free

database of biomedical, international studies on health sciences, published articles, latest

developments can be traced from the site named as "PubMed" (PubMed, the U.S. National

Library of Medicine and the National Institutes of Health, 2008). It can be observed that

after a keen peak in the 1960's, the tendency seems to be declining until 2000.However in

recent decade; interest has again rised, in particularly for fetal magneto cardiography. This

3



should be seen as part of new low noise results, digitizing systems and, low cost measuring

partly because of expansions in array signal processing and adaptive filtering procedures. It

was reported which fetus cardiography is again in its initial phases and has a long way to

go, in order to fulfillment fetus cardiography a clinical reliable fetus cardiac tracing means.

It should further become marked which, ECG I MCG in spite of increase in research

number, when standardizing number of these studies by total publications number listed in

same period in PubMed, it was noted that, researchers working in ECG has fallen since the

1980s, while MCG exploratory has arrived more attention.

2.3 Goals 
One of these purposes: Past works have pursued:

• Fetus heart-rate analysis

• Fetus Electrocardiogram structure science(morphology) analysis

Fetus Electrocardiogram morphology involves much more clinically data as

checked against to heart rate alone. Nevertheless, because of fetal signals of low SNR, is to

take a more demanding. For this reason, most of past studies have only reached in

removing fetal RR-intervals utilizing R-peaks or fetal ECG waveform average crowd. Fetal

ECG full morphological studies, on a rhythm to rhythm principle, are accordingly left like

a challenging subject matter.

2.4 Methodology 
In this section data collection and analysis will be discussed.

2.4.1 Information Picking 

Fetal Electrocardiogram information collection is divided as invasive or non-invasive.

Invasive procedures, recording electrodes during delivery can be achieved using only

direct contact with electrode intrauterine fetal skin or scalp (Outram et al., 1995; Genevier

et al., 1995; Lai & Shynk, 2002). Signals registered by invasive methods have preferred

standard when compared with non-invasive techniques; however process is rather incorrect

and is restricted to during labor. Nevertheless, noninvasive techniques utilize signals

registered from maternal abdomen; they can be done at any gravidity step utilizing

electrodes dozens. Nevertheless, low fetus Electrocardiogram Signal to Noise Ratio and

other attempts are bounding factors of this' process. However, owing to countless benefits
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of noninvasive technique, a large body of study has been acted against signal processing

methods growth for revoking fetal Electrocardiogram from noninvasive records.

2.4.2 Information Analysis 

These can be categorized in available literature with their fetal data analysis

methodologies. Existent techniques in this field contain:

Direct Fetal Electrocardiogram Analysis 

Early detection of fetal Electrocardiogram study was done on the raw data without any

action. For example in (Larks, 1962). Some specific situations were notified in that

because of vertex fetus introduction, fetal R-peaks come in sight as positive summits whilst

maternal summits had negative summits. Fetal RR-spacing detection is quite easy and may

be succeed by easy peak detection, in similar situations, already devoid of maternal

Electrocardiogram elimination. Nevertheless, these techniques are not every time possible

and it is highly dependent fetal representation and gestational age.

Adaptive Filtration 

Adaptive filters distinct kinds have been utilized in order to maternal Electrocardiogram

extraction and fetal Electrocardiogram extraction. These techniques include of teaching an

adaptive or matched filter in order to either eliminating maternal Electrocardiogram

utilizing one or different maternal reference channels (Widrow et al., 1975).or directly

training filter for removing fetus QRS waves (Farvet, 1968; Park et al., 1992). Particular,

adaptive filters like 'part based weighted sum filters' (Shao, et al., 2004). And least squares

error components (Martens et al., 2007). It is also used for this purpose. Available adaptive

filtration techniques for maternal Electrocardiogram artifact dissipation, either suppose a

reference electrocardiogram of maternal channel which is morphologically alike to

infecting wave, or request different in linear <free channels to approximately rebuild any

morphologic figure from three references. Both of these entries are in practical improper

and with restricting efficiency, since maternal morphology of Electrocardiogram polluters

highly depend on electrode positions and it is not all the time feasible to rebuild serve out

maternal Electrocardiogram morphology from reference electrodes linear combination. For

this reason, a maternal Electrocardiogram extraction technique which would not essential
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for any surplus reference electrodes or at most an individual reference out of morphologic

resemblance is excellent relevance limitation.

Linear Dissociation 

Single or multi-channel dissociation inputs are alternative extensive interference. In this

process, signals are dissociated into several constituents by utilizing appropriate base

functions. Base functions can be chosen from classes which are in any wise in accordance

with time, frequency, or fetal ingredients scale properties. Wavelet dissociation

(Li et al., 1995; Khamene & Negahdaripour, 2000). And matching chases

(Akay & Mulder, 1996). Are between these techniques. Spatial filtering methods like

singular value dissociation (SVD) (Darnen & Van Der Kam, 1982; Kanjilal et al., 1997;

Van Oosteroın, 1986; Vanderschoot et al., 1987). Sightless and semi-sightless source

segregation (Zarzoso et al., 1997). Can be marked as 'information-driven' dissociation

processes, that is establish necessary merits functions from information itself, by

maximizing any signal statistical measurement segregation. In (Zarzoso & Nandi, 1999;

Zarzoso & Nandi, 2001). It has became indicated which in order to fetus

Electrocardiogram subtraction sightless resource allocation techniques outperforms

adaptive filters like proposed as. Spatial filtration benefits over traditional adaptive filters

are which they can additionally distinct maternal and fetus complicated with transient

crossover. Various versions of sightless and semi-sightless source segregation processes

have been utilized for fetus Electrocardiogram subtraction. These techniques are usually

based on free components guess for maternal and fetus signals or some transient presence

construction for wanted signals. Sightless source separation techniques have also been

jointed with wavelet dissociation in order to remove and noise reduction of fetus

Electrocardiogram signals (Vigneron et al., 2003; Jafari & Chambers, 2005). Dissociation

processes are newly most joint and efficient fetus Electrocardiogram subtraction way and

noise reduction. But, present techniques are rather general and have not been completely

customized to periodical Electrocardiogram constructions. Accordingly, a challenging

matter is to propose multichannel processing of signal techniques (linear or nonlinear)

which are particular to Electrocardiogram I Magneto cardiogram signals.
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Nonlinear Dissociation 

Linear dissociation processes utilizing either constant the merits functions (e.g. wavelets),

or information-driven principle functions (e.g. singular vectors) possess restricted

performance for nonlinear or signal and noise corrupt admixture. Actually, fetal signals

and another attempts and noises are not every time 'linearly separable'.

A remedy for this type of situation, non-linear transformation use to separate signal and

noise research components. Definitely, nonlinear transforms are rather special and need

some previous data about requested and undesired signal portion.

Maternal Electrocardiogram subtraction series and fetus Electrocardiogram rising

techniques have been improved. These techniques take place utilizing noisy signal and its

delayed types in order to establish a state-space signal statement, smoothing state-space

trajectory utilizing traditional or Principal Component Analysis smoothers (Kotas, 2004).

And transporting samples back to time domain explanation. These techniques are very

appealing from point which they are possible to as few as one sole channel of maternal

abdominal. But, necessary time-lags choice is experimental and significant inter-beat

cardiac signals variations can be removed throughout state-space smoothing. Even,

compared to linear techniques have higher computational complication.

2.5 Advanced Forming versus Reverse Solutions 
Noninvasive cardiac signal significant view works (either for adults or fetuses) is to find

relationships among cardiac potentials formed at heart level and potentials listed on body

surface. This problem is familiar as electrocardiography forward problem, for that

electromagnetic basises are utilized with cardiac potentials electrophysiological patterns

and volume transmission patterns, to give notice potentials which can come in sight on

body surface. Advanced forming also protects precious ideas for anticipating more

practical problem heart potentials from body surface registrations that is reverse solution.

Advanced and reverse difficulties have long been worked in order to adult heart signals

(Gulrajani, 1998). However, this type of fetal heart signals there are only few studies. In a

more recent study, fetal Magneto cardiogram and Electrocardiogram credibility problem

has been studied utilizing advanced forming in normal and pathologic situations. They

utilize several patterns for different stages of pregnancy. Particularly, pregnancy last

trimester in advanced forming, they noted vernix caseosa layer having two holes and

obtained fetal Electrocardiogram maps which looked alike real measured maps. Bores in
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vernix caseosa were noted over of fetus mouth and umbilical cord start, appropriate to the

'preferential' current pathways. On the other hand, for their actual information working,

they utilized simple techniques like maternal Magneto cardiogram average waveform

extraction.

2.6 Alternate Measurement Methods 
Electrocardiography in past studies, including fetal heart prosperity has been observed with

other methods:

Echocardiography; Additionally acknowledged as heart sonography that is based on

canonical ultrasound processes.

Phonocardiography (Zuckerwar et al., 1993; Kovacs et al., 2000; V'arady et al., 2003). Is

heart sounds graphical recording and murmurs manufactured by cardiac contraction

(containing its valvule and related large veins), taken as pulsations and converted by a

microphone of piezoelectric crystal into a changing electric output in accordance with

pressure, it presented with sound waves.

Cardiotocography; is uterus narrowing with a pressure precision transducer, and fetal heart

synchronous measurement ratio with an ultrasound transducer, in order to measure strength

and uterus narrowing frequency.

Magnetocardiography (Kariniemi & Hukkinen, 1977; Chen et al., 2001; Ter Brake et al.,

2002). Is a method like Superconducting Quantum Interference Device

(Clarke & Braginski, 2006). To gauge cardiac signals magnetic fields utilizing highly

sensitive tools.

Between techniques mentioned above, echocardiography is most widespread and

commercially most existing fetus cardiac tracing means. Even so, Electrocardiogram and

Magneto cardiogram include more data, since most heart anomalies have some perspicuity

on Electrocardiogram/Magneto cardiogram morphology or RR-interval timing

(Peters et al., 2001). Actual study is accordingly focused on Electrocardiogram and partly

Magneto cardiogram that is Electrocardiogram magnetic counterpart. Note that because

of Magneto cardiogram and Electrocardiogram morphologic resemblance, Magneto

cardiogram processing techniques are analogous to Electrocardiogram-based ones; despite

utilizing current Superconducting Quantum Interference Device technology for magnetic

registering, fetal Magneto cardiogram Signal to Noise Ratio is generally higher than its

8



Electrocardiogram. But, nowadays· Electrocardiogram recording tool are straightforward

and more purchasable when compared with magneto cardiogram systems.

2. 7 Present Problems and Problem Description 
Pass in review previous studies, it can be noticed that considering opulent literature, there

are still A few basic elements which request upwards works. Following prior statements,

between distinct data collection setups, it is condensed on Electrocardiogram situated

systems utilizing multichannel noninvasive maternal abdominal measurements, and

purpose is to recall fetus Electrocardiogram morphology with maximum feasible stability,

in accordance with for morphological works. In this case, bounding factors and challenging

signal processing subject matters contain:

• Fetus cardiac potentials Weakness and low-conductivity layers circumambient

fetal that is lead to low amplitude fetus Electrocardiogram at maternal body

surface;

• Maternal Electrocardiogram high venture, uterus narrowing, maternal respiratory,

and movement artifact signals;

• Fetus probable motions and requirement in order to sort of fetal cardiac signals

'standard presentation' as far as concerns fetal body axis;

• Automatic operations Expansion which can be implemented on long datasets with

least mutual effect with specialized operators; supplying trust measures for

conjectural cardiac signals and finding theoretical limits for 'recoverable data'

quantity noise body surface being recorded.

Even if, traditional ECG filtering techniques are normally based on a time measurement,

frequency, or signals and noise scale-separability, it is joint to all noise reduction methods.

Nevertheless, cardiac signals have upwards pseudo-periodic construction that it is trusted;

have not been well-utilized in Electrocardiogram noise reduction layout. In prior works

multichannel dissociation techniques have been frequently implemented to sighted signals

rather 'imprudently' and there is usually no warranty which fetus components are removed

as apart elements. For this reason, a significant subject is to improve removing fetal

components probability and also to develop removed components quality, through suitable

preprocessing and utilizing previous data about signal noise mixtures. This is an essential

step in order to upgrade robust fetus Electrocardiogram /Magneto cardiogram subtraction

algorithms. Linear dissociation techniques are very reciprocal, not only owing to linear
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pattern currency itself; however further for these versions simplicity. But, as consulted

before, there are states in that requested signals are not lineal sectional and nonlineal

dissociation is indispensable. Consequently, an intriguing work area is to associate lineal

and nonlineal methods to utility from lineal transformations convenience and strength of

nonlinear technique simultaneously. Alternative concerned matter is to find physiological

hermeneutics for elements removed by multichannel source segregation methods. While

these techniques are often rather abstract statistical criteria on the basis of maximization

like statistical independency, it is not very clear what resultant elements to be physical

communicate to, when implemented to actual information. For heart signals, this subject is

very important, when we imagine which cardiac is a deployed resource and not a punctual

resource. Fetal Electrocardiogram Morphologic forming is another subject of interest.

While prior fetal Electrocardiogram /Magneto cardiogram patterns condense on advanced

patterns based on electromagnetic and volume transmission theories

(Oostendorp, 1989; Stinstra, 2001). In order to appraise processing of signal methods

situated on body surface potentials, more abstract patterns are necessary. Essentially, for

estimate and compare sole or multichannel processing methods, we require patterns which

ease us to operate simulated signals processing of signal appearances as their morphology,

RR-spacing timing, fetus status, dimensionality, and Signal to Noise Ratio, without going

into signal spread particulars and volume transmission theories. For adult

Electrocardiogram, like these models example was improved in [39], where individual

channel adult Electrocardiogram was modeled with a dynamic pattern. Nevertheless,

present patterns have not noted Electrocardiogram multi-dimensional nature and are not

suitable for multichannel processes assessment which utilize various channels' mutual

data'.

2.8 Summary 
In this part, fetus heart signal extraction literature and its challenging subjects was briefly
discussed. It was exclusive which in present work, we are interested in this issue

developingprocessingof signal views, for simplifyfetus heart signalssubject.
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CHAPTER3 

AN OVERVIEW OFELECTROCARDIOGRAM(ECG) SIGNALS 

3.1 Overview 

Electrocardiography is a technique which records electrical action againts time. The alters

in the difference of electrical potential between two points (voltage) throughout myocardial

fibers depolarization and repolarisation are registered by electrodes established on chest

surface and limb. Electrical potentials sources are contractible cardiac muscle celss.

Electrocardiogram curve showing a wave shape at a given time is either printed upon

squared paper which operates at a immutable impetus or indicated on a computer display.

Electrocardiography benefits come with its relatively inexpensive, urgent validity and easy

application. Operation itself is :furthernon-invasive.

ECG is utilized for research some abnormal cardiac function types containing arrhythmias

and transmission inconveniences as well as cardiac morpology. It is also beneficial for

defining Pacemaker performance.

3.2 Heart Electrical Transmission System 

Heart muscle is created from two primary cell types:

• Cardiomyocytes, that form electric potentials in course of narrowing

• Cells specialized in production and action potentials transmission.

This particular electric cells automatically depolarized. Rest of cardiomyocytes polarized

with significantly lower speed of an electric membrane. This means there is a lag among

two signals arrival, thus which when second impulse reaches, cells are no longer resistant

(Kavitha & Christopher, 2014).

Waves, Sections and Spacings 

In Electrocardiogram waveform there are specific components

Baseline: A supine line when there is no electric action on electrocardiogram.

Sections: Baseline line duration among waves.

Spacings: Duration among same contiguous waves sections.
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P-wave is initial Electrocardiogram deviation. It outcomes from atria depolarization. Atrial

repolarisation take shapes in depolarization of ventricular course and is uncertained. QRS

complicated communicates to depolarization of ventricular.

Figure 3.1: Electrocardiogram waves, sections and spacings
(Kavitha & Christopher, 2014).

T-wave symbolizes repolarisation of ventricular, i.e, resting membrane renovation

potential. Approximately one quarter of population, U-wave can be viewed after T-wave.

This usually has identical polarity as previous T wave. It has been proposed which U-wave

is reasoned by after potentials which are likely created by mechanical-electrical feedback.

Reversed U-waves can come into view in left ventricular hypertrophy asset or is chaemia,

Section of PQ gets into touch to electrical urges delivered through node of S-A, his bunch,

its branches, fibres of Purkinje and is generally isoelectric. Spacing of PQ states time

passed from atrial depolarization to ventricular depolarization initiation. Gap of ST-T

encounters with leisurely and quick repolarisation of ventricular activity potential and

repolariastion. Then TP spacings is duration for that atria and ventricles are in diastole.

Gap of RR symbolizes one cycle of heart and is utilized to compute ratio of cardiac.

Normal Heart Rates 

Heart Rate of 60 - 100 BPM is NORMAL

HR> 100 bpm = TACHYCARDIA 

Tachycardia is a heart rate which is in excess of the normal resting rate generally, an

endurance heart rate over 100 beats per minute is adopted as tachycardia in adults.

HR < 60 bpm = BRADYCARDIA 

Bradycardia is a slow heart rate, described as a heart rate of under 60 bpm in adults.

12



3.3 Hermeneutics of the Electrocardiogram 
After defining dominant cardiac rhythm, mean electrical axis and heart location in chest,

subsequent step of Electrocardicıgrarn analysis is to comment form, amplitude and waves,

sections and spacings time.

P-Wave 

P wave is normally positive in main ends. It can occasionally have negative deviation in

ends III and VI or is biphasic in these ends and in end a VL. P-wave normative period is no

longer than 0.12s and voltage in limb ends should not in excess of 0.25 and 0.15 mV in

precordial ends.

T-Wave 

T-wave should be positive in main ends apart from for a VR and occasionally in VI, in that

it may be negative or horizontal. Extremely negative T-waves can be MU sign, for instance

by left anterior descending artery congestion virtue. Other cases contain cardiomyopathy of

hypertrophic and haemorrhage of subarachnoid. T-wave inversion occasionally take shapes

without clear reasons.

Electrocardiogram signals are specular electrical actions of a cardiac muscle. ECG are

concerned to nested diversity and methods of complicated chemical electrical and

mechanical available in cardiac. They conduct a great deal to diagnostic data of precious

solely defining heart functioning but further other systems like circulation or nervous

systems.

Electrocardiogram signal for over 100 years has became a issue of works. Initial electrical

activities cardiac record was achieved by an August Waller who is English physiologist

utilized surface electrodes established on a skin and bonded to electrometer of capillary in

1887. August Waller was initial to call recorded signal ECG. Even so Willem Einthoven is

reputabled to be Electrocardiography father, who in 1902 registered first ECG with a string

galvanometer utilize. M. Cremer provided first esophageal ECG recording with help of

private esophageal electrode in 1906 (Berbari, 2000).

This kind of Electrocardiography has been extremely improved in 1970' s of last century to

be utilized as a method beneficial in atria rhytm irregularity differentiation. Cremer

registered further initial fetus ECG. Willem Einthoven got Nobel Prize for

electrocardiography innovation and its growth in 1924. Since then there has became a
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significant exploratory in electrocardiography field. Electrocardiography has became a

customary technique in cardiac diagnostics since 1940s. There has been a important

diagnostic growth methods based on Electrocardiogram analysis.

Electrocardiogram signal is one of most well-known biomedical signal. Its high diagnostic

abilities have been indicated. In recent years there has became a important interest

expansion in efficient techniques growth of processing and electrocardiogram signals

analysis with intent formation diagnostic data beneficial. Those chasing have been carried

out in parallel with data technologies, specially in digital signal processing area carried out

both in hardware and software. In merit of Electrocardiogram signals principle, they

frequently have been a imprecise data source. In systems of diagnostic design, it becomes

of intereset for making them user friendly. These factors have interest of triggered in

Computataional Intelligence technology parlay. In this situation, it is woeth recalling

which first works in systems of intelligent field go back to Artificial Intelligence methods

utilize with a its symbolic processing wealth. Electrocardiogram signals defmition in

terms of symbols sequences, that are investigated and categorized based on official

grammars machinery.

One of first initiatives, that fully exploits Artificial Intelligence methods, comes in

semantic nets form implemented to Electrocardiogram signals analysis. In this process

signal is symbolized in a OR/AND graph form while sorting method is interested with a

graph search. Another significant methods collection stems from rule based notion systems

where an Electrocardiogram signal is defmed in "if-ten" rules format. Decision

mechanism is believed to utilize supposed modus ponens. Confidence on this notion,

although, requests which a information basis is literally which for any signal there is a

rules set to be utilized in the illation technique. Rule base size drop along with an increase

of reasoning processes achieved in ambiguity asset becomes feasible when summoning a

thus named universalized modus ponens .

. Electrocardiogram processing of signal and analysis involves a order of steps between that

most needed include;

• Signal Amplification and its A/C transformation

• Noise Removal

• Property choice
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The quality and influence of techniques utilized at these stages mention entire process

quality of grading and Electrocardiogram signals explication. Both amplification of signal

and A/C transformation are executed in hardware while entire filtration and noise

cancellation are executed through information processing improved technologies utilize.

·3.4 Electrocardiogram Signals Nature 
Electrocardiogram signals are specular heart electric action. Electrocardiogram signal is

some type of an electrical provocation effuse in cardiac muscle cells. Under sway of this

provocation, cells of cardiac muscle miniaturize, that consequently, reasons a mechanical

influence in heart atria cyclic towing form and ventricles. As an cardiac muscle towing

influence, blood disseminates in human organs.

Spread electrical provocation in cardiac muscle creates a depolarization bioelectric

potentials adjacent heart cells wave, depolarization wave diffusion. After depolarization

wave moving, cells of cardiac muscle tum to their rest situation rescuing before starting

resting negative potential. This situation is named a repolarisation phase.

Figure 3.2: Wave of depolarization in heart muscle spread (Berbari, 2000).

3.5 Electrocardiogram Signals Processing & Analysis 
In cardiology Electrocardiogram signals form a significant diagnostic datum source. For

getting benefit from it, signals have to became appropriately recorded and processed in

such a way which we can continue with their efficient analysis and interpreation.

Electrocardiogram signals are comparatively low quasi-periodic several mV amplitude.

They are frequently influenced by noise. Signal requests recording their amplification and

also processing for compress noise to highest scope. Furthermore Electrocardiogram signal
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analysis is achieved based on these registrations in order to that noise has became

depressed. Entire processing initial stage is an Analog to Digital Conversion(ADC).

Subsequently digital Electrocardiogram signal is filtered in order to clear noise and also

processed to develop property choice techniques influence, grading and explication

implemented to signal. Data granulation has been taken into account as one of intersting

and encouraging options In this context; in substance techniques arising there can be

sought in a way materialization way data compression specific method.

f!.(;G
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Figure 3.3: Primary stages of electrocardiogram signal processing and
analysis(Berbari, 2000).

3.6 Processes for Recording Electrocardiograms 
Electrocardiogram is registered by placing an electrodes array at particular places on body

surface. This is feasible because heart is suspended in a conductive medium. Figure 3.4

indicates the ventricular muscle within the chest. When one section of the ventricles

depolarizes and for this reason being negative concerning the remainder parts of the heart,

forming a potential difference.

Electrical currents flow from depolarized field to polarized field in great ways. It is this

electrical field which can be gathered under surface of the heart.

Figure 3.4: Current flow in chest throughout partly depolarized ventricles
(Berbari, 2000).
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3.6.1 Electrocardiographic Ends 

Traditionally, electrodes are established on each arm and leg, and six electrodes are

replaced at described locations on chest. Three fundamental kinds of Electrocardiogram

ends are registered by these electrodes set:

• Canonical bipolar limb ends

• Chest ends

• Augmented limb ends.

The limb ends are applied as bipolar ends because each end utilizes a single pair of positive

and negative electrodes. Augmented ends and chest ends are unipolar ends because they

have a single positive electrode with other electrodes coupled with each other electrically

to serve as a joint negative electrode.

Three Bipolar Limb Ends 

Figure 3.5 indicates electrical links between patient limbs and electrocardiograph for

recording ECGs from so-called canonical bipolar limb ends. In these regulations ECG is

registered from two electrodes established on heart dissimilar sides, in this instance, on

limbs. Three different connections are feasible,

• EndI

• End II

• End III.

End I in registering limb End-I, electrocardiograph negative terminal is connected to right

arm and positive terminal to left arm.

Figure 3.5: Electrodes traditional regulation for registering standard
electrocardiographic ends. Einthoven's triangle is superimposed on chest

(Berbari, 2000).
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Accordingly, the electrode of the right arm is electronegative concerning the electrode of

the left arm. The electrocardiograph registers a positive signal, which is, above zero

voltage reference line in ECG. When opposite is true, electrocardiograph registers below

this line. End II to register limb end II, electrocardiograph negative terminal is connected

to right arm and positive terminal to left leg. Consequently, when right arm is negative

according to left leg, electrocardiograph registers positively. End III to register limb end

III, electrocardiograph negative terminal is connected to left arm and positive terminal to

left leg. This means which electrocardiograph registers a positive signal when left arm is

negative according to left leg. These three limb ends coarsely form an equilateral triangle

with heart at the center, refer to Figure 3.6.

Figure 3.6: Einthoven triangle with canonical electrocardiogram limb ends placement
and of positive and negative place registering electrodes for each of three ends. RA,

right arm; LA, left arm; RL, right leg; LL, left leg Adp. (Berbari, 2000).

This triangle is named Einthoven's triangle in respect of Willem Einthoven who improved

Electrocardiogram in 1901. Two vertices at triangle upper part symbolize points at that

two arms are electrically connected, and lower vertex is electrode located on right leg used

as a ground point. Depending on the end used to record the Electrocardiogram signal, the

resultant shape is slightly different; these differences can be monitored in Figure 3.7. In the

three electrocardiograms indicated in Figure 3.7, it can be seen, which at any given

instantaneous potentials sum in ends I and III equals potential in end II, therefore

exemplify availability of Einthoven's law. Signals from these ends are uniform between

them, it does not substance greatly that end is registered when one wants to diagnose

various cardiac arrhythmias, because arrhythmias diagnosis depends primarily on time

relations between cardiac cycle various waves.
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Figure 3.7: Normal ECGs registered from the three canonical
electrocardiographic ends (Berbari, 2000).

Chest Ends When it is significant to diagnose damages in ventricular or atrial muscles, or

in Purkinje conducting system, the three Bipolar Limb ends records are not beneficial. For

these cases, we need ends which can show cardiac muscle abnormalities narrowing or

cardiac impulse conduction in these areas. Chosen ends for diagnose these cases are the

chest ends, also called Precordial Ends, that are represented in Figure 3.8. These ends are

used to record Electrocardiogram with one electrode replaced on front chest surface

immediately over heart at one of the points given in Figure 3.8. The distinct registrations

are acknowledged as ends Vl, V2, V3, V4, VS, and V6. This electrode is connected to

electrocardiograph positive terminal, and negative electrode, named the unregistered

electrode, is connected through equal electrical resistances to right arın, left arın, and left

leg, all concurrently. Generally these six canonical chest ends are registered, one at a time,

where chest electrode is being replaced in order at six points illustrated in figure.

Figure 3.9 shows healthy heart ECGs as registered from these six canonical chest ends.

Each chest end registers primarily cardiac musculature electrical potential directly under

electrode, because heart surfaces are close to chest wall. For this reason, comparatively

minute abnormalities in ventricles, especially in anterior ventricular wall, can reason

evident changes in ECGs registered from separate chest ends.

Figure 3.8: Body connections with electrocardiograph for recording chest ends
LA, left arm; RA, right arm (Berbari, 2000).
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3. 7 Physiological Principle 

Human heart is created of myocardium. When activity potential take shapes, it will end to

a myocardial narrowing. Then heart pumps blood to all body. By the way, the current

resulting from activity potential will spread from heart to all body unequally. It clarifys

,why we can keep the signal from the various parts of human body by surface electrodes.

The measured waveform is named electrocardiogram. And a end is created by potential

waveforms registered from the electrodes replaced on different parts of body. Based on

cardiac potential axis, there are six standard ends, containing End I, End II, End III, "a

VR," "a V1,, and "a Vs". Right foot is generally taken into account as a reference ground.

His potential amplitude alters less than all other refererence points because it's farthest

from heart. Actually, the systole of heart is not fully controlled by automatic nervous

system, but essentially by the specialized cells in Sinoatrial node that works like a

pacemaker. The organized potential from sinoatrial node will spread to all atria and t make

it contracted. Then, when contracted, atria pumps the blood into the ventricles. By the way,

passing through the atrioventricular node between the ventricle and atrium, action potential

will enter to all areas of the ventricles via Purkinje fibers, then makes the it contracted.

Eventually, Ventricle pumps the blood to the arteries.
aVF
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Figure 3.9: Cardiac potential axes suitable to various electrocardiogram ends.
(Berbari, 2000).

When the nervous impulses pass through the atrium and ventricle, the electrical current

will extended to the cardiac tissue and induces the production of the myocardial activity

potential. Some portions of action potential can be defined on the surface of skin. That's

why it's possible to measure the change of action potential when we establish electrodes on

the surface of body. Certainly, those electrodes should be replaced on the area suitable to

heart. The time-varying potential recorded is Electrocardiogram. And a cardiac vector is a

type of projection of potential on the front plane surface of body. There is 60 degrees
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among each two axes composed by projected vectors. Each axe symbolizes a end that has

no relation with the position of electrodes. The phenomenon is explored by a Holland

physiologist Willien Einthoven.It is also named Einthoven's triangle.

Figure 3.10: Timing and wave amplitudes of ECG (Berbari, 2000).

3.8 Electrocardiogram Noise Contributions 
Having knowledge how noise is presented into an ECG signal is very significant for good

consultations, because which is what we want to be able to filter out. We must define the

type of noise in the Electrocardiogram signal and then choose a filtering algorithm suitable

for dealing with it. Noise can comprise in multiple different forms. Some examples are

dedicated below:

• Electrical venture from power lines add 50 or 60 Hz power-line :frequency.

• Muscle narrowing and muscle action can compose high :frequency

Electromyography noise.

• Movement artifacts like motion of the electrode over the skin surface.

• Impedance changes at the skin/electrode interface because of transient loss of

contact or unsecured electrodes.

• Baseline drifts because of respiration.

• Noise presented because of instrumentation or electronic apparatus
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3.9 Summary 

Electrocardiogram is a skin-surface measurement of electrical vector created by heart with

each heart beat. Cells have "automaticity" which reasons them to fire at orderly intervals.

Potentials created by these cells flow from one side to other heart muscle (myocardium) in

presumable patterns to create Electrocardiogram waveform measured on skin.
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CHAPTER4 

DIGITAL SIGNAL PROCESSING (DSP) 

4.1 Overview 

World of Science and Engineering is completed with signals, by a majority situations,

these signals to generate sensory information from actual world as it is:

• Seismic vibrations

• Visual images

• Sound waves

• Images from remote space probes

• Voltages created by cardiac and brain

• Radar and sonar reflections

• Numerous distinct implementations.

Processing of Digital Signal is mathematics, algorithms, and processes utilized to manage

these signals later they have been transformed into a digital shape. This contains a broad

diversity of aims, like:

• Development of visual images

• Identification and speech production

• Information compression in order to storage and transfer, etc.

Processing of Digital Signal is science of utilizing computers to resolve these

information types. This contains a broad diversity of aims:

• Filtration

• Recognition of speech

• Enhancement of image

• Compression of data

• Neural Networks

• and further.

4.2 What is a Signal? 

Anything that carries data is a signal. e.g. human voice, smoke signals, fragrances of the

flowers, chirping of birds, gestures (sign language). Most of our body functions are

organized by chemical signals, sightless people utilize sense of touch. Bees get into touch
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by their dancing pattern. Modern high speed signals are: voltage changer in a telephone

wire, the electromagnetic field infıltarating from a transmitting antenna, change of light

density in an optical fiber. So we see which there is a nearly infinite diversity of signals

and a large number of paths in that signals are transported from on place to distinct place.

4.2.1 Signals: The Mathematical Path 

A signal is a actual (or complex) worth function of one or more actual variable(s). When

function depends on a individual variant, signal is one-dimensional and when function

depends on two or more variants, signal is multidimensional.

Examples of one-dimensional signal: 

A speech signal, daily maximum temperature, yearly rainfall at a place.

Example of two-dimensional signal: 

An image is a two dimensional signal, vertical and horizontal coordinates typify the two

dimensions.

Example of four-dimensional signal: 

Our physical world is four dimensional (three spatial and one temporal).

4.3 Processing of Signal 
Processing signifies operational in some style on a signal to clean some beneficial data e.g.

we utilize our ears as input apparatus and then auditory pathways in the brain to remove

data. The signal is comrnited by a system. In the example referred above, in nature the

system is biological. The signal processor may be an electronic system, a mechanical

system or already it might be a computer program.

Signal Processing 

Auditory Signal. ....•.... Sig~al ,... 

Figure 4.1: Biological signal in nature (Smith, 1999).
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Analog towards DSP 

Processing of signal managements interpolated in many implementations as

instrumentation, control and communication systems, processing of biomedical signal etc.

can be applied in two various methods:

• Analog or continuous time technique

• Digital or discrete time technique

Analog Signal Processing 

• Utilizes analog circuit components like resistors, capacitors, transistors, diodes etc.

• Based on natural capability of the analog system in order to solve differential

expressions which define a physical system.

• The solutions are got in actual time.

DSP 
In Digital Signal Processing "Digital" stands for which the processing is done either by a

digital hardware or by'~ digital computer.

• Trusts on numerical calculations.

• The technique may or may not give outcomes in actual time.

The benefits of digital attempt over analog attempt 

• Resilience: Same hardware can be utilized to do different type of signal processing

operations, while in the case of analog signal processing one has to design a system

for each type of process.

• Repeatability: The same signal processing operation can be repeated again and

again giving same outcomes, while in analog systems there may be coefficient

variation because of alteration in temperature or supply voltage.

The selection among Analog or DSP depends on the implementation. One has to compare

design duration, size and the price of the application.

4.3.1 Discrete Time Signal Processing and Digital Signal Processing 

When we utilize digital computers to do processing we are doing digital signal processing.

However mainly the theory is for discrete time signal processing where dependent variant
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usually is continuous. This is owing to the mathematical simplicity of discrete time signal

processing. DSP attempts to apply. this, as intimately as possible. So what we study is

frequently discrete time signal processing and what is truly applied is digital signal

process mg.

4.4 The Width and Profundity of DSP 
DSP is one of the strongest technology to create a science and engineering in 21. century.

Revolutionary modifies have anyway been made in a wide range of areas:

• High fidelity music breeding

• Radar & sonar

• Oil prospecting

• Communications

• Medical imaging

Each of these areas has improved a profound Digital Signal Processing technology, with its

own mathematics, algorithms, and specialized methods. This width combination and

profundity makes it not possible for any one separate to main as a whole Digital Signal

Processing technology which has been improved. Digital Signal Processing education

includes two duties: learning generic notions which apply to the area like an all, and

learning appropriated methods for your special field involvement (Smith, 1999).

4.5 Fundamental Components of a DSP System 
Mainly the signals matched in science and engineering are analog in nature. Which are the

signals are functions of a continuous variant, like time or space and generally take on

values in a continuous range. These kinds of signals may be processed directly by suitable

analog systems (such as filters or frequency analyzers) or frequency multipliers for the aim

of changingtheir properties or removing some desired data. In such a status we say that the

signal has been committed directly in its analog form, as defıned in Figure 4. 1. Both the

input signal and the output signal are in analog form (Prandoni & Vetterli, 2008).

Analog
Input Signal

Analog
Signal

Processor

Analog
Output Signal

Figure 4.2: Analog signal processing
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4.6 Primary Notions of DSP 
Digital Signal Processing technology and developments greatly affects everywhere in

modern society. In the absence of Digital Signal Processing, we would not have digital

recording; digital internet audio or video; Compact Disc, DigitalVersatileDisc, and MP3

players; digital and cellular telephones; digital cameras; TV and digital satellite; or wire
and wireless networks. Medicinal devices would be less effective or incapable to ensure

beneficial data in order to exact diagnoses if there were not any analyzers of digital
Electrocardiographyor digital x-rays and medicinal image systems.We would also live in

many less effective methods, since we would not become accouteredwith recognition of

voicesystems, systemsof speech synthesisand systemsof image and video editing. In the

absence of Digital Signal Processing, engineers, scientists, and technologistswould have
not any strong apparatus to visualize and analyze informationand build their design, and

soon (Proakis& Manolakis,2006).

Band-Limited
Signal

Digital
Signal

Processed Digital
Signal Output

Signal
Analog
Input

DAC
Reconstruction

FilterADC
DS

PROCESSOR
Analog
Filter

Figure 4.3: DSP regulation

DigitalSignalProcessingtheory is definedby a simplifiedblock diagramofFigure4.3 that
takes place an analog filter, an ADC unit, a processor ofDigital Signal, a DAC unit, and a

filter of reconstruction.As indicated diagram, analog input signal, that is continuous in

time and amplitude, is usually met in our actual life. Examplesof like these analog signals

contain current, temperature, light intensity, pressure, and voltage. Normally a sensor is

utilized to transformnonelectrical signal to analog electrical signal (voltage). This analog
signal is fed to an analog filter that is implemented to restrict frequency analog signals
domainprevious to process of sampling.Filtration aim is to substantiallyreduce distortion
of aliasing. Band-restrictedsignal at analog filter output is then sampled and transformed

over Analog to Digital Converter unit into digital signal that is discrete both in amplitude

and in period. Processor of Digital Signal then adopts processes digital information and

digital signal accordingly, Digital Signal Processing rules like low pass, high pass, and
band pass filtering of digital, or other algorithms in order to various implementations.

27



Attention which processor of Digital Signal unit is a private digital computer type and can

be a generic goal a microprocessor, digital computer, or an advanced microcontroller;

additionally, Digital Signal Processing rules can be applied utilizing software generally.

With processor of Digital Signal and suitable software, a processed digital output signal is

created. This signal proceeds in a way by certain algorithm utilized. Following diagram in

Figure 4.3, DAC unit, transforms processing of digital signal for an analog output signal.

As indicated, signal is discrete in amplitude and continuous in time the final diagram in

Figure 4.3 is assigned as a function to smooth the Digital to Analog Converter output

voltage levels back to analog signal over a restoration filter in order to actual world

implementations. Generally, analog signal continuum does not need software, an

algorithm, ADC, and DAC. Processing believes completely on electrical and electronic

apparatus like transistors, resistors, operational amplifiers, capacitors, and Integrated

Circuits(IC). Digital Signal Processing systems, but, utilize software, digital processing,

and algorithms; so they have an excellent agreement of resilience, less noise attempt, and

no signal distortion in different implementations. But, as illustrated in Figure 4.3, Digital

Signal Processing systems still need minimum analog processing like anti-aliasing and

restoration filters that are must in order to convert actual-world data into digital format and

digital format back into actual world data. There are a lot of actual world Digital Signal

Processing implementations which do not need Digital to Analog Converter, like

information acquisition and digital data monitor, recognition of speech, information

encoding, and so on. Likewise, Digital Signal Processing implementations which require

no Analog to Digital Converter contain Compact Disc players, text-to-speech synthesis,

and digital tone generators, among others (Vaseghi, 2009).

4. 7 DSP Implementations 
Implementations of Digital Signal Processing are ascending in a lot of fields where analog

electronics are being changed by chips of Digital Signal Processing, and new

implementations are depending on Digital Signal Processing methods. With of processors

of Digital Signal cost decreasing and their performance increasing, Digital Signal

Processing will proceed to impress design of engineering in our modern daily life. Some

implementation samples utilizing Digital Signal Processing are given in Table 4. 1. But, list

in table by no means lids entire Digital Signal Processing implementations. Much more

fields are ever being discovered by engineers and scientists. Implementations of Digital
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Signal Processing methods will proceed to have deep effects and develop our Ii 

Jiang, 2013). 

Table 4.1: Implementations of DSP 
Digital Audio and Speech • Digital Audio coding as Compact Disc players

• Digital crossover

• Digital audio equalizers. Digital stereo and surround sound,

• Noise decreasing systems,

• Speech Coding,

• Data Compression, and encryption

• Speech Synthesis and Speech Recognition .

Digital Telephone • Speech Recognition

• High-speed modems,

• Echo deletion,

• Speech synthesizers,

• DTMF (dual-tone multi frequency) manufacture and

detection

• Answering machines .

AutomobileIndustry • Actual noise control systems

• Actual suspension systems

• Digital audio and radio

• Digital controls .

Electroniccommunications • Cellular phones,

• Digital telecommunications,

• Wireless LAN (Local Area Networking),

• Satellite Communications

Medical ImagingEquipment • Electrocardiogram Analyzers,

• Cardiac monitoring,

• Medical imaging and recognition,

• Digital x-rays,

• Image processing .

Multimedia • Internet phones,

• Audio and video; hard disk drive electronics; digital

pictures,

• Digital cameras;

• Text-to-voice and voice-to-text technologies .
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4.8 Summary 

In this section we have initiatived to ensure the motivation for digital signal processing as

an alternate to analog signal processing. We described the necessary procedures can be

used to convert an analog signal into a digital signal for processing and presents the basic

components of a DSP system.
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CHAPTERS 

BIOMEDICAL SIGNAL PROCESSING 

5.1 Overview 

Purpose of Biomedical Signal Processing is, to remove:

• Clinical

• Biochemical

• Pharmaceutical
appropriate data for enable a transmitted medicinal diagnosis. Whole living things, from

cells to structure, transmit biological signals origin. These signals types can be

• Electrical Signal

• Mechanical Signal

• Chemical Signal
Entire these signals can be for diagnosis interest, in order to patient observing and

biomedical exploratory. Primary biomedical signals duty processing for filtering signal of

interest out of from noisy background and for decreasing unnecessary information stream

to just several, however appropriate coefficients.

5.2 Properties of Medical Data 
Alphanumeric data contain patient's name and address, identity number, lab tests

outcomes, and physicians' annotations. Figure 5. 1 shows three basic data types that must

be acquired, manipulated, and archived in the hospital. Images contain x-rays and scans

from computer tomography, magnetic resonance imaging, and ultrasound. of Physiological

signals examples are ECG, Electroencephalogram, and blood pressure pursuiting. Quite

dissimilar systems are necessary to manage each of these three kinds of information.

Alphanumeric information are usually administrated and arranged into a database utilizing

a general-objective mainframe computer. Image data are traditionally archived on film.

However, we are evolving toward Picture Archiving and Communication Systems which

will store images in digitized form on optical disks and deploy them on demand over a

high-speed Local Area Network to very high resolution graphics display monitors located

throughout a hospital. On the other hand, physiological signals like those that are

monitored during surgery in the operating room require real-time processing. The clinician

must know immediately if the instrument finds abnormal readings as it analyzes the

continuous data (Tompkins, 2000).
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Medical
Data

Alphanumeric Physiological signalsMedical images

Figure 5.1: Types of medical data

5.3 What is a Medical Device? 

There are many different types of medical instruments. Figure 5.2 indicates a block

diagram which describes these kinds of instruments. Sensors measure the patient's

physiological signals and generate electrical signals (usually time-varying voltages) which

are analogs of the real signals. A set of electrodes may be used to sense a potential

difference on the body surface such as an ECG or EEG. Sensors of different types are

available to transduce into voltages such variables as body core temperature and arterial

blood pressure. The electrical signals manufactured by the sensors interface to a processor

that is liable for processing and analysis of the signals. The processor block typically

contains a microprocessor for performing the necessary tasks. Many devices have the

capability to monitor, register, or deploy through a network either the raw signal captured

by the processor or the results of its analysis. In some devices, the processor implements a

control function. Based on the outcomes of signal analysis, the processor might teach a

controller to do direct therapeutic intervention on a patient or it may signal a person which

there is a difficulty which is necessary feasible human intervention (open loop control).

Physiological Signal Electrical Analogs (voltages)

Patient ProcessorSensors

Open loop or closed loop control

Controller

Display Recorder Network

Figure 5.2: Basic elements of a medical instrumentation system
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5.4 Iterative Definition of Medicine 
The clinician inquires the patient questions about medical history, registers the

Electrocardiogram, and does blood tests and other tests for describe the patient's problem.

Figure 5.3 is a block diagram that shows the operation of the medical care system.

Information collection is the starting point in health care. Of course medical instruments

help in some aspects of this data collection process and even do some preprocessing of the

data. Ultimately, the clinician analyzes the data collected and decides what the basis of the

patient's problem is. This decision or diagnosis leads the clinician to prescribe a therapy.

Once the therapy is administered to the patient, the process continues around the closed

loop in the figure with more data collection and analysis until the patient's problem is gone

(lbrahimy, 201O).

Patient Collection Analysis
" " 

of data Of data
' -. Therapy I 

Decision ~ 
Making

Figure 5.3: Fundamental components of a medical care system

5.5 Synopsis for Biomedical Signal Processing 
Biomedical Signal Processing is mostly regarding innovative signal processing

implementations techniques in signals of biomedical through different inventive combining

of technique information of biomedical. It is a quickly increase in size area with a broad

implementations range .. These range from factitious limbs structures and assistances for

disabled to advanced medical growth observing systems which can manage in a

noninvasive attitude to give actual time workings body of human appearance. There are a

number of medical systems in widespread utilize. These contains ultrasound;

electrocardiography and plythesmography are broadly utilized a lot of objectives.
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Biomedical signals processing generally includes of at least four stages:

• Measuring or investigation, which is, acquisition of signals.

• Transmutation and decline of signals.

• Coefficients of signal calculation which are diagnostically important.

• Explication or grading of signals

process InterpretedSignal

Signal
acquisition

Signal
transformation

i 
Parameter

I selection I j 
Signal

classification

Digitized
Signal

Transformed
Signal

Signal
Parameters

Figure 5.4: Biosignal processing phases

Types of biological signals into two main groups: stochastic (or statistical) and

deterministic signals. Like a respiration or beating cardiac creates signals which are further

recurrent. Deterministic category is subdivided into periodic, transient and quasiperiodic

signals. Stochastic signals are subdivided into stationary and non-stationary signals. Cells

categories depolarize in an approximately indiscriminate fashion like cells of muscle

creating nerve cells or electromyography in cortex. Time varying signal wave figures are

illustrated in Figure 5.5.

Figure 5.5:.Forms of signal wave (Tompkins, 2000).
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5.5.1 Obtaining of Biosignals 

Actual-time obtaining of information directly from source by direct electrical connections

to devices forestalls requirement for people to measure, encode, and enter information

manually. Sensors annexed to a patient transform signals of biomedical, such as blood

pressure, pulse ratio, mechanical motion, and electric action, for instance, of heart, muscle

and brain, into electric signals, that are transferred to computer. Signals are exemplified

periodically and are transformed to digital statetement in order to storage and processing.

Automated information obtaining and processing of signal methods are especially

significant in patient observing settings.

5.5.2 Digitization of Biosignals 

Sampling and Quantization most inherently taking shape signals are analogue signals, so

signals which change continually. Digital computer stores and processes values in discrete

units. Prior to transaction is feasible, analogue signals must be transformed to discrete

units. Transformation stage is named Analogue to Digital Conversion (ADC). Analog to

Digital Converter can be considered as sampling and rounding; continuous amount is

monitored at constant spacing and rounded to closest discrete unit. Two coefficients

describe how intimately digital information encounters original analogue signal: sensitive

with that signal is saved and frequency with that signal is sampled. Certainty defınes

sample accuracy degree investigation of a signal. It is defıned by number of bits

(quantization) utilized to symbolized a signal and their accuracy; more bits, levels greater

number which can be separated. Certainty further is restricted by device correctness which

transforms and transmits signal.

Ranging and devices adjustment, either manually or automatically, is essential for signals

to become symbolized with as much certainty as feasible. Incorrect ranging will outcome

in data bereavement. For instance, an alter in a signal which changes among [O. 1 V - 0.2V]

will be undetectable if device has became adjust to register replaces among [O.OV - I.OV]

in 0.25 V steps. Sampling ratio is second coefficient which impresses communication

among an analogue signal and its representation of digital. A sampling ratio which is very

low notional to ratio at that a signal alterations value will manufacture a weak presentation.

However, oversampling increases processing outgoing and storing information.

As a generic regulation, we require to sample at least twice as often as component of

highest-frequency required.from a signal. For example, looking at an Electrocardiogram,
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we find which prime iteration frequency is at most several per second, however which

QRS complex includes a beneficial frequency component on 150 Hz layout. Therefore,

information sampling ratio should be at least 300 measurements per second. This ratio is

named Nyquist frequency.

5.5.3 Noise 
Another signal view standard is noise quantity in signal, component of obtained

information which is not owing to certain phenomenon being measured. A fundamental

noise source is signals of electric or magnetic manufactured by nearby apparatus and

power lines. Furthermore, mistakes in sensors, weak communication among sensor and

source (patient), and inconvenience from signals manufactured by processes of

physiological other than one being studied (for instance; respiration interferes with

Electrocardiogram recording) are another widespread noise sources.

Property of noise is its relatively haphazard model in most situations. Filtering algorithms

can be utilized to decrease noise effect. Recurrent signals, as an Electrocardiogram, can be

integrated over different cycles, so decreasing haphazard noise effects. When noise model

differs from signal model, Fourier analysis can be utilized to filter signal in domain of

frequency.

5.5.4 Certainty and Correctness 
Certainty mentions to measurement correctness; if measurement is recurred on same issue,

same outcome will be got. Correctness mentions to propensity of measured worth to be

symmetrically categorized around variant's actual worth. Medical information uncertainty

can originate from "intra" and "inter" instrumental and observer variations (analytical or

metrological uncertainty) or "intra" and "inter" single variations (biological uncertainty); is

a combination of all of them.

5.5.5 Abstraction and Analysis 
Formerly datum have became achieved and filtered, they typically are processed to

decrease their volume and to abstract knowledge in order to utilize by explication

programs. Frequently information is examined to remove significant coefficients, or,

signal properties, e.g., period or Electrocardiogram ST segment intensity. Computer can

also investigate and categorize waveform figure by comparing signal to acknowledged
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models. Upward analysis (in conjunction with the appropriate knowledge base) is essential

to define meaning or signals significance e.g., to let automated Electrocardiogram-based

cardiac diagnosis.

5.6 Summary 
Biomedical signal processing is a quickly growing area with an extensive implementations

range. These range from building limbs factitious and help for disabled to advanced

medical imaging systems improving which can utilize in a non-invasive style to give actual

functioning human body time views.
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CHAPTER6 

DIGITAL FILTERING & NOISE TYPES 

6.1 Overview 
Processing of digital signal affords major resilience, higher performance (in terms of

attenuation and selectivity), preferable duration and surroundings stability and nominal

device manufacture prices than conventional analog methods.
Discrete-time, discrete-amplitude convolver merely is digital filter. Fundamental theory of

Fourier transform defmes which two series linear convolution in time domain is same with

two suitable spectral series multiplication in :frequency domain. Filtering is in principle

signal spectrum multiplication by filter :frequencydomain impulse response.

6.2 Signals and Data 
A signal is quantity change by that data is transmitted regarding case, properties,

composition, trajectory, evolution, and behavior or data source objective. A signal is

transmitting data concerning means case(s) of a variable. Data transmitted in a signal may

become utilized for communication, decision-making, control, geophysical exploration,

forecasting, forensics, medicinal diagnosis, etc. by humans or machines. Types of signal

which processing of signal deals with contain;

• Medical

• Ultrasonic

• Image

• Biological

• Audio

• Subsonic

• Financial

• Textual data

• Seismic signals .

• Electromagnetic
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Figure 6. 1 describes a system of communication created of a data resource, I(t), pursued by

a system, T[.J, in order to data transmutation into signal variation, x(t), a channel of

communication h[.], for signal spread from transmitter to receiver, additive channel noise,

n(t), and a processing of signal unit at receiver for subtraction of data from received signal,

Generally, there is a mapping process which maps output, l(t), of an data resource to

signal, x(t), which transports data; this mapping operator may be indicated as T[.] and

represented as equation 6.1 given below:

x(t)=T*[I(t)] (6.1)

Last few decades, theory and processing of digital signal implementations have developed

to play a centric role in contemporary telecommunication growth and data technology

systems. Processing of signal techniques are centric to effective communication, and to

smart man-machine interfaces progress in fields like speech and recognition of visual

pattern for multimedia systems. Generally, DSP is related with two wide fields of data

theory:

• Effective and dependable signals storage, transmission, reception, coding and

representation in communication systems;

• Data Subtraction from noisy signals for recognition of pattern, forecasting,

decision-making, detection, enhancement of signal, control, automation, etc.

Noisen(t)

Signal & data

Data source I(t)
Data to Signal

mapping T[.]

Signal
Digital Signal

Processor
Channel h[.]

x(t)

Figure 6.1: Communications and signal processing system statement
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6.3 Implementations of DSP 

In recent years, growth and commercial presence of increasingly strong and purchasable

digital computers has became participated by advanced DSP algorithms progress for a

wide variety of implementations like noise decrease, sonar, video, telecommunications,

radar and signal processing of audio signal, recognition of pattern, geophysics

explorations, forecasting of data, and large processing of database for subtraction,

identification and obscured underlying constructions organization and models.

6.4 Noise and Distortion 
An undesirable signal which interferes with communication or other signal measurement

can become described as Noise. A noise itself is a signal which transmits data concerning

noise source. For instance, noise from a car engine transmits data concerning case of

engine and how smoothly it is working. Noise resources are many and changed and contain

noise of thermal real to electrical conductors, shot racket natural in flows of electric

current, audio periodicity acoustic racket emanating from vibrating, moving or colliding

resources like returning engines, moving tools, rain, computer fans, wind, keyboard clicks,

etc. and radio periodicity noise of electromagnetic which can interfere with voice transfer

and receiving, image and information over spectrum of radio-frequency. Signal distortion

is locution frequently utilized to defme a systematical unwanted modify in a signal and

applies to modifies in a signal because of not ideal communication channel features,

reverberations, echo, reflections of multipath and deficient exemplaries. Primary factors

restricting transmission of data capability in telecommunications and accuracy in systems

of signal measurement are noise and distortion. That's why modeling and noise elimination

effects and distortions have became at core of theorem and communications application

and processing of signal. Noise separation and distortion elimination are significant issues

in implementations like cellular mobile communications, recognition of speech, processing

of image, signal processing of medical signal, sonar, and radar in any implementation

where signs cannot become reserved from racket and distortion (Intersil, 1999).
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6.5 Noise Types 
Any undesirable signal which interfereswith communication,measurement,perceptionor

data-bearingprocessing of signal may become described as Noise. In different degrees in
nearly whole environmentsNoise is available.Noise can reason errors of transmissionand
may moreover disturb a communication process; therefore processing of noise is a

significantandmodem integralpart telecommunicationsand systemsof signalprocessing.
Noise processing technique achievementdepends on its capability to define pattern noise
continuum, and to utilize noise properties favorable to distinguish signal from racket.

Depending on its resource, a racket can become categorized into a number of classes,

demonstratingnoisewidephysicalnature, givenbelow:

Acoustic noise 
Infiltrates from vibrating, moving, or colliding resources and is best known noise kind
available to different degrees in regular surroundings.Acoustic racket is created by this

kind of resources like traffic, people talking in background, computer fans,

air-conditioners,movingcars, rain, wind, etc.

Thermal noise and shot noise 
Noise of thermal is created by haphazard thermally energizedparticles movements in an
electric conductor. Noise of thermal is real to whole conductors and is available without
any implemented voltage. Shot racket occurs electric current random fluctuations in an
electricalconductorand is real to current flow.Shot racket is causedby truth which current

is transported by discrete charges (i.e. electrons) with haphazard surges and times of

randomarrival.

Electromagnetic noise 
Electromagneticnoise is available entire periodicities and in specific at radio periodicity
range (kHz to GHz range) where telecommunications occurred. Whole electric

apparatuses, like radio and television transmitters and receivers, create noise of

electromagnetic.

41



Electrostatic noise 

Created by voltage asset together or separately current flow. Lighting of fluorescent is one

of more widespread electrostatic noise resources.

Channel distortions, echo and fading 

Owing to not ideal communication channels properties. Channels of radio, like those at

GHz periodicities utilized by operators of cellular mobile phone, are especially responsive

to spread channel environment properties and signals fading.

Processing noise 

Noise which outcomes from signals digital to analogue processing, e.g. quantization racket

in numerical speech coding or image signals, or missing information packets in systems of

digital data communication.

Depending on its periodicity spectrum or duration properties, a noise continuum can 

become additionally categorized into one of different classes given below: 

White noise 

Simply haphazard noise which has a flat spectrum of power. White racket in theoritical

includes entire frequencies in tantamount density.

Band-restricted white noise 

A racket with a flat spectrum and a restricted bandwidth which generally lids restricted

apparatus spectrum or sign of interest.

Narrowband noise 

Racket processes with a limited bandwidth like a 50-60 Hz 'hum' from electricity provide.

Colorful noise 

Nonwhite racket or any broadband racket whose spectrum has a nonflat form; examples

are brown racket, pink racket and autoregressive racket.
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Impulsive noise 

Includes short-period haphazard amplitude pulses and haphazard time.

Transient noise pulses 

Includes comparatively lengthy time pulses of noise.

6.6 How Data is indicated in Signals? 
Most significant part of any Digital Signal Processing duty understands how data is

included in signs you are working with. There are a lot of ways which data can become

included in a sign. If signal is manmade this is particularly true. Fortunately, there are just

two paths which are common for data to become symbolized in inherently consisting

signals.

• Data symbolized in time domain

• Data symbolized in frequency domain.

Data symbolized in time domain defines when something comprises and what magnitude

of event is. For instance, imagine an essay to study light outcome from sun. Light outcome

is measured and registered once each second. Every exemplary in sign demonstrates what

is occurrence at that moment, and level of event. If a solar flare takes shape, sign directly

ensures data on time it took place, period, growth over time, etc. Every sample includes

data which is interpretable without reference to any other exemplary. Even though you

have only one exemplary from this sign, you still know something about what you are

measuring. This is basic method for data to become included in a sign. Backwards, data

symbolized in frequency region is more indirect. A lot of things in our universe indicate

periodical movement. For instance, a wine glass struck with a fingernail will vibrate,

producing a ringing sound; pendulum of a grandfather clock swings back and forth; stars

and planets rotate on their axis and return around each other, and so forth. By measuring

periodic periodicity, phase, and magnitude movement, data can frequently be got about

system producing movement. Presume we exemplary sound manufactured by ringing wine

glass. Basic periodic vibration periodicity and harmonics belong to mass and elasticity of

material. A single exemplary, in itself, includes no data about periodical movement and for

this reason no data about wine glass. Data is included in relationship among a lot of points

in signal.
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6. 7 Filtering of Signals 

Filtering of signal is :frequentlyutilized in testing of eddy current to clear undesirable

periodicitiesfrom receiver signal. While settingsof correct filter can significantlydevelop
a defect signal visibility, inaccurate arrangementscan distort presentation of signal and
even clear flaw signal fully. For this reason, it is significant to understand filtering of

signal notion. Filtration is applied to receive signal and, for this reason, is not directly
concernedto probe drive periodicity.This is most easilyunderstoodwhenpicturing a time

versus signal amplitude screen. With this screenmode, it is easy to see which signal form

is dependent on time or period which probe coil perceives something.For instance, if a

surface probe is established on conductor surface and rocked back and forth, it will
propagate a wave like signal. When probe is rocked fast, signal will have a higher
periodicitythan whenprobe is rocked slowlyback and forth.
Signal does not need a wavelike view to have periodicity content and most eddy current

signalswill be createdofa largenumberofperiodicities.

6.8 Digital Filtering Fundamental Notions 
Digital filteringhas certainpropertieswhich you require to payprivate attentionto. Analog
input sign must fulfill specific necessities. Additionally, on converting an output digital
sign into analog form, it is necessary to implementprocessing of additional signal for get
the suitableresult. Figure6.2 illustratesdigital filteringprocessblock diagram.

nalog Signal
Anti-Aliasing

Filter

Output Analog Signal
DIA Conversion NF FilterAID Conversion Digital Filter

Figure 6.2: Digital filteringprocess

Transforming an analog signal into digital form process is applied by sampling with a

finite sampling periodicity "f,". If an input sign includes periodicity components higher

than half samplingperiodicity (fs/2), it will reason distortion to original spectrum.This is

cause why it is first necessary to apply filtrationof an input sign utilizing a low-pass filter
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which clears high periodicity components :from input periodicity spectrum. This filter is

known anti-aliasing filter as it forestalls aliasing.
After filtering and sampling method, a digital signal is available in order to upward

processing that, in this case, is filtration utilizing suitable digital filter. Output signal is also

a digital signal that, in some cases, is necessary to become transformed back into analog

form. After Digital to Analog Conversion, signal includes some periodicity components

higher than fJ2 that must become cleared.

6.9 Types of Digital Filters 
Filter is a system that passes specific :frequency components and completely refuses all

others, but in a broader status any system which changes specific :frequencies relative to

others is named a filter.

Digital filters are used for two generic aims:

• Signals Segregation which have been combined.

• Signals Renovation which have became damaged somehow.

Analog (electronic) filters can become utilized for these same duties; but, far excellent

outcomes can be achieved by digital filters. Digital filters are a very significant part of

Digital Signal Processing. Actually, their exceptional performance is one of the key causes

which Digital Signal Processing has been very popular, filters have two utilizes:

• Segregation of Signal

• Renovation of Signal

Segregation of signal is necessary when a signal has became corrupted with attempt,

racket, or other signals. For instance, imagine an apparatus in order to measuring electrical

baby's cardiac action (ECG) while still in womb. Raw sign will likely be disturbed by

breathing and mother heartbeat.
A filtrate might be utilized to separate these signs so which they can be individually

analyzed. Renovation of signal is utilized when a sign has became damaged in somehow.

For instance, an audio registering made with weak device may become filtrated to

45



preferable symbolize sound as it in fact occurred. Another example is of an ımage

deblurring obtained with an incorrectly focused lens, or a shaky camera.

These problems can become attacked with either analog or digital filtrates. If we compare

these filters, analog filtrates are inexpensive, fast, and have a large dynamic range in both

magnitude and periodicity. Numerical filtrates, in comparison, are much superior in

performance level which can become accomplished.

There are two fundamental digital filters types:

• Response of fınite impulse

• Response of infinite impulse

Generic form of digital filter difference equation is:

N N 

y(n)= 2>ix(n-1)-2)iy(n-i) (6.2)
i=O i=l

where current filter output is "y(n)", past filter outputs are "y(n-i)" 's, current or past filter

inputs are "x(n-i)" 's, filter's feed forward parameters corresponding to filter zeros are

"at's, filter's feedback parameters suitable to filter poles are "bi" 's and filter's order is

"N". Infınite impulse response filters have one or more nonzero feedback parameters. This

is, as feedback term outcome, if filter has one or more poles, once filter has been induced

with an impulse there is always an output. Finite Impulse Response filtrates have no non­

zero feedback parameter. Which is, filtrate has only zeros, and once it has became induced

with an impulse, outcome is available for only a finite (N) number of computational cycles.

6.10 Summary 

One of strong devices of Digital Signal Processing is Digital filtration. Except clear

essentially clearing errors advantages in filtrate associated with passive component surges

over time and temperature, op amp drift (active filters), etc., numerical filtrates are talented

performance descriptions which would, at best, become highly hard, if not unfeasible, to

attain with an analog application. Furthermore, digital filtrate properties can become easily

changed under software control.
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For this reason, they are widely utilized in adaptive filtration implementations in

communications like cancellation of echo in modems, noise extraction, and recognition of

speech.
In processing of signal, function of a filter is to eliminate undesirable signal parts, like

haphazard noise, or to remove beneficial signal parts, like components lying within a

specific range of frequency.
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CHAPTER 7 

EXPERIMENTAL OUTCOMES 

7.1 Overview 
Neonatal healthcare is always associated with fetus health as if any conditions can be

diagnosed, and then there are maximum chances that the conditioncan be treated before
the birth. Diagnosing any pathological condition during pregnancy normally asphyxia is
very important. Electrocardiogramor called as ECG is one of the simplest and painless
noninvasive diagnosis method to estimate the heart condition Fetal ECG (FECG) signal
provides valuable informationof the fetus physiological state, this is acquired by placing

skin electrodes on mother's abdomen. As ECG is measuring the electrical activity, ECG

fromthe abdomen(AECG) is usually corruptedor has interferenceswhichbasically can be

categorizedas noise in the course of a cardiaccycle Electrocardiogramsignal composedof
P, QRS, and T wave. Detecting R peak from QRS complex from abdominalECG is very

important.ECG for an adult is measuredfrom chest, so consideringthis maternalECG can
be obtained from chest which would not have Fetal ECG.Various researchers have put

forwardthe techniqueof extractingFetal ECG by taking maternalECG from two location
chest and abdomen .Theabdominalsignal is a compoundsignalof Fetal Electrocardiogram

and maternal Electrocardiogramwhereas chest lead signal consist of only maternal ECG.

Varioustechniqueshave been proposedby researcherssuch as:

• Wavelet filtering

• Correlationtechnique

• Filteringtechnique
Noise canceller needs a reference signal which is given in the form of maternal

electrocardiogramsignal. To understand how it works every heartbeat is an electrical
signalwhich spreads from the chest to the bottom, and processrepeats where the signal set

a rhythmwhich can be seen as a heartbeat.

7.2 Methodology 
The signal is acquiredfromphysionet database(Ruha & Nissila, 1997).Were we have two
sets of signal first set contains signal from mothers abdomen consisting of fetal ECG,

maternal ECG and noise. In second set we have maternal ECG taken from the mother's

chest.Heartbeatof fetus is noticeablyhigher than mother ranging till 160 beats per minute.
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Fetal ECG amplitude is feeble than which of the maternal which corresponds to 0.25

millivolts peak voltage.

Composing Maternal Heart Beat Signal

In this part, Electrocardiogram forms will be simulated for both the mother and fetus. 4

kHz sampling rate will be used. Heart rate for this signal is roundly 89 bpm, and 3.5 mV

peak voltage signal.

Measured Maternal Electrocardiogram

Maternal ECG signal is got from mother chest. Adaptive noise cancellation aim in this

study is to adaptively extract maternal heartbeat signal from fetal ECG signal. Canceller

requires a reference signal created from a maternal ECG to carry out this work. Just as fetal

ECG signal, maternal ECG signal will include some additive wideband noise.

Composing Fetal Heart Beat Signal

Fetus beats heart recognizably faster than which of its mother, with ratios ranging from

120 to 160 bpm. Fetal ECG amplitude is also very feeble than which of maternal ECG.

Sample creates an ECG signal suitable to a heart rate of approximately 139 bpm and 0.25

mV peak voltage for simulating fetal heartbeat.

Measured Fetal Electrocardiogram

Measured fetal ECG signal from mother abdomen is generally predominated by maternal

heartbeat signal which radiates from chest cavity to abdomen. This radiation will be

defined as path as a linear Finite Impulse Response filter with 1 O pitched on parameters.

Additionally, it will be added a small uncorrelated Gaussian noise quantity to liken any

wideband noise sources in measurement.

For extraction of maternal and fetal ECG we utilize Savitzky&Golay Filter and Adaptive

Noise Canceller by the application of two signal an input and reference. Figure 7.1

demonstrates the overview of the methodology of the study.

Savitzky-Golay Filter is tried firstly with WON and then Adaptive Noise Cancellation

technique is implemented. PSNR value among real and de-noised signals are computed.
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Original Fetal
ECG signal from abdomen of
mother

Original Maternal ECG signal
is obtained from chest of

mother.

White
Gaussian

Noise
(WGN)

White
Gaussian

Noise
(WGN)

Noisy Fetal
Electrocardiogram

Signal

Noisy Maternal
Electrocardiogram

Signal

Adaptive Noise
CancellerAdaptive Noise

Canceller

Savitzky-Golay Filter
Savitzky-Golay Filter

Filtered Maternal
Electrocardiogram

Signal

Filtered Fetal
Electrocardiogram

Signal

Figure 7.1: Overviewof the completesystem

Figure 7.1 indicates overview of the complete system designed for this study. Original
Maternal ECG signal obtained from chest of mother and Original Fetal ECG signal

obtained from abdomen of mother is acquired from Physionet database. The noisy

Maternal and Fetal ECG signals have been composed by adding convenient noise

distributions with reference signal. Savistsky-Golay Filter and Adaptive Noise
Cancellation Least Mean Square(LMS) algorithm techniques are tested with White

Gaussiannoise (WGN) is applied.
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Figure 7.2: Representative noise free maternal electrocardiogram signal

Figure 7.2 and Figure 7.3 indicates Exemplary Noise Free maternal and Fetal

Electrocardiogram signals respectively. Technical informations about these signals were

explained above.
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Figure 7.3: Representative noise free fetal electrocardiogram signal
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Additive White Gaussian Noise
AWGN is a fundamental noise model utilized in data theory to mimic the influence of

many random processes which take shape in nature. The modifiers indicate certain

properties:
Additive: Because the noise will get added to your transferred signal not multiplied. Thus,

received signal y(t) = x(t) + n(t), where x(t) was original clean transferred signal, and n(t)

is the noise or discomfort in channel.
Gaussian: This thermal noise is haphazard in nature, certainly noise can't be deterministic

else you would extract deterministic noise from y(t) as soon as possible you receive y(t).

Thus, this random thermal noise has Gaussian distribution with "O" mean and variance as

Noise power. "O" means which anticipated value n(t) during any time interval "T" is "O".

But merely put, it additionally means which on an average n(t) will take "O" value. And

n(t)=O probability is the highest and probability rapidly reduces as you increase the

magnitude ofn (t).
White: meaning same amount of all the colors. Or same power for all the frequencies. That

means that this noise is equally present with the same power at all the frequencies. Thus, in

frequency domain, Noise level is straight along at each frequency.

It's a straightforward imperfections model which communication channel consists of

When you transfer certain signal into space or atmosphere or copper line to be received at

other end, there are disturbances (aka noise) present in channel (space/atmosphere/copper

line) because of various causes. One such reason is the thermal noise by the virtue of

electrons' movement in the electronic circuit being utilized for transmission and reception

of signal. This disturbance or noise is modeled as Additive White Gaussian Noise.

7 .3 De-noising of ECG Signal 
Digital filtering methods can be utilized for develop signal quality and decrease haphazard

error noise component [51]. lfwe think following equation:

y(t) = x(t) + n(t) (7.1)

Where x(t) is real signal of maternal and fetal ECG measured signal at time t, n(t) is

random noise affecting it, which is presumed to be additive and y(t) is the received signal

from Electrocardiograph. One significant problem in low-pass filtering is which, sınce
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signal and noise spectra ordinarily overlap, it is not feasible to extract random noise n(t)

from measured signal y(t) without distorting real signal x(t).The goal of this thesis is to

present and define an method of Şavitzky-Golay filter for de-noising of ECG signal. The

Noisy ECG Signals have been created by adding the suitable noise dispersions with the

reference signal. The Savitzky-Golay Filter is tested with WGN is applied. The PSNR rate

among the real and de-noised signals are calculated.

7.4 Filtering Methods 
In this part filtering techniques Savitzky-Golay Filter and Adaptive Noise Cancellation

which is applied for this study will be defined.

7.4.1 Savitzky-Golay Filter 
Savitzky-Golay smoothing filter was essentially introduced by Abraham Savitzky and

Marcel J. E. Golay in 1964, in their paper "Smoothing and Differentation of information

by Simplified Least Squares Procedures". They established themselves frequently

matching Noisy spectrum where simple noise-decrease processes, like running averages,

only were not good sufficient for removing well-defmed properties of spectral peaks.

Particularly any running averaging incline to smooth and widening peaks in a spectrum

and as the peak breadth is an significant coefficient when describing relaxation times in

molecular systems, like this noise-decrease methods are openly non-attractive. The prime

opinion introduced by Savitzky and Golay was a work-around forestall the issues matched

with running averages, while stil protecting the smoothing of information and distribution

protecting properties as relative maxima, minima and width. Savitzky and Golay

suggested informat.ion smoothing technique based on local least-squares polynomial

approximation. They indicated which fitting a polynomial to input set examples and then

appraising resulting polynomial at a single point in approximation interval is equal to

discrete convolution with a constant impulse response. Low pass filters got by this

technique are widely known as Savitzky-Golay filters. Savitzky and Golay were interested

in smoothing noisy information got from chemical spectra analyzers, and they indicated

which least squares smoothing decreases noise while providing form and waveform peaks

height (in their case, Gaussian shaped spectral peaks).This algorithm is a smoothing filter

which actually implements a polynomial decline of a specific degree to a time-series. The

benefit of the Savitzky-Golay filter is which it tends to protect specific properties of the
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time-series like local minima and maxima. The algorithm calculates a local polynomial

decline on the input data by solving the equality:

(7.2)

Savitzky-Golay smoothing and differentiation filter optimally complies information set

points with a polynomial in least-squares sense. Savitzky and Golay have represented in

their original paper which a moving polynomial fit can be numerically committed in

completely the same path as a weighted moving average, since the parameters of the

smoothiiıg method are fixed for all "y" values (Savitzky & Golay, 1964). So,

Savitzky-Golay smoothing is very simple to implement. Additionally, it can be indicated

which the same algorithm can be utilized to compute smoothed first and second

derivatives of the signal. In the classic article written by Savitzky and Golay that has been

cited more than 3800 times accordingly Web of Science (ISI), digital filter type for

smoothing and differentiation was improved. In their method, each sequential subset of

"2m + l" points is fitted by a polynomial of degree "n" (n ~2m) in least-squares sense.

The "s-th" (O~ s ~ n) differentiation (zeroth differentiation= smoothing) of original

information at midpoint is got by implementing differentiation on fitted polynomial

instead of on original information. Eventually, running least-squares polynomial fitting

can be implemented merely and automatically by convolving all input information with a

digital filter of length "2m + l". History and growth of Savitzky-Golay smoothing and

differentiation filter have been reviewed in shortly as;
(7.3)

Matrix Gc2nıJxCn+ıı includes convolution SG filter parameters for various order

differentiation at origin (which is, imaginary midpoint or center of symmetry) specified by

the smoothing and the differentiation expressions;

/,, (t) =z:;:_nı+I h,,,o,ı,nı,iXi
(7.4)

{' (s) ( ) - ""'nı h .x
J n t - L.i=-m+l n.sr.m.i ı

(7.5)

Severally where f,,(t) and j', (s\t) are smoothing value and s-th(l s s s n)differentiation

value appraised at position "t", with polynomial order "n" and information number "2m" ;
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X; is original information value at point "i " before shifting origin(-m + 1 sis m); and

hn,o,ı,ın,i and hn,s,ı,ın.i are appropriate parameters for smoothing and differentiation,

separately.
There are 2 choices for coefficients:

• k - Degree of polynomial.

• f - Frame size.
Coefficients of Savitsky-Golay filter are the frame size and polynomial degree and all

performance is addicted on these coefficients. The study and measurement noise variance

are initialized for Savitzky-Golay Filter as a cubic Savitzky-Golay filter to information

frames oflength 4l(k=3, f=41).

7.4.2 Adaptive Noise Cancellation 
Adaptive Noise Cancellation is an alternate forecasting signals method distorted by

additive noise or interference. Its benefit lies in which, with no possible signal or noise

forecasts, noise levels refusal are attainable which would be hard or unfeasible to attain by

other signal processing extracting noise techniques. Its cost, necessarily, is which it

necessities two inputs a prime input including distorted signal and a reference input

including noise accommodated in some obscure way with prime noise. Reference input is

adaptively :filtered and extracted from prime input to get signal forecast. Adaptive :filtering

before extraction authorizes inputs restorations which are deterministic or stochastic,

stationary or time-variable. Uncorrelated noises effect in prime and reference inputs, and

signal components asset in reference input on Adaptive Noise Canceller performance is

researched. It is indicated which in uncorrelated noises failure and when reference is

independent of signal, noise in prime input can be actually fulfilled without signal

distortion.
Let "N" parameters of fitler at kth repetition be indicated as Wk=[w1(k), w2(k), ... , wn(k)f.

For an input vector Xk=[x(k), x(k-1), ... x(k-n)]T output will be given in next equation;

y(k) = Lf=o w lk)s(k - i) = w {X k

Filter's mission is to adjust its weights "W' iteratively to reduce Mean Square Error

among primary and reference inputs. This regulation is primarily obtained by; Least Mean
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Square properties: simplicity and relatively fewer

:qcesşeıs, it is positive in many implementations like unknown signals

weights. adapting algorithm can be calculated at kth repetition as in

(7.7)

Where µ is step size coefficient that controls convergence ratio. Value of this step size

should be optimized empirically to trade off convergence speed and indecision.

Figure 7.4: Adaptive noise cancellation

As illustrated in figure, an Adaptive Noise Cancellation has two inputs prime and

reference. Prime input receives a signal "s "from signal source which is distorted by

noise asset "n" uncorrelated with signal. Reference input gets a noise "no" uncorrelated

with signal but correlated in some way with noise "n". Noise "no" goes through a filter to

fabricate an output "~n" which is a close prime input noise forecast. This noise forecast is

extracted from distorted signal to fabricate signal forecast at "s'", Adaptive No ise

Canceller system output.
In noise deleting systems a practical target is to fabricate a system output "s" = s +n - n"

which is a best fit in least squares sense to signal "s". This goal is achieved by feeding

system output back to adaptive filter and tuning filter through a Least Mean Squares

adaptive algorithm to reduce total system output power.
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• t: 1-\.oapuvı:; filter length (parameters number or taps) and it must be a positive

number (defaults to . 1 O)
• Sten: LMS step size. It must be a nonnegative numerical. step defaults to O. 1 .h you

can utilize maxstep to specify a plausible step size range values for signals being

processed. "hstep" defaults to O. 1.
• Leakage: Your LMS leakage factor. It must be a numerical between O and l.When

leakage is less than one, "adaptfilt.lıns" applies a leaky Least Mran Squares

algorithm. When you extract leakage feature in calling syntax, it defaults to 1

supplying no leakage in adapting algorithm.

• Coeffs: Primary filter vector parameters. It must be a length 1 vector. "Coeffs"

defaults to length 1 vector with elements equal to zero.

• States: Vector ofprimary filter expresses for adaptive filter. It must be a length 1-1

vector. States defaults to a length 1-1 vector of zeros.

For this study Adaptive filter length is 15 and LMS step size is O.001.

7.5 Results of Experiments (Savitzky&Golay Filter) 
In this section the results obtained :from Savitzky-Golay Filtering will be demonstrated.

The results shown below are given as a graph. Figures shows in order:

• Top Left graph shows created Original Maternal and Fetal ECG signals.

• Top Right graph shows noised, Maternal and Fetal ECG signals

With various values of AWGN Noise.
• Bottom left graph shows De-noised ECG signals with Savitzky-Golay Filter.

• Bottom Right graph shows difference between Original ECG signal with De-

Noised ECG Signal.
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Figure 7.5 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG signal by

Additive White Gaussian Noise with SNR=O dB.

Denoised signal by SAVITZKY GOLAY FILTER
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Figure 7.5: Maternal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=O dB as
a cubic filter to information frames oflength 4l(k=3, :f-=41))

Figure 7.5 (c) and (d) shows Denoised Maternal ECG signal by Savitzky-Golay Filter with

a cubic filter to information frames of length 4l(k=3, :f-=41)) and difference among original

Maternal ECG signal with de-noised ECG signal.
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Figure 7.6 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG signal by

Additive White Gaussian Noise with SNR=lO dB.
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Figure 7.6: Maternal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=lO dB
as a cubic filter to information frames oflength 41(k=3, f-=41))

Figure 7.6 (c) and (d) shows Denoised Maternal ECG signal by Savitzky-Golay Filter with

a cubic filter to information frames of length 41(k=3, f-=41)) and difference among original

Maternal ECG signal with de-noised ECG signal.
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Figure 7.7 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG signal by

Additive White Gaussian Noise with SNR=20 dB.

Denoised signal by SA VITZKY GOLAY FIL TER
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Figure 7.7: Maternal electrocardiogram ECG signal (Savitzky &Golay Filter SNR=20 dB
as a cubic filter to information frames oflength 41(k=3, f=41))

Figure 7.7 (c) and (d) shows Denoised Maternal ECG signal by Savitzky-Golay Filter with

a cubic filter to information frames of length 41 (k=3, f=41)) and difference among original

Maternal ECG signal with de-noised ECG signal.
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Figure 7.8 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG

signal by Additive White Gaussian Noise with SNR=30 dB.
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Figure 7.8: Maternal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=30 dB
as a cubic filter to information frames oflength 4l(k=3, f=41))

Figure 7.8 (c) and (d) shows Denoised Maternal ECG signal by Savitzky-Golay Filter with

a cubic filter to information frames of length 41(k=3, f=41)) and difference among original

Maternal ECG signal with de-noised ECG signal.
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Maternal ECG Signal
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Figure 7.9 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG signal by

Additive White Gaussian Noise with SNR=40 dB.
Denoised signal by SA VITZKY GOLAY FIL TER

> 2
.§..i o 
o> -2

(c)

~L_~~-ı.:-~~-!;-~~~ts~~~~~~
o 0.5

1.5 2 2.5

Time [sec]
Difference Between Original ECG signal with De-Noised ECG Signal

(d)

~o 0.5
1.5 2 2.5

Time [sec]

Figure 7.9: Maternal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=40 dB
as a cubic filter to information frames oflength 41(k=3, :f.=41))

Figure 7.9 (c) and (d) shows Denoised Maternal ECG signal by Savitzky-Golay Filter with

a cubic filter to information frames of length 41(k=3, :f.=41)) and difference among original

Maternal ECG signal with de-noised ECG signal.
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Fetal Heartbeat Signal
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Figure 7.10 (a) and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by

Additive White Gaussian Noise with SNR=O dB.
Denoised signal by SAVITZKY GOLAY FILTER
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Figure 7.10: Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=O dB as a
cubic filter to information frames oflength 41(k=3, f-=41))

Figure 7.10 (c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a

cubic filter to mfonnaıion frames of length 41(k=3, f=41)) and difference among original

Fetal EÇG signal-with de-noised ECG signal.
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Fetal Heartbeat Signal
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Figure 7.11 (a) and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by

Additive White Gaussian No ise with SNR= 1 O dB.
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Figure 7.11: Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=lO dB as a
cubic filter to information frames oflength 41(k=3, F41))

Figure 7.11 (c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a

cubic filter to information frames of length 41(k=3, f=41)) and difference among original

Fetal ECG signal with de-noised ECG signal.
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Fetal Heartbeat Signal
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Figure 7.12(a) and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by

Additive White Gaussian Noise with SNR=20 dB.
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Figure 7.12: Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=20 dB as a
cubic filter to information frames oflength 41 (k=3, f=41))

Figure 7. 12(c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a

cubic filter to information frames of length 41(k=3, f=41)) and difference among original

Fetal ECG signal with de-noised ECG signal.
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Fetal Heartbeat Signal
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Figure 7.13(a) and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by

Additive White Gaussian Noise with SNR=30 dB.

Denoised signal by SAVITZKY GOLAY FILTER
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Figure 7.13: Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=30 dB as a
cubic filter to information frames oflength 41(k=3, f=41))

Figure 7 .13(c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a

cubic filter to information frames of length 41(k=3, f=41)) and difference among original

Fetal ECG signal with de-noised ECG signal.
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Fetal Heartbeat Signal
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and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by

auessıeuı Noise with SNR=40 dB.
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Figure 7.14: Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=40 dB as a
cubic filter to information frames oflength 41(k=3, :f-=41))

Figure 7.14(c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a

cubic filter to information frames of length 41(k=3, f=41)) and difference among original

Fetal ECG signal with de-noised ECG signal.
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below are given as a graph. Figures shows in order:

Left and Right graphs shows created original Maternal and Fetal

Electrocardiogram signals.

• Second line figures indicates; left figure illustrate combined original Maternal and

Fetal Electrocardiogram signals, right figure indicates noised, Maternal and Fetal

ECG signals with various values of AWGN Noise.

• Third line figures shows; left figure illustrate de-noised combined original

Maternal and Fetal ECG signals, right figure shows difference between Original

combined ECG signal with De-Noised MHB and FHB ECG Signal.

Table 7.1: Peak signal noise ratio values of Savitzky-Golay Filter & Adaptive Noise
Cancellation (LMS: Least Mean Square Algorithm)
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Signal Noise Ratio: is a measure utilized in science and engineering which compares the

level of a needed signal to the level of.background noise. It is described as the proportion

of signal power to the noise power, :frequentlydefined in decibels (dB).

Peak Signal Noise Ratio: is an engineering notation for the ratio between the maximum

feasible power of a signal and the power of distorting noise which influences the stability

of its representation. Because many signals have a very broad dynamic range, Peak Signal

Noise Ratio is usually described in terms of the logarithmic decibel measure.

Peak Signal Noise Ratio values of Savitzky-Golay Filter &
Adaptive Noise Cancellation(LMS Algorithm)
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Figure 7.15: Peak signal noise ratio values of Savitzky-Golay Filter & Adaptive
Noise cancellation (LMS Algorithm)
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Figure 7.16 (a) and (b) indicate Original Maternal and Fetal ECG signals.
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Figure 7 .16 (c) and (d) shows respectively original combined MHB and FHB signals and

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=O dB.
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Figure 7.16: Combined fetal - maternal electrocardiogram ECG signal (Savitzky-Golay
Filter SNR=OdB as a cubic filter to information frames oflength 41(k=3, f-=41))

Figure 7.16 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal

by Savitzky-Golay Filter with a cubic filter to information frames oflength 41(k=3, f-=41))

and Difference among Original combined MHB&FHB signal and denoised combined

MHB&FHB signal.

70



Original Maternal Signal

4~.;~I'•~ ····· '. ·· ·i · LL (a)

-4~--------'---------~--------'--------------..,_-------~
O 0.5 1 1.5 2 2.5

Time (s)

(b) 

Figure 7. 17 (a) and (b) indicate Original Maternal and Fetal ECG signals.
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Figure 7. 1 7 (c) and (d) shows respectively original combined MHB and FHB signals and

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=lO dB.
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Figure 7.17: Combined fetal- maternal electrocardiogram ECG signal (Savitzky&Golay
Filter SNR=lO dB as a cubic filter to information frames oflength 41(k=3, :f.=41))

Figure 7. 17 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal

by Savitzky-Golay Filter with a cubic filter to information frames oflength 41(k=3, :f.=41))

and Difference among Original combined MHB&FHB signal and denoised combined

MHB&FHB signal.
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Original Maternal Signal
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Figure 7.18 (a) and (b) indicate Original Maternal and Fetal ECG signals.
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Figure 7.18 (c) and (d) shows respectively original combined MHB and FHB signals and

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=20 dB.
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Figure 7.18: Combined fetal- maternal electrocardiogram ECG signal
(Savitzky&Golay Filter SNR=20 dB as a cubic filter to information frames oflength

41(k=3, f-=41))

Figure 7.18 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal

by Savitzky-Golay Filter with a cubic filter to information frames of length 41(k=3, f-=41))

and Difference among Original combined MHB&FHB signal and denoised combined

MHB&FHB signal.
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Figure 7.19 (a) and (b) indicate Original Maternal and Fetal ECG signals.
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Figure 7 .19 (c) and (d) shows respectively original combined MHB and FHB signals and

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=30 dB.
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Figure 7.19: Combined fetal - maternal electrocardiogram ECG signal (Savitzky&Golay
Filter SNR=30 dB as a cubic filter to information frames oflength 41(k=3, f-=41))

Figure 7.19 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal

by Savitzky-Golay Filter with a cubic filter to information frames of length 41(k=3, f-=41))

and Difference among Original combined MHB&FHB signal and denoised combined

MHB&FHB signal.
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Figure 7.20 (a) and (b) indicate Original Maternal and Fetal ECG signals.
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Figure 7.20 (c) and (d) shows respectively original combined MHB and FHB signals and

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=40 dB.
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Figure 7.20: Combined fetal - maternal electrocardiogram ECG signal
(Savitzky&Golay Filter SNR=40 dB as a cubic filter to information frames oflength

41(k=3, f-=41))

Figure 7.20 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal

by Savitzky-GolayFilterwith .a cubic filter to information frames oflength 41(k=3, f-=41))

and Difference aın9I1g Qrigirıgı.l combined MHB&FHB signal and denoised combined

MHB&FHB signal.
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(t)

7.6 Results of Experiments (Adaptive Noise Canceller) 
In this section the results obtalned-fronr Adaptive Noise Canceller will be demonstrated.
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Figure 7.21 (a) and (b) indicate Original Maternal and Fetal ECG signals.
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Figure 7.21 (c) and (d) shows respectively Measured signal and reference signal, measured

reference signals to forecast noise available in measured primary signal.
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Figure 7.21: Maternal &fetal electrocardiogram ECG signal denoised by adaptive noise
canceller (Adaptive filter length is 15 and LMS step size is 0.001.)

Figure 7.21 (e) and (f) illustrate respectively convergence of Adaptive Noise Canceller and

steady-state error signal for maternal and fetal ECG signals with Adaptive filter length is

15 and LMS step size is 0.001.
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Tab.le 7.2: Beat per minutes (bpm) values obtained from adaptive noise cancellation

7.7 Results of Experiments (Peak Finder) 
In this part how we can define heart beat from Peak Finder will be explained.

Peak Detector Board

Peak Detector board observes maxima, representing x-axis values at that they be created.

Peaks are described as a local maximum where lower values are available on both sides of

a peak. Endpoints are not noted to be peaks. This panel permits you to change settings for

• Peak threshold.

• Maximum peaks number.

• Peak deflection.
The Peak finder panel is divided into two panes, tagged Settings and Peaks. You can

enlarge each pane to see present choices. The Peaks pane monitors all of the largest

computed peak values. It also indicates coordinates, at that peaks take shape, utilizing

coefficients you describe in Settings plate. You set Max Peaks Num parameters to describe

peaks number indicated in list. Numerical quantities observed in quantity column are equal

to "pks" output debate reverted when you actuate find peaks function. Numerical values

characterized in s~cçınc:1. column are similar to "locs" output argument rotated when you

actuate "findpeaks" function. Peak Detector monitors peak quantities in Peaks plate.

Professed, Peak Detector board monitors largest computed peak values in Peaks board in

reducing peak height layout.
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MaternalECGTime Scope
It canbe seen that from peak values list, there is a stationary of 0.675 sec time difference

among each heartbeat. 1 O peak amplitude values, and times at that they take shape, as

indicated in next figure.

Figure 7.22: 10 peak amplitude values for maternal ECG signal

Table 7.3: Heart rate detection for maternal ECG signal (with tagged settings 3.333 s)

Heartbeats(Peaks) Time(seconds)

1 0.250

2 0.925

3 1.600

4 2.275

5 2.950

6 3.625

7 4.300

8 4.975

9 5.650

10 6.325

For this reason, the heart rate specified by Electrocardiogram signal is composed by next

equation.

60 sec/min = 88.89 beats/min (bpm)
0.675sec /beat
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FeJa!FiCJ/1.T'ime Scope

It caııbeseenthat from peak values list, there is a stationary 0.431 sec time difference

among each heartbeat. 1 O peak amplitude values, and times at that they take shape, as

indicated in next figure.

Figure 7.23: 10 peak amplitude values for fetal ECG signal

Table 7.4: Heart rate detection for fetal ECG signal (with tagged settings 231 ,283ms)

Heartbeats(Peaks) Time(seconds)
1 0.160

2 0.591

3 1.022

4 1.453

5 1.885

6 2.316

7 2.747

8 3.178

9 3.610

10 4.04]

For this reason, the heart rate specified by the Electrocardiogram signal is stated by next

equation.

60 sec/min = 139.21 beats/min (bpm)
o.43ısec / beat
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7.8 Summary 

In this section, Savitzky-Golay filtering and Adaptive Noise Canceller (LMS) techniques

of denoising are offered and applied to real Maternal and Fetal (ECG) signals at different

noise levels. Results obtained from Savitzky-Golay Filtering and Adaptive Noise

Canceller (LMS) would be demonstrated.

Comparison indicates that Savitzky-Golay filtering performs preferable denoising than

Adaptive Noise Canceller (LMS).
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CHAPTERS 

CONCLUSION AND SUGGESTIONS 

8.1 Conclusion 
Heart diseases are rising in the world nowadays and it is being the primary reason of death

and the Electrocardiogram is main significant instrument to diagnose the heart issues and

its price is additionally low and readily existent. However Electrocardiogram signal is

corrupted by many kinds of noises that influences the diagnosis and yields improper data.

Numerous kinds of filter were improved to clear the noise available in Electrocardiogram

and smoothing.
Electrocardiogram (ECG) is a major instrument to measure health and disease perception.

Because of a lot of .noise sources, ECG has been cleared from noise in the signal and

offered in the form of an intelligible wave. Power line interference, exterior

electromagnetic fields, haphazard body motions or breathing may be included in Noise

resources. Savitzky-Golay extracts noise and smooths the signal without much loss of data

and signal properties and individuality. Frame size and polynomial degree are Savitzky­

Golay filter coefficients and all achievement is addicted on these coefficients.

Savitzky-Golay aliasing (smoothing) filters are characteristically utilized to "smooth out" a

noisy signal whose frequency span (without noise) is wide. In this kind of implementation,

Savitzky-Golay aliasing (smoothing) filters implement much preferable than canonical

mean Finite Impulse Response filters that view to filtering an important section high signal

frequency content throughout with noise. Even though Savitzky-Golay filters are more

efficient at protecting concerned high frequency constituents of the signal.

Adaptive noise cancelling, an alternate technique of guessing signals distorted according to

additive noise or attempt. The process utilizes "prime" input having damaged signal and a

"representative" input with some correlations including noise obscure method with prime

noise.
Representative input in order to get signal forecast is adaptively filtered and removed from

fundamental input. Adaptive fılteration prior to authorize the treatment therapy of entries

which are stochastic or deterministic, time-invariant or constant.
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In this Thesis, two extensive and significant denoising techniques are offered and applied

on actual Electrocardiogram signals corrupted with distinct amount of noise. Adaptive

Noise Canceller (LMS) and Savitzky-Golay filtering are these algorithms. MATLAB

Software is utilized in order to implementation, comparison and analysis of their noise

removal performances.
In this study, Adaptive Noise Canceller (LMS) and Savitzky-Golay filtering techniques of

noise removal are offered and applied to real Maternal and Fetal (ECG) signals at different

noise levels. The comparison indicates which the Savitzky-Golay filtering performs

preferable noise removal than Adaptive Noise Canceller (LMS).

Our suggested study including the Savitzky-Golay Filter and Adaptive Noise Canceller

have verified its achievment in denosing the Maternal and Fetal Electrocardiogram Signal

with simulated information sets. In this Thesis the various kinds of errors in Maternal and

Fetal Electrocardiogra111:Signal and a solution that can be applied in Electrocardiograph

tools were analyzed with white Gaussian noise and outcomes which dedicated above were

acquired. In the whole system, the primary goal will be getting clear, preferable standard

output signals for well discussions.

8.2 Suggestions 
Future work will contain common and important noise reduction method discrete wavelet

transform (universal and local thresholding), its noise reduction performance will be

implemented, compared and analyzed for research of Continuous Glucose

Monitoring(CGM) systems. These systems is plenty requisite for avoiding of Diabetic

complications and can be very beneficial in diabetes management. For develop system

class, discrete wavelet transform will be used for this purpose for improving influence of

system.
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APPENDIX 1 

MATLAB CODES FOR FILTERING ECG SIGNAL 

% Creating ECG Signal
% xl = 3.5*ecg(2700).';
% y2 = sgolayfılt(kron(ones(l,13),xl),0,21);
% n = 1:30000;
% del= round(2700*rand(l));
% mhb = y2(n + del);
% t = 0.00025:0.00025:7.5;
% subplot(2,l,l)
% plot(t,mhb)
% axis([O2.5 -4 4]);
% grid;
% xlabel('Time [sec]');
% ylabel('Voltage [mV]');
% title('Matemal ECG Signal');

x2 = 0.25*ecg(l 725);
y2 = sgolayfılt(kron(ones(l,20),x2),0,17);
n = 1:30000;
del= round(l 725*rand(l));
flıb = y2(n + del);
t = 0.00025:0.00025:7.5;
subplot(2, 1, 1)
plot(t,flıb);
axis([O 2.5 -11]);
grid;
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Fetal Heartbeat Signal');

% %Adding AWGN Noise
t = 0.00025:0.00025:7.5;
y = awgn(flıb,40,'measured'); % Add white Gaussian noise.
subplot(2, 1 ,2)
plot(t,y) % Plot both signals.
axis([O2.5 -11]);
grid;
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Noised ECG Signal with AWGN');

figure
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% % De-Noising with Savitzky-Golay Filter

k=3;
f=41;
z=sgolayfılt(y,k,f);
subplot(2, 1, 1)
plot(t,z)
axis([O 2.5 -1 1]);
grid
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Denoised signal by SAVITZKY GOLAY FILTER');

% % Difference Between Original ECG signal with De-Noised ECG Signal

error= y- z;
error= double(y) - double(z);
subplot(2, 1 ,2)
plot(t,error)
axis([O 2.5 -1 1]);
grid
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Difference Between Original ECG signal with De-Noised ECG Signal');
decibels = 20*(logl 0(255./(sqrt((l/256A2)*(sum(sum( error/'2)))))));
disp(sprintf('PSNR = +%5.4f dB',decibels))

% x = 3.5*ecg(2700);
% x2 = 0.25*ecg(l 725);
% y = repmat(sgolayfılt(x2,0, 17),[l 20]);
% sigData = y(l :30000)';
%
% TS_ECG = dsp.TimeScope('SampleRate', 4000, ...
% 'TiıneSpanSource', 'Auto', 'ShowGrid', true);
% step(TS_ECG, sigData);
% TS_ECG.YLimits = [-4, 4];
% rdease(TS_ECG);
%
%
% mhb=[0.250,0.925,l.600,2.275,2.950,3.625,4.300,4.975,5.650,6.325];
% fhb=[O.160,0.591, 1.022,1.453, 1.885,2.316,2.747,3. 178,3.610,4.041];

%
% 1\,1aty11.1.ı:ı.lllt;,artRate=60/[mhb(2)-mhb(1)]
% F'etı:ı.lflt;,ıll'tRate=60/[fhb(2)-fhb(l)]
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APPENDIX2 

MATLAB CODES FOR FILTERING COMBINED ECG SIGNAL 

%Create Initial Signals

xl = 3.5*ecg(2700).';
y2 = sgolayfılt(kron(ones(l,13),xl),0,21);
k = 1:30000;
dell = round(2700*rand(l));
ınhb = y2(k + dell);
t = 0.00025:0.00025:7.5
subplot(2, 1, 1 ),plot(t,ınhb)
xlabel('Time (s)')
ylabel('Aınplitude (V)')
title('Original Maternal Signal')
axis([O 2.5 -4 4]);
grid

x2 = 0.25*ecg(l 725);
y3 = sgolayfılt(kron(ones(l,20),x2),0,l 7);
n= 1:30000;
del2 = round(l725*rand(l));
fhb = y3(n + del2);
t = 0.00025:0.00025:7.5;
subplot(2, 1 ,2),plot(t,fhb)
xlabel('Time (s)')
ylabel('Aınplitude (V)')
title('Original Fetal Signal')
axis([O 2.5 -1 1 ]);
grid

figure

combined=ınhb+fhb
subplot(2, 1, 1)
plot(t,combined)
xlabel('Time (s)')
ylabel('Aınplitude (V)')
title('Origiııal Combined MHB with FHB')
axis([O2.5-4 4]);
grid

% % %Create Initial Signals
Nl = a.wgn(mhb,40,'measured'); % Add white Gaussian noise.
N2 = awgn(fhh,40,'measured'); % Add white Gaussian noise.
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% %Combined Matemal+Fetal ECG Signals
noisy=Nl +N2
subplot(2, 1,2)
plot(t,noisy)
xlabel('Time (s)')
ylabel('Aınplitude (V)')
title('Noisy Combined MHB with FHB Signal')
axis([O 2.5 -4 4]);
grid

figure

k=3;
f=41;
z=sgolayfılt(noisy,k,f);
subplot(2, 1, 1)
plot(t,z)
axis([O 2.5 -4 4]);
grid
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Denoised Noisy Combined MHB with FHB Signal by SAVITZKY GOLAY

FILTER');

% Difference Between Original ECG signal with De-Noised ECG Signal

error= noısy - z;
error= dotible(noisy) - double(z);
subplot(2, 1 ,2)
plot(t,error)
axis([O 2.5 -4 4]);
grid
xlabel('Tiwe Isec]');
ylabel('\Tolta.g~[wVl');
titly('l)iff.13~t"\Yeyp..Oı:ig.Comb.MHB&FHB-DenoisedNoisy Comb.MHB&FHB Signal');
decibels = 20,(<(logl0(255 ./(sqrt((l/256/\2)*( sum(sum(error./\2)))))));
disp(şprµıtf('PSNR = +%5.4f dB',decibels))
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APPENDIX3 

MATLAB CODES FOR ECG SIGNAL 

ADAPTIVE NOISE CANCELLER 

Fs = 4000;
Time= 40;
NumSamp = Time * Fs;
Hd = dfılt.dffır(fhb);

xl = 3.5*ecg(2700).';
yl = sgolayfılt(laon(ones(l,ceil(NumSamp/2700)+ l),xl),0,21);
n = 1 :Time*Fs';
del= round(2700*rand(l));
mhb = yl(n + del)';
t = 1/Fs:1/Fs:Time';
subplot(2, 1, 1 ); plot(t,ınhb );
axis([O2 -4 4]);
grid;
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Maternal Heartbeat Signal');

x2 = 0.25*ecg(l 725);
y2 = sgolayfılt(kron(ones(l,ceil(NumSamp/1725)+ l),x2),0,17);
del= round(l 725*rand(l));
fhb = y2(n +del)';
subplot(2, 1,2); plot( t,fhb, 'm');
axis([O2 -0.5 0.5]);
grid;
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Fetal Heartbeat Signal');

figure

Wopt = [O 1.0 -0.5 -0.8 1.0 -0.1 0.2 -0.3 0.6 0.1];
Wopt = rand(r,10);
d = fılter(Wopt,1,ınhb) + fhb + 0.02*randn(size(ınhb));
su1Jplot(2,t,l);.plot(t,d, 'r');
axis([O 2 -4. 4]);
axis tight;
grid;
xlabel('Tirne[ sec]');
ylab.el('Voltı:ışe[mV] ');
title('M~~~"lll:"e.d Signal');
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x = mhb + 0.02*randn(size(mhb));
subplot(2, 1,2); plot(t,x);
axis([O 2 -4 4));
grid;
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Reference Signal');
%
h = adaptfılt.lms(l5, 0.001);
[y,e] = fılter(h,x,d);
%
% [y,e] = FECG_detector(x,d);

figure

sµbplot(2, 1, 1); plot(t,d,'c',t,e,'r');
1 axis([O 7 .O -4 4));
grid;
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Convergence of Adaptive Noise Canceller');
legend('Measured Signal','Error Signal');
%
subplot(2,l,2); plot(t,e,'r'); hold on; plot(t,thb,'b');
axis([Time-4 Time -0.5 0.5));
grid on;
xlabel('Time [sec]');
ylabel('Voltage [mV]');
title('Steady-State Error Signal');
legend('Calc Fetus','Ref Fetus ECG');

% fılt_e = fılter(Hd,e);
% thresh= 4*mean(abs(fılt_e))*ones(size(fılt_e));
% peak_e = (fılt_e >= thresh);
% edge_e = (diff([O;peak_e)) >O);
% fetus_calc = round( (60/length( edge_e(16001:end))*Fs)* sum(edge_e(16001:end)));
% fetus_bpm = [Fetus Heart Rate =' mat2str( fetus_calc)];
%fprintf(fetus_bpm,'%6.2f,fetus_bpm);
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