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ABSTRACT

This researcltoncentratesn some elementary methods to solving lingist orderdelay
differential equation§DDES) with a single constant delay and constant coefficismthas
characteristic method and the method of st&ps$ comparing the methods solution with
some codes from Matlab solver such as DDE23 and DDESD. The study discussed the
compare solution bynerging algebraic solution arapproximatesolutionin one graph for

each problem. We used Matlab program in this thesis because isoveeyfyd langiage
program to deal with complex problem in mathematics and obtain the solution faster than
many languagerograms and to obviate miscalculatiée interested in this thesis to find
solution for this kind of linear delay equationd w6 6 ®6 0 | , with single

constant delay ancbnstant coeiientswand .

Keywords Delay differentialequation Linear delay differential equatigrConstant delay
Characteristic methgdMethod of steps Matlab codes DDE23 solver
DDESD solvertime delay Functional differential equation; Boundary value
problem



OZET

Bu tezde, birinci derece Gecikmeli linear diferensiyel denklemlerin, karakteristik method

ve adéem metodu gi bi bazée -°z¢;m metodl ar é& ¢ z
kodlarée ile metodlarén karkelakmada) mhsgée bt
i -1n cebirsel v e sayeésal -%z¢mloer bir gr
Mat emati kte karmakék problemlerle baka -e€ék
sahip olduju ve Dbir - ok eplrdoeg reatntai jgi° rvee dyaahnal
°nlediji i-in Matlab proovgbamei kusap@leadmeat @
60 w60 w606 fdenklemini i-erecek kekilde geni

AnahtarKelimeler. Gecikmeli diferensiyel denklemlerLineer gecikmeli diferensiyel
denkl!| ml er ; Sabir geci kme; Kar akt e
Matl ab kodl ar é; DDE23 -°9z¢cCyé¢; DDE €

Kesirli di ferensiyel denkl emler; S
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CHAPTER 1
INTRODUCTION

One of the mathematic students' comneuestionsi s ' why donot we st
Differential Equation (ODEs) or Partial Differential Equation (PDESs) instead of studying

Delay Differential Equation? Since we have more information about them and they are
much easier to handle. The simple answer is Isscad the crucial impact of the time

delay on everything related to human life encompassing variety of domains and
applications such abiology, economics, microbiology, ecology, distributed networks,
mechanics, nucleaeactors physiologyengineering syems, epidemiologg nd heat p oy
(Gopalsamy, 1992)Ve have many examples of time delay in our life. A vexample of

a time delayis when forests are destroyed by human through cutting trees, this action will

be done in a short span of tinee when theforestsare destroyedecause of natural
catastrophes such as fires and hurricanes and floods, and in a shothdirferests

deceases. Forest destruction takes short time, but it might take at least 25 years of
cultivation and planting to give life badk the forest. Delay time will be included in any
mathematical model tcenew andcharvest the foresfTime delay isa vital componentof

any dynamic process life sciences

There are differenspeciesof delay differential equatiorsuch adineardelaydifferential
equations (LDDESs), anlinear delay di#rential equations (NebDDESs), reutral delay
differential equations (NDDEsHochastic delayl i f f er ent i al equMet i ons
will concentratein this thesis on ongéype namely linear firstorder delay differential
equation witha single delay and constant coefficients®6 ©0060 060 @06 O

I Nforf mho mand6 6 1 oNO T1uIn this thesis, we discussed an algebraic
solution of linear first aiter delay differential equatioVe give a detailed description of

two methods, characteristic method and the method of steps, we shown how to solve the
delay equation by th two methods step by stéphe reader must have a good background

in the differential equation to understand gtieing in this studybecause we used some

techniques course of Ordinadifferential equations (ODES).



The method of characteristic to solve the linear firs order differential equation,

wod T ht mhé emfiQhd 6 —o0hé & T fm®Whenthevalue ofdd mhdepends

on some important notes such as the history funcbiolm has the formo o

OQ .Therefore this form of solution have four cases of solutions when each case have

different real roots, for example case one wéen — mhhas not any rootcase two
whenw  -hhas one real roots-, case three when— & Tthas two nofpositive

real rootd andi , and case four whad 11, has exactly one real roots, Tt As well

as we need some numerical methods in ste@ppifoximate solution form like Newton's
Method (Falbo, 1995)so if we partition the intervak! hrt to some interval for solving

the given'Q "Monsingular system of constant coefficief, . Then the approximate
solution for the linear first orderethy differential equation by using the method of
characteristic has the formb o 0Q ! 0Q 00Q 0Q

B Q ©O AitG6 'O OET6 .The general idea of the method of steps is
converting the linear first ordelifferential equation (DDE) on a given interval to ordinary
differential equation (ODE) over that intervd,El 6 sgol 6t s and Nor kin
processmake given (DDEs) as (ODEs) and we can solve it by stedeniques from
(ODE).So this thesisheds lght onalgebraic solution of (LDDES) and comparing with
numerical solution by using Matlab solver such as DDE23 solver and DDESD solver by
merging algebraic solution argbproximatesolution in one graph, the meaning and the
definition of the two methods and the algorithm program of Matlab solver will be

presented later.

1.1 Aimsof the Study

The aim of this study focuses on how to find algebraic solutions of linear first order
differential equations and comparing witdpproximate solutions, by using some
elementary method for solving delay equations such as MOC and the method of steps, as
well as in this research we uses the most powerful language mathematics program namely
Matlab for given approximatesolution by using some special codes suclbB&23 and
DDESD. SinceMatlab has great power tdeal with very complex problems various

mathematics fields to give best answer for any problem.



1.2 ThesisOutline

This thesis is dividd into fivechaptersthe first chapter focuses on introduction and the
aim of study

Chapter two contains a background and literature revieWiterature review we showed a
short history of delay differential equation, and we introduced some important
terminologies, concepts and definitions. And we gave some problems containing time
delay such as control theorWe explained each kind of delay differential equations
(DDEs) andits area applications in our daily lifehe algorithm of language Matlab
program have been presented with illustrative examples in Chapter two.

Chapter three consists of methods anethodologyfor solving linearfirst order delay
differential equationsfDES) with single delay and constant coefficiewe discussed two
methods for solvinglelay equations andhethodologyfor thetwo methodsis also given

with step by stepMoreover, we explain the algorithm codesMatlab programsuch as
DDE23solverandDDESD solver.

Chapter four discusses algebraautions of linear first order delay differential equation

by using MOC and the method of stepad also comparing algebraic solutions with
approximate solutions by using Matlab program, the special codes in Matlab groty

find numerical solutions have &e used such as DDE23 and DDESD

In Chapter 5, the conclusion of this work is presented; it summarizes and analyses the

entire work conducted in this thesis.



CHAPTER 2
LITERATURE REVIEW

When someone tries to find the solutions of differential equations, it is certain that he will
try to know which kind of differential equations in his hand. Usually we know more things

in ordinary differential equations (ODEs) and partial differential agona (PDEs).But if

we have a special class of differential equations, such as delay differential equations
(DDEsSs). Likewise for reading this topic, the delay differential equations, if you do not have
background knowledge of the differential equations,witl be difficult for you to
understand all aspects of the DDEs and consequently this thesis. Thus the main aim of this
chapter is to give the reader an easy to comprehend background and history of delay
DDEs, from where it began? How did it start frone tbheginning? By whom it was
developed? I n which field it has been used
some concepts and definitions of DDEs, classify DDEs and which methods we will use to
solve the DDEs.

2.1 History of Delay Differential Equations

Researchers had been preoccupied with Differential Integral Equations, Functional
Differential Equations (FDEs) and Difference Differential Equations (DDESs) for at least
two centuries. The progress of human learning and reliance on automatid sgsiteon

after the World War | gave birth to different type of equation named Delay Differential
Equation (DDESs). The last 60 years, researchers have been concerned about the theory of
DDEs and FDEs. This theory has becoménaispensabl@art in any ressrchers’ glossary

who deal with particular applications(implementations) such as biology, microbiology,
heat flow, engineering mechanics, nuclear reaction, physiology... etc. (Kolmanovski and
Mshkis, 1999). Laplace and Condorcet are the pioneers ofttiuiyg; st appeared in the

18" century (Fuksa et al1989). The stability's main theory of basic DDEs was developed
(elaborated) by Pontryagim 1942, however, after the World War IlI, there was rapid
growth of the theory and its applications (after the World War 11, the theory grow rapidly)
Bellman and Cooke are credited with writing significant works about DDEs in 1963
(Bellman and Cooke,963).



The DDEs studies witnessed massive movement(growth) in 1950 regarding DDEs studies
resulting in publishing many important works such as Myshkis in 1951, Krasovskii in
1959, Bellman and Cooke in 1963, Halanay in 1966, Norkin in 1971, Hale in 1977,
Yanushevski in 1978, Marshal in 1979, these researches and publications lasted until this
day in a variety of domains

2.2 Delay Differential Equations

The more general kind of DEs is called a functional differential equations (FDESs), as well

as the delay ifferential equations is a simplest maybe most natural class of functional
differential equations (Driver, 1977). If we look at various fields and its applications we

will see the time delay are normal ingredients of the dynamic process of various life
sciences such as biology, economics, microbiology, ecolalgtributed networks,
mechani cs, nucl ear reactors, physiology, er
(Gopalsamy, 1992) andto ignore them is to ignore reality(Kuang, 1993). Delay

differentialequations (DDES) is of the form
60 MQavom o T dvo MO odo B (2.1)

Foro m®éfQ mhthe delays] AQ phch8 are commensurable physical quantities
and may b constant. In DDESs the derivative at any time relies on the solution at previous
times (and in the situation of neutral equations on the derivative at previous times), more
generally that i 1 oM 0 . Example of familiar delay problem such as Rémo
Control, images are sent to Earth and a signal is sent back. For the Moon, the time delay in
the control loop is A0 s and for the Mars, it is 40 minutes! (Erneux, 2(Agt) many years
Ordinary differential equations were an essential tool of methematical models.
However, the delay has been ignored in ordinary differential equation models. DDEs
model is better than ODE model because DDE model used to approximate-a high
dimensional model without delay by a lower dimensional model with delagndigsis of

which is more easily carried out. This approach has been used extensively in the process

control industry (Kolmanoviskii and Myshkis, 1999)



Figure 2.1 when the Robot sent images to Earth

DDE model depends athe initial function to deternme a unique solution, because 0
depends on the solution at prior times. Theis ihecessaryo supply an initial auxiliary
function sometimes called thé h i  tfunctioy, before t=0, the auxiliary function in
many models is constantg A1D.

é -
. A /
Initial =~ ,
function 00 --T T~ -7
-
A~ - [ r
- \\ ”’ I
_ =" S - I
-~ 1 |
! | |
| | |
1 | _ \
< - > 0
f T o | 0

Figure 2.2: The initial function defined over the intervalf hrt is mapped into a solution
curve on the intervattd | . Initial fungtion segment 1, h, ¥ T hrt has to be
specified and 0, functionsegmerd , h, ¥ T hmt

There areno manydifferencesbetween properties of Delay differential equation and
ordinary differential equation, sometimes analytical method of ODEs have been used in
DDEs when it is possible to applyhe order of the DDESs is the highest derivative include

in the equation (Driver, 1977), ifable 2.1 we have shown some examples about the order
of dehy differential equation (DDE).



Table 2.1: The order of DDE and ODE

Order of Order of
ODE ODE DDE DDE
. L, Second order . o s 5 T First order
0w Lo n linear 00 00 | 00 Linear
Qo Qo . . Forth order 6 0 00T p 60 Third order
—— U—=— 00 GCLO
oV Q Nonlinear Nonlinear
) cCo oD 6 i Q& Eighth order W o0 @ o T o) =]} Second
. order
Linear
Linear

We have shown the substantial difference between DDEs and ODE&bI&2.2

Table 2.2: Substantial difference between DDEs and ODESs

Delay Differential Equations Ordinary Differential Equations
Supposed to take into account the histdrthe past Supposed to take into account the principle
due tothe influence of the changes the systens | causalitydueto the influence of the changes the
not instantaneous system is instantaneous (Hale, 1993)

Depends on initial function to define a unique Depends on initial value to define a unique solut
soluion
Give a system that is infinite dimensional Give a system that is finite dimension&l

Analytical theory is well less developed Analytical theory is well developegd.umb, 2004)

2.3 Classification of (FDESs) and (RFDES)

In this section we introduce some nomenclature and definitions about DDEs that will be
required from the reader in order to understand this topic ageile said before the DDEs

is class of FDEs, therefore we will ttg explain the power relation between DDEs and
FDEs. Suppose] wé & O cEH, and letd © be an rdimensional variable
portraying the conduct of a operation in the time pedod 6 | b . FDE is
formulated as follows, ley,(t) and y,(t) be timedependent sets of real number,

| OF oM . Suppose thab is continuous function ind fd , andd 6 foron 6 is

the righthand derivatives ob. For eachv ot , 6 is defined by 6 i 060 1,

wherer | y,(t) andanalogousho is defined byo i 6 0 i whereri y,(t). We

say thato satisfies an FDE ino to if | 68 0 the following equation holds.



L r

60 Qv o (2.2)

0 O is given for the whole time interval necessary, the equation (2.2) have three kind of
differential equations (DES)
)] If y,t)E (- f0] andy,(t)= Fforti [t,t], we say that FDE is retarded
functional differential equationRFDE), therefor the rightiand side of (2.2)

does not depend on the derivativedof
66 Qv o (2.3)

In other words, the rate of change of the state of an RFDE is determined by the
inputs 0, as well as the present and past states of the systelRFBE is
sometimes also designated as a hereditary differential equation or, in control
theory as a timelelay system.

i) If y, E(- 0] andy,(t)E (- 0] for, ti [t,t,], we say that FDE is a neutral
functionaldifferential equationN\DFE), that is mean the rate of change of the
state depends dts own past values as well.

iii) An FDE is called an advanced functional differential equati@RDE) if
y,®)E[0, 0) andy,(t)= Aforti [t,t,]. An equation of the advanced type

may represent a system in which the rate of change of a quantity depends on its

present and future values of the quantity and of the input sigoal

Note: And retarded functional differenti@quation RFDE) classify to anothekind of
differential equations.
1) Retarded difference equation or sometimes called functional differential equation
with discrete delay.
2) Functional differential equation contains distributed delays.
3) If delays areconstant are called fixed point delays, systems which have only
multiple constant time delay can be classified as, if the delays related by integer

will be called linear commensurate time delay system

8



If the delays are not related by integer will be chlieear noncommensurate time delay
system, m Figure 2.3 the diagram below functional differential equation and their branches
are classified.

Functional differential
equations (FDE)

RFDE NFDE AFDE
60 601 601 0O 60 601 060 Vo ||6o 66T 060 60 f
DEs discrete delays DEs with distributed delaysg
60 Q6o T o 60 noi ff Qi

DEswith fixed point delays

60 0606 p

DEswith noncommensurate delay DEswith commensurate delay

60 00 00 p 00 60 0 wo 060 ™

Figure 2.3: Classification oFDEsandRFDESs (Schoen 1999



2 4 Classification of Delay Differential Equations (DDES)

Delay differential equationsan be classified as (Lumb, 20064):
Linear delay differential equations (LDDES).
Nonlinear delay differential equations (NaDDES).
Stochastic delay differential equations (SDDES)
Neutral delay differential equations (NDDES).

Autonomous delay differenti@quations (never changing under the chang t).

= =/ =4 4 - -2

Non-autonomous delay differential equations.
2.5 Types ofDelay Differential Equation and its Applications

The fact that the ordinary differential equation models are replaced by the delay
differential equation models led to the rapid growth of delay differential equation models
in a variety of fields and each field has its scope of applications. The first mathematical
modeler is Hutchinson; he introduced delay in biological model (Driver, 197af)o\s
classes of delay differential equation haxgiousrange of application (Lumb, 2004). For
instance, retarded differential equation (RDDE) is appliechdiation damping (Chicone

et al, 2001), modeling tumor growth (Buric and Todorovic, 2002), the equin area of
distributed delay differential equation is in model of HIV infection (Nelsonand Perelson,
2002), Biomodeling, neutral delay differential equations (NDDE) application area is
distributed network (Kolmanoviskii and Myshkis, 1999), Fixed défaial equation is
applied in Cancer chemotherapy (Kolmanoviskii, 1999) and infextthsease modeling
(Harer et al. 2010), and another model, Single fixed delay application is in Immunology
((Luzyanina et a). 200) and Nicholson blowflies modeKflmanoviskii and Myshkis,
1999.

10



2.6 Linear Delay Differential Equations (LDDES)

We consider thdinear first order delay differential equations, with single constiatay

and constant coefficients
60 ®O0O6O0 wWo60 T NQEid m (2.4)
6n [ nanN 1t An m
Where| 1) is the initial history functiorand & 6 and w0 are anyconstant functions
withf 1.1 his constant functiorin general the solutiond 6 of equation (2.4) has a
jump discontinuity ind 0 at the initialpoint. Theleft and right derivatives are not equal.
IEbo nm 1 EdO
o o
For example, the simple delay differential equatiod 6 6 p O Tt with history
functiond 6 phd T, it is easy toverify that 0O Tt p O 1. Another
example:0 0 66 pM mwith history functiond 6 pld T, it is easy to
verify that 6 1 p OT T.The second derivativé 0 is given byo O
0 0 p and therefor ithas a jump a p T, the third derivatived 0 is given by
00 00 p 6 6 ¢ hand hence ithas jump atd ¢ ¢ , in general, the

jump ind 0 ato TIpropagates to a jump & O at timeo ¢&. The propagation of

discontinuiies is a feature of DDEs that does not occur in ODkEs d éet c.

propagates becomes subsequence discontinuity points (Bellen and Zenbdyo, 20

Figure 2.4: The propagation of discontinuities
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2.7 Uniqueness and Existence of DDEs

Delay differential equation (DDE) as Ordinary differential equation (ODE), have the
theorem of uniqueness and existence. The Boundary Value Problem (BVP)

66 oo I hf mh & (2.5)

Wheredand' are any real numbers, with mandQ m— 6 1 ht. As we stated
before that, the delay differential equations is a special class of functional differential
equations (Falbo, 1995), the interval 1 bt is called the (prénterval) and the functioa-

is called (prefunction).

2.7.1 ExistenceTheorem

66 wod I hf mnk &émMQiQ = (2.6)

60 m €& Thr

Has unique solutiod 6 k tton the interval 1 frt.

Note: IfQ 1 this implies that k Ttis the solution on the intervaifi , then ifQ ¢

we transfer the DE to the interviahc , then we haveew intervalrfi , on whichd 18
This implies that we can solve the problem only oitf . Iff Q ¢ , then the
solution expanded o). So that if we continue this way, the solution moved along

cover TiQ , for any positive real numbé&2

Proof: weobservethat the DE itself is lineafirst order delay differential equation with
single constantlelay and constant coefficienand weobservethat by plugging the
function6 k Ttis the solution on the intervaiti . Now if 0 0 andd o are any two
soution, thenb 6 ®ULO T andd6 6 ®o0 T . As well, if we define a function
46 000 0L O for ant two constantd hv , thendd @@ | . This mean
that & 0 is also a solution to the DE. As we know the function k Ttis onesolution,
now by contradition, there existanother functionh 0 not identically zero that satisfies
the equation (2.6). Thus 0 satisfies the DE on the intervaifi , and the function 0

(zero) on the interval 1 ht.

12



But if we take on a nonzero va at least onceomewheren semiopen interval T
This implies we are supposing that mifor somel N 1ii .Let"Obe the set of reals
such thatt ¥ "Oif and only if eithert f ort f and0 o Tmforallon | ht.

] | |
T r p d

A
v

l [
—B 0
H={t:t < tand v(t) = 0}

Figure 25: The set, H

The setOexist since it contains all of the points in the intervdl bt 8"0is bounded
above, since is one of its upper boundsSuppose’ be the Least Upper Bound (LUB)
of O Note thath & T, otherwise there exist a positive numhesuch tlatd 6  1on

“z ~~

O o o, makingh @an upper bound 66 less than the least upper bound of
"OWe assume that)” 0o -, thenm a numbed betweerd” andd™” such that) o

1. If there is not any , thenb 0 T, ! Obetweeny andd™, makingd not UB ofQ
Sincel is continuous them an interval (ii  containingd as an interior point and such
that for allon i ,0 0 Tt Let- be the minimum of andd™”. Therefore) 6 710N
the interval (v h & .Now, let0 be the number set such thiat U if and only if
eithert -ort - and0 o Tfor all o8 th . We can note thab exists since
ONU. Sinceb & T, U is bounded below becauseis one of its lower bounds,
assumewbe the Greatest Lower Bound (GLB) wf SinceU is continuous atvthen,

0 @ T otherwisewould be nonzero throughout the open intenal ho ¢S |
makingcnot a lower bound af. Denoted by ofiQ, since for alb~y 0,60 o° &

—, thend Tt N "Oandb O f 1, so fromthe DD O @UO T "Q Hencel O k
mton ofiQ. This mean that 6 a constantpon ofiQ. Butd ¢ 11 so by continuity

of U ata the constant must be zero.
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Therefored 6 k Tton G¢HQ contradiction the assumption thato Ttat some point in
OhQ.

2.7.2 UniguenessT heorem

If 0 0 ando O is a solution to the Boundary Value Problem (BVP) (2.5), then k
60on 1.

Proof: Leta 0 0 0 0 0,then

Qo O 00
®Lo T ®O0 T
Woo I on Q8
As wel,b on Tht, 06 66 —0;sodo6 T Therefored 0 is the trivial
solution satisfying equation (2.6), thérd k 6 6 on | HQ.
2.8 Software Packages forSolving DDEs

Matlabis one of the best software programs to solve different class in mathematics, such
as, optimizati on, graph theory, l inear al g
Zennaro, 2003), they used a package continiouss model simulation (CTMS) for

solving delay differential equations. Today many codes for the numerical integration of
delay differential equations are availbthese involve, DDE23, DDE®De t c . we wi l
show that how to use ¢hMatlab solver DDE23 and DDE&D to solvelinear first order

delay differential equations (DDESs) with constant delays to obtain the graph of DDEs.
2.8.1 Matlab illustrate one

Computing and plotting the solution of DDEs) 1w , by using solver DDE23.

60 60 pg uld T
600 po ™
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du/dt=-u(t-1.25)

0.8 —---N----oo-

solution u

Figure 2.6: Solution of DDEs

Table 2.3: Value ofé and t inFigure26 from Matlab illustrate one

Value of Columns 1 through 7 Value of Columns 8 through 10
O & « O & «
6 p8imrmot T . -
6 T8 T TF@ ) 0O TT (beu oo
(o) 6 ™ p Mp P (0) 6 Mtchy 1
0 ) ™ X dw pg 0 . -
0 @ p o &
0 ™® L dp o8
Algorithm of DDEs inMatlab illustrate one
function VDde23 sol =
% solving DDEs dde23(@ddex1de,lags,@ddex1hist,[O,
clear; 5]);
clc; plot(sol.x,sol.y);
function dydt = ddexlde(t,y,2) titte(  ‘'dy/dt=  -y(t -1.25) );
ylagl = Z(:,1); xlabel( 'timet' );
dydt = ylag1(1); ylabel(  'solution y' );
end legend( 'y" , 'Location’ , 'NorthWest' )
function S = ddex1hist(t) ;
S=1; tint = linspace(0,5,10);
End lags=1 .25; Sint = deval(sol,tint) hold on
plot(tint,Sint, ‘0 )

15




2.8.2 Matlab illustrate two

Computing and plotting the solution of DDEs) mdw hby using solver DDE23.

0 0
0 0
pho

o o- O

o

o pho

C
¢ 0 0O

™

b

dut/dt=u(t-2).du2/dt=u(t-2)+u(t-0.5)

solution

Figure 2.7: Solution of DDEs

Table 2.4: Value of6 b hand t inFigure27 from Matlab illustrate two

Value Columns Columns Value of Columns Columns
of 12 7 18 7 0 & < 8* 10 8* 10
O & « <0 (t,0 ) <0 <0
Tgep%nnn Ti&&&nnn o X ¢ W| osdo @ Yy q
P& L L@ PTG - -
(0) PRI ppp| P& OB WO | (o TaE T ex | TE @ oo
P @ @ X PXIE wo ¢ utp @ @ X uhx e wp
CBDE T ow| & puBLY
Tt Y g Rp BT w
o8& ¢ G| o8 pc @G
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Algorithm of DDEs inMatlab illustrate two

function VDde23
% solving DDEs
clear;
clc;
function dydt = ddex1de(t,y,2)
ylagl = Z(:,1);
ylag2 = Z(:,2);
dydt = [ylag1(1);ylagl(1)+ylag2(2)];
end
function S = ddex1hist(t)
S =ones(2,1); end lags =1[2,0.5];

sol =
dde23(@ddex1de,lags,@ddex1hist,[

0,5]);  plot(sol.x,sol.y);

tile( ‘'dyl/dt=y(t - 2),dy2/dt=y(t
2+y(t -05) );

xlabel( ‘time t' );

ylabel( 'solution y' );

legend( 'y_1' ,'y_2" , ‘Location’
orthWest' ),

tint = linspace(0,5,10);

Sint = deval(sol,tint) on end

,'N

2.8.3 Matlab illustrate three

Computing and plotting the solution of DDEs) miv hby using solver DDE23.

00
pho

00
00

o O
]

O MM =

du/dt=u(t-3)+u(t-0.5)

80

70

60

50

'S
S

solution u

30

20

30

Figure 2.8: Solution of DDEs
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Table 2.5: Value of6 and t inFigure28 from Matlab illustrate liree

Value of Columns 1 through 7 Value of Columns 8 through 10
O & « O & «
6 pdinmnot T . -
6 cppitx @ °© o&emy ob
(o) o} c&w(bop p& (0) 0 T@® opp 18
0 0 L& W drop P& 0 , -

) GBI T pbpc & 0 X® oahx v

6 pa@tdx &

6 ¢@u o o8

Algorithm of DDEs inMatlab illustrate three

function VDde23 sol =
% solving DDEs dde23(@ddex1de,lags,@ddex1hist,
clear; [0,5)); plot(sol.x,sol.y);
clc; title(  'dy/dt=y(t -3)+y(t -0.5) );
function dydt = ddexlde(t,y,2) xlabel(  ‘'time t' );
ylagl = Z(:,1)+Z(:,2); ylabel(  'solution y' );
dydt = ylag1(1); legend( 'y" , 'Location’ , 'NorthWes
end t);
function S = ddex1hist(t) tint = linspace(0,5,10);
S=1; Sint = deval(sol,tint)
end ho_I(_j on plot(tint,Sint, ‘0" );

2.8.4Matlab illustrate four

Computing and plotting the solution ®DEson tiv , by using solver DDE23(Shampi

and Thompson, 2000)

b0 00 mh o
600 60 ™M O0 0 ™M ™
o 6 0 o 1

Y6 6 pmd o0 ph
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Delay differential equation

solution

Figure 2.9: Solution of DDEs

Table 2.6: Value of6 i hd hand t inFigure29 from Matlab illustrate four

Ve(t)I;Je Columns 1 through 7 V%l]?e Columns 8 through 10
0 & < <0 <0 <0 o0& < <0 <0 <0
népgt e st T i st 7 ot & phi oafo @ yi ot %
TIEPD L R TCH p § PR @ T 18I @o¢htd8hp Brphtdix @
(0) PEICE w Y p&Iod M p&IDE wao| () L8t @ oh ustw B ph vEP P& Y
PXIO® W f p&L& ¢ § pgLBO O L
c&hgt ¢ fic&hul X Bcafp B 1
caIx& ¢ pcdip & thcdip @ v
o8lp moxhod8h ® vho8he B T
Algorithm of DDEs inMatlab illustrate four
function VDde23 sol =
% solving DDEs dde23(@ddex1de,lags,@ddex1hist,[
clear; 0,5)); plot(sol.x,sol.y);
clc; title(  'Delay differential
function dydt = ddex1de(t,y,Z) equation' );
ylagl = Z(:,1); xlabel( 'timet' );
ylag2 = Z(:,2); ylabel(  'solution y' );
dydt = [ylag1(1); ylag1(1)+ylag2(2); legend( 'y 1' ,'y 2" ,'y 3" ,'Locati
y(@)l; on' , '‘Northwest' );
end tint = linspace (0,5,10);
function S = ddex1hist(t) Sint = deval(sol,tint)
S = ones(3,1); hold on plot(tint,Sint, ‘o' );
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CHAPTER 3
METHODS AND METHODOLOGY FOR SOLVING LDDE

In this chapter methods for solvitigear first orderdelay differential equationd.DDES)

will be discussed; there are many methods for solving DDEs: Characteristic, Steps, Matrix
Lambert Function, Differential transformm,domain ecomposition Multistep Block, Theta,

and Laplacea r ansform éetc. We wil/ u s arfistoner o f
delay differential equations, with single constdetay and constant coefficient$Graph

Matica and Mitlabwill be used to plotting the graph in this chapter, to understanding this
chapter well; the reader must have a good backgroundffiarefitial equations and
knowing how to use Mitlabcodes, because Mtlabis very smooth to solve many problems

in various class of mathematics.
3.1 CharacteristicM ethod

Consider thdinear first orderdelay differential equatigrwith singleconstantdelay and
constant coefficientywith Boundary Value Problem (BVP), (Falbo, 1995).

60 | 060 I hf mhé emiQ

66 —0REE THT (3.1)

To solvelinear first orderdelay differential equatiof3.1) by method of characteristic
(MOC), following, (Hale and Lunel, 1993Recall that in the case of n linear homogenous
ordinary differential equations with constant coefficients there are n linearly independent
solutions. Axd we know that the general solution is expressible as an arbitrary linear
combination of these n solutions. But the situation is more complicated for linear first
order delay differential equation with single constdelay and constant coefficients,
becaise this equation has infinitely many linearly independehttions The characteristic
eqguation for a homogeneous linekalay differentialequation with constant coefficients is
obtained from the equation by looking for nontrivial solutions of the fGn whereOis
constantSuppae(3.1) has non triviakolutiond 6  '0OQ , if and only if Qi Q

1 18
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If we pluggingOQ into equation (3.1)9 6 1 060 I R T, then weobtain the
nonlinear characteristic equatio®? 1 1 Whenf is asingle constantnonnegative
number, and the functioi is defined as

Qi O (3.2)

Where] is theparameterFigure (3.1) shows the graph of equation (3.2), which we sketch
a few member of this-parameter set of curves. Then we get four various cases/whken

asingleconstandelayanddifferentvalue ofparameter .

Case lr=
Case 2 s

Case .
Case £ —

Figure 3.1"Qi Q2 1 forfixed] anddifferent]
Now we need to show the complex roots®@f 1, this implies that
M 17 0m (3.3)

19 T, in this situation, the delay differential equatidr® 1 and equation (3.3) has
only one roof T, then the solution is the constantrt . The our aim here iwherj
1, therefor we have four cases. This equation has infinite many complexeadn

solutions, and then we describe roots®@f beongs tothesefour possibility cases:

Case onetf — 1, then'Qi has no real roots.
Case twolf] —, then"Qi has exactly one real roat, -
Case thredf — M, then'Qi has exactly two real roots, both npasitive, and

Case fourif T, then"Qi has exactly one real rodt, andi 1.
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3.2 TheM ethod Solution

In this section we will show conditions for each cases and write the general formal

solutions, to solv@8oundary Value Problem (3.1)

60 1060 T h 1 tm ¢&niQ

60 —oh £¢& 1hu
3.2.1 Case one
1 — 1, this meaniQi has no real roots. But in order to start the first step of
solution, we can order compleximberd *  Qfsuchthatt’Q |1 T1UIf
QrQ 1 1 then
CrQ 1Q

o AT ®ETT 1Q

This implies that

CATIGr r OFETT 1Q (3.4)
rATIOF OEMT m (3.5)
Or
‘ rATIO At m (3.6)
Then we can note that
e & v A oo TAT O P
I EINATTG IOE—W o
Appl y L 6THeopmFod IEds — | if
Lefe o
o nr s
Or
) Ho
| EE —
o nr Ho



Then

| E— | Ek—
o r]r o r]r
TestL 6 H o p cohd@ions s
i . 1 1AT 1O i EI,FTA'I'FC'JT
0 OE1 o~ 'f OFENT

Apply product rule: &) na) na

IéirTA'l'r()r iE"TMTO(bT@ETT(b
o= 1 OENT o~ I AT10w

| g LENe ATOG

° r AT1O®

F mOEIat Al 1@t p

AT G I

whenl T, substituté from equation (3.6) into equation (3.4), then we get.
1 OFlT Q (3.7)
Now, let® T T, then
® 1 10EDdQ ,where 1 1 - (3.8)

If we find the intersection of the lire &, for solving the equation (3.8) witine one
parameter set of curves.

® 1 T10EDbQ (3.9
As we say that beforg, is single constantdelay and] is the coefficient Figure (3.2)

shows that equation (3.8) has infinitely many solutions, denoteé i, pigfof8 , this

for case one, and we can use some of Numerical Methods to obtain solutidiffefont

givenvaluesdfhs uch as Newt onds .Met hod, (Fal bo,

23
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—a

1 10ED Q

—&

o

-12

12

-10 =8

Figure 3.2:&% ®and® 1 1OEd Q

We know, &I , this implies that @ ¥ , now from equation (3.6) we obtdin,

then the roots of equation (3.8) d@e “Q , and the characteristic solutions are
Q AT106 andQ OE/T o, so the formal solution to thénear first order delay

differential equatios, (LDDES) is

66 B Q O Aiddo ©O OFETlo6 (3.10)

Because the Boundary Value Problem (3.1) is linear,jand —, whereO andO

are arbitrary constant, if we observe the poibit is that,whend® T, the set of curves
defined by equation (3.9) are intersected to the right of the vertical asymptotes that are
noneven multiples of* .Then the values of are negative at all these points of

intersection, so that whexds© Ho, the values of are decease, as well as:

If we are thinking for some nemegative integers and¢ ] , then

— T

T, for thatt dso, the solutions are vacillate and undamped; but T other values

of[ , and the vacillations in equation (3.10) are dadpy the fullnes§

3.2.2 Case two

From equation (3.6) when Ed ° -, which is mean that© —as/ © 1, continuity

atl T, this implies that equation (3.4) and (3.5) are satisfied by -hrt, and so

1 —,when 1 then"Qi has one real rodt -, and we can found the real root

-, from equations (3.4) and (3.5) when Tt
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So we will add a new part characteristic solut@dn’  to the formal solution ofinear
first order delay differential equatios, (LDDES), with Boundary Value Problem (3.1)
which is of the form

60 0Q I B Q © AifGo ©O OFEfo (3.11)
Where' and’ are roots of equations (3.4) and (3.5) forthis
3.2.3 Case three

If — 7 1, then'Qi has two nofpositive real roots, - i . To solve fori

use Newtonds Met hod, Wi t h androrit, theastart pommtlisu e , S 1

Q -, and for each positive integ€ define
- ‘Q QQ
QQ
Theni 1 Ed 'Q, the two new characteristic solutiols andQ , obtained from
equations (3.4) and (3.5). Wh&ny  -fit , so the formal solution to tHmear first order

delay differential equatia) (LDDES), withBoundary Value Riblem (3.1) is
606 0Q 0'Q B Q O Al © OFlo (3.12)
3.2.4 Case four

If & T the equation (3.3))} | Tmhas exactly one positive robt we can use
Newton 6 s Met hod to find it Qwiptdo when i triha l val
formal solution tolinear first order delay differential equatia(LDDES), with Boundary

Value Problem (3.1) is

606 00Q B A 0O AifGo 0O OFE/lo (3.13)

Note: so we can solve any equation whichnsar first order delay differential equatian
(LDDEs) with Boundary Value Problems (BVPs), by one of these four cases , but the

important thing here to show and write the general formal solution to the Bgwialae
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Problems, we will talking about the general solution and the approximate solution in the

next section.
3.3 TheGeneral Solution

The values of mifor all cases and all the infinite series solutions in each of the
equations (3.10) through (3.13) are convergent. Now we summarize the formal sattions
thelinear first orderdelay differential equatien(LDDEs)with Boundary Value Problems
(BVPs)

3.31 Theorem

Assumég be any nomegative numbet, ¥ R 11, and equation (3.3) has complex roots
‘ ‘Q obtained from equation (3.4) and (3.5), then for arbitrary cons@ntandO

the functiond 0 defined as follows
66 0Q ! 0Q 0Q 00Q (3.14)
B Q ©O Aifdo © OFo
Satisfies the equatiom® 1 60 | hf mhé émQAQ ™
Provided that
. O O O O mwhen -
i. O 'O 'O mandO is arbitrary whef —,
i. O 'O mandO & O are arbitrary and andi are the real roots of equation
(3.3), when — TL
iv.. 'O O 'O mandO is arbitrary and is the real root of equation (3.3) when
1 L

Now to solve equation (3.1), we must use equation (3.14) for a givéntpaénd a given

function—o with condition foro8 T hrt.
-0 00Q | 0Q 0Q 0Q

B Q O AiGo ©0 OFETflo (3.15)
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3.3.2 Approximate solutiors
To approximate the solution of equation (3.15), we define the funation as follows

6 0 0Q | 0Q 0Q 0Q (3.16)
B Q ©O Al ©O OFEIlo6

Because the characteristic functons Q AT/OohH) OFETo are linearly
independenso, to prove thewo characteristic functions are linearly independent, we need
to take thaNronskianfor these two solutions and show that it is not zero.
o Q AT100 Q OFTlo
“Q AirGo 1 Q OFTo ' Q OFEiTo 1 Q ATlrdo
Q AiTrGo ' Q OFEiTo 1 Q ATlrdo
Q OETo *'Q AlfGdo 1 Q OFTo

rQ GéEiro 1Q i Mo
r'Q  wéEir o i Qo
rQ

Now, the exponential will never be zero gnd 1 (ifi t wer e we woexl dnot
roots !) and sa 1. Therefore, these two solutions are in fact a fundamental set of
solutions and so the approximate solution is equation (3Th&refored6 1™ —T for
continuity atrt. If we uniformly partition 1 frt into "Gsubintervals wher® ca p @

points, herevis depend on the number of arbitrary coefficighteughthe first four which

wis eitherripltfo ¢ it. We denote the partition of f fit by, so this implies that its
pointsare 1 o6 o E 0 T1thend (0) —o ,forQ miptB hQ p,isa™@ Q

nonsingular linear system that can be solved for its coefficient.

Note: We can apply the Characteristic Method to the Boundary Value Problem (3.17), for
givenf THQ T (Hale and Lunel, 1993).
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60 W60 w60 I ht mheEno

60 —ohéd 1H (3.17)

As we assumed in the equation (3.1) , we will assume that the solution to (3.17) has the

form 6 0 'OQ , with O arbitrary for some, (real or complex)

o0 woQ GOOQ (3.18)
G 0 Q w 7 (3.19)
Now, suppos&l @ Q this becomedD  ®Q m. Since®ho, andf are

given, we can writéo'Q as a single numbey,, obtaining

~

‘m e T (3.20)
Now we can solve equation (3.20) fias we solved equation (3.3) far
3.4 Method of Steps

In this section we will show how to use the method of steps to solve firstarderdelay
differential equations, the method of steps is one ofubenentarymethods that can solve
some delay differential equation such as lirffeat orderdelay differential equationsvith
single constant delay and constant coefficiemtslytically. The general idea in this
method is change the delay differential equatiDDE) on a given interval to ordinar
differential equation (ODE) over that interval, and this process is repeated in the next
interval. Consider the following general linear delay differential equation:

60 100 100 T 100 | E 1600 1 (3.21)

66 —oO0 o f o oht m

The most natural solution for equation (3.21) is called the method of steffiermethod

of sucessive integrations, (El 6sgol 6t s and Nooorikthergivenl1 97 3) .

function— o so thato o is known in therterval 0 T T f I E T
the
66 160 1—0 f i —o0 f E i —o0 f (3.22)
00 —0 6o o0 o fth 1 =
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Sincefordo o o f,argumentsd f ho I B o6 1 ,and I

i E 1 ,variesinthe initial interval sed 1 D , so we get:

66 1060 1i—o0 1 i —o f E 1 —o | (3.23)
O ¢h 1 1

00 f —0 I o 1 0
Then if we continue in this way

606 160 I—o7T 1i—0T1 E 1—0rf (3.24)

66 &f —oO0 &1 o0 &1 o0 O & prh m
Note 1. we can apply the method of steps to solvdirnbkar first orderdelay differential
equation by another way, but have the same idea of this method, especially if the history
function is constant, consider theeal first orderdelay differential equationsvith single
constartdelay and constant cdieient
606 60 1T h ™

0
00 ah I 0

f
o (3.25)

When ® is arbitrary constant, assume that we have®® "Q 0 over some

interval® phd . Thenover the intervab i  p , we have by separation of variables,
(HeffernanandCorless 200).

Coo Qo Q o O N0 o o8 X

Note 2: if we have this kind of linear deléiyst orderdifferential equatin (LDDE), with

single constantlelay and constant coefficients:

66 1 000 1 000 I HAQ&éaon 1 (3.28)
60 O0RQE OGN T
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i 0 mandi 0 T are constant functioris, T Again to solve the equation (3.28),
we will use the methodfsteps and apply itsondition.On the interval | bt the history
function is the given functioi©® 0, so the history function is known there. Thus we can
say the equation is solved for the interval fit, now wheroy 1 D  ~ 1 h,
so0 0 | become® 0 I on 1 . So the equation (3.28) in the intervati
becomes (Falbo, 26D

60 1 060 1 00 0 I RQt¢on 1 (3.29)

om Om

Then the equation (3.29) is an ordinary differential equation and not a delay differential

equation becaus® 0 { is known; it SO0 | . Thus we solvat on the interval

i and using intial conditiorg T O .
60 1 060 1 000 1 HQEoN T (3.30)
om Om
Thegenerakolution of equation (3.30) is

1

60 Q 00 | Q& & od p

Q
Again on the interval hgf , the equation becomes
66 1 000 1 00 0 | RQéaon 1 h (3.32)
of o 1

Note 3:
60 ®O6o T (3.33)

60 tho 1 o 0o

WhereQandf are constant, 1, applying the method of stepse get

60 6 Q pt
A

600 0Q 0
where 0 is the integer partaf, ( E| 6 sagdoNor&irt, $973).
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3.5 How toUse Matlab Codes
3.5.1 DDE23 solver

In this section we will show that how to use DDE23 solver in Matlab for solving linear

first orderdelay differential equationsvith constant single delay and constant coeffigient

Our aim is to solve delay differential equations (DDEs) by easier way such as using
DDE23 solver, whereas ordinary differential equations include derivatives which rely on

the solution at the present val udiffeeitialt he al
equationgnclude in addition derivatives which rely on the solution at previous times. The
purpose olsing theMatlabe codes such as DDEZ8r both ODEs and DDEs that many

problems its solutions ka several continuous derivags, and theliscontinuities in low

order derivatives require special attention because this is very serious matter for delay
differential equations. For impant things that the discontitigs are not uncommon for

ordinary differential equations, but they are alimalsvays present for delay differential
equations. Then generally the discontinugtyappear in the first derivags of the solution

at the initial point (Thompson, 2000)jo know how discontinuities propagate and smooth

out, let us solvé 0 00 p form Owith history—o pfordo T Wih

this history, the problem r edac epswithanitialt he i n
valueo p. Solving this problem we find that o 0o pform o p8\otice

that the solution has a discontinuity in its first derivativé at 1. In the same way we
findthato 6 ——forp 0 . The first derivative is continuous at t = 1, but there
is adiscontiruity in the second derivative. In general thdusion on the interval®Q

p is apolynomial of degreeQ p and there is a discontinuity of order k + 1 at t,= k
(Thompson, 2000)

A popular approach to solving DDEs is to extend one of the methods used to solve ODEs.
Most of the codes are based explicit RungeKutta methods. DDE23 takes this approach

by extending the method of the Matlab ODE solver ODE23. The idea is the same as the so
called fAmethod of stepso for solving DDEs

section.
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Maybe another methods it will be used on Matlab to find approximate solutionse
concrete, we describe the idea as applied to this example. In solving our example for
T O p, the DDE reduces to an initial value problem for an ODE @ith p

equal tothe given history—0 p and initial valued T p. We can solve this ODE
numerically using any of the popular methods for the purpose. Analytical solution of the
DDE on the next intervgd 0 ¢ is handled the same way as the first interval tbet
numerical solution is somewhat complicated, and the complications are present for each of
the subsequent intervals. The first complication is that we must keep track of how the
discontinuity at the initial point propagates because of the delays. é&nistthat at each
discontinuity we start the solution of an initial value problem for an ODE. Ringea
methods are attractive because they are much easier to start than other popular numerical
methods for ODEs. Still another issue is the térm p that is in principle known
because we have already found formm 0  p. This has been a serious obstacle to
applying Runge&Kutta methods to DDEs, so we need to discuss the matter more fully.
RungeKutta methods, like all discrete variable methodsr ODEs, produce

approximation® tod 0 onameshU inthe interval of interest, herafp .

They do this by starting with the given initial valde, 0 @& at0 @ and stepping

from o 0 U a distance ofQ to 0 (o QY] atb p L Q. The step

size™Q is chosen as small as necessary to get an accurate approximation. It is chosen as big
as possible so as to reach the end of the interval in as few steps as possible, which is to say,
as cheaply as possible. Inetcase of solving our example on the interpét , we have

values of the solution only on a mesh ip . So, where do the valuésd p come

from? In their original form Rung&utta methods produce answers only at mesh points,

but it is now knownhow t o obtain fAcontinuous extensi
solution between mesh points. The trick is to get values between mesh points that are just
as accurate and to do this cheaply. In some cases the continuous extensions can be viewed
as interpants. The Rung&utta methods mentioned are all explicit recipes for computing

0 giveno and the ability to evaluate the equatiohhompson, 2000)
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For reasons of efficiency, a solver tries to use the biggest step diat will yield the
specified accuracy, but what if it is bigger than the shortest félain taking a step

tob "Q, we would then need values of the solution at points in the span of the step, but
we are trying to compute the solution at the endhef step and do not yet know these
values. A good many solvers restrict the step size to avoid this issue. Some solvers,
including DDE23, use whatever step size appears appropriate and iterate to evaluate the
implicit formula that arises in this way. Wiustrate the straightforward solution of a DDE

by computing and plotting the solution of ExamgBhompson, 2000)The equations

66 00 ™,OoN T
60 00 ™ OO T,
0 0 00

66 pv o p o T

The syntax has the form
i £ 0QXQOQQ QAR ofdi )

The interval Tdv is the interval of integration which is denote iy O O fihfk Thistory
argument is the name of a function that evaluates the solution at the input valenof
returns it as a column vector, the function for evaluating the DDEdermoted by
cAAAEE] Ac
Here examlh.m can be coded as:

"0 & 0D QER® PAD

O £ ¢ oip

Quite often the history is a constant vector. A simpler way to provide the history then is to
supply the vector itself the history argument. The delays are provided as a vector lags,

here @@ . ddefile is the name of a function for evaluating the DDEs. Here examif.m

can be coded as:
"Q0 £ G ® "QEQED IO
Ga@Qodp N

33



606§ Qddr N
0 aQi én
bp Oa@in
bg oa@@ O0daeQn
Vo) o¢n
The input t is the current t and y, an approximatiod . The input arrayocontains
approximations to the solution at all the delayed arguments. SpeyjficaihiQ

approximated 0 1 f or Uj a dg'@y le is nok secessary to define local
vectorsd a @ ®a @& we have done here, but often this makes the coding of the DDEs
clearer. The ddefile must return a column veafdthompson, 2000J his is perhaps a good
place to point out that DDE23 does not assume that terms ke actually appear in

the equations. Because of this, you can use DDE23 to solve ODEs. If you do, it is best to
input an empty array, , f or lags because any delay specified affects the computation
even when it does not appear in the equations. The input arguments of dde23 are much like
those of ODE23, but the output differs formally in that it is one structure, here called sol,
rather than seval arrays oho e ¢ 'XXQoaB. The fieldi édxcorresponds to the array

oof values of the independent variable returned by ODE23 and thé fistiy to the array

6 of solution values. So, one way to plot the solution fs:0 § d&di &3 ; After
defining the equations in exam1f.m, the complete program examl.m to compute and plot

the solution is:
nad el &mn
0 "QBA@WQPBOD G & 1§ &XD @i
o & & @A)

0o O @DDBN
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Note that we

rather than examl1f. Also, we have taken advantage of the easy way to specify a constant

history.

mu st t he name of

supply

Table 3.1: explain the DDE23 solver to soldelay differential equation

Q6 & 0D QEEL PED
0 €& ip

The history function is a constant vector. A simpler way to pro
the history then is to equipping the vector itself as the hig

argument. The delays are provided as a vector lags, i®fe®) 8

VO E ODQE E
Q & PRAVRD
o d® Gdpn
6adQodg N
0 aQi éhn
bp O 4@
Vg Oa@dE
6 0 ®Qn

0o o¢h

The input t is the current t ardd an approximation to0 0. The
input array® contains approximations to the solution at all
delayed arguments. Specificall§d diQ approximatesd o 1

forf given asid & "@ Defined & @apdo a @, "Qut often thig
makes the coding of the DDEs clearer. The ddefilest return g

column vector.

DDE23 solver

nadashoé8un

0 "QBA@WQPEOD V& 1 o Q
¢ "0 Qi

0 & 6 @ QRO

O QO @DDN

We mustdefinethe equations in exam1f.m, the complete progrg
examl.m to compute and plot the solution. Note that we must

supply the name of tHl 8 ]| it shggsolver

Solution of delay differential

equations
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3.5.2 DDESD solver

DDESD solver for solving delay differential equation (DDEs) with general delays, this

code is like the DDE23 in some properties.

Table 3.2: explain the DDESD solver to solve delay differential equation

Q6 & O@WONNQI Q Define the rfile in the local function.

Pi¢aidROR

wa Qi

w Nw

Q6 & O @RERQQ i The delay equation which is denoted by z.

6n an

QO & OQERQ & ohtd Define the time delay and the hisory function , specify
,Qg o o 1N history function in one ahree ways.
"WOE ODQEE 0 DI 6 1 A function of t such thah historyd 0 returns the|
'Q?s 0 i o1 solution6 0 for6 0 as a column vector.

i £€aQQ0hQOQA ¢ 1 A constant column vector, @ 0 is constant.

2 O €DI - o feria ch) 1 The solution sol from a previous integration, if tf

call continues that integration.

0 a'QEi mMOHQ The®® _ ] & function handel that evaluates the rghit g
wE QQU amEn . . . . .

N o & do b ¢ cobeci "¢ ' YOROND of the differential egautions, agaia v_+:; interval of

0 QEAID O G2 integration from o6 O R dE 0 Qo i N WE Qwith

0 & 6 @O B & ¢ @Doee 6 60

e, 6 0 00 v RoN Ty
P& 66 ohet um
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CHAPTER 4
SOLVING LDDE BY MOC AND METHOD OF STEPS

In this chapter we will give some examples of linixat orderdelay differential equations

with single constant dela¢DDEs), and solving these examples by using the method of
characteristic and method of steps, we will compare algebraic solutiongappitbximate

solutions by using Matlab. For comparing the solutions we used two cods from the Matlab,
DDE23 and DDESD solverye will start algelpaic solutions to every problem with

drawing the solution in a graph, and then compare them apphhoximatesolutions at

another graph, therefore the best program for solving many types of delay differential
equation is Matlab because & deal with complicated problem by easier way, we have
some anot her program to solve DDEs such as

another program for drawing the solutions named GMgptica we used it.
4.1 MOC Examples

In this section wewvill solve some examples of linear first order delay differerg@lation,

with single constantlelay and constant coefficients.

4.1.1 Example of case one

Use Characteristic Method to solve the (BVP) and sketch the graph, (Falbo, 1995) with

given an approximate solutidn <«

606 pg 0 0 pg vh £ &l T
—0 Q h €& 1hn
Solution'Q om 1 p& v TH p& v 11, now if we check the value pfand

I its belongs to case one, which — mTO p& v - T Now substitute

value of®andf into equation (3.8) we get

© pd @ OED Q
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Solving this equation by Newtonds Med hod

and® p® QP TX® T ¢rp @ P MY sinced [ T from this we get values 6f,
which is equal to ¢ p& v TP p Xpc@ P T Krom equation (3.6) we get the was
of ', which is equal to ¢ TMInhEE PP ¢ ¢ w

Now, we know our approximate solutionds m  —r11, whichad ¢, we must divide

the interval p& @t to subintervals depend on ti ¢4 p @ so thafQ ¢ ¢

p T o pg br pg b T o o'oc THO ofoTd p @ @ TA p @hp Pthis
implies thatd  TiD ™ poHe Todo pg v

Nowsinceb 6 —0 Q hx ¢, then

6 6 —0 Q O AiGo 0O OFEio

Q Q O AifGo ©O OElo Q 0O Aifdo ©O OFEflo
08 OAIT@Buox Q82 0O OEdgguvoyx Q8 0O AT @ pyc
Q8% O OEdDp g
To obtain the value of arbitrary coefficient® HO HO HO , we need the values of

where 6 11D ™ pope T odoo p& vWewill getthet T system of

linear equations.

Wheno T

(o] Q 8 O Al@ouvtg Q8 0 OEdg v 11K
Q8% OAI@pxt Q¥ O OE® pXTT

O O p (4.7
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Wheno ™ PpPOoeo

Q 8 Q 8 8 O ATRuixBpooo
Q 8 8 0O OEggutx@pooo
Q% & OAI@pXTBPOOPOQ
Q% & O OE@pxqBProee
TEeX X upE YOw ™M @0 TMLLVLO W TMPT MMM TR
Wheno T ooo
Q 8 Q 8 8 O AT Ruvity®ooo
Q 8 8 0 OEgguvt xy®pooo
Q 8 8 O AT @®pxag®ooo
Q 8 8 0 OEgp pX @ o0 O
M MNMCROo PP o TYPXO o CEPMTOPP ™M WWOo X WD
Wheno p& v
Q 8 Q 8 8 0 AT@ER vT & v
Q 8 8 0 OEdg vt & v
Q 8 80 Al @ px gy
Q 8 8 0 OE@d p X @& v

MINCO o pFromP ) PEIMOPY THWOQPYX T Mwo 18
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Now we haver 1 system of linear equations

O O p (4.1)
TPEeX X0 UupE POWw T WO TILULVLO W TT T ( (4.2)
M MNMCRO PTWYO o TMPOXD o ¢CpmPp ™M@ wwo X w (4.3
TMINCO o pPIromP ) PEIMoPY TP WOQY T MW (4.4)

Solvingt 1 system of linear equations by Gaussian Elimination, rewrite the system in

matrix form and solving by Gaussian Elimination (Gaussdan elimination)

p p Tt Tt é )
T X XLV UP8 PG WT8 WWwwWa@L VoW T@YX X UU

T TG X OYT o QX T &K PTPpE MMNCXO
TINMCTENOoTP XPEIMOYXBDOY WO @XTBITTCTO

Y Tm@x XV¥ 0 'Y, mutiply Qrow by & and subtract it fromé row; 'Y
™ ¢ XYWO 'Y , multiply 'Q row by & and subtract it fromé row; 'Y
Tt cY 8 Y, muktiply "Qrowby & and subtract it fromé row.

p Tt Tt é )

COQMT UM WWWABLUVOW TBIoXT YUY

™ OUX TQXTEEPMPE TENTooU
PEIC X X TPEIMOoUXBPYwWwo EX T TTX P X

43370

YT ¢®& @ m® O ,divide the Qrow by ¢

~

p T T é p

p TR PPXWTOPEPTT XT WTEWTPIU 0 WWTT WX
™ wLu T™WEXTO CEpmpp € THMOOUL P
PBIC X X T p8tmoao Y TBYwoexe T8 X P X

43370

Y pY O'Y, multiply 'Q row by & and subtract it from&é row;’Y T@® wuU X
Y © Y, multiply 'Q row by & and subtract it fromé row;’Y p8t¢ xX P Y,

multiply "Q row by & and subtract it fromé row.
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T T@PPXWTONBOILT X T WNM&OTBOYT PP PGS YPYGuo
P TR PPXWT OPRJIT XT WTEWT TP U 0 W WTT WX

) TROWO UL WL QBDTUPCPWMELUBIPCPYPPXUTU
T PECPULOWUDEKX X QWO PEQTRPWTIYT X X C O QY Y

434370

YT T8 wo v w @ oy ivide the 'Qrow by €

T TR PPXWTOREPTKRT X T WM& TMB YT p pciucoy

P TR PPXWT OPERERQIT XT WTEDT TP U 0 W WTT WX

11 o) CROXMCTMELUTPC YWT TPU

T PECPUOWULTEXX X QWO PEOTRPW T YT X X G 0@ Yy

43370

T PP X WTY QY € Y, multiply 'Q row by & and subtract it fromg row;
Y T ppX T @AY, multiply Qrow by & and subtract it fromé row;
P& ¢ p L 0L GYXO 'Y, multiply "Q row by & and subtract it fromé row.

M TCTOOPAPTMPYQ YT WU

T T8 (T OOPp EITPPOPUTKXT
P CRXTMCTIMEWIPCYPWTOPU
T UPTUWLWREXGIOPULWYOT

43370
4370 4

YT P mu wu &Y xdivide the 'Qrow by ¢

P MM TCTOOPATIBOYPYT WU

TP T TCTOOPETITWIPOPUTYXXT
m m P CRXTMCTTNMEUWIPCPwTopU
m T T ) € MrquT YXCQUuC

T ¢ T oo Yp tY 'Y, muliply Q row by & and subtract it fromé row;
¢X TCTNYX U O, multiply 'Q row by & and subtract it from& row;
Y 1 T ooy@tW multipy Qrowby & and subtract it fromé row.

P M MMTMTE TP

mp nNmMEé TWGOTOOULO
mTmTp e ™o p Ty
mmTmneéé mgT PXTT
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So that the values of arbitrary coefficient® — 180 ¢@ ¢@ @t v p HOY
T8t 0 0 3h0 T8t ¢ T | xthre @haracteristic solutions:

60 QO8F meAdBuvDY Q8 muvpaPig vOYX

Q8 mroodiappc Q° TEIcT QBID p ®¢

Figure (4.} shows the graph of chataristic solution and Figure (4.2hows the
numerical solution by using solver DDE23 iraNah

Figure 4.1: Characteristisolution of6 0

Figure 4.2: Approximatesolution by using solver DDE23
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