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ABSTRACT 

 

This research concentrates on some elementary methods to solving linear first order delay 

differential equations (DDEs) with a single constant delay and constant coefficient, such as 

characteristic method and the method of steps and comparing the methods solution with 

some codes from Matlab solver such as DDE23 and DDESD. The study discussed the 

compare solution by merging algebraic solution and approximate solution in one graph for 

each problem. We used Matlab program in this thesis because is very powerful language 

program to deal with complex problem in mathematics and obtain the solution faster than 

many language programs and to obviate miscalculation. We interested in this thesis to find 

solution for this kind of linear delay equation,όὸ ὧόὸ ὧόὸ , with single 

constant delay and constant coefficients ὧand ὧ. 

 

 

Keywords:  Delay differential equation; Linear delay differential equation ; Constant delay; 

Characteristic method; Method of steps; Matlab codes; DDE23 solver; 

DDESD solver; time delay; Functional differential equation; Boundary value 
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ÖZET 

 

Bu tezde, birinci derece Gecikmeli linear diferensiyel denklemlerin, karakteristik method 

ve adēm metodu gibi bazē ºz¿m metodlarē ¿zerine ve DDE23 ve DDESD Matlam ºz¿c¿ 

kodlarē ile metodlarēn karĸēlaĸtērēlmasē ¿zerinde alēĸēlmēĸtēr. Bu alēĸmada, her bir problem 

iin cebirsel ve sayēsal ºz¿mler bir grafik ¿zerinde birleĸtirilerek karĸēlaĸtērlēdē. 

Matematikte karmaĸēk problemlerle baĸa ēkabilmek iin g¿l¿ bir programlama diline 

sahip olduĵu ve bir ok programa gºre daha hēzlē sonular elde ettiĵi ve yanlēĸ hesaplamayē 

ºnlediĵi iin Matlab programē kullanēlmēĸtēr. Metodlar, ὧ ve ὧ sabit sayēlar olmak ¿zere, 

όὸ ὧόὸ ὧόὸ denklemini ierecek ĸekilde geniĸletilmiĸtir. 

 

 

AnahtarKelimeler: Gecikmeli diferensiyel denklemler; Lineer gecikmeli diferensiyel 

denklmler; Sabir gecikme; Karakteristik metod; Adēmlar Metodu; 

Matlab kodlarē; DDE23 ºz¿c¿; DDESD ºz¿c¿; Gecikmeli zaman; 

Kesirli diferensiyel denklemler; Sēnēr deĵer problemleri 
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CHAPTER 1 

INTRODUCTION  

 

 

One of the mathematic students' common questions is ' why donôt we study Ordinary 

Differential Equation (ODEs) or Partial Differential Equation (PDEs) instead of studying 

Delay Differential Equation? Since we have more information about them and they are 

much easier to handle. The simple answer is because of the crucial impact of the time 

delay on everything related to human life encompassing variety of domains and 

applications such as biology, economics, microbiology, ecology, distributed networks, 

mechanics, nuclear reactors physiology, engineering systems, epidemiology and heat þow 

(Gopalsamy, 1992). We have many examples of time delay in our life.  A vivid example of 

a time delay is when forests are destroyed by human through cutting trees, this action will 

be done in a short span of time or when the forests are destroyed because of natural 

catastrophes such as fires and hurricanes and floods, and in a short time the forests 

deceases.  Forest destruction takes short time, but it might take at least 25 years of 

cultivation and planting to give life back to the forest. Delay time will be included in any 

mathematical model to renew and harvest the forest. Time delay is a vital component of 

any dynamic process in life sciences. 

 There are different species of delay differential equation; such as linear delay differential 

equations (LDDEs), nonlinear delay differential equations (Non-LDDEs), neutral delay 

differential equations (NDDEs), stochastic delay differential equations (SDDEs)éetc. We 

will concentrate in this thesis on one type namely linear first order delay differential 

equation with a single delay and constant coefficients: όὸ ὥὸόὸ ὦὸόὸ

Ƞ for  πȟὸ π and όὸ ὴὸȠ ὸ π.In this thesis, we discussed an algebraic 

solution of linear first order delay differential equation. We give a detailed description of 

two methods, characteristic method and the method of steps, we shown how to solve the 

delay equation by this two methods step by step. The reader must have a good background 

in the differential equation to understand everything in this study because we used some 

techniques course of Ordinary differential equations (ODEs).  
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The method of characteristic to solve the linear firs order differential equation, όὸ

ὦόὸ ȟ πȟέὲ πȟὨȟ όὸ  —ὸȟέὲ ȟπȢ When the value of ὥ πȟ depends 

on some important notes such as the history function όὸ  has the form όὸ

ὈὩ .Therefore this form of solution have four cases of solutions when each case have 

different real roots, for example case one when ὦ πȟ has not any root, case two 

when ὦ ȟ has one real roots , case three when ὦ π has two non-positive 

real roots ί and ί, and case four when ὦ π, has exactly one real roots, ί π. As well 

as we need some numerical methods in steps of approximate solution form like Newton's 

Method (Falbo, 1995), so if we partition the interval ɀȟπ to some interval for solving 

the given Ὦ Ὦ non-singular system of constant coefficient, Ὀ . Then the approximate 

solution for the linear first order delay differential equation by using the method of 

characteristic has the form ό ὸ ὈὩ ϳ ὈὩ ὈὩ ὈὩ

В Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ .The general idea of the method of steps is 

converting the linear first order differential equation (DDE) on a given interval to ordinary 

differential equation (ODE) over that interval, (Elôsgolôts and Norkin, 1973), so this 

process make given (DDEs) as (ODEs) and we can solve it by some techniques from 

(ODE).So this thesis sheds light on algebraic solution of (LDDEs) and comparing with 

numerical solution by using Matlab solver such as DDE23 solver and DDESD solver by 

merging algebraic solution and approximate solution in one graph, the meaning and the 

definition of the two methods and the algorithm program of Matlab solver will be 

presented later.   

1.1 Aims of the Study 

The aim of this study focuses on how to find algebraic solutions of linear first order 

differential equations and comparing with approximate solutions, by using some 

elementary method for solving delay equations such as MOC and the method of steps, as 

well as in this research we uses the most powerful language mathematics program namely 

Matlab for given approximate solution by using some special codes such as DDE23 and 

DDESD. Since Matlab has great power to deal with very complex problems in various 

mathematics fields to give best answer for any problem. 
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1.2 Thesis Outline 

This thesis is divided into five chapters; the first chapter focuses on introduction and the 

aim of study. 

Chapter two contains a background and literature review; in literature review we showed a 

short history of delay differential equation, and we introduced some important 

terminologies, concepts and definitions. And we gave some problems containing time 

delay such as control theory. We explained each kind of delay differential equations 

(DDEs) and its area applications in our daily life, the algorithm of language Matlab 

program have been presented with illustrative examples in Chapter two. 

Chapter three consists of methods and methodology for solving linear first order delay 

differential equations (DDEs) with single delay and constant coefficient; we discussed two 

methods for solving delay equations and methodology for the two methods is also given 

with step by step. Moreover, we explain the algorithm codes in Matlab program such as 

DDE23 solver and DDESD solver. 

Chapter four discusses algebraic solutions of linear first order delay differential equation 

by using MOC and the method of steps. And also comparing algebraic solutions with 

approxima-te solutions by using Matlab program, the special codes in Matlab program to 

find numerical solutions have been used such as DDE23 and DDESD. 

In Chapter 5, the conclusion of this work is presented; it summarizes and analyses the 

entire work conducted in this thesis.      

 

         

 

 

 

 

 

 



4 

 

CHAPTER 2 

LITERATURE REVIEW  

 

 

When someone tries to find the solutions of differential equations, it is certain that he will 

try to know which kind of differential equations in his hand. Usually we know more things 

in ordinary differential equations (ODEs) and partial differential equations (PDEs).But if 

we have a special class of differential equations, such as delay differential equations 

(DDEs). Likewise for reading this topic, the delay differential equations, if you do not have 

background knowledge of the differential equations, it will be difficult for you to 

understand all aspects of the DDEs and consequently this thesis. Thus the main aim of this 

chapter is to give the reader an easy to comprehend background and history of delay 

DDEs, from where it began? How did it start from the beginning?  By whom it was 

developed? In which field it has been used and for what purpose? Etcé Also to illustrate 

some concepts and definitions of DDEs, classify DDEs and which methods we will use to 

solve the DDEs. 

2.1 History of Delay Differential Equations 

Researchers had been preoccupied with Differential Integral Equations, Functional 

Differential Equations (FDEs) and Difference Differential Equations (DDEs) for at least 

two centuries. The progress of human learning and reliance on automatic control system 

after the World War I gave birth to different type of equation named Delay Differential 

Equation (DDEs). The last 60 years, researchers have been concerned about the theory of 

DDEs and FDEs. This theory has become an indispensable part in any researchers' glossary 

who deal with particular applications(implementations) such as biology, microbiology, 

heat flow, engineering mechanics, nuclear reaction, physiology... etc. (Kolmanovski and 

Mshkis, 1999).  Laplace and Condorcet are the pioneers of this study; it appeared in the 

18
th
 century (Fuksa et al., 1989). The stability's main theory of basic DDEs was developed 

(elaborated) by Pontryagin in 1942, however, after the World War II, there was rapid 

growth of the theory and its applications (after the World War II,  the theory grow rapidly).  

Bellman and Cooke are credited with writing significant works about DDEs in 1963 

(Bellman and Cooke, 1963).  
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The DDEs studies witnessed massive movement(growth) in 1950 regarding DDEs studies 

resulting in publishing many   important works such as Myshkis in 1951, Krasovskii in 

1959, Bellman and Cooke in 1963, Halanay in 1966, Norkin in 1971, Hale in 1977, 

Yanushevski in 1978, Marshal in 1979, these researches and publications lasted until this 

day in a variety of domains 

2.2 Delay Differential Equations 

The more general kind of DEs is called a functional differential equations (FDEs), as well 

as the delay differential equations is a simplest maybe most natural class of functional 

differential equations (Driver, 1977). If we look at various fields and its applications we 

will see the time delay are normal ingredients of the dynamic process of various life 

sciences such as biology, economics,  microbiology, ecology, distributed networks, 

mechanics, nuclear reactors, physiology, engineering systems, epidemiology and heat þow 

(Gopalsamy, 1992) and ͼto ignore them is to ignore realityͼ (Kuang, 1993). Delay 

differential equations (DDEs) is of the form 

                      ό ὸ Ὣὸȟόὸȟόὸ  ὸȟόὸ ȟόὸ  ὸȟόὸ ȟȣ             (2.1) 

For ὸ π ὥὲὨ  πȟ the delays, ȟὭ ρȟςȟȣ are commensurable physical quantities 

and may be constant. In DDEs the derivative at any time relies on the solution at previous 

times (and in the situation of neutral equations on the derivative at previous times), more 

generally that is   ὸȟόὸ . Example of familiar delay problem such as Remote 

Control, images are sent to Earth and a signal is sent back. For the Moon, the time delay in 

the control loop is 2-10 s and for the Mars, it is 40 minutes! (Erneux, 2014) For many years 

Ordinary differential equations were an essential tool of the mathematical models. 

However, the delay has been ignored in ordinary differential equation models. DDEs 

model is better than ODE model because DDE model used to approximate a high-

dimensional model without delay by a lower dimensional model with delay, the analysis of 

which is more easily carried out. This approach has been used extensively in the process 

control industry (Kolmanoviskii and Myshkis, 1999). 
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Figure 2.1: when the Robot sent images to Earth 

DDE model depends on the initial function to determine a unique solution, because ό ὸ 

depends on the solution at prior times. Then it is necessary to supply an initial auxiliary 

function sometimes called the ñhistoryò function, before t=0, the auxiliary function in 

many models is constant, ȡÍÁØ. 

 

 

 

                                                                                                                                                            

 

Figure 2.2: The initial function defined over the interval ȟπ is mapped into a solution 

curve on the intervalπȟὸ . Initial function segment  ɲ „ȟ„ᶰ ȟπ has to be 

specified and t ὸ, function segmentό „ȟ„ᶰ ȟπ 

There are no many differences between properties of Delay differential equation and 

ordinary differential equation, sometimes analytical method of ODEs have been used in 

DDEs when it is possible to apply. The order of the DDEs is the highest derivative include 

in the equation (Driver, 1977), in Table 2.1 we have shown some examples about the order 

of delay differential equation (DDE). 

 

                          π                                                                            ὸ                           ὸ 
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Table 2.1: The order of DDE and ODE 

ODE 
Order of 

ODE 
DDE 

Order of 

DDE 

ό ὼ ὺόό π 
Second order 

linear 
όὸ ‘όὸ όὸ  

First order 

Linear 

Ὠό

Ὠὺ
υ
Ὠό

Ὠὺ
σό ςὺό 

Forth order 

Nonlinear 

ό ὸ όὸ  ρ όὸ  Third order 

Nonlinear 

ό ςυό στὺό ίὭὲό Eighth order 

Linear 

ὧό ὸ ὦόὸ  ÓÉÎ ὸ Second 

order 

Linear 

 

We have shown the substantial difference between DDEs and ODEs in Table 2.2 

Table 2.2: Substantial difference between DDEs and ODEs 

Delay Differential Equations Ordinary Differential Equations  

Supposed to take into account the history of the past 

due to the influence of the changes on the system is  

not instantaneous 

Supposed to take into account the principle of 

causality due to the influence of the changes on the 

system is instantaneous (Hale, 1993) 

Depends on initial function to define a unique  

solution 

Depends on initial value to define a unique solution  

Give a system that is infinite dimensional Give a system that is finite dimensional xx 

Analytical theory is well less developed Analytical theory is well developed (Lumb, 2004) 

 

2.3 Classification of (FDEs) and (RFDEs) 

In this section we introduce some nomenclature and definitions about DDEs that will be 

required from the reader in order to understand this topic well, as we said before the DDEs 

is class of FDEs, therefore we will try to explain the power relation between DDEs and 

FDEs. Suppose,  ὧέὲίὸὥὲὸᶰπȟЊ , and let όὸ be an n-dimensional variable 

portraying the conduct of a operation in the time period ὸɴ ὸ  ȟὸ . FDE is 

formulated as follows, let 1( )ty  and 2( )ty  be time-dependent sets of real number, 

 ᶅὸɴ ὸȟὸ . Suppose that ό is continuous function in ὸȟὸ , and όὸ for ὸɴ ὸȟὸ  is 

the right-hand derivatives of ό. For each, ᶰὸȟὸ  , ό is defined by  ό ὶ όὸ ὶ, 

where 1( )r tyÍ  and analogously ό is defined by  ό ὶ όὸ ὶ where 2( )r tyÍ . We 

say that ό satisfies an FDE in ὸȟὸ  if  ᶅὸɴ ὸȟὸ  the following equation holds. 
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                             όὸ Ὣὸȟόȟόȟὺὸ                                                           (2.2) 

ὺὸ is given for the whole time interval necessary, the equation (2.2) have three kind of 

differential equations (DEs) 

i) If 1( ) ( ,0]ty Ë -¤  and 2( )ty f= for 0 1[ , ]t t tÍ , we say that FDE is retarded 

functional differential equation (RFDE), therefor the right-hand side of (2.2) 

does not depend on the derivative of ό. 

 

                        όὸ Ὣὸȟόȟὺὸ                                                                     (2.3) 

 

In other words, the rate of change of the state of an RFDE is determined by the 

inputs ὺὸ, as well as the present and past states of the system. An RFDE is 

sometimes also designated as a hereditary differential equation or, in control 

theory as a time-delay system. 

ii)  If 1 ( ,0]y Ë -¤  and 2( ) ( ,0]ty Ë -¤  for, 0 1[ , ]t t tÍ , we say that FDE is a neutral 

functional differential equation (NDFE), that is mean the rate of change of the 

state depends on its own past values as well. 

iii)  An FDE is called an advanced functional differential equation (AFDE) if 

1( ) [0, )ty Ë ¤ and 2( )ty =Å for 0 1[ , ]t t tÍ . An equation of the advanced type 

may represent a system in which the rate of change of a quantity depends on its 

present and future values of the quantity and of the input signal ὺὸ. 

 

Note: And retarded functional differential equation (RFDE) classify to another kind of 

differential equations.   

1) Retarded difference equation or sometimes called functional differential equation 

with discrete delay. 

2) Functional differential equation contains distributed delays. 

3) If delays are constant are called fixed point delays, systems which have only 

multiple constant time delay can be classified as, if the delays related by integer 

will be called linear commensurate time delay system. 
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If the delays are not related by integer will be called linear non commensurate time delay 

system, in Figure 2.3 the diagram below functional differential equation and their branches 

are classified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                       

 

 

 

 

Figure 2.3: Classification of FDEs and RFDEs, (Schoen, 1995) 

 

 

Functional differential 

equations (FDE) 

RFDE 

 όὸ όὸ  όὸ  ὺὸ 

NFDE 

 όὸ όὸ  όὸ ὺὸ 

AFDE 

 όὸ όὸ  όὸ όὸ  

όὸ ήόίȟὸȟίὨί 

DEs with distributed delays 

όὸ όὸ ρ 

DEs with fixed point delays 

όὸ όὸ όὸ ρ όὸ “ 

DEs with non-commensurate delay 

όὸ ὃώὸ ὃόὸ ὭὬ 

DEs with commensurate delay 

όὸ Ὢόὸȟόὸ ὸ  

DEs discrete delays 
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2.4 Classification of Delay Differential Equations (DDEs) 

Delay differential equations can be classified as (Lumb, 2004):- 

¶ Linear delay differential equations (LDDEs). 

¶ Nonlinear delay differential equations (Non-LDDEs). 

¶ Stochastic delay differential equations (SDDEs) 

¶ Neutral delay differential equations (NDDEs). 

¶ Autonomous delay differential equations (never changing under the chang t). 

¶ Non-autonomous delay differential equations. 

2.5 Types of Delay Differential Equation and its Applications 

The fact that the ordinary differential equation models are replaced by the delay 

differential equation models led to the rapid growth of delay differential equation models 

in a variety of fields and each field has its scope of applications. The first mathematical 

modeler is Hutchinson; he introduced delay in biological model (Driver, 1977). Various 

classes of delay differential equation have various range of application (Lumb, 2004). For 

instance, retarded differential equation (RDDE) is applied in radiation damping (Chicone 

et al., 2001), modeling tumor growth (Buric and Todorovic, 2002), the application area of 

distributed delay differential equation is in model of HIV infection (Nelsonand Perelson, 

2002), Biomodeling,, neutral delay differential equations (NDDE) application area is 

distributed network (Kolmanoviskii and Myshkis, 1999), Fixed differential equation is 

applied in Cancer chemotherapy (Kolmanoviskii, 1999) and infectious disease modeling 

(Harer et al., 2010), and another model, Single fixed delay application is in Immunology 

((Luzyanina et al., 2001) and Nicholson blowflies model (Kolmanoviskii and Myshkis, 

1999). 
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2.6 Linear Delay Differential Equations (LDDEs) 

We consider the linear first order delay differential equations, with single constant-delay 

and constant coefficients 

                          όὸ ὥὸόὸ ὦὸόὸ Ƞ  Ὢέὶ   ὸ π                               (2.4) 

                               όὴ ὴȠ       ὴ π 

Where ὴ is the initial history function and, ὥὸ and, ὦὸ are any constant functions, 

with π. ȟ Is constant function In general the solution  όὸ of equation (2.4) has a 

jump discontinuity in όὸ at the initial point. The left and right derivatives are not equal.  

ÌÉÍ
ᴼ
όὸ ὴπ ÌÉÍ

ᴼ
όὸ 

For example, the simple delay differential equation όὸ όὸ ρȟὸ π with history 

function όὸ ρȟὸ π, it is easy to verify that,  όπ ρ όπ π. Another 

example: όὸ όὸ ρȟὸ π with history function όὸ ρȟὸ π, it is easy to 

verify that, όπ ρ όπ π.The second derivative όὸ  is given by όὸ

όὸ ρ and therefor it has a jump at ὸ ρ , the third derivative όὸ is given by 

όὸ όὸ ρ όὸ ςȟ and hence it has jump at ὸ ς ς, in general, the 

jump in όὸ at ὸ π propagates to a jump in ό ὸ at time ὸ ὲ. The propagation of 

discontinuities is a feature of DDEs that does not occur in ODEs and éetc. This 

propagates becomes subsequence discontinuity points (Bellen and Zennaro, 2013). 

 

Figure 2.4: The propagation of discontinuities 
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2.7 Uniqueness and Existence of DDEs 

Delay differential equation (DDE) as Ordinary differential equation (ODE), have the 

theorem of uniqueness and existence. The Boundary Value Problem (BVP)  

                          όὸ ὥόὸ ȟ π ȟέὲ πȟὨ                                        (2.5) 

                                       όὸ —ὸȟέὲ ȟπ 

Where ὥ and  are any real numbers, with  π and Ὠ π, —ᶰὅ ȟπ. As we stated 

before that, the delay differential equations is a special class of functional differential 

equations, (Falbo, 1995), the interval ȟπ  is called the (pre-interval) and the function — 

is called (pre-function). 

2.7.1 Existence Theorem 

                             όὸ ὥόὸ ȟ π ȟέὲ πȟὨȟὨ π                              (2.6) 

                                    όὸ π      έὲ ȟπ 

Has unique solution όὸḳπ on the interval ȟπ. 

Note: If Ὠ  this implies that όḳπ is the solution on the intervalπȟ, then if Ὠ ς 

we transfer the DE to the intervalȟς, then we have new intervalπȟ, on which ό πȢ 

This implies that we can solve the problem only on πȟς. If  Ὠ ς, then the 

solution expanded on πȟὨ. So that if we continue this way, the solution moved along 

cover πȟὨ, for any positive real number Ὠ. 

Proof: we observe that the DE itself is linear first order delay differential equation with 

single constant-delay and constant coefficient, and we observe that by plugging the 

function όḳπ is the solution on the interval πȟ. Now if ὺὸ and όὸ are any two 

solution, then ὺὸ ὥὺὸ  and όὸ ὥόὸ . As well, if we define a function 

ᾀὸ ὐόὸ ὐὺὸ for ant two constants ὐȟ ὐ, then ᾀὸ ὥᾀὸ  . This mean 

that, ᾀὸ is also a solution to the DE. As we know the function όὸḳπ is one solution, 

now by contradiction, there exists another function ὺὸ not identically zero that satisfies 

the equation (2.6). Thus ὺὸ satisfies the DE on the interval πȟ, and the function 0 

(zero) on the interval ȟπ. 
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But if we take on a nonzero value at least once somewhere in semi-open interval πȟ. 

This implies we are supposing that ὺὶ π for some ὶɴ πȟ.Let Ὄ be the set of reals 

such that †ɴ Ὄ if and only if either †  or †  and ὺὸ π for all ὸɴ ȟ†. 

 

Figure 2.5: The set, H 

The set Ὄ exist since it contains all of the points in the interval ȟπȢ  Ὄ is bounded 

above, since ὶ is one of its upper bounds.  Suppose ὸᶻ be the Least Upper Bound (LUB) 

of Ὄ. Note that ὺὸᶻ π, otherwise there exist a positive number, ὧ such that ὺὸ π on 

ὸᶻ ὧȟὸᶻ ὧ, making ὸᶻ ὧ an upper bound of Ὄ, less than the least upper bound of 

Ὄ.We assume that,  ὸᶻz ὸᶻ , then ɱ  a number ὸ between ὸᶻ and ὸᶻz such that ὺὸ

π. If there is not any ὸ, then ὺὸ π, ᶅ  ὸ between ὸᶻ and ὸᶻz, making ὸᶻ not UB of Ὄ. 

Since ὺ is continuous then ɱ an interval Ὡȟὶ containing ὸ as an interior point and such 

that for all ὸɴ Ὡȟὶ, ὺὸ π. Let ‐ be the minimum of ὶ and ὸᶻz. Therefore ὺὸ π on 

the interval Ὡȟ‐ȟ‐ ὸᶻz.Now, let ὑ be the number set such that †ɴ ὑ if and only if 

either † ‐ or † ‐ and ὺὸ π for all ὸɴ †ȟ‐. We can note that ὑ exists since 

ὸᶰὑ. Since ὺὸᶻ π, ὑ is bounded below because ὸᶻ is one of its lower bounds, 

assume ὼ be the Greatest Lower Bound (GLB) of ὑ. Since ὺ is continuous at ὼ then, 

ὺὼ π otherwise would be nonzero throughout the open interval ὼ ὧᶻȟὼ ὧᶻ , 

making ὼ not a lower bound of ὑ. Denote ὑ by ὼȟὩ, since for all ὸɴ ὑ, ὸ ὸᶻz ὸᶻ

, then ὸ ᶰὌ and ὺὸ  π, so from the DE ὺὸ ὥὺὸ Ὄ. Hence, ὺὸḳ

π on ὼȟὩ. This mean that ὺὸ  a constant, ὐ on ὼȟὩ. But ὺὼ π, so by continuity 

of ὺ at ὼ, the constant must be zero.  
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Therefore ὺὸḳπ on ὼȟὩ contradiction the assumption that ὺὸ π at some point in 

ὸᶻȟὨ. 

2.7.2 Uniqueness Theorem 

If ὺὸ and όὸ is a solution to the Boundary Value Problem (BVP) (2.5), then ὺὸḳ

όὸ on ȟὨ. 

Proof: Let ᾀὸ ὺὸ όὸ, then 

ᾀὸ    ὺὸ όὸ 

                             ὥὺὸ  ὥόὸ  

                       ὥᾀὸ  on πȟὨȢ 

As well, on ȟπ, ὺὸ όὸ —ὸ; so ᾀὸ π. Therefore ᾀὸ is the trivial 

solution satisfying equation (2.6), then ὺὸḳόὸ on ȟὨ. 

2.8 Software Packages for Solving DDEs 

Matlab is one of the best software programs to solve different class in mathematics, such 

as, optimization, graph theory, linear algebra, differential equations éetc. In (Bellen and 

Zennaro, 2003), they used a package continuous-time model simulation (CTMS) for 

solving delay differential equations. Today many codes for the numerical integration of 

delay differential equations are available, these involve, DDE23, DDESDéetc. we will 

show that how to use the Matlab solver DDE23 and DDESD to solve linear first order 

delay differential equations (DDEs) with constant delays to obtain the graph of DDEs.  

2.8.1 Matlab illustrate one 

Computing and plotting the solution of DDEs, on πȟυ, by using solver DDE23. 

όὸ όὸ ρȢςυȟÔ π 
όὸ ρȟὸ π                        
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Figure 2.6: Solution of DDEs  

Table 2.3: Value of ό and t in Figure2.6 from Matlab illustrate one 

Value of 

◊ & ◄ 

Columns 1 through 7 Value of 

◊ & ◄ 

Columns 8 through 10 

 

('o') 

 

      ό  ρȢππππ ȟὸ  π 
ό  πȢττττ ȟὸ πȢφ    
ό  πȢρρρρȟὸ  ρȢσ 
ό  πȢυχωωȟὸ  ρȢχ 
ό  πȢχτωφȟὸ  ςȢσ 
ό  πȢφρτσȟὸ  ςȢψ 
ό  πȢςυωφȟὸ  σȢτ 

 

('o') 

 

ό πȢρτφυȟὸ  σȢω 

 ό πȢττςς  ȟὸ  τȢω 

ό πȢυςψχȟὸ  υ 

 

 

Algorithm of DDEs in Matlab illustrate one 

 

 

 

 

 

 

 

function  VDde23 
% solving DDEs  
clear;  
clc;  
function  dydt = ddex1de(t,y,Z)  
ylag1 = Z(:,1);  
dydt = ylag1(1);  
end  
function  S = ddex1hist(t)  
S = 1;  
End lags = 1 .25 ;  

 

sol = 

dde23(@ddex1de,lags,@ddex1hist,[0,

5]);  
plot(sol.x,sol.y);  
title( 'dy/dt= - y(t - 1.25)' );  
xlabel( 'time t' );  
ylabel( 'solution y' );  
legend( 'y' , 'Location' , 'NorthWest' )

;  
tint = linspace(0,5,10);  
Sint = deval(sol,tint)  hold on 
plot(tint,Sint, 'o' );  
grid on 
end  
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2.8.2 Matlab illustrate two  

 Computing and plotting the solution of DDEs, on πȟυȟ by using solver DDE23. 

                                             

ό ὸ ό ὸ ςȟὸ π                            

ό ὸ ό ὸ ς ό ὸ πȢυȟὸ π

ό ὸ ρȟό ὸ ρȟὸ π                       

 

 

Figure 2.7: Solution of DDEs  

Table 2.4: Value of όȟόȟ and t in Figure2.7 from Matlab illustrate two 

Value 

of 

◊ & ◄ 

Columns 

1ª7 

 ◄ ȟ◊  

Columns 

1ª7 

( t , ◊  ) 

Value of 

◊ & ◄ 
Columns 

8ª10 

 ◄ ȟ◊  

Columns 

8ª10 

 ◄ ȟ◊  

 

('o') 

 

πȟρȢππππ    
πȢφȟρȢυυυφ   
ρȢςȟςȢρρρρ    
ρȢχȟςȢφφφχ    
ςȢσȟσȢςτφω    
ςȢψȟτȢπψπς   
σȢτȟυȢςςςς 

πȟρȢππππ    

πȢφȟςȢρρτς    
ρȢςσȟσȢυωφ    
ρȢχȟυȢχωσς    
ςȢσρȟωȢπφφ   
ςȢψȟρτȢρτω   
σȢτρȟςρȢωςφ 

 

('o') 

 

σȢωȟφȢφχςψ 

τȢτȟψȢττφχ 

υȟρπȢφφφχ 

σȢωȟσσȢφψψφ   

τȢωȟυρȢσυυυ   

υȟχχȢψφωρ 
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Algorithm of DDEs in Matlab illustrate two 

 

 

 

 

 

 

 

2.8.3 Matlab illustrate three  

Computing and plotting the solution of DDEs, on πȟυȟ by using solver DDE23. 

όὸ όὸ σ όὸ πȢυȟὸ π
όὸ ρȟὸ π                                       

   

 

Figure 2.8: Solution of DDEs  

 

 

 

function  VDde23 

% solving DDEs  

clear;  

clc;  

function  dydt = ddex1de(t,y,Z)  

  ylag1 = Z(:,1);  

  ylag2 = Z(:,2);  

 dydt = [ylag1(1);ylag1(1)+ylag2(2)];  

end  

function  S = ddex1hist(t)  

  S = ones(2,1); end  lags = [2,0.5];  

 

sol = 

dde23(@ddex1de,lags,@ddex1hist,[

0,5]);  plot(sol.x,sol.y);  

title( 'dy1/dt=y(t - 2),dy2/dt=y(t -

2)+y(t - 0.5)' );  

xlabel( 'time t' );  

ylabel( 'solution y' );  

legend( 'y_1' , 'y_2' , 'Location' , 'N

orthWest' );  

tint = linspace(0,5,10);  

Sint = deval(sol,tint) on end  
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Table 2.5: Value of ό and t in Figure2.8 from Matlab illustrate three 

Value of 

◊ & ◄ 

Columns 1 through 7 Value of 

◊ & ◄ 

Columns 8 through 10 

 

('o') 

 

ό ρȢππππ ȟὸ π 
ό  ςȢρρτςȟὸ  πȢφ 
ό  σȢυωφρȟὸ  ρȢς 
ό  υȢχωσρȟὸ  ρȢχ 
ό  ωȢπτρσȟὸ  ςȢσ 
ό ρσȢψτςχȟὸ  ςȢψ 
ό ςρȢπυρσȟὸ  σȢτ 

 

('o') 

 

ό  σςȢςφπχȟὸ  σȢω 

ό   τωȢυωφρȟὸ  τȢτ 

ό   χφȢσφςχ ȟὸ υ  

 

Algorithm of DDEs in Matlab illustrate three 

 

 

 

 

 

2.8.4 Matlab illustrate four  

Computing and plotting the solution of DDEs on πȟυ, by using solver DDE23, (Shampi 

and Thompson, 2000). 

                                               

ừ
Ừ

ứ
ό ὸ ό ὸ πȢυȟὸ π                           

ό ὸ ό ὸ πȢυ ό ὸ πȢψȟὸ π

ό ὸ ό ὸȟὸ π                                      

ό ὸ ρȟό ὸ ρȟὸ π                         

 

 

function  VDde23 

% solving DDEs  

clear;  

clc;  

function  dydt = ddex1de(t,y,Z)  

ylag1 = Z(:,1)+Z(:,2);  

dydt = ylag1(1);  

end  

function  S = ddex1hist(t)  

S = 1;  

end  

lags = [3,0.5];  

 

sol  = 

dde23(@ddex1de,lags,@ddex1hist,

[0,5]);  plot(sol.x,sol.y);  

title( 'dy/dt=y(t - 3)+y(t - 0.5)' );  

xlabel( 'time t' );  

ylabel( 'solution y' );  

legend( 'y' , 'Location' , 'NorthWes

t' );  

tint = linspace(0,5,10);  

Sint = deval(sol,tint)  

hold on plot(tint,Sint, 'o' );  

grid on 

end  
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Figure 2.9: Solution of DDEs  

Table 2.6: Value of όȟόȟόȟ and t in Figure2.9 from Matlab illustrate four 

Value 

of 

◊ & ◄ 

Columns 1 through 7 

   ◄ ȟ◊        ◄ ȟ◊      ◄ ȟ◊  

Value 

of 

◊ & ◄ 

Columns 8 through 10 

   ◄ ȟ◊       ◄ ȟ◊      ◄ ȟ◊  

 

('o') 

 

πȟρȢππππȟπȟρȢπππππȟπȟρȢππππ 
πȢφȟρȢυυχȟπȢφȟςȢρρςȟπȢφȟρȢψφτ 
ρȢςȟςȢςωψȟρȢςȟσȢυπφȟρȢςȟσȢσωσ 
ρȢχȟσȢσωφȟρȢχȟυȢψςςȟρȢχȟυȢωσυ 
ςȢςȟυȢπςπȟςȢςȟωȢτχψȟςȢςȟρπȢρπ 
ςȢψȟχȢτςρȟςȢψȟρυȢςτȟςȢψȟρφȢψυ 
σȢτȟρπȢωχȟσȢτȟςτȢςυȟσȢτȟςχȢφτ 

 

('o') 

 

σȢψȟρφȢςρȟσȢψȟσψȢςψȟσȢψȟττȢχ 
τȢτȟςσȢωφȟτȢτȟφπȢπρȟτȢτȟχρȢφπ 
υȢπȟσψȢτσȟυȢπȟωχȢυρȟυȢȟρρχȢυψ 

 

 

Algorithm of DDEs in Matlab illustrate four 

 

 

 

 

 

 

 

 

function  VDde23 

% solving DDEs  

clear;  

clc;  

function  dydt = ddex1de(t,y,Z)  

  ylag1 = Z(:,1);  

  ylag2 = Z(:,2);  

 dydt = [ylag1(1); ylag1(1)+ylag2(2);  

 y(2)];  

end  

function  S = ddex1hist(t)  

  S = ones(3,1);  

end  

lags = [0.5,0.8];  

 

sol = 

dde23(@ddex1de,lags,@ddex1hist,[

0,5]);  plot(sol.x,sol.y);  

title( 'Delay differential 

equation' );  

xlabel( 'time t' );  

ylabel( 'solution y' );  

legend( 'y_1' , 'y_2' , 'y_3' , 'Locati

on' , 'NorthWest' );  

tint = linspace (0,5,10);  

Sint = deval(sol,tint)  

hold on plot(tint,Sint, 'o' );  

grid on 

end  
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CHAPTER 3 

METHODS AND METHODOLOGY FOR SOLVING LDDE 

 

 

In this chapter methods for solving linear first order delay differential equations (LDDEs) 

will be discussed; there are many methods for solving DDEs: Characteristic, Steps, Matrix 

Lambert Function, Differential transform, a domain e-composition, Multistep Block, Theta, 

and Laplace transform éetc. We will use some of these methods to solve linear first order 

delay differential equations, with single constant-delay and constant coefficients.  Graph-

Matica and Matlab will be used to plotting the graph in this chapter, to understanding this 

chapter well; the reader must have a good background in differential equations and 

knowing how to use Matlab codes, because Matlab is very smooth to solve many problems 

in various class of mathematics.  

3.1 Characteristic Method  

Consider the linear first order delay differential equation, with single constant-delay and 

constant coefficient, with Boundary Value Problem (BVP), (Falbo, 1995). 

                                 
όὸ όὸ ȟ πȟέὲ πȟὨ

όὸ  —ὸȟέὲ ȟπ
                              (3.1) 

To solve linear first order delay differential equation (3.1) by method of characteristic 

(MOC), following, (Hale and Lunel, 1993). Recall that in the case of n linear homogenous 

ordinary differential equations with constant coefficients there are n linearly independent 

solutions. And we know that the general solution is expressible as an arbitrary linear 

combination of these n solutions. But the situation is more complicated for linear first 

order delay differential equation with single constant-delay and constant coefficients, 

because this equation has infinitely many linearly independent solutions. The characteristic 

equation for a homogeneous linear delay differential equation with constant coefficients is 

obtained from the equation by looking for nontrivial solutions of the form ὈὩ  where Ὀ is 

constant. Suppose (3.1) has non trivial solution όὸ ὈὩ , if and only if Ὣί ὛὩ

 πȢ  



21 

 

If we plugging ὈὩ  into equation (3.1), όὸ όὸ ȟ π, then we obtain the 

nonlinear characteristic equation ὛὩ  π. When  is a single constant non-negative 

number, and the function Ὣί is defined as 

                                                  Ὣί ὛὩ  (3.2)                                                     

Where,  is the parameter. Figure (3.1) shows the graph of equation (3.2), which we sketch 

a few member of this -parameter set of curves. Then we get four various cases when  is 

a single constant-delay and different value of parameter . 

 

Figure 3.1:Ὣί ὛὩ   for fixed  and different 

Now we need to show the complex roots of Ὣί π, this implies that  

                                       ὛὩ  π                                                              (3.3) 

If  π, in this situation, the delay differential equation όὸ π and equation (3.3) has 

only one root ί π, then the solution is the constant —π. The our aim here is when 

π, therefor we have four cases. This equation has infinite many complex (non-real) 

solutions, and then we describe roots of Ὣί belongs to these four possibility cases: 

Case one: If  π, then Ὣί has no real roots. 

Case two: If  , then Ὣί has exactly one real root, ί . 

Case three: If  π, then Ὣί has exactly two real roots, both non-positive, and 

Case four: If  π, then Ὣί has exactly one real root, ί, and ί π.  

 

Case 3  
Case 4 

Case 1  
Case 2
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3.2 The Method Solution 

In this section we will show conditions for each cases and write the general formal 

solutions, to solve Boundary Value Problem (3.1) 

   
όὸ όὸ ȟ  πȟ έὲ πȟὨ

όὸ  —ὸȟ έὲ ȟπ                            
 

3.2.1 Case one 

 π, this mean Ὣί has no real roots. But in order to start the first step of 

solution, we can order complex number ύ ‘ Ὥ, such that ύὩ  π. If  

‘ ὭὩ  π, then 

‘ ὭὩ Ὡ  

‘ ὭÃÏÓ ὭÓÉÎ Ὡ  

This implies that         

                                          ‘ÃÏÓ ÓÉÎ Ὡ                                    (3.4) 

                                                ÃÏÓ ‘ÓÉÎ π                                          (3.5) 

Or                           

                                              ‘ ÃÏÔȟ π                                             (3.6) 

Then we can note that  

ÌÉÍ
ᴼ
ÃÏÔ ÌÉÍ

ᴼ

ÃÏÓ

ÓÉÎ

ρ


 

Apply LôHopitalôs Theorem: For ÌÉÍO  , if  

ÌÉÍ
ᴼ

ήώ

ὴ

π

π
 

Or  

ÌÉÍ
ᴼ

ήώ

ὴ

Њ

Њ
 



23 

 

Then          

ÌÉÍ
ᴼ

ήώ

ὴ
ÌÉÍ
ᴼ

ήώ

ὴ
 

Test LôHopitalôs condition:  

ÌÉÍ
ᴼ

ÃÏÓ

ÓÉÎ
ÌÉÍ
ᴼ

ÃÏÓ

ÓÉÎ
 

Apply product rule: ήȢὴ ήȢὴ ήȢὴ 

 

ÌÉÍ
ᴼ

ÃÏÓ

ÓÉÎ
ÌÉÍ
ᴼ
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 when  π, substitute ‘ from equation (3.6) into equation (3.4), then we get. 

                                              ÓÉÎὩ                                     (3.7) 

Now, let ὢ , then 

                                         ὢ ÓÉÎὢὩ  , where                       (3.8) 

If we find the intersection of the line ὣ ὢ, for solving the equation (3.8) with the one-

parameter set of curves. 

                                           ὣ ÓÉÎὢὩ                                          (3.9) 

As we say that before,  is single constant-delay and  is the coefficient, Figure (3.2) 

shows that equation (3.8) has infinitely many solutions, denoted by, ὢȟὭ ρȟςȟσȟȣ , this 

for case one, and we can use some of  Numerical Methods to obtain solutions for different 

given values of ȟ such as Newtonôs Method, (Falbo, 1995). 
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Figure 3.2: ὣ ὢ and ὣ ÓÉÎὢὩ  

We know,  ὢȾ, this implies that  ὢȾ, now from equation (3.6) we obtain ‘, 

then the roots of equation (3.8) are ‘ Ὥ , and the characteristic solutions are 

Ὡ ÃÏÓὸ and Ὡ ÓÉÎὸ, so the formal solution to the linear first order  delay 

differential equations, (LDDEs) is 

                    όὸ В Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ                         (3.10) 

Because the Boundary Value Problem (3.1) is linear, and    , where Ὀ  and Ὀ  

are arbitrary constant, if we observe the point ὢȟὣ is that, when ὢ π, the set of curves 

defined by equation (3.9) are intersected to the right of the vertical asymptotes that are 

non-even multiples of “.Then the values of ‘  are negative at all these points of 

intersection, so that when ȿὢȿO Њ, the values of ‘ are decrease, as well as: 

If we are thinking for some non-negative integers ὶ and ὲ,  , then 

‘ π, for that ὲȡ so, the solutions are vacillate and undamped, but ‘ πȟᶅ other values 

of , and the vacillations in equation (3.10) are damped by the fullness Ὡ . 

3.2.2 Case two 

From equation (3.6) when ÌÉÍO‘ , which is mean that ‘ᴼ  as O π, continuity 

at  π, this implies that equation (3.4) and (3.5) are satisfied by ‘ȟ ȟπ, and so 

  , when  π, then Ὣί has one real root ί  , and we can found the real root 

‘  , from equations (3.4) and (3.5) when  π.  

 

   ὣ ÓÉÎὢὩ  

    ὣ ὢ 
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So we will add a new part characteristic solution Ὡ ϳ  to the formal solution of linear 

first order delay differential equations, (LDDEs), with Boundary Value Problem (3.1) 

which is of the form  

             όὸ ὈὩ ϳ В Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ                 (3.11) 

Where ‘ and  are roots of equations (3.4) and (3.5) for this . 

3.2.3 Case three 

If  π , then Ὣί has two non-positive real roots, ί ί. To solve for ί 

use Newtonôs Method, with initial value, start point Ὤ  and for ί, the start point is 

Ὤ , and for each positive integer Ὧ, define  

Ὤ Ὤ
ὫὬ

Ὣ Ὤ
 

Then, ί ÌÉÍO Ὤ, the two new characteristic solutions Ὡ  and Ὡ , obtained from 

equations (3.4) and (3.5). When, ᶰ ȟπ, so the formal solution to the linear first order  

delay differential equations, (LDDEs), with Boundary Value Problem (3.1) is  

      όὸ ὈὩ ὈὩ В Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ          (3.12) 

3.2.4 Case four 

If  ὥ π, the equation (3.3), ὛὩ  π has exactly one positive root ί, we can use 

Newto-nôs Method to find it with initial value, start point Ὤ ρ, so when  π the 

formal solution to linear first order  delay differential equations (LDDEs), with Boundary 

Value Problem (3.1) is  

        όὸ ὈὩ В Å Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ                      (3.13) 

Note: so we can solve any equation which is linear first order  delay differential equations 

(LDDEs) with Boundary Value Problems (BVPs), by one of these four cases , but the 

important thing here to show and  write the general formal solution to the Boundary Value 



26 

 

Problems, we will talking about the general solution and the approximate solution in the 

next section.  

3.3 The General Solution  

The values of ‘ π for all cases and all the infinite series solutions in each of the 

equations (3.10) through (3.13) are convergent. Now we summarize the formal solutions to 

the linear first order delay differential equations (LDDEs) with Boundary Value Problems 

(BVPs) 

3.3.1 Theorem  

Assume  be any non-negative number, ɴ ͵π, and equation (3.3) has complex roots 

‘ Ὥ obtained from equation (3.4) and (3.5), then for arbitrary constants Ὀ  and Ὀ  

the function όὸ defined as follows  

                           όὸ ὈὩ ϳ ὈὩ ὈὩ ὈὩ                 (3.14) 

В Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ   

Satisfies the equation όὸ όὸ ȟ πȟέὲ πȟὨȟὨ π 

Provided that  

i. Ὀ Ὀ Ὀ Ὀ π, when  , 

ii.  Ὀ Ὀ Ὀ π and Ὀ is arbitrary when  , 

iii.  Ὀ Ὀ π and Ὀ & Ὀ are arbitrary and ί and ί are the real roots of equation 

(3.3), when  π. 

iv. Ὀ Ὀ Ὀ π and Ὀ is arbitrary and ί is the real root of equation (3.3) when 

 π. 

Now to solve equation (3.1), we must use equation (3.14) for a given pair ȟ and a given 

function —ὸ with condition for ὸɴ ȟπ. 

—ὸ ὈὩ ϳ ὈὩ ὈὩ ὈὩ  

                         В Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ                              (3.15) 
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3.3.2 Approximate solutions 

To approximate the solution of equation (3.15), we define the function ό ὸ as follows  

                      ό ὸ ὈὩ ϳ ὈὩ ὈὩ ὈὩ                   (3.16)              

В Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ  

Because the characteristic functions Ὡ ÃÏÓὸȟὩ ÓÉÎὸ  are linearly 

independent so, to prove the two characteristic functions are linearly independent, we need 

to take the Wronskian for these two solutions and show that it is not zero. 

ὡ
Ὡ ÃÏÓὸ Ὡ ÓÉÎὸ

‘Ὡ ÃÏÓὸ Ὡ ÓÉÎὸ ‘Ὡ ÓÉÎὸ Ὡ ÃÏÓὸ
 

Ὡ ÃÏÓὸ ‘Ὡ ÓÉÎὸ Ὡ ÃÏÓὸ

Ὡ ÓÉÎὸ ‘Ὡ ÃÏÓὸ Ὡ ÓÉÎὸ  

Ὡ ὧέίὸ Ὡ ίὭὲὸ 

Ὡ ὧέίὸ ίὭὲὸ  

Ὡ  

Now, the exponential will never be zero and  π, ( if it were we wouldnôt have complex 

roots !) and so ὡ π. Therefore, these two solutions are in fact a fundamental set of 

solutions and so the approximate solution is equation (3.16). Therefore ό π —π for 

continuity at π. If we uniformly partition ȟπ into Ὦ subintervals where Ὦ ςά ρ ὦ 

points, here ὦ is depend on the number of arbitrary coefficients through the first four which 

ὦ is either πȟρȟςȟσ έὶ τ. We denote the partition of ȟπ by „ so this implies that its 

points are:  ὸ ὸ Ễ ὸ π then ό (ὸ) —ὸ , forὭ πȟρȟȣȟὮ ρ, is a Ὦ Ὦ 

non-singular linear system that can be solved for its coefficient. 

Note: We can apply the Characteristic Method to the Boundary Value Problem (3.17), for 

given  πȟὨ π, (Hale and Lunel, 1993). 
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όὸ ὧόὸ ὧόὸ ȟ πȟέὲ πȟὨ

όὸ  —ὸȟέὲ ȟπ
               (3.17) 

As we assumed in the equation (3.1) , we will assume that the solution to (3.17) has the 

form  όὸ ὈὩ , with Ὀ arbitrary for some ᾀ, (real or complex) 

                                        ὈᾀὩ ὧὈὩ ὧὈὩ                                    (3.18) 

                                                ᾀ ὧὩ ὧ π                                         (3.19) 

Now, suppose ᾀ ὧ Ὧ, this becomes ὯὩ ὧὩ π. Since ὧȟὧ, and  are 

given, we can write ὧὩ  as a single number, •, obtaining  

                                                    ὯὩ • π                                                 (3.20) 

Now we can solve equation (3.20) for Ὧ as we solved equation (3.3) for ί. 

3.4 Method of Steps  

In this section we will show how to use the method of steps to solve linear first order delay 

differential equations, the method of steps is one of the rudimentary methods that can solve 

some delay differential equation such as lineal first order delay differential equations, with 

single constant delay and constant coefficients analytically. The general idea in this 

method is change the delay differential equation (DDE) on a given interval to ordinary 

differential equation (ODE) over that interval, and this process is repeated in the next 

interval. Consider the following general linear delay differential equation:  

  όὸ ὶόὸ ὶόὸ  ὶόὸ  Ễ ὶόὸ                    (3.21)             

όὸ — ὸ      ὸ  ὸ ὸȟ π 

The most natural solution for equation (3.21) is called the method of steps or ͼ The method 

of successive integrations ͼ, (Elôsgolôts and Norkin, 1973). The function όὸ is the given 

function — ὸ so that όὸ is known in the interval ὸ ȟὸ ,    Ễ  

the                     

        όὸ ὶόὸ ὶ— ὸ  ὶ— ὸ  Ễ ὶ— ὸ                (3.22) 

όὸ — ὸ       ὸ ὸ ὸ ȟ  π 
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Since for  ὸ ὸ ὸ , arguments ὸ  ȟὸ  ȟȣ ὸ   , and  

 Ễ ,varies in the initial interval set ὸ ȟὸ , so we get: 

          όὸ ὶόὸ ὶ— ὸ  ὶ— ὸ  Ễ ὶ— ὸ                (3.23) 

όὸ  — ὸ     ὸ  ὸ ὸ ςȟ  π 

Then if we continue in this way  

      όὸ ὶόὸ ὶ— ὸ  ὶ— ὸ  Ễ ὶ— ὸ              (3.24) 

όὸ ὲ — ὸ ὲ      ὸ ὲ ὸ ὸ ὲ ρȟ π 

Note 1: we can apply the method of steps to solve the linear first order delay differential 

equation by another way, but have the same idea of this method, especially if the history 

function is constant, consider the lineal first order delay differential equations, with single 

constant-delay and constant coefficient 

                                
όὸ όὸ ȟ          π ὸ 

όὸ ὥȟ                  ὸ π 
                                       (3.25) 

When ὥ is arbitrary constant, assume that we have όὸ Ὣ ὸ  over some 

intervalὸ ρȟὸ . Then over the intervalὸȟὸ ρ, we have by separation of variables, 

(Heffernan and Corless, 2006). 

                                        Ὠὼᶻ Ὣ ὸᶻ Ὠὸᶻ                                      σȢςφ 

                    Ḉόὸ Ὣ ὸ Ὣ ὸ Ὣ ὸᶻ Ὠὸᶻ                              σȢςχ 

Note 2: if we have this kind of linear delay first order differential equation (LDDE), with 

single constant-delay and constant coefficients: 

                       όὸ ὶὸόὸ ὶὸόὸ ȟὪέὶ ὸɴ  πȟ                        (3.28) 

                                   όὸ ὌὸȟὪέὶ ὸɴ ȟπ 
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ὶὸ π and ὶὸ π, are constant functions,  π. Again to solve the equation (3.28), 

we will use the method of steps and apply its condition. On the interval ȟπ the history 

function is the given function Ὄὸ, so the history function is known there. Thus we can 

say the equation is solved for the interval ȟπ, now when ὸɴ πȟȟὸ ᶰ ȟπ, 

so όὸ   becomes ό ὸ   on πȟ. So the equation (3.28) in the interval πȟ 

becomes (Falbo, 2006).         

                   όὸ ὶὸόὸ ὶὸό ὸ ȟὪέὶ ὸɴ  πȟ                      (3.29) 

                                όπ Ὄπ 

Then the equation (3.29) is an ordinary differential equation and not a delay differential 

equat-ion because ό ὸ  is known; it is Ὄὸ . Thus we solve it on the interval 

πȟ and using intial condition, όπ Ὄπ. 

                  όὸ ὶὸόὸ ὶὸὌὸ ȟὪέὶ ὸɴ  πȟ                        (3.30) 

                                  όπ Ὄπ 

The general solution of equation (3.30) is 

                     όὸ
ὶ

Ὡ᷿
Ὡ᷿ Ὄὸ Ὠὸȟέὲ πȟ                              σȢσρ 

Again on the interval ȟς, the equation becomes  

                όὸ ὶὸόὸ ὶὸό ὸ ȟὪέὶ ὸɴ  ȟς                      (3.32) 

                              ό ό  

Note 3:  

                                                 όὸ ὦόὸ                                              (3.33) 

όὸ Ὠȟ  ὸ  ὸ ὸ 

Where Ὠ and  are constant,  π, applying the method of steps, we get 

όὸ Ὠ ὸ
ὸ ὸ Ὧ ρ

ὯȦ
 

where ὸ is the integer part of ὸ , (Elôsgolôts and Norkin, 1973). 
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3.5 How to Use Matlab Codes 

3.5.1 DDE23 solver 

In this section we will show that how to use DDE23 solver in Matlab for solving linear 

first order delay differential equations, with constant single delay and constant coefficient, 

Our aim is to solve delay differential equations (DDEs) by easier way such as using 

DDE23 solver, whereas ordinary differential equations  include  derivatives which rely on 

the solution at the present value of the autonomous variable (ñtimeò) and delay differential 

equations include in addition derivatives which rely on the solution at previous times. The 

purpose of using the Matlabe codes such as DDE23, for both ODEs and DDEs that many 

problems its solutions have several continuous derivatives, and the discontinuities in low 

order derivatives require special attention because this is  very serious matter for delay 

differential equations. For important things that the discontinuities are not uncommon for 

ordinary differential equations, but they are almost always present for delay differential 

equations. Then generally the discontinuity is appear in the first derivatives of the solution 

at the initial point (Thompson, 2000). To know how discontinuities propagate and smooth 

out, let us solve όὸ  όὸ  ρ  for π  ὸ with history —ὸ  ρ f or ὸ  π. With 

this history, the problem reduces on the interval 0 Ò t Ò 1 to the ODE όὸ  ρ with initial 

value όπ  ρ. Solving this problem we find that όὸ  ὸ ρ for π  ὸ  ρȢ Notice 

that the solution has a discontinuity in its first derivative at ὸ  π. In the same way we 

find that όὸ    for ρ  ὸ  ς. The first derivative is continuous at t = 1, but there 

is a discontinuity in the second derivative. In general the solution on the interval ὯȟὯ 

 ρ is a polynomial of degree Ὧ ρ and there is a discontinuity of order k + 1 at t = k, 

(Thompson, 2000).  

A popular approach to solving DDEs is to extend one of the methods used to solve ODEs. 

Most of the codes are based on explicit Runge-Kutta methods. DDE23 takes this approach 

by extending the method of the Matlab ODE solver ODE23. The idea is the same as the so-

called ñmethod of stepsò for solving DDEs that was used to solve an example in the last 

section.  
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Maybe another methods it will be used on Matlab to find approximate solutions, to be 

concrete, we describe the idea as applied to this example. In solving our example for 

π  ὸ  ρ, the DDE reduces to an initial value problem for an ODE with όὸ  ρ 

equal to the given history —ὸ  ρ and initial value όπ  ρ. We can solve this ODE 

numerically using any of the popular methods for the purpose. Analytical solution of the 

DDE on the next interval ρ  ὸ  ς is handled the same way as the first interval, but the 

numerical solution is somewhat complicated, and the complications are present for each of 

the subsequent intervals. The first complication is that we must keep track of how the 

discontinuity at the initial point propagates because of the delays. Another is that at each 

discontinuity we start the solution of an initial value problem for an ODE. Runge-Kutta 

methods are attractive because they are much easier to start than other popular numerical 

methods for ODEs. Still another issue is the term όὸ ρ that is in principle known 

because we have already found όὸ f or π  ὸ  ρ. This has been a serious obstacle to 

applying Runge-Kutta methods to DDEs, so we need to discuss the matter more fully. 

Runge-Kutta methods, like all discrete variable methods for ODEs, produce 

approximations ό to όὺ  on a mesh ὺ  in the interval of interest, here πȟρ.  

They do this by starting with the given initial value, ό  όὥ at ὺ  ὥ, and stepping 

from ό  όὺ a distance of Ὤ  to ό  όὺ  at ὺ ρ  ὺ Ὤ . The step 

size Ὤ is chosen as small as necessary to get an accurate approximation. It is chosen as big 

as possible so as to reach the end of the interval in as few steps as possible, which is to say, 

as cheaply as possible. In the case of solving our example on the interval ρȟς, we have 

values of the solution only on a mesh in πȟρ. So, where do the values όὸ ρ come 

from? In their original form Runge-Kutta methods produce answers only at mesh points, 

but it is now known how to obtain ñcontinuous extensionsò that yield an approximate 

solution between mesh points. The trick is to get values between mesh points that are just 

as accurate and to do this cheaply. In some cases the continuous extensions can be viewed 

as interpolants. The Runge-Kutta methods mentioned are all explicit recipes for computing 

ό  given ό and the ability to evaluate the equation, (Thompson, 2000).  
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For reasons of efficiency, a solver tries to use the biggest step size ό that will yield the 

specified accuracy, but what if it is bigger than the shortest delay ? In taking a step 

to ὺ Ὤ, we would then need values of the solution at points in the span of the step, but 

we are trying to compute the solution at the end of the step and do not yet know these 

values. A good many solvers restrict the step size to avoid this issue. Some solvers, 

including DDE23, use whatever step size appears appropriate and iterate to evaluate the 

implicit formula that arises in this way. We illustrate the straightforward solution of a DDE 

by computing and plotting the solution of Example, (Thompson, 2000). The equations  

                                               ό ὸ ό ὸ πȢυ, ὸɴ πȟυ 

                                               ό ὸ ό ὸ πȢυ ώ ὸ πȢψ,   

                                               ό ὸ ό ὸ 

                                               ό ὸ ρȟό ὸ ρ,  ὸ π 

The syntax has the form  

ίέὰὨὨὩςσὨὨὩὪὭὰὩȟὰὥὫίȟὬὭίὸέὶώȟὸίὴὥὲȠ 

The interval πȟυ is the interval of integration which is denote by ͼ ÔÓÐÁÎͼ, the history 

argu-ment is the name of a function that evaluates the solution at the input value of  and 

returns it as a column vector, the function for evaluating the DDEs is denoted by 

ͼÄÄÅÆÉÌÅͼ. 

Here exam1h.m can be coded as: 

ὪόὲὧὸὭέὲ ὺ  ὩὼὥάρὬὸ 

ὺ  έὲὩίσȟρ 

Quite often the history is a constant vector. A simpler way to provide the history then is to 

supply the vector itself s the history argument. The delays are provided as a vector lags, 

here πȢυȟπȢψ. ddefile is the name of a function for evaluating the DDEs. Here exam1f.m 

can be coded as: 

ὪόὲὧὸὭέὲ ὺ  ὩὼὥάρὪὸȟόȟὤ 

όὰὥὫρ  ὤȡȟρȠ 
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όὰὥὫς  ὤȡȟςȠ 

ὺ  ᾀὩὶέίσȟρȠ 

ὺρ  όὰὥὫρρȠ 

ὺς  όὰὥὫρρ  όὰὥὫςςȠ 

ὺσ  όςȠ 

The input t is the current t and y, an approximation to όὸ. The input array ὤ contains 

approximations to the solution at all the delayed arguments. Specifically, ὤȡȟὮ 

approximates όὸ   f or Űj given as ὰὥὫίὮ. It is not necessary to define local 

vectors όὰὥὫρ, όὰὥὫς as we have done here, but often this makes the coding of the DDEs 

clearer. The ddefile must return a column vector, (Thompson, 2000).This is perhaps a good 

place to point out that DDE23 does not assume that terms like όὸ   actually appear in 

the equations. Because of this, you can use DDE23 to solve ODEs. If you do, it is best to 

input an empty array,  , f or lags because any delay specified affects the computation 

even when it does not appear in the equations. The input arguments of dde23 are much like 

those of ODE23, but the output differs formally in that it is one structure, here called sol, 

rather than several arrays ὸȟόȟȢȢȢ  έὨὩςσȢȢȢ). The field ίέὰȢὼ corresponds to the array 

ὸ of values of the independent variable returned by ODE23 and the field ίέὰȢό, to the array 

ό of solution values. So, one way to plot the solution is:  ὴὰέὸίέὰȢὼȟίέὰȢό ; After 

defining the equations in exam1f.m, the complete program exam1.m to compute and plot 

the solution is: 

ὴὰέὸίέὰȢὸȟίέὰȢόȠ 

ὸὭὸὰὩȭὊὭὫόὶὩ ρȢὉὼὥάὴὰὩ έὪ ὈὈὉίȭ 

ὼὰὥὦὩὰȭὸὭάὩ ὸȭȠ 

ώὰὥὦὩὰȭόὸȭȠ 
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Note that we must supply the name of the ddefile to the solver, i.e., the string ôexam1fô 

rather than exam1f. Also, we have taken advantage of the easy way to specify a constant 

history. 

Table 3.1: explain the DDE23 solver to solve delay differential equation 

ὪόὲὧὸὭέὲ ὺ  ὩὼὥάρὬὸ 

ὺ  έὲὩίσȟρ 

The history function is a constant vector. A simpler way to provide 

the history then is to equipping the vector itself as the history 

argument. The delays are provided as a vector lags, here πȢυȟπȢψȢ  

ὪόὲὧὸὭέὲ ὺ  

 ὩὼὥάρὪὸȟόȟὤ 

όὰὥὫρ  ὤȡȟρȠ 

όὰὥὫς  ὤȡȟςȠ 

ὺ  ᾀὩὶέίσȟρȠ 

ὺρ  όὰὥὫρρȠ 

ὺς  όὰὥὫρρ 

  όὰὥὫςςȠ 

ὺσ  όςȠ 

The input t is the current t and ό, an approximation to όὸ. The 

input array ὤ contains approximations to the solution at all the 

delayed arguments. Specifically, ὤȡȟὭ approximates όὸ   

for  given as ὰὥὫίὭ. Define όὰὥὫρ and όὰὥὫς, but often this 

makes the coding of the DDEs clearer. The ddefile must return a 

column vector. 

▼▫■  ▀▀▄ ȭ▄●╪□ █ȭȟ 

ȢȟȢ ȟ▫▪▄▼ȟ ȟ ȟ Ƞ 

DDE23 solver  

ὴὰέὸίέὰȢὸȟίέὰȢόȠ 

ὸὭὸὰὩȭὊὭὫόὶὩ ρȢὉὼὥάὴὰὩ  

έὪ ὈὈὉίȭ 

ὼὰὥὦὩὰȭὸὭάὩ ὸȭȠ 

ώὰὥὦὩὰȭόὸȭȠ 

We must define the equations in exam1f.m, the complete program 

exam1.m to compute and plot the solution. Note that we must 

supply the name of the ▀▀▄█░■▄ to the solver. 

Solution of delay differential 

equations  
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3.5.2 DDESD solver  

DDESD solver for solving delay differential equation (DDEs) with general delays, this 

code is like the DDE23 in some properties. 

Table 3.2: explain the DDESD solver to solve delay differential equation 

ὪόὲὧὸὭέὲ ὠὈὨὨὩίὨς 
Ϸ ίέὰὺὭὲὫ ὈὈὉί  
ὧὰὩὥὶȠ 
ὧὰὧȠ 

Define the m-file in the local function. 

ὪόὲὧὸὭέὲ ώὴ ὨὨὩὪόὲὸȟόȟᾀ 
        όὴ  ᾀȠ 
 

The delay equation which is denoted by z. 

ὪόὲὧὸὭέὲ Ὠ  ὨὩὰὥώὸȟώ 
        Ὠ  ὸ Ƞ 
    ὩὲὨ 
    ὪόὲὧὸὭέὲ ό  ὬὭίὸέὶόὸ 
        ό ὬὭίὸέὶώȠ 
    ὩὲὨ 
ίέὰ  ὨὨὩίὨͽὨὨὩὪόὲȟ 
ͽὨὩὰὥώȟͽὬὭίὸέὶώȟπ a Ƞ 
 

Define the time delay and the hisory function , specify the 

history function in one of three ways. 

¶ A function of t such that ό  history όὸ returns the 

solution όὸ for ὸ ὸ as a column vector. 

¶ A constant column vector, if όὸ is constant. 

¶ The solution sol from a previous integration, if this 

call continues that integration. 

ὸὲ  ὰὭὲίὴὥὧὩπȟὥȠ 
ώὲ  ὨὩὺὥὰίέὰȟὸὲȠ 
ὴὰέὸὸὲȟώὲȟᴂὧέὰέὶᴂȟᴂὶᴂȟᴂὰὭὲὩύὭὨὸὬᴂȟςȠ 
ὸὭὸὰὩᴂὨόȾὨὸᾀᴂ 
ὼὰὥὦὩὰᴂὸὭάὩ ὸȟώὰὥὦὩὰᴂόὸᴂ 

The ▀▀▄█◊▪ is function handel that evaluates the rghit sids 

of the differential eqautions, again ◄▼▬╪▪ is interv-al of 

integration from ὸ ὸίὴὥὲ to ὸὪὸίὴὥὲὩὲὨ with 

ὸ ὸὪ. 

 

Example: 
όὸ όὸ υȟὸɴ πȟυ

όὸ ὸȟέὲ υȟπ
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CHAPTER 4 

SOLVING LDDE BY MOC AND METHOD OF STEPS 

 

 

In this chapter we will give some examples of linear first order delay differential equations, 

with single constant delay (DDEs), and solving these examples by using the method of 

characteristic and method of steps, we will compare algebraic solutions with approximate 

solutions by using Matlab. For comparing the solutions we used two cods from the Matlab, 

DDE23 and DDESD solver, we will start algebraic solutions to every problem with 

drawing the solution in a graph, and then compare them with approximate solutions at 

another graph, therefore the best program for solving many types of delay differential 

equation is Matlab because it is deal with complicated problem by easier way, we have 

some another program to solve DDEs such as Mapleéetc. But Matlab is the best, we have 

another program for drawing the solutions named Graph-Matica we used it. 

4.1 MOC Examples 

In this section we will solve some examples of linear first order delay differential equation, 

with single constant-delay and constant coefficients. 

4.1.1 Example of case one 

Use Characteristic Method to solve the (BVP) and sketch the graph, (Falbo, 1995) with 

given an approximate solution ◊ ◄. 

   
όὸ ρȢςυόὸ ρȢςυȟ    έὲ πȟσπ

 —ὸ Ὡ ȟ έὲ ȟπ
 

Solution: Ὠ σπ πȟ ρȢςυ πȟ ρȢςυ π, now if we check the value of  and 

 its belongs to case one, which  πO ρȢςυ
Ȣ

π. Now substitute 

value of ὥ and  into equation (3.8) we get  

ὢ ρȢυφςυÓÉÎὢὩ  
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Solving this equation by Newtonôs Method for a few roots, we will obtain the values of ὢ, 

and ὢ ρȢυφψτȟχȢφτφυȟρσȢωψπψȟȣ, since ὢ  from this we get values of , 

which is equal to ȡ ρȢςυτχȟφȢρρχςȟρρȢρψτχ. From equation (3.6) we get the values 

of ‘, which is equal to ‘ȡ‘ πȢππσρȟρȢςψχχȟρȢχφςω. 

Now, we know our approximate solution is ό π —π, which ά ς, we must divide 

the interval ρȢςυȟπ to subintervals depend on this Ὦ ςά ρ ὦ, so that Ὦ ςς

ρ π σ, ρȢςυȟπ ρȢςυȟπȢψσσσ᷾ πȢψσσσȟπȢτρφφφ᷾ πȢτρφφφȟπ, this 

implies that ὸ πȟὸ πȢτρφφφȟὸ πȢψσσσȟὸ ρȢςυ. 

Now since ό ὸ —ὸ Ὡ ȟά ς , then 

ό ὸ —ὸ Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ  

Ὡ Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ Ὡ Ὀ ÃÏÓὸ Ὀ ÓÉÎὸ  

Ὡ Ȣ Ὀ ÃÏÓρȢςυτχὸ Ὡ Ȣ Ὀ ÓÉÎρȢςυτχὸ Ὡ Ȣ Ὀ ÃÏÓφȢρρχςὸ

Ὡ Ȣ Ὀ ÓÉÎφȢρρχςὸ 

To obtain the value of arbitrary coefficients, Ὀ ȟὈ ȟὈ ȟὈ  , we need the values of ὸ, 

where  ὸ πȟὸ πȢτρφφφȟὸ πȢψσσσȟὸ ρȢςυ. We will get the τ τ system of 

linear equations. 

When ὸ π  

Ὡ Ὡ Ȣ Ὀ ÃÏÓρȢςυτχπ Ὡ Ȣ Ὀ ÓÉÎρȢςυτχπ

Ὡ Ȣ Ὀ ÃÏÓφȢρρχςπ Ὡ Ȣ Ὀ ÓÉÎφȢρρχςπ  

                                              Ὀ Ὀ ρ                                                    (4.1) 
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When ὸ πȢτρφφφ 

Ὡ Ȣ Ὡ Ȣ Ȣ Ὀ ÃÏÓρȢςυτχπȢτρφφφ

Ὡ Ȣ Ȣ Ὀ ÓÉÎρȢςυτχπȢτρφφφ

Ὡ Ȣ Ȣ Ὀ ÃÏÓφȢρρχςπȢτρφφφ

Ὡ Ȣ Ȣ Ὀ ÓÉÎφȢρρχςπȢτρφφφ 

      πȢψφχχυυὈ ρȢτψςωὈ πȢτωωωσὈ πȢωυυσωὈ πȢψτππφς          τȢς 

When ὸ πȢψσσσ 

Ὡ Ȣ Ὡ Ȣ Ȣ Ὀ ÃÏÓρȢςυτχπȢψσσσ 

Ὡ Ȣ Ȣ Ὀ ÓÉÎρȢςυτχπȢψσσσ

Ὡ Ȣ Ȣ Ὀ ÃÏÓφȢρρχςπȢψσσσ

Ὡ Ȣ Ȣ Ὀ ÓÉÎφȢρρχςπȢψσσσ 

          πȢυπςχσὈ ρȢπωψτσὈ πȢψφχτσὈ ςȢχρπρρὈ πȢτωωσχω      τȢσ     

When ὸ ρȢςυ 

  Ὡ Ȣ Ὡ Ȣ Ȣ Ὀ ÃÏÓρȢςυτχρȢςυ 

Ὡ Ȣ Ȣ Ὀ ÓÉÎρȢςυτχρȢςυ

Ὡ Ȣ Ȣ Ὀ ÃÏÓφȢρρχςρȢςυ

Ὡ Ȣ Ȣ Ὀ ÓÉÎφȢρρχςρȢςυ 

             πȢππςτσὈ ρȢπσπρχὈ ρȢππσψχὈ τȢψωσφχὈ πȢςπωφ       τȢτ 
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Now we have τ τ system of linear equations 

    Ὀ Ὀ ρ                                                                                                         (4.1)       

 πȢψφχχυυὈ ρȢτψςωὈ πȢτωωωσὈ πȢωυυσωὈ πȢψτππφς                (4.2)    

 πȢυπςχσὈ ρȢπωψτσὈ πȢψφχτσὈ ςȢχρπρρὈ πȢτωωσχω                (4.3)     

πȢππςτσὈ ρȢπσπρχὈ ρȢππσψχὈ τȢψωσφχὈ πȢςπωφ                      (4.4) 

Solving τ τ system of linear equations by Gaussian Elimination, rewrite the system in 

mat-rix form and solving by Gaussian Elimination (Gauss-Jordan elimination) 

ρ ρ π
πȢψχχυυρȢτψςωπȢτωωωσ
πȢυπςχσρȢπωψτσπȢψφχτσ
πȢππςτσρȢπσπρχρȢππσψχ

    

π ể ρ
πȢωυυσωể πȢψχχυυ
ςȢχρπρρể πȢυπςχσ
τȢωψωσφχể πȢππςτσ

 

Ὑ πȢψχχυυὙᴼὙ , multiply Ὧ  row by ά  and subtract it from ὲ  row; Ὑ

πȢυπςχσ Ὑ ᴼὙ , multiply Ὧ  row by ά  and subtract it from ὲ  row; Ὑ

πȢππςτσὙ ᴼὙ , mul-tiply Ὧ row by ά  and subtract it from ὲ row. 

ρ ρ π
π ςȢσφπτυπȢτωωωσ
π πȢυωυχ πȢψφχτσ
π ρȢπςχχτρȢππσψχ

    

π ể ρ
πȢωυυσωể πȢπσχτψψ
ςȢχρπρρể πȢππσσυρ
τȢωψωσφχể πȢςπχρχ

 

ὙȾςȢσφπτυᴼὙ , divide the Ὥ row by ὲ 

ρ ρ π
π ρ πȢςρρχωτσφρς
π πȢυωυχ πȢψφχτσ
π ρȢπςχχτ ρȢππσψχ

    

π ể ρ
πȢτπτχτωπωττể πȢρυσωωπωχ
ςȢχρπρρ ể πȢππσσυρ
τȢωψωσφχể πȢςπχρχ

 

Ὑ ρὙ ᴼὙ , multiply Ὧ  row by ά  and subtract it from ὲ  row; Ὑ πȢυωυχ 

Ὑ ᴼὙ , multiply Ὧ row by ά  and subtract it from ὲ row; Ὑ ρȢπςχχτὙ ᴼὙ , 

multiply Ὧ row by ά  and subtract it from ὲ row. 
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ρ π πȢςρρχωτσφρς
π ρ πȢςρρχωτσφρς
π π πȢωωσυωυωππ
π π ρȢςςρυσωυσχ

    

πȢτπτχτωπωττể πȢωψτρρψςψςυσ
πȢτπτχτωπωττể πȢρυσωωπωχ
ςȢωυρςρωπσυυφể πȢπρςψρρχυπυ
τȢτχχφωσρφυφể πȢρωπψτχχςσφψψ

 

ὙȾπȢωωσυωυωππᴼὙ , divide the Ὥ row by ὲ 

ρ π πȢςρρχωτσφρς
π ρ πȢςρρχωτσφρς
π π ρ
π π ρȢςςρυσωυσχ

    

πȢτπτχτωπωττể πȢωψτρρψςψςυσ
πȢτπτχτωπωττể πȢρυσωωπωχ
ςȢωχπςτπχυể πȢπρςψωτσρυ
τȢτχχφωσρφυφể πȢρωπψτχχςσφψψ

 

πȢςρρχωτσφρςὙ Ὑ ᴼὙ , multiply Ὧ  row by ά  and subtract it from ὲ  row; 

Ὑ πȢςρρχωτσφρς Ὑ ᴼὙ , multiply Ὧ row by ά  and subtract it from ὲ row; 

ρȢςςρυσωυσχὙ Ὑ ᴼὙ , multiply Ὧ row by ά  and subtract it from ὲ row. 

ρ π π
π ρ π
π π ρ
π π π

    

πȢςςτσσρρτψể πȢωψφψτωπυ
πȢςςτσσρρτψểπȢπρσρυπχχτ
ςȢωχπςτπχυểπȢπρςψωτσρυ
ψȢρπυωυωφχχể ςȢπφυωψφτ

 

ὙȾψȢρπυωυωφχχᴼὙ , divide the Ὥ row by ὲ 

ρ π π
π ρ π
π π ρ
π π π

    

πȢςςτσσρρτψể πȢωψφψτωπυ
πȢςςτσσρρτψểπȢπρσρυπχχτ
ςȢωχπςτπχυểπȢπρςψωτσρυ
ρ ểπȢπςυτψχςυς

 

πȢςςτσσρρτψὙ Ὑ ᴼὙ , multiply Ὧ  row by ά  and subtract it from ὲ  row; 

ςȢωχπςτπχυ Ὑ Ὑ ᴼὙ , multiply Ὧ  row by ά  and subtract it from ὲ  row; 

Ὑ πȢςςτσσρρτψὙ ᴼὙ , multiply Ὧ row by ά  and subtract it from ὲ row. 

ρ π π
π ρ π
π π ρ
π π π

    

π ể πȢωφφφ
π ể πȢπσσσυσ
π ể πȢπυρπψ
ρ ể πȢπςτψχπτ
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So that the values of arbitrary coefficients Ὀ πȢωφφφȟὈ πȢπυρπψȟὈ

πȢπσσσυ3 ȟὈ πȢπςτψχπφ the characteristic solutions: 

ό ὸ Ὡ Ȣ πȢωφφφÃÏÓρȢςυτχὸ Ὡ Ȣ πȢπυρπψÓÉÎρȢςυτχὸ

Ὡ Ȣ πȢπσσσυσÃÏÓφȢρρχςὸ Ὡ Ȣ πȢπςτψψÓÉÎφȢρρχςὸ 

Figure (4.1) shows the graph of characteristic solution and Figure (4.2) shows the 

numerical solution by using solver DDE23 in Matlab. 

 

Figure 4.1: Characteristic solution of ό ὸ 

 

 

 

 

 

 

 

Figure 4.2: Approximate solution by using solver DDE23 

        ό ὸ 

 










































































