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ABSTRACT 

 

This research concentrates on some elementary methods to solving linear first order delay 

differential equations (DDEs) with a single constant delay and constant coefficient, such as 

characteristic method and the method of steps and comparing the methods solution with 

some codes from Matlab solver such as DDE23 and DDESD. The study discussed the 

compare solution by merging algebraic solution and approximate solution in one graph for 

each problem. We used Matlab program in this thesis because is very powerful language 

program to deal with complex problem in mathematics and obtain the solution faster than 

many language programs and to obviate miscalculation. We interested in this thesis to find 

solution for this kind of linear delay equation,�̇�(𝑡) = 𝑐1𝑢(𝑡) + 𝑐2𝑢(𝑡 − 𝛽), with single 

constant delay and constant coefficients 𝑐1and 𝑐2. 

 

 

Keywords:  Delay differential equation; Linear delay differential equation ; Constant delay; 

Characteristic method; Method of steps; Matlab codes; DDE23 solver; 

DDESD solver; time delay; Functional differential equation; Boundary value 
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ÖZET 

 

Bu tezde, birinci derece Gecikmeli linear diferensiyel denklemlerin, karakteristik method 

ve adım metodu gibi bazı çözüm metodları üzerine ve DDE23 ve DDESD Matlam çözücü 

kodları ile metodların karşılaştırılması üzerinde çalışılmıştır. Bu çalışmada, her bir problem 

için cebirsel ve sayısal çözümler bir grafik üzerinde birleştirilerek karşılaştırlıdı. 

Matematikte karmaşık problemlerle başa çıkabilmek için güçlü bir programlama diline 

sahip olduğu ve bir çok programa göre daha hızlı sonuçlar elde ettiği ve yanlış hesaplamayı 

önlediği için Matlab programı kullanılmıştır. Metodlar, 𝑐1 ve 𝑐2 sabit sayılar olmak üzere, 

𝑢(𝑡) = 𝑐1𝑢(𝑡)̇  +𝑐2𝑢(𝑡 − 𝛽)denklemini içerecek şekilde genişletilmiştir. 

 

 

AnahtarKelimeler: Gecikmeli diferensiyel denklemler; Lineer gecikmeli diferensiyel 

denklmler; Sabir gecikme; Karakteristik metod; Adımlar Metodu; 

Matlab kodları; DDE23 çözücü; DDESD çözücü; Gecikmeli zaman; 

Kesirli diferensiyel denklemler; Sınır değer problemleri 
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CHAPTER 1 

INTRODUCTION 

 

 

One of the mathematic students' common questions is ' why don’t we study Ordinary 

Differential Equation (ODEs) or Partial Differential Equation (PDEs) instead of studying 

Delay Differential Equation? Since we have more information about them and they are 

much easier to handle. The simple answer is because of the crucial impact of the time 

delay on everything related to human life encompassing variety of domains and 

applications such as biology, economics, microbiology, ecology, distributed networks, 

mechanics, nuclear reactors physiology, engineering systems, epidemiology and heat flow 

(Gopalsamy, 1992). We have many examples of time delay in our life.  A vivid example of 

a time delay is when forests are destroyed by human through cutting trees, this action will 

be done in a short span of time or when the forests are destroyed because of natural 

catastrophes such as fires and hurricanes and floods, and in a short time the forests 

deceases.  Forest destruction takes short time, but it might take at least 25 years of 

cultivation and planting to give life back to the forest. Delay time will be included in any 

mathematical model to renew and harvest the forest. Time delay is a vital component of 

any dynamic process in life sciences. 

 There are different species of delay differential equation; such as linear delay differential 

equations (LDDEs), nonlinear delay differential equations (Non-LDDEs), neutral delay 

differential equations (NDDEs), stochastic delay differential equations (SDDEs)…etc. We 

will concentrate in this thesis on one type namely linear first order delay differential 

equation with a single delay and constant coefficients: �̇�(𝑡) = 𝑎(𝑡)𝑢(𝑡) + 𝑏(𝑡)𝑢(𝑡 −

𝛽); for 𝛽 ≥ 0, 𝑡 ≥ 0  and 𝑢(𝑡) = 𝑝(𝑡);  𝑡 ≤ 0 .In this thesis, we discussed an algebraic 

solution of linear first order delay differential equation. We give a detailed description of 

two methods, characteristic method and the method of steps, we shown how to solve the 

delay equation by this two methods step by step. The reader must have a good background 

in the differential equation to understand everything in this study because we used some 

techniques course of Ordinary differential equations (ODEs).  



2 

 

The method of characteristic to solve the linear firs order differential equation, �̇�(𝑡) =

𝑏𝑢(𝑡 − 𝛽), 𝛽 > 0, 𝑜𝑛 [0, 𝑑], 𝑢(𝑡) =  𝜃(𝑡), 𝑜𝑛 [−𝛽, 0]. When the value of 𝑎 = 0, depends 

on some important notes such as the history function 𝑢(𝑡)  has the form 𝑢(𝑡) =

𝐷𝑒𝑠𝑡.Therefore this form of solution have four cases of solutions when each case have 

different real roots, for example case one when 𝑏 < − 1
𝛽𝑒
< 0, has not any root, case two 

when 𝑏 = −1
𝛽
, has one real roots −1

𝛽
, case three when − 1

𝛽𝑒
< 𝑏 < 0 has two non-positive 

real roots 𝑠1 and 𝑠2, and case four when 𝑏 > 0, has exactly one real roots, 𝑠 > 0. As well 

as we need some numerical methods in steps of approximate solution form like Newton's 

Method (Falbo, 1995), so if we partition the interval [– 𝛽, 0] to some interval for solving 

the given 𝑗 × 𝑗  non-singular system of constant coefficient, 𝐷𝑖𝑛 . Then the approximate 

solution for the linear first order delay differential equation by using the method of 

characteristic has the form 𝑢𝑚(𝑡) = 𝐷0𝑒
(−1 𝛽⁄ )𝑡 +𝐷1𝑒

(𝑠2)𝑡 +𝐷2𝑒
(𝑠1)𝑡 +𝐷3𝑒

(𝑠)𝑡 +

∑ 𝑒𝜇𝑛𝑡𝑚
𝑛=1 (𝐷1𝑛 cos(𝛾𝑛𝑡)  +𝐷2𝑛sin(𝛾𝑛𝑡)) .The general idea of the method of steps is 

converting the linear first order differential equation (DDE) on a given interval to ordinary 

differential equation (ODE) over that interval, (El’sgol’ts and Norkin, 1973), so this 

process make given (DDEs) as (ODEs) and we can solve it by some techniques from 

(ODE).So this thesis sheds light on algebraic solution of (LDDEs) and comparing with 

numerical solution by using Matlab solver such as DDE23 solver and DDESD solver by 

merging algebraic solution and approximate solution in one graph, the meaning and the 

definition of the two methods and the algorithm program of Matlab solver will be 

presented later.   

1.1 Aims of the Study 

The aim of this study focuses on how to find algebraic solutions of linear first order 

differential equations and comparing with approximate solutions, by using some 

elementary method for solving delay equations such as MOC and the method of steps, as 

well as in this research we uses the most powerful language mathematics program namely 

Matlab for given approximate solution by using some special codes such as DDE23 and 

DDESD. Since Matlab has great power to deal with very complex problems in various 

mathematics fields to give best answer for any problem. 
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1.2 Thesis Outline 

This thesis is divided into five chapters; the first chapter focuses on introduction and the 

aim of study. 

Chapter two contains a background and literature review; in literature review we showed a 

short history of delay differential equation, and we introduced some important 

terminologies, concepts and definitions. And we gave some problems containing time 

delay such as control theory. We explained each kind of delay differential equations 

(DDEs) and its area applications in our daily life, the algorithm of language Matlab 

program have been presented with illustrative examples in Chapter two. 

Chapter three consists of methods and methodology for solving linear first order delay 

differential equations (DDEs) with single delay and constant coefficient; we discussed two 

methods for solving delay equations and methodology for the two methods is also given 

with step by step. Moreover, we explain the algorithm codes in Matlab program such as 

DDE23 solver and DDESD solver. 

Chapter four discusses algebraic solutions of linear first order delay differential equation 

by using MOC and the method of steps. And also comparing algebraic solutions with 

approxima-te solutions by using Matlab program, the special codes in Matlab program to 

find numerical solutions have been used such as DDE23 and DDESD. 

In Chapter 5, the conclusion of this work is presented; it summarizes and analyses the 

entire work conducted in this thesis.      
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CHAPTER 2 

LITERATURE REVIEW 

 

 

When someone tries to find the solutions of differential equations, it is certain that he will 

try to know which kind of differential equations in his hand. Usually we know more things 

in ordinary differential equations (ODEs) and partial differential equations (PDEs).But if 

we have a special class of differential equations, such as delay differential equations 

(DDEs). Likewise for reading this topic, the delay differential equations, if you do not have 

background knowledge of the differential equations, it will be difficult for you to 

understand all aspects of the DDEs and consequently this thesis. Thus the main aim of this 

chapter is to give the reader an easy to comprehend background and history of delay 

DDEs, from where it began? How did it start from the beginning?  By whom it was 

developed? In which field it has been used and for what purpose? Etc… Also to illustrate 

some concepts and definitions of DDEs, classify DDEs and which methods we will use to 

solve the DDEs. 

2.1 History of Delay Differential Equations 

Researchers had been preoccupied with Differential Integral Equations, Functional 

Differential Equations (FDEs) and Difference Differential Equations (DDEs) for at least 

two centuries. The progress of human learning and reliance on automatic control system 

after the World War I gave birth to different type of equation named Delay Differential 

Equation (DDEs). The last 60 years, researchers have been concerned about the theory of 

DDEs and FDEs. This theory has become an indispensable part in any researchers' glossary 

who deal with particular applications(implementations) such as biology, microbiology, 

heat flow, engineering mechanics, nuclear reaction, physiology... etc. (Kolmanovski and 

Mshkis, 1999).  Laplace and Condorcet are the pioneers of this study; it appeared in the 

18
th

 century (Fuksa et al., 1989). The stability's main theory of basic DDEs was developed 

(elaborated) by Pontryagin in 1942, however, after the World War II, there was rapid 

growth of the theory and its applications (after the World War II,  the theory grow rapidly).  

Bellman and Cooke are credited with writing significant works about DDEs in 1963 

(Bellman and Cooke, 1963).  



5 

 

The DDEs studies witnessed massive movement(growth) in 1950 regarding DDEs studies 

resulting in publishing many   important works such as Myshkis in 1951, Krasovskii in 

1959, Bellman and Cooke in 1963, Halanay in 1966, Norkin in 1971, Hale in 1977, 

Yanushevski in 1978, Marshal in 1979, these researches and publications lasted until this 

day in a variety of domains 

2.2 Delay Differential Equations 

The more general kind of DEs is called a functional differential equations (FDEs), as well 

as the delay differential equations is a simplest maybe most natural class of functional 

differential equations (Driver, 1977). If we look at various fields and its applications we 

will see the time delay are normal ingredients of the dynamic process of various life 

sciences such as biology, economics,  microbiology, ecology, distributed networks, 

mechanics, nuclear reactors, physiology, engineering systems, epidemiology and heat flow 

(Gopalsamy, 1992) and " to ignore them is to ignore reality "  (Kuang, 1993). Delay 

differential equations (DDEs) is of the form 

                      𝑢′(𝑡) = 𝑔 (𝑡, 𝑢(𝑡), 𝑢 (𝑡 − 𝛽1(𝑡, 𝑢(𝑡))) , 𝑢 (𝑡 − 𝛽2(𝑡, 𝑢(𝑡))) , … )            (2.1) 

For 𝑡 ≥ 0 𝑎𝑛𝑑 𝛽𝑖 > 0,  the delays, 𝛽𝑖 , 𝑖 = 1, 2,…  are commensurable physical quantities 

and may be constant. In DDEs the derivative at any time relies on the solution at previous 

times (and in the situation of neutral equations on the derivative at previous times), more 

generally that is 𝛽𝑖 = 𝛽𝑖(𝑡, 𝑢(𝑡)). Example of familiar delay problem such as Remote 

Control, images are sent to Earth and a signal is sent back. For the Moon, the time delay in 

the control loop is 2-10 s and for the Mars, it is 40 minutes! (Erneux, 2014) For many years 

Ordinary differential equations were an essential tool of the mathematical models. 

However, the delay has been ignored in ordinary differential equation models. DDEs 

model is better than ODE model because DDE model used to approximate a high-

dimensional model without delay by a lower dimensional model with delay, the analysis of 

which is more easily carried out. This approach has been used extensively in the process 

control industry (Kolmanoviskii and Myshkis, 1999). 
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Figure 2.1: when the Robot sent images to Earth 

DDE model depends on the initial function to determine a unique solution, because 𝑢′(𝑡) 

depends on the solution at prior times. Then it is necessary to supply an initial auxiliary 

function sometimes called the “history” function, before t=0, the auxiliary function in 

many models is constant, 𝛽:max 𝛽𝑖. 

 

 

 

                                                                                                                                                            

 

Figure 2.2: The initial function defined over the interval [−𝛽, 0] is mapped into a solution 

curve on the interval[0, 𝑡0 − 𝛽]. Initial function segment  ∅(𝜎), 𝜎 ∈ [−𝛽, 0] has to be 

specified and t = 𝑡0, function segment𝑢𝑡0(𝜎), 𝜎 ∈ [−𝛽, 0] 

There are no many differences between properties of Delay differential equation and 

ordinary differential equation, sometimes analytical method of ODEs have been used in 

DDEs when it is possible to apply. The order of the DDEs is the highest derivative include 

in the equation (Driver, 1977), in Table 2.1 we have shown some examples about the order 

of delay differential equation (DDE). 

 

          −𝛽                0                                                                            𝑡0 − 𝛽                          𝑡0 

 

 

 

 

Initial 

function 

 

f 

𝑢(𝑡) 

𝑢𝑡0 

𝑡 
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Table 2.1: The order of DDE and ODE 

ODE 
Order of 

ODE 
DDE 

Order of 

DDE 

𝑢′′(𝑥) + 𝑣𝑢𝑢′ = 0 
Second order 

linear 
𝑢′(𝑡) = 𝜇𝑢(𝑡) + 𝛼𝑢(𝑡 − 𝛽) 

First order 

Linear 

𝑑4𝑢

𝑑𝑣4
+ 5
𝑑2𝑢

𝑑𝑣2
+ 3𝑢 = −2𝑣𝑢3 

Forth order 

Nonlinear 

𝑢(3)(𝑡) = 𝑢(𝑡 − 𝛽)[1 − 𝑢(𝑡)] Third order 

Nonlinear 

𝑢(7) + 25𝑢(8) − 34𝑣𝑢 = 𝑠𝑖𝑛𝑢 Eighth order 

Linear 

𝑐𝑢′′(𝑡) + 𝑏𝑢′(𝑡 − 𝛽) = sin 𝑡 Second 

order 

Linear 

 

We have shown the substantial difference between DDEs and ODEs in Table 2.2 

Table 2.2: Substantial difference between DDEs and ODEs 

Delay Differential Equations Ordinary Differential Equations 

Supposed to take into account the history of the past 

due to the influence of the changes on the system is  

not instantaneous 

Supposed to take into account the principle of 

causality due to the influence of the changes on the 

system is instantaneous (Hale, 1993) 

Depends on initial function to define a unique  

solution 

Depends on initial value to define a unique solution  

Give a system that is infinite dimensional Give a system that is finite dimensional xx 

Analytical theory is well less developed Analytical theory is well developed (Lumb, 2004) 

 

2.3 Classification of (FDEs) and (RFDEs) 

In this section we introduce some nomenclature and definitions about DDEs that will be 

required from the reader in order to understand this topic well, as we said before the DDEs 

is class of FDEs, therefore we will try to explain the power relation between DDEs and 

FDEs. Suppose, 𝛽𝑚𝑎𝑥 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∈ [0,∞), and let 𝑢(𝑡)  be an n-dimensional variable 

portraying the conduct of a operation in the time period 𝑡 ∈ [𝑡0 − 𝛽𝑚𝑎𝑥 , 𝑡1] . FDE is 

formulated as follows, let 1( )t  and 2 ( )t  be time-dependent sets of real number, 

∀ 𝑡 ∈ [𝑡0, 𝑡1]. Suppose that 𝑢 is continuous function in [𝑡0, 𝑡1], and �̇�(𝑡) for 𝑡 ∈ [𝑡0, 𝑡1] is 

the right-hand derivatives of 𝑢. For each, ∈ [𝑡0, 𝑡1] , 𝑢𝑡 is defined by  𝑢𝑡(𝑟) = 𝑢(𝑡 + 𝑟), 

where 1( )r t  and analogously �̇�𝑡 is defined by  �̇�𝑡(𝑟) = �̇�(𝑡 + 𝑟) where 2 ( )r t . We 

say that 𝑢 satisfies an FDE in [𝑡0, 𝑡1] if ∀ 𝑡 ∈ [𝑡0, 𝑡1] the following equation holds. 
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                             �̇�(𝑡) = 𝑔(𝑡, 𝑢𝑡, �̇�𝑡, 𝑣(𝑡))                                                          (2.2) 

𝑣(𝑡) is given for the whole time interval necessary, the equation (2.2) have three kind of 

differential equations (DEs) 

i) If 1( ) ( ,0]t    and 2 ( )t  for 0 1[ , ]t t t , we say that FDE is retarded 

functional differential equation (RFDE), therefor the right-hand side of (2.2) 

does not depend on the derivative of 𝑢. 

 

                        �̇�(𝑡) = 𝑔(𝑡, 𝑢𝑡 , 𝑣(𝑡))                                                                    (2.3) 

 

In other words, the rate of change of the state of an RFDE is determined by the 

inputs 𝑣(𝑡), as well as the present and past states of the system. An RFDE is 

sometimes also designated as a hereditary differential equation or, in control 

theory as a time-delay system. 

ii) If 1 ( ,0]    and 2 ( ) ( ,0]t    for, 0 1[ , ]t t t , we say that FDE is a neutral 

functional differential equation (NDFE), that is mean the rate of change of the 

state depends on its own past values as well. 

iii) An FDE is called an advanced functional differential equation (AFDE) if 

1( ) [0, )t    and 2 ( )t   for 0 1[ , ]t t t . An equation of the advanced type 

may represent a system in which the rate of change of a quantity depends on its 

present and future values of the quantity and of the input signal 𝑣(𝑡). 

 

Note: And retarded functional differential equation (RFDE) classify to another kind of 

differential equations.   

1) Retarded difference equation or sometimes called functional differential equation 

with discrete delay. 

2) Functional differential equation contains distributed delays. 

3) If delays are constant are called fixed point delays, systems which have only 

multiple constant time delay can be classified as, if the delays related by integer 

will be called linear commensurate time delay system. 



9 

 

If the delays are not related by integer will be called linear non commensurate time delay 

system, in Figure 2.3 the diagram below functional differential equation and their branches 

are classified. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

                       

 

 

 

 

Figure 2.3: Classification of FDEs and RFDEs, (Schoen, 1995) 

 

 

Functional differential 

equations (FDE) 

RFDE 

 �̈�(𝑡) = �̇�(𝑡− 𝛽) + 𝑢(𝑡 − 𝛽) + 𝑣(𝑡) 

NFDE 

 �̇�(𝑡) = �̇�(𝑡− 𝛽) + 𝑢(𝑡) + 𝑣(𝑡) 

AFDE 

 �̇�(𝑡) = 𝑢(𝑡− 𝛽) + 𝑢(𝑡) + �̈�(𝑡− 𝛽) 

�̇�(𝑡) =  𝑞(𝑢(𝑠), 𝑡, 𝑠)𝑑𝑠
𝑡

𝑡−ℎ

 

DEs with distributed delays 

�̇�(𝑡) = 𝑢(𝑡 − 1) 

DEs with fixed point delays 

�̇�(𝑡) = 𝑢(𝑡) + 𝑢(𝑡 − 1) + 𝑢(𝑡 − 𝜋) 

DEs with non-commensurate delay 

�̇�(𝑡) = 𝐴0𝑦(𝑡) + 𝐴𝑖𝑢(𝑡− 𝑖ℎ)

𝑘

𝑖=1

 

DEs with commensurate delay 

�̇�(𝑡) = 𝑓(𝑢(𝑡),𝑢(𝑡 − 𝛽(𝑡)) 

DEs discrete delays 
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2.4 Classification of Delay Differential Equations (DDEs) 

Delay differential equations can be classified as (Lumb, 2004):- 

 Linear delay differential equations (LDDEs). 

 Nonlinear delay differential equations (Non-LDDEs). 

 Stochastic delay differential equations (SDDEs) 

 Neutral delay differential equations (NDDEs). 

 Autonomous delay differential equations (never changing under the chang t). 

 Non-autonomous delay differential equations. 

2.5 Types of Delay Differential Equation and its Applications 

The fact that the ordinary differential equation models are replaced by the delay 

differential equation models led to the rapid growth of delay differential equation models 

in a variety of fields and each field has its scope of applications. The first mathematical 

modeler is Hutchinson; he introduced delay in biological model (Driver, 1977). Various 

classes of delay differential equation have various range of application (Lumb, 2004). For 

instance, retarded differential equation (RDDE) is applied in radiation damping (Chicone 

et al., 2001), modeling tumor growth (Buric and Todorovic, 2002), the application area of 

distributed delay differential equation is in model of HIV infection (Nelsonand Perelson, 

2002), Biomodeling,, neutral delay differential equations (NDDE) application area is 

distributed network (Kolmanoviskii and Myshkis, 1999), Fixed differential equation is 

applied in Cancer chemotherapy (Kolmanoviskii, 1999) and infectious disease modeling 

(Harer et al., 2010), and another model, Single fixed delay application is in Immunology 

((Luzyanina et al., 2001) and Nicholson blowflies model (Kolmanoviskii and Myshkis, 

1999). 
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2.6 Linear Delay Differential Equations (LDDEs) 

We consider the linear first order delay differential equations, with single constant-delay 

and constant coefficients 

                          �̇�(𝑡) = 𝑎(𝑡)𝑢(𝑡) + 𝑏(𝑡)𝑢(𝑡 − 𝛽);   𝑓𝑜𝑟   𝑡 > 0                               (2.4) 

                               𝑢(𝑝) = 𝛼(𝑝);     −𝛽 ≤  𝑝 ≤ 0 

Where 𝛼(𝑝) is the initial history function and, 𝑎(𝑡) and, 𝑏(𝑡) are any constant functions, 

with𝛽 > 0. 𝛽, Is constant function In general the solution  𝑢(𝑡) of equation (2.4) has a 

jump discontinuity in �̇�(𝑡) at the initial point. The left and right derivatives are not equal.  

lim
𝑡→0−
�̇� (𝑡) = 𝑝′(0) ≠ lim

𝑡→0+
�̇� (𝑡) 

For example, the simple delay differential equation �̇�(𝑡) = 𝑢(𝑡 − 1), 𝑡 ≥ 0 with history 

function  𝑢(𝑡) = 1, 𝑡 ≤ 0 , it is easy to verify that,  �̇�(0+) = 1 ≠ �̇�(0−) = 0 . Another 

example:  �̇�(𝑡) = −𝑢(𝑡 − 1), 𝑡 ≥ 0  with history function  𝑢(𝑡) = 1, 𝑡 ≤ 0 , it is easy to 

verify that, �̇�(0+) = −1 ≠ �̇�(0−) = 0 .The second derivative �̈�(𝑡)   is given by �̈�(𝑡) =

−�̇�(𝑡 − 1) and therefor it has a jump at 𝑡 = 1 = 𝛽, the third derivative 𝑢(𝑡) is given by 

𝑢(𝑡) = −�̈�(𝑡 − 1) = −�̇�(𝑡 − 2), and hence it has jump at 𝑡 = 2 = 2𝛽 , in general, the 

jump in �̇�(𝑡) at 𝑡 = 0 propagates to a jump in 𝑢𝑛+1(𝑡) at time 𝑡 = 𝑛. The propagation of 

discontinuities is a feature of DDEs that does not occur in ODEs and …etc. This 

propagates becomes subsequence discontinuity points (Bellen and Zennaro, 2013). 

 

Figure 2.4: The propagation of discontinuities 
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2.7 Uniqueness and Existence of DDEs 

Delay differential equation (DDE) as Ordinary differential equation (ODE), have the 

theorem of uniqueness and existence. The Boundary Value Problem (BVP)  

                          �̇�(𝑡) = 𝑎𝑢(𝑡 − 𝛽), 𝛽 > 0 , 𝑜𝑛 [0, 𝑑]                                        (2.5) 

                                       𝑢(𝑡) = 𝜃(𝑡), 𝑜𝑛 [−𝛽, 0] 

Where 𝑎 and 𝛽 are any real numbers, with 𝛽 > 0 and 𝑑 > 0, 𝜃 ∈ 𝐶1[−𝛽, 0]. As we stated 

before that, the delay differential equations is a special class of functional differential 

equations, (Falbo, 1995), the interval [−𝛽, 0]] is called the (pre-interval) and the function 𝜃 

is called (pre-function). 

2.7.1 Existence Theorem 

                             �̇�(𝑡) = 𝑎𝑢(𝑡 − 𝛽), 𝛽 > 0 , 𝑜𝑛 [0, 𝑑], 𝑑 > 0                              (2.6) 

                                    𝑢(𝑡) = 0      𝑜𝑛 [−𝛽, 0] 

Has unique solution 𝑢(𝑡) ≡ 0 on the interval[−𝛽, 0]. 

Note: If 𝑑 > 𝛽 this implies that 𝑢 ≡ 0 is the solution on the interval[0,𝛽], then if 𝑑 > 2𝛽 

we transfer the DE to the interval[𝛽, 2𝛽], then we have new interval[0, 𝛽], on which 𝑢 = 0. 

This implies that we can solve the problem only on [0,2𝛽]. If 𝛽 < 𝑑 < 2𝛽 , then the 

solution expanded on [0, 𝑑]. So that if we continue this way, the solution moved along 

cover [0,𝑑], for any positive real number 𝑑. 

Proof: we observe that the DE itself is linear first order delay differential equation with 

single constant-delay and constant coefficient, and we observe that by plugging the 

function 𝑢 ≡ 0 is the solution on the interval [0, 𝛽]. Now if 𝑣(𝑡) and 𝑢(𝑡) are any two 

solution, then �̇�(𝑡) = 𝑎𝑣(𝑡 − 𝛽) and �̇�(𝑡) = 𝑎𝑢(𝑡 − 𝛽). As well, if we define a function 

𝑧(𝑡) = 𝐽1𝑢(𝑡) + 𝐽2𝑣(𝑡)  for ant two constants 𝐽1,  𝐽2 , then �̇�(𝑡) = 𝑎𝑧(𝑡 − 𝛽) . This mean 

that, 𝑧(𝑡) is also a solution to the DE. As we know the function 𝑢(𝑡) ≡ 0 is one solution, 

now by contradiction, there exists another function 𝑣(𝑡) not identically zero that satisfies 

the equation (2.6). Thus 𝑣(𝑡) satisfies the DE on the interval [0, 𝛽], and the function 0 

(zero) on the interval [−𝛽, 0]. 
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But if we take on a nonzero value at least once somewhere in semi-open interval (0, 𝛽]. 

This implies we are supposing that 𝑣(𝑟) ≠ 0 for some 𝑟 ∈ (0, 𝛽].Let 𝐻 be the set of reals 

such that 𝜏 ∈ 𝐻 if and only if either 𝜏 = −𝛽 or 𝜏 > −𝛽 and 𝑣(𝑡) = 0 for all 𝑡 ∈ [−𝛽, 𝜏]. 

 

Figure 2.5: The set, H 

The set 𝐻 exist since it contains all of the points in the interval [−𝛽, 0].  𝐻 is bounded 

above, since 𝑟 is one of its upper bounds.  Suppose 𝑡∗ be the Least Upper Bound (LUB) 

of 𝐻. Note that 𝑣(𝑡∗) = 0, otherwise there exist a positive number, 𝑐 such that 𝑣(𝑡) ≠ 0 on 

(𝑡∗ − 𝑐, 𝑡∗ + 𝑐), making 𝑡∗ − 𝑐 an upper bound of 𝐻, less than the least upper bound of 

𝐻.We assume that,  𝑡∗∗ = 𝑡∗ + 𝛽
2
, then ∃ a number 𝑡0 between 𝑡∗ and 𝑡∗∗ such that 𝑣(𝑡0) ≠

0. If there is not any 𝑡0, then 𝑣(𝑡) = 0, ∀ 𝑡 between 𝑡∗ and 𝑡∗∗, making 𝑡∗ not UB of 𝐻. 

Since 𝑣 is continuous then ∃ an interval [𝑒, 𝑟] containing 𝑡0 as an interior point and such 

that for all 𝑡 ∈ [𝑒, 𝑟], 𝑣(𝑡) ≠ 0. Let 𝜀 be the minimum of 𝑟 and 𝑡∗∗. Therefore 𝑣(𝑡) ≠ 0 on 

the interval [𝑒, 𝜀], 𝜀 ≤ 𝑡∗∗ .Now, let 𝐾  be the number set such that 𝜏 ∈ 𝐾  if and only if 

either 𝜏 = 𝜀 or 𝜏 < 𝜀  and 𝑣(𝑡) ≠ 0  for all 𝑡 ∈ (𝜏, 𝜀] . We can note that 𝐾  exists since 

𝑡0 ∈ 𝐾 . Since 𝑣(𝑡∗) = 0 , 𝐾  is bounded below because 𝑡∗  is one of its lower bounds, 

assume 𝑥  be the Greatest Lower Bound (GLB) of 𝐾 . Since 𝑣  is continuous at 𝑥  then, 

𝑣(𝑥) = 0  otherwise would be nonzero throughout the open interval (𝑥 − 𝑐∗, 𝑥 + 𝑐∗) , 

making 𝑥 not a lower bound of 𝐾. Denote 𝐾 by (𝑥, 𝑒], since for all 𝑡 ∈ 𝐾, 𝑡 < 𝑡∗∗ = 𝑡∗ +

𝛽

2
, then 𝑡 − 𝛽 ∈ 𝐻 and 𝑣(𝑡 − 𝛽) = 0, so from the DE �̇�(𝑡) = 𝑎𝑣(𝑡 − 𝛽)𝐻. Hence, �̇�(𝑡) ≡

0 on (𝑥, 𝑒]. This mean that 𝑣(𝑡) = a constant, 𝐽 on (𝑥, 𝑒]. But 𝑣(𝑥) = 0, so by continuity 

of 𝑣 at 𝑥, the constant must be zero.  
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Therefore 𝑣(𝑡) ≡ 0 on (𝑥, 𝑒] contradiction the assumption that 𝑣(𝑡0) ≠ 0 at some point in 

[𝑡∗, 𝑑]. 

2.7.2 Uniqueness Theorem 

If 𝑣(𝑡) and 𝑢(𝑡) is a solution to the Boundary Value Problem (BVP) (2.5), then 𝑣(𝑡) ≡

𝑢(𝑡) on [−𝛽, 𝑑]. 

Proof: Let 𝑧(𝑡) = 𝑣(𝑡) − 𝑢(𝑡), then 

�̇�(𝑡)  =    �̇�(𝑡) − �̇�(𝑡) 

                           =   𝑎𝑣(𝑡 − 𝛽) − 𝑎𝑢(𝑡 − 𝛽) 

                     =   𝑎𝑧(𝑡 − 𝛽) on (0, 𝑑]. 

As well, on [−𝛽, 0] , 𝑣(𝑡) = 𝑢(𝑡) = 𝜃(𝑡) ; so 𝑧(𝑡) = 0 . Therefore 𝑧(𝑡)  is the trivial 

solution satisfying equation (2.6), then 𝑣(𝑡) ≡ 𝑢(𝑡) on [−𝛽, 𝑑]. 

2.8 Software Packages for Solving DDEs 

Matlab is one of the best software programs to solve different class in mathematics, such 

as, optimization, graph theory, linear algebra, differential equations …etc. In (Bellen and 

Zennaro, 2003), they used a package continuous-time model simulation (CTMS) for 

solving delay differential equations. Today many codes for the numerical integration of 

delay differential equations are available, these involve, DDE23, DDESD…etc. we will 

show that how to use the Matlab solver DDE23 and DDESD to solve linear first order 

delay differential equations (DDEs) with constant delays to obtain the graph of DDEs.  

2.8.1 Matlab illustrate one 

Computing and plotting the solution of DDEs, on [0,5], by using solver DDE23. 

{
�̇�(𝑡) = −𝑢(𝑡 − 1.25), t ≥ 0 
𝑢(𝑡) = 1, 𝑡 ≤ 0                        
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Figure 2.6: Solution of DDEs  

Table 2.3: Value of 𝑢 and t in Figure2.6 from Matlab illustrate one 

Value of 

𝒖  𝒕 

Columns 1 through 7 Value of 

𝒖  𝒕 

Columns 8 through 10 

 

('o') 

 

      𝑢 =  1.0000 , 𝑡 =  0 
𝑢 =  0.4444 , 𝑡 = 0.6    
𝑢 =  −0.1111, 𝑡 =  1.3 
𝑢 =  −0.5799, 𝑡 =  1.7 
𝑢 =  −0.7496, 𝑡 =  2.3 
𝑢 =  −0.6143, 𝑡 =  2.8 
𝑢 =  −0.2596, 𝑡 =  3.4 

 

('o') 

 

𝑢 = 0.1465, 𝑡 =  3.9 

 𝑢 = 0.4422  , 𝑡 =  4.9 

𝑢 = 0.5287, 𝑡 =  5 

 

 

Algorithm of DDEs in Matlab illustrate one 

 

 

 

 

 

 

 

function VDde23 
% solving DDEs 
clear; 
clc; 
function dydt = ddex1de(t,y,Z) 
ylag1 = Z(:,1); 
dydt = ylag1(1); 
end 
function S = ddex1hist(t) 
S = 1; 
End lags = 1.25; 

 

sol = 

dde23(@ddex1de,lags,@ddex1hist,[0,

5]); 
plot(sol.x,sol.y); 
title('dy/dt=-y(t-1.25)'); 
xlabel('time t'); 
ylabel('solution y'); 
legend('y','Location','NorthWest')

; 
tint = linspace(0,5,10); 
Sint = deval(sol,tint) hold on 
plot(tint,Sint,'o'); 
grid on 
end 
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2.8.2 Matlab illustrate two  

 Computing and plotting the solution of DDEs, on [0,5], by using solver DDE23. 

                                             {

�̇�1(𝑡) = 𝑢1(𝑡 − 2), 𝑡 ≥ 0                            

�̇�2(𝑡) = 𝑢1(𝑡 − 2) + 𝑢2(𝑡 − 0.5), 𝑡 ≥ 0

𝑢1(𝑡) = 1, 𝑢2(𝑡) = 1, 𝑡 ≤ 0                       

 

 

Figure 2.7: Solution of DDEs  

Table 2.4: Value of 𝑢1, 𝑢2, and t in Figure2.7 from Matlab illustrate two 

Value 

of 

𝒖  𝒕 

Columns 

17 

( 𝒕 , 𝒖𝟏 ) 

Columns 

17 

( t , 𝒖𝟐 ) 

Value of 

𝒖  𝒕 
Columns 

810 

( 𝒕 , 𝒖𝟏 ) 

Columns 

810 

( 𝒕 , 𝒖𝟐 ) 

 

('o') 

 

(0, 1.0000)    
(0.6, 1.5556)   
(1.2, 2.1111)    
(1.7, 2.6667)    
(2.3, 3.2469)    
(2.8, 4.0802)   
(3.4, 5.2222) 

(0, 1.0000 )   
(0.6, 2.1142)    
(1.23, 3.596)    
(1.7, 5.7932)    
(2.31, 9.066)   
(2.8, 14.149)   
(3.41, 21.926) 

 

('o') 

 

(3.9, 6.6728) 

(4.4, 8.4467) 

(5, 10.6667) 

(3.9, 33.6886)   

(4.9, 51.3555)   

(5, 77.8691) 
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Algorithm of DDEs in Matlab illustrate two 

 

 

 

 

 

 

 

2.8.3 Matlab illustrate three  

Computing and plotting the solution of DDEs, on [0,5], by using solver DDE23. 

{
�̇�(𝑡) = 𝑢(𝑡 − 3) + 𝑢(𝑡 − 0.5), 𝑡 ≥ 0
𝑢(𝑡) = 1, 𝑡 ≤ 0                                       

   

 

Figure 2.8: Solution of DDEs  

 

 

 

function VDde23 

% solving DDEs  

clear; 

clc; 

function dydt = ddex1de(t,y,Z) 

  ylag1 = Z(:,1); 

  ylag2 = Z(:,2); 

 dydt = [ylag1(1);ylag1(1)+ylag2(2)]; 

end 

function S = ddex1hist(t) 

  S = ones(2,1);end lags = [2,0.5]; 

 

sol = 

dde23(@ddex1de,lags,@ddex1hist,[

0,5]); plot(sol.x,sol.y); 

title('dy1/dt=y(t-2),dy2/dt=y(t-

2)+y(t-0.5)'); 

xlabel('time t'); 

ylabel('solution y'); 

legend('y_1','y_2','Location','N

orthWest'); 

tint = linspace(0,5,10); 

Sint = deval(sol,tint)on end 
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Table 2.5: Value of 𝑢 and t in Figure2.8 from Matlab illustrate three 

Value of 

𝒖  𝒕 

Columns 1 through 7 Value of 

𝒖  𝒕 

Columns 8 through 10 

 

('o') 

 

𝑢 = 1.0000 , 𝑡 = 0 
𝑢 =  2.1142, 𝑡 =  0.6 
𝑢 =  3.5961, 𝑡 =  1.2 
𝑢 =  5.7931, 𝑡 =  1.7 
𝑢 =  9.0413, 𝑡 =  2.3 
𝑢 = 13.8427, 𝑡 =  2.8 
𝑢 = 21.0513, 𝑡 =  3.4 

 

('o') 

 

𝑢 =  32.2607, 𝑡 =  3.9 

𝑢 =   49.5961, 𝑡 =  4.4 

𝑢 =   76.3627 , 𝑡 = 5  

 

Algorithm of DDEs in Matlab illustrate three 

 

 

 

 

 

2.8.4 Matlab illustrate four 

Computing and plotting the solution of DDEs on [0,5], by using solver DDE23, (Shampi 

and Thompson, 2000). 

                                               

{
 

 
�̇�1(𝑡) = 𝑢1(𝑡 − 0.5), 𝑡 ≥ 0                           

�̇�2(𝑡) = 𝑢1(𝑡 − 0.5) + 𝑢2(𝑡 − 0.8), 𝑡 ≥ 0

�̇�3(𝑡) = 𝑢2(𝑡), 𝑡 ≥ 0                                      

𝑢1(𝑡) = 1, 𝑢2(𝑡) = 1, 𝑡 ≤ 0                         

 

 

function VDde23 

% solving DDEs 

clear; 

clc; 

function dydt = ddex1de(t,y,Z) 

ylag1 = Z(:,1)+Z(:,2); 

dydt = ylag1(1); 

end 

function S = ddex1hist(t) 

S = 1; 

end 

lags = [3,0.5]; 

 

sol = 

dde23(@ddex1de,lags,@ddex1hist,

[0,5]); plot(sol.x,sol.y); 

title('dy/dt=y(t-3)+y(t-0.5)'); 

xlabel('time t'); 

ylabel('solution y'); 

legend('y','Location','NorthWes

t'); 

tint = linspace(0,5,10); 

Sint = deval(sol,tint) 

hold on plot(tint,Sint,'o'); 

grid on 

end 
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Figure 2.9: Solution of DDEs  

Table 2.6: Value of 𝑢1, 𝑢2, 𝑢3, and t in Figure2.9 from Matlab illustrate four 

Value 

of 

𝒖  𝒕 

Columns 1 through 7 

  ( 𝒕 , 𝒖𝟏 )      ( 𝒕 , 𝒖𝟐 )    ( 𝒕 , 𝒖𝟑 ) 

Value 

of 

𝒖  𝒕 

Columns 8 through 10 

  ( 𝒕 , 𝒖𝟏 )     ( 𝒕 , 𝒖𝟐 )    ( 𝒕 , 𝒖𝟑 ) 

 

('o') 

 

(0, 1.0000), (0, 1.00000), (0, 1.0000) 
(0.6, 1.557), (0.6, 2.112), (0.6, 1.864) 
(1.2, 2.298), (1.2, 3.506), (1.2, 3.393) 
(1.7, 3.396), (1.7, 5.822), (1.7, 5.935) 
(2.2, 5.020), (2.2, 9.478), (2.2, 10.10) 
(2.8, 7.421), (2.8, 15.24), (2.8, 16.85) 
(3.4, 10.97), (3.4, 24.25), (3.4, 27.64) 

 

('o') 

 

(3.8, 16.21), (3.8, 38.28), (3.8, 44.7) 
(4.4, 23.96), (4.4, 60.01), (4.4,71.60) 
(5.0, 38.43), (5.0, 97.51), (5. , 117.58) 

 

 

Algorithm of DDEs in Matlab illustrate four 

 

 

 

 

 

 

 

 

function VDde23 

% solving DDEs  

clear; 

clc; 

function dydt = ddex1de(t,y,Z) 

  ylag1 = Z(:,1); 

  ylag2 = Z(:,2); 

 dydt = [ylag1(1); ylag1(1)+ylag2(2); 

 y(2)]; 

end 

function S = ddex1hist(t) 

  S = ones(3,1); 

end 

lags = [0.5,0.8]; 

 

sol = 

dde23(@ddex1de,lags,@ddex1hist,[

0,5]); plot(sol.x,sol.y); 

title('Delay differential 

equation'); 

xlabel('time t'); 

ylabel('solution y'); 

legend('y_1','y_2','y_3','Locati

on','NorthWest'); 

tint = linspace(0,5,10); 

Sint = deval(sol,tint) 

hold on plot(tint,Sint,'o'); 

grid on 

end 
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CHAPTER 3 

METHODS AND METHODOLOGY FOR SOLVING LDDE 

 

 

In this chapter methods for solving linear first order delay differential equations (LDDEs) 

will be discussed; there are many methods for solving DDEs: Characteristic, Steps, Matrix 

Lambert Function, Differential transform, a domain e-composition, Multistep Block, Theta, 

and Laplace transform …etc. We will use some of these methods to solve linear first order 

delay differential equations, with single constant-delay and constant coefficients.  Graph-

Matica and Matlab will be used to plotting the graph in this chapter, to understanding this 

chapter well; the reader must have a good background in differential equations and 

knowing how to use Matlab codes, because Matlab is very smooth to solve many problems 

in various class of mathematics.  

3.1 Characteristic Method  

Consider the linear first order delay differential equation, with single constant-delay and 

constant coefficient, with Boundary Value Problem (BVP), (Falbo, 1995). 

                              {   
�̇�(𝑡) = 𝛿𝑢(𝑡 − 𝛽), 𝛽 > 0, 𝑜𝑛 [0, 𝑑]

𝑢(𝑡) =  𝜃(𝑡), 𝑜𝑛 [−𝛽, 0]
                              (3.1) 

To solve linear first order delay differential equation (3.1) by method of characteristic 

(MOC), following, (Hale and Lunel, 1993). Recall that in the case of n linear homogenous 

ordinary differential equations with constant coefficients there are n linearly independent 

solutions. And we know that the general solution is expressible as an arbitrary linear 

combination of these n solutions. But the situation is more complicated for linear first 

order delay differential equation with single constant-delay and constant coefficients, 

because this equation has infinitely many linearly independent solutions. The characteristic 

equation for a homogeneous linear delay differential equation with constant coefficients is 

obtained from the equation by looking for nontrivial solutions of the form 𝐷𝑒𝑠𝑡 where 𝐷 is 

constant. Suppose (3.1) has non trivial solution 𝑢(𝑡) = 𝐷𝑒𝑠𝑡, if and only if 𝑔(𝑠) = 𝑆𝑒𝑠𝛽 −

𝛿 = 0.  
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If we plugging 𝐷𝑒𝑠𝑡  into equation (3.1), �̇�(𝑡) = 𝛿𝑢(𝑡 − 𝛽), 𝛽 ≠ 0 , then we obtain the 

nonlinear characteristic equation 𝑆𝑒𝑠𝛽 − 𝛿 = 0. When 𝛽 is a single constant non-negative 

number, and the function 𝑔(𝑠) is defined as 

                                                  𝑔(𝑠) = 𝑆𝑒𝑠𝛽 − 𝛿                                                     (3.2) 

Where, 𝛿 is the parameter. Figure (3.1) shows the graph of equation (3.2), which we sketch 

a few member of this 𝛿-parameter set of curves. Then we get four various cases when 𝛽 is 

a single constant-delay and different value of parameter 𝛿. 

 

Figure 3.1:𝑔(𝑠) = 𝑆𝑒𝑠𝛽 − 𝛿 for fixed 𝛽 and different 𝛿 

Now we need to show the complex roots of 𝑔(𝑠) = 0, this implies that  

                                       𝑆𝑒𝑠𝛽 − 𝛿 = 0                                                              (3.3) 

If 𝛿 = 0, in this situation, the delay differential equation �̇�(𝑡) = 0 and equation (3.3) has 

only one root 𝑠 = 0, then the solution is the constant 𝜃(0). The our aim here is when 𝛿 ≠

0 , therefor we have four cases. This equation has infinite many complex (non-real) 

solutions, and then we describe roots of 𝑔(𝑠) belongs to these four possibility cases: 

Case one: If 𝛿 < −
1

𝛽𝑒
< 0, then 𝑔(𝑠) has no real roots. 

Case two: If 𝛿 = −
1

𝛽𝑒
, then 𝑔(𝑠) has exactly one real root, 𝑠 = −

1

𝛽
. 

Case three: If −
1

𝛽𝑒
< 𝛿 < 0, then 𝑔(𝑠) has exactly two real roots, both non-positive, and 

Case four: If 𝛿 > 0, then 𝑔(𝑠) has exactly one real root, 𝑠, and 𝑠 > 0.  

 

Case 3  
Case 4 

Case 1  
Case 2
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3.2 The Method Solution 

In this section we will show conditions for each cases and write the general formal 

solutions, to solve Boundary Value Problem (3.1) 

{   
�̇�(𝑡) = 𝛿𝑢(𝑡 − 𝛽), 𝛽 > 0, 𝑜𝑛 [0, 𝑑]

𝑢(𝑡) =  𝜃(𝑡), 𝑜𝑛 [−𝛽, 0]                            
 

3.2.1 Case one 

𝛿 < −
1

𝛽𝑒
< 0, this mean 𝑔(𝑠) has no real roots. But in order to start the first step of 

solution, we can order complex number 𝑤 = 𝜇 + 𝑖𝛾, such that 𝑤𝑒𝑤𝛽 − 𝛿 = 0. If  

(𝜇 + 𝑖𝛾)𝑒(𝜇+𝑖𝛾)𝛽 − 𝛿 = 0, then 

(𝜇 + 𝑖𝛾)𝑒𝑖𝛾𝛽 = 𝛿𝑒−𝜇𝛽 

(𝜇 + 𝑖𝛾)(cos(𝛾𝛽) + 𝑖 sin(𝛾𝛽)) = 𝛿𝑒−𝜇𝛽 

This implies that         

                                          𝜇 cos(𝛾𝛽) − 𝛾 sin(𝛾𝛽) = 𝛿𝑒−𝜇𝛽                                    (3.4) 

                                                𝛾 cos(𝛾𝛽) + 𝜇 sin(𝛾𝛽) = 0                                          (3.5) 

Or                           

                                              𝜇 = −𝛾 cot(𝛾𝛽) , 𝛾 ≠ 0                                             (3.6) 

Then we can note that  

lim
𝛾→0
−𝛾 cot(𝛾𝛽) = lim

𝛾→0

−𝛾𝛽 cos(𝛾𝛽)

𝛽 sin(𝛾𝛽)
= −
1

𝛽
 

Apply L’Hopital’s Theorem: For lim𝛾→𝑎 (
𝑞(𝑦)

𝑝(𝛾)
) , if  

lim
𝛾→𝑎
(
𝑞(𝑦)

𝑝(𝛾)
) =
0

0
 

Or  

lim
𝛾→𝑎
(
𝑞(𝑦)

𝑝(𝛾)
) =
±∞

±∞
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Then          

lim
𝛾→𝑎
(
𝑞(𝑦)

𝑝(𝛾)
) = lim

𝛾→𝑎
(
𝑞(𝑦)′

𝑝(𝛾)′
) 

Test L’Hopital’s condition: 
0

0
 

lim
𝛾→0

−𝛾𝛽 cos(𝛾𝛽)

𝛽 sin(𝛾𝛽)
= lim
𝛾→0

(−𝛾𝛽 cos(𝛾𝛽))′

(𝛽 sin(𝛾𝛽))′
 

Apply product rule: (𝑞. 𝑝)′ = 𝑞′. 𝑝 + 𝑞. 𝑝′ 

 

lim
𝛾→0

(−𝛾𝛽 cos(𝛾𝛽))′

(𝛽 sin(𝛾𝛽))′
= lim
𝛾→0
(
−𝛽(cos(𝛽𝑥) − 𝛽𝑥 sin(𝛽𝑥))

𝛽2 cos(𝛽𝑥)
) 

= lim
𝛾→0
(
𝛽𝑥 sin(𝛽𝑥) − cos(𝛽𝑥)

𝛽 cos(𝛽𝑥)
) 

=
𝛽(0) sin(𝛽. 0) − cos(𝛽. 0)

𝛽 cos(𝛽. 0)
= −
1

𝛽
 

 when 𝛾 ≠ 0, substitute 𝜇 from equation (3.6) into equation (3.4), then we get. 

                                             𝛾 = −𝛿 sin(𝛾𝛽) 𝑒𝛾𝛽 cot(𝛾𝛽)                                    (3.7) 

Now, let 𝑋 = 𝛾𝛽, then 

                                         𝑋 = −𝛿𝛽 sin(𝑋) 𝑒𝑋 cot(𝑋) , where −𝛽𝛿 >
1

𝑒
                     (3.8) 

If we find the intersection of the line 𝑌 = 𝑋, for solving the equation (3.8) with the one-

parameter set of curves. 

                                           𝑌 = −𝛿𝛽 sin(𝑋) 𝑒𝑋 cot(𝑋)                                         (3.9) 

As we say that before, 𝛽  is single constant-delay and 𝛿  is the coefficient, Figure (3.2) 

shows that equation (3.8) has infinitely many solutions, denoted by, 𝑋𝑖 , 𝑖 = 1,2,3,… , this 

for case one, and we can use some of  Numerical Methods to obtain solutions for different 

given values of 𝛿, such as Newton’s Method, (Falbo, 1995). 
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Figure 3.2: 𝑌 = 𝑋 and 𝑌 = −𝛿𝛽 sin(𝑋) 𝑒𝑋 cot(𝑋) 

We know, 𝛾 = 𝑋/𝛽, this implies that 𝛾𝑛 = 𝑋𝑛/𝛽, now from equation (3.6) we obtain 𝜇𝑛, 

then the roots of equation (3.8) are 𝜇𝑛 + 𝑖𝛾𝑛 , and the characteristic solutions are 

𝑒𝜇𝑛𝑡 cos(𝛾𝑛𝑡) and 𝑒𝜇𝑛𝑡 sin(𝛾𝑛𝑡), so the formal solution to the linear first order  delay 

differential equations, (LDDEs) is 

                    𝑢(𝑡) = ∑ 𝑒𝜇𝑛𝑡∞
𝑛=1 (𝐷1𝑛 cos(𝛾𝑛𝑡) + 𝐷2𝑛 sin(𝛾𝑛𝑡))                        (3.10) 

Because the Boundary Value Problem (3.1) is linear, and  𝛿 < − 1
𝛽𝑒

 , where 𝐷1𝑛 and 𝐷2𝑛 

are arbitrary constant, if we observe the point (𝑋, 𝑌) is that, when 𝑋 > 0, the set of curves 

defined by equation (3.9) are intersected to the right of the vertical asymptotes that are 

non-even multiples of 𝜋 .Then the values of 𝜇𝑛  are negative at all these points of 

intersection, so that when |𝑋| → ∞, the values of 𝜇𝑛 are decrease, as well as: 

If we are thinking for some non-negative integers 𝑟 and 𝑛 , 𝛿 = −
(4𝑟+1)𝜋

2𝛽
= 𝛾𝑛 , then 

𝜇𝑛 = 0, for that 𝑛: so, the solutions are vacillate and undamped, but 𝜇𝑛 < 0,∀ other values 

of 𝛾𝑛, and the vacillations in equation (3.10) are damped by the fullness 𝑒𝜇𝑛𝑡. 

3.2.2 Case two 

From equation (3.6) when lim𝛾→0 𝜇 = −
1

𝛽
, which is mean that 𝜇 → −1

𝛽
 as 𝛾 → 0, continuity 

at 𝛾 = 0, this implies that equation (3.4) and (3.5) are satisfied by (𝜇, 𝛾) = (−1
𝛽
, 0), and so 

𝛿 = − 1
𝛽𝑒

 , when 𝛾 = 0, then 𝑔(𝑠) has one real root 𝑠 = −1
𝛽
 , and we can found the real root 

𝜇 = −1
𝛽
 , from equations (3.4) and (3.5) when 𝛾 = 0.  

 

   𝑌 = −𝛿𝛽 sin(𝑋) 𝑒𝑋 cot(𝑋) 

    𝑌 = 𝑋 
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So we will add a new part characteristic solution 𝑒(−1 𝛽⁄ )𝑡 to the formal solution of linear 

first order delay differential equations, (LDDEs), with Boundary Value Problem (3.1) 

which is of the form  

             𝑢(𝑡) = 𝐷0𝑒
(−1 𝛽⁄ )𝑡 + ∑ 𝑒𝜇𝑛𝑡∞

𝑛=1 (𝐷1𝑛 cos(𝛾𝑛𝑡) + 𝐷2𝑛 sin(𝛾𝑛𝑡))                (3.11) 

Where 𝜇𝑛 and 𝛾𝑛 are roots of equations (3.4) and (3.5) for this 𝛿. 

3.2.3 Case three 

If − 1
𝛽𝑒
< 𝛿 < 0 , then 𝑔(𝑠) has two non-positive real roots, 𝑠1 < −

1

𝛽
< 𝑠2. To solve for 𝑠2 

use Newton’s Method, with initial value, start point ℎ0 = −
1

2𝛽
 and for 𝑠1, the start point is 

ℎ0 = −
2

𝛽
, and for each positive integer 𝑘, define  

ℎ𝑘+1 = ℎ𝑘 −
𝑔(ℎ𝑘)

𝑔′(ℎ𝑘)
 

Then, 𝑠2 = lim𝑘→∞ ℎ𝑘, the two new characteristic solutions 𝑒𝑠1𝑡 and 𝑒𝑠2𝑡, obtained from 

equations (3.4) and (3.5). When, 𝛿 ∈ (−1
𝛽
, 0), so the formal solution to the linear first order  

delay differential equations, (LDDEs), with Boundary Value Problem (3.1) is  

      𝑢(𝑡) = 𝐷1𝑒
(𝑠2)𝑡 + 𝐷2𝑒

(𝑠1)𝑡 + ∑ 𝑒𝜇𝑛𝑡∞
𝑛=1 (𝐷1𝑛 cos(𝛾𝑛𝑡) + 𝐷2𝑛 sin(𝛾𝑛𝑡))         (3.12) 

3.2.4 Case four 

If  𝑎 > 0, the equation (3.3), 𝑆𝑒𝑠𝛽 − 𝛿 = 0 has exactly one positive root 𝑠, we can use 

Newto-n’s Method to find it with initial value, start point ℎ0 = 1, so when 𝛿 > 0  the 

formal solution to linear first order  delay differential equations (LDDEs), with Boundary 

Value Problem (3.1) is  

        𝑢(𝑡) = 𝐷3𝑒
(𝑠)𝑡 + ∑ eμnt∞

n=1 (𝐷1𝑛 cos(𝛾𝑛𝑡) + 𝐷2𝑛 sin(𝛾𝑛𝑡))                     (3.13) 

Note: so we can solve any equation which is linear first order  delay differential equations 

(LDDEs) with Boundary Value Problems (BVPs), by one of these four cases , but the 

important thing here to show and  write the general formal solution to the Boundary Value 
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Problems, we will talking about the general solution and the approximate solution in the 

next section.  

3.3 The General Solution  

The values of 𝜇𝑛 < 0  for all cases and all the infinite series solutions in each of the 

equations (3.10) through (3.13) are convergent. Now we summarize the formal solutions to 

the linear first order delay differential equations (LDDEs) with Boundary Value Problems 

(BVPs) 

3.3.1 Theorem  

Assume 𝛽 be any non-negative number, 𝛿 ∈ \[0], and equation (3.3) has complex roots 

𝜇𝑛 + 𝑖𝛾𝑛 obtained from equation (3.4) and (3.5), then for arbitrary constants 𝐷1𝑛 and 𝐷2𝑛 

the function 𝑢(𝑡) defined as follows  

                           𝑢(𝑡) = 𝐷0𝑒
(−1 𝛽⁄ )𝑡 + 𝐷1𝑒

(𝑠2)𝑡 + 𝐷2𝑒
(𝑠1)𝑡 + 𝐷3𝑒

(𝑠)𝑡                (3.14) 

+∑ 𝑒𝜇𝑛𝑡∞
𝑛=1 (𝐷1𝑛 cos(𝛾𝑛𝑡) + 𝐷2𝑛 sin(𝛾𝑛𝑡))  

Satisfies the equation �̇�(𝑡) = 𝛿𝑢(𝑡 − 𝛽), 𝛽 > 0, 𝑜𝑛 [0, 𝑑], 𝑑 > 0 

Provided that  

i. 𝐷0 = 𝐷1 = 𝐷2 = 𝐷3 = 0, when 𝛿 < − 1
𝛽𝑒

, 

ii. 𝐷1 = 𝐷2 = 𝐷3 = 0 and 𝐷0 is arbitrary when 𝛿 = − 1
𝛽𝑒

, 

iii. 𝐷0 = 𝐷3 = 0 and 𝐷1  𝐷2 are arbitrary and 𝑠1 and 𝑠2 are the real roots of equation 

(3.3), when − 1
𝛽𝑒
< 𝛿 < 0. 

iv. 𝐷0 = 𝐷1 = 𝐷2 = 0 and 𝐷3 is arbitrary and 𝑠 is the real root of equation (3.3) when 

𝛿 > 0. 

Now to solve equation (3.1), we must use equation (3.14) for a given pair 𝛿, 𝛽 and a given 

function 𝜃(𝑡) with condition for 𝑡 ∈ [−𝛽, 0]. 

𝜃(𝑡) = 𝐷0𝑒
(−1 𝛽⁄ )𝑡 + 𝐷1𝑒

(𝑠2)𝑡 + 𝐷2𝑒
(𝑠1)𝑡 +𝐷3𝑒

(𝑠)𝑡 

                         +∑ 𝑒𝜇𝑛𝑡∞
𝑛=1 (𝐷1𝑛 cos(𝛾𝑛𝑡) + 𝐷2𝑛 sin(𝛾𝑛𝑡))                             (3.15) 
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3.3.2 Approximate solutions 

To approximate the solution of equation (3.15), we define the function 𝑢𝑚(𝑡) as follows  

                      𝑢𝑚(𝑡) = 𝐷0𝑒
(−1 𝛽⁄ )𝑡 + 𝐷1𝑒

(𝑠2)𝑡 + 𝐷2𝑒
(𝑠1)𝑡 + 𝐷3𝑒

(𝑠)𝑡                  (3.16)              

+∑ 𝑒𝜇𝑛𝑡𝑚
𝑛=1 (𝐷1𝑛 cos(𝛾𝑛𝑡) + 𝐷2𝑛 sin(𝛾𝑛𝑡)) 

Because the characteristic functions {𝑒𝜇𝑛𝑡 cos(𝛾𝑛𝑡), 𝑒
𝜇𝑛𝑡 sin(𝛾𝑛𝑡)}  are linearly 

independent so, to prove the two characteristic functions are linearly independent, we need 

to take the Wronskian for these two solutions and show that it is not zero. 

𝑊 = |
𝑒𝜇𝑛𝑡 cos(𝛾𝑛𝑡) 𝑒𝜇𝑛𝑡 sin(𝛾𝑛𝑡)

𝜇𝑛𝑒
𝜇𝑛𝑡 cos(𝛾𝑛𝑡) − 𝛾𝑛𝑒

𝜇𝑛𝑡 sin(𝛾𝑛𝑡) 𝜇𝑛𝑒
𝜇𝑛𝑡 sin(𝛾𝑛𝑡) + 𝛾𝑛𝑒

𝜇𝑛𝑡 cos(𝛾𝑛𝑡)
| 

= 𝑒𝜇𝑛𝑡 cos(𝛾𝑛𝑡) (𝜇𝑛𝑒
𝜇𝑛𝑡 sin(𝛾𝑛𝑡) + 𝛾𝑛𝑒

𝜇𝑛𝑡 cos(𝛾𝑛𝑡))

− 𝑒𝜇𝑛𝑡 sin(𝛾𝑛𝑡) (𝜇𝑛𝑒
𝜇𝑛𝑡 cos(𝛾𝑛𝑡) − 𝛾𝑛𝑒

𝜇𝑛𝑡 sin(𝛾𝑛𝑡)) 

= 𝛾𝑛𝑒
2𝜇𝑛𝑡𝑐𝑜𝑠2(𝛾𝑛𝑡) + 𝛾𝑛𝑒

2𝜇𝑛𝑡𝑠𝑖𝑛2(𝛾𝑛𝑡) 

= 𝛾𝑛𝑒
2𝜇𝑛𝑡(𝑐𝑜𝑠2(𝛾𝑛𝑡) + 𝑠𝑖𝑛

2(𝛾𝑛𝑡)) 

= 𝛾𝑛𝑒
2𝜇𝑛𝑡 

Now, the exponential will never be zero and 𝛾𝑛 ≠ 0, ( if it were we wouldn’t have complex 

roots !) and so 𝑊 ≠ 0. Therefore, these two solutions are in fact a fundamental set of 

solutions and so the approximate solution is equation (3.16). Therefore 𝑢𝑚(0) = 𝜃(0) for 

continuity at 0. If we uniformly partition [−𝛽, 0] into 𝑗 subintervals where 𝑗 = 2𝑚 − 1 + 𝑏 

points, here 𝑏 is depend on the number of arbitrary coefficients through the first four which 

𝑏 is either 0,1,2,3 𝑜𝑟 4. We denote the partition of [−𝛽, 0] by 𝜎𝑗  so this implies that its 

points are: −𝛽 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑗 = 0 then 𝑢𝑚(𝑡𝑖)= 𝜃(𝑡𝑖), for𝑖 = 0,1, … , 𝑗 − 1, is a 𝑗 × 𝑗 

non-singular linear system that can be solved for its coefficient. 

Note: We can apply the Characteristic Method to the Boundary Value Problem (3.17), for 

given 𝛽 > 0, 𝑑 > 0, (Hale and Lunel, 1993). 
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                            {   
�̇�(𝑡) = 𝑐1𝑢(𝑡) + 𝑐2𝑢(𝑡 − 𝛽), 𝛽 > 0, 𝑜𝑛 [0,𝑑]

𝑢(𝑡) =  𝜃(𝑡), 𝑜𝑛 [−𝛽, 0]
               (3.17) 

As we assumed in the equation (3.1) , we will assume that the solution to (3.17) has the 

form  𝑢(𝑡) = 𝐷𝑒𝑧𝑡, with 𝐷 arbitrary for some 𝑧, (real or complex) 

                                        𝐷𝑧𝑒𝑧𝑡 = 𝑐1𝐷𝑒
𝑧𝑡 + 𝑐2𝐷𝑒

𝑧𝑡−𝑧𝛽                                   (3.18) 

                                                (𝑧 − 𝑐1)𝑒
𝑧𝛽 − 𝑐2 = 0                                         (3.19) 

Now, suppose 𝑧 − 𝑐1 = 𝑘 , this becomes 𝑘𝑒𝑘𝛽 − 𝑐2𝑒
−𝑐1𝛽 = 0 . Since 𝑐1, 𝑐2 , and 𝛽  are 

given, we can write 𝑐2𝑒
−𝑐1𝛽  as a single number, 𝜑, obtaining  

                                                    𝑘𝑒𝑘𝛽 −𝜑 = 0                                                 (3.20) 

Now we can solve equation (3.20) for 𝑘 as we solved equation (3.3) for 𝑠. 

3.4 Method of Steps  

In this section we will show how to use the method of steps to solve linear first order delay 

differential equations, the method of steps is one of the rudimentary methods that can solve 

some delay differential equation such as lineal first order delay differential equations, with 

single constant delay and constant coefficients analytically. The general idea in this 

method is change the delay differential equation (DDE) on a given interval to ordinary 

differential equation (ODE) over that interval, and this process is repeated in the next 

interval. Consider the following general linear delay differential equation:  

  �̇�(𝑡) = 𝑟0𝑢(𝑡) + 𝑟1𝑢(𝑡 − 𝛽1) + 𝑟2𝑢(𝑡 − 𝛽2) +⋯+ 𝑟𝑛𝑢(𝑡 − 𝛽𝑛)                  (3.21)             

𝑢(𝑡) = 𝜃0(𝑡)      𝑡0 − 𝛽 ≤ 𝑡 ≤ 𝑡0, 𝛽 > 0 

The most natural solution for equation (3.21) is called the method of steps or " The method 

of successive integrations ", (El’sgol’ts and Norkin, 1973). The function 𝑢(𝑡) is the given 

function 𝜃0(𝑡) so that 𝑢(𝑡) is known in the interval [𝑡0 − 𝛽, 𝑡0], 𝛽1 = 𝛽2 = 𝛽3 = ⋯ = 𝛽𝑛 

the                     

        �̇�(𝑡) = 𝑟0𝑢(𝑡) + 𝑟1𝜃0(𝑡 − 𝛽1) + 𝑟2𝜃0(𝑡 − 𝛽2) +⋯+ 𝑟𝑛𝜃0(𝑡 − 𝛽𝑛)              (3.22) 

𝑢(𝑡0) = 𝜃0(𝑡0)       𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝛽, 𝛽 > 0 
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Since for  𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝛽, arguments {(𝑡 − 𝛽1), (𝑡 − 𝛽2),… (𝑡 − 𝛽𝑛) }, and 𝛽1 = 𝛽2 =

𝛽3 = ⋯ = 𝛽𝑛,varies in the initial interval set [𝑡0 − 𝛽, 𝑡0], so we get: 

          �̇�(𝑡) = 𝑟0𝑢(𝑡) + 𝑟1𝜃1(𝑡 − 𝛽1) + 𝑟2𝜃1(𝑡 − 𝛽2) +⋯+ 𝑟𝑛𝜃1(𝑡 − 𝛽𝑛)              (3.23) 

𝑢(𝑡0 + 𝛽) = 𝜃1(𝑡0 + 𝛽)    𝑡0 + 𝛽 ≤ 𝑡 ≤ 𝑡0 + 2𝛽, 𝛽 > 0 

Then if we continue in this way  

      �̇�(𝑡) = 𝑟0𝑢(𝑡) + 𝑟1𝜃𝑛(𝑡 − 𝛽1) + 𝑟2𝜃𝑛(𝑡 − 𝛽2) +⋯+ 𝑟𝑛𝜃𝑛(𝑡 − 𝛽𝑛)            (3.24) 

𝑢(𝑡0 + 𝑛𝛽) = 𝜃𝑛(𝑡0 + 𝑛𝛽)      𝑡0 + 𝑛𝛽 ≤ 𝑡 ≤ 𝑡0 + (𝑛 + 1)𝛽, 𝛽 > 0 

Note 1: we can apply the method of steps to solve the linear first order delay differential 

equation by another way, but have the same idea of this method, especially if the history 

function is constant, consider the lineal first order delay differential equations, with single 

constant-delay and constant coefficient 

                                {
�̇�(𝑡) = 𝑢(𝑡 − 𝛽),          0 ≤ 𝑡 ≤ 𝛽

𝑢(𝑡) = 𝑎,                 − 𝛽 ≤ 𝑡 ≤ 0 
                                       (3.25) 

When 𝑎  is arbitrary constant, assume that we have 𝑢(𝑡) = 𝑔𝑘−1(𝑡)  over some 

interval[𝑡𝑘 − 1, 𝑡𝑘]. Then over the interval[𝑡𝑘, 𝑡𝑘 + 1], we have by separation of variables, 

(Heffernan and Corless, 2006). 

                                         𝑑𝑥∗

𝑢(𝑡)

𝑔𝑘−1(𝑡𝑘)

=  𝑔𝑘−1(𝑡
∗ − 𝛽)𝑑𝑡∗

𝑡

𝑡𝑘

                                      (3.26) 

                    ∴ 𝑢(𝑡) = 𝑔𝑘(𝑡) = 𝑔𝑘−1(𝑡𝑘) +  𝑔𝑘−1(𝑡
∗ − 𝛽)𝑑𝑡∗

𝑡

𝑡𝑘

                              (3.27) 

Note 2: if we have this kind of linear delay first order differential equation (LDDE), with 

single constant-delay and constant coefficients: 

                       �̇�(𝑡) = 𝑟1(𝑡)𝑢(𝑡) + 𝑟2(𝑡)𝑢(𝑡 − 𝛽), 𝑓𝑜𝑟 𝑡 ∈  [0, 𝛽]                        (3.28) 

                                   𝑢(𝑡) = 𝐻(𝑡), 𝑓𝑜𝑟 𝑡 ∈ [−𝛽, 0] 
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𝑟1(𝑡) ≠ 0 and 𝑟2(𝑡) ≠ 0, are constant functions, 𝛽 > 0. Again to solve the equation (3.28), 

we will use the method of steps and apply its condition. On the interval [−𝛽, 0] the history 

function is the given function 𝐻(𝑡), so the history function is known there. Thus we can 

say the equation is solved for the interval [−𝛽, 0], now when 𝑡 ∈ [0,𝛽], 𝑡 − 𝛽 ∈ [−𝛽, 0], 

so 𝑢(𝑡 − 𝛽)  becomes 𝑢0(𝑡 − 𝛽)  on [0, 𝛽] . So the equation (3.28) in the interval [0, 𝛽] 

becomes (Falbo, 2006).         

                   �̇�(𝑡) = 𝑟1(𝑡)𝑢(𝑡) + 𝑟2(𝑡)𝑢0(𝑡 − 𝛽), 𝑓𝑜𝑟 𝑡 ∈  [0, 𝛽]                      (3.29) 

                                𝑢(0) = 𝐻(0) 

Then the equation (3.29) is an ordinary differential equation and not a delay differential 

equat-ion because 𝑢0(𝑡 − 𝛽) is known; it is 𝐻(𝑡 − 𝛽). Thus we solve it on the interval 

[0, 𝛽] and using intial condition, 𝑢(0) = 𝐻(0). 

                  �̇�(𝑡) − 𝑟1(𝑡)𝑢(𝑡) = 𝑟2(𝑡)𝐻(𝑡 − 𝛽), 𝑓𝑜𝑟 𝑡 ∈  [0, 𝛽]                        (3.30) 

                                  𝑢(0) = 𝐻(0) 

The general solution of equation (3.30) is 

                     𝑢(𝑡) =
𝑟2

𝑒∫−𝑟1𝑑𝑡
 𝑒∫−𝑟1𝑑𝑡𝐻(𝑡 − 𝛽)𝑑𝑡 , 𝑜𝑛 [0, 𝛽]                              (3.31) 

Again on the interval [𝛽, 2𝛽], the equation becomes  

                �̇�(𝑡) − 𝑟1(𝑡)𝑢(𝑡) = 𝑟2(𝑡)𝑢1(𝑡 − 𝛽), 𝑓𝑜𝑟 𝑡 ∈  [𝛽, 2𝛽]                      (3.32) 

                              𝑢(𝛽) = 𝑢1(𝛽) 

Note 3:  

                                                 �̇�(𝑡) = 𝑏𝑢(𝑡 − 𝛽)                                             (3.33) 

𝑢(𝑡) = 𝑑,  𝑡0 − 𝛽 ≤ 𝑡 ≤ 𝑡0 

Where 𝑑 and 𝛽 are constant, 𝛽 > 0, applying the method of steps, we get 

𝑢(𝑡) = 𝑑  𝑡𝑘
(𝑡 − 𝑡0 − (𝑘 − 1)𝛽)

𝑘

𝑘!

[
𝑡−𝑡0
𝛽
]

𝑘=0

 

where [𝑡] is the integer part of 𝑡 , (El’sgol’ts and Norkin, 1973). 
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3.5 How to Use Matlab Codes 

3.5.1 DDE23 solver 

In this section we will show that how to use DDE23 solver in Matlab for solving linear 

first order delay differential equations, with constant single delay and constant coefficient, 

Our aim is to solve delay differential equations (DDEs) by easier way such as using 

DDE23 solver, whereas ordinary differential equations  include  derivatives which rely on 

the solution at the present value of the autonomous variable (“time”) and delay differential 

equations include in addition derivatives which rely on the solution at previous times. The 

purpose of using the Matlabe codes such as DDE23, for both ODEs and DDEs that many 

problems its solutions have several continuous derivatives, and the discontinuities in low 

order derivatives require special attention because this is  very serious matter for delay 

differential equations. For important things that the discontinuities are not uncommon for 

ordinary differential equations, but they are almost always present for delay differential 

equations. Then generally the discontinuity is appear in the first derivatives of the solution 

at the initial point (Thompson, 2000). To know how discontinuities propagate and smooth 

out, let us solve 𝑢(𝑡)  =  𝑢(𝑡 −  1)  for 0 ≤  𝑡 with history 𝜃(𝑡)  =  1 f or 𝑡 ≤  0. With 

this history, the problem reduces on the interval 0 ≤ t ≤ 1 to the ODE �̇�(𝑡)  =  1 with initial 

value 𝑢(0)  =  1. Solving this problem we find that 𝑢(𝑡)  =  𝑡 + 1 for 0 ≤  𝑡 ≤  1. Notice 

that the solution has a discontinuity in its first derivative at 𝑡 =  0. In the same way we 

find that 𝑢(𝑡) =  (𝑡
2+1)

2
  for 1 ≤  𝑡 ≤  2. The first derivative is continuous at t = 1, but there 

is a discontinuity in the second derivative. In general the solution on the interval [𝑘, 𝑘 +

 1] is a polynomial of degree 𝑘 + 1 and there is a discontinuity of order k + 1 at t = k, 

(Thompson, 2000).  

A popular approach to solving DDEs is to extend one of the methods used to solve ODEs. 

Most of the codes are based on explicit Runge-Kutta methods. DDE23 takes this approach 

by extending the method of the Matlab ODE solver ODE23. The idea is the same as the so-

called “method of steps” for solving DDEs that was used to solve an example in the last 

section.  
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Maybe another methods it will be used on Matlab to find approximate solutions, to be 

concrete, we describe the idea as applied to this example. In solving our example for 

0 ≤  𝑡 ≤  1, the DDE reduces to an initial value problem for an ODE with 𝑢(𝑡 −  1) 

equal to the given history 𝜃(𝑡 −  1) and initial value 𝑢(0)  =  1. We can solve this ODE 

numerically using any of the popular methods for the purpose. Analytical solution of the 

DDE on the next interval 1 ≤  𝑡 ≤  2 is handled the same way as the first interval, but the 

numerical solution is somewhat complicated, and the complications are present for each of 

the subsequent intervals. The first complication is that we must keep track of how the 

discontinuity at the initial point propagates because of the delays. Another is that at each 

discontinuity we start the solution of an initial value problem for an ODE. Runge-Kutta 

methods are attractive because they are much easier to start than other popular numerical 

methods for ODEs. Still another issue is the term 𝑢(𝑡 − 1) that is in principle known 

because we have already found 𝑢(𝑡) f or 0 ≤  𝑡 ≤  1. This has been a serious obstacle to 

applying Runge-Kutta methods to DDEs, so we need to discuss the matter more fully. 

Runge-Kutta methods, like all discrete variable methods for ODEs, produce 

approximations 𝑢𝑛 to 𝑢(𝑣𝑛) on a mesh {𝑣𝑛} in the interval of interest, here [0, 1].  

They do this by starting with the given initial value, 𝑢0  =  𝑢(𝑎) at 𝑣0  =  𝑎, and stepping 

from 𝑢𝑛  ≈  𝑢(𝑣𝑛)a distance of ℎ𝑛  to 𝑢𝑛+1 ≈  𝑢(𝑣𝑛+1)  at 𝑣𝑛 + 1 =  𝑣𝑛 + ℎ𝑛 . The step 

size ℎ𝑛 is chosen as small as necessary to get an accurate approximation. It is chosen as big 

as possible so as to reach the end of the interval in as few steps as possible, which is to say, 

as cheaply as possible. In the case of solving our example on the interval [1, 2], we have 

values of the solution only on a mesh in [0, 1]. So, where do the values 𝑢(𝑡 − 1) come 

from? In their original form Runge-Kutta methods produce answers only at mesh points, 

but it is now known how to obtain “continuous extensions” that yield an approximate 

solution between mesh points. The trick is to get values between mesh points that are just 

as accurate and to do this cheaply. In some cases the continuous extensions can be viewed 

as interpolants. The Runge-Kutta methods mentioned are all explicit recipes for computing 

𝑢𝑛+1 given 𝑢𝑛 and the ability to evaluate the equation, (Thompson, 2000).  
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For reasons of efficiency, a solver tries to use the biggest step size 𝑢𝑛 that will yield the 

specified accuracy, but what if it is bigger than the shortest delay  𝛽? In taking a step 

to 𝑣𝑛 + ℎ𝑛, we would then need values of the solution at points in the span of the step, but 

we are trying to compute the solution at the end of the step and do not yet know these 

values. A good many solvers restrict the step size to avoid this issue. Some solvers, 

including DDE23, use whatever step size appears appropriate and iterate to evaluate the 

implicit formula that arises in this way. We illustrate the straightforward solution of a DDE 

by computing and plotting the solution of Example, (Thompson, 2000). The equations  

                                               �̇�1(𝑡) = 𝑢1(𝑡 − 0.5), 𝑡 ∈ [0,5] 

                                               �̇�2(𝑡) = 𝑢1(𝑡 − 0.5) + 𝑦2(𝑡 − 0.8),   

                                               �̇�3(𝑡) = 𝑢2(𝑡) 

                                               𝑢1(𝑡) = 1, 𝑢2(𝑡) = 1,  𝑡 ≤ 0 

The syntax has the form  

𝑠𝑜𝑙 = 𝑑𝑑𝑒23(𝑑𝑑𝑒𝑓𝑖𝑙𝑒, 𝑙𝑎𝑔𝑠, ℎ𝑖𝑠𝑡𝑜𝑟𝑦, 𝑡𝑠𝑝𝑎𝑛); 

The interval [0,5] is the interval of integration which is denote by (" tspan"), the history 

argu-ment is the name of a function that evaluates the solution at the input value of 𝛽 and 

returns it as a column vector, the function for evaluating the DDEs is denoted by 

("ddefile"). 

Here exam1h.m can be coded as: 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣 =  𝑒𝑥𝑎𝑚1ℎ(𝑡) 

𝑣 =  𝑜𝑛𝑒𝑠(3,1) 

Quite often the history is a constant vector. A simpler way to provide the history then is to 

supply the vector itself s the history argument. The delays are provided as a vector lags, 

here [0.5, 0.8]. ddefile is the name of a function for evaluating the DDEs. Here exam1f.m 

can be coded as: 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣 =  𝑒𝑥𝑎𝑚1𝑓(𝑡, 𝑢, 𝑍) 

𝑢𝑙𝑎𝑔1 =  𝑍(: ,1); 
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𝑢𝑙𝑎𝑔2 =  𝑍(: ,2); 

𝑣 =  𝑧𝑒𝑟𝑜𝑠(3,1); 

𝑣(1)  =  𝑢𝑙𝑎𝑔1(1); 

𝑣(2) =  𝑢𝑙𝑎𝑔1(1)  +  𝑢𝑙𝑎𝑔2(2); 

𝑣(3)  =  𝑢(2); 

The input t is the current t and y, an approximation to 𝑢(𝑡). The input array 𝑍 contains 

approximations to the solution at all the delayed arguments. Specifically, 𝑍(: , 𝑗) 

approximates 𝑢(𝑡 − 𝛽𝑗)  f or τj given as  𝑙𝑎𝑔𝑠(𝑗) . It is not necessary to define local 

vectors 𝑢𝑙𝑎𝑔1, 𝑢𝑙𝑎𝑔2 as we have done here, but often this makes the coding of the DDEs 

clearer. The ddefile must return a column vector, (Thompson, 2000).This is perhaps a good 

place to point out that DDE23 does not assume that terms like 𝑢(𝑡 − 𝛽𝑗) actually appear in 

the equations. Because of this, you can use DDE23 to solve ODEs. If you do, it is best to 

input an empty array, [ ], f or lags because any delay specified affects the computation 

even when it does not appear in the equations. The input arguments of dde23 are much like 

those of ODE23, but the output differs formally in that it is one structure, here called sol, 

rather than several arrays [𝑡, 𝑢, . . . ]  =  𝑜𝑑𝑒23(. ..). The field 𝑠𝑜𝑙. 𝑥 corresponds to the array 

𝑡 of values of the independent variable returned by ODE23 and the field 𝑠𝑜𝑙. 𝑢, to the array 

𝑢  of solution values. So, one way to plot the solution is:  𝑝𝑙𝑜𝑡(𝑠𝑜𝑙. 𝑥, 𝑠𝑜𝑙. 𝑢) ; After 

defining the equations in exam1f.m, the complete program exam1.m to compute and plot 

the solution is: 

𝑝𝑙𝑜𝑡(𝑠𝑜𝑙. 𝑡, 𝑠𝑜𝑙. 𝑢); 

𝑡𝑖𝑡𝑙𝑒(’𝐹𝑖𝑔𝑢𝑟𝑒 1. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒 𝑜𝑓 𝐷𝐷𝐸𝑠’) 

𝑥𝑙𝑎𝑏𝑒𝑙(’𝑡𝑖𝑚𝑒 𝑡’); 

𝑦𝑙𝑎𝑏𝑒𝑙(’𝑢(𝑡)’); 
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Note that we must supply the name of the ddefile to the solver, i.e., the string ’exam1f’ 

rather than exam1f. Also, we have taken advantage of the easy way to specify a constant 

history. 

Table 3.1: explain the DDE23 solver to solve delay differential equation 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣 =  𝑒𝑥𝑎𝑚1ℎ(𝑡) 

𝑣 =  𝑜𝑛𝑒𝑠(3,1) 

The history function is a constant vector. A simpler way to provide 

the history then is to equipping the vector itself as the history 

argument. The delays are provided as a vector lags, here [0.5,0.8].  

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑣 = 

 𝑒𝑥𝑎𝑚1𝑓(𝑡, 𝑢, 𝑍) 

𝑢𝑙𝑎𝑔1 =  𝑍(: ,1); 

𝑢𝑙𝑎𝑔2 =  𝑍(: ,2); 

𝑣 =  𝑧𝑒𝑟𝑜𝑠(3,1); 

𝑣(1)  =  𝑢𝑙𝑎𝑔1(1); 

𝑣(2) =  𝑢𝑙𝑎𝑔1(1) 

 + 𝑢𝑙𝑎𝑔2(2); 

𝑣(3)  =  𝑢(2); 

The input t is the current t and 𝑢, an approximation to 𝑢(𝑡). The 

input array 𝑍  contains approximations to the solution at all the 

delayed arguments. Specifically, 𝑍(: , 𝑖)  approximates 𝑢(𝑡 − 𝛽𝑖) 

for 𝛽𝑗  given as 𝑙𝑎𝑔𝑠(𝑖). Define 𝑢𝑙𝑎𝑔1 and 𝑢𝑙𝑎𝑔2, but often this 

makes the coding of the DDEs clearer. The ddefile must return a 

column vector. 

𝒔𝒐𝒍 =  𝒅𝒅𝒆𝟐𝟑(’𝒆𝒙𝒂𝒎𝟏𝒇’, 

[𝟎. 𝟓, 𝟎. 𝟖], 𝒐𝒏𝒆𝒔(𝟑, 𝟏), [𝟎, 𝟓]); 

DDE23 solver  

𝑝𝑙𝑜𝑡(𝑠𝑜𝑙. 𝑡, 𝑠𝑜𝑙. 𝑢); 

𝑡𝑖𝑡𝑙𝑒(’𝐹𝑖𝑔𝑢𝑟𝑒 1. 𝐸𝑥𝑎𝑚𝑝𝑙𝑒  

𝑜𝑓 𝐷𝐷𝐸𝑠’) 

𝑥𝑙𝑎𝑏𝑒𝑙(’𝑡𝑖𝑚𝑒 𝑡’); 

𝑦𝑙𝑎𝑏𝑒𝑙(’𝑢(𝑡)’); 

We must define the equations in exam1f.m, the complete program 

exam1.m to compute and plot the solution. Note that we must 

supply the name of the 𝒅𝒅𝒆𝒇𝒊𝒍𝒆 to the solver. 

Solution of delay differential 

equations  
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3.5.2 DDESD solver  

DDESD solver for solving delay differential equation (DDEs) with general delays, this 

code is like the DDE23 in some properties. 

Table 3.2: explain the DDESD solver to solve delay differential equation 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑉𝐷𝑑𝑑𝑒𝑠𝑑2 
% 𝑠𝑜𝑙𝑣𝑖𝑛𝑔 𝐷𝐷𝐸𝑠  
𝑐𝑙𝑒𝑎𝑟; 
𝑐𝑙𝑐; 

Define the m-file in the local function. 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑦𝑝 = 𝑑𝑑𝑒𝑓𝑢𝑛(𝑡, 𝑢, 𝑧) 
        𝑢𝑝 =  𝑧; 
 

The delay equation which is denoted by z. 

𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑑 =  𝑑𝑒𝑙𝑎𝑦(𝑡, 𝑦) 
        𝑑 =  𝑡 − 𝛽; 
    𝑒𝑛𝑑 
    𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑢 =  ℎ𝑖𝑠𝑡𝑜𝑟𝑢(𝑡) 
        𝑢 = ℎ𝑖𝑠𝑡𝑜𝑟𝑦; 
    𝑒𝑛𝑑 
𝑠𝑜𝑙 =  𝑑𝑑𝑒𝑠𝑑(@𝑑𝑑𝑒𝑓𝑢𝑛, 
@𝑑𝑒𝑙𝑎𝑦,@ℎ𝑖𝑠𝑡𝑜𝑟𝑦, [0 a]); 
 

Define the time delay and the hisory function , specify the 

history function in one of three ways. 

 A function of t such that 𝑢 = history 𝑢(𝑡) returns the 

solution 𝑢(𝑡) for 𝑡 ≤ 𝑡0 as a column vector. 

 A constant column vector, if 𝑢(𝑡) is constant. 

 The solution sol from a previous integration, if this 

call continues that integration. 

𝑡𝑛 =  𝑙𝑖𝑛𝑠𝑝𝑎𝑐𝑒(0, 𝑎); 
𝑦𝑛 =  𝑑𝑒𝑣𝑎𝑙(𝑠𝑜𝑙, 𝑡𝑛); 
𝑝𝑙𝑜𝑡(𝑡𝑛, 𝑦𝑛, ′𝑐𝑜𝑙𝑜𝑟′, ′𝑟′, ′𝑙𝑖𝑛𝑒𝑤𝑖𝑑𝑡ℎ′, 2); 
𝑡𝑖𝑡𝑙𝑒(′𝑑𝑢/𝑑𝑡 = 𝑧′) 
𝑥𝑙𝑎𝑏𝑒𝑙(′𝑡𝑖𝑚𝑒 𝑡′), 𝑦𝑙𝑎𝑏𝑒𝑙(′𝑢(𝑡)′) 

The 𝒅𝒅𝒆𝒇𝒖𝒏 is function handel that evaluates the rghit sids 

of the differential eqautions, again 𝒕𝒔𝒑𝒂𝒏  is interv-al of 

integration from 𝑡0 = 𝑡𝑠𝑝𝑎𝑛  to 𝑡𝑓 = 𝑡𝑠𝑝𝑎𝑛(𝑒𝑛𝑑)  with 

𝑡0 < 𝑡𝑓. 

 

Example: {
�̇�(𝑡) = 𝑢(𝑡 − 5), 𝑡 ∈ [0,5]

𝑢(𝑡) = 𝑡2, 𝑜𝑛 [−5,0]
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CHAPTER 4 

SOLVING LDDE BY MOC AND METHOD OF STEPS 

 

 

In this chapter we will give some examples of linear first order delay differential equations, 

with single constant delay (DDEs), and solving these examples by using the method of 

characteristic and method of steps, we will compare algebraic solutions with approximate 

solutions by using Matlab. For comparing the solutions we used two cods from the Matlab, 

DDE23 and DDESD solver, we will start algebraic solutions to every problem with 

drawing the solution in a graph, and then compare them with approximate solutions at 

another graph, therefore the best program for solving many types of delay differential 

equation is Matlab because it is deal with complicated problem by easier way, we have 

some another program to solve DDEs such as Maple…etc. But Matlab is the best, we have 

another program for drawing the solutions named Graph-Matica we used it. 

4.1 MOC Examples 

In this section we will solve some examples of linear first order delay differential equation, 

with single constant-delay and constant coefficients. 

4.1.1 Example of case one 

Use Characteristic Method to solve the (BVP) and sketch the graph, (Falbo, 1995) with 

given an approximate solution 𝒖𝟐(𝒕). 

{   
�̇�(𝑡) = −1.25𝑢(𝑡 − 1.25),    𝑜𝑛 [0,30]

 𝜃(𝑡) = 𝑒−𝑡
2
, 𝑜𝑛 [−𝛽, 0]

 

Solution: 𝑑 = 30 > 0, 𝛽 = 1.25 > 0, 𝛿 = −1.25 < 0, now if we check the value of 𝛿 and 

𝛽  its belongs to case one, which 𝛿 < −
1

𝛽𝑒
< 0 → −1.25 < −

1

1.25𝑒
< 0. Now substitute 

value of 𝑎 and 𝛽 into equation (3.8) we get  

𝑋 = 1.5625sin(𝑋) 𝑒𝑋 cot(𝑋) 
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Solving this equation by Newton’s Method for a few roots, we will obtain the values of 𝑋, 

and 𝑋 = ±1.5684,±7.6465,±13.9808,…, since 𝑋 = 𝛾𝛽  from this we get values of 𝛾 , 

which is equal to 𝛾: 𝛾 = 1.2547, 6.1172,11.1847. From equation (3.6) we get the values 

of 𝜇, which is equal to 𝜇: 𝜇 = −0.0031,−1.2877,−1.7629. 

Now, we know our approximate solution is 𝑢2(0) = 𝜃(0), which 𝑚 = 2, we must divide 

the interval [−1.25,0] to subintervals depend on this 𝑗 = 2𝑚 − 1+ 𝑏, so that 𝑗 = 2(2) −

1 + 0 = 3, [−1.25,0] = [−1.25,−0.8333] ∪ [−0.8333,−0.41666] ∪ [−0.41666,0], this 

implies that 𝑡 = 0, 𝑡1 = −0.41666, 𝑡2 = −0.8333, 𝑡3 = −1.25. 

Now since 𝑢𝑚(𝑡) = 𝜃(𝑡) = 𝑒
−𝑡2 , 𝑚 = 2 , then 

𝑢2(𝑡) = 𝜃(𝑡) =  𝑒
𝜇𝑛𝑡

2

𝑛=1

(𝐷1𝑛 cos(𝛾𝑛𝑡) + 𝐷2𝑛 sin(𝛾𝑛𝑡)) 

𝑒−𝑡
2
= 𝑒𝜇1𝑡(𝐷11 cos(𝛾1𝑡) + 𝐷21 sin(𝛾1𝑡)) + 𝑒

𝜇2𝑡(𝐷12 cos(𝛾2𝑡) + 𝐷22 sin(𝛾2𝑡)) 

= 𝑒−0.0031𝑡𝐷11 cos(1.2547𝑡) + 𝑒
−0.0031𝑡𝐷21 sin(1.2547𝑡) + 𝑒

−1.2877𝑡𝐷12 cos(6.1172𝑡)

+ 𝑒−1.2877𝑡𝐷22 sin(6.1172𝑡) 

To obtain the value of arbitrary coefficients, (𝐷11, 𝐷21, 𝐷12, 𝐷22) , we need the values of 𝑡, 

where  𝑡 = 0, 𝑡1 = −0.41666, 𝑡2 = −0.8333, 𝑡3 = −1.25. We will get the 4 × 4 system of 

linear equations. 

When 𝑡 = 0  

𝑒−(0)
2
= 𝑒−0.0031(0)𝐷11 cos(1.2547(0)) + 𝑒

−0.0031(0)𝐷21 sin(1.2547(0))

+ 𝑒−1.2877(0)𝐷12 cos(6.1172(0)) + 𝑒
−1.2877(0)𝐷22 sin(6.1172(0)) 

                                              𝐷11 +𝐷12 = 1                                                    (4.1) 
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When 𝑡1 = −0.41666 

𝑒−(−0.41666)
2
= 𝑒−0.0031(−0.41666)𝐷11 cos(1.2547(−0.41666))

+ 𝑒−0.0031(−0.41666)𝐷21 sin(1.2547(−0.41666))

+ 𝑒−1.2877(−0.41666)𝐷12 cos(6.1172(−0.41666))

+ 𝑒−1.2877(−0.41666)𝐷22 sin(6.1172(−0.41666)) 

      0.867755𝐷11 − 1.4829𝐷12 − 0.49993𝐷21 + 0.95539𝐷22 = 0.840062          (4.2) 

When 𝑡2 = −0.8333 

𝑒−(−0.8333)
2
= 𝑒−0.0031(−0.8333)𝐷11 cos(1.2547(−0.8333)) 

+ 𝑒−0.0031(−0.8333)𝐷21 sin(1.2547(−0.8333))

+ 𝑒−1.2877(−0.8333)𝐷12 cos(6.1172(−0.8333))

+ 𝑒−1.2877(−0.8333)𝐷22 sin(6.1172(−0.8333)) 

          0.50273𝐷11 + 1.09843𝐷12 − 0.86743𝐷21 + 2.71011𝐷22 = 0.499379      (4.3)     

When 𝑡3 = −1.25 

  𝑒−(−1.25)
2
= 𝑒−0.0031(−1.25)𝐷11 cos(1.2547(−1.25)) 

+ 𝑒−0.0031(−1.25)𝐷21 sin(1.2547(−1.25))

+ 𝑒−1.2877(−1.25)𝐷12 cos(6.1172(−1.25))

+ 𝑒−1.2877(−1.25)𝐷22 sin(6.1172(−1.25)) 

             0.00243𝐷11 + 1.03017𝐷12 − 1.00387𝐷21 − 4.89367𝐷22 = 0.2096       (4.4) 
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Now we have 4 × 4 system of linear equations 

    𝐷11 +𝐷12 = 1                                                                                                         (4.1)       

 0.867755𝐷11 − 1.4829𝐷12 − 0.49993𝐷21 + 0.95539𝐷22 = 0.840062                (4.2)    

 0.50273𝐷11 + 1.09843𝐷12 − 0.86743𝐷21 + 2.71011𝐷22 = 0.499379                (4.3)     

0.00243𝐷11 + 1.03017𝐷12 − 1.00387𝐷21 − 4.89367𝐷22 = 0.2096                      (4.4) 

Solving 4 × 4 system of linear equations by Gaussian Elimination, rewrite the system in 

mat-rix form and solving by Gaussian Elimination (Gauss-Jordan elimination) 

[

1 1 0
0.87755 −1.4829 −0.49993
0.50273 1.09843 −0.86743
0.00243 1.03017 −1.00387

    

0 ⋮ 1
0.95539 ⋮ 0.87755
2.71011 ⋮ 0.50273
−4.989367 ⋮ 0.00243

] 

𝑅2 − 0.87755𝑅1 → 𝑅𝑛 , multiply (𝑘)  row by (𝑚)  and subtract it from (𝑛)  row; 𝑅3 −

0.50273  𝑅1 → 𝑅𝑛 , multiply (𝑘)  row by (𝑚)  and subtract it from (𝑛)  row; 𝑅4 −

0.00243𝑅1 → 𝑅𝑛, mul-tiply (𝑘) row by (𝑚) and subtract it from (𝑛) row. 

[

1 1 0
0 −2.36045 −0.49993
0 0.5957 −0.86743
0 1.02774 −1.00387

    

0 ⋮ 1
0.95539 ⋮ −0.037488
2.71011 ⋮ −0.003351
−4.989367 ⋮ 0.20717

] 

𝑅2/−2.36045 → 𝑅(𝑖), divide the (𝑖) row by (𝑛) 

[

1 1 0
0 1 0.2117943612
0 0.5957 −0.86743
0 1.02774 −1.00387

    

0 ⋮ 1
−0.4047490944 ⋮ 0.15399097
2.71011 ⋮ −0.003351
−4.989367 ⋮ 0.20717

] 

𝑅1 − 1𝑅1 → 𝑅𝑛 , multiply (𝑘)  row by (𝑚)  and subtract it from (𝑛)  row; 𝑅3 − 0.5957 

𝑅2 → 𝑅𝑛, multiply (𝑘) row by (𝑚) and subtract it from (𝑛) row; 𝑅4 − 1.02774𝑅2 → 𝑅𝑛, 

multiply (𝑘) row by (𝑚) and subtract it from (𝑛) row. 
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[

1 0 −0.2117943612
0 1 0.2117943612
0 0 −0.993595900
0 0 −1.221539537

    

0.4047490944 ⋮ 0.98411828253
−0.4047490944 ⋮ 0.15399097
2.95121903556 ⋮ −0.0128117505
−4.4776931656 ⋮ 0.190847723688

] 

𝑅3/−0.993595900 → 𝑅(𝑖), divide the (𝑖) row by (𝑛) 

[

1 0 −0.2117943612
0 1 0.2117943612
0 0 1
0 0 −1.221539537

    

0.4047490944 ⋮ 0.98411828253
−0.4047490944 ⋮ 0.15399097
−2.97024075 ⋮ 0.012894315
−4.4776931656 ⋮ 0.190847723688

] 

0.2117943612𝑅3 + 𝑅1 → 𝑅𝑛 , multiply (𝑘)  row by (𝑚)  and subtract it from (𝑛)  row; 

𝑅3 − 0.2117943612 𝑅2 → 𝑅𝑛 , multiply (𝑘)  row by (𝑚) and subtract it from (𝑛) row; 

1.221539537𝑅3 + 𝑅4 → 𝑅𝑛, multiply (𝑘) row by (𝑚) and subtract it from (𝑛) row. 

[

1 0 0
0 1 0
0 0 1
0 0 0

    

−0.224331148 ⋮ 0.98684905
0.224331148 ⋮ 0.013150774
−2.97024075 ⋮ 0.012894315
−8.105959677 ⋮ 2.0659864

] 

𝑅4/−8.105959677 → 𝑅(𝑖), divide the (𝑖) row by (𝑛) 

[

1 0 0
0 1 0
0 0 1
0 0 0

    

−0.224331148 ⋮ 0.98684905
0.224331148 ⋮ 0.013150774
−2.97024075 ⋮ 0.012894315

1 ⋮ 0.025487252

] 

0.224331148𝑅4 + 𝑅1 → 𝑅𝑛 , multiply (𝑘)  row by (𝑚)  and subtract it from (𝑛)  row; 

2.97024075  𝑅4 + 𝑅3 → 𝑅𝑛 , multiply (𝑘)  row by (𝑚)  and subtract it from (𝑛)  row; 

𝑅2 − 0.224331148𝑅4 → 𝑅𝑛, multiply (𝑘) row by (𝑚) and subtract it from (𝑛) row. 

[

1 0 0
0 1 0
0 0 1
0 0 0

    

0 ⋮ 0.9666
0 ⋮ 0.033353
0 ⋮ −0.05108
1 ⋮ −0.0248704

] 
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So that the values of arbitrary coefficients (𝐷11 = 0.9666,𝐷21 = −0.05108,𝐷12 =

0.033353 , 𝐷22 = −0.0248706) the characteristic solutions: 

𝑢2(𝑡) = 𝑒
−0.0031𝑡0.9666cos(1.2547𝑡) − 𝑒−0.0031𝑡0.05108 sin(1.2547𝑡)

+ 𝑒−1.2877𝑡0.033353 cos(6.1172𝑡) − 𝑒−1.2877𝑡0.02488sin(6.1172𝑡) 

Figure (4.1) shows the graph of characteristic solution and Figure (4.2) shows the 

numerical solution by using solver DDE23 in Matlab. 

 

Figure 4.1: Characteristic solution of 𝑢2(𝑡) 

 

 

 

 

 

 

 

Figure 4.2: Approximate solution by using solver DDE23 

        𝑢2(𝑡) 
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Figure 4.3: Comparing the two solutions Characteristic and Approximate 

4.1.2 Example of case two 

 Consider the Boundary Value Problem for case two 

{   
�̇�(𝑡) = −

1

1.25𝑒
𝑢(𝑡 − 1.25),    𝑜𝑛 [0,10]

 𝜃(𝑡) = 𝑒−𝑡
2
, 𝑜𝑛 [−𝛽, 0]

 

The steps of solution is like case one , we must apply the condition of case two, to solve 

this equation, Figure (4.4) shows the approximate solution. 

 

Figure 4.4: Approximate solution of case two 
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4.1.3 Example of case three  

Consider the Boundary Value Problem for case three 

{   
�̇�(𝑡) = −0.02𝑢(𝑡 − 1.25),    𝑜𝑛 [0,15]

 𝜃(𝑡) = 𝑒−𝑡 , 𝑜𝑛 [−𝛽, 0]
 

The steps of solution is like case one , we must apply the condition of case three, to solve 

this equation, Figure (4.5) shows the approximate solution. 

 

Figure 4.5: Approximate solution of case three 

4.1. Example of case four 

Consider the Boundary Value Problem for case four 

{   
�̇�(𝑡) = 1.25𝑢(𝑡 − 1.25),    𝑜𝑛 [0,10]

 𝜃(𝑡) = 𝑒−𝑡
2
, 𝑜𝑛 [−𝛽, 0]

 

The steps of solution is like case one , we must apply the condition of case four, to solve 

this equation, Figure (4.6) shows the approximate solution. 
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Figure 4.6: Approximate solution of case four 

4.2 STEPS Examples 

In this section we will solve some examples of linear first order delay differential equation, 

with single constant delay and constant coefficients. 

4.2.1 Polynomial problems 

If the history function is polynomial for example use the method of steps to solve linear 

delay differential equation and sketch the graph, for 1 ≤ 𝑡 ≤ 5 , �̇�(𝑡) = 4𝑢(𝑡 − 1),   𝑡 > 1 

with 𝑢(𝑡) = (𝑡 − 2)2 − 1,   0 ≤ 𝑡 ≤ 1.  

Solution: the initial interval is  0 ≤ 𝑡 ≤ 1, so we will start from the interval 1 ≤ 𝑡 ≤ 2 to 

solve this equation. 

1 ≤ 𝑡 ≤ 2:→ 0 ≤ 𝑡 − 1 ≤ 1, so 𝑢(𝑡 − 1) = (𝑡 − 3)2 − 1 and 𝑢(𝑡) = (𝑡 − 2)2 − 1 , with 

initial condition 𝑢(1) = 0,  𝑑𝑢
𝑑𝑡
= 4[(𝑡 − 3)2 − 1] = 4(𝑡 − 3)2 − 4  by separation of 

variable we get 𝑑𝑢 = [4(𝑡 − 3)2 − 4 ]𝑑𝑡 integrate both side  

 𝑑𝑢 =  [4(𝑡 − 3)2 − 4 ]𝑑𝑡  

𝑢(𝑡) =
4

3
(𝑡 − 3)3 − 4𝑡 + 𝑐 and we have initial condition 𝑢(1) = 0, so 

4

3
(1 − 3)3 − 4𝑡 +

𝑐 = 0, then value of 𝑐 =
44

3
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                                        u1(𝑡) =
4

3
(𝑡 − 3)3 − 4𝑡 +

44

3
                                  (4.5) 

 

Figure 4.7: Graph of Equation 4.5 

Now 2 ≤ 𝑡 ≤ 3:→ 1 ≤ 𝑡 − 1 ≤ 2, so 

𝑢(𝑡 − 1) =
4

3
(𝑡 − 4)3 − 4(𝑡 − 1) +

44

3
 

And 𝑢(𝑡) =
4

3
(𝑡 − 3)3 − 4𝑡 +

44

3
,with initial condition 𝑢(2) =

16

3
 

𝑑𝑢

𝑑𝑡
= 4 [
4

3
(𝑡 − 4)3 − 4(𝑡 − 1) +

44

3
] 

=
16

3
(𝑡 − 4)3 − 16(𝑡 − 1) +

176

3
 

By separation of variable we get 

𝑑𝑢 = [
16

3
(𝑡 − 4)3 − 16(𝑡 − 1) +

176

3
 ]𝑑𝑡 

Integrate both side  

 𝑑𝑢 =  [
16

3
(𝑡 − 4)3 − 16(𝑡 − 1) +

176

3
]𝑑𝑡  

𝑢(𝑡) =
4

3
(𝑡 − 4)4 − 8(𝑡 − 1)2 +

176

3
𝑡 + 𝑐 
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And we have initial condition 𝑢(2) =
16

3
, so 

4

3
(2 − 4)4 − 8(2 − 1)2 +

176

3
(2) + 𝑐 =

16

3
 

Then value of 𝑐 = −
376

3
 

                     𝑢2(𝑡) =
4

3
(𝑡 − 4)4 − 8(𝑡 − 1)2 +

176

3
𝑡 −
376

3
                               (4.6) 

 

Figure 4.8: Graph of Equation 4.6 

Now 3 ≤ 𝑡 ≤ 4:→ 2 ≤ 𝑡 − 1 ≤ 3, so 

𝑢(𝑡 − 1) =
4

3
(𝑡 − 5)4 − 8(𝑡 − 2)2 +

176

3
(𝑡 − 1) −

376

3
 

And 

𝑢(𝑡) =
4

3
(𝑡 − 4)4 − 8(𝑡 − 1)2 +

176

3
𝑡 −
376

3
 

With initial condition 𝑢(3) = 20 

𝑑𝑢

𝑑𝑡
= 4 [
4

3
(𝑡 − 5)4 − 8(𝑡 − 2)2 +

176

3
(𝑡 − 1) −

376

3
] 

𝑑𝑢

𝑑𝑡
=
16

3
(𝑡 − 5)4 − 32(𝑡 − 2)2 +

704

3
(𝑡 − 1) −

1504

3
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By separation of variable we get 

𝑑𝑢 = [
16

3
(𝑡 − 5)4 − 32(𝑡 − 2)2 +

704

3
(𝑡 − 1) −

1504

3
 ]𝑑𝑡 

Integrate both side:  

 𝑑𝑢 =  [
16

3
(𝑡 − 5)4 − 32(𝑡 − 2)2 +

704

3
(𝑡 − 1) −

1504

3
]𝑑𝑡  

𝑢(𝑡) =
16

15
(𝑡 − 5)5 −

32

3
(𝑡 − 2)3 +

352

3
(𝑡 − 1)2 −

1504

3
𝑡 + 𝑐 

And we have initial condition 𝑢(3) =
100

3
, so 

16

15
(3 − 5)5 −

32

3
(3 − 2)3 +

352

3
(3 − 1)2 −

1504

3
(3) + 𝑐 = 20 

Then value of 𝑐 =
49476

45
 

   𝑢3(𝑡) =  
16

15
(𝑡 − 5)5 −

32

3
(𝑡 − 2)3 +

352

3
(𝑡 − 1)2 −

1504

3
𝑡 +
49476

45
   (4.7) 

 

Figure 4.9: Graph of Equation 4.7 

Now 4 ≤ 𝑡 ≤ 5:→ 3 ≤ 𝑡 − 1 ≤ 4, so 

𝑢(𝑡 − 1) =  
16

15
(𝑡 − 6)5 −

32

3
(𝑡 − 3)3 +

352

3
(𝑡 − 2)2 −

1504

3
(𝑡 − 1) +

49476

45
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And 

𝑢(𝑡) =  
16

15
(𝑡 − 5)5 −

32

3
(𝑡 − 2)3 +

352

3
(𝑡 − 1)2 −

1504

3
𝑡 +
49476

45
 

With initial condition 𝑢(4) =
2868

45
,  

𝑑𝑢

𝑑𝑡
= 4 [
16

15
(𝑡 − 6)5 −

32

3
(𝑡 − 3)3 +

352

3
(𝑡 − 2)2 −

1504

3
(𝑡 − 1) +

49476

45
 ] 

𝑑𝑢

𝑑𝑡
=  
64

15
(𝑡 − 6)5 −

128

3
(𝑡 − 3)3 +

1408

3
(𝑡 − 2)2 −

6016

3
(𝑡 − 1) +

197904

45
 

By separation of variable we get  

𝑑𝑢 = [
64

15
(𝑡 − 6)5 −

128

3
(𝑡 − 3)3 +

1408

3
(𝑡 − 2)2 −

6016

3
(𝑡 − 1) +

197904

45
]𝑑𝑡 

Integrate both side 

 𝑑𝑢 =  [
64

15
(𝑡 − 6)5 −

128

3
(𝑡 − 3)3 +

1408

3
(𝑡 − 2)2 −

6016

3
(𝑡 − 1) +

197904

45
]𝑑𝑡  

𝑢(𝑡) =
64

90
(𝑡 − 6)6 −

32

3
(𝑡 − 3)4 +

1408

9
(𝑡 − 2)3 −

3008

3
(𝑡 − 1)2 +

197904

45
𝑡 + 𝑐 

And we have initial condition 𝑢(4) =
454098

45
, so 

64

90
(4 − 6)6 −

32

3
(4 − 3)4 +

1408

9
(4 − 2)3 −

3008

3
(4 − 1)2 +

197904

45
+ 𝑐 =

2868

45
 

Then value of 𝑐 = 9790.1333. 

𝑢4(𝑡) =
64

90
(𝑡 − 6)6 −

32

3
(𝑡 − 3)4 +

1408

9
(𝑡 − 2)3 

                       −
3008

3
(𝑡 − 1)2 +

197904

45
+ 9790.1333                                    (4.8) 
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Figure 4.10: Graph of Equation 4.8 

 

Figure 4.11: Steps solutions 

 

Figure 4.12: Approximate solution by using DDESD  
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Figure 4.13: Comparing the two solutions Steps and Approximate 

Another example about history polynomial function, use the method of steps to solve linear 

delay differential equation and sketch the graph, for 1 ≤ 𝑡 ≤ 5 , �̇�(𝑡) = 4𝑢(𝑡 − 1),   𝑡 ≥ 1 

with 𝑢(𝑡) = 𝑡,   0 ≤ 𝑡 ≤ 1.  

Solution: the initial interval is  0 ≤ 𝑡 ≤ 1, so we will start from the interval 1 ≤ 𝑡 ≤ 2 to 

solve this equation. 

1 ≤ 𝑡 ≤ 2:→ 0 ≤ 𝑡 − 1 ≤ 1, so 𝑢(𝑡 − 1) = (𝑡 − 1) and 𝑢(𝑡) = 𝑡 , with initial condition 

𝑢(1) = 1, 𝑑𝑢
𝑑𝑡
= 4(𝑡 − 1) by separation of variable we get 𝑑𝑢 = 4(𝑡 − 1)𝑑𝑡 integrate both 

side  

 𝑑𝑢 =  4(𝑡 − 1)𝑑𝑡  

𝑢(𝑡) = 2(𝑡 − 1)2 + 𝑐 and we have initial condition 𝑢(1) = 1, so 2(1 − 1)2 + 𝑐 = 1, then 

value of 𝑐 = 1 

                                          u1(𝑡) = 2(𝑡 − 1)
2 + 1                                         (4.9) 
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Figure 4.14: Graph of Equation 4.9 

Now 2 ≤ 𝑡 ≤ 3:→ 1 ≤ 𝑡 − 1 ≤ 2, so 

𝑢(𝑡 − 1) = 2(𝑡 − 2)2 + 1 

And 

𝑢(𝑡) = 2(𝑡 − 1)2 + 1 

With initial condition 𝑢(2) = 3 

𝑑𝑢

𝑑𝑡
= 8(𝑡 − 2)2 + 4 

By separation of variable we get 𝑑𝑢 = [8(𝑡 − 2)2 + 4 ]𝑑𝑡 integrate both side  

 𝑑𝑢 =  [8(𝑡 − 2)2 + 4 ]𝑑𝑡  

𝑢(𝑡) =
8

3
(𝑡 − 2)3 + 4𝑡 + 𝑐 and we have initial condition 𝑢(2) = 3, so 

8

3
(2 − 2)3 + 4(2) + 𝑐 = 3 

Then value of 𝑐 = −5 

                                   𝑢2(𝑡) =
8

3
(𝑡 − 2)3 + 4𝑡 − 5                                      (4.10) 
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Figure 4.15: Graph of Equation 4.10 

Now 3 ≤ 𝑡 ≤ 4:→ 2 ≤ 𝑡 − 1 ≤ 3, so 

𝑢(𝑡 − 1) =
8

3
(𝑡 − 3)3 + 4(𝑡 − 1) − 5 

And 

𝑢(𝑡) = 𝑢(𝑡) =
8

3
(𝑡 − 2)3 + 4𝑡 − 5 

With initial condition 𝑢(3) =
29

3
 

𝑑𝑢

𝑑𝑡
=
32

3
(𝑡 − 3)3 + 16(𝑡 − 1) − 20 

By separation of variable we get 𝑑𝑢 = [8(𝑡 − 2)2 + 4 ]𝑑𝑡 integrate both side  

 𝑑𝑢 =  [
32

3
(𝑡 − 3)3 + 16(𝑡 − 1) − 20   ]𝑑𝑡  

𝑢(𝑡) =
8

3
(𝑡 − 3)4 + 8(𝑡 − 1)2 − 20𝑡 + 𝑐 

And we have initial condition 𝑢(3) =
29

3
, so 

8

3
(3 − 3)4 + 8(3 − 1)2 − 20(3) + 𝑐 =

29

3
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Then value of 𝑐 =
113

3
 

                   𝑢3(𝑡) =
8

3
(𝑡 − 3)4 + 8(𝑡 − 1)2 − 20𝑡 +

113

3
                             (4.11) 

 

Figure 4.16: Graph of Equation 4.11 

Now 4 ≤ 𝑡 ≤ 5:→ 3 ≤ 𝑡 − 1 ≤ 4, so 

𝑢(𝑡 − 1) =
8

3
(𝑡 − 4)4 + 8(𝑡 − 2)2 − 20(𝑡 − 1) +

113

3
 

And 

𝑢(𝑡) =
8

3
(𝑡 − 3)4 + 8(𝑡 − 1)2 − 20𝑡 +

113

3
 

Again with initial condition 𝑢(4) =
97

3
 

𝑑𝑢

𝑑𝑡
=
32

3
(𝑡 − 4)4 + 32(𝑡 − 2)2 − 80(𝑡 − 1) +

452

3
 

By separation of variable we get 

𝑑𝑢 = [
32

3
(𝑡 − 4)4 + 32(𝑡 − 2)2 − 80(𝑡 − 1) +

452

3
 ]𝑑𝑡 

Integrate both side  

 𝑑𝑢 =  [
32

3
(𝑡 − 4)4 + 32(𝑡 − 2)2 − 80(𝑡 − 1) +

452

3
]𝑑𝑡  
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𝑢(𝑡) =
32

15
(𝑡 − 4)5 +

32

15
(𝑡 − 2)3 − 40(𝑡 − 1)2 +

452

3
𝑡 + 𝑐 

And we have initial condition 𝑢(3) =
97

3
, so 

32

15
(4 − 4)5 +

32

15
4 − 2)3 − 40(4 − 1)2 +

452

3
(4) + 𝑐 =

97

3
 

Then value of 𝑐 = −
887

3
 

  𝑢4(𝑡) =
32

15
(𝑡 − 4)5 +

32

15
(𝑡 − 2)3 − 40(𝑡 − 1)2 +

452

3
𝑡 −
887

3
       (4.12) 

 

Figure 4.17: Graph of Equation 4.12 

 

Figure 4.18: Steps solution 
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Figure 4.19: Approximate solution by using DDESD 

 

 Figure 4.20: Comparing the two solutions Steps and Approximate  

4.2.3 Constant problem 

If the history functions is constant, for example, use the method of steps to solve linear 

delay differential equation and sketch the graph, for 0 ≤ 𝑡 ≤ 5 , �̇�(𝑡) = −𝑢(𝑡 − 1),   𝑡 > 1 

with 𝑢(𝑡) = 8, −1 ≤ 𝑡 ≤ 0.  

Solution: the initial interval is −1 ≤ 𝑡 ≤ 0, so we will start from the interval 0 ≤ 𝑡 ≤ 1 to 

solve this equation. In the interval [0,1], by equation (3.27) we have : 

𝑢1(𝑡) = 8 − 8𝑑𝑡
∗

𝑡

0
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𝑢1(𝑡) = 8 − 8𝑡 

Now in the interval [1,2], then we have : 

𝑢2(𝑡) = 0 − [8 − 8(𝑡
∗ − 1)]

𝑡

1

𝑑𝑡∗ = −[8𝑡∗ − 4(𝑡∗ − 1)2]
𝑡
1

 

𝑢2(𝑡) = 4(𝑡 − 1)
2 − 8(𝑡 − 1) 

Now in the interval [2,3], the solution is : 

𝑢3(𝑡) = −4 − [4(𝑡
∗ − 2)2 − 8(𝑡∗ − 2)]

𝑡

2

𝑑𝑡∗ = −4− [
4

3
(𝑡∗ − 2)3 − 4(𝑡∗ − 2)2]

𝑡
2

 

 

= −4 − [
4

3
(𝑡 − 2)3 − 4(𝑡 − 2)2 − (

4

3
(2 − 2)3 − 4(2 − 2)2)] 

𝑢3(𝑡) = −4 −
4

3
(𝑡 − 2)3 + 4(𝑡 − 2)2 

In the interval [3,4], the solution is : 

𝑢4(𝑡) = −
4

3
− [−4 −

4

3
(𝑡∗ − 3)3 + 4(𝑡∗ − 3)2]

𝑡

3

𝑑𝑡∗ 

= −
4

3
—4𝑡∗ −

1

3
(𝑡∗ − 3)4 +

4

3
(𝑡∗ − 3)3

𝑡
3

 

= −
4

3
—4𝑡 −

1

3
(𝑡 − 3)4 +

4

3
(𝑡 − 3)3—12 

= −
4

3
+ 4𝑡 −

4

3
(𝑡 − 3)3 +

1

3
(𝑡 − 3)4 − 12 

𝑢4(𝑡) = −
40

3
+ 4𝑡 −

4

3
(𝑡 − 3)3 +

1

3
(𝑡 − 3)4 

Now in the interval [4,5], the solution is : 

𝑢5(𝑡) =
5

3
−  [−

40

3
+ 4(𝑡∗ − 1) −

4

3
(𝑡∗ − 4)3 +

1

3
(𝑡∗ − 4)4]

𝑡

4

𝑑𝑡∗ 
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=
5

3
− [−
40

3
𝑡∗ + 2(𝑡∗ − 1)2 −

1

3
(𝑡∗ − 4)4 +

1

15
(𝑡∗ − 4)5]

𝑡
4

 

=
5

3
− [−
40

3
𝑡 + 2(𝑡 − 1)2 −

1

3
(𝑡 − 4)4 +

1

15
(𝑡 − 4)5 − (−

160

3
+ 18)] 

=
5

3
+
40

3
𝑡 − 2(𝑡 − 1)2 +

1

3
(𝑡 − 4)4 −

1

15
(𝑡 − 4)5 −

106

3
 

𝑢5(𝑡) = −
101

3
+
40

3
𝑡 − 2(𝑡 − 1)2 +

1

3
(𝑡 − 4)4 −

1

15
(𝑡 − 4)5 

 

Figure 4.21: Steps solution  

 

Figure 4.22: Approximate solution by using DDESD 
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Figure 4.23: Comparing the two solutions Steps and Numerical 

4.2.4 Trigonometric problem 

If the history function is trigonometric, for example, use the method of steps to solve linear 

delay differential equation and sketch the graph, for 0 ≤ 𝑡 ≤ 2  , �̇�(𝑡) = 3 − 0.5𝑢(𝑡 −

1),   0 ≤ 𝑡 ≤ 1 with 𝑢(𝑡) = − sin(𝑡) , −1 ≤ 𝑡 ≤ 0.  

Solution: the initial interval is −1 ≤ 𝑡 ≤ 0, so we will start from the interval 0 ≤ 𝑡 ≤ 1 to 

solve this equation. 0 ≤ 𝑡 ≤ 1:→ −1 ≤ 𝑡 − 1 ≤ 0 , so 𝑢(𝑡 − 1) = −sin(𝑡 − 1)  and 

𝑢(𝑡) = −sin(𝑡), with initial condition 𝑢(0) = 0, 𝑑𝑢
𝑑𝑡
= 3 + 0.5 sin(𝑡 − 1) by separation of 

variable and integrate both side  

 𝑑𝑢 =  [3 + 0.5 sin(𝑡 − 1)]𝑑𝑡 

Apply integration by parts:∫ 𝑥𝑦′ = 𝑥𝑦′ − ∫𝑥′𝑦, so 𝑥 = 3 + 0.5 sin(𝑡 − 1) and 𝑦′ = 1, 

then this implies that  𝑑𝑥 = 0.5 cos(𝑡 − 1)𝑑𝑡 and 𝑦 = 𝑡.  

 [3 + 0.5 sin(𝑡 − 1)]𝑑𝑡 = 𝑡(3 + 0.5 sin(𝑡 − 1)) − 0.5 𝑡 cos(𝑡 − 1) 𝑑𝑡 

= 𝑡(3 − 0.5 sin(1 − 𝑡)) − 0.5 𝑡 cos(1 − 𝑡) 𝑑𝑡 

Now, apply integral substitution 
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 𝑓(𝑔(𝑡)) . 𝑔′(𝑡)𝑑𝑡 = 𝑓(𝑟)𝑑𝑟, 𝑟 = 𝑔(𝑡) 

So 𝑟 = 1 − 𝑡, 𝑑𝑟 = −𝑑𝑡, 𝑑𝑡 = −𝑑𝑟 then 0.5 ∫(1 − 𝑟)(−cos(𝑟))𝑑𝑟 

Refine 

= 0.5 (− (1 − 𝑟) cos(𝑟)𝑑𝑟) 

= 0.5(− (− (𝑟 − 1) cos(𝑟)𝑑𝑟)) 

Apply integration by parts:∫ 𝑥𝑦′ = 𝑥𝑦′ − ∫𝑥′𝑦, so 𝑥 = (𝑟 − 1) and 𝑦′ = cos(𝑟)𝑑𝑟, then 

this implies that  𝑑𝑥 = 𝑑𝑟 and 𝑦 = sin(𝑟), therefore 

= 0.5(−(−((𝑟 − 1) sin(𝑟) −  sin(𝑟) 𝑑𝑟))) 

Now use the common integral ∫ sin(𝑟) 𝑑𝑟 = (−cos 𝑟) 

= 0.5 (− (−((𝑟 − 1) sin(𝑟) − (− cos(𝑟))))) 

Substitute back 𝑟 = 1 − 𝑡, 

= 0.5 (− (−((1 − 𝑡 − 1) sin(1 − 𝑡) − (−cos(1 − 𝑡))))) 

=
1

2
(cos(1 − 𝑡) − 𝑡 sin(1 − 𝑡)) 

𝑢(𝑡) = 𝑡(3 − 0.5 sin(1 − 𝑡)) − 0.5(cos(1 − 𝑡) − 𝑡 sin(1 − 𝑡)) + 𝑐 

 And we have 𝑢(0) = 0, then 

(0)(3 − 0.5 sin(1 − 0)) − 0.5(cos(1 − 0) − (0) sin(1 − 𝑡)) + 𝑐 = 0 

 𝑐 = 0.5 cos(1) 
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      𝑢1(𝑡) = 𝑡(3 − 0.5 sin(1 − 𝑡)) + 0.5(𝑡 sin(1 − 𝑡) −cos(1 − 𝑡)) + 0.5 cos(1)  (4.13) 

 

Figure 4.24: Graph of Equation 4.13 

Now, 1 ≤ 𝑡 ≤ 2:→ 0 ≤ 𝑡 − 1 ≤ 1, so 

𝑢(𝑡 − 1) = (𝑡 − 1)(3 − 0.5 sin(2 − 𝑡)) + 0.5((𝑡 − 1) sin(2 − 𝑡) − cos(2 − 𝑡))

+ 0.5 cos(1) 

And 

𝑢(𝑡) = 𝑡(3 − 0.5 sin(1 − 𝑡)) + 0.5(𝑡 sin(1 − 𝑡) − cos(1 − 𝑡)) + 0.5 cos(1) 

With initial condition, 𝑢(1) = cos(1)+5
2

 

𝑑𝑢

𝑑𝑡
= 3 − 0.5(𝑡 − 1)(3 − 0.5 sin(2 − 𝑡)) + 0.25(𝑡 − 1) sin(2 − 𝑡) 

−0.25 cos(2 − 𝑡) + 0.25 cos(1) 

By separation of variable we get: 

 𝑑𝑢 =  [3 − 0.5(𝑡 − 1)(3 − 0.5 sin(2 − 𝑡)) + 0.25(𝑡 − 1) sin(2 − 𝑡) 

−0.25 cos(2 − 𝑡)    + 0.25 cos(1)]𝑑𝑡 

Now, apply integral substitution: 

 𝑓(𝑔(𝑡)) . 𝑔′(𝑡)𝑑𝑡 = 𝑓(𝑟)𝑑𝑟, 𝑟 = 𝑔(𝑡) 
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so 𝑟 = 2 − 𝑡, 𝑑𝑟 = −𝑑𝑡, 𝑑𝑡 = −𝑑𝑟 so 

 −[3 − 0.5(𝑡 − 1)(3 − 0.5 sin(𝑟)) + 0.25(𝑡 − 1) sin(𝑟) − 0.25 cos(𝑟)        

+ 0.25 cos(1)]𝑑𝑡  

=  [1.5𝑡 − 0.25 cos(𝑟) − 4.36492]𝑑𝑟 

=  [1.5(2− 𝑟) − 0.25 cos(𝑟) 4.36492]𝑑𝑟 

=  [−1.5𝑟 − 0.25 cos(𝑟) − 1.36492]𝑑𝑟 

= −
3𝑟2

4
−
sin(𝑟)

4
−
4350𝑟

3187
+ 𝑐 

= −
3(2 − 𝑡)2

4
−
sin(2 − 𝑡)

4
−
4350(2 − 𝑡)

3187
+ 𝑐 

= −
3

4
(2 − 𝑡)2 −

4350

3187
(2 − 𝑡) −

1

4
sin(2 − 𝑡) + 𝑐 

The initial condition is 𝑢(1) =
cos(1)+5

2
, then 

−
3

4
(1)2 −

4350

3187
(1) −
1

4
sin(1) + 𝑐 =

cos(1) + 5

2
 

𝑐 = 5.119206937 

              𝑢2(𝑡) = −
3

4
(2 − 𝑡)2 −

4350

3187
(2 − 𝑡) −

1

4
sin(2 − 𝑡) + 5.119206937        (4.14) 
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Figure 4.25: Graph of Equation 4.14 

 

Figure 4.26: Steps solution 

 

Figure 4.27: Approximate solution by using DDESD 
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Figure 4.28: Comparing the two solutions Steps and Approximate 

4.2.5 One step example 

Find one step of the solution to the linear delay differential equation.  

�̇�(𝑡) = 𝑟1(𝑡)𝑢(𝑡) + 𝑟2(𝑡)𝑢(𝑡 − 𝛽), 𝑓𝑜𝑟 𝑡 ∈  [0, 𝛽] 

                                    𝑢(𝑡) = 𝐻(𝑡), 𝑓𝑜𝑟 𝑡 ∈ [−𝛽, 0] 

For the following data (𝛽 = 5,𝐻(𝑡) = 5 − 𝑡(𝑡 + 5), 𝑟1 = −1, 𝑟2 = 0.5) 

Solution: substituting these values, we obtained  

�̇�(𝑡) = −𝑢(𝑡) + 0.5𝑢(𝑡 − 5), 𝑓𝑜𝑟 𝑡 ∈  [0,5] 

                                        𝑢(𝑡) = 5 − 𝑡(𝑡 + 5), 𝑓𝑜𝑟 𝑡 ∈ [−5,0] 

Then by replacing 𝑢(𝑡 − 𝛽) to 𝐻(𝑡 − 𝛽), and use the history function to obtain the initial 

condition 𝑢(0) = 𝐻(0) . On the first interval the solution 𝑢1(𝑡)  will be the function 

satisfying  

�̇�(𝑡) = −𝑢(𝑡) + 0.5𝐻(𝑡 − 5) 

                                                    𝑢(0) = 𝐻(0) 

Then this implise that 𝑢(0) = 𝐻(0) = 5 and  

𝑑𝑢

𝑑𝑡
+ 𝑢 = 2.5𝑡 − 0.5𝑡2 + 2.5 
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This equation is a first order linear ODE has the form of 𝑢′(𝑡) + 𝑝(𝑡)𝑢 = 𝑞(𝑡) So the 

general solution is  

  𝑢(𝑡) =
1

𝑒∫𝑝(𝑡)𝑑𝑡
 𝑒∫𝑝(𝑡)𝑑𝑡𝑞(𝑡)𝑑𝑡 + 𝑐   

𝑝(𝑡) = 1, 𝑞(𝑡) = 2.5𝑡 − 0.5𝑡2 + 2.5 , so 1. 𝑢 +
𝑑

𝑑𝑡
(𝑢) = 2.5𝑡 − 0.5𝑡2 + 2.5 , find the 

integrat- ing factor 𝜇(𝑡). 𝑝(𝑡) = 𝜇′(𝑡), we know 𝑝(𝑡) = 1 

𝑑

𝑑𝑡
(𝜇(𝑡)) = 𝜇(𝑡). 

Divide both side by 𝜇(𝑡) 

𝑑

𝑑𝑡
(𝜇(𝑡))

𝜇(𝑡)
=
𝜇(𝑡). 1

𝜇(𝑡)
 

𝑑

𝑑𝑡
(𝜇(𝑡))

𝜇(𝑡)
=
𝑑

𝑑𝑡
(ln(𝜇(𝑡))) 

𝑑

𝑑𝑡
(ln(𝜇(𝑡))) = 1 

Solve  

𝑑

𝑑𝑡
(ln(𝜇(𝑡))) = 1 

𝑑

𝑑𝑡
(ln(𝜇(𝑡)))𝑑𝑡 =  1𝑑𝑡 = 𝑡 + 𝑐1 

 (
𝑑

𝑑𝑡
(ln(𝜇(𝑡))))𝑑𝑡 = ln(𝜇(𝑡)) + 𝑐2 

ln(𝜇(𝑡)) + 𝑐2 = 𝑡 + 𝑐1 

Combine the constants  

ln(𝜇(𝑡)) = 𝑡 + 𝑐1 
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Therefore the final solution for  ln(𝜇(𝑡)) = 𝑡 + 𝑐1 is: 

𝜇(𝑡) = 𝑒𝑡+𝑐1 = 𝑒𝑡𝑒𝑐1 

Put the equation in the form 

(𝜇(𝑡). 𝑢)′ = 𝜇(𝑡). 𝑞(𝑡) 

Multiply by integration factor 𝜇(𝑡) and rewrite the equation as: 

1. 𝑢 +
𝑑

𝑑𝑡
(𝑢) = 2.5𝑡 − 0.5𝑡2 + 2.5 

𝑒𝑡
𝑑

𝑑𝑡
(𝑢) + 𝑒𝑡𝑢 = 2.5𝑡𝑒𝑡 − 0.5𝑡2𝑒𝑡 + 2.5𝑒𝑡 

Apply the product rule, (𝑓. 𝑔)′ = 𝑓′𝑔 + 𝑓𝑔′, 𝑓 = 𝑒𝑡, 𝑔 = 𝑢: 

𝑑

𝑑𝑡
(𝑒𝑡𝑢) = 2.5𝑡𝑒𝑡 − 0.5𝑡2𝑒𝑡 + 2.5𝑒𝑡 

Integrating both side  

 
𝑑

𝑑𝑡
(𝑒𝑡𝑢)𝑑𝑡 =  (2.5𝑡𝑒𝑡 − 0.5𝑡2𝑒𝑡 + 2.5𝑒𝑡) 𝑑𝑡 

= 2.5 𝑡𝑒𝑡𝑑𝑡 − 0.5 𝑡2𝑒𝑡𝑑𝑡 + 2.5 𝑒𝑡𝑑𝑡 

Apply integration by part ∫ 𝑟𝑠′ = 𝑟𝑠 − ∫𝑟′𝑠 

2.5 𝑡𝑒𝑡𝑑𝑡 : 𝑟 = 𝑡, 𝑟′ = 1𝑑𝑡, 𝑠′ = 𝑒𝑡𝑑𝑡, 𝑠 = 𝑒𝑡 

2.5 𝑡𝑒𝑡𝑑𝑡 =
5

2
(𝑒𝑡𝑡 − 𝑒𝑡) 

−0.5 𝑡2𝑒𝑡𝑑𝑡 : 𝑟 = 𝑡2, 𝑟′ = 2𝑡𝑑𝑡, 𝑠′ = 𝑒𝑡𝑑𝑡, 𝑠 = 𝑒𝑡 

−0.5 𝑡2𝑒𝑡𝑑𝑡 = −0.5 (𝑡2𝑒𝑡 − 2 𝑡𝑒𝑡𝑑𝑡) 
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=
1

2
(2(𝑒𝑡𝑡 − 𝑒𝑡) − 𝑒𝑡𝑡2) 

𝑒𝑡𝑢 + 𝑐2 =
1

2
(2(𝑒𝑡𝑡 − 𝑒𝑡) − 𝑒𝑡𝑡2) +

5

2
(𝑒𝑡𝑡 − 𝑒𝑡) +

5

2
𝑒𝑡 + 𝑐1 

Combine the constants, then the solution is 

𝑢 =
−2𝑒𝑡 + 7𝑡𝑒𝑡 − 𝑡2𝑒𝑡 + 𝑐1

2𝑒𝑡
 

The initial condition 𝑢(0) = 5, then 𝑐1 = 12, so the general solution is: 

𝑢 =
−2𝑒𝑡 + 7𝑡𝑒𝑡 − 𝑡2𝑒𝑡 + 12

2𝑒𝑡
 

𝑢 =
−2 + 7𝑡 − 𝑡2 + 12𝑒−𝑡

2
 

 

Figure 4.29: Steps solution 
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Figure 4.30: Approximate solution by using DDESD 

 

Figure 4.31: Comparing the two solutions Steps and Approximate 

4.2.6 Exponential problem 

If the history function is exponential, for example, use the method of steps to solve linear 

delay differential equation and sketch the graph, for 0 ≤ 𝑡 ≤ 2.5  , �̇�(𝑡) = −0.02𝑢(𝑡 −

1.25), 𝑜𝑛 [0,1.25], when history function is 𝑢(𝑡) = 𝑒−𝑡 , 𝑜𝑛 [−1.25,0]. 

Solution: when 𝑡 ∈ [0,1.25] , this implies that 𝑡 − 1.25 ∈ [−1.25,0] , so 𝑢(𝑡 − 1.25) 

becomes 𝐻(𝑡 − 1.25)  on [0,1.25] , so 𝐻(𝑡 − 1.25) = 𝑒−(𝑡−1.25) , then �̇�(𝑡) =

−0.02𝑒−(𝑡−1.25), with initial condition, 𝑢(0) = 1.  
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𝑑𝑢 = −0.02 𝑒−(𝑡−1.25)𝑑𝑡 

𝑢 = 0.02𝑒1.25−𝑡 + 𝑐 

We know 𝑢(0) = 1 , so 0.02𝑒1.25−𝑡 + 𝑐 = 1 , then the value of 𝑐 = 1 − 0.02𝑒1.25 , 

therefore  

                                    𝑢1(𝑡) = 0.02𝑒
1.25−𝑡 − 0.02𝑒1.25 + 1                         (4.15) 

Now, we have a new system of delay equation in interval [𝛽, 2𝛽] = [1.25,2.5] 

{   
�̇�(𝑡) = −0.02𝑢(𝑡 − 1.25),    𝑜𝑛 [1.25,2.5]            

𝑢1(𝑡) = 0.02𝑒
1.25−𝑡 − 0.02𝑒1.25 + 1, 𝑜𝑛 [0,1.25]

 

 

Figure 4.32: Graph of Equation 4.15 

Again, when 𝑡 ∈ [1.25,2.5], this implies that 𝑡 − 1.25 ∈ [0,1.25], so 𝑢(𝑡 − 1.25) becomes 

𝐻(𝑡 − 1.25) on [1.25,2.5], so 

𝐻(𝑡 − 1.25) = 0.02𝑒2.5−𝑡 − 0.02𝑒1.25 + 1, 

with initial conditition 𝑢(1.25) = 0.02(1− 𝑒1.25) + 1, and 

�̇�(𝑡) = −0.02(𝑒2.5−𝑡 − 0.02𝑒1.25 + 1) 

𝑑𝑢 =  (−
1

2500
𝑒2.5−𝑡 +

1

2500
𝑒1.25 −

1

50
) 
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𝑢 =
1

2500
𝑒2.5−𝑡 −

2475727𝑡

133075971
+ 𝑐 

We know 𝑢(1.25) = 0.02(1 − 𝑒1.25) + 1, so 

1

2500
𝑒2.5−𝑡 −

2475727𝑡

133075971
+ 𝑐 = 0.02(1 − 𝑒1.25) + 1 

then the value of 𝑐 =
1

50
(1 − 𝑒1.25) + 1.02325483

1

2500
𝑒1.25, therefore  

𝑢2(𝑡) =
1

2500
𝑒2.5−𝑡 −

2475727𝑡

133075971
+
1

50
(1 − 𝑒1.25) + 1.02325483

1

2500
𝑒1.25 (4.16) 

 

Figure 4.33: Graph of Equation 4.16 

 

Figure 4.34: Steps solution  
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Figure 4.35: MOC solution 

 

Figure 4.36: Comparing the four solutions MOC, Steps, DDE23 and DDESD 
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CHAPTER 5 

 

5.1 Conclusion 

In this thesis we have introduce two important methods to solving linear first order delay 

differential equations with a single delay and constant coefficient namely characteristic 

method and the method of steps. We discussed the basic definitions of the concepts. How 

and when the problems of delay time arise in our daily lives in various fields and their 

applications is well covered. We also explained the formulation of Matlab program and its 

codes solver such as DDE23 and DDESD. 

We interested in this thesis to find solution for this kind of linear delay equation,�̇�(𝑡) =

𝑐1𝑢(𝑡) + 𝑐2𝑢(𝑡 − 𝛽), with single constant delay and constant coefficients 𝑐1and 𝑐2. It is 

noted that, characteristic method (MOC) and the method of steps (STEPS) may be very 

effective in solving linear first order delay differential equation with a single constant 

delay and constant coefficient, we also observed that algebraic solution and approximate 

solution is very closed to each other by merging them in one graph for each problem, and 

we can also say that one of the best language programme is Matlab because is very 

powerful to deal with very complex problem in various mathematic fields, especially in 

differential equation such as the special kind of functional differential equation (FDE), 

namely delay differential equation (DDE), further, the Matlab program is very fast to give 

the result for our problem in this thesis. Finally we can confirm here is the biggest 

problems faced human beings is delay time because delay time has effect in everything, 

therefore to know how to find solution for this kind of delay equation is very important 

because many equation of applications have relation with life, contains delay time, so we 

can make it as a models contains delay time and solve this model by one of these methods 

such as MOC and STEPS, as well as the Matlab program can solve these models very 

quickly. 
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5.2 Recommendations  

There are numerous possible open research problems related to the work in this study, and 

we list some of these kinds of problems and challenges in the following, which may be of 

interest in the future, we can generalize the following problems in future study . 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: The diagram of my work in this thesis 

So the done work in my study is to find the solutions of linear first order delay differential 

equations, with single constant delay and constant coefficients, by using two elementary 

methods namely MOC and STEPS.  

 

 

  

�̇�(𝑡) = 𝑐1𝑢(𝑡) + 𝑐2𝑢(𝑡 − 𝛽) 

is the delay, (𝛽) constant? 

Yes 

Not covered in 

my study 

No

Are the coefficients 𝑐1 and 𝑐2 

are constant? 

Yes 

Not covered in 

my study No

Chapter three 

Chapter four 

Is the delay, 

(𝛽) single? Yes 
Not covered in 

my study No

The work is  

Done  

The future 

problems 
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How can we find algebraic solution and approximate solution for these linear first order 

delay differential equations (DDEs?) 

Case one: If delays 𝛽𝑖 , 𝑖 = 1, 2,… , 𝑛 are non-single, with constant coefficients, this means 

that we have these kinds of linear delay differential equations (LDDEs) 

 Linear first order delay differential equation with non-single constant delay and the 

delays are not equal 𝛽1 ≠ 𝛽2 ≠ ⋯ ≠ 𝛽𝑛, with constant coefficients 𝑐1, 𝑐2, … , 𝑐𝑛. 

�̇�(𝑡) = 𝑐0𝑢(𝑡) + 𝑐1𝑢(𝑡 − 𝛽1) + 𝑐2𝑢(𝑡 − 𝛽2) + ⋯+ 𝑐𝑚𝑢(𝑡 − 𝛽𝑛), 𝛽1, … , 𝛽𝑛 ≥ 0 

 Linear first order delay differential equation with non-single non constant delay, 

which means the delays are variable functions,  𝛽1(𝑡) = 𝛽2(𝑡) = ⋯ = 𝛽𝑛(𝑡) with 

constant coefficients, 𝑐1, 𝑐2, … , 𝑐𝑛.  

�̇�(𝑡) = 𝑐0𝑢(𝑡) + 𝑐1𝑢(𝑡 − 𝛽1(𝑡)) + 𝑐2𝑢(𝑡 − 𝛽2(𝑡)) + ⋯+ 𝑐𝑚𝑢(𝑡 − 𝛽𝑛(𝑡)), 𝛽𝑖(𝑡) ≥ 0 

 Linear first order delay differential equation with non-single non constant delay, 

which means the delays are variable functions, 𝛽1(𝑡) ≠ 𝛽2(𝑡) ≠ ⋯ ≠ 𝛽𝑛(𝑡) with 

constant coefficients, 𝑐1, 𝑐2, … , 𝑐𝑛.  

�̇�(𝑡) = 𝑐0𝑢(𝑡) + 𝑐1𝑢(𝑡 − 𝛽1(𝑡)) + 𝑐2𝑢(𝑡 − 𝛽2(𝑡)) + ⋯+ 𝑐𝑚𝑢(𝑡 − 𝛽𝑛(𝑡)), 𝛽𝑖(𝑡) ≥ 0 

Case two: If delays 𝛽𝑖 , 𝑖 = 1, 2, … , 𝑛 are non-single, with variable coefficients, this means 

that we have these kinds of linear delay differential equations (LDDEs) 

 Linear first order delay differential equation with non-single constant delay and the 

delays are not equal 𝛽1 ≠ 𝛽2 ≠ ⋯ ≠ 𝛽𝑛, with variable coefficients, 𝑐1(𝑡),… , 𝑐𝑛(𝑡).  

�̇�(𝑡) = 𝑐0(𝑡)𝑢(𝑡) + 𝑐1(𝑡)𝑢(𝑡 − 𝛽1) +⋯+ 𝑐𝑚(𝑡)𝑢(𝑡 − 𝛽𝑛), 𝛽1, … , 𝛽𝑛 ≥ 0 

 Linear first order delay differential equation with non-single non constant delay, 

which means the delays are variable functions,  𝛽1(𝑡) = 𝛽2(𝑡) = ⋯ = 𝛽𝑛(𝑡) with 

variable coefficients, 𝑐1(𝑡), 𝑐2(𝑡),… , 𝑐𝑛(𝑡).  

�̇�(𝑡) = 𝑐0(𝑡)𝑢(𝑡) + 𝑐1(𝑡)𝑢(𝑡 − 𝛽1(𝑡)) +⋯+ 𝑐𝑚(𝑡)𝑢(𝑡 − 𝛽𝑛(𝑡)), 𝛽𝑖(𝑡) ≥ 0 
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 Linear first order delay differential equation with non-single non constant delay, 

which means the delays are variable functions,  𝛽1(𝑡) ≠ 𝛽2(𝑡) ≠ ⋯ ≠ 𝛽𝑛(𝑡) with 

variable coefficients𝑐1(𝑡), 𝑐2(𝑡),… , 𝑐𝑛(𝑡). 

�̇�(𝑡) = 𝑐0(𝑡)𝑢(𝑡) + 𝑐1(𝑡)𝑢(𝑡 − 𝛽1(𝑡)) +⋯+ 𝑐𝑚(𝑡)𝑢(𝑡 − 𝛽𝑛(𝑡)), 𝛽𝑖(𝑡) ≥ 0 

Case three: If delays 𝛽𝑖 , 𝑖 = 1, 2, … , 𝑛 constants, with variable coefficients, this means that 

we have these kinds of linear delay differential equations (LDDEs) 

 Linear first order delay differential equation with single constant delay 𝛽 , with 

variable coefficients, 𝑐1(𝑡), 𝑐2(𝑡),… , 𝑐𝑛(𝑡). 

�̇�(𝑡) = 𝑐0𝑢(𝑡) + 𝑐1𝑢(𝑡 − 𝛽), 𝛽 ≥ 0 

 Linear first order delay differential equation with non-single constant delay, and 

𝛽1 = 𝛽2 = ⋯ = 𝛽𝑛 with variable coefficients, 𝑐1(𝑡), 𝑐2(𝑡), … , 𝑐𝑛(𝑡).  

�̇�(𝑡) = 𝑐0𝑢(𝑡) + 𝑐1𝑢(𝑡 − 𝛽1(𝑡)) + 𝑐2𝑢(𝑡 − 𝛽2(𝑡)) + ⋯+ 𝑐𝑚𝑢(𝑡 − 𝛽𝑛(𝑡)), 𝛽𝑖(𝑡) ≥ 0 

Applications of delay differential equations have the wide area in various life fields such 

as, biology, economics, microbiology, ecology, distributed networks, mechanics, nuclear 

reactors, physiology, engineering systems, and epidemiology and heat flow, so I interested 

in my study to solve linear first order delay differential equations  �̇�(𝑡) = 𝑐1𝑢(𝑡) +

𝑐2𝑢(𝑡 − 𝛽), which means we can find a models from various field like this equation and 

solve it by one of this methods such as MOC and STEPS in future study.  
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Climate modeling 

El Niño–Southern Oscillation (ENSO): is an irregularly periodical variation in winds and 

sea surface temperatures over the tropical eastern Pacific Ocean, affecting much of the 

tropics and subtropics. The warming phase is known as El Niño and the cooling phase as 

La Niña. Southern Oscillation is the accompanying atmospheric component, coupled with 

the sea temperature change: El Niño is accompanied with high and La Niña with low air 

surface pressure in the tropical western Pacific. The two periods last several months each 

(typically occur every few years) and their effects vary in intensity, an early model of the 

El Niño–Southern Oscillation phenomenon with physical parameter 𝛼 > 0 is: 

�̇�(𝑡) = 𝑇(𝑡) − 𝛼𝑇(𝑡 − 𝛽) 

Recruitment Models 

(Blythe et al, 1982) proposed a general single species population model with a time delay  

𝑑𝑥

𝑑𝑡
= 𝑅(𝑥(𝑡 − 𝜏)) − 𝐷𝑥(𝑡) 

Where  𝑅  and 𝐷  represent the rates of recruitment to, and death rate from, an adult 

population of size 𝑥 ; and 𝜏 >  0 is the maturation period. For a linear analysis of the 

model, see (Brauer and Castillo, 2001). 

Remote Control Dynamical System 

If you send a signal to a robot telling it to turn, stop, or perform some other task, there will 

be some lag between the time you initiate the signal and the time the robot responds. It 

takes another delay for you to see what the robot did and then to make use of this feedback 

to influence your next decision about what new signal to send. For another example, if you 

are trying to row a boat you may push your oar through the water and then wait to see the 

heading of the boat before dipping the oar again. However, if you are heading for a 

dangerous obstacle, you may not wait after each stroke, but simply decide to execute a 

series of pre-planned back strokes before getting feedback. Typically, controls are not sent 

as individual signals, one at a time, but rather as a pre-set pattern, a template.  

 

https://en.wikipedia.org/wiki/Winds
https://en.wikipedia.org/wiki/Sea_surface_temperature
https://en.wikipedia.org/wiki/El_Ni%C3%B1o
https://en.wikipedia.org/wiki/La_Ni%C3%B1a
https://en.wikipedia.org/wiki/Surface_pressure
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Almost any "automated" process works from a template. For instance, a pre-determined 

design can be programmed into a weaving machine to produce a desired pattern in a rug. 

Specially, we want to solve a Remote Control Dynamical System (RCDS), which is 

denned as one whose dynamical equation is the FDE 

𝑦′(𝑡) =  𝑓 (𝑡, 𝑦(𝑡), 𝑦(ℎ(𝑡))) , 𝑡 ∈ 𝐼 

Where  𝐼, is an open interval, called the operational interval. The deviating argument, 

ℎ(𝑡) ∈  𝐶1[𝐼]; is one whose range,ℎ[𝐼], (called the remote domain or remote interval ) is 

disjoint from 𝐼. Initially, the system is assumed to be subject to a control function, 𝑝(𝑡)  ∈

 𝐶1[ℎ[𝐼]] defined on the remote domain. Thus, the output function, 𝑦(𝑡), is the solution of 

Equation (Ryder, 1969) on 𝐼 , and 𝑦(𝑡) = 𝑝(𝑡) on ℎ(𝐼) .When d > 0 and the deviating 

argument h is defined by ℎ(𝑡) =  𝑡 −  𝑑 we get the DDE. The function 𝑡 −  𝑑 is called the 

argument. 

𝑦′(𝑡) =  𝑎1𝑦(𝑡) + 𝑎𝑡𝑦(ℎ(𝑡)), 𝑜𝑛 [0, 𝑑] 

𝑦(𝑡) =  𝑝(𝑡), 𝑜𝑛 [−𝑑, 0] 
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