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ABSTRACT 

Electrocardiogram that enroll heart's electrical action against duration is known as a bio-

electrical signal. ECG is a significant diagnosis apparatus in order to detecting heart 

functions. Electrocardiography is explication of electrical action of the heart after a certain 

time, which produces a representation of Electrocardiogram. The Electrocardiogram is a 

very important diagnosis device in clinical application. It is particularly beneficial in 

diagnosing cadence diseases, alterations in electrical transmission, and myocardial 

ischemia and infarction. In noninvasive electrocardiography, the signal is specified by 

electrodes annexed to the exterior surface of the skin and saved by a apparatus exterior to 

the body. Electrocardiogram signal is effected by different noises kinds as movement 

artifacts power line attempt, etc. Electrocardiogram in noise entity is so hard to analyze and 

take out requisite data correctly thus to remove data correctly it is essential to filtration 

noise existing in signal. For filtering noise there are assorted filters are utilized. 

Electrocardiography area has been in existence for over a century, signal processing 

techniques and fast digital signal processor, in spite of substantial advances in adult clinical 

electrocardiography Fetal Electrocardiogram (ECG) analysis is still very new phenomenon. 

This is, partially owing to deficiency of availability of gold canonical databases, partially 

because of comparatively low SNR of fetal Electrocardiogram check against to the 

maternal Electrocardiogram. Fetal heart proportion and its beat-to-beat variability are two 

significant signs about the health and status of the fetus. The observed maternal 

electrocardiogram (ECG) signal consists of maternal heart signal and fetal heart signal is 

often very noisy. Savitzky and Golay Filter gave a procedure in order to smoothing of 

datum that is situated on least-squares polynomial prediction. This includes a polynomial 

fabrication to an input samples set and then figure out sole point polynomial within 

approximation spacing that means discrete convolution whose impulse response is 

constant. Adaptive Noise Canceller (Least Mean Square Algorithm) is an alternate process 

of forecasting signals damaged by additive noise or interference. In some obscured path 

with basic noise, the process utilizes a primary entry having the damaged signal and a 

reference input including noise correlated for getting signal forecast, reference entry is 

filtered adaptively and removed from fundamental input.   

 

Keywords: Maternal and Fetal ECG Signals; Savitzky and Golay Filter; Adaptive Noise 

Canceller; Least Mean Square Algorithm (LMS); Noise Effects; Denoising 
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ÖZET 

Elektrokardiyogram (EKG) zamana karşı kalbin elektriksel aktivitesini kaydeden 

biyoelektrik bir sinyaldir. Kalp fonksiyonlarını değerlendirmek için önemli bir tanı 

aracıdır. Elektrokardiyografi belirli bir süre sonrası, kalbin elektriksel aktivitesinin 

yorumlanması olarak kabul edilir. EKG klinik pratikte çok önemli bir tanı aracıdır. EKG, 

ritim bozuklukları teşhisinde, elektrik iletimindeki değişikliğinde ve miyokard iskemisi ve 

enfarktüsünde yararlı olmaktadır. İnvaziv olmayan elektrokardiyografi sinyali cildin dış 

yüzeyine bağlı elektrotlar ile tespit edilir ve vücut dışındaki bir cihaz tarafından kaydedilir. 

EKG sinyali çeşitli gürültülerden etkilenir, güç hattı parazitleri ve hastanın, solunum kas 

veya diğer hareket tarafından üretilen, bulanık radyografik görüntüleri vb. Gürültülü EKG 

sinyallerini analiz etmek ve doğru bir şekilde gerekli bilgileri ayıklamak çok zordur. Bu 

yüzden doğru bilgileri ayıklamak için sinyal içinde mevcut gürültüleri filtrelemek 

gereklidir. Gürültüyü filtrelemek için çeşitli filtreler kullanılmaktadır. Elektrokardiyografi 

alanı yüzyılı aşkın bir süredir varlığını sürdürmektedir, sinyal işleme teknikleri ve hızlı 

dijital işlemcilerin erişkin klinik elektrokardiyografisinde önemli ilerlemelere rağmen, 

Fetal EKG analizi henüz çok yeni bir olaydır. Bu kısmen altın standart veritabanları 

kullanılabilirliği eksikliği, nedeniyle Maternal EKG ile karşılaştırıldığında, kısmen fetal 

EKG'nin nispeten düşük bir sinyal-gürültü oranı ortaya çıkmaktadır. Fetal kalp hızı ve 

ritmi-atıma değişkenlik, fetüsün sağlığı ve durumu hakkında iki önemli göstergedir. 

Gözlenen anne elektrokardiyogram (EKG) sinyali anne kalp sinyal ve fetal kalp sinyalini 

oluşturur ve genellikle çok gürültülüdür. Savitzky - Golay Filtre en küçük kareler için 

polinom yaklaşımına dayalı verileri düzeltmekte kullanılan bir yöntemdir. Bu set bir giriş 

örneklerinin bir polinomuna takılmasını gerektirir ve daha sonra yaklaşım aralığında tek 

nokta polinomu hesaplamak ayrık konvolüsyon ve dürtü yanıtının sabit olduğu anlamına 

gelmektedir. Adaptif Gürültü Silme yöntemi katkı gürültü veya parazit bozuk tahmin 

sinyalleri için alternatif bir yöntemdir. Süreç,  bozuk sinyali ve birincil gürültü ile bazı 

bilinmeyen bir şekilde ilişkili gürültü içeren bir "referans" girdisi ve "birincil" girişini 

kullanır. Referans girişi uyarlamalı süzülür ve tahmin edilen sinyali almak için birincil 

girişden çıkarılır. 

Anahtar Kelimeler: Maternal ve Fetal EKG Sinyalleri; Savitzky-Golay Filtre; Adaptif 

Gürültü Engelleyici; En Küçük Ortalama Kare Algoritması (LMS); Gürültü Etkileri; 

Gürültü Temizleme 
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CHAPTER 1 

 

INTRODUCTION 

 

 

Electrocardiography is the method that utilized to record of cardiac electrical activity for 

examine operation of heart muscle and neural transmission system. These electrodes 

specify the diminutive electrical alteration on the skin which originates from the heart 

muscle's electrophysiological model of depolarizing during each heartbeat.  

Electrocardiogram is the transthoracic explication of the electrical action of the heart over 

certain duration.  Analysis of ECG signal maintains information concerning the status of 

heart. 

DSP is commit of analyzing and changing a signal to optimize or develop its activity or 

performance. It covers applying different mathematical and computational algorithms to 

analog and digital signals to generate a signal that's of higher standard than the original 

signal. Digital Signal Processing is mainly used to define errors, and to filter and compress 

analog signals in transit. 

Our bodies frequently reports data about our health. This data can be received through 

physiological materials which measure heart proportion, oxygen saturation levels, blood 

pressure, nerve conduction, blood glucose, brain action and etc. Conventionally, these 

kinds of measurements are received at certain points in duration and marked on a patient’s 

chart. Biomedical signal processing includes the analysis of these measurements to ensure 

beneficial data onto those clinicians can perform verdicts. Engineers discovered new 

techniques to manipulate these signals with a diversity of mathematical formulas and 

algorithms.  

Digital filtering processes can be used for develop the signal quality and minimize 

fortuitous error noise ingredient. 

 

1.1 Contribution of the Thesis 

The fundamental goal of this dissertation is to monitor fetal and maternal heart based on 

Savitzky&Golay Filtering and Adaptive Noise Cancellation using MATLAB environment. 

Savitzky&Golay filter and Adaptive Noise Canceller acts as a noise canceller and their 

task are to extract Fetal and Maternal signal.  

https://en.wikipedia.org/wiki/Cardiac_muscle
https://en.wikipedia.org/wiki/Cardiac_muscle
https://en.wikipedia.org/wiki/Depolarization
https://en.wikipedia.org/wiki/Cardiac_cycle
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The contributions of this thesis include: 

 Propose a system that can denoise Maternal and Fetal ECG signals for getting clear, 

preferable quality output signals for good recommendations. 

 Intend to get hold of and extract the sectional noise influences in an appropriate 

way than the other techniques. 

 Suggest a Denoising techniques Savitzky-Golay Filter and Adaptive Noise 

Cancellation Least Mean Square(LMS) Algorithm to remove all kinds of noise in 

Maternal and Fetal ECG signals.  

 

 

1.2 Thesis Overview 

Other parts of the thesis are as shown below: 

 Chapter 2 is about state-of-the-art literature. 

 Chapter 3 explains an overview of Electrocardiogram(ECG) signals.  

 Chapter 4 presents general information about Digital Signal Processing(DSP). 

 Chapter 5 gives general information related to Biomedical Signal Processing. 

 Chapter 6 is about Digital Signal Filtering and Noise Reduction.  

 Chapter 7 presents the most important aim of my dissertation the fundamental 

objective of this thesis is to monitor fetal and maternal heart based on                     

Savitzky and Golay Filtering with Adaptive Noise Cancellation using MATLAB 

environment.  

 Chapter 8 presents conclusions and suggestions. 
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CHAPTER 2 

STATE OF THE ART REVIEW 

 

2.1 Overview 

 
State of the art review on Fetus and Maternal Electrocardiogram (ECG) signals before and 

during will be discussed in section 2. Because of the quite ancient history of the trouble 

and the generous literature in this area; it is not feasible to lid all the current techniques in 

their particulars. Thus because of the difficulty of the trouble, many of the available 

techniques have used a combination of approaches, some of that have been raised a loan 

from other statuses. That‟s why, in this section a choice of the existing literature with 

private focal on the most substantial ones will be monitored, that have been especially 

improved for the trouble of interest.  

 

2.2  Historic Criticism of the Fundamental Studies 

In 1906 fetus electrocardiogram was first watched by M. Cremer. Initial work in this field 

was performed utilizing a galvanometer tool of that time; it was restricted to fetus signal 

very low amplitude. As measuring and amplification methods developed, Fetus 

electrocardiogram was more comfortable and popular (Lindsley, 1942). Restricting factor 

was then low fetus Signal Noise Ratio, particularly in asset of potent maternal cardiac 

interventions trouble that exists up to the present time. After several decades, with  

progresses in computer science and processing of signal methods, automatic processing of 

signal and adaptive filtration methods were utilized in order to fetus R-wave identification 

(Farvet, 1968). and maternal heart attempt annulment (Oosterom, 1986; Widrow et al., 

1975). The subject matter has since been thought as a challenging trouble with a view to 

both signal processing and biomedical societies. 

For give an opinion of previous and present study relevance in this area, publications 

number in fetus electro- and magneto-cardiography area, those have been listed in a free 

database of biomedical, international studies on health sciences, published articles, latest 

developments can be traced from the site named as “PubMed” (PubMed, the U. S. National 

Library of Medicine and the National Institutes of Health,  2008). It can be observed that 

after a keen peak in the 1960‟s, the tendency seems to be declining until 2000.However in 

recent decade; interest has again rised, in particularly for fetal magneto cardiography. This 
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should be seen as part of new low noise results, digitizing systems and, low cost measuring 

partly because of expansions in array signal processing and adaptive filtering procedures. It 

was reported which fetus cardiography is again in its initial phases and has a long way to 

go, in order to fulfillment fetus cardiography a clinical reliable fetus cardiac tracing means. 

It should further become marked which, ECG / MCG in spite of increase in research 

number, when standardizing number of these studies by total publications number listed in 

same period in PubMed, it was noted that, researchers working in ECG has fallen since the 

1980s, while MCG exploratory has arrived more attention. 

 

2.3 Goals 

One of these purposes: Past works have pursued: 

 Fetus heart-rate analysis  

 Fetus Electrocardiogram structure science(morphology) analysis  

Fetus Electrocardiogram morphology involves much more clinically data as 

checked against to heart rate alone. Nevertheless, because of fetal signals of low SNR, is to 

take a more demanding. For this reason, most of past studies have only reached in 

removing fetal RR-intervals utilizing R-peaks or fetal ECG waveform average crowd. Fetal 

ECG full morphological studies, on a rhythm to rhythm principle, are accordingly left like 

a challenging subject matter.  

 

2.4 Methodology 

In this section data collection and analysis will be discussed. 

 

2.4.1 Information Picking 

Fetal Electrocardiogram information collection is divided as invasive or non-invasive. 

Invasive procedures, recording electrodes during delivery can be achieved using only 

direct contact with electrode intrauterine fetal skin or scalp (Outram et al., 1995; Genevier 

et al., 1995; Lai & Shynk, 2002). Signals registered by invasive methods have preferred 

standard when compared with non-invasive techniques; however process is rather incorrect 

and is restricted to during labor. Nevertheless, noninvasive techniques utilize signals 

registered from maternal abdomen; they can be done at any gravidity step utilizing 

electrodes dozens. Nevertheless, low fetus Electrocardiogram Signal to Noise Ratio and 

other attempts are bounding factors of this process. However, owing to countless benefits 
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of noninvasive technique, a large body of study has been acted against signal processing 

methods growth for revoking fetal Electrocardiogram from noninvasive records.  

 

2.4.2 Information Analysis  

These can be categorized in available literature with their fetal data analysis 

methodologies. Existent techniques in this field contain:  

 

Direct Fetal Electrocardiogram Analysis  

Early detection of fetal Electrocardiogram study was done on the raw data without any 

action. For example in (Larks, 1962). Some specific situations were notified in that 

because of vertex fetus introduction, fetal R-peaks come in sight as positive summits whilst 

maternal summits had negative summits. Fetal RR-spacing detection is quite easy and may 

be succeed by easy peak detection, in similar situations, already devoid of maternal 

Electrocardiogram elimination. Nevertheless, these techniques are not every time possible 

and it is highly dependent fetal representation and gestational age.  

 

Adaptive Filtration 

Adaptive filters distinct kinds have been utilized in order to maternal Electrocardiogram 

extraction and fetal Electrocardiogram extraction. These techniques include of teaching an 

adaptive or matched filter in order to either eliminating maternal Electrocardiogram 

utilizing one or different maternal reference channels (Widrow et al., 1975).or directly 

training filter for removing fetus QRS waves (Farvet, 1968; Park et al., 1992). Particular, 

adaptive filters like „part based weighted sum filters‟ (Shao, et al., 2004). And least squares 

error components (Martens et al., 2007). It is also used for this purpose. Available adaptive 

filtration techniques for maternal Electrocardiogram artifact dissipation, either suppose a 

reference electrocardiogram of maternal channel which is morphologically alike to 

infecting wave, or request different in linear free channels to approximately rebuild any 

morphologic figure from three references. Both of these entries are in practical improper 

and with restricting efficiency, since maternal morphology of Electrocardiogram polluters 

highly depend on electrode positions and it is not all the time feasible to rebuild serve out 

maternal Electrocardiogram morphology from reference electrodes linear combination. For 

this reason, a maternal Electrocardiogram extraction technique which would not essential 
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for any surplus reference electrodes or at most an individual reference out of morphologic 

resemblance is excellent relevance limitation. 

 

Linear Dissociation 

Single or multi-channel dissociation inputs are alternative extensive interference. In this 

process, signals are dissociated into several constituents by utilizing appropriate base 

functions. Base functions can be chosen from classes which are in any wise in accordance 

with time, frequency, or fetal ingredients scale properties. Wavelet dissociation                

(Li et al., 1995; Khamene & Negahdaripour, 2000). And matching chases                    

(Akay & Mulder, 1996). Are between these techniques. Spatial filtering methods like 

singular value dissociation (SVD) (Damen & Van Der Kam, 1982; Kanjilal et al., 1997; 

Van Oosterom, 1986; Vanderschoot et al., 1987). Sightless and semi-sightless source 

segregation (Zarzoso et al., 1997). Can be marked as „information-driven‟ dissociation 

processes, that is establish necessary merits functions from information itself, by 

maximizing any signal statistical measurement segregation. In (Zarzoso & Nandi, 1999; 

Zarzoso & Nandi, 2001). It has became indicated which in order to fetus 

Electrocardiogram subtraction sightless resource allocation techniques outperforms 

adaptive filters like proposed as. Spatial filtration benefits over traditional adaptive filters 

are which they can additionally distinct maternal and fetus complicated with transient 

crossover. Various versions of sightless and semi-sightless source segregation processes 

have been utilized for fetus Electrocardiogram subtraction. These techniques are usually 

based on free components guess for maternal and fetus signals or some transient presence 

construction for wanted signals. Sightless source separation techniques have also been 

jointed with wavelet dissociation in order to remove and noise reduction of fetus 

Electrocardiogram signals (Vigneron et al., 2003; Jafari & Chambers, 2005). Dissociation 

processes are newly most joint and efficient fetus Electrocardiogram subtraction way and 

noise reduction. But, present techniques are rather general and have not been completely 

customized to periodical Electrocardiogram constructions. Accordingly, a challenging 

matter is to propose multichannel processing of signal techniques (linear or nonlinear) 

which are particular to Electrocardiogram / Magneto cardiogram signals. 
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Nonlinear Dissociation 

Linear dissociation processes utilizing either constant the merits functions (e.g. wavelets), 

or information-driven principle functions (e.g. singular vectors) possess restricted 

performance for nonlinear or signal and noise corrupt admixture. Actually, fetal signals 

and another attempts and noises are not every time „linearly separable‟. 

A remedy for this type of situation, non-linear transformation use to separate signal and 

noise research components. Definitely, nonlinear transforms are rather special and need 

some previous data about requested and undesired signal portion.  

Maternal Electrocardiogram subtraction series and fetus Electrocardiogram rising 

techniques have been improved. These techniques take place utilizing noisy signal and its 

delayed types in order to establish a state-space signal statement, smoothing state-space 

trajectory utilizing traditional or Principal Component Analysis smoothers (Kotas, 2004). 

And transporting samples back to time domain explanation. These techniques are very 

appealing from point which they are possible to as few as one sole channel of maternal 

abdominal. But, necessary time-lags choice is experimental and significant inter-beat 

cardiac signals variations can be removed throughout state-space smoothing. Even, 

compared to linear techniques have higher computational complication. 

 

2.5 Advanced Forming versus Reverse Solutions 

Noninvasive cardiac signal significant view works (either for adults or fetuses) is to find 

relationships among cardiac potentials formed at heart level and potentials listed on body 

surface. This problem is familiar as electrocardiography forward problem, for that 

electromagnetic basises are utilized with cardiac potentials electrophysiological patterns 

and volume transmission patterns, to give notice potentials which can come in sight on 

body surface. Advanced forming also protects precious ideas for anticipating more 

practical problem heart potentials from body surface registrations that is reverse solution. 

Advanced and reverse difficulties have long been worked in order to adult heart signals 

(Gulrajani, 1998). However, this type of fetal heart signals there are only few studies. In a 

more recent study, fetal Magneto cardiogram and Electrocardiogram credibility problem 

has been studied utilizing advanced forming in normal and pathologic situations. They 

utilize several patterns for different stages of pregnancy. Particularly, pregnancy last 

trimester in advanced forming, they noted vernix caseosa layer having two holes and 

obtained fetal Electrocardiogram maps which looked alike real measured maps. Bores in 
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vernix caseosa were noted over of fetus mouth and umbilical cord start, appropriate to the 

„preferential‟ current pathways. On the other hand, for their actual information working, 

they utilized simple techniques like maternal Magneto cardiogram average waveform 

extraction.  

 

2.6  Alternate Measurement Methods 

Electrocardiography in past studies, including fetal heart prosperity has been observed with 

other methods: 

Echocardiography; Additionally acknowledged as heart sonography that is based on 

canonical ultrasound processes. 

Phonocardiography (Zuckerwar et al., 1993; Kovacs et al., 2000; V´arady et al., 2003).  Is 

heart sounds graphical recording and murmurs manufactured by cardiac contraction 

(containing its valvule and related large veins), taken as pulsations and converted by a 

microphone of piezoelectric crystal into a changing electric output in accordance with 

pressure, it presented with sound waves. 

Cardiotocography; is uterus narrowing with a pressure precision transducer, and fetal heart 

synchronous measurement ratio with an ultrasound transducer, in order to measure strength 

and uterus narrowing frequency. 

Magnetocardiography (Kariniemi & Hukkinen, 1977; Chen et al., 2001; Ter   Brake et al., 

2002). Is a method like Superconducting Quantum Interference Device                      

(Clarke & Braginski, 2006). To gauge cardiac signals magnetic fields utilizing highly 

sensitive tools. 

Between techniques mentioned above, echocardiography is most widespread and 

commercially most existing fetus cardiac tracing means. Even so, Electrocardiogram and 

Magneto cardiogram include more data, since most heart anomalies have some perspicuity 

on Electrocardiogram/Magneto cardiogram morphology or RR-interval timing           

(Peters et al., 2001). Actual study is accordingly focused on Electrocardiogram and partly 

Magneto cardiogram that is   Electrocardiogram magnetic counterpart. Note that because 

of Magneto cardiogram and Electrocardiogram morphologic resemblance, Magneto 

cardiogram processing techniques are analogous to Electrocardiogram-based ones; despite 

utilizing current Superconducting Quantum Interference Device technology for magnetic 

registering, fetal Magneto cardiogram Signal to Noise Ratio is generally higher than its 
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Electrocardiogram. But, nowadays Electrocardiogram recording tool are straightforward 

and more purchasable when compared with magneto cardiogram systems. 

 

2.7  Present Problems and Problem Description 

Pass in review previous studies, it can be noticed that considering opulent literature, there 

are still A few basic elements which request upwards works. Following prior statements, 

between distinct data collection setups, it is condensed on Electrocardiogram situated 

systems utilizing multichannel noninvasive maternal abdominal measurements, and 

purpose is to recall fetus Electrocardiogram morphology with maximum feasible stability, 

in accordance with for morphological works. In this case, bounding factors and challenging 

signal processing subject matters contain:  

 Fetus cardiac potentials Weakness and low-conductivity layers circumambient  

fetal that is lead to low amplitude fetus Electrocardiogram at maternal body 

surface; 

 Maternal Electrocardiogram high venture, uterus narrowing, maternal respiratory, 

and movement artifact signals;  

 Fetus probable motions and requirement in order to sort of fetal cardiac signals 

„standard presentation‟ as far as concerns fetal body axis;  

 Automatic operations Expansion which can be implemented on long datasets with 

least mutual effect with specialized operators; supplying trust measures for 

conjectural cardiac signals and finding theoretical limits for „recoverable data‟ 

quantity noise body surface being recorded. 

Even if, traditional ECG filtering techniques are normally based on a time measurement, 

frequency, or signals and noise scale-separability, it is joint to all noise reduction methods. 

Nevertheless, cardiac signals have upwards pseudo-periodic construction that it is trusted; 

have not been well-utilized in Electrocardiogram noise reduction layout. In prior works 

multichannel dissociation techniques have been frequently implemented to sighted signals 

rather „imprudently‟ and there is usually no warranty which fetus components are removed 

as apart elements. For this reason, a significant subject is to improve removing fetal 

components probability and also to develop removed components quality, through suitable 

preprocessing and utilizing previous data about signal noise mixtures. This is an essential 

step in order to upgrade robust fetus Electrocardiogram /Magneto cardiogram subtraction 

algorithms. Linear dissociation techniques are very reciprocal, not only owing to linear   
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pattern currency itself; however further for these versions simplicity. But, as consulted 

before, there are states in that requested signals are not lineal sectional and nonlineal 

dissociation is indispensable. Consequently, an intriguing work area is to associate lineal 

and nonlineal methods to utility from lineal transformations convenience and strength of 

nonlinear technique simultaneously. Alternative concerned matter is to find physiological 

hermeneutics for elements removed by multichannel source segregation methods. While 

these techniques are often rather abstract statistical criteria on the basis of maximization 

like statistical independency, it is not very clear what resultant elements to be physical 

communicate to, when implemented to actual information. For heart signals, this subject is 

very important, when we imagine which cardiac is a deployed resource and not a punctual 

resource. Fetal Electrocardiogram Morphologic forming is another subject of interest. 

While prior fetal Electrocardiogram /Magneto cardiogram patterns condense on advanced 

patterns based on electromagnetic and volume transmission theories                 

(Oostendorp, 1989; Stinstra, 2001). In order to appraise processing of signal methods 

situated on body surface potentials, more abstract patterns are necessary. Essentially, for 

estimate and compare sole or multichannel processing methods, we require patterns which 

ease us to operate simulated signals processing of signal appearances as their morphology, 

RR-spacing timing, fetus status, dimensionality, and Signal to Noise Ratio, without going 

into signal spread particulars and volume transmission theories. For adult 

Electrocardiogram, like these models example was improved in [39], where individual 

channel adult Electrocardiogram was modeled with a dynamic pattern. Nevertheless, 

present patterns have not noted Electrocardiogram multi-dimensional nature and are not 

suitable for multichannel processes assessment which utilize various channels‟ mutual 

data‟.  

 

2.8  Summary 

In this part, fetus heart signal extraction literature and its challenging subjects was briefly 

discussed. It was exclusive which in present work, we are interested in this issue 

developing processing of signal views, for simplify fetus heart signals subject.  
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CHAPTER 3 

 

  AN OVERVIEW OF ELECTROCARDIOGRAM(ECG) SIGNALS 

 

3.1  Overview 

Electrocardiography is a technique which records electrical action againts time. The alters 

in the difference of electrical potential between two points (voltage) throughout myocardial 

fibers depolarization and repolarisation are registered by electrodes established on chest 

surface and limb. Electrical potentials sources are contractible cardiac muscle celss. 

Electrocardiogram curve showing a wave shape at a given time is either printed upon 

squared paper which operates at a immutable impetus or indicated on a computer display. 

Electrocardiography benefits come with its relatively inexpensive, urgent validity and easy 

application. Operation itself is further non-invasive. 

ECG is utilized for research some abnormal cardiac function types containing arrhythmias 

and transmission inconveniences as well as cardiac morpology. It is also beneficial for 

defining Pacemaker performance. 

 

3.2 Heart Electrical Transmission System 

Heart muscle is created from two primary cell types:  

 Cardiomyocytes, that form electric potentials in course of narrowing 

 Cells specialized in production and action potentials transmission. 

This particular electric cells automatically depolarized. Rest of cardiomyocytes polarized 

with significantly lower speed of an electric membrane. This means there is a lag among 

two signals arrival, thus which when second impulse reaches, cells are no longer resistant 

(Kavitha & Christopher, 2014). 

Waves, Sections and Spacings 

In Electrocardiogram waveform there are specific components  

Baseline: A supine line when there is no electric action on electrocardiogram. 

Sections: Baseline line duration among waves. 

Spacings: Duration among same contiguous waves sections. 
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P-wave is initial Electrocardiogram deviation. It outcomes from atria depolarization. Atrial 

repolarisation take shapes in depolarization of ventricular course and is uncertained. QRS 

complicated communicates to depolarization of ventricular. 

 

Figure 3.1:  Electrocardiogram waves, sections and spacings                                

(Kavitha & Christopher, 2014). 

 

T-wave symbolizes repolarisation of ventricular, i.e, resting membrane renovation 

potential. Approximately one quarter of population, U-wave can be viewed after T-wave. 

This usually has identical polarity as previous T wave. It has been proposed which U-wave 

is reasoned by after potentials which are likely created by mechanical-electrical feedback. 

Reversed U-waves can come into view in left  ventricular hypertrophy asset or is chaemia. 

Section of PQ gets into touch to electrical urges delivered through node of S-A,  his bunch, 

its branches, fibres of Purkinje and is generally isoelectric. Spacing of PQ states time 

passed from atrial depolarization to ventricular depolarization initiation. Gap of ST-T 

encounters with leisurely and quick repolarisation of ventricular activity potential and 

repolariastion. Then TP spacings is duration for that atria and ventricles are in diastole. 

Gap of RR symbolizes one cycle of heart and is utilized to compute ratio of cardiac. 

 

Normal Heart Rates 

Heart Rate of 60 – 100 BPM is NORMAL 

 

HR > 100 bpm = TACHYCARDIA 

Tachycardia is a heart rate which is in excess of the normal resting rate generally, an 

endurance heart rate over 100 beats per minute is adopted as tachycardia in adults.  

 

HR < 60 bpm = BRADYCARDIA 

Bradycardia is a slow heart rate, described as a heart rate of under 60 bpm in adults.  
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3.3 Hermeneutics of the Electrocardiogram  

After defining dominant cardiac rhythm, mean electrical axis and heart location in chest, 

subsequent step of Electrocardiogram analysis is to comment form, amplitude and waves, 

sections and spacings time. 

 

P-Wave 

P wave is normally positive in main ends. It can occasionally have negative deviation in 

ends III and VI or is biphasic in these ends and in end a VL. P-wave normative period is no 

longer than 0.12s and voltage in limb ends should not in excess of 0.25 and 0.15 mV in 

precordial ends. 

 

T-Wave 

T-wave should be positive in main ends apart from for a VR and occasionally in VI, in that 

it may be negative or horizontal. Extremely negative T-waves can be MU sign, for instance 

by left anterior descending artery congestion virtue. Other cases contain cardiomyopathy of 

hypertrophic and haemorrhage of subarachnoid. T-wave inversion occasionally take shapes 

without clear reasons. 

Electrocardiogram signals are specular electrical actions of a cardiac muscle. ECG are 

concerned to nested diversity and methods of complicated chemical electrical and 

mechanical available in cardiac. They conduct a great deal to diagnostic data of precious 

solely defining heart functioning but further other systems like circulation or nervous 

systems. 

Electrocardiogram signal for over 100 years has became a issue of works. Initial electrical 

activities cardiac record was achieved by an August Waller who is English physiologist 

utilized surface electrodes established on a skin and bonded to electrometer of capillary in 

1887. August Waller was initial to call recorded signal ECG. Even so Willem Einthoven is 

reputabled to be Electrocardiography father, who in 1902 registered first ECG with a string 

galvanometer utilize. M. Cremer provided first esophageal ECG recording with help of 

private esophageal electrode in 1906 (Berbari, 2000). 

This kind of Electrocardiography has been extremely improved in 1970’s of last century to 

be utilized as a method beneficial in atria rhytm irregularity differentiation. Cremer 

registered further initial fetus ECG. Willem Einthoven got Nobel Prize for 

electrocardiography innovation and its growth in 1924. Since then there has became a 
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significant exploratory in electrocardiography field. Electrocardiography has became a 

customary technique in cardiac diagnostics since 1940s. There has been a important 

diagnostic growth methods based on Electrocardiogram analysis. 

Electrocardiogram signal is one of most well-known biomedical signal. Its high diagnostic 

abilities have been indicated. In recent years there has became a important interest 

expansion in efficient techniques growth of processing and electrocardiogram signals 

analysis with intent formation diagnostic data beneficial. Those chasing have been carried 

out in parallel with data technologies, specially in digital signal processing area carried out 

both in hardware and software. In merit of Electrocardiogram signals principle,  they 

frequently have been a imprecise data source. In systems of diagnostic design, it becomes 

of intereset for making them user friendly. These factors have interest of triggered in 

Computataional Intelligence technology parlay. In this situation, it is woeth recalling 

which first works in systems of intelligent field go back to Artificial Intelligence methods 

utilize with a its symbolic processing wealth.  Electrocardiogram signals definition in 

terms of symbols sequences, that are investigated and categorized based on official 

grammars machinery.  

One of first initiatives, that fully exploits Artificial Intelligence methods, comes in 

semantic nets form implemented to Electrocardiogram signals analysis. In this process 

signal is symbolized in a OR/AND graph form while sorting method is interested with a 

graph search. Another significant methods collection stems from rule based notion systems 

where an Electrocardiogram signal is defined in “if-ten’’ rules format. Decision 

mechanism is believed to utilize supposed modus ponens. Confidence on this notion, 

although, requests which a information basis is literally which for any signal there is a 

rules set to be utilized in the illation technique. Rule base size drop along with an increase 

of reasoning processes achieved in ambiguity asset becomes feasible when summoning a 

thus named universalized modus ponens.  

Electrocardiogram processing of signal and analysis involves a order of steps between that 

most needed include; 

 Signal Amplification and its A/C transformation  

 Noise Removal 

 Property choice 
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The quality and influence of techniques utilized at these stages mention entire process 

quality of grading and Electrocardiogram signals explication. Both amplification of signal 

and A/C transformation are executed in hardware while entire filtration and noise 

cancellation are executed through information processing improved technologies utilize.  

 

3.4 Electrocardiogram Signals Nature 

Electrocardiogram signals are specular heart electric action. Electrocardiogram signal is 

some type of an electrical provocation effuse in cardiac muscle cells. Under sway of this 

provocation, cells of cardiac muscle miniaturize, that consequently, reasons a mechanical 

influence in heart atria cyclic towing form and ventricles. As an cardiac muscle towing 

influence, blood disseminates in human organs. 

Spread electrical provocation in cardiac muscle creates a depolarization bioelectric 

potentials adjacent heart cells wave, depolarization wave diffusion. After depolarization 

wave moving, cells of cardiac muscle turn to their rest situation rescuing before starting 

resting negative potential. This situation is named a repolarisation phase.  

 

 

Figure 3.2: Wave of depolarization in heart muscle spread (Berbari, 2000). 

 

3.5 Electrocardiogram Signals Processing & Analysis  

In cardiology Electrocardiogram signals form a significant diagnostic datum source. For 

getting benefit from it, signals have to became appropriately recorded and processed in 

such a way which we can continue with their efficient analysis and interpreation. 

Electrocardiogram signals are comparatively low quasi-periodic several mV amplitude. 

They are frequently influenced by noise. Signal requests recording their amplification and 

also processing for compress noise to highest scope. Furthermore Electrocardiogram signal 



 16 

analysis is achieved based on these registrations in order to that noise has became 

depressed. Entire processing initial stage is an Analog to Digital Conversion(ADC). 

Subsequently digital Electrocardiogram signal is filtered in order to clear noise and also 

processed to develop property choice techniques influence, grading and explication 

implemented to signal. Data granulation has been taken into account as one of intersting 

and encouraging options In this context; in substance techniques arising there can be 

sought in a way materialization way data compression specific method.  

 

Figure 3.3: Primary stages of electrocardiogram signal processing and 

analysis(Berbari, 2000). 

 

3.6 Processes for Recording Electrocardiograms 

Electrocardiogram is registered by placing an electrodes array at particular places on body 

surface. This is feasible because heart is suspended in a conductive medium. Figure 3.4 

indicates the ventricular muscle within the chest. When one section of the ventricles 

depolarizes and for this reason being negative concerning the remainder parts of the heart, 

forming a potential difference.  

Electrical currents flow from depolarized field to polarized field in great ways. It is this 

electrical field which can be gathered under surface of the heart.  

 

Figure 3.4: Current flow in chest throughout partly depolarized ventricles       

(Berbari, 2000). 
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3.6.1 Electrocardiographic Ends  

Traditionally, electrodes are established on each arm and leg, and six electrodes are 

replaced at described locations on chest. Three fundamental kinds of Electrocardiogram 

ends are registered by these electrodes set:  

 Canonical bipolar limb ends 

 Chest ends  

 Augmented limb ends.  

The limb ends are applied as bipolar ends because each end utilizes a single pair of positive 

and negative electrodes. Augmented ends and chest ends are unipolar ends because they 

have a single positive electrode with other electrodes coupled with each other electrically 

to serve as a joint negative electrode.  

 

Three Bipolar Limb Ends  

Figure 3.5 indicates electrical links between patient limbs and electrocardiograph for 

recording ECGs from so-called canonical bipolar limb ends. In these regulations ECG is 

registered from two electrodes established on heart dissimilar sides, in this instance, on 

limbs. Three different connections are feasible,  

 End I 

 End II  

 End III.  

End I in registering limb End-I, electrocardiograph negative terminal is connected to right 

arm and positive terminal to left arm.  

 

Figure 3.5: Electrodes traditional regulation for registering standard 

electrocardiographic ends. Einthoven’s triangle is superimposed on chest         

(Berbari, 2000). 
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Accordingly, the electrode of the right arm is electronegative concerning the electrode of 

the left arm. The electrocardiograph registers a positive signal, which is, above zero 

voltage reference line in ECG. When opposite is true, electrocardiograph registers below 

this line. End II to register limb end II, electrocardiograph negative terminal is connected 

to right arm and positive terminal to left leg. Consequently, when right arm is negative 

according to left leg, electrocardiograph registers positively. End III to register limb end 

III, electrocardiograph negative terminal is connected to left arm and positive terminal to 

left leg. This means which electrocardiograph registers a positive signal when left arm is 

negative according to left leg. These three limb ends coarsely form an equilateral triangle 

with heart at the center, refer to Figure 3.6. 

 

Figure 3.6: Einthoven triangle with canonical electrocardiogram limb ends placement 

and of positive and negative place registering electrodes for each of three ends. RA, 

right arm; LA, left arm; RL, right leg; LL, left leg Adp. (Berbari, 2000). 

 

This triangle is named Einthoven’s triangle in respect of Willem Einthoven who improved 

Electrocardiogram in 1901. Two vertices at triangle upper part symbolize  points at that 

two arms are electrically connected, and lower vertex is electrode located on right leg used 

as a ground point. Depending on the end used to record the Electrocardiogram signal, the 

resultant shape is slightly different; these differences can be monitored in Figure 3.7. In the 

three electrocardiograms indicated in Figure 3.7, it can be seen, which at any given 

instantaneous potentials sum in ends I and III equals potential in end II, therefore 

exemplify availability of Einthoven’s law. Signals from these ends are uniform between 

them, it does not substance greatly that end is registered when one wants to diagnose 

various cardiac arrhythmias, because arrhythmias diagnosis depends primarily on time 

relations between cardiac cycle various waves. 
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Figure 3.7: Normal ECGs registered from the three canonical 

 electrocardiographic ends (Berbari, 2000). 

 

Chest Ends When it is significant to diagnose damages in ventricular or atrial muscles, or 

in Purkinje conducting system, the three Bipolar Limb ends records are not beneficial. For 

these cases, we need ends which can show cardiac muscle abnormalities narrowing or 

cardiac impulse conduction in these areas. Chosen ends for diagnose these cases are the 

chest ends, also called Precordial Ends, that are represented in   Figure 3.8. These ends are 

used to record Electrocardiogram with one electrode replaced on front chest surface 

immediately over heart at one of the points given in Figure 3.8. The distinct registrations 

are acknowledged as ends V1, V2, V3, V4, V5, and V6. This electrode is connected to 

electrocardiograph positive terminal, and negative electrode, named the unregistered 

electrode, is connected through equal electrical resistances to right arm, left arm, and left 

leg, all concurrently. Generally these six canonical chest ends are registered, one at a time, 

where chest electrode is being replaced in order at six points illustrated in figure.       

Figure 3.9 shows healthy heart ECGs as registered from these six canonical chest ends. 

Each chest end registers primarily cardiac musculature electrical potential directly under 

electrode, because heart surfaces are close to chest wall. For this reason, comparatively 

minute abnormalities in ventricles, especially in anterior ventricular wall, can reason 

evident changes in ECGs registered from separate chest ends. 

 

Figure 3.8: Body connections with electrocardiograph for recording chest ends 

 LA, left arm; RA, right arm (Berbari, 2000). 
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3.7 Physiological Principle 

Human heart is created of myocardium. When activity potential take shapes, it will end to 

a myocardial narrowing. Then heart pumps blood to all body. By the way, the current 

resulting from activity potential will spread from heart to all body unequally. It clarifys 

why we can keep the signal from the various parts of human body by surface electrodes. 

The measured waveform is named electrocardiogram. And a end is created by potential 

waveforms registered from the electrodes replaced on different parts of body. Based on 

cardiac potential axis, there are six standard ends, containing End I, End II, End III, “a 

VR,” “a VL” and “a VF”. Right foot is generally taken into account as a reference ground. 

His potential amplitude alters less than all other refererence points because it’s farthest 

from heart. Actually, the systole of heart is not fully controlled by automatic nervous 

system, but essentially by the specialized cells in Sinoatrial node that works like a 

pacemaker. The organized potential from sinoatrial node will spread to all atria and t make 

it contracted. Then, when contracted, atria pumps the blood into the ventricles. By the way, 

passing through the atrioventricular node between the ventricle and atrium, action potential 

will enter to all areas of the ventricles via Purkinje fibers, then makes the it contracted. 

Eventually, Ventricle pumps the blood to the arteries. 

 

Figure 3.9: Cardiac potential axes suitable to various electrocardiogram ends. 

(Berbari, 2000).  

 

When the nervous impulses pass through the atrium and ventricle, the electrical current 

will extended to the cardiac tissue and induces the production of the myocardial activity 

potential. Some portions of action potential can be defined on the surface of skin. That’s 

why it’s possible to measure the change of action potential when we establish electrodes on 

the surface of body. Certainly, those electrodes should be replaced on the area suitable to 

heart. The time-varying potential recorded is Electrocardiogram. And a cardiac vector is a 

type of projection of potential on the front plane surface of body. There is 60 degrees 
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among each two axes composed by projected vectors. Each axe symbolizes a end that has 

no relation with the position of electrodes. The phenomenon is explored by a Holland 

physiologist Willien Einthoven. It is also named Einthoven’s triangle. 

 

Figure 3.10: Timing and wave amplitudes of ECG (Berbari, 2000).  

 

3.8 Electrocardiogram Noise Contributions  

Having knowledge how noise is presented into an ECG signal is very significant for good 

consultations, because which is what we want to be able to filter out. We must define the 

type of noise in the Electrocardiogram signal and then choose a filtering algorithm suitable 

for dealing with it. Noise can comprise in multiple different forms. Some examples are 

dedicated below:    

 Electrical venture from power lines add 50 or 60 Hz power-line frequency. 

 Muscle narrowing and muscle action can compose high frequency 

Electromyography noise.   

 Movement artifacts like motion of the electrode over the skin surface. 

 Impedance changes at the skin/electrode interface because of transient loss of 

contact or unsecured electrodes.   

 Baseline drifts because of respiration. 

 Noise presented because of instrumentation or electronic apparatus 
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3.9 Summary 

Electrocardiogram is a skin-surface measurement of electrical vector created by heart with 

each heart beat. Cells have “automaticity” which reasons them to fire at orderly intervals. 

Potentials created by these cells flow from one side to other heart muscle (myocardium) in 

presumable patterns to create Electrocardiogram waveform measured on skin. 
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CHAPTER 4 

DIGITAL SIGNAL PROCESSING (DSP) 

 

4.1 Overview 

World of Science and Engineering is completed with signals, by a majority situations, 

these signals to generate sensory information from actual world as it is: 

 Seismic vibrations 

 Visual images 

 Sound waves 

 Images from remote space probes 

 Voltages created by cardiac and brain  

 Radar and sonar reflections  

 Numerous distinct implementations.  

Processing of Digital Signal is mathematics, algorithms, and processes utilized to manage 

these signals later they have been transformed into a digital shape. This contains a broad 

diversity of aims, like:  

 Development of visual images 

 Identification and  speech production 

 Information compression in order to storage and transfer, etc. 

Processing of Digital Signal is science of utilizing computers to resolve these 

information types. This contains a broad diversity of aims:  

 Filtration 

 Recognition of speech 

 Enhancement of image 

 Compression of data 

 Neural Networks  

 and further.   

4.2 What is a Signal? 

Anything that carries data is a signal. e.g. human voice, smoke signals, fragrances of the 

flowers, chirping of birds, gestures (sign language). Most of our body functions are 

organized by chemical signals, sightless people utilize sense of touch. Bees get into touch  
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by their dancing pattern. Modern high speed signals are: voltage changer in a telephone 

wire, the electromagnetic field infiltarating from a transmitting antenna, change of light 

density in an optical fiber. So we see which there is a nearly infinite diversity of signals 

and a large number of paths in that signals are transported from on place to distinct place. 

4.2.1 Signals: The Mathematical Path 

A signal is a actual (or complex) worth function of one or more actual variable(s). When  

function depends on a individual variant, signal is one-dimensional and when function 

depends on two or more variants, signal is multidimensional. 

Examples of one-dimensional signal:  

A speech signal, daily maximum temperature, yearly rainfall at a place. 

Example of two-dimensional signal:  

An image is a two dimensional signal, vertical and horizontal coordinates typify the two 

dimensions.  

Example of four-dimensional signal:  

Our physical world is four dimensional (three spatial and one temporal). 

 

4.3 Processing of Signal 

Processing signifies operational in some style on a signal to clean some beneficial data e.g. 

we utilize our ears as input apparatus and then auditory pathways in the brain to remove 

data. The signal is commited by a system. In the example referred above,  in nature the 

system is biological. The signal processor may be an electronic system, a mechanical 

system or already it might be a computer program. 

                       

Figure 4.1: Biological signal in nature (Smith, 1999). 
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Analog towards DSP 

Processing of signal managements interpolated in many implementations as 

instrumentation, control and communication systems, processing of biomedical signal etc. 

can be applied in two various methods: 

 Analog or continuous time technique 

 Digital or discrete time technique 

 

Analog Signal Processing 

 Utilizes analog circuit components like resistors, capacitors, transistors, diodes etc. 

 Based on natural capability of the analog system in order to solve differential 

expressions which define a physical system. 

 The solutions are got in actual time. 

 

DSP 

In Digital Signal Processing “Digital” stands for which the processing is done either by a 

digital hardware or by a digital computer. 

 Trusts on numerical calculations. 

 The technique may or may not give outcomes in actual time. 

 

The benefits of digital attempt over analog attempt  

 Resilience: Same hardware can be utilized to do different type of signal processing 

operations, while in the case of analog signal processing one has to design a system 

for each type of process. 

 Repeatability: The same signal processing operation can be repeated again and 

again giving same outcomes, while in analog systems there may be coefficient 

variation because of alteration in temperature or supply voltage. 

The selection among Analog or DSP depends on the implementation. One has to compare 

design duration, size and the price of the application. 

 

4.3.1 Discrete Time Signal Processing and Digital Signal Processing 

When we utilize digital computers to do processing we are doing digital signal processing. 

However mainly the theory is for discrete time signal processing where dependent variant 
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usually is continuous. This is owing to the mathematical simplicity of discrete time signal 

processing. DSP attempts to apply this, as intimately as possible. So what we study is 

frequently discrete time signal processing and what is truly applied is digital signal 

processing. 

 

4.4 The Width and Profundity of DSP 

DSP is one of the strongest technology to create a science and engineering in 21. century. 

Revolutionary modifies have anyway been made in a wide range of areas:  

 High fidelity music breeding  

 Radar & sonar 

 Oil prospecting  

 Communications 

 Medical imaging 

Each of these areas has improved a profound Digital Signal Processing technology, with its 

own mathematics, algorithms, and specialized methods. This width combination and 

profundity makes it not possible for any one separate to main as a whole Digital Signal 

Processing technology which has been improved. Digital Signal Processing education 

includes two duties: learning generic notions which apply to the area like an all, and 

learning appropriated methods for your special field involvement (Smith, 1999). 

 

4.5 Fundamental Components of a DSP System  

Mainly the signals matched in science and engineering are analog in nature. Which are the 

signals are functions of a continuous variant, like time or space and generally take on 

values in a continuous range. These kinds of signals may be processed directly by suitable 

analog systems (such as filters or frequency analyzers) or frequency multipliers for the aim 

of changing their properties or removing some desired data. In such a status we say that the 

signal has been committed directly in its analog form, as defined in Figure 4.1. Both the 

input signal and the output signal are in analog form (Prandoni & Vetterli, 2008). 

 

 

 

Figure 4.2: Analog signal processing 
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4.6 Primary Notions of DSP  

Digital Signal Processing technology and developments greatly affects everywhere in 

modern society. In the absence of Digital Signal Processing, we would not have digital 

recording; digital internet audio or video; Compact Disc, Digital Versatile Disc, and MP3 

players; digital and cellular telephones; digital cameras; TV and digital satellite; or wire 

and wireless networks. Medicinal devices would be less effective or incapable to ensure 

beneficial data in order to exact diagnoses if there were not any analyzers of digital 

Electrocardiography or digital x-rays and medicinal image systems. We would also live in 

many less effective methods, since we would not become accoutered with recognition of 

voice systems, systems of speech synthesis and systems of image and video editing. In the 

absence of Digital Signal Processing, engineers, scientists, and technologists would have 

not any strong apparatus to visualize and analyze information and build their design, and 

soon (Proakis & Manolakis, 2006).   

  

 

 

 

 
Figure 4.3: DSP regulation 

 

Digital Signal Processing theory is defined by a simplified block diagram of Figure 4.3 that 

takes place an analog filter, an ADC unit, a processor of Digital Signal, a DAC unit, and a 

filter of reconstruction. As indicated diagram, analog input signal, that is continuous in 

time and amplitude, is usually met in our actual life. Examples of like these analog signals 

contain current, temperature, light intensity, pressure, and voltage. Normally a sensor is 

utilized to transform nonelectrical signal to analog electrical signal (voltage). This analog 

signal is fed to an analog filter that is implemented to restrict frequency analog signals 

domain previous to process of sampling. Filtration aim is to substantially reduce distortion 

of aliasing. Band-restricted signal at analog filter output is then sampled and transformed 

over Analog to Digital Converter unit into digital signal that is discrete both in amplitude 

and in period. Processor of Digital Signal then adopts processes digital information and 

digital signal accordingly, Digital Signal Processing rules like low pass, high pass, and 

band pass filtering of digital, or other algorithms in order to various implementations. 
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Attention which processor of Digital Signal unit is a private digital computer type and can 

be a generic goal a microprocessor, digital computer, or an advanced microcontroller; 

additionally, Digital Signal Processing rules can be applied utilizing software generally. 

With processor of Digital Signal and suitable software, a processed digital output signal is 

created. This signal proceeds in a way by certain algorithm utilized. Following diagram in 

Figure 4.3, DAC unit, transforms processing of digital signal for an analog output signal. 

As indicated, signal is discrete in amplitude and  continuous in time the final diagram in  

Figure 4.3 is assigned as a function to smooth the Digital to Analog Converter output 

voltage levels back to analog signal over a restoration filter in order to actual world 

implementations. Generally, analog signal continuum does not need software, an 

algorithm, ADC, and DAC. Processing believes completely on electrical and electronic 

apparatus like transistors, resistors, operational amplifiers, capacitors, and Integrated 

Circuits(IC). Digital Signal Processing systems, but, utilize software, digital processing, 

and algorithms; so they have an excellent agreement of resilience, less noise attempt, and 

no signal distortion in different implementations. But, as illustrated in Figure 4.3, Digital 

Signal Processing systems still need minimum analog processing like anti-aliasing and 

restoration filters that are must in order to convert actual-world data into digital format and 

digital format back into actual world data. There are a lot of actual world Digital Signal 

Processing implementations which do not need Digital to Analog Converter, like 

information acquisition and digital data monitor, recognition of speech, information 

encoding, and so on. Likewise, Digital Signal Processing implementations which require 

no Analog to Digital Converter contain Compact Disc players, text-to-speech synthesis, 

and digital tone generators, among others (Vaseghi, 2009).  

 

4.7 DSP Implementations  

Implementations of Digital Signal Processing are ascending in a lot of fields where analog 

electronics are being changed by chips of Digital Signal Processing, and new 

implementations are depending on Digital Signal Processing methods. With of processors 

of Digital Signal cost decreasing and their performance increasing, Digital Signal 

Processing will proceed to impress design of engineering in our modern daily life. Some 

implementation samples utilizing Digital Signal Processing are given in Table 4.1. But, list 

in table by no means lids entire Digital Signal Processing implementations. Much more 

fields are ever being discovered by engineers and scientists. Implementations of Digital 
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Signal Processing methods will proceed to have deep effects and develop our lives (Tan & 

Jiang, 2013). 

 

Table 4.1: Implementations of DSP 

Digital Audio and Speech  Digital Audio coding as Compact Disc players 

 Digital crossover 

 Digital audio equalizers 

 Digital stereo and surround sound, 

 Noise decreasing systems, 

 Speech Coding, 

 Data Compression, and encryption 

 Speech Synthesis and Speech Recognition. 

Digital Telephone  Speech Recognition 

 High-speed modems, 

 Echo deletion, 

 Speech synthesizers, 

 DTMF (dual-tone multi frequency) manufacture and 

detection 

 Answering machines. 

Automobile Industry  Actual noise control systems 

 Actual suspension systems 

 Digital audio and radio 

 Digital controls. 

Electronic communications  Cellular phones, 

 Digital telecommunications, 

 Wireless LAN(Local Area Networking), 

 Satellite Communications 

Medical Imaging Equipment  Electrocardiogram Analyzers, 

 Cardiac monitoring, 

 Medical imaging and recognition, 

 Digital x-rays, 

 Image processing. 

Multimedia  Internet phones, 

 Audio and video; hard disk drive electronics; digital 

pictures, 

 Digital cameras; 

 Text-to-voice and voice-to-text technologies. 
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4.8 Summary  

In this section we have initiatived to ensure the motivation for digital signal processing as 

an alternate to analog signal processing. We described the necessary procedures can be 

used to convert an analog signal into a digital signal for processing and presents the basic 

components of a DSP system. 



31 

 

CHAPTER 5 

BIOMEDICAL SIGNAL PROCESSING 

5.1 Overview 

Purpose of Biomedical Signal Processing is, to remove:  

 Clinical 

 Biochemical  

 Pharmaceutical  

appropriate data for enable a transmitted medicinal diagnosis. Whole living things, from 

cells to structure, transmit biological signals origin. These signals types can be  

 Electrical Signal 

 Mechanical Signal 

 Chemical Signal 

Entire these signals can be for diagnosis interest, in order to patient observing and 

biomedical exploratory. Primary biomedical signals duty processing for filtering signal of 

interest out of from noisy background and for decreasing unnecessary information stream 

to just several, however appropriate coefficients.  

5.2 Properties of Medical Data 

Alphanumeric data contain patient’s name and address, identity number, lab tests 

outcomes, and physicians’ annotations. Figure 5.1 shows three basic data types that must 

be acquired, manipulated, and archived in the hospital. Images contain x-rays and scans 

from computer tomography, magnetic resonance imaging, and ultrasound. of Physiological 

signals examples are ECG, Electroencephalogram, and blood pressure pursuiting. Quite 

dissimilar systems are necessary to manage each of these three kinds of information. 

Alphanumeric information are usually administrated and arranged into a database utilizing 

a general-objective mainframe computer. Image data are traditionally archived on film. 

However, we are evolving toward Picture Archiving and Communication Systems which 

will store images in digitized form on optical disks and deploy them on demand over a 

high-speed Local Area Network to very high resolution graphics display monitors located 

throughout a hospital. On the other hand, physiological signals like those that are 

monitored during surgery in the operating room require real-time processing.  The clinician 

must know immediately if the instrument finds abnormal readings as it analyzes the 

continuous data (Tompkins, 2000). 
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Figure 5.1: Types of medical data 

5.3 What is a Medical Device? 

There are many different types of medical instruments. Figure 5.2 indicates a block 

diagram which describes these kinds of instruments. Sensors measure the patient’s 

physiological signals and generate electrical signals (usually time-varying voltages) which 

are analogs of the real signals. A set of electrodes may be used to sense a potential 

difference on the body surface such as an ECG or EEG. Sensors of different types are 

available to transduce into voltages such variables as body core temperature and arterial 

blood pressure. The electrical signals manufactured by the sensors interface to a processor 

that is liable for processing and analysis of the signals. The processor block typically 

contains a microprocessor for performing the necessary tasks. Many devices have the 

capability to monitor, register, or deploy through a network either the raw signal captured 

by the processor or the results of its analysis. In some devices, the processor implements a 

control function. Based on the outcomes of signal analysis, the processor might teach a 

controller to do direct therapeutic intervention on a patient or it may signal a person which 

there is a difficulty which is necessary feasible human intervention (open loop control). 

 

 

 

  

 Open loop or closed loop control 

 

 

 

 

Figure 5.2: Basic elements of a medical instrumentation system 
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5.4 Iterative Definition of Medicine 

The clinician inquires the patient questions about medical history, registers the 

Electrocardiogram, and does blood tests and other tests for describe the patient’s problem. 

Figure 5.3 is a block diagram that shows the operation of the medical care system. 

Information collection is the starting point in health care. Of course medical instruments 

help in some aspects of this data collection process and even do some preprocessing of the 

data. Ultimately, the clinician analyzes the data collected and decides what the basis of the 

patient’s problem is. This decision or diagnosis leads the clinician to prescribe a therapy. 

Once the therapy is administered to the patient, the process continues around the closed 

loop in the figure with more data collection and analysis until the patient’s problem is gone 

(Ibrahimy, 2010).  

 

 

 

 

   

 

 

Figure 5.3: Fundamental components of a medical care system 

 

5.5 Synopsis for Biomedical Signal Processing  

Biomedical Signal Processing is mostly regarding innovative signal processing 

implementations techniques in signals of biomedical through different inventive combining 

of technique information of biomedical. It is a quickly increase in size area with a broad 

implementations range. These range from factitious limbs structures and assistances for 

disabled to advanced medical growth observing systems which can manage in a 

noninvasive attitude to give actual time workings body of human appearance. There are a 

number of medical systems in widespread utilize. These contains ultrasound; 

electrocardiography and plythesmography are broadly utilized a lot of objectives.   
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Biomedical signals processing generally includes of at least four stages:   

 Measuring or investigation, which is, acquisition of signals.  

 Transmutation and decline of signals. 

 Coefficients of signal calculation which are diagnostically important.  

 Explication or grading of signals 

 

 

 

    

 

                                                                                                                                                              

 

Figure 5.4: Biosignal processing phases 

 

Types of biological signals into two main groups: stochastic (or statistical) and 

deterministic signals. Like a respiration or beating cardiac creates signals which are further 

recurrent. Deterministic category is subdivided into periodic, transient and quasiperiodic 

signals. Stochastic signals are subdivided into stationary and non-stationary signals. Cells 

categories depolarize in an approximately indiscriminate fashion like cells of muscle 

creating nerve cells or electromyography in cortex. Time varying signal wave figures are 

illustrated in Figure 5.5.    

 

Figure 5.5: Forms of signal wave (Tompkins, 2000). 
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5.5.1 Obtaining of Biosignals 

Actual-time obtaining of information directly from source by direct electrical connections 

to devices forestalls requirement for people to measure, encode, and enter information 

manually. Sensors annexed to a patient transform signals of biomedical, such as blood 

pressure, pulse ratio, mechanical motion, and electric action, for instance, of heart, muscle 

and brain, into electric signals, that are transferred to computer. Signals are exemplified 

periodically and are transformed to digital statetement in order to storage and processing. 

Automated information obtaining and processing of signal methods are especially 

significant in patient observing settings. 

 

5.5.2 Digitization of Biosignals 

Sampling and Quantization most inherently taking shape signals are analogue signals, so 

signals which change continually. Digital computer stores and processes values in discrete 

units. Prior to transaction is feasible, analogue signals must be transformed to discrete 

units. Transformation stage is named Analogue to Digital Conversion (ADC). Analog to 

Digital Converter can be considered as sampling and rounding; continuous amount is 

monitored at constant spacing and rounded to closest discrete unit. Two coefficients 

describe how intimately digital information encounters original analogue signal: sensitive 

with that signal is saved and frequency with that signal is sampled. Certainty defines 

sample accuracy degree investigation of a signal. It is defined by number of bits 

(quantization) utilized to symbolized a signal and their accuracy; more bits, levels greater 

number which can be separated. Certainty further is restricted by device correctness which 

transforms and transmits signal.   

Ranging and devices adjustment, either manually or automatically, is essential for signals 

to become symbolized with as much certainty as feasible. Incorrect ranging will outcome 

in data bereavement. For instance, an alter in a signal which changes among [0.1V - 0.2V] 

will be undetectable if device has became adjust to register replaces among [0.0V - 1.0V] 

in 0.25 V steps. Sampling ratio is second coefficient which impresses communication 

among an analogue signal and its representation of digital. A sampling ratio which is very 

low notional to ratio at that a signal alterations value will manufacture a weak presentation. 

However, oversampling increases processing outgoing and storing information.   

As a generic regulation, we require to sample at least twice as often as component of 

highest-frequency required from a signal. For example, looking at an Electrocardiogram, 
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we find which prime iteration frequency is at most several per second, however which 

QRS complex includes a beneficial frequency component on 150 Hz layout. Therefore, 

information sampling ratio should be at least 300 measurements per second. This ratio is 

named Nyquist frequency.   

 

5.5.3 Noise 

Another signal view standard is noise quantity in signal, component of obtained 

information which is not owing to certain phenomenon being measured. A fundamental 

noise source is signals of electric or magnetic manufactured by nearby apparatus and 

power lines. Furthermore, mistakes in sensors, weak communication among sensor and 

source (patient), and inconvenience from signals manufactured by processes of 

physiological other than one being studied (for instance; respiration interferes with 

Electrocardiogram recording) are another widespread noise sources.   

Property of noise is its relatively haphazard model in most situations. Filtering algorithms 

can be utilized to decrease noise effect. Recurrent signals, as an Electrocardiogram, can be 

integrated over different cycles, so decreasing   haphazard noise effects. When noise model 

differs from signal model, Fourier analysis can be utilized to filter signal in domain of 

frequency.   

 

5.5.4 Certainty and Correctness 

Certainty mentions to measurement correctness; if measurement is recurred on same issue, 

same outcome will be got. Correctness mentions to propensity of measured worth to be 

symmetrically categorized around variant's actual worth. Medical information uncertainty 

can originate from “intra” and “inter” instrumental and observer variations (analytical or 

metrological uncertainty) or “intra” and “inter” single variations (biological uncertainty); is 

a combination of all of them. 

 

5.5.5 Abstraction and Analysis 

Formerly datum have became achieved and filtered, they typically are processed to 

decrease their volume and to abstract knowledge in order to utilize by explication 

programs. Frequently information is examined to remove significant coefficients, or,   

signal properties, e.g., period or Electrocardiogram ST segment intensity. Computer can 

also investigate and categorize waveform figure by comparing signal to acknowledged 
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models. Upward analysis (in conjunction with the appropriate knowledge base) is essential 

to define meaning or signals significance e.g., to let automated Electrocardiogram-based 

cardiac diagnosis.   

 

5.6 Summary  

Biomedical signal processing is a quickly growing area with an extensive implementations 

range. These range from building limbs factitious and help for disabled to advanced 

medical imaging systems improving which can utilize in a non-invasive style to give actual 

functioning human body time views.  



38 

 

CHAPTER 6 

DIGITAL FILTERING & NOISE TYPES 

6.1 Overview 

Processing of digital signal affords major resilience, higher performance (in terms of 

attenuation and selectivity), preferable duration and surroundings stability and nominal 

device manufacture prices than conventional analog methods. 

Discrete-time, discrete-amplitude convolver merely is digital filter. Fundamental theory of 

Fourier transform defines which two series linear convolution in time domain is same with 

two suitable spectral series multiplication in frequency domain. Filtering is in principle 

signal spectrum multiplication by filter frequency domain impulse response.  

6.2 Signals and Data  

A signal is quantity change by that data is transmitted regarding case, properties, 

composition, trajectory, evolution, and behavior or data source objective. A signal is   

transmitting data concerning means case(s) of a variable. Data transmitted in a signal may 

become utilized for communication, decision-making, control, geophysical exploration, 

forecasting, forensics, medicinal diagnosis, etc. by humans or machines. Types of signal 

which processing of signal deals with contain; 

 Medical 

 Ultrasonic 

 Image 

 Biological 

 Audio 

 Subsonic 

 Financial  

 Textual data  

 Seismic signals. 

 Electromagnetic 
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Figure 6.1 describes a system of communication created of a data resource, I(t), pursued by 

a system, T[.], in order to data transmutation into signal variation, x(t), a channel of 

communication h[.], for signal spread from transmitter to receiver, additive channel noise, 

n(t), and a processing of signal unit at receiver for subtraction of data from received signal. 

Generally, there is a mapping process which maps output, I(t), of an data resource to 

signal, x(t), which transports data; this mapping operator may be indicated as T[.] and 

represented as equation 6.1 given below: 

                     x(t)=T*[I(t)]                                                                                    (6.1) 

Last few decades, theory and processing of digital signal implementations have developed 

to play a centric role in contemporary telecommunication growth and data technology 

systems. Processing of signal techniques are centric to effective communication, and to 

smart man–machine interfaces progress in fields like speech and recognition of visual 

pattern for multimedia systems. Generally, DSP is related with two wide fields of data 

theory:  

  Effective and dependable signals storage, transmission, reception, coding and 

representation in communication systems;  

  Data Subtraction from noisy signals for recognition of pattern, forecasting, 

decision-making, detection, enhancement of signal, control, automation, etc. 

 

 

 

 

Figure 6.1: Communications and signal processing system statement 
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6.3 Implementations of DSP 

In recent years, growth and commercial presence of increasingly strong and purchasable 

digital computers has became participated by advanced DSP algorithms progress for a 

wide variety of implementations like noise decrease, sonar, video, telecommunications, 

radar and signal processing of audio signal, recognition of pattern, geophysics 

explorations, forecasting of data, and large processing of database for subtraction, 

identification and obscured underlying constructions organization and models. 

6.4 Noise and Distortion 

An undesirable signal which interferes with communication or other signal measurement 

can become described as Noise. A noise itself is a signal which transmits data concerning 

noise source. For instance, noise from a car engine transmits data concerning case of 

engine and how smoothly it is working. Noise resources are many and changed and contain 

noise of thermal real to electrical conductors, shot racket natural in flows of electric 

current, audio periodicity acoustic racket emanating from vibrating, moving or colliding 

resources like returning engines, moving tools, rain, computer fans, wind, keyboard clicks, 

etc. and radio periodicity noise of electromagnetic which can interfere with voice transfer 

and receiving, image and information over spectrum of radio-frequency. Signal distortion 

is locution frequently utilized to define a systematical unwanted modify in a signal and 

applies to modifies in a signal because of not ideal communication channel features, 

reverberations, echo, reflections of multipath and deficient exemplaries. Primary factors 

restricting transmission of data capability in telecommunications and accuracy in systems 

of signal measurement are noise and distortion. That‟s why modeling and noise elimination 

effects and distortions have became at core of theorem and communications application 

and processing of signal. Noise separation and distortion elimination are significant issues 

in implementations like cellular mobile communications, recognition of speech, processing 

of image, signal processing of medical signal, sonar, and radar in any implementation 

where signs cannot become reserved from racket and distortion (Intersil, 1999).     
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6.5 Noise Types 

Any undesirable signal which interferes with communication, measurement, perception or 

data-bearing processing of signal may become described as Noise. In different degrees in 

nearly whole environments Noise is available. Noise can reason errors of transmission and 

may moreover disturb a communication process; therefore processing of noise is a 

significant and modern integral part telecommunications and systems of signal processing.  

Noise processing technique achievement depends on its capability to define pattern noise 

continuum, and to utilize noise properties favorable to distinguish signal from racket. 

Depending on its resource, a racket can become categorized into a number of classes, 

demonstrating noise wide physical nature, given below:  

Acoustic noise  

Infiltrates from vibrating, moving, or colliding resources and is best known noise kind 

available to different degrees in regular surroundings. Acoustic racket is created by this 

kind of resources like traffic, people talking in background, computer fans,                      

air-conditioners, moving cars, rain, wind, etc.  

Thermal noise and shot noise  

Noise of thermal is created by haphazard thermally energized particles movements in an 

electric conductor. Noise of thermal is real to whole conductors and is available without 

any implemented voltage. Shot racket occurs electric current random fluctuations in an 

electrical conductor and is real to current flow. Shot racket is caused by truth which current 

is transported by discrete charges (i.e. electrons) with haphazard surges and times of 

random arrival. 

Electromagnetic noise  

Electromagnetic noise is available entire periodicities and in specific at radio periodicity 

range (kHz to GHz range) where telecommunications occurred. Whole electric 

apparatuses, like radio and television transmitters and receivers, create noise of 

electromagnetic.  
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Electrostatic noise  

Created by voltage asset together or separately current flow. Lighting of fluorescent is one 

of more widespread electrostatic noise resources.  

Channel distortions, echo and fading  

Owing to not ideal communication channels properties. Channels of radio, like those at 

GHz periodicities utilized by operators of cellular mobile phone, are especially responsive 

to spread channel environment properties and signals fading. 

Processing noise  

Noise which outcomes from signals digital to analogue processing, e.g. quantization racket 

in numerical speech coding or image signals, or missing information packets in systems of 

digital data communication. 

 

Depending on its periodicity spectrum or duration properties, a noise continuum can 

become additionally categorized into one of different classes given below:  

White noise  

Simply haphazard noise which has a flat spectrum of power. White racket in theoritical 

includes entire frequencies in tantamount density.  

Band-restricted white noise  

A racket with a flat spectrum and a restricted bandwidth which generally lids restricted 

apparatus spectrum or sign of interest.  

Narrowband noise  

Racket processes with a limited bandwidth like a 50–60 Hz „hum‟ from electricity provide.  

Colorful noise  

Nonwhite racket or any broadband racket whose spectrum has a nonflat form; examples 

are brown racket, pink racket and autoregressive racket. 
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Impulsive noise  

Includes short-period haphazard amplitude pulses and haphazard time.  

Transient noise pulses  

Includes comparatively lengthy time pulses of noise. 

6.6 How Data is indicated in Signals?  

Most significant part of any Digital Signal Processing duty understands how data is 

included in signs you are working with. There are a lot of ways which data can become 

included in a sign. If signal is manmade this is particularly true. Fortunately, there are just 

two paths which are common for data to become symbolized in inherently consisting 

signals. 

  Data symbolized in time domain 

  Data symbolized in frequency domain.  

Data symbolized in time domain defines when something comprises and what magnitude 

of event is. For instance, imagine an essay to study light outcome from sun. Light outcome 

is measured and registered once each second. Every exemplary in sign demonstrates what 

is occurrence at that moment, and level of event. If a solar flare takes shape, sign directly 

ensures data on time it took place, period, growth over time, etc. Every sample includes 

data which is interpretable without reference to any other exemplary. Even though you 

have only one exemplary from this sign, you still know something about what you are 

measuring. This is basic method for data to become included in a sign. Backwards, data 

symbolized in frequency region is more indirect. A lot of things in our universe indicate 

periodical movement. For instance, a wine glass struck with a fingernail will vibrate, 

producing a ringing sound; pendulum of a grandfather clock swings back and forth; stars 

and planets rotate on their axis and return around each other, and so forth. By measuring 

periodic periodicity, phase, and magnitude movement, data can frequently be got about 

system producing movement. Presume we exemplary sound manufactured by ringing wine 

glass. Basic periodic vibration periodicity and harmonics belong to mass and elasticity of 

material. A single exemplary, in itself, includes no data about periodical movement and for 

this reason no data about wine glass. Data is included in relationship among a lot of points 

in signal. 
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6.7 Filtering of Signals 

Filtering of signal is frequently utilized in testing of eddy current to clear undesirable 

periodicities from receiver signal. While settings of correct filter can significantly develop 

a defect signal visibility, inaccurate arrangements can distort presentation of signal and 

even clear flaw signal fully. For this reason, it is significant to understand filtering of 

signal notion. Filtration is applied to receive signal and, for this reason, is not directly 

concerned to probe drive periodicity. This is most easily understood when picturing a time 

versus signal amplitude screen. With this screen mode, it is easy to see which signal form 

is dependent on time or period which probe coil perceives something. For instance, if a 

surface probe is established on conductor surface and rocked back and forth, it will 

propagate a wave like signal. When probe is rocked fast, signal will have a higher 

periodicity than when probe is rocked slowly back and forth.  

Signal does not need a wavelike view to have periodicity content and most eddy current 

signals will be created of a large number of periodicities. 

 

6.8 Digital Filtering Fundamental Notions 

Digital filtering has certain properties which you require to pay private attention to. Analog 

input sign must fulfill specific necessities. Additionally, on converting an output digital 

sign into analog form, it is necessary to implement processing of additional signal for get 

the suitable result. Figure 6.2 illustrates digital filtering process block diagram. 

 

Figure 6.2: Digital filtering process 

 

Transforming an analog signal into digital form process is applied by sampling with a 

finite sampling periodicity “fs”. If an input sign includes periodicity components higher 

than half sampling periodicity (fs/2), it will reason distortion to original spectrum. This is 

cause why it is first necessary to apply filtration of an input sign utilizing a low-pass filter 

    Input Analog Signal 
Output Analog Signal Anti-Aliasing 

Filter 
A/D Conversion   Digital Filter D/A Conversion NF Filter 
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which clears high periodicity components from input periodicity spectrum. This filter is 

known anti-aliasing filter as it forestalls aliasing.  

After filtering and sampling method, a digital signal is available in order to upward 

processing that, in this case, is filtration utilizing suitable digital filter. Output signal is also 

a digital signal that, in some cases, is necessary to become transformed back into analog 

form. After Digital to Analog Conversion, signal includes some periodicity components 

higher than fs/2 that must become cleared.  

 

6.9 Types of Digital Filters 

Filter is a system that passes specific frequency components and completely refuses all 

others, but in a broader status any system which changes specific frequencies relative to 

others is named a filter. 

Digital filters are used for two generic aims:  

 Signals Segregation which have been combined. 

 Signals Renovation which have became damaged somehow.  

Analog (electronic) filters can become utilized for these same duties; but, far excellent 

outcomes can be achieved by digital filters. Digital filters are a very significant part of 

Digital Signal Processing. Actually, their exceptional performance is one of the key causes 

which Digital Signal Processing has been very popular, filters have two utilizes:  

 Segregation of   Signal 

 Renovation  of   Signal 

 

Segregation of signal is necessary when a signal has became corrupted with attempt, 

racket, or other signals. For instance, imagine an apparatus in order to measuring electrical 

baby‟s cardiac action (ECG) while still in womb. Raw sign will likely be disturbed by 

breathing and mother heartbeat.  

A filtrate might be utilized to separate these signs so which they can be individually 

analyzed. Renovation of signal is utilized when a sign has became damaged in somehow. 

For instance, an audio registering made with weak device may become filtrated to 
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preferable symbolize sound as it in fact occurred. Another example is of an image 

deblurring obtained with an incorrectly focused lens, or a shaky camera.  

These problems can become attacked with either analog or digital filtrates. If we compare 

these filters, analog filtrates are inexpensive, fast, and have a large dynamic range in both 

magnitude and periodicity. Numerical filtrates, in comparison, are much superior in 

performance level which can become accomplished. 

 

There are two fundamental digital filters types: 

 Response of finite impulse  

 Response of  infinite impulse 

Generic form of digital filter difference equation is: 

N

i

N

i

ii inybnxany
0 1

)()1()(                                                              (6.2) 

where current filter output is “y(n)”, past filter outputs  are “y(n-i)” ‟s, current or past filter 

inputs are “x(n-i)” ‟s, filter‟s feed forward parameters corresponding to filter zeros  are 

“ai“‟s, filter‟s feedback parameters suitable to filter poles are “bi” ‟s and filter‟s order is 

“N”. Infinite impulse response filters have one or more nonzero feedback parameters. This 

is, as feedback term outcome, if filter has one or more poles, once filter has been induced 

with an impulse there is always an output. Finite Impulse Response filtrates have no non-

zero feedback parameter. Which is, filtrate has only zeros, and once it has became induced 

with an impulse, outcome is available for only a finite (N) number of computational cycles. 

6.10 Summary 

 
One of strong devices of Digital Signal Processing is Digital filtration. Except  clear 

essentially clearing errors advantages in filtrate associated with passive component surges 

over time and temperature, op amp drift (active filters), etc., numerical filtrates are talented 

performance descriptions which would, at best, become highly hard, if not unfeasible, to 

attain with an analog application. Furthermore, digital filtrate properties can become easily 

changed under software control.  
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For this reason, they are widely utilized in adaptive filtration implementations in 

communications like cancellation of echo in modems, noise extraction, and recognition of 

speech. 

In processing of signal, function of a filter is to eliminate undesirable signal parts, like 

haphazard noise, or to remove beneficial signal parts, like components lying within a 

specific range of frequency. 
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CHAPTER 7 

EXPERIMENTAL OUTCOMES 

7.1 Overview 

Neonatal healthcare is always associated with fetus health as if any conditions can be 

diagnosed, and then there are maximum chances that the condition can be treated before 

the birth. Diagnosing any pathological condition during pregnancy normally asphyxia is 

very important. Electrocardiogram or called as ECG is one of the simplest and painless 

noninvasive diagnosis method to estimate the heart condition Fetal ECG (FECG) signal 

provides valuable information of the fetus physiological state, this is acquired by placing 

skin electrodes on mother’s abdomen. As ECG is measuring the electrical activity, ECG 

from the abdomen (AECG) is usually corrupted or has interferences which basically can be 

categorized as noise in the course of a cardiac cycle Electrocardiogram signal composed of 

P, QRS, and T wave. Detecting R peak from QRS complex from abdominal ECG is very 

important. ECG for an adult is measured from chest, so considering this maternal ECG can 

be obtained from chest which would not have Fetal ECG.Various researchers have put 

forward the technique of extracting Fetal ECG by taking maternal ECG from two location 

chest and abdomen .The abdominal signal is a compound signal of Fetal Electrocardiogram 

and maternal Electrocardiogram whereas chest lead signal consist of only maternal ECG. 

Various techniques have been proposed by researchers such as: 

 Wavelet filtering 

 Correlation technique 

 Filtering technique 

Noise canceller needs a reference signal which is given in the form of maternal 

electrocardiogram signal. To understand how it works every heartbeat is an electrical 

signal which spreads from the chest to the bottom, and process repeats where the signal set 

a rhythm which can be seen as a heartbeat. 

 

7.2 Methodology  

The signal is acquired from physionet database (Ruha & Nissila, 1997). Were we have two 

sets of signal first set contains signal from mothers abdomen consisting of fetal ECG, 

maternal ECG and noise. In second set we have maternal ECG taken from the mother’s 

chest. Heartbeat of fetus is noticeably higher than mother ranging till 160 beats per minute. 



 

49 

 

Fetal ECG amplitude is feeble than which of the maternal which corresponds to 0.25 

millivolts peak voltage.  

Composing Maternal Heart Beat Signal 

In this part, Electrocardiogram forms will be simulated for both the mother and fetus. 4 

kHz sampling rate will be used. Heart rate for this signal is roundly 89 bpm, and    3.5 mV 

peak voltage signal. 

Measured Maternal Electrocardiogram 

Maternal ECG signal is got from mother chest. Adaptive noise cancellation aim in this 

study is to adaptively extract maternal heartbeat signal from fetal ECG signal. Canceller 

requires a reference signal created from a maternal ECG to carry out this work. Just as fetal 

ECG signal, maternal ECG signal will include some additive wideband noise.  

Composing Fetal Heart Beat Signal 

Fetus beats heart recognizably faster than which of its mother, with ratios ranging from 

120 to 160 bpm. Fetal ECG amplitude is also very feeble than which of maternal ECG. 

Sample creates an ECG signal suitable to a heart rate of approximately 139 bpm and 0.25 

mV peak voltage for simulating fetal heartbeat. 

Measured Fetal Electrocardiogram 

Measured fetal ECG signal from mother abdomen is generally predominated by maternal 

heartbeat signal which radiates from chest cavity to abdomen. This radiation will be 

defined as path as a linear Finite Impulse Response filter with 10 pitched on parameters. 

Additionally, it will be added a small uncorrelated Gaussian noise quantity to liken any 

wideband noise sources in measurement. 

For extraction of maternal and fetal ECG we utilize Savitzky&Golay Filter and Adaptive 

Noise Canceller by the application of two signal an input and reference. Figure 7.1 

demonstrates the overview of the methodology of the study. 

Savitzky-Golay Filter is tried firstly with WGN and then Adaptive Noise Cancellation 

technique is implemented. PSNR value among real and de-noised signals are computed.  
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 Figure 7.1: Overview of the complete system 

  

Figure 7.1 indicates overview of the complete system designed for this study. Original 

Maternal ECG signal obtained from chest of mother and Original Fetal ECG signal 

obtained from abdomen of mother is acquired from Physionet database. The noisy 

Maternal and Fetal ECG signals have been composed by adding convenient noise 

distributions with reference signal. Savistsky-Golay Filter and Adaptive Noise 

Cancellation Least Mean Square(LMS) algorithm techniques are tested with White 

Gaussian noise (WGN) is applied. 
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Figure 7.2: Representative noise free maternal electrocardiogram signal 

 

Figure 7.2 and Figure 7.3 indicates Exemplary Noise Free maternal and Fetal 

Electrocardiogram signals respectively. Technical informations about these signals were 

explained above. 

 

Figure 7.3: Representative noise free fetal electrocardiogram signal 
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Additive White Gaussian Noise  

AWGN is a fundamental noise model utilized in data theory to mimic the influence of 

many random processes which take shape in nature. The modifiers indicate certain 

properties: 

Additive: Because the noise will get added to your transferred signal not multiplied.  Thus, 

received signal y(t) = x(t) + n(t), where x(t) was original clean transferred signal, and n(t) 

is the noise or discomfort in channel. 

Gaussian: This thermal noise is haphazard in nature, certainly noise can't be deterministic 

else you would extract deterministic noise from y(t) as soon as possible you receive y(t). 

Thus, this random thermal noise has Gaussian distribution with “0” mean and variance as 

Noise power. “0” means which anticipated value n(t) during any time interval “T” is “0”. 

But merely put, it additionally means which on an average n(t) will take “0” value. And 

n(t)=0 probability is the highest and probability rapidly reduces as you increase the 

magnitude of n (t).  

White: meaning same amount of all the colors. Or same power for all the frequencies. That 

means that this noise is equally present with the same power at all the frequencies. Thus, in 

frequency domain, Noise level is straight along at each frequency. 

It's a straightforward imperfections model which communication channel consists of. 

When you transfer certain signal into space or atmosphere or copper line to be received at 

other end, there are disturbances (aka noise) present in channel (space/atmosphere/copper 

line) because of various causes. One such reason is the thermal noise by the virtue of 

electrons' movement in the electronic circuit being utilized for transmission and reception 

of signal. This disturbance or noise is modeled as Additive White Gaussian Noise. 

 

7.3 De-noising of ECG Signal 

Digital filtering methods can be utilized for develop signal quality and decrease haphazard 

error noise component [51]. If we think following equation: 

                      )()()( tntxty                                                                             (7.1) 

Where x(t) is real signal of maternal and fetal ECG measured signal at time t, n(t) is  

random noise affecting  it, which is presumed to be additive and y(t) is the received signal 

from Electrocardiograph. One significant problem in low-pass filtering is which, since 



 

53 

 

signal and noise spectra ordinarily overlap, it is not feasible to extract random noise n(t) 

from measured signal y(t) without distorting real signal x(t).The goal of this thesis is to 

present and define an method of Savitzky-Golay filter for de-noising of ECG signal. The 

Noisy ECG Signals have been created by adding the suitable noise dispersions with the 

reference signal. The Savitzky-Golay Filter is tested with WGN is applied. The PSNR rate 

among the real and de-noised signals are calculated.  

7.4 Filtering Methods 

In this part filtering techniques Savitzky-Golay Filter and Adaptive Noise Cancellation 

which is applied for this study will be defined. 

 

7.4.1 Savitzky-Golay Filter 

Savitzky-Golay smoothing filter was essentially introduced by Abraham Savitzky and 

Marcel J. E. Golay in 1964, in their paper “Smoothing and Differentation of information 

by Simplified Least Squares Procedures”. They established themselves frequently 

matching Noisy spectrum where simple noise-decrease processes, like running averages, 

only were not good sufficient for removing well-defined properties of spectral peaks. 

Particularly any running averaging incline to smooth and widening peaks in a spectrum 

and as the peak breadth is an significant coefficient when describing relaxation times in 

molecular systems, like this noise-decrease methods are openly non-attractive. The prime 

opinion introduced by Savitzky and Golay was a work-around forestall the issues matched 

with running averages, while stil protecting the smoothing of information and distribution 

protecting properties as relative maxima, minima and width. Savitzky and Golay 

suggested information smoothing technique based on local least-squares polynomial 

approximation. They indicated which fitting a polynomial to input set examples and then 

appraising resulting polynomial at a single point in approximation interval is equal to 

discrete convolution with a constant impulse response. Low pass filters got by this 

technique are widely known as Savitzky-Golay filters. Savitzky and Golay were interested 

in smoothing noisy information got from chemical spectra analyzers, and they indicated 

which least squares smoothing decreases noise while providing form and waveform peaks 

height (in their case, Gaussian shaped spectral peaks).This algorithm is a smoothing filter 

which actually implements a polynomial decline of a specific degree to a time-series. The 

benefit of the Savitzky-Golay filter is which it tends to protect specific properties of the 



 

54 

 

time-series like local minima and maxima. The algorithm calculates a local polynomial 

decline on the input data by solving the equality: 

                    
k

k zazazaaY ...2

210                                                                       (7.2)    

Savitzky-Golay smoothing and differentiation filter optimally complies information set 

points with a polynomial in least-squares sense. Savitzky and Golay have represented in 

their original paper which a moving polynomial fit can be numerically committed in 

completely the same path as a weighted moving average, since the parameters of the 

smoothing method are fixed for all “y” values (Savitzky & Golay, 1964). So,         

Savitzky-Golay smoothing is very simple to implement. Additionally, it can be indicated 

which the same algorithm can be utilized to compute smoothed first and second 

derivatives of the signal. In the classic article written by Savitzky and Golay that has been 

cited more than 3800 times accordingly Web of Science (ISI), digital filter type for 

smoothing and differentiation was improved. In their method, each sequential subset of 

“2m + 1” points is fitted by a polynomial of degree “n” (n ≤2m) in least-squares sense. 

The “s-th” (0≤ s ≤ n) differentiation (zeroth differentiation= smoothing) of original 

information at midpoint is got by implementing differentiation on fitted polynomial 

instead of on original information. Eventually, running least-squares polynomial fitting 

can be implemented merely and automatically by convolving all input information with a 

digital filter of length      “2m + 1”. History and growth of Savitzky–Golay smoothing and 

differentiation filter have been reviewed in shortly as; 

                   G=S (STS)-1= [g0, g1,…,gn]                                                                  
(7.3) 

Matrix )1()2( nxmG  includes convolution SG filter parameters for various order 

differentiation at origin (which is, imaginary midpoint or center of symmetry) specified by 

the smoothing and the differentiation expressions; 
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Severally where )(tfn and )(
)(

tf
s

n are smoothing value and s-th )1( ns differentiation 

value appraised at position “t”, with polynomial order “n” and information number “2m” ;
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ix  is original information value at point “i “ before shifting origin )1( mim ; and

imtnh ,,,0,  and imtsnh ,,,, are appropriate parameters for smoothing and differentiation, 

separately. 

There are 2 choices for coefficients:  

 k - Degree of polynomial.  

  f - Frame size.  

Coefficients of Savitsky-Golay filter are the frame size and polynomial degree and all 

performance is addicted on these coefficients. The study and measurement noise variance 

are initialized for Savitzky-Golay Filter as a cubic Savitzky-Golay filter to information 

frames of length 41(k=3, f=41).  

 

7.4.2 Adaptive Noise Cancellation  

Adaptive Noise Cancellation is an alternate forecasting signals method distorted by 

additive noise or interference. Its benefit lies in which, with no possible signal or noise 

forecasts, noise levels refusal are attainable which would be hard or unfeasible to attain by 

other signal processing extracting noise techniques. Its cost, necessarily, is which it 

necessities two inputs a prime input including distorted signal and a reference input 

including noise accommodated in some obscure way with prime noise. Reference input is 

adaptively filtered and extracted from prime input to get signal forecast. Adaptive filtering 

before extraction authorizes inputs restorations which are deterministic or stochastic, 

stationary or time-variable. Uncorrelated noises effect in prime and reference inputs, and 

signal components asset in reference input on Adaptive Noise Canceller performance is 

researched. It is indicated which in uncorrelated noises failure and when reference is 

independent of signal, noise in prime input can be actually fulfilled without signal 

distortion. 

Let “N” parameters of fitler at k
th
 repetition be indicated as Wk=[w1(k), w2(k),…, wn(k)]

T
. 

For an input vector Xk=[x(k), x(k-1), … x(k-n)]
T
 output will be given in next equation; 

 

                                                          (7.6) 

 

Filter’s mission is to adjust its weights “W” iteratively to reduce Mean Square Error 

among primary and reference inputs. This regulation is primarily obtained by; Least Mean 
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Square, owing to significant Least Mean Square properties: simplicity and relatively fewer 

computational processes, it is positive in many implementations like  unknown signals 

approximation. LMS weights adapting algorithm can be calculated at k
th
 repetition as in 

next equation: 

 

         Wk+1=Wk + µk e(k) Xk                                                                                  (7.7) 

 

Where µ is step size coefficient that controls convergence ratio. Value of this step size 

should be optimized empirically to trade off convergence speed and indecision. 

 
Figure 7.4: Adaptive noise cancellation 

 

As illustrated in figure, an Adaptive Noise Cancellation has two inputs prime and 

reference. Prime input receives a signal “s “from signal source which is distorted by   

noise asset “n” uncorrelated with signal. Reference input gets a noise “n0” uncorrelated 

with signal but correlated in some way with noise “n”. Noise “n0” goes through a filter to 

fabricate an output “ˆn” which is a close prime input noise forecast. This noise forecast is 

extracted from distorted signal to fabricate signal forecast at “sˆ”, Adaptive Noise 

Canceller system output. 

In noise deleting systems a practical target is to fabricate a system output “sˆ = s +n – n” 

which is a best fit in least squares sense to signal “s”. This goal is achieved by feeding 

system output back to adaptive filter and tuning filter through a Least Mean Squares 

adaptive algorithm to reduce total system output power.  
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 ha = adaptfilt.lms(l,step,leakage,coeffs,states) 

 l: Adaptive filter length (parameters number or taps) and it must be a positive 

whole number (defaults to 10) 

 Step: LMS step size. It must be a nonnegative numerical. step defaults to 0.1.h you 

can utilize maxstep to specify a plausible step size range values for signals being 

processed. “hstep” defaults to 0.1. 

 Leakage: Your LMS leakage factor. It must be a numerical between 0 and 1.When 

leakage is less than one, “adaptfilt.lms” applies a leaky Least Mran Squares 

algorithm. When you extract leakage feature in calling syntax, it defaults to 1 

supplying no leakage in adapting algorithm. 

 Coeffs: Primary filter vector parameters. It must be a length l vector. “Coeffs” 

defaults to length l vector with elements equal to zero. 

 States: Vector of primary filter expresses for adaptive filter. It must be a length l-1 

vector. States defaults to a length l-1 vector of zeros. 

For this study Adaptive filter length is 15 and LMS step size is 0.001. 

 

7.5 Results of Experiments (Savitzky&Golay Filter) 

In this section the results obtained from Savitzky-Golay Filtering will be demonstrated. 

The results shown below are given as a graph. Figures shows in order: 

 Top Left graph shows created Original Maternal and Fetal ECG signals. 

 Top Right graph shows noised, Maternal and Fetal ECG signals 

With various values of AWGN Noise. 

 Bottom left graph shows De-noised ECG signals with Savitzky-Golay Filter. 

 Bottom Right graph shows difference between Original ECG signal with De-

Noised ECG Signal. 
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Figure 7.5 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG signal by  

Additive White Gaussian Noise with SNR=0 dB. 

 

Figure 7.5: Maternal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=0 dB as 

a cubic filter to information frames of length 41(k=3, f=41))  

 

Figure 7.5 (c) and (d)  shows Denoised Maternal ECG signal by Savitzky-Golay Filter with 

a cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Maternal ECG signal with de-noised ECG signal.  
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Figure 7.6 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG signal by  

Additive White Gaussian Noise with SNR=10 dB. 

 

Figure 7.6: Maternal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=10 dB 

as a cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.6 (c) and (d) shows Denoised Maternal ECG signal by Savitzky-Golay Filter with 

a cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Maternal ECG signal with de-noised ECG signal.  
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Figure 7.7 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG signal by  

Additive White Gaussian Noise with SNR=20 dB. 

 

 

Figure 7.7: Maternal electrocardiogram ECG signal (Savitzky &Golay Filter SNR=20 dB 

as a cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.7 (c) and (d) shows Denoised Maternal ECG signal by Savitzky-Golay Filter with 

a cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Maternal ECG signal with de-noised ECG signal.  
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Figure 7.8 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG 

signal by Additive White Gaussian Noise with SNR=30 dB. 

 

 

Figure 7.8: Maternal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=30 dB 

as a cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.8 (c) and (d) shows Denoised Maternal ECG signal by Savitzky-Golay Filter with 

a cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Maternal ECG signal with de-noised ECG signal.  
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Figure 7.9 (a) and (b) indicates Original Maternal ECG signal and noised Maternal ECG signal by  

Additive White Gaussian Noise with SNR=40 dB. 

 

Figure 7.9: Maternal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=40 dB 

as a cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.9 (c) and (d) shows Denoised Maternal ECG signal by Savitzky-Golay Filter with 

a cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Maternal ECG signal with de-noised ECG signal.  
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Figure 7.10 (a) and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by  

Additive White Gaussian Noise with SNR=0 dB. 

 

Figure 7.10:  Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=0 dB as a 

cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.10 (c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a 

cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Fetal ECG signal with de-noised ECG signal.  
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Figure 7.11 (a) and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by  

Additive White Gaussian Noise with SNR=10 dB. 

 

Figure 7.11: Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=10 dB as a 

cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.11 (c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a 

cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Fetal ECG signal with de-noised ECG signal.  
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Figure 7.12(a) and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by 

Additive White Gaussian Noise with SNR=20 dB. 

 

Figure 7.12: Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=20 dB as a 

cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.12(c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a 

cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Fetal ECG signal with de-noised ECG signal.  
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Figure 7.13(a) and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by 

Additive White Gaussian Noise with SNR=30 dB. 

 

Figure 7.13: Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=30 dB as a 

cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.13(c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a 

cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Fetal ECG signal with de-noised ECG signal.  
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Figure 7.14 (a) and (b) indicates Original Fetal ECG signal and noised Fetal ECG signal by 

Additive White Gaussian Noise with SNR=40 dB. 

 

Figure 7.14: Fetal electrocardiogram ECG signal (Savitzky&Golay Filter SNR=40 dB as a 

cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.14(c) and (d) shows Denoised Fetal ECG signal by Savitzky-Golay Filter with a 

cubic filter to information frames of length 41(k=3, f=41)) and difference among original 

Fetal ECG signal with de-noised ECG signal. 
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The results shown below are given as a graph. Figures shows in order: 

 Top Left and Right graphs shows created original Maternal and Fetal 

Electrocardiogram signals. 

 Second line figures indicates; left figure illustrate  combined  original Maternal and 

Fetal Electrocardiogram signals, right figure indicates noised, Maternal and Fetal 

ECG signals with various values of AWGN Noise. 

 Third line figures shows; left figure illustrate  de-noised combined  original 

Maternal and Fetal ECG signals, right figure shows difference between Original 

combined ECG signal with De-Noised MHB and FHB ECG Signal. 

 

Table 7.1: Peak signal noise ratio values of Savitzky-Golay Filter & Adaptive Noise 

Cancellation (LMS: Least Mean Square Algorithm) 

 

 

 

 

 

 

SNR (dB) 

DE-NOISING WITH 

SAVITZKY-GOLAY 

FILTER 

(PSNR VALUE) 

Maternal ECG 

DE-NOISING WITH 

SAVITZKY-GOLAY 

FILTER 

(PSNR VALUE) 

Fetal ECG 

DE-NOISING WITH 

ADAPTIVE NOISE 

CANCELLATION 

(LMS: Least Mean 

Square Algorithm) 

(PSNR VALUE) 

Maternal - Fetal 

ECG 

WHEN snrindB=0 

 

PSNR = +54.8212 dB 

 

PSNR = +77.8253 dB PSNR = +53.8642 dB 

WHEN snrindB=10 

 

PSNR = +64.7911 dB PSNR = +87.8127 dB PSNR = +62.7522 dB 

WHEN snrindB=20 

 

PSNR = +74.8212 dB PSNR = +97.8255 dB PSNR = +71.8881 dB 

WHEN snrindB=30 

 

PSNR = +84.7194 dB 

 

PSNR = +106.9815 dB PSNR = +83.7163 dB 

WHEN snrindB=40 

 

PSNR = +93.7594 dB 

 

PSNR = +113.2336 dB PSNR = +91.7543 dB 
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Signal Noise Ratio: is a measure utilized in science and engineering which compares the 

level of a needed signal to the level of background noise. It is described as the proportion 

of signal power to the noise power, frequently defined in decibels (dB). 

 

Peak Signal Noise Ratio: is an engineering notation for the ratio between the maximum 

feasible power of a signal and the power of distorting noise which influences the stability 

of its representation. Because many signals have a very broad dynamic range, Peak Signal 

Noise Ratio is usually described in terms of the logarithmic decibel measure. 

 

 

 

 

 

 

Figure 7.15: Peak signal noise ratio values of Savitzky-Golay Filter & Adaptive 

Noise cancellation (LMS Algorithm) 
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Figure 7.16 (a) and (b) indicate Original Maternal and Fetal ECG signals. 

 

Figure 7.16 (c) and (d) shows respectively original combined MHB and FHB signals and 

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=0 dB. 

 

Figure 7.16: Combined fetal - maternal electrocardiogram ECG signal (Savitzky-Golay 

Filter SNR=0 dB as a cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.16 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal 

by Savitzky-Golay Filter with a cubic filter to information frames of length 41(k=3, f=41)) 

and Difference among Original combined MHB&FHB signal and  denoised combined 

MHB&FHB signal. 
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Figure 7.17 (a) and (b) indicate Original Maternal and Fetal ECG signals. 

 

Figure 7.17 (c) and (d) shows respectively original combined MHB and FHB signals and 

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=10 dB. 

 

Figure 7.17: Combined fetal - maternal electrocardiogram ECG signal (Savitzky&Golay 

Filter SNR=10 dB as a cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.17 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal 

by Savitzky-Golay Filter with a cubic filter to information frames of length 41(k=3, f=41)) 

and Difference among Original combined MHB&FHB signal and  denoised combined 

MHB&FHB signal. 
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Figure 7.18 (a) and (b) indicate Original Maternal and Fetal ECG signals. 

 

Figure 7.18 (c) and (d) shows respectively original combined MHB and FHB signals and 

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=20 dB. 

 

 

Figure 7.18: Combined fetal - maternal electrocardiogram ECG signal 

(Savitzky&Golay Filter SNR=20 dB as a cubic filter to information frames of length 

41(k=3, f=41)) 

 

Figure 7.18 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal 

by Savitzky-Golay Filter with a cubic filter to information frames of length 41(k=3, f=41)) 

and Difference among Original combined MHB&FHB signal and  denoised combined 

MHB&FHB signal. 
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Figure 7.19 (a) and (b) indicate Original Maternal and Fetal ECG signals. 

 

Figure 7.19 (c) and (d) shows respectively original combined MHB and FHB signals and 

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=30 dB. 

 

Figure 7.19: Combined fetal - maternal electrocardiogram ECG signal (Savitzky&Golay 

Filter SNR=30 dB as a cubic filter to information frames of length 41(k=3, f=41)) 

 

Figure 7.19 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal 

by Savitzky-Golay Filter with a cubic filter to information frames of length 41(k=3, f=41)) 

and Difference among Original combined MHB&FHB signal and  denoised combined 

MHB&FHB signal. 
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Figure 7.20 (a) and (b) indicate Original Maternal and Fetal ECG signals. 

 

Figure 7.20 (c) and (d) shows respectively original combined MHB and FHB signals and 

noised Fetal ECG signal by Additive White Gaussian Noise with SNR=40 dB. 

Figure 7.20: Combined fetal - maternal electrocardiogram ECG signal 

(Savitzky&Golay Filter SNR=40 dB as a cubic filter to information frames of length 

41(k=3, f=41)) 

 

Figure 7.20 (e) and (f) illustrate respectively denoised noisy combined MHB&FHB signal 

by Savitzky-Golay Filter with a cubic filter to information frames of length 41(k=3, f=41)) 

and Difference among Original combined MHB&FHB signal and denoised combined 

MHB&FHB signal. 
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7.6 Results of Experiments (Adaptive Noise Canceller) 

In this section the results obtained from Adaptive Noise Canceller will be demonstrated. 

 

Figure 7.21 (a) and (b) indicate Original Maternal and Fetal ECG signals. 

 

Figure 7.21 (c) and (d) shows respectively Measured signal and reference signal, measured 

reference signals to forecast noise available in measured primary signal. 

 

Figure 7.21: Maternal &fetal electrocardiogram ECG signal denoised by adaptive noise 

canceller (Adaptive filter length is 15 and LMS step size is 0.001.) 

 

Figure 7.21 (e) and (f) illustrate respectively convergence of Adaptive Noise Canceller and 

steady-state error signal for maternal and fetal ECG signals with Adaptive filter length is 

15 and LMS step size is 0.001. 
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Table 7.2: Beat per minutes (bpm) values obtained from adaptive noise cancellation 

 

 

 

 

 

 

 

 

 

 

7.7 Results of Experiments (Peak Finder) 

In this part how we can define heart beat from Peak Finder will be explained. 

 

Peak Detector Board 

 

Peak Detector board observes maxima, representing x-axis values at that they be created. 

Peaks are described as a local maximum where lower values are available on both sides of 

a peak. Endpoints are not noted to be peaks. This panel permits you to change settings for  

 Peak threshold. 

 Maximum peaks number. 

 Peak deflection.  

The Peak finder panel is divided into two panes, tagged Settings and Peaks. You can 

enlarge each pane to see present choices. The Peaks pane monitors all of the largest 

computed peak values. It also indicates coordinates, at that peaks take shape, utilizing 

coefficients you describe in Settings plate. You set Max Peaks Num parameters to describe 

peaks number indicated in list. Numerical quantities observed in quantity column are equal 

to “pks” output debate reverted when you actuate find peaks function. Numerical values 

characterized in second column are similar to “locs” output argument rotated when you 

actuate “findpeaks” function. Peak Detector monitors peak quantities in Peaks plate. 

Professed, Peak Detector board monitors largest computed peak values in Peaks board in 

reducing peak height layout.  

 

Maternal ECG 

bpm values 

Fetal ECG 

bpm values 

 

Maternal Heart Rate =73bpm 

 

Fetus Heart Rate =115 bpm 

 

 

Maternal Heart Rate =63 bpm 

 

 

Fetus Heart Rate =142 bpm 

 

 

Maternal Heart Rate =72 bpm 

 

Fetus Heart Rate =157 bpm 

 



 

77 

 

 

Maternal ECG Time Scope 

It can be seen that from peak values list, there is a stationary of 0.675 sec time difference 

among each heartbeat. 10 peak amplitude values, and times at that they take shape, as 

indicated in next figure. 

 

Figure 7.22: 10 peak amplitude values for maternal ECG signal 

Table 7.3: Heart rate detection for maternal ECG signal (with tagged settings 3.333 s) 

Heartbeats(Peaks) Time(seconds) 

1 0.250 

2 0.925 

3 1.600 

4 2.275 

5 2.950 

6 3.625 

7 4.300 

8 4.975 

9 5.650 

10 6.325 

 

For this reason, the heart rate specified by Electrocardiogram signal is composed by next 

equation. 
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Fetal ECG Time Scope 

It can be seen that from peak values list, there is a stationary 0.431 sec time difference 

among each heartbeat. 10 peak amplitude values, and times at that they take shape, as 

indicated in next figure. 

 

Figure 7.23: 10 peak amplitude values for fetal ECG signal 

 

Table 7.4: Heart rate detection for fetal ECG signal (with tagged settings 231,283ms) 

 

Heartbeats(Peaks) Time(seconds) 

1 0.160 

2 0.591 

3 1.022 

4 1.453 

5 1.885 

6 2.316 

7 2.747 

8 3.178 

9 3.610 

10 4.041 

 

For this reason, the heart rate specified by the Electrocardiogram signal is stated by next 

equation. 
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7.8 Summary 

In this section, Savitzky-Golay filtering and Adaptive Noise Canceller (LMS)  techniques 

of denoising are offered and applied to real Maternal and Fetal (ECG) signals at different 

noise levels. Results obtained from Savitzky-Golay Filtering and Adaptive Noise 

Canceller (LMS) would be demonstrated. 

Comparison indicates that Savitzky-Golay filtering performs preferable denoising than 

Adaptive Noise Canceller (LMS). 
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CHAPTER 8 

CONCLUSION AND SUGGESTIONS 

 

8.1 Conclusion 

Heart diseases are rising in the world nowadays and it is being the primary reason of death 

and the Electrocardiogram is main significant instrument to diagnose the heart issues and 

its price is additionally low and readily existent. However Electrocardiogram signal is 

corrupted by many kinds of noises that influences the diagnosis and yields improper data. 

Numerous kinds of filter were improved to clear the noise available in Electrocardiogram 

and smoothing. 

Electrocardiogram (ECG) is a major instrument to measure health and disease perception. 

Because of a lot of noise sources, ECG has been cleared from noise in the signal and 

offered in the form of an intelligible wave. Power line interference, exterior 

electromagnetic fields, haphazard body motions or breathing may be included in Noise 

resources. Savitzky-Golay extracts noise and smooths the signal without much loss of data 

and signal properties and individuality. Frame size and polynomial degree are Savitzky- 

Golay filter coefficients and all achievement is addicted on these coefficients.  

Savitzky-Golay aliasing (smoothing) filters are characteristically utilized to "smooth out" a 

noisy signal whose frequency span (without noise) is wide. In this kind of implementation, 

Savitzky-Golay aliasing (smoothing) filters implement much preferable than canonical 

mean Finite Impulse Response filters that view to filtering an important section high signal 

frequency content throughout with noise. Even though Savitzky-Golay filters are more 

efficient at protecting concerned high frequency constituents of the signal.  

Adaptive noise cancelling, an alternate technique of guessing signals distorted according to 

additive noise or attempt. The process utilizes "prime" input having damaged signal and a 

"representative" input with some correlations including noise obscure method with prime 

noise.  

Representative input in order to get signal forecast is adaptively filtered and removed from 

fundamental input. Adaptive filteration prior to authorize the treatment therapy of entries 

which are stochastic or deterministic, time-invariant or constant. 
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In this Thesis, two extensive and significant denoising techniques are offered and applied 

on actual Electrocardiogram signals corrupted with distinct amount of noise. Adaptive 

Noise Canceller (LMS) and Savitzky-Golay filtering are these algorithms. MATLAB 

Software is utilized in order to implementation, comparison and analysis of their noise 

removal performances. 

In this study, Adaptive Noise Canceller (LMS) and Savitzky-Golay filtering techniques of 

noise removal are offered and applied to real Maternal and Fetal (ECG) signals at different 

noise levels. The comparison indicates which the Savitzky-Golay filtering performs 

preferable noise removal than Adaptive Noise Canceller (LMS). 

Our suggested study including the Savitzky-Golay Filter and Adaptive Noise Canceller 

have verified its achievment in denosing the Maternal and Fetal Electrocardiogram Signal 

with simulated information sets. In this Thesis the various kinds of errors in Maternal and 

Fetal Electrocardiogram Signal and a solution that can be applied in Electrocardiograph 

tools were analyzed with white Gaussian noise and outcomes which dedicated above were 

acquired. In the whole system, the primary goal will be getting clear, preferable standard 

output signals for well discussions.  

 

8.2 Suggestions 

Future work will contain common and important noise reduction method discrete wavelet 

transform (universal and local thresholding), its noise reduction performance will be 

implemented, compared and analyzed for research of Continuous Glucose 

Monitoring(CGM) systems. These systems is plenty requisite for avoiding of Diabetic 

complications and can be very beneficial in diabetes management. For develop system 

class, discrete wavelet transform will be used for this purpose for improving influence of 

system. 
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APPENDIX 1 

MATLAB CODES FOR FILTERING ECG SIGNAL 

  

% Creating ECG Signal 

% x1 = 3.5*ecg(2700).'; 

% y2 = sgolayfilt(kron(ones(1,13),x1),0,21); 

% n = 1:30000; 

% del = round(2700*rand(1)); 

% mhb = y2(n + del); 

% t = 0.00025:0.00025:7.5; 

% subplot(2,1,1) 

% plot(t,mhb) 

% axis([0 2.5 -4 4]); 

% grid; 

% xlabel('Time [sec]'); 

% ylabel('Voltage [mV]'); 

% title('Maternal ECG Signal'); 

  

  

x2 = 0.25*ecg(1725); 

y2 = sgolayfilt(kron(ones(1,20),x2),0,17); 

n = 1:30000; 

del = round(1725*rand(1)); 

fhb = y2(n + del); 

t = 0.00025:0.00025:7.5; 

subplot(2,1,1) 

plot(t,fhb); 

axis([0 2.5 -1 1]); 

grid; 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Fetal Heartbeat Signal'); 

  

% %Adding AWGN Noise 

t = 0.00025:0.00025:7.5; 

y = awgn(fhb,40,'measured'); % Add white Gaussian noise. 

subplot(2,1,2) 

plot(t,y) % Plot both signals. 

axis([0 2.5 -1 1]); 

grid; 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Noised ECG Signal with AWGN'); 

  

figure 
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% % De-Noising with Savitzky-Golay Filter 

k=3; 

f=41; 

z=sgolayfilt(y,k,f); 

subplot(2,1,1) 

plot(t,z) 

axis([0 2.5 -1 1]); 

grid 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Denoised signal by SAVITZKY GOLAY FILTER'); 

 

 

% % Difference Between Original ECG signal  with De-Noised ECG Signal 

error = y - z; 

error = double(y) - double(z); 

subplot(2,1,2) 

plot(t,error) 

axis([0 2.5 -1 1]); 

grid 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Difference Between Original ECG signal with De-Noised ECG Signal'); 

decibels = 20*(log10(255./(sqrt((1/256^2)*(sum(sum(error.^2))))))); 

disp(sprintf('PSNR = +%5.4f dB',decibels)) 

  

  

% x = 3.5*ecg(2700); 

% x2 = 0.25*ecg(1725); 

% y = repmat(sgolayfilt(x2,0,17),[1 20]); 

% sigData = y(1:30000)'; 

%  

% TS_ECG = dsp.TimeScope('SampleRate', 4000, ... 

%     'TimeSpanSource', 'Auto', 'ShowGrid', true); 

% step(TS_ECG, sigData); 

% TS_ECG.YLimits = [-4, 4]; 

% release(TS_ECG); 

%  

%  

% mhb=[0.250,0.925,1.600,2.275,2.950,3.625,4.300,4.975,5.650,6.325]; 

% fhb=[0.160,0.591,1.022,1.453,1.885,2.316,2.747,3.178,3.610,4.041]; 

%  

% MaternalHeartRate=60/[mhb(2)-mhb(1)] 

% FetalHeartRate=60/[fhb(2)-fhb(1)] 
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APPENDIX 2 

MATLAB CODES FOR FILTERING COMBINED ECG SIGNAL 

 

%Create Initial Signals 

 

x1 = 3.5*ecg(2700).'; 

y2 = sgolayfilt(kron(ones(1,13),x1),0,21); 

k = 1:30000; 

del1 = round(2700*rand(1)); 

mhb = y2(k + del1); 

t = 0.00025:0.00025:7.5 

subplot(2,1,1),plot(t,mhb) 

xlabel('Time (s)') 

ylabel('Amplitude (V)') 

title('Original Maternal Signal') 

axis([0 2.5 -4 4]); 

grid 

  

x2 = 0.25*ecg(1725); 

y3 = sgolayfilt(kron(ones(1,20),x2),0,17); 

n = 1:30000; 

del2 = round(1725*rand(1)); 

fhb = y3(n + del2); 

t = 0.00025:0.00025:7.5; 

subplot(2,1,2),plot(t,fhb) 

xlabel('Time (s)') 

ylabel('Amplitude (V)') 

title('Original Fetal Signal') 

axis([0 2.5 -1 1]); 

grid 

  

figure 

  

combined=mhb+fhb 

subplot(2,1,1) 

plot(t,combined) 

xlabel('Time (s)') 

ylabel('Amplitude (V)') 

title('Original Combined MHB with FHB') 

axis([0 2.5 -4 4]); 

grid 

  

  

% % %Create Initial Signals 

N1 = awgn(mhb,40,'measured'); % Add white Gaussian noise. 

N2 = awgn(fhb,40,'measured'); % Add white Gaussian noise. 

  



92 

 

 

 

 

 

 

 

 

 

% %Combined Maternal+Fetal ECG Signals 

noisy=N1+N2 

subplot(2,1,2) 

plot(t,noisy) 

xlabel('Time (s)') 

ylabel('Amplitude (V)') 

title('Noisy Combined MHB with FHB Signal') 

axis([0 2.5 -4 4]); 

grid 

  

figure 

 

k=3; 

f=41; 

z=sgolayfilt(noisy,k,f); 

subplot(2,1,1) 

plot(t,z) 

axis([0 2.5 -4 4]); 

grid 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Denoised Noisy Combined MHB with FHB Signal by SAVITZKY GOLAY 

FILTER'); 

  

% Difference Between Original ECG signal  with De-Noised ECG Signal 

error = noisy - z; 

error = double(noisy) - double(z); 

subplot(2,1,2) 

plot(t,error) 

axis([0 2.5 -4 4]); 

grid 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Diff.Between Orig.Comb.MHB&FHB-Denoised Noisy Comb.MHB&FHB Signal'); 

decibels = 20*(log10(255./(sqrt((1/256^2)*(sum(sum(error.^2))))))); 

disp(sprintf('PSNR = +%5.4f dB',decibels)) 
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APPENDIX 3 

MATLAB CODES FOR ECG SIGNAL 

ADAPTIVE NOISE CANCELLER 

 

Fs = 4000; 

Time = 40; 

NumSamp = Time * Fs; 

Hd = dfilt.dffir(fhb); 

  

x1 = 3.5*ecg(2700).';  

y1 = sgolayfilt(kron(ones(1,ceil(NumSamp/2700)+1),x1),0,21);  

n = 1:Time*Fs'; 

del = round(2700*rand(1));  

mhb = y1(n + del)';  

t = 1/Fs:1/Fs:Time'; 

subplot(2,1,1); plot(t,mhb); 

axis([0 2 -4 4]); 

grid; 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Maternal Heartbeat Signal'); 

  

x2 = 0.25*ecg(1725); 

y2 = sgolayfilt(kron(ones(1,ceil(NumSamp/1725)+1),x2),0,17); 

del = round(1725*rand(1)); 

fhb = y2(n + del)'; 

subplot(2,1,2); plot(t,fhb,'m'); 

axis([0 2 -0.5 0.5]); 

grid; 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Fetal Heartbeat Signal'); 

  

figure 

  

Wopt = [0 1.0 -0.5 -0.8 1.0  -0.1 0.2 -0.3 0.6 0.1]; 

Wopt = rand(1,10); 

d = filter(Wopt,1,mhb) + fhb + 0.02*randn(size(mhb)); 

subplot(2,1,1); plot(t,d,'r'); 

axis([0 2 -4 4]); 

axis tight; 

grid; 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Measured Signal'); 
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x = mhb + 0.02*randn(size(mhb)); 

subplot(2,1,2); plot(t,x); 

axis([0 2 -4 4]); 

grid; 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Reference Signal'); 

%  

h = adaptfilt.lms(15, 0.001); 

[y,e] = filter(h,x,d); 

%  

% [y,e] = FECG_detector(x,d); 

  

figure 

  

subplot(2,1,1); plot(t,d,'c',t,e,'r'); 

axis([0 7.0 -4 4]); 

grid; 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Convergence of Adaptive Noise Canceller'); 

legend('Measured Signal','Error Signal'); 

%  

subplot(2,1,2); plot(t,e,'r'); hold on; plot(t,fhb,'b'); 

axis([Time-4 Time -0.5 0.5]); 

grid on; 

xlabel('Time [sec]'); 

ylabel('Voltage [mV]'); 

title('Steady-State Error Signal'); 

legend('Calc Fetus','Ref Fetus ECG'); 

  

% filt_e = filter(Hd,e); 

% thresh = 4*mean(abs(filt_e))*ones(size(filt_e)); 

% peak_e = (filt_e >= thresh); 

% edge_e = (diff([0; peak_e]) >0); 

% fetus_calc = round((60/length(edge_e(16001:end))*Fs)* sum(edge_e(16001:end))); 

% fetus_bpm = ['Fetus Heart Rate =' mat2str(fetus_calc)]; 

% fprintf(fetus_bpm,'%6.2f',fetus_bpm); 
  

  

  

  

 


