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ABSTRACT

The study is an examination of the definitions and basic properties of hypergeometric
function, confluent hypergeometric function, The main objective of the study confluent
hypergeomtric function with Kummer’s first formula. Several properties such as
contiguous function relations., differential equations and Elementary series manipulation
for these hypergeomtric and confluent hypergeomtric ~ families are obtained. Was to
ascertain an approximation of solution of confluent hypergeometric function. Were
therefore drawn from the study that the Kummer’s function has wide application in various
subjects and hence proving stability or other properties were also drawn to be of paramount

importance.

Keywords: Hypergeomitric function; Confluent hypergeomtric function; Kummer’s first

formula; Gamma function; Pochhammer function



OZET

calisma,Hipergeometrik fonksiyonlarin ve Birlesik hyperbolic fonksiyonlarin tanimlarini
ve temel Ozelliklerini inceler. Calismanin temel amaci birinci Kummer formula ile birlesik
hipergeometrik fonksiyonlari c¢alismaktir. Hipergeometrik ve birlesik hipergeometrik
ailelerinin  differensiyel denklemleri, bitisik fonksiyon iligkileri, ve temel seri
manipulasyonlar1 gibi basi ozellikler elde edilmistir. Birlesik hipergeomertik fonksiyon
cozimlerinin yaklagimlart bulunmustur. Kummer’s fonksiyonlar1 gesitli konlarda genis
uygulama alanlarina sahiptir ve kararlilig1 ve diger 6zelliklerinin de olduk¢a 6nemli oldugu

bu tezde vurgulanmistir.

Anahtar Kelimeler: Hipergeometrik fonksiyon; Birlesik Hipergeometrik fonksiyon;
Kummer in birinci formula; Gamma fonksiyon; Pochmmar

fonksiyon
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CHAPTER 1

INTRODUCTION

This chapter outlines several basic definitions, theorems and some properties of special
functions. This study thrives to proffer insights about the confluent hypergeometric function
with by employing the Kummer’s formula. The notion behind the Kummer confluent
hypergeometric function (CHF) stems from an essential category of special functions of

mathematical physics. Kummer’s formula in (CHF) can be decomposed into the following;

The initial Kummer’s formula assumes the following form:

o (¢ — @)p(—2)"
(c)pn!

e_Z 1F1(a; N Z) = = 1F1(C —a,c,—Z )FC * {O} U {_1F _2; _3I}

n=0
And, kummer’s second formula

o 1
_ (zz*)" 11,
e ZlFl(a,Za;Zz)=Z—1= OFI(—;a+§;Zz )

n:O(a+7)nn!

if a is not odd positive integer.

This study will therefore offer further explanations about the Kummer’s first formula in
confluent hyper geometric functions. Despite the fact that Gauss played an essential role in
the systematic study of the hypergeometric function, ( Kummer, 1837) assumed a critical role
in the development of properties of confluent hypergeometric functions. Kummer published
his work on this function in 1836 and since that time it has been commonly referred to as the
Kummer's function (Andrews, 1998). Under the hypergeometric function, the confluent
hypergeometric function is related to a countless number of different functions.

This work therefore outlines the general and basic properties of hypergeometric and confluent
hypergeometric function and the Kummer’s first formula. This study will also extend to

incorporate the related examples and theorems.



The first chapter deals with the synopsis of basic definitions, theorems and exceptions of the
hyper geometric functions while the second chapter is a blueprint of definitions, properties
and theorems of confluent hyper geometric functions. Meanwhile, chapter three lays out
examples and special cases of Kummer’s first formula coupled with reinforcing explanations.
A recapitulation of properties of the hypergeometric functions is given in the fourth chapter
while the fifth chapter concludes this study by looking at conclusions that can be drawn from
this study.

1.2 Gamma Function

It is undoubtable that most essential functions in applied sciences are defined via improper
integrals. Of notable effect is Gamma functions. Such functions have several applications in

Mathematics and Mathematical Physics.

1.2.1 Definition

The elementary definition of the gamma function is Euler’s integral (Gogolin, 2013)

o)

rz) = f t?~le tdt.
0

is converges for any z>0

1.2.2 Some basic properties of Gamma function with their proofs(Ozergin, 2011).

oo

r = f e tdt=—-e"t =1

o8] (o)
—t 2\/E

r(%):oje%dt=zr(1)=zoje—u2du=27=%/%




rx+1)= f tYetdt = —t*et |8°—f xt* " (—e Ydt = xf t* le~tdt = xI'(x)
0 0 0

1.2.3 Lemma

The Gamma function satisfies the functional equation
F'x+1)=xI'x), x>0

Moreover, by iteration forx >0and n € N

Fx+n)=Tx+n—1)....0c+ Dxl(x) = H(x +1- D)
i=1

r(n+1) = (ﬂ DI (x) = l_[(i) — !
i=1 i=1

In other words, the Gamma function can be interpreted as an extension of factorials.

1.3 Definition (Sebah, 2002)

The beta function or Eulerian integral of the first kind is given by

o)

B(x,y) = f t*"1(1—t)¥ 1dt, where x,y > 0
0

This definition is also valid for complex numbers x and y such as

R(x) >0amdR(y) >0

1.3.1 Theorem (Gronan, 2003)

reorQ)

if R(x)>0andR(y)> 0thenB(x,y) = TGty

B(y,x)



1.3.2 Some special values for Beta function

B(l 1)_
2'2) =™
B(x,1) =~
x' _xl
n—1!
B(x,n) = ( ) n>1

x(x+1..(x+n-1)

1.4 Definition

Let x be a real or complex number and n be a positive integer,

_ T(x+n) _ _
)p = — =x(x+1)....(x+n—-1)

“Pochhammer Symbol” is where (x), is used to represent the falling factorial sometimes

called the descending factorial, falling sequential product, lower factorial (Freeden, 2013).

1.4.1 Some properties of Pochhammer symbol

) (a+mn), = Bt

Where a is a real or complex number and n, k are natural numbers

0 =), (5+3),

Where a is a complex number and k is a natural number

i = 3)

Where k: is a natural number.



Note

If a=1thenwe have (a), = (1), =1%X2X3X...xn=n!

If a = 2 then (2),=(n + 1) and also we have
(a)jn = (=N)n = (-N)(-N + D(-N + 2)---(-N + n—-1)= 0 if a=—n,
n=1{012, ..}

() =1, a+0

1.4.2 Theorem

Show that for 0< k < n,

RGN

(Dn-r = d—a-n),

Note particularly the special case a = 1

Proof:

Consider (a),—x for 0< k < n,
@pr=ala+1)...(@a+n—-k—-1)

_ala+1l)...(a+tn—k-Dfla+n—-k)a+n—k+1)... (a+n—-1)
B (a+n—-k)(a+n—-2)... (a+n—-k)

(@)
C(at+n—k)

_ (@n
~ (DRI —a-n),

_ (=D*@)n
C(I—a-n)

(—1)k n!
= —_ | = ——
Notfora =1, (n — k)! E——



1.4.3 Lemma

Proof:

(@) =ala+1)(a+2)

=22n(%)(a;1) (%+1)...(%+n—1)<a;—1+n—1>
O )G e

-3, (7),




CHAPTER 2

CONFLUENT HYPERGEOMETRIC FUNCTION

This section draws attention on the confluent hypergeometric function, its definition and
inherent properties. Due to the importance that is attached to the confluent hypergeometric
function in hypergeometric function; this study will therefore draw attention to the

examination of the hyper geometric function.

2.1 Hypergeometric Function

The function ;F 1(a, b; c; x) corresponding to p=2, g=1 is the first hyper geometric function to
be examined (and, in general, emerges in prominence especially in physical problems), as is
synonymously referred to as "the™ hyper geometric equation or, more explicitly, Gauss's
hyper geometric function (Gauss, 1812; Barnes 1908). To confound matters much more, the
term "hyper geometric function™ is less usually used to mean shut structure, and "hyper
geometric series™ is sometimes used to mean hyper geometric function.

Hyper geometric functions are solutions to the hyper geometric differential equation, which
has a regular singular point at the starting point. A hyper geometric function can be derived

from the hyper geometric differential equation.

2.1.1 Definition

(Rainville,1965). Asserts that a hyper geometric function can be defined as follows;

@ 0 o

F(a b; C; Z) — ZFl(a’ b; C; Z) = F (b, a. C; Z) = (C) nl VA =
nlt:

For c neither zero nor negative integer. In 2.1, the notation
1 - Refers to number of parameters in denominator

2 - Refers to number of parameters in numerator



2.1.2 Functions with representations like Hypergeometric series

n!

.2
;22)

C D" e WaWy (D 11
l"(“Z):nZ;) 17 =Z DN nl _ZF<2 ’_Z>

[0 1 [o.0]
F(1,b,b,z) = ( )n-zn=22n
n=0

n=0

N| W

1.
,2'

N[ =

arcsinz =F (

n

2.1.3 Properties of Hypergeometric functions

2.1.3.1 Differential representation
The Differential representation of the hypergeometric function is given by

o (@) (b), 21

d
gz @bicz) = L@, @-D

_ C (@nt1(B)ns12™

(C)n+1n!

n=0

ab < (a + 1, (b + 1),2"

c (c+1),n!
n=0

ab
=7F(a+1,b+1;c+1;z)

2.1.3.2 Integral representation

r 1
Lb)f 21— PTI (1 - x)dt ¢ >bh>0
- 0

F(a,b;c;z) = RONC

Where Gamma is defined by



[00]

r'(x) =f t*e"tdt,x >0
0

2.1.3.3 The Hypergeometric equation

The linear second-order DE

w? dw
Z(l—Z)W-F(C - (a + b + 1)Z)E—abw=0

is called the hypergeometric equation

These functions were studied by numerous mathematicians including Riemann who gathered
in their conduct as functions of a complex variable, also, concentrated on its analytic

continuation regarding it as a solution to the differential equation (Campos, 2001).

dw? dw
Z(l—Z)ﬁ+(C—(d+b+ 1)Z)E—abW=O (2.1)

or, multiplying equation (4) by z and denoting 8 = z é,

00 +c—1)—z(6 + a)(@ + b)](2) =0 (2.2)
Equation 2.1 or 2.2, has three regular singular points at 0, 1 and o, and it is

Up to standardization the general form of a second order linear differential equation with this

conduct.

Note if one of the numerator parameters a or b are equal to the denominator parameter ¢ we

get

a,b \_ COn@n
2F1< ZZ)—nz()Wz

= 1Fp (i iZ)
=2, (e

=(1-2)¢, lz] <1

9



2.1.4 Problem

Which results in

F [_nc,: § 1] B (C(;)i)n

Solution

Consider F(—n, b; c; 1).at once, if R(c — b) > 0,

_I'@r(c—=b+n) (c—b),
" IT'(c+n)(c—b) (O

F(—n,b;c;1)

Actually the condition R(c — b) > 0 is not necessary because of the termination of the series

involved.

2.2. Generalized Hypergeometric Function

As outlined in the definition (1) there are two numerator parameters, a and b; and one
denominator, c. it is a natural generalization to move from the definition (1) to a similar

function with any number of numerator and denominator parameters.

We define a generalized hyper geometric function by

qu

<a11a2 yaAz. . . ’ap'Z> — (al)n(az)n(a3)n- e (aP)TLZn
by,by, b3, . .,.by’ e (b1)n(b2),(b3)y . . . .(bg)un!

had 14 : n
Hizl(al)nz

=1+ 5 -
i@y n!

=1,2,3,...n

The parameters must be such that the denominator factors in the terms of the
series are never zero. When one of the numerator parameters ai equals —N, where N is a

10



nonnegative integer, the hypergeometric function is a polynomial in z (see below). Otherwise,
the radius of convergence p of the hypergeometric series is given by
o ifp<qg+1

p=+0 ifp>q+1
1 ifp=q+1

This follows directly from the ratio test. In fact, we have

0 ifp<qg+1
. p=<0 ifp>q+1
m 1 ifp=q+1

In the case that p = g + 1 the situation that |z| = 1 is of special interest.

The hypergeometric series q1Fp (a; az,...,ag41; by by ,... by, 2)

with |z| = 1 converges absolutely if Re (X b; — X a;) <0

The series converges conditionally if |zl =1withz# 1and -1<Re (X b; — X a;) <0

And the series diverges if Re (X b; — Y a; ) < —1.

Two elementary instances of the , Fy follow if no numerator or denominator parameters are

present.

Which results to

gk
SN
I
Q
N

ofo (_2) =

Which is called the exponential function where z € C

n=0

And also if we have one numerator parameter without denominator parameter, we obtain
©o

1F0(a;z> = z (azzz” =1-2)¢% z€eC

n=0

is called a binomial function

11



2.3 Bessel Function

We already know that the oF ¢ is an exponential and that ;F ¢ is a binomial. It is natural to
examine next the most general OF1 the only other ,F 4 with less than two parameters. The
function we shall study is not precisely the oF ; but one that has an extra factor definition
below (Dickenstein,2004).

2.3.1 Definition

If n is not a negative integer

&)

22
Jn(2) = Ta+n) 1Fo <—; 1+ n; _I)

2.4 Confluent Hypergeometric Function

This section provides an examination of the most powerful methods implemented to
accurately and efficiently evaluate the confluent hypergeometric function, Kummer’s

(confluent hypergeometric) function M (a, b, z), introduced by (Kummer, 1837),

The term confluent refers to the merging of singular points of families of differential

equations; confluent is Latin for “to flow together.

2.4.1 Definition

The Kummer confluent hypergeometric function is defined by the absolutely convergent

infinite power series”

a C (0),2"
M(a,c, z) = lFl(C'Z)_Z)(c)nn!' —0<z< 00
n=

It is analytic, regular at zero entire single-valued transcendental function of all a, c, x, (real or
complex) except c# 0 or a negative integer.

12



Note

The confluent hypergeometric function it is related to the hypergeometric function according

to
o) Z o) oo
y (a,b Z) s (a)n(b)n(g)n B (@)pz" y (D) (@)pz"
pow\ ¢ ') T phe Ot L (©pninbe br Ly (©)an!
n=0 n=0 n=0
So that lim,,_, (“C'b; %) =m(a,c,z)

2.4.2 Relation to other functions
)m(—n; 1;z) = In(2)
ii)ym(a;a.z) = e*

eZ
iiiym(1,;2;2z) = 7sinhz
2.4.3 Theorem

m(a;a.z) = e

Proof:

m(a,a,z) =
n=0 n=0

13



2.4.4 Elementary properties of Confluent Hypergeometric Function

2.4.4.1 Differential representation

Because of the similarity of definition to that of F (a, b; c; z), the function M (a; c; 2)
obviously has many properties analogous to those of the hypergeometric function (ko, 2011).

For example, it is easy to show that;

d a
i) E”m(a, c;z) = Em(a +1,¢c+1;2).

Since

4 acin) C (@ 2" O (@2

—m(a,c;2) = — | /n+1®

dz - (€)n (n—1)! — (©)np1n!
n=1 n=0

_a = (a+1),z"
T c (c+1),n!
n=0

a
=Em(a+1;c+1;z)-

Also in general

A (@)
it) xm(a,c2) = Em(a tketkz), k=123..

2.4.4.2 Integral representation

Based on Euler’s integral representation for the , F; hypergeometric function, one might

expect that the confluent hypergeometric function satisfies

m(a;c;z) = 1F (Z; z)

_ i (a,b_z>
N bl—z’é c b

14



F(C) ! zt ra—1
— - 1 _ t c—a—1 t
—F(a)F(c—a)oe t*( ) dt, c>a>0
2.4.4.3 Theorem

For Re ¢ > Re a > 0 we have

a; z) r() 1

— zt ta—l 1-— c—a—1 d
c r'a)l(c—a) Oe -0 ‘

W (

Proof: note that we have
1 © 0 1
.f ext ta—l(l _ t)c—a—l dt — Z _ j- tn+a—1(1 _ t)c—a—l dt
0 = nt Jo

And Rea> R

e(c—a)>0
1

f t"te (1 - )% dt =B(n + a,c — a)
0

_I'(n+a)f(c—a)

I'(n+c)
_I'(@)I'(c—a)(a),
- r(c) (©n

forn=20,1,2,.,.,.this implies that

o)

(a),z™ a
zt ya—1 c—a—1 — .
ettt (1—-1¢) = E——lFl(C,Z).

c),n!
& (O

r'(c) 1
ra)rc—al,

2.4.4.5 Confluent Hypergeometric equation

The Confluent hypergeometric equation established by (Buchholz, 2013) defines the

hypergeometric function y = F (a, b; c; z) as a solution of Gauss' equation

d? d
z(1- z)d—ZVZV + (c—(a+ b+ 1)Z)d_vzv — abw = 0 (2.3)

15



By making the change of variable z = 3 (2.6) becomes

(1—g)w”+<c—x— azlx>w’—aw=0

and then allowing b— oo we find
xw + (c-x)w' —aw =0 (2.4)

For C ¢ Z the general solution of the confluent hypergeometric differential equation (2.4) can

be written as

a a+1l-c
w(z) =A1F1(C ;Z)+BZl_C 1Fy ( ¢ ;Z)

with A and B arbitrary constants

2.4.4.6 Multiplication formula

A known formula, given by (Luke, 2014) can be utilized to determine the value of the
confluent hypergeometric function in terms of another confluent hypergeometric function
with the same parameters but with the variable of opposite sign. This formula can be specified

as follows;
2
Fi(a; b; 2) xiF1(a; b; —2) =oFs(a,b — a;b,2b +7;5)
2.4.4.7 The Contiguous function relation

The function m(a; c; z) also satisfies recurrence relations involving the contiguous functions
m(a * 1;¢; z)and m(a; c + 1; z). from these four contiguous functions, taken two at a time,

we find six recurrence relations with coefficients at most linear in z (Pearson, 2009).
i) (c—a—1)m(a;c;z) +am(a+1;c;z) = (c—1)m(a;c — 1;2)

ii) cm(a;c;z) —cm(a —1;¢;z) = zm(a;c + 1; 2)

iii) (a—1+c)m(a;c;z) + (c —a)ym(a—1;¢;z) = (c — 1)m(a;c — 1;z)

iv) cla+z)m(a;c;z) —acm(a+ 1;¢;z) = (c —a)zm(a;c + 1;z)
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v) (c—a)ym(a—1;¢c;z) + 2a—c+ z)m(a;c;z) = am(a+ 1;c; z)

vi) c(c—1)m(a;c—1;z) —c(c—1+z)m(a;c;z) = (a—c)zm(a;c + 1:z)

2.4.5 Some example of confluent Hypergeometric function
Example 1

The function

erF(z) = 2 exp(—t?) dt
\/Eo

as defined by (Rainville, 1965) exhibits that

F()—221F1(1-3- 2)
erF(z) = — 215 z°).

\/_
Solution. Let
z
erF(z) = \/%J- exp(—t?) dt.
Then,

2 ® —1)" Zth

R N
2 ® (_1)11 J'ZZZn+1

=\/_E; nl (2n0+ 1)

2z D" (%)nzzn

3
M= (2),

_ 2z 1F1 (1 3 2)

R \2'2 77

17



Example 2

The incomplete gamma function may be defined by the equation

Z

y(a,z) = f e ‘t* 1dt,R(a) > 0.

0

y(a,z) = a x"%1F1(a;a + 1; —2).

So that
Solution: Let
Z
y(a,z) = f e 't* 1dt,R(a) > 0.
0
Then

z X2 (_1)ntn+a—1
y(a,2) = f Y
0 e~ n.

e ( 1)n n+a-1

n'(a+n)

a(a+ 1),
(@n

now, (a +n) =

Hence

y(a,2) = a~'x° Z ED M @nz” _

n!'(a+ 1),

n=o

18
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CHAPTER 3

CONFLUENT HYPERGEOMTRIC FUNCTIONWITH KUMMER’S FIRST
FORMULA

This section introduces the Kummer’s first formula and impact with both hypergeometric and

confluent hypergeometric function

: a _ V' (-)"z" ) (a)kzk
We can explain the product e?. 1 F; (¢ ;z) = X — )(Zk=0 (C)kk!)

~ i i (—1)"2" (@) 2"
- n (c)gk!

n=0 k=0

When we have

ii/l(k,n) - izn:A(k,n—) (3.1)

n=0 k=0 —
- i Z (DM (@)
prpr (m—k)! (c)ik!
and since (n = Jo)t = (Zfr);: ., 0<k<n. (3.2)
We may write

~ i z (—=1)"2" (—n); (@), 2"
a n! (c)kk!

But we already know that

rrc—a+n) r'c—a+n) I'(c+n)

Frc—a)(c+n)’ TI'(c—a) =0b-a)n,—7—=0h

oF (—nac1) = o

So that,
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(C - a)n

Fi (-n,a;¢;1) =
B (onae1) ==

then,

2 Fi (a6 2) = Z (e~ a)n(2)" = Fi(c—a;c;—2).

(c)nn!
This is Kummer first formula, c¢ {-1,-2,-3...0}

Now under this definition , we will prove the following theorems,

3.1 Theorem

e 'F(—k,a+n;a;1) = {F,(—n; a; —t) , where k,n are non-negative integer

Proof

k
(_k)s(a + n)s

e tF(-k,a+n;aq;1) =e™t

!
L (@]
We know that (a +n)g = (2—;:5 (pochhmmer property)
So
o (k)5 (@)
- a
e tF(=k,a+n;a;1 =e‘t2—s s
( ) — s!(a)s(a)y
s=0
© K Kok
_ Zz( k)s(@nes (1)t by 3.2)
I o '
L L sH @@y K
We obtain

(_1)Sk! (a)n+s (_1)ktk
(k—3s)! sl(a)s(a), k!

(_1)S (a)n+s (_1)ktk
st(@)s(@)n (k—s)!

20
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iiA(s,k) =ZZA(S, +5) (3.4)

O (— 1 @pas (CDFFSERTS RO (@ + )t (—0)F
ZZ sl (a)s(a)n k! B ZZ sl (a)s k!
per] (a)sS!

et F (+n;a;t)

And since 1F; (a + n; a;t) = {Fet(—n; a; —t) by Kummer’s first formula 3.3,

o (a+n

L (a)ss!

e 'F(-k,a+n;a;1) = {F,(—n; a; —t)

3.2 Theorem

To prove that

dk
dzk

(-n)

k —
n Fila+na+k —t)

[{Fi(a+n,a —t)] =

Proof:

k k

_[1F1(a+n,a,—t)] =@

Az [e™t 1F,(—n,a,t)] by (3.3)

k
=et [@ 1Fi(—n,a,t)

— ot [(_n)k

s Fintkatk t)] (3.5)

= et [ E2  R(atk+n—ka+k—0)] by (33)
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_ (—n)k

= W 1F1(a+n,a+ k,—t)

Not that theorem (3.5) is equal to zero if k=n

;—Z [\Fi(a+n,a —-t)]= (i—: [e~t {Fi(—n,a,t)] by Kummer first formula
_+[a*
=et [dz_n 1Fi(—n,a, t)]
_ (=)
=et (a)n" Fi(-n+n,a+n,t)|=0
Note

Examination of Kummer’s first formula soon arouses interest in the special case when the

two (CHF) have the same parameters. This happens when b —a = a,b = 2a. we then obtain
1F1(a; 2a; z) = e 1Fi(a; 2a; —2),
or
™5 F,(a; 2a; 2) = 2 F,(a; 2a; —2) (3.6)
More pleasantly, (3.5) may be expressed by saying that the function
e~ % F,(a;2a;2z)

Is an even function of z. After some step in (Rainiville 1967) we get

1 1
e’ 1F1(a; Za, —Z) = 0F1 (_,a+z,—zzz> (37)

If 2a is not an odd integer < 0

Equation (3.7) is known as Kummer’s second formula.
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3.3 Some example of Kummer’s formula with (CHF)

Problem 3.1
Show that
1 [ —tra—1
1Fi(a; b; z) = mf et oF1(—; b; zt)dt
0
Solution 3.1

We know that

r(z) = f e ‘t*1dt,  Re(a) > 0.
0

Then
e (@2
1F1(a, b; Z) = Z ol (b)n
n=0
1 i I'(a+n)z"
- I'(a) n! (b),
n=0
J- . Z ta+n 1
" T(a) n! (b)n
= Lf et 1 0F1(—; b; zt)dt
F(a) ) ) )
0
Problem 3.2

Show that the aid of the result in problem 1.3, that

o)

j exp(—t2) t2a "1 (zt)dt =

0

r'(a)z"
2M1ir(n+ 1)

23
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Solution 3.2

we obtain

[o'e] [00]

—t?,2a-n-1,_nsn 2:2
e "t z"t z“t
A= J. exp(—t*) t** "1, (zt)dt :f of1 <—; 1+n;— >dt
0

27T (1 + n) 4
0

Put t2 = . Then

oo

z" 1 7232
f e Ppa-t F, (—; 1+n; p )dﬁ
0

A=—0 .
2'T(1+n) 2 4

B z" I'(a) S — z?
T+ ny 1 Y ETETY

24



CHAPTER 4

SEVERAL PROPERTIES OF HYPERGEOMTRIC FUNCTION

This chapter proffers an outline of the several properties of hypergeometric function and a
detailed discussion of the results.

4.1 Properties
4.1.1 The Contiguous Function relations.

Gauss defined as contiguous to F(a, b; c; z) each of the six function obtained by increasing or

decreasing one of the parameters by unity. For simplicity in printing we use the notation,

F =F(a,b;c;z)
F(a+) =F(a+1,b;c;2) (4.1)
F(a—)=F(a—1,b;c;2) (4.2)

Together with similar notations F(b +),F(b —), F(c +)and F(c—) for the other four of the
six functions contiguous to F. After some step in (Rainville, 1965) we get this contiguous

function relations.

i) (a—b)F =aF(a+)—DbF(b+)

ii) (a—c+1F=aF(a+)—(c—1DF(c—)

iii) [a+ (b — )z]F = a(l — 2)F(a+) — ¢ *(c — a)(c — b)zF(c +)
iv) (1 —2)F = Fla—)— ¢ Yc — b)zF(c+)

v) (1 — 2)F = F(b-)— ¢ Y(c — a)zF(c +),

25



Example 4.1

From these contiguous functions we can obtain other relations
1) from (iii) and (iv) we get

[a+ (b -0z — (c —a)(1 —2)]F =a(l — z)F(a+) — (c — a)F(a—-),
In the left hand We get

[a+ bz —cz—[c —cz—a+az]F = a(l — z)F(a+) — (c — a)F(a—),
So

[2a — c + (b — a)z]F = a(1 — z)F(a+) — (¢ — a)F(a -). (4.3)

2) from (iii) and (vi) we get
[a+ (b —c)z— (c —b)(1 - 2)]F = a(l — z)F(a+) — (c — b)F(b-)
So
[a+b —c]F =a(l — 2)F(a+)— (c — b)F(b-). (4.4)
3) from (2) and (3) we get
l[a+(b—-c)z—(a—c+ 1A —-2)]F
=(c-DA - 2)F(c—) —cH(c—a)(c—b)zF(c+)
Then
[c—1+(a+b—2c+1)z|F
= (c-1DA-2)F(c-)—c ' c—a)(c—b)zF(c+). (45)
4) from (1) and (4.1) we get
[(@a—b)1 —2)—2a+c— (b— a)z]F
= (c — a)F(a=) — b(1 — 2)F(b+),
Then

[c —a—b]F = (c — a)F(a=)— b(1 — 2)F(b+). (4.6)
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4.1.2 Hypergeometric differential equation:

The operator 6 = z (%), already used in the chapter two of section (2.1.2.3) we resultantly

obtained this equation,

zl—2)w +[c—(a+b+1)z]w —abw =0 (4.7)

Example 4.2
In the deferential equation (4.7) for w = F(a, b; ¢; z) introduce a new dependent variable u
byw = (1 — z)™%u, thus obtaining
z1-2%*u + (1 —2)[c+ (a—-b - Dzlu + alc — b)u = 0.
Next change the independent variable to x by putting x = i Show that the equation for w in

terms of x is,

2

d“u du
x(1—x)W+[c—(a+c—b+1)x]a—a(c—b)u=0, (4.8)

And thus derive the solution

w= (-2 [t

Solution
We know that w = F(a, b; c; z) is a solution of the equation (4.7) in this equation we put
w = (1—2z)"%uthen
w =1-2)"%+a(l-2)"%y, (4.9)
w=>1-2"%% +2a(1-2)"* +ala+1)(1 - 2)"* 2w (4.10)
Now we get the new equation from the eq (4.8),(4.9)and (4.7)
z(1-2)u" +2azu’ +a(a+1Dz(1—2)u+cu' +ca(l—2)"u—(a+ b+ 1)zu’

—a(a+b+1)z(1 —2z)"'u—abu =0,
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Then

z1-2)>+ (1 — 2)[c+ (a—-b — DzJu' + alc — b)u = 0. (4.11)
— =X =2 1_z=1 % __1 __(1-x)2
Nowputx = —.thenz=— x=—,1-z=— so—= gEmche (1—-x)
dzx _ -2 — _ 3
’ E — (1_2)3 — 2(1 x)
The old equation (4.11) above may be written
d2u+ [ c +a—b—1 du+a(c—b) -
dz? z(1—2) 1—z ldz z(1-2)2 “w="5

Which then leads to the new equation

2

. , d?u 501 5 , [c(1—x)? b 11 du
(1-x) @"‘l—( —x)*—(1-x) {_—x+(a— —1)( —x)}la

a(c—b)(1 —x)3
— u
x

=0

or

2
x(l—x)%+[—2x—{—c(1—x)+(a—b—1)x}]j—l;—a(c—b)u=0,

Or

d?u du
x(l—x)@+[x—(a—b+c+1)x]a—a(c—b)u=0 (4.12)

Now (4.12) is a hypergeomtric equation with parameters y = c,a + beta + 1
a—b+c+ 1,af =a(c — b).Hencea = a,f = ¢ — b,y = c.One solution of (4.12)
is

u = F(a,c—b; c; x),
So one solution of equation (4.7) is

, c—b;, —z

-1 a
w=(1-2)""F o -
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4.1.3 Elementary series manipulation

(Choi, 2003) established some generalized principles of double series manipulations

some special cases of which are also written for easy reference in their use. Not that 4, ,,

denotes a function of two variables x and y, and N is the set of positive integers

co co o n
1) zzAk;n = ZZAkn—kr
n=0k=o n=0k=o0
[ee] n (o] (o]
2) ZzAk;n = ZZAerkr
n=0 k=0 n=0 k=o
n
© o o 2
3) Z Z Agm = Z Z A2k
n=0k=o n=0k=o
n
00 2 (o9} n
4) Z Z Agm = Z Z Agnr2k
n=0k=o n=0k=o
Example 4.2

Prove that if g,=F (—n,a; 1 + @ — n; 1) and a is not an integer, then g, =0 forn>1, g, =
1.

Solution

Letg,=F (—n, o; 1 +a—n; 1).

Then

n

v k(@ Z n! (—a)i (@)
In = Lk +a—n), Lnl(k—Dl(@,

Hence compute the series
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S

O (—Wndnt” O @k (—@) i "
n! —Z k!'(n —k)!

n=0 n=0 k=o

=< (a>ntn> (Z( a>nt“>

=(1-0)%1-1)

=1

Therefore, go = 1 and g, = 0 for n > 1. (Note: easiest to choose a+ integer, can actually do
better than that probably).

4.1.5 A quadratic transformation

A quadratic transformation as established by( Rainville, 1965) is based on the following;

4.1.5.1 Theorem

If 2b is neither zero nor negative integer and if both |x| < 1 and [4x(1 +x)7?| < 1

o a, b; 4x a,a—b+%; ,
A+ oy, @2 =F| 1 7
2!

Example 4.5
In this theorem put b =, a =« +% , 4x(1 + x)™2 = z and thus prove that

oc,oc+%; a )1[ 2 ]
z|=1—-—2z)2 |———F——
1+v1l—2z

2
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Solution

Theorem 2 gives us

1
a, a—b+7,

= F X
1
b+7,

a, b; 4x

- 2
ab; (1+ x)? '

(1+x)72%F I

Then put b =, a =x +% ,4x(14+x)%2 =2z

then

zx> +2(z—-2)x +z =0

2x =2 —3++z22 —4z4+ 4 —32=2—z+2/1—2

Now x = Owhen z =0, so

Zx=2—z—2\/1—2=1—z+1—2\/1—z

Therefore
_(A-V1-2z)* (1-vV1-2z)[1-(1-2)]
*= z B Z(1+V1—Z) '
Thus
_1—\/1—2
Tl Vioz
And
+1=— 2
R CY,

Then we obtain

4 (1-VI-2) (1-vi—z) _
A+07  (14viss) T

a check. Now with b = o,a = < + 1 theorem 4 yields

VA
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_ 1 .
2 2l | < +5,; x+5,1 1;
I F A 7| = x2 =F[ ’ x2]= 1 — x2)"1
L+JT?E 2 o o+ = ¢
Since
1 1=Vi-2 a1+
— X = an X =
1+vl—2z 1+vl—2z
41—z
(1_x2)= 2
(1+V1i-2)
Thus we have
oc,o<+1 Zoctl 2

20, [—] [—
2 «; 14+Vl—2z 14+V1—12z

]ﬂu—@%

1 2 2x—1
= 1—Z EI: ] ]
( ) 1+vV1l—2z
as defined. Now we use theorem 3 to see that
1
X, X +35; 1 |xX, X =355
2’ g =(1—-2)2F 2’ 4
2 2
So that we also get
F 2" | = [—] )
2 o 1+vVl1—-2z

as desired.

32



4.1.6 Additional properties

We will obtain one more identity as an example of those resulting from combination of the

theorem proved earlier in this chapter. In the Identity of theorem 3, replace a by (3¢ — 3a)and

b by (G¢c +3a —3) to get

1 11 1 1,

c—a,c+a—1;
x|.
(o

4x(1 —x)l = F[

c;
Theorem 1 yields

c—a,c+a-—1;
4

x] =(1-x)"°F [a, 1-a x]
c; B c; ’

Which leads to the desired result.

4.1.6.1 Theorem

If ¢ is nether zero nor negative integer and if both |x| < 1and [4x(1—x)| <1

1, _1,1,.,1 1,
5€ —5a,5C + 54— 3;

F [a’ - x] = (1—x)¢F [2

C; (o

4x(1 — x)l.

Example

Use this theorem to show that

a,1l—a; le—la,tc-la+1;4x(1—x)
1— 1—CF[’ ’ ]: 1—2x)*°F 2 2772 2 27
( X) c; X ( x) l C; (1—2%’)2

Solution

1 ) c—act+a-—1
_nl-cp | PTG — 2’ 2 ’ —
(1—=x)"°F o x|=F o 4x(1—x)

)
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c—a c+a—1

=F| 27 2 1-(1-20°

c—a c—a+1

a-c — 1—(1—2.X')2
—(1_ 28=¢ 7 ¢ L= = 2ax)
(1-2x)“zF . 1= 2x)2

c—ac—a+1
= (1—2x)%°F 2’ 2 ; M )
c; (1—-2x)2

4.2 Some theorem without proof
4.2.1 Theorem

If |z| <1,
F(a,b;c;z) = (1 —2)"%PF(c —a,c — b;c; 2).

4.2.2 Theorem

If 2b is nether zero nor a negative integer and if |y| < % and |1f—y| <1,

4.2.3 Theorem

Ifa+b+ % is neither zero nor a negative integer and if both |x| < 1 and
[4x(1 — x)| < 1

2a, 2b;
X
a+b+7,




CHAPTER 5

CONCLUSION AND SUGGESTIONS FOR FUTURE

This study had presented definitions and examples of hypergeometric function; confluent
hypergeometric function, and Kummer confluent hypergeometric function. It can therefore be
concluded that theorems and some properties. Moreover, it can also be concluded that the
Kummer function has wide application in various subjects and hence proving stability or
other properties were drawn to be of paramount importance. This study centered on the
Kummer’s first formula with confluent hypergeometric function. Future studies can endeavor

to extend insights on this area in depth.
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