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ABSTRACT 

 

Linear algebra is a main important part of the mathematics. It is a principal branch of 

mathematics that is related to mathematical structures closed under the operations of addition 

and scalar multiplication and that includes the theory of systems of linear equations, matrices, 

determinants, vector spaces, and linear transformations. Linear algebra, is a mathematical 

discipline that deals with vectors and matrices and, more generally, with vector spaces and linear 

transformations. Unlike other parts of mathematics that are frequently invigorated by new ideas 

and unsolved problems, linear algebra is very well understood. Its value lies in its many 

applications, from mathematical physics to modern algebra and its usage in the engineering and 

medical fields such as image processing and analysis. 

This thesis is a detailed review and explanation of the linear algebra domain in which all 

mathematical concepts and structures concerned with linear algebra are discussed. The thesis’s 

main aim is to point out the significant applications of the linear algebra in the medical 

engineering field.  Hence, the eigenvectors and eigenvalues which represent the core of linear 

algebra are discussed in details in order to show how they can be used in many engineering 

applications. The principal components analysis is one of the most important compression and 

feature extraction algorithms used in the engineering field. It is mainly dependent on the 

calculation and extraction of eigenvalues and eigenvectors that then be used to represent an 

input; whether it is image or a simple matrix. In this thesis, the use of principal components 

analysis for the compression of medical images is discussed as an important and novel 

application of linear algebra. 

Keywords: Linear algebra; addition; scalar; multiplication; linear equations; matrices; 

determinants; vector spaces; linear transformations; image processing; eigenvectors; eigenvalues; 

principal components analysis; compression 
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ÖZET 

 

Lineer Cebir matematiğin en önemli parçalarından biridir ve Matematiğin, toplama ve sayıl 

çarpma gibi işlemlere göre daha kapalı olan Matematiksel yapılar ile ilgili olan ve doğrusal 

denklem sistemi, matrisler, determinant, vektör uzayları ve lineer dönüşümler teorilerini içeren 

bir ana bilim dalıdır. Lineer Cebir, vektörler ve matrisleri, daha genel anlamda ise vektör 

uzayları ve lineer dönüşümleri ele alan bir matematik bilim dalıdır. Matematiğin sıklıkla yeni 

fikirler ve çözümlenmemiş problemlerle gündemde kalan diğer dallarının aksine, lineer cebir 

daha anlaşılır bir konumdadır. Lineer Cebirin değeri matematiksel fizikten modern Cebire kadar 

uzanan birçok uygulama yanında görüntü işleme ve analiz gibi mühendislik ve tıp alanlarında da 

kullanılmasından kaynaklanmaktadır. 

Bu tez, Lineer Cebirle ilgili olan tüm Matematiksel kavramların ve yapıların ele alındığı, ve bu 

alanla ilgili detaylı bir inceleme ve açıklamadır. Tezin esas amacı, Lineer Cebirin Medikal 

Mühendislik alanında kullanılan önemli uygulamalarına dikkat çekmektir. Bu nedenle, lineer 

Cebirin özünü oluşturan özvektörler ve özdeğerlerin birçok mühendislik uygulamasında nasıl 

kullanılabileceğini göstermek amacıyla detaylıca ele alınmıştır. Ana bileşenler analizi, 

mühendislik alanında kullanılan en önemli sıkıştırma ve öznitelik çıkarımı algoritmalarından 

biridir. Bu esasen, daha sonradan bir veriyi temsil edecek olan özdeğerler ve özvektörler çıkarımı 

ve hesaplanmasına bağlıdır; bir görüntü veya basit bir matris de olabilir. Bu tezde, Lineer Cebirin 

önemli ve yeni bir uygulaması olarak, ana bileşenler analizinin medikal görüntülerin 

kompresyonu için kullanılması ele alınmıştır. 

Anahtar kelimeler: Lineer cebir; ekleme; sayıl; çarpma; lineer denklemler; matrisler; 

determinantlar; vektör uzayları; doğrusal dönüşümler; görüntü işleme; özvektörler; özdeğerler; 

temel bileşenler analizi; sıkıştırma  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Introduction 

 

Linear algebra is an important course for a diverse number of students for at least two reasons. 

First, few subjects can claim to have such widespread applications in other areas of mathematics-

multi variable calculus, differential equations, and probability, for example-as well as in physics, 

biology, chemistry, economics, finance, psychology, sociology, and all fields of engineering. 

Second, this subject presents the student at the sophomore level with an excellent opportunity to 

learn how to handle abstract concepts. 

Linear algebra is one of the most known mathematical disciplines because of its rich theoretical 

foundations and its many useful applications to science and engineering. Solving systems of 

linear equations and computing determinants are two examples of fundamental problems in 

linear algebra that have been studied for a long time ago. Leibnitz found the formula for 

determinants in 1693, and in 1750 Cramer presented a method for solving systems of linear 

equations, which is today known as Cramer’s Rule. This is the first foundation stone on the 

development of linear algebra and matrix theory. At the beginning of the evolution of digital 

computers, the matrix calculus has received very much attention. John von Neumann and Alan 

Turing were the world-famous pioneers of computer science. They introduced significant 

contributions to the development of computer linear algebra. In 1947, von Neumann and 

Goldstine investigated the effect of rounding errors on the solution of linear equations. One year 

later, Turing [Tur48] initiated a method for factoring a matrix to a product of a lower triangular 

matrix with an echelon matrix (the factorization is known as LU decomposition). At present, 

computer linear algebra is broadly of interest. This is due to the fact that the field is now 

recognized as an absolutely essential tool in many branches of computer applications that require 

computations which are lengthy and difficult to get right when done by hand, for example: in 

computer graphics, in geometric modeling, in robotics, etc. 
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1.2 Aims of Thesis 

 

The motivation for this thesis comes mainly from the purpose to understand the complexity of 

mathematical problems in linear algebra. Many tasks of linear algebra are recognized usually as 

elementary problems, but the precise complexity of them was not known for a long time ago. 

The aims are of this thesis is to understand the eigenvalues and eigenvectors and to go through 

some of their applications in the mathematical and engineering areas in order to show their 

importance and impact. 

 

1.3 Thesis Overview 

 

This thesis is structured as follows: 

Chapter 1 is an introduction of the thesis; it presents the aims of thesis as well as the thesis 

overview. 

Chapter 2 introduces the basics of linear algebra. It first introduces the linear algebra as a 

concept. Then, it discusses the scalars properties such as distributivity, and commutativity etc.. 

the vectors space mathematical operation are also discussed such as addition, multiplication, and 

subtraction.  

Chapter 3 deals with matrices and their properties. In this chapter we also provide a clear 

introduction to matrix transformations and an application of the dot product to statistics. This 

chapter introduces the basic properties of determinants and some of their applications as well as 

the systems of linear equations 

 

Chapter 4 presents a simple explanation of the linear combinations as well as linear independence.  

 

Chapter 5 presents different types of linear transformation of matrices and also different 

properties of them. 

 



 

 1  

 

Chapter 6 considers eigenvalues and eigenvectors. In this chapter we completely solve the 

diagonalization problem for symmetric matrices in addition to other application of the 

eigenvalues and eigenvectors such as PCA. In here, a detailed explanation of the PCA is 

presented. A medical engineering application of the PCA is presented in this chapter in order to 

point out the importance of the eigenvalues and eigenvectors in engineering applications. 

Chapter 7 is a conclusion of the presented thesis. 
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CHAPTER TWO 

LINEAR ALGEBRA BASICS 

 

 
This chapter reviews the basic concepts and thoughts of linear algebra. It discusses and reviews 

the scalars and their properties through equations. Moreover, it presents the vectors and their 

transformations such as multiplication, subtraction etc.. 

 

2.1 Introduction to Linear Algebra 

Linear Algebra is a standout amongst the most critical fundamental ranges in Mathematics, 

having at any rate as awesome an effect as Calculus, and to be sure it gives a noteworthy piece of 

the hardware required to sum up Calculus to vector-esteemed elements of numerous variables. 

Dissimilar to numerous logarithmic frameworks considered in Mathematics or connected inside 

or out with it, a hefty portion of the issues concentrated on in Linear Algebra are manageable to 

precise and even algorithmic arrangements, and this makes them implementable on PCs – this 

clarifies why so much calculational utilization of PCs includes this sort of polynomial math and 

why it is so generally utilized. Numerous geometric subjects are examined making utilization of 

ideas from Linear Algebra, and the thought of a direct change is an arithmetical adaptation of 

geometric change. At long last, a lot of present day unique variable based math constructs on 

Linear Algebra and regularly gives solid illustrations of general though (Poole, 2010). 

The subject of linear algebra based math can be somewhat clarified by the means of the two 

terms involving the title. "Linear" is a term you will acknowledge better toward the end of this 

course, and in reality, achieving this gratefulness could be taken as one of the essential objectives 

of this course. However until further notice, you can comprehend it to mean anything that is 

"straight" or "level." For instance in the xy-plane you may be acclimated to portraying straight 

lines (is there some other kind?) as the arrangement of answers for a mathematical statement of 

the structure y=mx+b, where the slant m and the y-capture b are constants that together depict 

the line. In the event that you have contemplated multivariate analytics, then you will have 

experienced planes. Living in three measurements, with directions portrayed by triples (x,y,z), 

they can be depicted as the arrangement of answers for mathematical statements of the structure 

ax+by+cz=d, where a,b,c,d are constants that together focus the plane. While we may depict 
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planes as  level, lines in three measurements may be portrayed as linear. From a multivariate 

analytics course you will review that lines are sets of focuses portrayed by comparisons, for 

example, x=3t−4, y=−7t+2, z=9t, where t is a parameter that can tackle any worth.  

Another perspective of this idea of levelness is to perceive that the arrangements of focuses 

simply depicted are answers for mathematical statements of a moderately basic structure. These 

mathematical statements include expansion and duplication just. We will have a requirement for 

subtraction, and every so often we will isolate, yet for the most part you can depict linear 

mathematical statements as including just addition and multiplication (Kolman, 1996). 

 

2.2 Scalars 

Before examining vectors, first we clarify what is implied by scalars. These are "numbers" of 

different sorts together with logarithmic operations for consolidating them. The principle cases 

we will consider are the objective numbers Q, the genuine numbers R and the mind boggling 

numbers C. Be that as it may mathematicians routinely work with different fields, for example, 

the limited fields (otherwise called Galois fields) which are essential in coding hypothesis, 

cryptography and other advanced applications (Rajendra, 1996). 

A field of scalars (or only a field) comprises of a set F whose components are called scalars, 

together with two arithmetical operations, expansion + and augmentation ×, for joining each pair 

of scalars x, y ∈ F to give new scalars x + y ∈ F and x × y ∈ F. These operations are required to 

fulfill the accompanying properties which are here and there known as the field 

Associativity: For x, y, z ∈ F, 

                                               x +  y  +  z =  x +  y +  z ,                                         (2.1)                                                                    

                                               x   y    z =  x    y   z                                           (2.2)    

Zero and unity: There are unique and distinct elements 0, 1 ∈ F such that for x ∈ F, 

                                                        +    =    =    +   ,                                               (2.3) 

                                                            =    =                                                        (2.4) 
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Distributivity: For x, y, z ∈ F, 

                                       x +  y    z =  x   z +  y   z,                                          (2.5) 

                                      z    x +  y =  z   x +  z   y                                            (2.6) 

Commutativity: For x, y ∈ F, 

 

                                                                   x +  y =  y +  x,                                          (2.7) 

                                                                    x   y =  y   x                                          (2.8) 

Additive and multiplicative inverses: For x ∈ F there is a unique element −x ∈ F (the additive 

inverse of x) for which 

 

                                           x +  −x  =    =   −x  +  x                                              (2.9) 

For each non-zero y ∈ F there is a unique element (
 

 
) ∈ F (the multiplicative inverse of y) for 

which 

 

                                                     
 

y
   =    =  

 

y
  y                                                 (2.10) 

 Remarks 2.1. 

• Usually xy is written instead of x × y, and then we always have xy = yx. 

• Because of commutativity, an above portion standards or rules are repetitive as in the sense that 

they are results of others (Kolman, 1996).  

• When working with vectors we will dependably have a particular field of scalars at the top of 

the priority list and will make utilization of these guidelines. 
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 Definition 2.1 

A real vector space is a set V of elements on which we have two operations   and   defined 

with the following properties: 

(a) if u and v are any elements in V. then u   J v is in V, (We say that V is closed under the 

operation     

(1) u   v = v   u for all u,v in V. 

(2) u   (v   w) = (n   v)   w for all u, v, w in V. 

(3) There exists an element - u in V such that u  u = - u   u = 0. 

(4) If u is any element in V and c is any real number, then c   n is in V (i.e., V is closed 

under the operation  ). 

(b) If u is any element in V and c is any real number, then c n is in V (i.e., V is closed under 

the operation  ). 

(5) c   (u   v) = c   u  c   v for any u, v in V and any real number c. 

(6) (c + d)   u = c   u   d   u for any u in V and any real numbers f and d. 

(7) c   (l   u) = (cd)   u for any u in V and any real numbers c and d. 

(8) I   u = u for any u in V. 

The elements of V are called vectors: the elements of the set of real numbers R are called 

scalars. The operation   is called vector addition: the operation   is called scalar 

multiplication. The vector 0 in property (3) is called a zero vector, The vector - u in property 

(4) is called a negative of u. 

 Definition 2.2  

 

Let V be a vector space and W a nonempty subset of V. If W is a vector space with respect to 

the operations in V, then W is called a subspace of V. 

It follows from Definition 2.2 that to verify that a subset W of a vector space V is a subspace, 

one must check that (a), (b), and (1) through (8) of Definition 2.1 hold. However, the next 

theorem says that it is enough to merely check that (a) an (b) hold to verify that a subset W of 

a vector space V is a subspace. Property (a) is called the closure property for  , and property 

(b) is called the closure property for  . 



 

15 

 

 Theorem 2.1  

Let V be a vector space with operations   and   and let W be a nonempty subset of V. Then W 

is a subspace of V if and only if the following conditions hold: 

(a) If u and v are any vectors in W, then u v is in W. 

(b) If c is any real number and u is any vector in W. then e   u is in W. 

 Proof 

If W is a subspace of V, then it is a vector space and (a) and (b) of Definition 4.4 hold; these are 

precisely (a) and (b) of the theorem 

Conversely, suppose that (a) and (b) hold. We wish to show that W is a subspace of V. First, 

from (b) we have that ( - 1)   u is in W for any u in W. From (a) we have that u   (-1)   u is in 

W. But u   (-1)   u = 0, so 0 is in W. Then u   0 = u for any u in W. Finally, properties (1), 

(2), (5), (6), (7), and (8) hold in W because they hold in V. Hence W is a subspace of V. 

 Example 2.1  

Let W be the set of all vectors in R3 of the form [
 
 

 +  
] where a and b are any real numbers. To 

verify Theorem 2.1 (a) and (b), we let 

 

be two vectors in W. Then 

 

is in W. for W consists of all those vectors whose third entry is the sum of the first two entries. 

Similarly, 

 



 

16 

 

is in W. Hence W is a subspace of R
3
. 

 

2.3 Vector Algebra 

 Here, we introduce a few useful operations which are defined for free vectors. Multiplication by 

a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, which has 

magnitude B = |α| A. The vector B, is parallel to A and points in the same direction if α >  . For 

α <  , the vector B is parallel to A but points in the opposite direction (antiparallel). 

Multiplication by a scalar If we multiply a vector A by a scalar α, the result is a vector B = αA, 

which has magnitude B = |α|A. The vector B, is parallel to A and points in the same direction if α 

> 0. For α <  , the vector B is parallel to A but points in the opposite direction (antiparallel) 

(Kolman, 1996). 

 

Once we multiply an arbitrary vector, A, by the inverse of its magnitude, (1/A), we obtain a unit 

vector which is parallel to A. There exist several common notations to denote a unit vector, e.g. 

Aˆ , eA, etc. Thus, we have that Aˆ = A/A = A/|A|, and A = A Aˆ , |Aˆ | =    

 Vector addition  

Vector addition has a very simple geometrical interpretation. To add vector B to vector A, we 

simply place the tail of B at the head of A. The sum is a vector C from the tail of A to the head of 

B. Thus, we write C = A + B. The same result is obtained if the roles of A are reversed B. That is, 

C = A + B = B + A. This commutative property is illustrated below with the parallelogram 

construction. 
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Since the result of adding two vectors is also a vector, we can consider the sum of multiple 

vectors. It can easily be verified that vector sum has the property of association, that is, 

                                            A +  B  +  C =  A +  B +  C                                                   (2. 11) 

Vector subtraction Since A − B = A +  −B , in order to subtract B from A, we simply multiply B 

by −1 and then add (Golan, 1995). 

 

 Scalar product (“Dot” product)  

This product involves two vectors and results in a scalar quantity. The scalar product between 

two vectors A and B, is denoted by A · B, and is defined as 

                                              A   B =  AB                                                                       (2.12) 

Here  , is the angle between the vectors A and B when they are drawn with a common origin 

 

 Vector product (“Cross” product)  

This product operation involves two vectors A and B, and results in a new vector C = A×B. The 

magnitude of C is given by,  

                                                     C =  AB       ,                                                                (2.13) 

where   is the angle between the vectors A and B when drawn with a common origin. To 

eliminate ambiguity, between the two possible choices,   is always taken as the angle smaller 

than π. We can easily show that C is equal to the area enclosed by the parallelogram defined by A 

and B. The vector C is orthogonal to both A and B, i.e. it is orthogonal to the plane defined by A 

and B. The direction of C is determined by the right-hand rule as shown (Kolman, 1996). 
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From this definition, it follows that 

                                                  B   A =  −A   B,                                                            (2.14) 

which indicates that vector multiplication is not commutative (but anticommutative). We also 

note that if A × B = 0, then, either A and/or B are zero, or, A and B are parallel, although not 

necessarily pointing in the same direction. Thus, we also have A × A = 0. Having defined vector 

multiplication, it would appear natural to define vector division. In particular, we could say that 

“A divided by B”, is a vector C such that A = B × C. We see immediately that there are a number 

of difficulties with this definition. In particular, if A is not perpendicular to B, the vector C does 

not exist. Moreover, if A is perpendicular to B then, there are an infinite number of vectors that 

satisfy A = B × C. To see that, let us assume that C satisfies, A = B × C. Then, any vector D = C 

+ βB, for 3 any scalar β, also satisfies A = B × D, since B   D = B    C + βB  = B   C = A. We 

conclude therefore, that vector division is not a well-defined operation (Golan, 2007). 

 

2.4 Summary 

This chapter presented a brief review of the linear algebra as a general topic. Moreover, a review 

of scalars and vectors including their properties and transformations was presented. 
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CHAPTER THREE 

SYSTEM OF LINEAR EQUATIONS AND MATRICES 

 

 

This chapter introduces the basic properties of determinants and some of their applications as 

well as the systems of linear equations. 

 

3.1 Systems of Linear Equations: An Introduction 

To discover the break-even point and the equilibrium point we need to understand two 

simultaneous linear equations all together. These are two illustrations of real issues that require 

the solution of an arrangement of linear mathematical equations in two or more variables. In this 

part we take up a more orderly investigation of such frameworks. We start by considering an 

arrangement of two direct mathematical equations in two variables. Review that such a 

framework may be composed in the general structure (Gerald and Dianne, 2004). 

                                                                      +   =                                                          (3.1) 

                                                                    x +  y =                                                            (3.2) 

 Where a, b, c, d, h, and k are real constants and neither a and b nor c and d are both zero. 

Presently let’s concentrate on the way of the solution of linear mathematical equations in more 

detail. Note that the diagram of every comparison in System (1) is a straight line in the plane, so 

that geometrically the answer for the system is the point(s) of intersection of the two straight 

lines L1 and L2.  Given two lines L1 and L2, one and one and only of the next may happen:  

a. L1 and L2 meet at precisely one point.  

b. L1 and L2 are parallel and coincident.  

c. L1 and L2 are parallel and distinct.  

In the first case of figure 3, the system has a unique solution comparing to the single purpose of 

crossing point of the two lines. In the second case, the framework has boundlessly numerous 

solutions comparing to the focuses lying on the same line. At long last, in the third case, the 

system has no solutions on the grounds that the two lines don't meet (Howard, 2005).  
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Figure 1: Different system solutions 

 

 Example 3.1 

Consider a system of equations with exactly one solution  

                                                              2 −    =                                                                   (3.3) 

                                                               3x + 2y = 12                                                               (3.4) 

If we solve the first equation for y in terms of x, we get the equation 

 

                                                          y = 2x −                                                                        (3.5) 

Now substitute this equation for y into the second equation gives 

3 +  2 2 −   2 =  2  

3 + 4 − 2 =  2  

7 =  4  

 = 2 
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Finally, we can obtain the following by substituting this value of x into the expression for y  

                                                               =  2 2 −   =  3                                                 (3.6) 

NOTE  The result can be checked by substituting the values x = 2 and y = 3 into the equations. 

Thus, 

2 2 −  3 = 3    

3 2 + 2 3 =  2 

By this verification, we can conclude that point (2, 3) lies on both lines (David, 2005).  

 

Figure 2: A system of equations with one solution 

 

 Example 3.2  

Consider a system of equations with infinitely many solutions  

                                                                    2x −  y =                                                          (3.7) 

                                                                   6x +  3y = 3                                                       (3.8) 

If we solve the first equation for y in terms of x, we get the equation below 

                                                                  y = 2x −                                                            (3.9) 

Now let’s Substitute this expression for y into the second equation 

6x −  3 2x −    2 = 3   
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6x −  6x + 3 = 3   

 =    

This is a true proclamation. This outcome takes after from the way that the second equation is 

proportionate to the first. Our calculations have uncovered that the solution of two mathematical 

equations is equal to the single mathematical equation 2x −  y =  . In this way, any requested 

pair of numbers (x, y) fulfilling the mathematical equation  2x −  y =   (or y = 2x −  ) 

constitutes an answer for the system (Bernard and David, 2007). 

 

Figure 3: A system of equations with infinitely many solutions; each point on the line is a  

                 solution 

   

 Example 3.3 

Consider a system of equations that has no solution 

                                                                    2x −  y =                                                            (3.10) 

                                                                    6x − 3y =  2                                                       (3.11) 

 

The first equation is equivalent to y = 2x −  . Therefore, if we substitute y into the second 

equation yields  

6x −  3 2x −    2 =  2   

6x −  6x + 3 =  2   
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 = 9  

which is plainly illogical. In this manner, there is no answer for the system of mathematical 

equations (Stephen et al., 2002).  

To decipher this circumstance geometrically, cast both equations in the slope-intercept form, 

getting 

                                                                   y = 2x −                                                           (3.12) 

                                                                   y = 2x − 4                                                         (3.13) 

We note that without a moment's delay the lines that represent these equations are parallel (each 

has slope 2) and distinct since the first has y-intercept  -1 and the second has y-intercept  -4 (Fig. 

4). Systems without any solutions, for example, this one, are said to be inconsistent. 

 

Figure 4: A system of equations with no solution 

 

3.2 Matrices and Elementary Row Operations  

In the previous we saw that changing over a linear system to an equivalent triangular system 

gives a calculation to illuminating the straight system. The calculation can be streamlined by 

acquainting matrices which represent linear systems (David, 2005). 

3.2.1 what is a matrix 

 Definition 3.1 

 An m × n matrix is an array of numbers with m rows and n column 
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For example consider this array is a 3 × 4 matrix 

 

When solving a linear system by the elimination method, only the coefficients of the variables 

and the constants on the right-hand side are needed to find the solution. The variables are 

placeholders. Utilizing the structure of a matrix, we can record the coefficients and the constants 

by using the columns as placeholders for the variables.  

 

For example, the coefficients and constants of the linear system can be recorded in matrix form 

as 

 

This matrix is called the augmented matrix of the linear system. Notice that for an m × n linear 

system the augmented matrix is m × (n + 1). The augmented matrix with the last column deleted 

 

is called the coefficient matrix. Notice that we always use a 0 to record any missing terms. The 

method of elimination on a linear system is equivalent to performing similar operations on the 

rows of the corresponding augmented matrix. The relationship is illustrated below: 
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The notation used to describe the operations on an augmented matrix is similar to the notation we 

introduced for equations. In the example above, 

−2   +   2    2 

means replace row 2 with −2 times row 1 plus row 2. Analogous to the triangular form of a linear 

system, a matrix is in triangular form provided that the first nonzero entry for each row of the 

matrix is to the right of the first nonzero entry in the row above it. 

 

 Theorem 3.1  

Any one of the following operations performed on the augmented matrix, corresponding to a 

linear system, produces an augmented matrix corresponding to an equivalent linear system 

(Roger and Charles, 1990).  

1. Interchanging any two rows.  

2. Multiplying any row by a nonzero constant.  

3. Adding a multiple of one row to another. 
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3.3 Solving Linear Systems with Augmented Matrices 

The operations in Theorem 3.1 are called row operations. An m × n matrix A is called row 

equivalent to an m × n matrix B if B can be obtained from A by a sequence of row operations. 

The following steps summarize a process for solving a linear system (Howard, 2005).  

1. Write the augmented matrix of the linear system.  

2. Use row operations to reduce the augmented matrix to triangular form.  

3. Interpret the final matrix as a linear system (which is equivalent to the original).  

4. Use back substitution to write the solution.  

Example 3.2 illustrates how we can carry out steps 3 and 4. 

 

 Example 3.4  

Write the augmented matrix and solve the linear system (Larry, 1998). 

 

a. Reading directly from the augmented matrix, we have x3 = 3, x2 = 2, and x1 = 1. So the 

system is consistent and has a unique solution. 

b. In this case the solution to the linear system is x4 = 3, x2 = 1 + x3, and x1 = 5. So the 

variable x3 is free, and the general solution is S = {(5, 1 + t, t, 3) | t ∈  } 

c. The augmented matrix is equivalent to the linear system 

{
   +  2   +     −     =   

3   −     =   
 

d. Using back substitution, we have 

           =  
 

 
   +            and           =    −  2    −       +       =  

 

 
 −  

 

 
     +       
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 Theorem 3.2  

Properties of Matrix Addition and Scalar Multiplication Let A, B, and C be m × n matrices and c 

and d be real numbers.  

1. A + B = B + A  

2. A + (B + C) = (A + B) + C  

3. c(A + B) = cA + cB  

4. (c + d)A = cA + dA  

5. c(dA) = (cd)A  

6. The m × n matrix with all zero entries, denoted by 0, is such that A + 0 = 0 + A = A.  

7. For any matrix A, the matrix −A, whose components are the negative of each component of A, 

is such that A +  −A  =  −A  + A =   (Stephen et al., 2002). 

 Proof  

 In each case it is sufficient to show that the column vectors of the two matrices agree. We 

will prove property 2 and leave the others as exercises. (2) Since the matrices A, B, and C 

have the same size, the sums (A + B) + C and A + (B + C) are defined and also have the 

same size. Let Ai, Bi, and Ci denote the ith column vector of A, B, and C, respectively. Then 

 

Since the components are real numbers, where the associative property of addition holds, we 

have 
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As this holds for every column vector, the matrices (A + B) + C and A + (B + C) are equal, and 

we have (A + B) + C = A + (B + C). 

 

3.4 Matrix Multiplication 

Let A be an m × n matrix and B an n × p matrix; then the product AB is an m × p matrix. The ij 

term of AB is the dot product of the ith row vector of A with the jth column vector of B, so that 

 

It is important to recognize that not all properties of real numbers carry over to properties of 

matrices. Because matrix multiplication is only defined when the number of columns of the 

matrix on the left equals the number of rows of the matrix on the right, it is possible for AB to 

exist with BA being undefined (Tomas, 2006). For example, 

 

is defined, but 

 

is not. As a result, we cannot interchange the order when multiplying two matrices unless we 

know beforehand that the matrices commute. We say two matrices A and B commute when AB 

= BA 
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3.5 Matrix Transpose 

The transpose of a matrix is obtained by interchanging the rows and columns of a matrix. 

 Definition 3.2 

The transpose of a matrix is a new matrix whose rows are the columns of the original. (This 

makes the columns of the new matrix the rows of the original). Here is a matrix and its 

transpose: 

 

The superscript "T" means "transpose". 

 Definition 3.3  

A matrix A with real entries is called symmetric if A
T
 = A. 

 

3.6 Diagonal Matrix 

An n x n matrix A = [a ij ] is called a diagonal matrix if a ij = 0 for i ≠ j. Thus, for a diagonal 

matrix, the terms off the main diagonal are all zero. Note that O is a diagonal matrix. A scalar 

matrix is a diagonal matrix whose diagonal elements are equal. The scalar matrix In= [dij ], 

where dii = 1 and dij = 0 for i ≠ j , is called the n x n identity matrix. 

 Definition 3.4 

A n x n matrix is called nonsingular if there exists an n x n matrix B such that AB = BA = In; 

such a B is called an inverse of A. Otherwise, A is called singular, or noninvertible. 

 Definitions 3.5  

Let A = [aij ] be an n x n matrix. The determinant function, denoted by det, is defined by 
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where the summation is over all permutations j1 j2 · · · jn of the set S = ( 1, 2,…….,n). The sign is 

taken as + or - according to whether the permutation j1 j2 · · · jn is even or odd. 

In each term (±) a1j1, a2j2,….anjn of det(A), the row subscripts are in natural order and the 

column subscripts are in the order j1 j2 · · · jn. Thus each term in det(A), with its appropriate sign, 

is a product of n entries of A with exactly one entry from each row and exactly one entry from 

each column. Since we slim over all permutations of S, det(A) has n! terms in the sum. Another 

notation for det(A) is |A|. We shall use both det(A) and |A|. 

 

 Example 3.5  

 

If  

 

then to obtain det(A), we write down the terms a1_a2_ and replace the dashes with all possible 

elements of S2: The subscripts become 12 and 21. Now 12 is an even permutation and 21 is an 

odd permutation. Thus  

 

Hence we see that det(A) can be obtained by forming the product of the entries on the line from 

left to right and subtracting from this number the product of the entries on the line from right to 

left. 

 

Thus, if A= [
2          − 3
4                5

], then |A|= (2)(5)_(-3)(4) = 22. 
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CHAPTER 4 

LINEAR COMBINATIONS AND LINEAR INDEPENDENCE 

 

 

 

This chapter presents an explanation of the linear combinations as well as linear independence.  

 

4.1 Linear Combinations 

For the most part, mathematics, you say that a linear combination of things is an entirety of 

products of those things (Poole, 2010). Along these lines, for instance, one linear combination of 

the functions f(x), g(x), and h(x) is 

                                              2  x  +  3  x  −  4  x                                                          (4.1) 

 Definition 4.1 

A linear combination of vectors V1, V2, . . . , Vk in a vector space V is an expression of the form 

                                                +      +       +                                                            (4.2) 

where the ci's are scalars, that is, it's a whole of scalar products of them (Larry, 1998). 

4.1.1 A basis for a vector space. 

 Some bases for vector spaces officially are known, regardless of the possibility that we haven't 

known them by that name. For example, in    the three vectors i = (1, 0, 0) which focuses along 

the x-axis, j = (0, 1, 0) which focuses along the y-axis, and k = (0, 0, 1) which focuses along the 

z-axis together from the standard premise for   . Each vector (x, y, z) in    is an extraordinary 

linear combination of the standard basis vectors (Henry, 2008). 

                                                   x, y, z  =  x  + y  +  z                                                  (4.3) 

That’s the one and only linear combination of i, j, and k that gives (x, y, z).  
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 Definition 4.2 

A (ordered) subset of a vector space V is a (requested) premise of V if every vector v in V may 

be interestingly represented as a linear combination of vectors from β. 

                                      v =       +       +       +                                                     (4.4) 

For a requested basis, the coefficients in that linear combination are known as the coordinates of 

the vector as for β.  

Later on, when we study arranges in more detail, we'll compose the coordinates of a vector v as a 

segment vector and give it a special notation. 

                                                         [ ] =

[
 
 
 
 
 
  

  

 
 
 
  ]

 
 
 
 
 

                                                                 (4.5) 

Although we have a standard basis for Rn, there are other bases (Lloyd and David, 1997). 

 

 Example 4.1 

 

In R
3
 let 

 

The vector  

 

is a linear combination of VI, V2, and V3 if we can find real numbers a1, a2, and a3 so that 
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                                                                                     (4.6) 

 

Figure 5: Linear combination of vectors 

 

Substituting for v, V1, V2, and V3, we have 

 

Equating corresponding entries leads to the linear system (verify) 

 

Solving this linear system by the methods of Chapter 2 gives (verify) a1= 1, a2 = 2, and a3 = - 1, 

which means that V is a linear combination of VI, V2, and V3. Thus 

                                                                                   (4.7) 
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The Figure below shows V as a linear combination of V1, V2, and V3. 

 

Figure 6: Linear combination of V1, V2, and V3 

 

 

 Definition 4.3 

 

The vectors V1, V2 ……. Vt in a vector space V are said to be linearly dependent if there exist 

constants a1, a2, ……at, not all zero, such that 

                                                                       (4.8) 

Otherwise, V1, V2 ….,Vk are called linearly independent. That is, V1, V2 ,…..,Vk are linearly 

independent if, whenever a1V1 + a2V2 + ... + akVk = 0, 

                                                          a1 = a2 =……. = ak = 0. 

If S = {V1, V2,......,Vd},then we also say that the set S is linearly dependent or linearly 

independent if the vectors have the corresponding property. 
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 Example 4.2  

Determine whether the vectors 

 

are linearly independent. 

 Solution 

Forming Equation (1), 

 

we obtain the homogeneous system (verify) 

 

The corresponding augmented matrix is 

 

whose reduced row echelon form is (verify) 

 

Thus there is a nontrivial solution 
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so the vectors are linearly dependent.  

 

 Example 4.3 

Are the vectors    = [      2],   = [      2], and   = [      3] in R4 linearly dependent or 

linearly independent? 

 Solution 

We form Equation (1). 

 

and solve for a1, a2, and a3 . The resulting homogeneous system is (verify) 

 

The corresponding augmented matrix is (verify) 

 

and its reduced row echelon form is (verify) 
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Thus the only solution is the trivial solution a1 = a2 = a3 = 0, so the vectors are linearly 

independent. 

 

4.3 Testing for Linear Dependence of Vectors 

There are numerous circumstances when we may wish to know whether an arrangement of 

vectors is linearly independent, that is if one of the vectors is some combinations of the others.  

Two vectors u and v are linearly independent if the main numbers x and y fulfilling xu+yv=0 

are x=y=0. On the off chance that we let 

                                   ⃗ = [
 
 
]                      and               = [

 
 
]                                            (4.9) 

then xu + yv = 0 is equivalent to 

                                                   =  [
 
 
] +  [

 
 
] = [

    
    

] [
 
 ]                                            (4.10) 

In the event that u and v are linearly independent, then the main answer for this arrangement of 

mathematical statements is the trivial solution, x=y=0. For homogeneous systems this happens 

exactly when the determinant is non-zero. We have now discovered a test for figuring out if a 

given set of vectors is linearly independent: A set of n vectors of length n is linearly independent 

if the matrix with these vectors as columns has a non-zero determinant. The set is obviously 

dependent if the determinant is zero (steven, 2006). 
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CHAPTER 5 

LINEAR TRANSFORMATIONS 

 

 

This chapter presents a brief explanation of the linear transformations in terms of examples, 

definitions and theorems. 

 

5.1 Linear Transformations 

 

 Definition 5.1  

A linear transformation, T:U→V, is a capacity that conveys components of the vector space U 

(called the domain) to the vector space V (called the codomain), and which has two extra 

properties 

1.     +    =      +           for all u1,u2 ∈U 

2.      =        for all u∈U and all α∈C. 

 

The two characterizing conditions in the meaning of a linear transformation ought to "feel 

linear," whatever that implies. On the other hand, these two conditions could be taken as 

precisely what it intends to be linear. As each vector space property gets from vector addition 

and scalar multiplication, so as well, every property of a linear transformation gets from these 

two characterizing properties. While these conditions may be reminiscent of how we test 

subspaces, they truly are entirely diverse, so don't befuddle the two (Defranza and Gagliardi, 

2009). 

 

Figure 7: Definition of Linear Transformation, additive 
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Figure 8: Definition of Linear Transformation, Multiplicative 

 

Here are several words about notations. T is the name of the Linear Transformation, and ought to 

be utilized when we need to talk about the capacity in general. T(u) is the manner by which we 

discuss the output of the function, it is a vector in the vector space V. When we compose 

T(x+y)=T(x)+T(y), the plus sign on the left is the operation of vector addition in the vector 

space U, since x and y are components of U. The plus sign on the privilege is the operation of 

vector addition in the vector space V, since T(x) and T(y) are components of the vector space V. 

These two cases of vector addition may be uncontrollably distinctive (Gilbert, 2009). 

 

 Definition 5.2 

NLT: Not a linear transformation 

 

 Example 5.1  

Let L: R
3
       R

3
 be defined by 

 

To determine whether L is a linear transformation. Let 
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Then  

 

On the other hand 

 

Letting u1 = 1, u2 = 3, u3 = - 2,  V1= 2, V2 = 4, and V3 = 1, we see that L(u + v) ≠L (u) + L (v). 

Hence we conclude that the function L is not a linear transformation. 

 

 Definition 5.3 

 LTPP: Linear transformation, polynomials to polynomials 

 

 Example 5.2  

Let L: P1       P2 be defined by 

 

Show that L is a linear transformation. 
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 Solution 

Let p(t) and q(t) be vectors in P1 and let c be a scalar. Then 

 

 

And  

 

Hence L is a linear transformation. 

 

5.2 Properties of Linear Transformation 

Let V and W be two vector spaces. Suppose T: V   W is a linear transformation (Gilbert, 2014). 

Then 

1. T(0) = 0.  

2  T −v  = −T v    r all v ∈ V.  

3. T(u − v  = T u  − T v    r all u, v ∈ V 

4. If v = c1v1 + c2v2 + · · · + cnvn  

Then  

T(v) = T(c1v1 + c2v2 + · · · + cnvn) = c1T (v1)+c2T (v2)+· · ·+cnT (vn). 
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 Proof  

By property (2) we have 

                                                           T(0) = T(00) = 0T(0) = 0.                                               (5.1) 

So, (1) is proved. Similarly,  

                                             T(−v) = T((−1)v) = (−1)T(v) = −T(v).                                          (5.2) 

So, (2) is proved. Then, by property (1) of the definition 5.1, we have  

                                  T(u − v) = T(u + (−1)v) = T(u) + T((−1)v) = T(u) − T(v).                      (5.3) 

The last equality follows from (2). So, (3) is proved. To prove (4), we use induction, on n. For n= 

1: we have  

                                               T(c1v1) = c1T(v1).                                                                      (5.4) 

For n = 2, by the two properties of definition 5.1, we have  

                      T(c1v1 + c2v2) = T(c1v1) + T(c2v2) = c1T(v1) + c2T(v2).                                 (5.5) 

So, (4) is prove for n = 2. Now, we assume that the formula (4) is valid for n − 1 vectors and 

proves it for n. We have  

T(c1v1 + c2v2 + · · · + cnvn) = T (c1v1 + c2v2 + · · · + cn−1vn−1)+T (cnvn) = (c1T (v1) + c2T (v2) + · 

· · + cn−1T (vn−1)) + cnT(vn).                                                                                                  (5.6) 

So, the proof is complete. 

 

5.4 Linear Transformations Given by Matrices 

 

 Theorem 5.2 

 Let A be a matrix of size m × n. Given a vector 



 

43 

 

                                    = [

  

  
 
  

] ∈      define    T(v) = Av = A[

  

  
 
  

]                   

Then T is a linear transformation from    to    (Katta, 2014). 

 Proof 

From properties of matrix multiplication, for u, v ∈    and scalar c we have  

T(u + v) = A(u + v) = A(u) + A(v) = T(u) + T(v) and T(cu) = A(cu) = cAu = cT(u).  

The proof is complete (Otto, 2004). 

 

 Example 5.3  

Let L: R2      R2 be defined by 

 

 

Is L a linear transformation? 

 Solution 

Let  

 

Then 

 

On the other hand 
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Since there are some choices of u and v such that L(u + v) ≠ L(u) + L(v). we conclude that L is 

not a linear transformation. 
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CHAPTER 6 

APPLICATIONS OF EIGENVALUES AND EIGENVECTORS 

 

This chapter presents a detailed introduction of the eigenvectors and eigenvalues. It explains the 

methods to find the eigenvalues and eigenvectors in a matrix. Moreover, it discusses the 

numerous applications of eigenvalues and eigenvectors in different fields. 

 

6.1 Introduction to Eigenvalues and Eigenvectors 

 If we multiply an n x n matrix by an n x 1 vector we will get a new n x 1 vector back.  In other 

words, 

 
 

                                (6.1) 

  

What we want to know is if it is possible for the following to happen.  Instead of just getting a 

brand new vector out of the multiplication is it possible instead to get the following, 

 
 

                                (6.2) 

In other words is it possible, at least for certain λ and , to have matrix multiplication be the 

same as just multiplying the vector by a constant?  Of course, we probably wouldn’t be talking 

about this if the answer was no.  So, it is possible for this to happen, however, it won’t happen 

for just any value of λ or  .  If we do happen to have a λ and  for which this works (and they 

will always come in pairs) then we call λ an eigenvalue of A and   an eigenvector of A 

(Jolliffe, 1986). 

So, how do we go about find the eigenvalues and eigenvectors for a matrix?  Well first notice 

that if   then (6.1) is going to be true for any value of λ and so we are going to make the 

assumption that .  With that out of the way let’s rewrite (6.1) a little. 

http://tutorial.math.lamar.edu/Classes/DE/LA_Eigen.aspx#ZEqnNum514083
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Notice that before we factored out the   we added in the appropriately sized identity 

matrix.  This is equivalent to multiplying things by a one and so doesn’t change the value of 

anything.  We needed to do this because without it we would have had the difference of a 

matrix, A, and a constant, λ, and this can’t be done.  We now have the difference of two matrices 

of the same size which can be done (Janardan et al., 2004). 

So, with this rewrite we see that 

  

                                    (6.3) 

is equivalent to (6.1).  In order to find the eigenvectors for a matrix we will need to solve a 

homogeneous system.  Recall the fact from the previous section that we know that we will either 

have exactly one solution (  ) or we will have infinitely many nonzero solutions.  Since 

we’ve already said that don’t want   this means that we want the second case. 

  

Knowing this will allow us to find the eigenvalues for a matrix. We will need to determine the 

values of λ for which we get, 

 
 

  

 Once we have the eigenvalues we can then go back and determine the eigenvectors for each 

eigenvalue.  Let’s take a look at a couple of quick facts about eigenvalues and eigenvectors 

(Jolliffe, 1986). 

Fact 

If A is an n x n matrix then   is an n
th

 degree polynomial.  This polynomial is 

called the characteristic polynomial. To find eigenvalues of a matrix all we need to do is solve a 

polynomial.  That’s generally not too bad provided we keep n small.  Likewise this fact also tells 

http://tutorial.math.lamar.edu/Classes/DE/LA_Eigen.aspx#ZEqnNum514083
http://tutorial.math.lamar.edu/Classes/DE/LA_Matrix.aspx#System_Fact_2
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us that for an n x n matrix, A, we will have n eigenvalues if we include all repeated eigenvalues 

(Mashal et al., 2005). 

  

 Example 6.1 

 Find the eigenvalues and eigenvectors of the following matrix. 

                                                              

 Solution 

The first thing that we need to do is find the eigenvalues.  That means we need the following 

matrix, 

 

In particular we need to determine where the determinant of this matrix is zero. 

 

So, it looks like we will have two simple eigenvalues for this matrix,  and .  We will 

now need to find the eigenvectors for each of these.  Also note that according to the fact above, 

the two eigenvectors should be linearly independent (Smith, 2002).  

To find the eigenvectors we simply plug in each eigenvalue into (6.2) and solve.  So, let’s do 

that. 

 : 

In this case we need to solve the following system. 

 

Recall that officially to solve this system we use the following augmented matrix. 
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Upon reducing down we see that we get a single equation 

                                     

that will yield an infinite number of solutions.  This is expected behavior, so we would get 

infinitely many solutions. 

Notice as well that we could have identified this from the original system.  This won’t always be 

the case, but in the 2 x 2 case we can see from the system that one row will be a multiple of the 

other and so we will get infinite solutions.  From this point on we won’t be actually solving 

systems in these cases.   We will just go straight to the equation and we can use either of the two 

rows for this equation (Smith, 2002). 

Now, let’s get back to the eigenvector, since that is what we were after.  In general then the 

eigenvector will be any vector that satisfies the following, 

                                                 

To get this we used the solution to the equation that we found above.  

We really don’t want a general eigenvector however so we will pick a value for  to get a 

specific eigenvector.  We can choose anything (except   ), so pick something that will 

make the eigenvector “nice”.  Note as well that since we’ve already assumed that the eigenvector 

is not zero we must choose a value that will not give us zero, which is why we want to 

avoid   in this case.  Here’s the eigenvector for this eigenvalue. 

                                             

Now we get to do this all over again for the second eigenvalue. 
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 : 

We’ll do much less work with this part than we did with the previous part.  We will need to solve 

the following system. 

 

Clearly both rows are multiples of each other and so we will get infinitely many solutions.  We 

can choose to work with either row (Mashal et al., 2005).  Doing this gives us, 

                                                

Note that we can solve this for either of the two variables.  The eigenvector is then, 

                                                 

                                             

Summarizing we have, 

 

Note that the two eigenvectors are linearly independent as predicted. 
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6.2 Applications of Eigenvectors and Eigenvalues 

Many applications of matrices in both engineering and science utilize eigenvalues and, 

sometimes, eigenvectors. Control theory, vibration analysis, electric circuits, advanced dynamics 

and quantum mechanics are just a few of the application areas. Many of the applications involve 

the use of eigenvalues and eigenvectors in the process of transforming a given matrix into a 

diagonal matrix and we discuss this process in this Section. We then go on to show how this 

process is invaluable in solving coupled differential equations and the applications of 

eigenvalues and eigenvectors in Principal Components Analysis (Boldrimi et al., 1984).  

Numerous applications of matrices; in both engineering and science use eigenvalues and, in 

some cases, eigenvectors. Control hypothesis, vibration examination, electric circuits, propelled 

motion and quantum mechanics are only a couple of the application zones. Large portions of the 

applications include the utilization of eigenvalues and eigenvectors during the time spent 

changing a given matrix into a diagonal matrix and we discuss this procedure in this Section. 

  

6.2.1 Diagonalization of a matrix with distinct eigenvalues 

Diagonalization means transforming a non-diagonal matrix into an equivalent matrix which is 

diagonal and hence is simpler to deal with. A matrix A with distinct eigenvalues has eigenvectors 

which are linearly independent (Boldrimi et al., 1984). If we form a matrix P whose columns are 

these eigenvectors, it can then be shown that 

 et P  ≠  

so that P −1 exists. 

The product P −1  AP is then a diagonal matrix D whose diagonal elements are the eigenvalues 

of A. Thus if λ1, λ2,   λn are the distinct eigenvalues of A with associated eigenvectors X1, X2,...,Xn 

respectively: 

                                             P =  [     :            ]                                          (6.4) 

will produce a product 
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                                                AP = D =  

[
 
 
 
 
                 
                

 
 

                ]
 
 
 
 

                                             (6.5) 

We see that the order of the eigenvalues in D matches the order in which P is formed from the 

eigenvectors.  

Note 6.1 

(a) The matrix P is called the modal matrix of A.  

(b) Since D, as a diagonal matrix, has eigenvalues λ1, λ2,   ,λn which are the same as those of A 

then the matrices D and A are said to be similar. The transformation of A into D using    AP =

D =  is said to be a similarity transformation. 

 Example 6.2  

Let A = [
       
−2     4

]. The eigenvalues of A are   = 2 and   = 3 and associated vectors are 

 

respectively. Thus 

 

Hence  

 

On the other hand, if we let   = 3 and   = 2, then  
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And  

 

 

6.2.2 Systems of linear differential equations-Real, distinct eigenvalue 

Now, it is time to start solving systems of differential equations.  We’ve seen that solutions to the 

system, 

  
 

                                  (6.6) 

will be of the form 

                                                                                                                        (6.7) 

where λ and  are eigenvalues and eigenvectors of the matrix A.  We will be working with 2 x 

2 systems so this means that we are going to be looking for two solutions,   and  , 

where the determinant of the matrix, 

 
 

                                  (6.8) 

is nonzero.  

We are going to start by looking at the case where our two eigenvalues,   and  are real and 

distinct.  In other words they will be real, simple eigenvalues.  Recall as well that the 

eigenvectors for simple eigenvalues are linearly independent.  This means that the solutions we 

get from these will also be linearly independent (Smith, 2002).  If the solutions are linearly 

independent the matrix X must be nonsingular and hence these two solutions will be a 

fundamental set of solutions.  The general solution in this case will then be, 

http://tutorial.math.lamar.edu/Classes/DE/SolutionsToSystems.aspx
http://tutorial.math.lamar.edu/Classes/DE/LA_Eigen.aspx#EV_Fact
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                                                                    (6.9) 

 

 Example 6.3 

 Solve the following IVP. 

                                             

 

 Solution 

So, the first thing that we need to do is find the eigenvalues for the matrix. 

 

Now let’s find the eigenvectors for each of these. 

  

 : 

We’ll need to solve, 

 

The eigenvector in this case is, 
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: 

We’ll need to solve, 

                 

The eigenvector in this case is, 

                                       

Then general solution is then, 

                                                   

Now, we need to find the constants.  To do this we simply need to apply the initial conditions. 

                                                 

All we need to do now is multiply the constants through and we then get two equations (one for 

each row) that we can solve for the constants.  This gives, 

                                  

The solution is then, 
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6.2.3 PCA based eigenvectors and eigenvalues 

Principal Components Analysis (PCA) is a way of identifying patterns in data, and expressing 

the data in such a way as to highlight their similarities and differences. It is one of several 

statistical tools available for reducing the dimensionality of a data set based on calculating 

eigenvectors and eigenvalues of the input data. Since patterns in data can be hard to find in data 

of high dimension, where the luxury of graphical representation is not available, PCA is a 

powerful tool for analyzing data. The other main advantage of PCA is that once you have found 

these patterns in the data, and you compress the data, i.e. by reducing the number of dimensions, 

without much loss of information. This technique used in image compression, as we will see in a 

later section. This chapter will take you through the steps you needed to perform a Principal 

Components Analysis on a set of data (Rafael, 2012).  

 

 Definition 6.1 

Let X jk indicate the particular value of the k
th

 variable that is observed on the j
th

 item. We let n 

be the number of items being observed and p the number of variables measured. Such data are 

organized and represented by a rectangular matrix X given by a multivariate data matrix. 

                                                                

In a single-variable case where the matrix X is n x 1, 

                                                                                                                           (6.10) 

The mean  
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                                                                                                                         (6.11) 

And the variance  

                                                                                                          (6.12) 

In addition, the square root of the sample variance is known as the sample standard deviation. 

 

 Example 6.4  

If the matrix  

                                      X =  [97  92  9   87  85  83   83  78  72  7   7   65]T
 

is the set of scores out of 100 for an exam in linear algebra, then the associated descriptive 

statistics arc  ̅ ≈ 81,  s
2
 ≈ 90.4, and the standard deviation s ≈ 9.5. 

Mean of the k
th

 variable 

                                                                                  (6.13) 

Variance of the k
th

 variable 

                                                                           (6.14) 

For convenience of matrix notation, we shall use the alternative notation Skk for the variance of 

the k
th

 variable; that is, 

                                                        (6.15) 

A measure of the linear association between a pair of variables is provided by the notion of 

covariance. The measure of association between the i
th

 and k
th

 variables in the multivariate data 

matrix X is given by 
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                                     (6.16) 

which is the average product of the deviations from their respective means. It follows that sjk = 

ski, for all i and k, and that for i = k, the covariance is just the variance, s
2

k = .skk 

Matrix of variances and covariances = 

                                                                                (6.17) 

The matrix Sn is a symmetric matrix whose diagonal entries arc the sample variances and the 

subscript n is a notational device to remind us that the divisor n was used to compute the 

variances and covariances. The matrix Sn is called the covariance matrix.  

 

 Theorem 6.1 

Let Sn be the p x p covariance matrix associated with the multivariate data matrix X. Let the 

eigenvalues of Sn be λj, j = 1, 2,….,p λ1  ≥  λ2 ≥  …… ≥ λp ≥ 0, and let the associated orthonormal 

eigenvectors be uj , j = 1, 2 ....., p. Then the i
th

 principal component yi is given by the linear 

combination of the columns of X, where the coefficients are the entries of the eigenvector ui; that 

is, 

yi = i
th

 principal component = Xui 

 Example 6.5 

Let                                                          X =  

[
 
 
 
 
 
39  2 
59   28
 8    
2    3
 4    3
22     ]

 
 
 
 
 

 . 
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Find the covariance matrix of X? 

 Solution 

We find that the means are 

 

and thus we take the matrix of means as 

 

The variances are 

 

While the covariances are 

 

Hence we take the covariance matrix as 

 

 

 Example 6.6 

Determine the PCA of y1 and y2 of covariance matrix in example 6.5?  

 Solution:  

 we determined the eigenvalues of the matrix Sn . 

 λ1 = 282.9744       and       λ2 =3.2256 

and associated eigenvectors 
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Then, using Theorem 6.1 we find that the first principal component is 

y1= 0.9260col1(X) + 0.3775col2(X) 

and the second principal component is 

y2=0.3775col1(X) – 0.3775col2(X) 

 

6.2.4 PCA for image compression 

Principal Component Analysis – PCA was used for the recognition of patterns and compression 

of digital images used in Medicine. The description of Principal Component Analysis is made by 

means of the explanation of eigenvalues and eigenvectors of a matrix. This concept is presented 

on a digital image collected in the clinical routine of a hospital, based on the functional aspects 

of a matrix. The analysis of potential for recovery of the original image was made in terms of the 

rate of compression obtained. 

Principal Components Analysis (PCA) is a mathematical formulation used in the reduction of 

data dimensions. Thus, the PCA technique allows the identification of standards in data and their 

expression in such a way that their similarities and differences are emphasized. Once patterns are 

found, they can be compressed, i.e., their dimensions can be reduced without much loss of 

information. In summary, the PCA formulation may be used as a digital image compression 

algorithm with a low level of loss (Rafael, 2012). 

Use of the PCA technique in data dimension reduction is justified by the easy representation of 

multidimensional data, using the information contained in the data covariance matrix, principles 

of linear algebra and basic statistics. The studies carried out by Mashal (Mashal et a., 2005) 

adopted the PCA formulation in the selections of images from a multimedia database. According 

to Smith (smith, 2002), PCA is an authentic image compression algorithm with minimal loss of 

information. The relevance of this work is in the performance evaluation of the PCA formulation 

in compressing digital images from the measurement of the degree of compression and the 
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degree of information loss that the PCA introduces into the compressed images in discarding 

some principal components. 

6.2.4.1 MRI (Magnetic Resonance Imaging) image compression using PCA 

The steps normally followed in a PCA of a digital image can now be established:  

Step 1: In the computational model of a digital image, in equation (6.10), the variables X1, X2 

,...,Xp are the columns of the image. The PCA is begun by coding (correcting) the image to that 

its columns have zero means and unitary variances. This is common, in order to avoid one or the 

other of the columns having undue influence on the principal components (Gonzalez and Woods, 

1992) 

image corrected by the mean = image – mean of the image 

Step 2: The covariance matrix C is calculated using equation (6.16), implemented 

computationally, that is:  

covImage = image corrected by the mean × (image corrected by the mean)
T 

Step 3: The eigenvalues l1 ,l2 ,...,lp and the corresponding eigenvectors a1 , a2 ,..., ap . are 

calculated.  

Step 4: The value of a vector of characteristics is obtained, a matrix with vectors containing the 

list of eigenvectors (matrix columns) of the covariance matrix (6.16). 

vc = (av1 , av2 , av3 ,..., avn ) 

Step 5: The final data are obtained, that is, a matrix with all the eigenvectors (components) of 

the covariance matrix. 

finaldata = vc
T
 × (Image - mean)

T
 

Step 6: The original image is obtained from the final data without compression using the 

expression Image  

T = (vc)
T
 × finaldata + mean

T
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Step 7: Any components that explain only a small portion of the variation in data for the effect 

of image compression are discarded. The eliminations have the effect of reducing the quantity of 

eigenvectors of the characteristics vectors and can produce final data with a smaller dimension.  

 Compression ration 

According to Castro (Castro, 2010), low-loss compression afforded by the present method may 

be expressed in terms of the compression factor of (r) and of the mean squared error (MSE) 

committed in the approximation of A (original image) by Ã (image obtained from the disposal of 

some of the components) (Gonzalez and Woods, 1992). The compression factor is defined by: 

                                                                 (6.18) 

And the MSE committed in the approximation of A by Ã is: 

                                                                                (6.19) 

 

 Example 6.7 

Recovering a TIFF image with 512*512 pixels with all the components (512) of image 

covariance matrix (without compression, i.e., steps 1 to 6). 

 

Figure 9: MRI original image (512*512) (Rafael, 2012) 
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Figure 10: Recovered image without compression (Rafael, 2012) 

 

 Example 6.8 

 Recovery of a TIFF image with 512x512 pixels with 112 principal components of the 

covariance matrix of the image (with compression, that is, steps from 1 to 5 to 7). 

 

Figure 11: MRI brain original image (Rafael, 2012) 
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Figure 12: compressed image using PCA (Rafael, 2012) 

 

 Example 6.9  

 Recovery of an image with 32 principal components of the image covariance matrix (with 

compression). 

 

Figure 13: Original MRI image 3 (Rafael, 2012) 
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Figure 14: Compressed MRI image (32*512) (Rafael, 2012) 

 

6.3 Results Discussion 

Examples 6.3 to 6.5 show the effects of the reduction in number of principal components 

(elevation of the image compression rate) in the increased loss of information. This application 

may bring great savings in storage of medical images. However, the level of information 

preserved depends on the parameters (compression rate), and should be modulated by the user’s 

interest. The higher the compression rate (the fewer principal components are used in the 

characteristics vector) the more degraded the quality of the image recovered (Example 6.5). In 

certain applications, such as brain function images, the central principle is the variation of the 

resonance signal over time. In these conditions, the spatial information may be maintained in a 

reference file, making it possible to compress subsequent images with no loss.  

On the other hand, it is still necessary to evaluate the pertinence of the application of high 

compression rates when an assessment of structures of reduced dimensions relative to the size of 

the voxels is needed. Furthermore, the observation of the results from the application of the PCA 

technique in medical images may be considered a complexity measure.  

In other words, images with dense texture patterns tend to produce different results with the use 

of the technique described. Nevertheless, this hypothesis was not tested in this project; it only 
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points to the line of investigation, in which the results may certify and quantify this possibility. 

New secondary applications (based on the results here described) may encompass various 

conditions in the medical routine.  
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CHAPTER 7 

CONCLUSION 

 

7.1 Conclusion 

 

Overall, in addition to its mathematical usages, linear algebra has broad usages and applications 

in most of engineering, medical, and biological field.  As science and engineering disciplines 

grow so the use of mathematics grows as new mathematical problems are encountered and new 

mathematical skills are required. In this respect, linear algebra has been particularly responsive 

to computer science as linear algebra plays a significant role in many important computer science 

undertakings.  

The broad utility of linear algebra to computer science reflects the deep connection that exists 

between the discrete nature of matrix mathematics and digital technology. In this thesis we have 

seen one important applications of the linear algebra which is called principal components 

analysis. This technique is used broadly in the medical field for compressing the medical images 

while keeping the good and needed features. However, this is not the only application of linear 

algebra in this field. Linear algebra has many other applications in this field.  It provides many 

other concepts that are crucial to many areas of computer science, including graphics, image 

processing, cryptography, machine learning, computer vision, optimization, graph algorithms, 

quantum computation, computational biology, information retrieval and web search. Among 

these applications are face morphing, face detection, image transformations such as blurring and 

edge detection, image perspective removal, classification of tumors as malignant or  benign, 

integer factorization, error-correcting codes, and secret-sharing. 
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