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ABSTRACT

Vertical axis wind turbines are of different types and Savonius wind turbine is of them. It

IS characterized as cheaper, simple in construction and low speed turbine. It is basically
used in applications where high torque low speeds are required such as water pumping
although it is also used in electricity generation for residential purpose andl smal
commercial use. This research is done to create model to predict the aerodynamic
performance of Savonius wind turbine such as the torque, torque coefficient and power
coefficient. In this researchartificial neural networkand trigonometric Fourieseries

modeling has been used to predict the aerodynamic characteristics based on four past
experi ment al datads with various geometries
A trigonometric Fourier series and back propagation neural network architecture are used

in the prediction of various gsformance terms of different Savonius wind turbine
geometries. The torque coefficient, torque and power coefficient are the performance terms
predicted as a function of rotor angl e. Di
training the back propagon neural network after which the network is tested with new

data to evaluate its performance and generalizatioityabilhe mean square errand

coefficient of determination also calledsQuare (R) are used in evaluating the network
performance forboth training and testing as the case maybe. Both the trigonometric
Fourier series and back propagation models gives a good result within an acceptable error

limit.

Keywords: Artificial intelligence; artificial neural network;Fourier series R-squared

Savonius wind turbine
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CHAPTER 1
INTRODUCTION

1.1 Study Background

Wind energy refers to the process by which wind is used to genmethanicapower

that can be harnssed to produce electricitftheyare used taransformenergyof wind to
mechaical energy as in the caséwind mill and produe electricity.

Horizontal axisand vertcal axis also written as HAWT andAWT respectively are the

two main categories of wind turbines. HAWT has axis of rotation parallel to the ground
while VAWT has axis of rotation perpendicular to the groovdWT has simple structure
andeasy to instalthanHAWT.

VAWT rotors are of differentypes and Savonius rotor is one of them. The Savaning
turbine rotor has shape of letter Scirosssection and is madieom two or moreblades

also called bucketfixed between two end platek. is used in applications such as
pumping watermilling, sawing,driving an electrical genet@ and providing ventilation.

In recent times many researchersre making efforttowards the useof artificial
intelligence inpredicting theperformanceof wind turbine rotor which wouldomplement

for the timeandcostinvolved in testing the wind rotors for the variety of input paramset
Artificial neural néwork (ANN) modelling is one of such techniques.

In this researchieed forwardback propagation network architecture, ANN, and Fourier
seres, FS, are used to create a model between various performance parameters (such as the
torque, torque coefficient, power coefficient and rotor angle) of Savonius wind turbine.
Several data were obtained from published experimental data on the Savoulitigriiime

rotors and a comparison is made between ANN and FS models with published
experimental data to ensure the accuracy of the models. Additionally, ANN and FS models
are compared with RBF rdels (Published models).



1.2 Aims of the Research

The aimsof this research work are as folows:
I. To create a model using ANN and FS to predict the aerodynamic characteristics of
Savonius wind turbines with various geometries.
. To make comparison between results of thkbove models withpublished

experimental resudt obtained of previous works bgriousresearchers.

1.30utline of the Research
This research work is outlined in the following order:

i. A summary of wind turbine theory, artificial intelligence, Fourier series and a brief
study of various experimentahd numerical work carried out on Savonius wind
turbine

ii.  The result and discussion on different methodology used in the present study and
finally the conclusion.



CHAPTER 2
WIND TURBINE THEORY

2.1Wind Concept

Winds are motion of air masses in #ienosphere and an indirect action of solar radiation
unevenly hitting the earth as they are generated mainly by temperature variation within air
layers due to differential solaheating. Itis a form of renewable energy generated from
solar energy unevenlfeating the earth. This non uniform heating generates pressure
changes in the atmosphere resulting to wind which can be harnessed using wind turbines.
As the wind pushes the turbine blades, a generator attached to the shaft axis and when spun
creates elddcity that can be sent to grid fosage(Adaramola, 2014)

It is an enwionmental friendly energy suppthat possess immengetential to meet the
energy desires of individualand additionallyto ease theglobal climate change from
gasses such as @¢@nd SQ emited by burning fossil fuels. Temillion megawatt of
energy are preseniee a r avhilaldewind according toough etimation by reseahers
(Wenehenubuet al., 2015).

2.2Wind T urbines

Wind turbinesgenerate electricity by turninkinetic energy of windnto torque (force)
which causes the turbines to turn and drives an electrical gendratiher words, wind
turbines works the opposite of a fahney use wind to generate electricity rattiean using
electricity to make wind like a fafhey basically consist of aerodynamicdtliades that

are rotatingandfixed on shaftvhich transfers the cread powerinto the individualkenergy
utilizing device (such amilling, sawing,generatoandpump (Ali, 2013).

The wind movs past the wind generator blades or rotors resulting to low pressure system
on the trailing edge of the blades similar to airplane wing. The efficiency of wind turbine is
greatly affected by the size and shape of rotors, turbine location which includes the
geography and height and other mechanics that either increase or decrease drag force on
the system. Many believe the old style windmill with many blades is more efficient as a
result of many rotors. But, the number of rotors aatudly increase thelrag add extra

weight and get in the way of wind flow through the blade axeav days two or three



bladed turbines are most popular because of more thrust and less wstdnoesi

(Tummala et al., 2016).

Wind turbines are a clean way to geneate electricity, but there are many significant

problems associatedvith them as well. One major shortcomings that they are highly

expensiveto desgn andinstall, andin order to generatesufficient windenegy for locals

and citiesa spacds required for wind farms. Anotherissueis thatthey have to becreatedn

locationswith sufficientwind enegy to produceenough electricityto justify the costof the

machine.

In history, they were more frequently used as mechanical device that turned machinery but

today windturbines can be used to generate large amount of electrical energy stodineon

and offshordJin et al., 2016).

According to Menet (2004) the procedure of converting wind into mechanical energy

starts with the blades of the wind turbine. That is thehft drag type blade designs:

A Lift type: This is the most common type of modern horizontal axis wind turbine blade
located in big wind farms. The blade desigrsiimilar to airplane wing. As the wind
blows on both side of the blade, it takes the wind lmngavel across the leading edge
resulting to lower and higher air pressure on the trailing edge. The pressure difference
Opull s6 and 6épushesb6é the blade around. T
than the drag type which make them well suitadelectricity generation.

A Drag type:The first set of wind turbines created used the drag design. This design
normally uses the wind force to push the blade. Savonius wind turbine is a typical
example of this design. The wind is resisted by the bladegamde wi nddés f or c
pushes it around. Turbines in this category have slow rotational speed with higher
torque than the lift type. The design has been used for centuries in milling, sawing,

pumping and rarely used for large scale energy generation.

2.3 Horizontal Axis Wind T urbine (HAWT)

In HAWT the rotors rotationaxis is parallel to wind seam and the ground. Both the
electrical generator and rotor shafe positioned at the top of thewer. Most HAWTSs

now are two or three bladed, though some may have fewap@ bladegAl-Shemmeri,
2010)

HAWT blades operate to extract wind energy by generating lift/ resulting to a net torque

about the axis of rotatio.o perform such task effectively, especially for large HAWTS,



active pitch controllers are employed to ensure that each blade is adjusted to maintain the
required angle of attack for maximumvper extraction at a given spe@fai & Wang,
2016)

Figure 2.1 HAWT

The turbine blades are constrained to move inglaith a hub at its center, as such the lift
force inducs rotation about the hub. In addition to lifting force the drag force which is
vertical to the lift forceetard rotor rotation. HAWT must be pointed to the wind direction

for optimum efficiency. The smaller scale turbines use a wind vane (tail fan) while the
utility scale use sensor and servo motor to keep pointed in the right direction. This type of
wind turbines are havhigher effciency than VAWT as such been used generatiorof
eledricity (Tummala et al., 2016).

HAWT can be classified into two groups depending on the different relative position of the

rotor and tower as:

2.3.1Upwind wind turbine

In this type of HAWT the rotor rotates before the tower facing the wind. It is designed to
have to have a certain type of steering installation to make sure the rotor is directed toward
the wind during work.



2.3.2 Downwind wind turbine

In this case the rot is installed on the tower following the wind. This does not require any

steering installation as the turbine will antatically face the wind.

W

/
- @1 - ¢

{
J

S 1 =5 14
Upwind HAWT Downwind HAWT

Figure 2.2 Upwind and Downwind HAWT

Horizontal axis wind turbines can also be categorized into the tifttta resistance type.

The lift type has a high rotational speed while the resistance type has a low rotational

speed. The lift type is more frequently used to generate power. Most of HAWTs has the

steering device and can rotate with the wind. A tail visnesed as steering device for

small sized wind turbine while sensors and servo matemused for large sized tygBai
& Wang, 2016)
HAWT has advantages over VAWT such as:

A
A
A

A
A
A

Most of HAWTSs are selbtarting

Can be cheaper dwe high production volume

HAWTs gets maximum amount of wind energy because the angle of attack can be
remotely adjusted

The turbine is stable because the blades are to the side of its center of gravity

Tall tower allow access to stronger wind

It has the hility to pitch rotor blades in a storm so as to minimize damage

However, the disadvantages of HAWT compared to VAWT include:

A
A

May cause navigation problems when offshore

Difficulties operating near the ground



A Long blades and tall tower are difficult to isport from one place to another and
require a distinct installation procedure.
A Mainly employed for electricity generation

A Mainly used in areas with permanent and high speed wind

2.4Vertical Axis Wind T urbine (VAWT)

VAWT has axis of rotationperpendicular to the groundhe generator, gearbox and
vertical rotorshaft areplaced on the groundnd specially designed rotor blade to capture
wind energyirrespective of which direction it is blowing (A8hemmeri2010).

Though lessefficient thanHAWT, it offers solution in low wind speed asavherein
HAWTSs have a high time operatintj.is easier and safer to fabricate, it can be installe
nearthe ground and can handle turbulence better than HAwWdthis makes VAWT more
suited to residential arsawhere obstacles such as other houses, buildings and trees
generally disturb the airflofWwenehenubun et.al015).

2.4.1Darrieus wind turbine

French engineer G.J.M Darrietisst proposed tie Darrieuswind turbinein 1931The
turbine consist othin curved blades placed vertically on a rotating shaft or framework.
They are commonly called AEggbeater o turbi:
(Jin et al., 2016).

The turbine blades rolled into chain lingsined to the shaftat the upstreamand
downstreamside. The wind engy is taken by the lift forceomponent operating in the
direction of rotation in the way as HAWT. However, a Darrieus rotor with straight blades
(H-Darrieus) has been developed with large hubs provided with spdKeen it has
enough speed, the wind moving throudpie tairfoils generates torque thubke rotor is
movedby the wind. The blades allow the turbine to attain speeds higher than the actual
wind speed which makes the Darrieus rotor well suited to electricity genendtemthere

is wind turbulencdJin et al., 2016).



Figure 2.3: Darrieus wind @irbine

2.42 Savonius Wind Turbine

This is one of the categories¥ VAWT invented and patented by SavoniusSigurdin

1922 a Finnish Engineerlt comprisesof two or moresemicircular blades also called
buckets fixed beteen two end plates. Atwoblaleo ok | i ke the | etter
section. Thebucket will make the flow withirthe rotor egularand itis based on drag
concept (Rosmin et al2015)

Savonius rotor is used fgpumping water, driving electrical generatpiventilation and

many more It also has excellennitial torque &ad good peak power return for particular
rotor size,cost andweight which makest less efficient.In aerodynamicefficiency view

the Savonius rotor cannot compete wiblarrieus type wind tiines and high speed
propellerySaha & Rajkumar, 2006)

Providing a certain overlap between drums increases the torque because the wind blowing
on the concave side turns around and pushes the inner surface of the other drum, which
partly cancels the wind thrust on the convex side. An overlap oftbind of the drum
diameter giveshe best resultéSingh, 2008)
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Figure 2.4: Savonius rotor

Menet (2004) outlined some advantages and disadvantages of Savonius wind turbines as

follows:

A They are simple machines as such easy to construct with low cost

A Can be designed with different rotor configurations

A Easy to maintain

A Theyare able to start and run at whatever wind velocity because of their high starting
torque

A Little noise and angular velocity operation

A They are supposed to be running even in <c
running wind turbines must be stoppe

A Ability to capture wind from any direction

The main shortcomings of Savonius wind turbines include:

A Low efficiency

A Slow running behavior

Advantages oVAWTs

A Good for places with extreme weather conditions like mountains
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Turbine blades spin at loweelocity thus reducing the chances of birds injury
Easy access to maintenance because VAWT parts are placed near the ground
Little production, transportation and installation cost

VAWT does not need to be pointed towards wind direction in order to beesffic

Suitable for places such as hilltops, ridgelines and passes

On the other hand VAWT has some shortcomings such as:

A
A

Most of VAWTSs are only as half as efficient as HAWTs due to drag force

Airflow near the ground and other objects can create turbulenttfias resulting to
vibration

Guy wires may be needed to hold VAWTSs up (guy wires are heavy and impractical in

farm areas)

Table 2.1:Comparative parameters between VAWT and HAWT

Serial number Performance VAWT HAWT

1 Power generatiol Above70% 50%-60%
efficiency

2 Noise 0.1Db 5.6Db

3 Starting wind speed | Low (1.53m/s) High (2.55m/s)

4 Failure rate Low High

5 Maintenance Simple Complicated

6 Rotating speed Low High

7 Power curve Full Depressed

8 Effect on birds Small High

9 Cable standing No Yes
problem

10 Wind resistancq Strong (can resi§ Weak
capacity typhoon up to 12

14 class)

11 Blade rotation space | Small Large

12 Gear box No Yes Above 10KW

13 Wind steering No Yes
mechanism

14 Electromagnetic No Yes
interference

15 Ground projectionn No Dizziness
effects on  humal
beings

10



2.4.3Theory of Savoniuswind turbine

Savonius wind turbine operatbecause dhe variationof forces exerted on itislade. The
concave side to wind directiaraptues the wind andauseshe blade to rotate withiis
middle perpendiculashaft. Onother hand, the convex sectibits the air wind and causes
the blade deflect sideways inbetwi#re shaft. @rvatureof the bladehas less draghen
movingagainst wind aE.nvexthanblades movingvith wind atFeoncave@s showm in Figure
2.5. Therefore the concave blades that hamredrag force than the convex siddl cause
the rotorrotation(Ali, 2013).

BLADE

Figure 2.5: Two blades convention&avoniusvind turbine(Ali, 2013)

Therotor torque (), torque coefficient (¢ and power coefficient(Cp) of Savonius wind
turbine rotor are used to express its performance charactemstomsnparison withthe
rotor angle.
The torque is a twisting force that tends to cauasation. It is the forcéangentiallyacting
on bladeof the rotor atradius (r) tathe center. The point where the rotor rotates is called
the center of rotation. It is expressed as:

Y Oi 0a ¢P
The torquecoefficient is expressed aatio of the torque develop by the rotod () to the

torque presenh the wind (T,) as:

YEOHEL o'W Y &
0QEYET ROR P+ 5 0 0 o G
T
T=rot or t or q wrrdtahomgd speeffad/s),D=diameterof rotor(m),} = A

density (kg/ni), H= rotor height (m), V=md speed (m/s) and dstadediameter(m).
The powercoefficient(Cy) is the ratio of maximum powdrom the wind (B to the total

power available in thevind (P,) as:

11
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Another term called the static torque fCcan be used to evaluate wind turbine

pefformance The static torque coefficient is expressed as:
« Y Y 8
0] < C
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2.5Reviews on Wind Turbines

Many researchers have been working to enhance and better the aerodynamic characteristics
of Savonius wind turbine. This reselanvork ranges from laboratory experiment, full scale
simulation to numerical and theoretical prediction for flow around Savonius wind turbine.

A lot of work has been donen HAWT and Darieus VAWT, because of their high
prospect of wind energy efficienciresently, an extensive research work has been carried
out on Savonius wind turbine by several researchers around the globe so as to improve its
performance and make it suitable for small scale power production. A brief literature of
experimental and numieal work on Savonius wind turbine will be presented in this

chapter.

25.1 Related research on eperimental investigation

Ali (2015) conducted an experiment to study the performance and make comparison
between two and three bladed Savonius wind turbifnewawind speed. Two models of

two and three blades were fabricated from Aluminum sheet for this work. The two models
were assembled with zero overlap ratio and separation gap. Observation from the measured
and calculated result indicates that the twalethSavonius wind turbine is more efficient

and has higher power coefficient under the same test condition than the three bladed
Savonius wind turbine. This is because increasing the blade number will increase the drag
surfaces against wind airflow and de¢o increase in the reverse torque and causes the
decrease of the net torque workingtba Savonius wind turbine blade.

McWilliam et al. (2008) investigated different Savonius wind turbine models to observe
the vortex formation and the effect of the scaf downstream wakesing particle image
velocimetry (PIV) in a close loop wind tunnel. In that experiment, they used standard

Savonius design (diameter = 30.18 mm) with tvemngircular blades overlappinghe

12



design of these blades include deep bladegde(diameter = 31.20 mm), shallow blade
design (diameter =28.04mm), outside J blade design (diameter = 32.97 mm) and inside J
blade design (diameter = 31.18mm).They executed the experiment at a constant 3 m/s wind
velocity. They observed that vortex skdedy from the following blade was common to all

five designs they tested, which had an effect on the scale of the downstream wake of the
rotor. They found that the forward curved blade was the critical area for external flow and
the overlap ratio of Savams wind turbine blades allows flow from the top blade to enter
the bottom blade that reduces the negative pressure region behind the blades.

Gupta et al(1988) combined Savonius wind rotor and Darrieus type eir #xperiment.

The results obtained were compared with the conventional Savonius rotors. They found an
improvement in power coefficient with the combined Savelasieus rotor.

The aerodynamic performance of Savonius wind turbine by measuring thbutistriof
pressure on the blade surfaces at various rotor angles and tip speedeeticsudied by
Fujisawa et al.(1994) torque and power performance were evaluated by integrating
pressure were in close agreement with the experimental torque meaguremen

Aldoss et al(1987) used the discrete vortex method to measure the perfmroanwo
Savonius rotors operatinside by side at various separationshel computationabnd
experimental resugton toique and power coefficient were compared and are canigat

with each other.

Sawada et al(1986) examied the rotational mechanism of Savonius wind turbine with
two semicylindrical blades and found that a rotor with a gap ratio of 0.21 yields positive
static torque at all angles. They also observed thdifttierce contributes significantly to

dynamic torque at rotor angles between®2ttd 336.

2.5.2 Related research on numerical investigation

Akwa et al. (2012) examined numerically the influence of overlap ratio of Savonius wind
turbine on power and torque coefficient. Results obtained show a maximum rotor
performance at overlap ratio close to 0.15.

Sargolzaei et al. (2009) carried out a modelind aimulation of wind turbine Savonius
rotor using artificial neural networks for estimation of torque and power ratio based on
experimental dataollected from prototypeested in wind tunnel. The torque and rotors

power factor were simulated at varioug speed ratio and blade angles. Based on the

13



artificial neural network and experimental results, the tip speed ratio is directly
proportional to power ratio and torque. The maximum and minimum torque occurs at an
angle of 68 and 128 respectively for althe tested rotors.

Altan et al.(2008) simulated their experimental work numerically using FLUENT 6.0 and
GAMBIT 2.0. They used two dimensional and standard k t ur bul ence mod e
implicit method for pressure linked equation (SIMPLE) analysis alyorivas employed

to calculate pressure and velocity distribution. After comparing the numerical with the
experimental results, it was concluded that curtain improved the Savonius wind turbines
performance.

Rahman et al(2009) conducted both experimentaldawork and computational fluid
dynamics (CFD) simulations to establish the possibility of improving the performance of
three bladed, simple Savonius vertical axis wind turbine. The torque coefficient, tangential
drag coefficient and normal drag coefficiemere evaluated both experimentally and
numerically. The results were compared and are in good agreement. The numerical results
were more accuta and gave positive values for tbembined drag coefficients andtal

static torque coefficient.
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CHAPTER 3
ARTIFICIAL NEURAL NETWORKS

3.1 Artificial Intelligence (Al)

This is a specialization incompuer science devoteth software packagescapable of
performing intelligent and complexcomputations analogous tohat brain of humars
performs habitudy. It involves wayg, equipmentandprogramsedicated to imitate human
ways of logical information processing and reasoning human brain for problems
solution(Kustrin & Beresford, 2000)

Artificial intelligencedevelopments are of two types:

3.1.1 Expert ystems

Expert systems include process and networks thaaterthe experience of humarmsd
make deductions using somseet of rules.They are knowledge orientedyssems, a
continuation of tradional computationalso known asthe 5" genersion computing.
Recognitionbase allow expés to specify set of rules which imitathinking process and
leads to an easiest rout® draw conclusions angrovide solution tgroblems g taking
the guide linesset nto considerationUsing expert systems logical reasan can be
modeled by composing setef logical prepaitions and carrying out intelligent
modificatiors upon themThey are vey important in medicineand many othemedical
diagnostic problems solutiqiKustrin & Beresford, 2000)

3.1.2 Artificial neural networks

ANNSs arecomputer prognasthat are inspired biologicallip imitate somébasic task of

the human brain byarious traning algorithms that can comprehefrdm experience.
They ae structures composed of highiytegratedflexible simple processing elements
(known as artificial neurons or noddkat are have the abilitgf performing massively
parallel computations for processimtata and knowledge represaion. ANNs learn
through experience with the proper tréimg examples as humardo and not from
conventional computer program8NNs have information processing characteristics of
human brains likenonlineaity, learning, failure andoleranceof fault, robustnes, high

parallelism andability to generalize. Therefore, ANNs are used in solvieqplex real
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life problems likeoptimization, function approximation andagtern classification. Table
3.1 below shows a comparison betweANN and ©nventional computindSun et al,
2003).

Table 3.1:Comparison betweeANNs and conventional computing

Characteristics

Conventional

computing

(including expert systems)

Artificial neural networks

Learning rule Rules By experience
Functions Logically Perceptual pattern
Methodof processing Sequential Parallel

Various ANN modelswas developed for numerous different applications. ANN models
can be supervised or unsupervised based on the learning (training) algorithmpthe

and output data sets greesented to the ANN modigr supervised learning whilenly the

input data set is presented ttte ANN modelin unsupervised learning which learns to
recognize the pattern in the da#dN can also be classified accorditggtopology as feed
forward andfeedback.The connection between neusodoes not form circles feed
forward architectureThe model does not have a connection back from the output to input
neurons and thus the record of previous output values are not available. In Feedback ANN
modelsthe connection between nodes consists of circles. The output of one layer routes
back to the input of same layer or previougela Feedback models are normalrery
difficult to train than the feed forwar(Sun et al 2003).

Figure 3.1: Feedbacketwork(Kustrin and Beresford, 2000)
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Figure 3.2: Feedforward network(Kustrin & Beresford, 2000)

3.2 Artificial N euron

Artificial neuron is the main element of artificial neural netwdesigned to imitat¢he
functions of biologicalneuron. Inputs signal times the connection weight first
combined (mmed) and then passed thensfer function to produagesired output othat
particular neuron. The activation funct.i
and sigmoid funtton is mostlyused (Kustrin &eresford, 2000).

Artificial neurons or nodes are the building block of ANN which process information
based on weighted inputs usitigansfer functions and senoutputs. Adjacent layers
neurors are fully or partiallyconnected with wetgied links. Nt input into aneuronis

given as:

. AT B AOOIT T @x oD

xEAOA OBAAE@AA OT O

E xW1
& xWa f(zwsxi)

X W

Figure 3.3 Artificial neuron modelKustrin & Beresford, 2000)
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3.3 Componentsof Artificial N euron

3.3.1 Bias

A bias increases the neural network performance. It functions as a weight on a connection
from unit that always has activation function of 1. The same way to initialization of
weights,bias should be initialized to either O or any other specific value based on neural

net. The net input if bias is present is given as:
0Qo® WL o8,
Where Net=net input, b=bias,;xinput from neuron i and wweight of neuron i to the

output neuron

The actrvation N
——

N W%*"f#’_a
X2
S

Figure 3.4: A simple network with bias included

3.3.2Weighting factors
Artificial neuron normally receives manyput variables at same timA. Particular input
possesseis own weight thagives it the impact it ragres on thesummation function.
Some inputs @ designed to be more essentin others so as tmve highmpact on the
neuron as they join together to gigeneural outputThe weightsused on the different
layers exert morenfluence in the function of neural netwo&tepsbelow are taken when
choosing the weights:

1 Run the network with one set of weights

1 Run the network again with new sets of weights after modifgmmeor al the

weights

1 The process isspeagduntil some predetermined goal is achieved

18



3.3.3Summation Function
The initial step in neural network processelgments function is computirtbe weghted
sum of all inputs tamneuron. Mathematically, theputsdata and the equivalemeights are
like vectors that @n be expressed as,(l.... Iv) and (W, W»¢ W) respectively. Bch
component of lectoris multiplied by the respective component of Véctor and then
summing up all the products find the summizon function

Example

)y T 06O 7

YT R0 7 AGROMAAAA

)1 pODPT mOGE& )1 POO.

Single number nanulti-element vector is the result.

3.3.4Transfer function

Each neuronis assigned a transfer functiowhich determines the utput values.
Summation functionoutput valueis caverted to working output using logarithmic
process called th&ansfer function. The summation total can be compared with some
threshold to find neural outpuThere are many transfer functions used in ANN such as
LOGSIG, TANSIG and PURELIN functions. LOGSIG transfer function is widely used for
nortlinearrelations between input amditputvalues The LOGSIG is expressed: as

p

W ) oD

3.3.50utput function
Each neuron normally has one output signal that it may forw@itindreds of other
neurons whichis similar to biological neuron iwhich there are severahputs but only

single output The outputvalueis equivalent to theesult oftransfer function

3.3.6Error function and back propagated value

Variations between expected and predicted values cateulatedin most learning
architectures This value istransformed ¥ target errorfunction to be a replica o
particular achitecture. Tis erroris useddirectly by most networkdut some square it,
others cube it whil¢he raw error is modified bgther paradigm$ased on their purposes
(Anderson &McNeill, 1992)
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3.4Basic Back Propagation ANN Model Achitecture
This architecture was developegdar | 'y 197 0 0 s-aligngd astresv(\@/erkoi, non
Parker, Rumelhat, Hinton and William4#).is presently known mosificient and easy to
train for complicated multi-layered networks. It is used motean all other networks
together combined. It is greatestvantages nonlinear soltions to inexplicitproblems.
LevenbergMarquardt optimization (TRAINLM)s used as training functian this work.
TRAINLM determines the weight and bias values in back propagation algorithm which
was found to be uselfin networkstraining
It is madeof three layerss seen inigure 3.5below:
1 The inputis the first layerwhich does not have computing capabilifihe
independent parametesise fedto the first hidden layathrough the input layer
1 Theoutput is thdast layer used to process output of dependent variables.
The hidden layer lies at the middle Wween input and output layers thabvides
interconnectiorbetveenlayers. @nnection betweelayers can be fully or partial
Each neuron irthe firg layer is connected to all neusm the second layeor
fully connected ANN modelFor partially, each neuron dinst layer does not have

to be joired to all neurons on the next layer.

Input

Input layer Hidden Laver Output laver

Figure 3.5 Back propagation ANN model architecture
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Complexity of a problem normally determinethe number of hidden layer©ne hidden
layeris used by most ANN modessnceit is enough to provide goqarediction. Modeling

complex problems can be done with more than one hidden layer.

3.6How ANN Model Learn

Artificial neural networkmodek learn from experience gaingdough training procedure
The training includes tting data to ANNmodek. Supervised learning involves presenting
input/output data setdt is usedto predict one or more output values from one or more
input values.Majority of ANN solutions usesupervised learning. Theeural network
output is compared with the desired or targoutput. The weights, which are usually
randomly set to begiwith, are adjusted by the network so that subsequent cycle or
iteration will yield a closer match between the network output and desired output. The
training procedure tries to minimize presemrors of all neurons. This universal reduction
is created with time by continuously changing the input weights actéptablenetwork
accuracy is reachgénderson & McNeill, 1992)

When supervised ANN performseifectly on training data, it is necessary to viéw
performancevith datathatit hasnot seen prior to learning. Thaimning period is not over

if a poor performance is obtainéar the testing data. Thus, the testing is crucial to ensure
that the modehas no just memorzed a given data set but leattme oveal patten
involved (Anderson &McNeill, 1992).
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CHAPTER 4
FOURIER SERIES THEORY

A French physicist and mathematician; Jean Baptiste Joseph Fourier initialized Fourier
series, Fourier transform atiteir application to heat transfer and vibrtations. Born ¢h 21
march 1768 in Auxerre, France. The Fourier

were all named in his honour.

4.1Fourier Series

Fourier developed an expression named Fourier series which can be used to represent any
periodic signal f(t) interms of infinite sum of sin@sd cosines or exponentials whigkes
condition of orthogonality.

A Fourier series representation of continutine periodic signals/functions

A function or signal is said to be periodic if it satisfies the condition:

QO Q0 Yeiwe Qe O 1§5)
Where T=Fundamental time period
1 3y 06 066 OH Qo Q¢ bo
There are two main periodic signals or functions, namely:
MO wFioi NVt oI VOO QE ¢ 8
Mo Q WanNaQonéé Qe oQha 8

A harmonically related complex exponential can be expressed as:

* 0 Q Q 18

WhereQ 1 ph ¢8 &
Based on orthogonasigmal spaceapproximation of a function(f) with n mutually

exclusive orthogonal functions is given as:

"Q0 ® Q ®

WhereA &£l OGE AENEARAEREMGEAERDIOZEI AOET 1

The equation above represents Fourier series mpea®n of geriodic signal ().
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The Fourier series coefficieAt is given as:

w“ P i~
W "YQ Qo T

4.2 Types of Fourier Series

4.2.1Trigonometric Fourier series (TFS)
OES§ Band OE D iOare orthogonal over the intervabi®0 — . Thus,0B10and

OEJ Oforms an orthogonal set but this set is not complete withouA thed Bbecause
cosine set is also orthogonal to sine set. Therefore, complete this set both the cosine and
sine terms are included. So, the complete orthogonal set contains all cosine and sine terms
i . e fcosnkdgt pi wher k=0,1, 2, 3, éé.
Therefore, any fuetion f(t) within the rangeORO — can be expressed as

MO OO O dwépi 0 OO 0 E oOwél B E

i @O0 i @O wi @O E i QE®E

O Ol 6 OGwéd 0 E OGwél B E o @ o

i @ 0 E i QE® E
MO — B HOET B 0i QE®O o6 o Y &
The above equatioexpressess the trigonometric Fourier series representdtifih
Where

— Q0 Q
AR ¥ 0Qo .g< 1
. C s T e s
) ~ QOwWwET @ QO T80
> q s s T o s
® = Qoi Q¢ ®QO P T
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If the interval0 o O 4is (-Y, Y) (thus T=2Y), then theFourier seriesoefficients
A, A and A are:

— Qo0 Q
W o 0Qo Hp
R S
) 5 QOweET QO P C
R S VI
® = QOi Qt ®QO 90
For aperiodicfunctionon [-* 1, above :equations changes
w C_ Q0 Qo PT
o P ooodei 0o0o 1 v
ol p N\ Y T e~y TN ) \
w — Qoit Qe Qo Qo 0

A Symmetrical considerations
If f(t) is even that is ft)=f(t), thenA Tt

Therefore
N SN A T
() 5 QOwel QQO P X
() . -

Also, if f(t) is odd that is #)=-f(t), thenA T

Therefore,
> C s ey T
® = Qoi Q¢ ®QO P W
"Qo 0i M ® 8 T

3
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4.2.2 Exponential Fourier series (EFS)

Given set of complex exponential functiond for E mh ph ¢8 8Bwhich is

orthogonal over the intervaDORO 4 . Where4 — . This is a complete set, so it is

possible to express any function f(t) as follows:

Q6 'O "0Q "0Q E "0Q E 0Q 0Q
E O00Q =
"Q0 "Q o606 o o0 Y 8 p

The above equation expressess the exponential Fourier series representation of signal f(t)
overtheintervab 0 0 "YThe Fourier coefficientFis given as

O "Q0Q Qo T8 ¢

p
~

4.3 Fourier Transforms
Although Fourier series is a useful tool for investigating the spectrum of a periodic
functions or signals, there amany waveforms that do not repeat themselegslarly.The
main shortcomings of Fourier series is that, it is only applicable to periodic signals. There
are many naturally produced signals such as non periodic or aperiodic, which cannot be
expressed using-ourier series. To overcome this drawback, Fourier developed a
mathematical model t@onvertsignals between time (or spatial) domain to frequency
domain and vice versa which is called Fourier transform. It has different applications in
engineering and plsycs such as RADAR, astronomy, signal processing, analysis of LTI
systems etqChapra & Canale, 1990)
Qo B 0 'Q ] O

Where

i
,,B "Q0Q Qo & T
Y .
j
The changefrom a periodic to nonperiodic function can be done by letting the period to

@

approach infinity. Thus, as T approaches infipithe function never peat itself and
therefore becomes aperiodic.

The Fourier transform of a functias given as
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The inverse Fourier transform is given

Q0 C£ 0N Q 0 & @
The main difference between the Fourier series and Fourier transform is that the series
applies to periodic function while thieansform to nonperiodic waveforms. Also, the
Fourier series converts a continuous, periodic time domain function to frequency domain
magnitudes at discrete frequencies while the Fourier transform converts a continuous time
domain function to a continuousequency domain function. Therefore, the discrete
frequency spectrum generated by Fourier series is analogous to continuous frequency

spectrum generated by Fourier transform.

4.4Discrete Fourier Transform

In engineering applications, functions and slgraae normally represented by a finite sets

of discrete values. Moreover, data is often gathered in or converted to such a discrete
format. Figure 4.1 shows an interval from 0 to T which can be divided into N equispaced
subintervals with widths &6 “Y 0. The subscript n is used to depicts the discrete times

at which samples are collected. Therefoyéndicates a value of the continous function f(t)
taken att

Figure 4.1: Points samplin@f discrete Fourier transform
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The data points are specifiadt n = 0 , -1. For th@&syséem Bhown in belpavdiscrete

Fourier transform can be written as
O "QQ QEN o H p T8 X
And the inverse Fourier transform as

Q UB "0'Q QEE TMOH p & Y

0MiITQ vy
Equations (4.19) and (4.18) represent the discrete analogs of (4.17) and (4.16) respectively.
Thus, they can besed to compute both the direct and inverse Fourier transform of a

discrete data. Though such computations can be done by hand, they are extremely difficult.

4.5The FastFourier T ransform

For data samples of big and even moderate size, the direct detitomiof the DFT can be
extremely time consuming. The fast Fourier transform (FFT) is an algorithm developed to
calculate DFT in an extremely economical fashion. Its speed results from the fact that it
uses the results of previous computations to minirfigenumber of operations. It uses the
symmetry and periodicity of trigonometric functions to find the transform with
approximately NlogN operaions. For N=50 data samples, tR€T is about ten times
faster than the standard DFT. For N=1000, the FFT is about 100 times faster.

The first FFT algorithm was developed by Gauss in the early nineteenth century
(Heideman et al., 1984). Other main contributions were made by Runge, ddaniel
Lanczos and others in the early twentieth century. Fortunately, because DFT often took
days to weeks to compute by hand, they did not attract much interest prior to the
development of modern digital computers. J.W. Cooley and J.W. Tukey in 1965pdblis

a key paper which they designed algorithm for calculating FF{Chapra & Canale,
1990)
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CHAPTER 5
METHODS AND PUBLISHED EXPERIMENTAL RESULTS

5.1 Published Experimental Results

Published experimental resuligere obtained from previous studies related to vertical axis
Savonius wind turbindn total, eight rotors, withtwo or three blades, buifferent blade
geometry were collected froffublished experimental resulésd they were subjected to

power coefficient, torque coefficient and torque as function of rotor angle.

5.1.1Mechanical torque

Ali (2013, carried out an experimental study for Sausrwind Turbine using subsonic

wind tunnel under low wind speediwo and three bladegperformance was also
investigated and compared. The blade has diameter of 100 mm, height of 200 mm and
thickness of 0.079 mm as depicted in Figure 5.1. tbhguevariation with rotor angle at

5.3 m/s speed and 458rpm rotational speeldasa in Figure 5.2.

BLADE

convex

f—

l 0 me'm'('
rotor

Figure 5.1: Two bladesconventionalSavonius wind tirbine
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Figure 5.2: Torque of Savonius turbine various rotor angle

Sargolzaeand Kianifar (2009, predicted the torque of three Savonius rotor usiNgNs
according toexperimentaldata collected forvarious prototype vertical Savonius rotors
tested in a wind tunneRadial basis function (RBF) networkas the proposed moddlhe
Savonius rotor habladesnominal diameterD) and height (H) as in Figure 5.3 The
distance gap changdélse amount of drag force on the rear and front of blade for various
angles with respect to the wind elition. 30 cm washe height (H) imall produced models
and the thickness of blade 1 mm, which was made of aluminumré%g3.
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Figure 5.3 Schemat: of Savonius rotor
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Figure 5.7: Torque of Savonius rotor Ill various rotor angle

5.1.2 Power mefficient (Cp), torque coefficient (C;) and static torque coefficient
Debnathet al. Q014), experimentally measured therque and powercoefficients of
helical Savoniuswind turbinerotor. Savonius rotowith shaft of 40 cm in height and 24
cm in diameter(see Figure 5.7)The representation of the power coefficient and torque

coefficient are shown in Figufe8 and 5.@&t different blade numbeand in one revolution
(360°) of the rotor angle.

Figure 5.8 Helical Savonius rotamwo and threéladesat 90° angle of twist
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Figure 5.9: Variation of torque coefficient at one revolution (360°).
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Figure 5.10: Power coefficientvariation plot

Kamoji et al. 2009, measuredhe torque coefficient for helical Savoniusvind turbine
rotor in ore cycle of 360°Experimenton heli@al Savonius rotors were carried oatan
open jet vind tunnel. The helicalbtors (withand without shaft in betweesnd plates) wth
a twistof 90° were manufacted in a rapid prototyping machine as shown in Figure 5.10.
Figures 5.11shows torque coefficient without shatit various rotor arlg with overlap
ratio 0.88 and 0.1, respectively. The torque coefficient with sdtafiarious rotor age

with overlap ratio O is shown in Figure 3.1
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Figure 5.11 (&) Helical Savonius rotowith shaft between the end plat®$ and (¢ two views of
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Figure 5.12: Ct without shaft; @erlap ratio = 0.Jat one revolution (360°)
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5.2 Statistical Terms and Definitions
Statistical terms used in the regression analysis are defined as follows:

5.2.1R-squaredor the coefficient of determination

The R-squaredvalue is an indicator of how well the model fits the data (e.gR-aquare

value close to 1.0 indicates that almost all the variables variability have been accounted in
the model) and an R value of zero means a random relationship. HoResguared
increases with increase innamberof predictors in the model, even when tloéerof the

individual predictor is not significant.

v Bo &

; ; V)
P B w w ®
r oy, 1 L/ B(b
Uml(ﬁzT

5.2.2Mean gyuare error (MSE)
This is defined asthe average squatedifference between the expected and predicted

values Small values are preferrethd zero suggest® error. It is expressed as:

'o"v'obﬁ o & V&

Where,N number of data set.

5.2.3Input data normalization
The initial step ighedata normalization. This step is donettansforming the actuahput
data Yinto a rormalzed valueY n (with zero man andunit variance)
W 0}
() ()
Where Y, is value of Yafter normalizationY min is the minimum Y valuandY maxiS the

maximumy value of the data to be normalized
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CHAPTER SIX
RESULTS AND DISCUSSION

6.1Hidden Layers, Transfer Function and Hidden Neurons

6.1.1Selection of transfer function

Table 6.1 showshe Rsquared ofrained and simulated torqued various experimental
result (target) for diffeent types of transfer functionswith 15 hiddenneuronsand one
hidden layerlt can be observed from the table and figures that LOGR@Gfer function

gives the best fitting regression line with & 0.9981 for training and simulation.

Table 6.1: R-squard for the transfer functions type on published experimental data

(Ali, 2013
Transfer function R®
Training Simulation
LOGSIG 0.9981 0.9981
TANSING 0.9979 0.9978
PURELIN 0.0989 0.1996
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Figure 6.1 Simulated andrainedtorquevs. experimental torque for LOGSIG transfer
function
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transfer function
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6.1.2Number of layers
Artificial neural network consisif three differentf layers:
1 Input
1 Hiddenand
1 Output
Most of models used only one hidden layer since stuficient for goodprediction.In
modeling conplex problems manyhidden layes areused Therefore, a singleiddenlayer

is used throughout this work.

6.1.3Hidden layer neurons

Many networks with varioushidden neuronsnumber are usedand estimate the
generalization error for each. Then the best network with the best performance was chosen.
The R? valuesfor case of LOGISGransfer functiorandone hidden layewith different
neurons number of 5, 10, 15 and 20 neurons are showrbia §2and Figures 6.40 6.7.

It can be observed thalhe highR? value show that 15 neurons can be used to predict
torque of wind turbine. Therefore, 15 neurons are choosen to ensure the best

generalization.

Table 6.2 R-squard for hidden layer neurord published experimental data (AH013

Hidden layer neurons R®
Training Simulation
5 0.9947 0.9948
10 0.9981 0.9981
15 0.9989 0.9991
20 0.9934 0.9968
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Figure 6.7: Simulated andrainedtorquevs. experimental torque (number of neurons: 20)

6.2 Published Experimental Data(Ali, 2013)
To perform this task, the experimental data isdmanly divided into a setof
trainingtesting sets.In this work, the experimental data is divided into three grags
follows:

1. Group 1: ®% for training data an80% for similulation (randomly chosen)

2. Group 2: ®% for training data and0% for similulation (randomly chosen)

3. Group 3: D% for training data an80% for similulation (randomly chosen)
Figures 6.8 69, 6.10and 6.11shows the plot between the experimental data atite
predicted dat 50% 50%, 50%or training data and 50% for simulation, 60% 40%, 60%
for training data and 40% for simulation, 70% 30%, 70% for training data and 30% for
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simulation,andFS, Fourer series, respectively. These figures shidlat themodelsare

very accuratéo estimatehe toque of the Savonius rotor

As observed in Table .and Figures &3to 6.14, all groups could based to predict the
torque of Savonius rotolt was noticed that the predicted mechanical torque using these
models is close to the measured mechanical torque. The hifHestween measured and
predicted torque is 0.9981 for FS showing that this model is very accurate, likewise to 70%
30%, the miimum R is 0.9951 whichalso show that the predicted and measured results
are veryclose to each other (Figure 6.13 and §.Hence suggests that these models
should be used with caution when predicting the mechanical torque of the Savonius wind

turbine
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Table 6.3 Percentage divisioof experimental data for B¥N

Group 1
Training 50%
Simulation 50%
Epoch 20
MSE 5.684E7
Equations of Training
000nNo60Ywi QMO
Training R® Test R
A 0.98 0.998 A 1 0.998
B 0.005 B 8E-5
Validation R° All R°
A 1 0.998 A 0.99 0.998
B 6.1E5 B 0.00037
Group 2
Training 60%
Simulation 40%
Epoch 15
MSE 5.33E7
Equations of Training
000nNoCYwi "QBO
Training R’ Test R°
A 0.99 0.998 A 0.99 0.998
B 0.00019 B 0.00020
Validation R° All R°
A 0.99 0.998 A 0.99 0.998
B 0.00017 B 0.00019
Group 3
Training 70%
Simulation 30%
Epoch 16
MSE 8.456E7
Equations of Training
000nNoCYwi QBGO
Training R® Test R
A 0.99 0.997 A 0.98 0.988
B 0.00027 B 0.00047
Validation R Al R
A 0.99 0.996 A 0.99 0.996
B 0.00041 B 0.00031
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6.3 Published Experimental Data(Debnath et al., 2014)

6.3.1 G, for two blades

Similar to the pervious sectiorthe experimental ata is divided into twogroups as
mentioredbefore (see Table 6.4

The predicted data are too close igpe&rimental data as shown kgures 6.15 to 6.19
Simulated and trainednd experime values for G were fitted withlinear regression
equations ashown in Figurse 6.20 and 6.2Xespectively. Itshows that these models are
very accurateo predict the powe€, of helix Savonius wind turbine.

Figure6.18shows thagroup 3is best model for predicting the value of power coefficient
of the turbinerather tharusing group 1 androup 2.
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Table 6.4 Percentagdivision of experimentatiata for BN (C, for two blade of helix

Savonius turbine)

Group 1
Training 50%
Simulation 50%
Epoch 24
MSE 3.346E5
Equations of Training
000nNoCYwi "QBO
Training R’ Test R°
A 0.99 0.996 A 1
B 0.0028 B 0.0024 0.998
Validation R° All R°
A 1 0.992 A 1 0.994
B 0.01 B 0.0013
Group 2
Training 60%
Simulation 40%
Epoch 33
MSE 1.67E5
Equations of Training
000N 0CYWiI QBO
Training R° Test R®
A 0.99 0.996 A 0.98 0.990
B 0.0023 B 0.0085
Validation R Al R
A 0.98 0.994 A 0.99 0.996
B 0.006 B 0.0037
Group 3
Training 70%
Simulation 30%
Epoch 12
MSE 3.337E5
Equations of Training
000mNo0CYwi "QBO
Training R® Test R
A 0.99 0.996 A 0.99 0.994
B 0.0036 B 0.0046
Validation R Al R
A 0.95 0.992 A 0.98 0.994
B 0.0018 B 0.0057
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