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ABSTRACT 

 

Vertical axis wind turbines are of different types and Savonius wind turbine is of them. It 

is characterized as cheaper, simple in construction and low speed turbine. It is basically 

used in applications where high torque low speeds are required such as water pumping 

although it is also used in electricity generation for residential purpose and small 

commercial use. This research is done to create model to predict the aerodynamic 

performance of Savonius wind turbine such as the torque, torque coefficient and power 

coefficient. In this research, artificial neural network and trigonometric Fourier series 

modeling has been used to predict the aerodynamic characteristics based on four past 

experimental data’s with various geometries. 

A trigonometric Fourier series and back propagation neural network architecture are used 

in the prediction of various performance terms of different Savonius wind turbine 

geometries. The torque coefficient, torque and power coefficient are the performance terms 

predicted as a function of rotor angle. Different percentage training data’s are used in 

training the back propagation neural network after which the network is tested with new 

data to evaluate its performance and generalization ability. The mean square error and 

coefficient of determination also called R-square (R
2
) are used in evaluating the network 

performance for both training and testing as the case maybe. Both the trigonometric 

Fourier series and back propagation models gives a good result within an acceptable error 

limit. 

   

Keywords: Artificial intelligence; artificial neural network; Fourier series; R-squared; 

Savonius wind turbine 
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ÖZET 

 

Dikey eksenli rüzgar türbinleri farklı türlerde mevcuttur ve Savonius rüzgar türbini 

bunlardan biridir. Bu, inşaat ve düşük hız türbinleri arasında daha ucuz ve basit olarak 

nitelendirilmektedir. Bu temelde su pompalama gibi yüksek tork ve düşük hızın gerekli 

olduğu uygulamalarda kullanılır, buna rağmen yerleşim amaçlı ve küçük ticari kullanım 

için elektrik enerjisi üretiminde kullanılmaktadır. Bu araştırma, tork, tork katsayısı ve güç 

katsayısı gibi Savonius rüzgar türbininin aerodinamik performansını tahmin modeli 

oluşturmak için yapılmıştır. Bu araştırmada, yapay sinir ağı ve trigonometrik Fourier 

serileri modelleme çeşitli geometrilere sahip dört geçmiş deneysel verilere dayalı 

aerodinamik özelliklerini tahmin etmek için yapay sinir ağı ve trigonometrik Fourier 

serileri modelleme kullanılmıştır. 

Trigonometrik Fourier serileri ve arka yayılım sinir ağı mimarisi farklı Savonius rüzgar 

türbini geometrilerin çeşitli performanslarının tahmininde kullanılmaktadır. Tork katsayısı, 

tork ve güç katsayısı rotor açısının bir işlevi olarak tahmin edilen performans terimlerdir. 

Farklı yüzdelik eğitim verileri ağın performansı ve genelleme yeteneğini değerlendirmek 

için yeni verilerle test edildiktne sonra geri yayılım sinir ağı eğitiminde kullanılmaktadır. 

Ortalama karesel hata ve determinasyon katsayısı R-kare olarak adlandırılır ve hem eğitim 

hem de test etme için ağın performansını değerlendirmede kullanılmaktadır. Hem 

trigonometrik Fourier serileri hem de arka yayılım modelleri kabul edilebilir bir hata sınırı 

içerisinde iyi bir sonuç vermektedir. 

   

Anahtar Kelimeler: Yapay zeka; Yapay sinir ağları; Fourier serileri; R-kare; Savonius 

rüzgar türbini 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Study Background 

Wind energy refers to the process by which wind is used to generate mechanical power 

that can be harnessed to produce electricity. They are used to transform energy of wind to 

mechanical energy as in the case of wind mill and produce electricity. 

Horizontal axis and vertical axis also written as HAWT and VAWT respectively are the 

two main categories of wind turbines. HAWT has axis of rotation parallel to the ground 

while VAWT has axis of rotation perpendicular to the ground. VAWT has simple structure 

and easy to install than HAWT. 

VAWT rotors are of different types and Savonius rotor is one of them. The Savonius wind 

turbine rotor has shape of letter S in cross-section and is made from two or more blades 

also called buckets fixed between two end plates. It is used in applications such as 

pumping water, milling, sawing, driving an electrical generator and providing ventilation.  

In recent times, many researchers are making effort towards the use of artificial 

intelligence in predicting the performance of wind turbine rotor which would complement 

for the time and cost involved in testing the wind rotors for the variety of input parameters. 

Artificial neural network (ANN) modelling is one of such techniques. 

In this research, feed forward back propagation network architecture, ANN, and Fourier 

series, FS, are used to create a model between various performance parameters (such as the 

torque, torque coefficient, power coefficient and rotor angle) of Savonius wind turbine.  

Several data were obtained from published experimental data on the Savonius wind turbine 

rotors and a comparison is made between ANN and FS models with published 

experimental data to ensure the accuracy of the models. Additionally, ANN and FS models  

are compared with RBF models (Published models). 
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1.2 Aims of the Research  

The aims of this research work are as folows: 

I. To create a model using ANN and FS to predict the aerodynamic characteristics of 

Savonius wind turbines with various geometries. 

II. To make comparison between results of the above models with published 

experimental results obtained of previous works by various researchers.  

 

1.3 Outline of the Research 

This research work is outlined in the following order: 

i. A summary of wind turbine theory, artificial intelligence, Fourier series and a brief 

study of various experimental and numerical work carried out on Savonius wind 

turbine 

ii. The result and discussion on different methodology used in the present study and 

finally the conclusion. 
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CHAPTER 2 

WIND TURBINE THEORY 

 

2.1 Wind Concept  

Winds are motion of air masses in the atmosphere and an indirect action of solar radiation 

unevenly hitting the earth as they are generated mainly by temperature variation within air 

layers due to differential solar heating. It is a form of renewable energy generated from 

solar energy unevenly heating the earth. This non uniform heating generates pressure 

changes in the atmosphere resulting to wind which can be harnessed using wind turbines. 

As the wind pushes the turbine blades, a generator attached to the shaft axis and when spun 

creates electricity that can be sent to grid for usage (Adaramola, 2014). 

It is an environmental friendly energy supply that possess immense potential to meet the 

energy desires of individuals and additionally to ease the global climate change from 

gasses such as CO2 and SO2 emitted by burning fossil fuels. Ten million megawatt of 

energy are presence in earth’s available wind according to rough estimation by researchers 

(Wenehenubun et al., 2015). 

 

2.2 Wind Turbines 

Wind turbines generate electricity by turning kinetic energy of wind into torque (force) 

which causes the turbines to turn and drives an electrical generator. In other words, wind 

turbines works the opposite of a fan, they use wind to generate electricity rather than using 

electricity to make wind like a fan. They basically consist of aerodynamically blades that 

are rotating and fixed on shaft which transfers the created power into the individual energy 

utilizing device (such as milling, sawing, generator and pump) (Ali, 2013). 

The wind moves past the wind generator blades or rotors resulting to low pressure system 

on the trailing edge of the blades similar to airplane wing. The efficiency of wind turbine is 

greatly affected by the size and shape of rotors, turbine location which includes the 

geography and height and other mechanics that either increase or decrease drag force on 

the system. Many believe the old style windmill with many blades is more efficient as a 

result of many rotors. But, the number of rotors can actually increase the drag, add extra 

weight and get in the way of wind flow through the blade area. Now days, two or three 
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bladed turbines are most popular because of more thrust and less wind resistance 

(Tummala et al., 2016). 

Wind turbines are a clean way to generate electricity, but there are many significant 

problems associated with them as well. One major shortcoming is that they are highly 

expensive to design and install, and in order to generate sufficient wind energy for locals 

and cities a space is required for wind farms. Another issue is that they have to be created in 

locations with sufficient wind energy to produce enough electricity to justify the cost of the 

machine. 

In history, they were more frequently used as mechanical device that turned machinery but 

today wind turbines can be used to generate large amount of electrical energy both onshore 

and offshore (Jin et al., 2016). 

According to Menet (2004), the procedure of converting wind into mechanical energy 

starts with the blades of the wind turbine. That is the lift and drag type blade designs: 

 Lift type: This is the most common type of modern horizontal axis wind turbine blade 

located in big wind farms. The blade design is similar to airplane wing. As the wind 

blows on both side of the blade, it takes the wind long to travel across the leading edge 

resulting to lower and higher air pressure on the trailing edge. The pressure difference 

‘pulls’ and ‘pushes’ the blade around. This blade type have higher rotational speeds 

than the drag type which make them well suited for electricity generation. 

 Drag type: The first set of wind turbines created used the drag design. This design 

normally uses the wind force to push the blade. Savonius wind turbine is a typical 

example of this design. The wind is resisted by the blade and the wind’s force on it 

pushes it around. Turbines in this category have slow rotational speed with higher 

torque than the lift type. The design has been used for centuries in milling, sawing, 

pumping and rarely used for large scale energy generation.  

  

2.3 Horizontal Axis Wind Turbine (HAWT) 

In HAWT the rotors rotation axis is parallel to wind stream and the ground. Both the 

electrical generator and rotor shaft are positioned at the top of the tower. Most HAWTs 

now are two or three bladed, though some may have fewer or more blades (Al-Shemmeri, 

2010). 

HAWT blades operate to extract wind energy by generating lift/ resulting to a net torque 

about the axis of rotation. To perform such task effectively, especially for large HAWTs, 
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active pitch controllers are employed to ensure that each blade is adjusted to maintain the 

required angle of attack for maximum power extraction at a given speed (Bai & Wang, 

2016). 

 

 

Figure 2.1: HAWT 

 

The turbine blades are constrained to move in plane with a hub at its center, as such the lift 

force induces rotation about the hub. In addition to lifting force the drag force which is 

vertical to the lift force retards rotor rotation. HAWT must be pointed to the wind direction 

for optimum efficiency. The smaller scale turbines use a wind vane (tail fan) while the 

utility scale use sensor and servo motor to keep pointed in the right direction. This type of 

wind turbines are have higher efficiency than VAWT as such been used for generation of 

electricity (Tummala et al., 2016). 

HAWT can be classified into two groups depending on the different relative position of the 

rotor and tower as: 

 

2.3.1 Upwind wind turbine 

In this type of HAWT the rotor rotates before the tower facing the wind. It is designed to 

have to have a certain type of steering installation to make sure the rotor is directed toward 

the wind during work. 
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2.3.2 Downwind wind turbine 

In this case the rotor is installed on the tower following the wind. This does not require any 

steering installation as the turbine will automatically face the wind. 

 

Figure 2.2: Upwind and Downwind HAWT 

 

Horizontal axis wind turbines can also be categorized into the lift and the resistance type. 

The lift type has a high rotational speed while the resistance type has a low rotational 

speed. The lift type is more frequently used to generate power. Most of HAWTs has the 

steering device and can rotate with the wind. A tail vane is used as steering device for 

small sized wind turbine while sensors and servo motor are used for large sized type (Bai 

& Wang, 2016). 

HAWT has advantages over VAWT such as: 

 Most of HAWTs are self-starting 

 Can be cheaper due to high production volume 

 HAWTs gets maximum amount of wind energy because the angle of attack can be 

remotely adjusted 

 The turbine is stable because the blades are to the side of its center of gravity 

 Tall tower allow access to stronger wind  

 It has the ability to pitch rotor blades in a storm so as to minimize damage 

However, the disadvantages of HAWT compared to VAWT include: 

 May cause navigation problems when offshore 

 Difficulties operating near the ground 
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 Long blades and tall tower are difficult to transport from one place to another and 

require a distinct installation procedure. 

 Mainly employed for electricity generation 

 Mainly used in areas with permanent and high speed wind 

 

2.4 Vertical Axis Wind Turbine (VAWT) 

VAWT has axis of rotation perpendicular to the ground. The generator, gearbox and 

vertical rotor shaft are placed on the ground and specially designed rotor blade to capture 

wind energy irrespective of which direction it is blowing (Al-Shemmeri, 2010). 

Though less efficient than HAWT, it offers solution in low wind speed areas wherein 

HAWTs have a high time operating. It is easier and safer to fabricate, it can be installed 

near the ground and can handle turbulence better than HAWT and this makes VAWT more 

suited to residential areas where obstacles such as other houses, buildings and trees 

generally disturb the airflow (Wenehenubun et al., 2015). 

 

2.4.1 Darrieus wind turbine  

French engineer G.J.M Darrieus first proposed the Darrieus wind turbine in 1931.The 

turbine consist of thin curved blades placed vertically on a rotating shaft or framework. 

They are commonly called “Eggbeater” turbines because they resemble a giant eggbeater 

(Jin et al., 2016). 

The turbine blades rolled into chain lines joined to the shaft at the upstream and 

downstream side. The wind energy is taken by the lift force component operating in the 

direction of rotation in the way as HAWT. However, a Darrieus rotor with straight blades 

(H-Darrieus) has been developed with large hubs provided with spokes. When it has 

enough speed, the wind moving through the airfoils generates torque thus, the rotor is 

moved by the wind. The blades allow the turbine to attain speeds higher than the actual 

wind speed which makes the Darrieus rotor well suited to electricity generation when there 

is wind turbulence (Jin et al., 2016). 
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Figure 2.3: Darrieus wind turbine 

 

2.4.2 Savonius Wind Turbine 

This is one of the categories of VAWT invented and patented by Savonius J. Sigurd in 

1922, a Finnish Engineer. It comprises of two or more semicircular blades also called 

buckets fixed between two end plates. A two blade look like the letter “S” shape in cross 

section. The bucket will make the flow within the rotor regular and it is based on drag 

concept (Rosmin et al., 2015). 

Savonius rotor is used for pumping water, driving electrical generator, ventilation and 

many more. It also has excellent initial torque and good peak power return for particular 

rotor size, cost and weight which makes it less efficient. In aerodynamic efficiency view, 

the Savonius rotor cannot compete with Darrieus type wind turbines and high speed 

propellers (Saha & Rajkumar, 2006). 

Providing a certain overlap between drums increases the torque because the wind blowing 

on the concave side turns around and pushes the inner surface of the other drum, which 

partly cancels the wind thrust on the convex side. An overlap of one- third of the drum 

diameter gives the best results (Singh, 2008). 
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Figure 2.4: Savonius rotor 

 

Menet (2004) outlined some advantages and disadvantages of Savonius wind turbines as 

follows: 

 They are simple machines as such easy to construct with low cost  

 Can be designed with different rotor configurations 

 Easy to maintain 

 They are able to start and run at whatever wind velocity because of their high starting 

torque. 

 Little noise and angular velocity operation 

 They are supposed to be running even in case of “strong” winds when most of the fast 

running wind turbines must be stopped. 

 Ability to capture wind from any direction 

The main shortcomings of Savonius wind turbines include: 

 Low efficiency 

 Slow running behavior 

Advantages of VAWTs   

 Good for places with extreme weather conditions like mountains 
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 Turbine blades spin at lower velocity thus reducing the chances of birds injury 

 Easy access to maintenance because VAWT parts are placed near the ground 

 Little production, transportation and installation cost 

 VAWT does not need to be pointed towards wind direction in order to be efficient 

 Suitable for places such as hilltops, ridgelines and passes 

On the other hand VAWT has some shortcomings such as: 

 Most of VAWTs are only as half as efficient as HAWTs due to drag force 

 Airflow near the ground and other objects can create turbulent flow thus resulting to 

vibration 

 Guy wires may be needed to hold VAWTs up (guy wires are heavy and impractical in 

farm areas) 

 

Table 2.1: Comparative parameters between VAWT and HAWT 

 

Serial number Performance  VAWT HAWT 

1 Power generation 

efficiency 

Above 70% 50%-60% 

2 Noise  0.1Db 5.6Db 

3 Starting wind speed Low (1.5-3m/s) High (2.5-5m/s) 

4 Failure rate Low  High  

5 Maintenance  Simple  Complicated  

6 Rotating speed  Low  High  

7 Power curve  Full  Depressed  

8 Effect on birds  Small  High  

9 Cable standing 

problem  

No  Yes  

10 Wind resistance 

capacity 

Strong (can resist 

typhoon up to 12-

14 class) 

Weak 

11 Blade rotation space Small  Large  

12 Gear box  No  Yes Above 10KW 

13 Wind steering 

mechanism  

No  Yes  

14 Electromagnetic 

interference  

No  Yes 

15 Ground projection 

effects on human 

beings 

No  Dizziness  
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2.4.3 Theory of Savonius wind turbine 

Savonius wind turbine operates because of the variation of forces exerted on its blade. The 

concave side to wind direction captures the wind and causes the blade to rotate within its 

middle perpendicular shaft. On other hand, the convex section hits the air wind and causes 

the blade deflect sideways inbetwen the shaft. Curvature of the blade has less drag when 

moving against wind at Fconvex than blades moving with wind at Fconcave as shown in Figure 

2.5. Therefore, the concave blades that has more drag force than the convex side will cause 

the rotor rotation (Ali, 2013). 

 

Figure 2.5: Two blades conventional Savonius wind turbine (Ali, 2013) 

 

The rotor torque (Tr), torque coefficient (Ct) and power coefficient (Cp) of Savonius wind 

turbine rotor are used to express its performance characteristics in comparison with the 

rotor angle. 

The torque is a twisting force that tends to cause rotation. It is the force tangentially acting 

on blade of the rotor at a radius (r) to the center. The point where the rotor rotates is called 

the center of rotation. It is expressed as: 

                                                                                                                               

The torque coefficient is expressed as ratio of the torque develop by the rotor (  ) to the 

torque present in the wind (Tw) as: 

   
            

            
 

  
  

 
  

 
            

                                               

Tr= rotor torque (Nm), ω= rotor rotational speed (rad/s), D=diameter of rotor (m), ρ= Air 

density (kg/m
3
), H= rotor height (m), V= wind speed (m/s) and d= blade diameter (m). 

The power coefficient (Cp) is the ratio of maximum power from the wind (Pt) to the total 

power available in the wind (Pa) as: 
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Another term called the static torque (Cts) can be used to evaluate wind turbine 

performance. The static torque coefficient is expressed as: 

    
  
  

 
  

 
          

                                                                                      

 

2.5 Reviews on Wind Turbines 

Many researchers have been working to enhance and better the aerodynamic characteristics 

of Savonius wind turbine. This research work ranges from laboratory experiment, full scale 

simulation to numerical and theoretical prediction for flow around Savonius wind turbine. 

A lot of work has been done on HAWT and Darrieus VAWT, because of their high 

prospect of wind energy efficiency. Presently, an extensive research work has been carried 

out on Savonius wind turbine by several researchers around the globe so as to improve its 

performance and make it suitable for small scale power production. A brief literature of 

experimental and numerical work on Savonius wind turbine will be presented in this 

chapter. 

 

2.5.1 Related research on experimental investigation 

Ali (2015) conducted an experiment to study the performance and make comparison 

between two and three bladed Savonius wind turbine at low wind speed. Two models of 

two and three blades were fabricated from Aluminum sheet for this work. The two models 

were assembled with zero overlap ratio and separation gap. Observation from the measured 

and calculated result indicates that the two bladed Savonius wind turbine is more efficient 

and has higher power coefficient under the same test condition than the three bladed 

Savonius wind turbine. This is because increasing the blade number will increase the drag 

surfaces against wind airflow and lead to increase in the reverse torque and causes the 

decrease of the net torque working on the Savonius wind turbine blade. 

McWilliam et al. (2008) investigated different Savonius wind turbine models to observe 

the vortex formation and the effect of the scale of downstream wake using particle image 

velocimetry (PIV) in a close loop wind tunnel. In that experiment, they used standard 

Savonius design (diameter = 30.18 mm) with two semicircular blades overlapping. The 
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design of these blades include deep blade design (diameter = 31.20 mm), shallow blade 

design (diameter =28.04mm), outside J blade design (diameter = 32.97 mm) and inside J 

blade design (diameter = 31.18mm).They executed the experiment at a constant 3 m/s wind 

velocity. They observed that vortex shedding from the following blade was common to all 

five designs they tested, which had an effect on the scale of the downstream wake of the 

rotor. They found that the forward curved blade was the critical area for external flow and 

the overlap ratio of Savonius wind turbine blades allows flow from the top blade to enter 

the bottom blade that reduces the negative pressure region behind the blades.                                            

Gupta et al. (1988) combined Savonius wind rotor and Darrieus type in their experiment. 

The results obtained were compared with the conventional Savonius rotors. They found an 

improvement in power coefficient with the combined Savonius-Darrieus rotor. 

The aerodynamic performance of Savonius wind turbine by measuring the distribution of 

pressure on the blade surfaces at various rotor angles and tip speed ratios were studied by 

Fujisawa et al. (1994) torque and power performance were evaluated by integrating 

pressure were in close agreement with the experimental torque measurement. 

Aldoss et al. (1987) used the discrete vortex method to measure the performance of two 

Savonius rotors operating side by side at various separations. The computational and 

experimental results on torque and power coefficient were compared and are compatible 

with each other. 

Sawada et al. (1986) examined the rotational mechanism of Savonius wind turbine with 

two semi-cylindrical blades and found that a rotor with a gap ratio of 0.21 yields positive 

static torque at all angles. They also observed that the lift force contributes significantly to 

dynamic torque at rotor angles between 240
0
 and 330

0
. 

 

2.5.2 Related research on numerical investigation 

Akwa et al. (2012) examined numerically the influence of overlap ratio of Savonius wind 

turbine on power and torque coefficient. Results obtained show a maximum rotor 

performance at overlap ratio close to 0.15. 

Sargolzaei et al. (2009) carried out a modeling and simulation of wind turbine Savonius 

rotor using artificial neural networks for estimation of torque and power ratio based on 

experimental data collected from prototype tested in wind tunnel. The torque and rotors 

power factor were simulated at various tip speed ratio and blade angles. Based on the 
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artificial neural network and experimental results, the tip speed ratio is directly 

proportional to power ratio and torque. The maximum and minimum torque occurs at an 

angle of 60
0
 and 120

0
 respectively for all the tested rotors.  

Altan et al. (2008) simulated their experimental work numerically using FLUENT 6.0 and 

GAMBIT 2.0. They used two dimensional and standard k-ε turbulence model. Semi 

implicit method for pressure linked equation (SIMPLE) analysis algorithm was employed 

to calculate pressure and velocity distribution. After comparing the numerical with the 

experimental results, it was concluded that curtain improved the Savonius wind turbines 

performance. 

Rahman et al. (2009) conducted both experimental and work and computational fluid 

dynamics (CFD) simulations to establish the possibility of improving the performance of 

three bladed, simple Savonius vertical axis wind turbine. The torque coefficient, tangential 

drag coefficient and normal drag coefficient were evaluated both experimentally and 

numerically. The results were compared and are in good agreement. The numerical results 

were more accurate and gave positive values for the combined drag coefficients and total 

static torque coefficient. 
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CHAPTER 3 

ARTIFICIAL NEURAL NETWORKS 

 

3.1 Artificial Intelligence (AI) 

This is a specialization in computer science devoted in software packages capable of 

performing intelligent and complex computations analogous to what brain of humans 

performs habitually. It involves ways, equipment and programs dedicated to imitate human 

ways of logical information processing and reasoning of human brain for problems 

solution (Kustrin & Beresford, 2000). 

Artificial intelligence developments are of two types: 

 

3.1.1 Expert systems 

Expert systems include process and networks that imitate the experience of humans and 

make deductions using some set of rules. They are knowledge oriented systems, a 

continuation of traditional computation also known as the 5
th

 generation computing. 

Recognition base allow experts to specify set of rules which imitate thinking process and 

leads to an easiest route to draw conclusions and provide solution to problems by taking 

the guide lines set into consideration. Using expert systems logical reasoning can be 

modeled by composing sets of logical prepositions and carrying out intelligent 

modifications upon them. They are very important in medicine and many other medical 

diagnostic problems solution (Kustrin & Beresford, 2000). 

 

3.1.2 Artificial neural networks 

ANNs are computer programs that are inspired biologically to imitate some basic tasks of 

the human brain by various training algorithms that can comprehend from experience. 

They are structures composed of highly integrated flexible simple processing elements 

(known as artificial neurons or nodes) that are have the ability of performing massively 

parallel computations for processing data and knowledge representation. ANNs learn 

through experience with the proper training examples as humans do and not from 

conventional computer programs. ANNs have information processing characteristics of 

human brains like nonlinearity, learning, failure and tolerance of fault, robustness, high 

parallelism and ability to generalize. Therefore, ANNs are used in solving complex real 
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life problems like optimization, function approximation and pattern classification. Table 

3.1 below shows a comparison between ANN and conventional computing (Sun et al, 

2003). 

Table 3.1: Comparison between ANNs and conventional computing  

Characteristics  Conventional computing 

(including expert systems) 

Artificial neural networks  

Learning rule Rules By experience  

Functions Logically Perceptual pattern 

Method of processing Sequential Parallel 

 

Various ANN models was developed for numerous different applications. ANN models 

can be supervised or unsupervised based on the learning (training) algorithm. The input 

and output data sets are presented to the ANN model for supervised learning while only the 

input data set is presented to the ANN model in unsupervised learning which learns to 

recognize the pattern in the data. ANN can also be classified according to topology as feed 

forward and feedback. The connection between neurons does not form circles in feed 

forward architecture. The model does not have a connection back from the output to input 

neurons and thus the record of previous output values are not available. In Feedback ANN 

models the connection between nodes consists of circles. The output of one layer routes 

back to the input of same layer or previous layer. Feedback models are normally very 

difficult to train than the feed forward (Sun et al., 2003). 

 

Figure 3.1: Feedback network (Kustrin and Beresford, 2000) 
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Figure 3.2: Feed forward network (Kustrin & Beresford, 2000) 

 

3.2 Artificial Neuron 

Artificial neuron is the main element of artificial neural network designed to imitate the 

functions of biological neuron. Inputs signal times the connection weight are first 

combined (summed) and then passed the transfer function to produce desired output of that 

particular neuron. The activation function is the weighted combination of neuron’s inputs 

and sigmoid function is mostly used (Kustrin & Beresford, 2000). 

Artificial neurons or nodes are the building block of ANN which process information 

based on weighted inputs using transfer functions and send outputs. Adjacent layers 

neurons are fully or partially connected with weighted links. Net input into a neuron is 

given as: 

                         
 

                                                                                       

                            

 

Figure 3.3: Artificial neuron model (Kustrin & Beresford, 2000) 
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3.3 Components of Artificial Neuron 

3.3.1 Bias  

A bias increases the neural network performance. It functions as a weight on a connection 

from unit that always has activation function of 1. The same way to initialization of 

weights, bias should be initialized to either 0 or any other specific value based on neural 

net. The net input if bias is present is given as: 

                                                                                                                          

Where: Net=net input, b=bias, xi=input from neuron i and wi=weight of neuron i to the 

output neuron 

 

Figure 3.4: A simple network with bias included 

 

3.3.2 Weighting factors 

Artificial neuron normally receives many input variables at same time. A Particular input 

possesses its own weight that gives it the impact it requires on the summation function. 

Some inputs are designed to be more essential than others so as to have high impact on the 

neuron as they join together to give a neural output. The weights used on the different 

layers exert more influence in the function of neural network. Steps below are taken when 

choosing the weights: 

 Run the network with one set of weights 

 Run the network again with new sets of weights after modifying some or all the 

weights 

 The process is repeated until some predetermined goal is achieved 
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3.3.3 Summation Function 

The initial step in neural network processing elements function is computing the weighted 

sum of all inputs to neuron. Mathematically, the inputs data and the equivalent weights are 

like vectors that can be expressed as (I1, I2... IN) and (W1, W2… WN) respectively. Each 

component of I vector is multiplied by the respective component of W vector and then 

summing up all the products to find the summation function. 

Example 

             

                              

                       

Single number not multi-element vector is the result. 

 

3.3.4 Transfer function 

Each neuron is assigned a transfer function which determines the output values. 

Summation function output value is converted to working output using a logarithmic 

process called the transfer function. The summation total can be compared with some 

threshold to find neural output. There are many transfer functions used in ANN such as 

LOGSIG, TANSIG and PURELIN functions. LOGSIG transfer function is widely used for 

non-linear relations between input and output values. The LOGSIG is expressed as: 

         
 

     
                                                                                                              

 

3.3.5 Output function 

Each neuron normally has one output signal that it may forward to hundreds of other 

neurons which is similar to biological neuron in which there are several inputs but only 

single output. The output value is equivalent to the result of transfer function. 

 

3.3.6 Error function and back propagated value 

Variations between expected and predicted values are calculated in most learning 

architectures. This value is transformed by target error function to be a replica of a 

particular architecture. This error is used directly by most networks but some square it, 

others cube it while the raw error is modified by other paradigms based on their purposes 

(Anderson & McNeill, 1992). 



20 
 

3.4 Basic Back Propagation ANN Model Architecture  

This architecture was developed early 1970’s by several non-aligned authors (Werbor, 

Parker, Rumelhat, Hinton and Williams). It is presently known most, efficient and easy to 

train for complicated, multi-layered networks. It is used more than all other networks 

together combined. It is greatest advantage is non-linear solutions to inexplicit problems. 

Levenberg-Marquardt optimization (TRAINLM) is used as training function in this work. 

TRAINLM determines the weight and bias values in back propagation algorithm which 

was found to be useful in networks training.  

 It is made of three layers as seen in Figure 3.5 below: 

 The input is the first layer which does not have computing capability. The 

independent parameters are fed to the first hidden layer through the input layer. 

 The output is the last layer used to process output of dependent variables. 

 The hidden layer lies at the middle between input and output layers that provides 

interconnection between layers. Connection between layers can be fully or partial. 

Each neuron in the first layer is connected to all neurons in the second layer for 

fully connected ANN model. For partially, each neuron on first layer does not have 

to be joined to all neurons on the next layer.  

 

 Figure 3.5: Back propagation ANN model architecture 
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Complexity of a problem normally determined the number of hidden layers. One hidden 

layer is used by most ANN models since it is enough to provide good prediction. Modeling 

complex problems can be done with more than one hidden layer.   

 

3.6 How ANN Model Learn 

Artificial neural network models learn from experience gained through training procedure. 

The training includes fitting data to ANN models. Supervised learning involves presenting 

input/output data sets. It is used to predict one or more output values from one or more 

input values. Majority of ANN solutions use supervised learning. The neural network 

output is compared with the desired or target output. The weights, which are usually 

randomly set to begin with, are adjusted by the network so that subsequent cycle or 

iteration will yield a closer match between the network output and desired output. The 

training procedure tries to minimize present errors of all neurons. This universal reduction 

is created with time by continuously changing the input weights until acceptable network 

accuracy is reached (Anderson & McNeill, 1992). 

When supervised ANN performs perfectly on training data, it is necessary to view its 

performance with data that it has not seen prior to learning. The training period is not over 

if a poor performance is obtained for the testing data. Thus, the testing is crucial to ensure 

that the model has not just memorized a given data set but learn the overall pattern 

involved (Anderson & McNeill, 1992). 
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CHAPTER 4 

FOURIER SERIES THEORY 

 

A French physicist and mathematician; Jean Baptiste Joseph Fourier initialized Fourier 

series, Fourier transform and their application to heat transfer and vibrtations. Born on 21
st 

march 1768 in Auxerre, France. The Fourier series, Fourier transform and Fourier’s Law 

were all named in his honour. 

 

4.1 Fourier Series 

Fourier developed an expression named Fourier series which can be used to represent any 

periodic signal f(t) interms of infinite sum of sines and cosines or exponentials which uses 

condition of orthogonality. 

 Fourier series representation of continuous time periodic signals/functions 

A function or signal is said to be periodic if it satisfies the condition: 

                                                                                                         

Where T=Fundamental time period  

   
  

 
                       

There are two main periodic signals or functions, namely: 

                                                                                                            

                                                                                                             

A harmonically related complex exponential can be expressed as: 

                   
  
 
                                                                                                

 Where             

Based on orthogonal signal space approximation of a function f(t) with n mutually 

exclusive orthogonal functions is given as: 

        

 

  
                                                                                                               

     

 

  
        

Where                                                      

The equation above represents Fourier series representation of  a periodic signal f(t). 
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The term                 

                                                                      
            

                                                                       
            

                                                                       
            

The Fourier series coefficient    is given as:  

   
 

 
        

 

 

                                                                                                                

 

4.2 Types of Fourier Series 

4.2.1 Trigonometric Fourier series (TFS) 

        and         are orthogonal over the interval        
  

 
 . Thus,        and 

        forms an orthogonal set but this set is not complete without the         because 

cosine set is also orthogonal to sine set. Therefore, complete this set both the cosine and 

sine terms are included. So, the complete orthogonal set contains all cosine and sine terms 

i.e (coskω0t and sinkω0t) wher k=0,1,2,3,……. 

Therefore, any function f(t) within the range        
  

 
  can be expressed as 

                                                

                                             

                                                   

                         

      
  

 
               

 
                                                      

The above equation expressess the trigonometric Fourier series representation of f(t). 

Where  
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If the interval           is (-Y, Y) (thus T=2Y), then the Fourier series coefficients  

  ,    and     are: 

   
 

  
       

 

  

                                                                                                               

   
 

 
              

 

  

                                                                                                 

   
 

 
              

 

  

                                                                                                  

For a periodic function on [-π, π],  above equations changes to: 

   
 

  
       

 

  

                                                                                                               

   
 

 
            

 

  

                                                                                                      

   
 

 
            

 

  

                                                                                                       

 Symmetrical considerations 

If f(t) is even that is f(-t)=f(t), then      

Therefore, 

   
 

 
              

 

 

                                                                                                 

     
  

 
     

 

   

                                                                                                   

Also, if f(t) is odd that is f(-t)=-f(t), then      

Therefore,  
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4.2.2 Exponential Fourier series (EFS)  

Given set of complex exponential functions          for               which is 

orthogonal over the interval          . Where   
  

  
 . This is a complete set, so it is 

possible to express any function f(t) as follows: 

           
        

           
            

          
      

       
         

         
     

 

    

                                                                                  

The above equation expressess the exponential Fourier series representation of signal f(t) 

over the interval          . The Fourier coefficient Fk  is given as 

   
 

 
              

    

  

                                                                                                 

 

4.3 Fourier Transforms 

Although Fourier series is a useful tool for investigating the spectrum of a periodic 

functions or signals, there are many waveforms that do not repeat themselves regularly.The 

main shortcomings of Fourier series is that, it is only applicable to periodic signals. There 

are many naturally produced signals such as non periodic or aperiodic, which cannot be 

expressed using Fourier series. To overcome this drawback, Fourier developed a 

mathematical model to convert signals between time (or spatial) domain to frequency 

domain and vice versa which is called Fourier transform. It has different applications in 

engineering and physics such as RADAR, astronomy, signal processing, analysis of LTI 

systems etc. (Chapra & Canale, 1990). 

          
 
                                                                                                                                                                                                 

Where  

    
 

 
              

   

    

                                                                                                

The change from a periodic to nonperiodic function can be done by letting the period to 

approach infinity. Thus, as T approaches infinity, the function never repeat itself and 

therefore becomes aperiodic. 

The Fourier transform of a function is given as 



26 
 

                    

 

  

                                                                                               

The inverse Fourier transform is given by 

     
 

  
        

       

 

  

                                                                                       

The main difference between the Fourier series and Fourier transform is that the series 

applies to periodic function while the transform to nonperiodic waveforms. Also, the 

Fourier series converts a continuous, periodic time domain function to frequency domain 

magnitudes at discrete frequencies while the Fourier transform converts a continuous time 

domain function to a continuous frequency domain function. Therefore, the discrete 

frequency spectrum generated by Fourier series is analogous to continuous frequency 

spectrum generated by Fourier transform. 

 

4.4 Discrete Fourier Transform 

In engineering applications, functions and signals are normally represented by a finite sets 

of discrete values. Moreover, data is often gathered in or converted to such a discrete 

format. Figure 4.1 shows an interval from 0 to T which can be divided into N equispaced 

subintervals with widths of       . The subscript n is used to depicts the discrete times 

at which samples are collected. Therefore, fn indicates a value of the continous function f(t) 

taken at tn. 

 

Figure 4.1: Points sampling of discrete Fourier transform 
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The data points are specified at n=0, 1, 2,…,N-1. For the system shown in below, a discrete 

Fourier transform can be written as 

       
      

   

   

                                                                                      

And the inverse Fourier transform as 

   
 

 
   

   

   

                                                                                          

         
  

 
 

Equations (4.19) and (4.18) represent the discrete analogs of (4.17) and (4.16) respectively. 

Thus, they can be used to compute both the direct and inverse Fourier transform of a 

discrete data. Though such computations can be done by hand, they are extremely difficult. 

 

4.5 The Fast Fourier Transform 

For data samples of big and even moderate size, the direct determination of the DFT can be 

extremely time consuming. The fast Fourier transform (FFT) is an algorithm developed to 

calculate DFT in an extremely economical fashion. Its speed results from the fact that it 

uses the results of previous computations to minimize the number of operations. It uses the 

symmetry and periodicity of trigonometric functions to find the transform with 

approximately Nlog2N operations. For N=50 data samples, the FFT is about ten times 

faster than the standard DFT. For N=1000, the FFT is about 100 times faster. 

The first FFT algorithm was developed by Gauss in the early nineteenth century 

(Heideman et al., 1984). Other main contributions were made by Runge, Danielson, 

Lanczos and others in the early twentieth century. Fortunately, because DFT often took 

days to weeks to compute by hand, they did not attract much interest prior to the 

development of modern digital computers. J.W. Cooley and J.W. Tukey in 1965 published 

a key paper which they designed an algorithm for calculating FFT (Chapra & Canale, 

1990). 
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CHAPTER 5 

METHODS AND PUBLISHED EXPERIMENTAL RESULTS 

 

5.1 Published Experimental Results 

Published experimental results were obtained from previous studies related to vertical axis 

Savonius wind turbine. In total, eight rotors, with two or three blades, but different blade 

geometry were collected from Published experimental results and they were subjected to 

power coefficient, torque coefficient and torque as function of rotor angle. 

 

5.1.1 Mechanical torque 

Ali (2013), carried out an experimental study for Savonius Wind Turbine using subsonic 

wind tunnel under low wind speed. Two and three blades performance was also 

investigated and compared. The blade has diameter of 100 mm, height of 200 mm and 

thickness of 0.079 mm as depicted in Figure 5.1. The torque variation with rotor angle at 

5.3 m/s speed and 458rpm rotational speed is shown in Figure 5.2. 

 

Figure 5.1: Two blades conventional Savonius wind turbine 
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Figure 5.2: Torque of Savonius turbine various rotor angle 

 

Sargolzaei and Kianifar (2009), predicted the torque of three Savonius rotor using ANNs 

according to experimental data collected for various prototype vertical Savonius rotors 

tested in a wind tunnel. Radial basis function (RBF) network was the proposed model. The 

Savonius rotor has blades nominal diameter (D) and height (H) as in Figure 5.3. The 

distance gap changes the amount of drag force on the rear and front of blade for various 

angles with respect to the wind direction. 30 cm was the height (H) in all produced models 

and the thickness of blade 1 mm, which was made of aluminum (Figure 5.3). 

 

 

(a) front view                            (b) semicircle shape 

Figure 5.3: Schematic of Savonius rotor 
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Figure 5.4: Experimented rotor’s blade shapes 

 

 
Figure 5.5: Torque of Savonius rotor I various rotor angle 

 

 

Figure 5.6: Torque of Savonius rotor II various rotor angles 
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Figure 5.7: Torque of Savonius rotor III various rotor angle 

 

5.1.2 Power coefficient (Cp), torque coefficient (Ct) and static torque coefficient 

Debnath et al. (2014), experimentally measured the torque and power coefficients of 

helical Savonius wind turbine rotor. Savonius rotor with shaft of 40 cm in height and 24 

cm in diameter (see Figure 5.7). The representation of the power coefficient and torque 

coefficient are shown in Figure 5.8 and 5.9 at different blade number and in one revolution 

(360°) of the rotor angle. 

 

 

Figure 5.8: Helical Savonius rotor two and three blades at 90° angle of twist 
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Figure 5.9: Variation of torque coefficient at one revolution (360°). 

 

 

Figure 5.10: Power coefficient variation plot 

  

Kamoji et al. (2009), measured the torque coefficient for helical Savonius wind turbine 

rotor in one cycle of 360°. Experiment on helical Savonius rotors were carried out in an 

open jet wind tunnel. The helical rotors (with and without shaft in between end plates) with 

a twist of 90° were manufactured in a rapid prototyping machine as shown in Figure 5.10. 

Figures 5.11 shows torque coefficient without shaft at various rotor angle with overlap 

ratio 0.88 and 0.1, respectively. The torque coefficient with shaft at various rotor angle 

with overlap ratio 0 is shown in Figure 5.12. 
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Figure 5.11: (a) Helical Savonius rotor with shaft between the end plates (b) and (c) two views of 

helical rotor without shaft between the end plates 

 

 

Figure 5.12: Ct without shaft; overlap ratio = 0.1 at one revolution (360°) 
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Figure 5.13: Ct with central shaft; overlap ratio = 0.0 at one revolution (360°) 
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5.2 Statistical Terms and Definitions 

Statistical terms used in the regression analysis are defined as follows: 

 

5.2.1 R-squared or the coefficient of determination 

The R-squared value is an indicator of how well the model fits the data (e.g., an R-square 

value close to 1.0 indicates that almost all the variables variability  have been accounted in 

the model) and an R value of zero means a random relationship. However, R-squared 

increases with increase in a number of predictors in the model, even when the role of the 

individual predictor is not significant. 

     
             

 

           
                                                                                                

                         
     

 
 

 

5.2.2 Mean square error (MSE) 

This is defined as the average squared difference between the expected and predicted 

values. Small values are preferred and zero suggests no error. It is expressed as: 

    
 

 
             

 

 

   

                                                                                             

Where, N number of data set. 

 

5.2.3 Input data normalization 

The initial step is the data normalization. This step is done by transforming the actual input 

data Y into a normalized value Yn (with zero mean and unit variance): 

   
      

         
                                                                                                                  

Where Yn is value of Y after normalization, Ymin is the minimum Y value and Ymax is the 

maximum Y value of the data to be normalized. 
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CHAPTER SIX 

RESULTS AND DISCUSSION 

 

6.1 Hidden Layers, Transfer Function and Hidden Neurons 

6.1.1 Selection of transfer function 

Table 6.1 shows the R-squared of trained and simulated torque of various experimental 

result (target) for different types of transfer functions with 15 hidden neurons and one 

hidden layer. It can be observed from the table and figures that LOGSIG transfer function 

gives the best fitting regression line with R
2
 of 0.9981 for training and simulation. 

 

Table 6.1: R-squared for the transfer functions type on published experimental data 

 (Ali, 2013) 

Transfer function R
2
 

Training Simulation 

LOGSIG 0.9981 0.9981 

TANSING 0.9979 0.9978 

PURELIN 0.0989 0.1996 
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Figure 6.1: Simulated and trained torque vs. experimental torque for LOGSIG transfer 

function 
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Figure 6.2: Simulated and trained torque vs. experimental torque for TANSIG 

transfer function 
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Figure 6.3: Simulated and trained torque vs. experimental torque for PURELIN transfer 

function 
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6.1.2 Number of layers 

Artificial neural network consist of three different of layers: 

 Input 

 Hidden and 

 Output 

Most of models used only one hidden layer since it is sufficient for good prediction. In 

modeling complex problems, many hidden layers are used. Therefore, a single hidden layer 

is used throughout this work. 

 

6.1.3 Hidden layer neurons 

Many networks with various hidden neurons number are used and estimate the 

generalization error for each. Then the best network with the best performance was chosen. 

The R
2
 values for case of LOGISG transfer function and one hidden layer with different 

neurons number of 5, 10, 15 and 20 neurons are shown in Table 6.2 and Figures 6.4 to 6.7.  

It can be observed that the high R
2
 value show that 15 neurons can be used to predict 

torque of wind turbine. Therefore, 15 neurons are choosen to ensure the best 

generalization. 

 

Table 6.2: R-squared for hidden layer neurons of published experimental data (Ali, 2013) 

 Hidden layer neurons R
2
 

Training Simulation 

5 0.9947 0.9948 

10 0.9981 0.9981 

15 0.9989 0.9991 

20 0.9934 0.9968 
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Figure 6.4: Simulated and trained torque vs. experimental torque (number of neurons: 5) 
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Figure 6.5: Simulated and trained torque vs. experimental torque (number of neurons: 10) 
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Figure 6.6: Simulated and trained torque vs. experimental torque (number of neurons: 15) 
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Figure 6.7: Simulated and trained torque vs. experimental torque (number of neurons: 20) 

 

6.2 Published Experimental Data (Ali, 2013) 

To perform this task, the experimental data is randomly divided into a set of 

training/testing sets. In this work, the experimental data is divided into three groups as 

follows: 

1. Group 1: 50% for training data and 50% for similulation (randomly chosen) 

2. Group 2: 60% for training data and 40% for similulation (randomly chosen) 

3. Group 3: 70% for training data and 30% for similulation (randomly chosen) 

Figures 6.8, 6.9, 6.10 and 6.11 shows the plot between the experimental data and the 

predicted data 50% 50%,  50% for training data and 50% for simulation, 60% 40%, 60% 

for training data and 40% for simulation, 70% 30%, 70% for training data and 30% for 
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simulation, and FS, Fourier series,  respectively. These figures shows that the models are 

very accurate to estimate the torque of the Savonius rotor.  

As observed in Table 6.3 and Figures 6.13 to 6.14, all groups could be used to predict the 

torque of Savonius rotor. It was noticed that the predicted mechanical torque using these 

models is close to the measured mechanical torque. The highest R
2
 between measured and 

predicted torque is 0.9981 for FS showing that this model is very accurate, likewise to 70% 

30%, the minimum R
2
 is 0.9951 which also shows that the predicted and measured results 

are very close to each other (Figure 6.13 and 6.14). Hence suggests that these models 

should be used with caution when predicting the mechanical torque of the Savonius wind 

turbine. 
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Table 6.3: Percentage division of experimental data for BPNN 

Group 1 

Training 50% 

Simulation  50% 

Epoch 20 

MSE 5.684E-7 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.98 0.998 A 1 0.998 

B 0.005 B 8E-5  

Validation R
2
 All R

2
 

A 1 0.998 A 0.99 0.998 

B 6.1E-5 B 0.00037 

Group 2 

Training 60% 

Simulation  40% 

Epoch 15 

MSE 5.33E-7 

Equations of Training  

                  

Training R
2
 Test R

2 

A 0.99 0.998 A 0.99 0.998 

B 0.00019 B 0.00020 

Validation R
2
 All R

2
 

A 0.99 0.998 A 0.99 0.998 

B 0.00017 B 0.00019 

Group 3 

Training 70% 

Simulation  30% 

Epoch 16 

MSE 8.456E-7 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.99 0.997 A 0.98 0.988 

B 0.00027 B 0.00047 

Validation R
2
 All R

2
 

A 0.99 0.996 A 0.99 0.996 

B 0.00041 B 0.00031 
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Figure 6.8: Comparison of Proposed Models with experimental data 

 

 

 

 

 

 

 
Figure 6.9: Comparison of 50% simulated BPNN with experimental data 
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Figure 6.10: Comparison of 40% simulated BPNN with experimental data 

 

 

 

 

 

 
Figure 6.11: Comparison of 30% simulated BPNN with experimental data 
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Figure 6.12: Comparison of FS with experimental data 
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Figure 6.13: Simulated torque vs. experimental torque for all models 
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Figure 6.14: Trained torque vs. experimental torque for all models 
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6.3 Published Experimental Data (Debnath et al., 2014) 

6.3.1 Cp for two blades  

Similar to the pervious section, the experimental data is divided into two groups as 

mentioned before (see Table 6.4).  

The predicted data are too close to experimental data as shown in Figures 6.15 to 6.19. 

Simulated and trained and experimental values for Cp were fitted with linear regression 

equations as shown in Figures 6.20 and 6.21 respectively. It shows that these models are 

very accurate to predict the power Cp of helix Savonius wind turbine.  

Figure 6.18 shows that group 3 is best model for predicting the value of power coefficient 

of the turbine, rather than using group 1 and group 2. 
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Table 6.4: Percentage division of experimental data for BPNN (Cp for two blade of helix 

Savonius turbine) 

Group 1 

Training 50% 

Simulation  50% 

Epoch 24 

MSE 3.346E-5 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.99 0.996 A 1  

B 0.0028 B 0.0024 0.998 

Validation R
2
 All R

2
 

A 1 0.992 A 1 0.994 

B 0.01 B 0.0013 

Group 2 

Training 60% 

Simulation  40% 

Epoch 33 

MSE 1.67E-5 

Equations of Training  

                  

Training R
2
 Test R

2 

A 0.99 0.996 A 0.98 0.990 

B 0.0023 B 0.0085 

Validation R
2
 All R

2
 

A 0.98 0.994 A 0.99 0.996 

B 0.006 B 0.0037 

Group 3 

Training 70% 

Simulation  30% 

Epoch 12 

MSE 3.337E-5 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.99 0.996 A 0.99 0.994 

B 0.0036 B 0.0046 

Validation R
2
 All R

2
 

A 0.95 0.992 A 0.98 0.994 

B 0.0018 B 0.0057 
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Figure 6.15: Plot of all models with experimental data 

 

 
Figure 6.16: 50% simulated BPNN with experimental data 

 

 

 
Figure 6.17: Comparison of 40% simulated BPNN with experimental data 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.0 0.2 0.4 0.6 0.8 1.0 

C
p

 

rotor angle [°] 

Exp 

FS 

50% 50% BP 

60% 40% BP 

70% 30%  BP 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.0 0.2 0.4 0.6 0.8 1.0 

C
p

 

rotor angle [°] 

Exp 

50% 50% BP 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.35 

0.4 

0.45 

0.5 

0.0 0.2 0.4 0.6 0.8 1.0 

C
p

 

rotor angle [°] 

Exp 

60% 40% BP 



55 
 

 

 
Figure 6.18: 30% simulated BPNN with experimental data 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: Comparison of FS with experimental data 
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Figure 6.20: Simulated CP vs. experimental CP for all models 

 

Figure 6.21: Trained CP vs. experimental CP for all models 
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6.3.2 Ct for two blades  

Also, the predicted results of the models for torque coefficent of helix wind turbine are 

shown in Figures 6.22 to 6.26. The R
2
 values of  simulated and trained BPNN models show 

that these parameters can be accurately predicted from experimental results of turbine 

using these models as shown in Table 6.5 (Trained)  and Figures 6.27 and 6.28. Hence, 

BPNN models are the best model for predicting the torque coefficent of  helix turbine 

compared to FS model. 
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Table 6.5: Percentage division of experimental data for BPNN (Ct for two blade of helix 

Savonius turbine) 

Group 1 

Training 50% 

Simulation  50% 

Epoch 4 

MSE  4.76E-4 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.94 0.98 A 0.65 0.556 

B 0.012 B 0.064 

Validation R
2
 All R

2
 

A 0.63 0.625 A 0.84 0.844 

B 0.066 B 0.03 

Group 2 

Training 60% 

Simulation  40% 

Epoch 7 

MSE 2.03E-5 

Equations of Training  

                  

Training R
2
 Test R

2 

A 0.97 0.996 A 0.95 0.996 

B 0.0049 B 0.01 

Validation R
2
 All R

2
 

A 0.96 0.97 A 0.97 0.994 

B 0.0059 B 0.0059 

Group 3 

Training 70% 

Simulation  30% 

Epoch 10 

MSE 4.787E-6 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.99 4.787E-6 A 1 0.996 

B 0.0026 B 0.0012 

Validation R
2
 All R

2
 

A 1 0.994 A 0.99 0.994 

B 0.002 B 0.0018 
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Figure 6.22: Comparison of all models with experimental data 

 

 

 

 

 

 
Figure 6.23: 50% simulated BPNN with experimental data 
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Figure 6.24: 40% simulated BPNN with experimental data 

 

 

 

 

 

 
Figure 6.25: 30% BPNN with experimental data 
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Figure 6.26: FS with experimental data 

 

 

Figure 6.27: Simulated torque vs. experimental torque for all models 

0 

0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

0.0 0.2 0.4 0.6 0.8 1.0 

C
t 

rotor angle [°] 

Exp 

FS 



62 
 

 

Figure 6.28: Trained torque vs. experimental torque for all models 

 

6.3.3 Cp for three blades  

Table 6.6 shows R
2
 values of three groups of BPNN models. Additionally, graphical 

representations of the BPNN models and FS model for power coefficient of three blades 

helix wind turbine are shown in Figures 6.29 to 6.33. The R
2
 value for simulated and 

trained BPNN models are also shown in Figure 6.34 and 6.35, respectively and for FS 

model is shown in Figure 6.33 as well. And they show very high values which attest to the 

statistical strength of the models for power coefficient of three blades helix wind turbine. 
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Table 6.6: Percentage division of experimental data for BPNN (Cp for three blade of helix 

Savonius turbine) 

Group 1 

Training 50% 

Simulation  50% 

Epoch 8 

MSE 1.663E-6 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.97 0.994 A 0.8 0.876 

B 0.0081 B 0.056 

Validation R
2
 All R

2
 

A 0.93 0.019 A 0.95 0.984 

B 0.019 B 0.013 

Group 2 

Training 60% 

Simulation  40% 

Epoch 5 

MSE 1.627E-6 

Equations of Training  

                  

Training R
2
 Test R

2 

A 0.94 0.984 A 0.83 0.98 

B 0.018 B 0.05 

Validation R
2
 All R

2
 

A 1 0.96 A 0.94 0.98 

B 0.004 B 0.017 

Group 3 

Training 70% 

Simulation  30% 

Epoch 10 

MSE 1.455E-6 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.96 0.984 A 0.89 0.986 

B 0.0099 B 0.03 

Validation R
2
 All R

2
 

A 0.97 0.986 A 0.95 0.982 

B 0.0075 B 0.014 
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Figure 6.29: Comparison of all models with experimental data 

 

 

 

 

 

 
Figure 6.30: Comparison of 50% simulated BPNN with experimental data 
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Figure 6.31: Comparison of 40% simulated BPNN with experimental data 

 

 

 

 

 

 
Figure 6.32: Comparison of 30% simulated BPNN with experimental data 
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Figure 6.33: Comparison of FS with experimental data 

 

 

 

Figure 6.34: Simulated torque vs. experimental torque for all models 
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Figure 6.35: Trained torque vs. experimental torque for all models 

 

6.3.4 Ct for three blades  

Similarly, the comparison between the predicted results and experimental result for four 

models are shown in Figure 6.36 to 6.40. Table 6.7 and Figures 6.41 and 6.42 show the R
2
 

values for BPNN models and FS model. It observed that group 3 and FS are the best 

models used to estimate the Ct of three blades wind turbine. 
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Table 6.7: Percentage division of experimental data for BPNN (Ct for three blade of helix 

Savonius turbine) 

Group 1 

Training 50% 

Simulation  50% 

Epoch 11 

MSE 5.548E-7 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.95 0.988 A 0.85 0.603 

B 0.0085 B 0.026 

Validation R
2
 All R

2
 

A 1 0.972 A 0.97 0.923 

B 0.0036 B 0.005 

Group 2 

Training 60% 

Simulation  40% 

Epoch 6 

MSE 2.414E-6 

Equations of Training  

                  

Training R
2
 Test R

2 

A 0.9 0.95 A 0.024 0.986 

B 0.017 B 0.85 

Validation R
2
 All R

2
 

A 0.8 0.925 A 0.88 0.954 

B 0.032 B 0.02 

Group 3 

Training 70% 

Simulation  30% 

Epoch 40 

MSE 4.838E-7 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.98 0.986 A 0.89 0.958 

B 0.0033 B 0.018 

Validation R
2
 All R

2
 

A 0.97 0.99 A 0.97 0.986 

B 0.0048 B 0.0044 
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Figure 6.36: Comparison of all models with experimental data 

 

 

 

 

 

 
Figure 6.37: 50% simulated BPNN with experimental data 
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Figure 6.38: 40% simulated BPNN with experimental data 

 

 

 

 

 

Figure 6.39: 30% BPNN simulated with experimental data  
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Figure 6.40: Comparison of FS with experimental data 

 

 

Figure 6.41: Simulated torque vs. experimental torque for all models 
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Figure 6.42: Trained torque vs. experimental torque for all models 

 

6.4 Published Experimental Data (Sargolzaei and Kianifar, 2009) 

6.4.1 Rotor I 

Figures 6.43 to 6.47 depicts the output torque against the experimental torque for the four 

models. Table 6.8 and Figures 6.48 and 6.49 show the R
2
 values of the models, it can be 

seen that the highest R
2
 value is for group 3 (BPNN model) while the lowest R

2
 value is 

0.578 for FS model. 
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Table 6.8: Percentage division of experimental data for BPNN (Rotor I) 

Group 1 

Training 50% 

Simulation  50% 

Epoch 9 

MSE  6.823E-6 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 1 1 A 1.3 1 

B 1.6E-7 B 0.032 

Validation R
2
 All R

2
 

A 0.62 1 A 0.97 0.992 

B 0.023 B 0.0018 

Group 2 

Training 60% 

Simulation  40% 

Epoch 4 

MSE 4.123E-7 

Equations of Training  

                  

Training R
2
 Test R

2 

A 0.96 0.984 A 0.3 1 

B 0.0025 B 0.066 

Validation R
2
 All R

2
 

A 0.97 1 A 0.98 0.986 

B 0.001 B 0.00072 

Group 3 

Training 70% 

Simulation  30% 

Epoch 10 

MSE 1.75E-6 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 1 1 A 1 1 

B 7.9E-5 B 0.0077 

Validation R
2
 All R

2
 

A 1.2 0.99 A 1 0.991 

B 0.0086 B 0.0016 
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Figure 6.43: Comparison of all models with experimental data 

 

 

 

 

 

Figure 6.44: Comparison of 50% simulated BPNN with experimental data 
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Figure 6.45: Comparison of 40% simulated BPNN with experimental data 

 

 

 

 

 

Figure 6.46: Comparison of 30% simulated BPNN with experimental data 
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Figure 6.47: Comparison of FS with experimental data 

 

 

Figure 6.48: Simulated torque vs. experimental torque for all models 
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Figure 6.49: Trained torque vs. experimental torque for all models 

 

6.4.2 Rotor II 

Similarly, the comparison between the models results with experimental results of this 

rotor and the statistical strength of the models can be seen in Figure 6.50 to 6.54. In 

Figures 6.56, 6.57 and Table 6.9 (Training results), it was observed that the linear models 

(FS and group 3 BPNN) are acceptable since R-squared value is about 0.98. 
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Table 6.9: Percentage division of experimental data for BPNN (Rotor II) 

Group 1 

Training 50% 

Simulation  50% 

Epoch 5 

MSE 1.059E-5 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.95 0.998 A 0.3 1 

B 0.0041 B 0.04 

Validation R
2
 All R

2
 

A 1.1 1 A 0.9 0.974 

B 0.014 B 0.00079 

Group 2 

Training 60% 

Simulation  40% 

Epoch 3 

MSE 9.134E-6 

Equations of Training  

                  

Training R
2
 Test R

2 

A 0.85 0.913 A 4 1 

B 0.01 B 3.8 

Validation R
2
 All R

2
 

A 1 1 A 0.71 0.848 

B 0.0018 B 0.02 

Group 3 

Training 70% 

Simulation  30% 

Epoch 5 

MSE 4.384E-5 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.98 0.998 A 0.7 0.532 

B 0.0015 B 0.017 

Validation R
2
 All R

2
 

A 1 0.906 A 0.98 0.95 

B 0.0083 B 0.0008 
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Figure 6.50: Comparison of all models with experimental data 

 

 

 

 

 

Figure 6.51: Comparison of 50% simulated BPNN with experimental data 
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Figure 6.52: Comparison of 40% simulated BPNN with experimental data 

 

 

 

 

 

Figure 6.53: Comparison of 30% simulated BPNN with experimental data 
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Figure 6.54: Comparison of FS with experimental data 

 

 

Figure 6.55: Simulated torque vs. experimental torque for all models 
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Figure 6.56: Trained torque vs. experimental torque for all models 

 

6.4.3 Rotor III 

The mean squared error and empirical equations of trained results for 3 groups of BPNN 

for torque of rotor III are shown in Table 6.10. Also, an R-squared value of trained results 

for 3 groups of BPNN is shown in Figure 6.60. A plot of the predicted and the measured 

torque is represented in Figures 6.57 to 6.61. As can be seen that the best empirical models 

for estimating the torque of rotor III from experimental results of torque of rotor III are FS 

and group 3 BPNN.  
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Table 6.10: Percentage division of experimental data for BPNN (Rotor III) 

Group 1 

Training 50% 

Simulation  50% 

Epoch 11 

MSE  3.549E-05 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 1 0.998 A 2.8 1 

B 0.00019 B 0.23 

Validation R
2
 All R

2
 

A 1.5 1 A 0.95 0.876 

B 0.045 B 0.0035 

Group 2 

Training 60% 

Simulation  40% 

Epoch 11 

MSE 3.27E-07 

Equations of Training  

                  

Training R
2
 Test R

2 

A 1 0.998 A 1 1 

B 0.00013 B 0.0043 

Validation R
2
 All R

2
 

A 1 1 A 1 0.996 

B 0.0039 B 7.2E-05 

Group 3 

Training 70% 

Simulation  30% 

Epoch 8 

MSE 5.024E-07 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 1 1 A 0.96 0.998 

B 5.6E-05 B 0.028 

Validation R
2
 All R

2
 

A 0.99 0.998 A 0.98 0.987 

B 0.0011 B 0.0017 
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Figure 6.57: Comparison of all models with experimental data 

 

 

 

 

Figure 6.58: Comparison of 50% simulated BPNN with experimental data 
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Figure 6.59: Comparison of 40% simulated BPNN with experimental data 

 

 

 

 

 

 

Figure 6.60: Comparison of 30% simulated BPNN with experimental data 
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Figure 6.61: Comparison of FS with experimental data 

 

 

Figure 6.62 Simulated torque vs. experimental torque for all models 

0 

0.02 

0.04 

0.06 

0.08 

0.1 

0.12 

0.05 0.06 0.07 0.08 0.09 0.1 

To
rq

u
e

 [
N

.m
] 

Rotor Angle [°] 

Exp. 

FS 



87 
 

 

Figure 6.63: Trained torque vs. experimental torque for all models 

 

6.5 Published Experimental Data (Kamoji et al., 2009) 

6.5.1 Helix turbine without shaft and overlap ratio of 0.1 

Table 6.11 and Figures 6.69 and 6.70 show the accuracy of the correlation measured by the 

R-squared, R
2
. Consequently, the predicted plots becomes a significant method to predict 

the model. This can be noticed in Figures 6.64 to 6.68. Furthermore, this shows that the FS 

model can be used to predict torque coefficient of helix turbine without shaft.  
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Table 6.11: Percentage division of experimental data for BPNN (without shaft; Overlap 

ratio = 0.1) 

Percentage of data of BPNN 

Training 50% 

Simulation  50% 

Epoch 4 

Best validation performance  2.14E-05 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 1 0.891 A 0.94 1 

B 0.0034 B 0.016 

Validation R
2
 All R

2
 

A 1.1 1 A 1 0.923 

B 0.032 B 0.0016 

Percentage of data of BPNN 

Training 60% 

Simulation  40% 

Epoch 7 

Best validation performance  7.1E-04 

Equations of Training  

                  

Training R
2
 Test R

2 

A 1 1 A 0.91 1 

B 7.9E-05 B 0.032 

Validation R
2
 All R

2
 

A 5 1 A 0.99 0.859 

B 1.1 B 0.0014 

Percentage of data of BPNN 

Training 70% 

Simulation  30% 

Epoch 52 

Best validation performance  1.08E-04 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 1 1 A 0.64 0.938 

B 2.7E-06 B 0.0072 

Validation R
2
 All R

2
 

A 1.3 0.454 A 0.77 0.535 

B 0.46 B 0.059 
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Figure 6.64: Comparison of all models with experimental data 

 

 

 

 

 

 

Figure 6.65: Comparison of 50% simulated BPNN with experimental data 
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Figure 6.66: 40% simulated BPNN with experimental data 

 

 

 

 

 

 

Figure 6.67: 30% simulated BPNN with experimental data 
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Figure 6.68: Comparison of FS with experimental data 

 

 

Figure 6.69: Simulated torque vs. experimental torque for all models 
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Figure 6.70: Trained torque vs. experimental torque for all models 

 

6.5.2 Helix turbine with central shaft and overlap ratio of 0.0 

The MSE, R
2
 and empirical equations of the dependent and independent variables for 

calculating the torque of the turbine are shown in Table 6.12. Also, the comparison plots of 

the models are shown in Figures 6.71 to 6.75. Figures 6.76 and 6.77 shows the fitting 

result. It is observed from these figures that the Fourier series gives the best estimation of 

the torque coefficient of the turbine since R
2 

 of this model is 0.99 which is  close to unity, 

as shown in Figure 6.75. 
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Table 6.12: Percentage division of experimental data for BPNN (with central shaft; 

Overlap ratio = 0.0) 

Percentage of data of BPNN 

Training 50% 

Simulation  50% 

Epoch 0 

Best validation performance  2.58E-03 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.074 0.0043 A 1.6 1 

B 0.24 B 0.092 

Validation R
2
 All R

2
 

A - 0 A 0.032 0.001 

B - B 0.23 

Percentage of data of BPNN 

Training 60% 

Simulation  40% 

Epoch 3 

Best validation performance  2.4E-03 

Equations of Training  

                  

Training R
2
 Test R

2 

A 0.97 0.984 A 1.2 1 

B 0.008 B 0.0092 

Validation R
2
 All R

2
 

A 0.92 1 A 0.84 0.91 

B 0.042 B 0.026 

Percentage of data of BPNN 

Training 70% 

Simulation  30% 

Epoch 7 

Best validation performance  2.84E-05 

Equations of Training  

                  

Training R
2
 Test R

2
 

A 0.99 0.998 A 1.1 0.992 

B 0.0017 B 0.0054 

Validation R
2
 All R

2
 

A 1 0.998 A 1 0.996 

B 0.012 B 0.0013 
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Figure 6.71: Comparison of all models with experimental data 

 

 

 

 

 

Figure 6.72: Comparison of 50% simulated BPNN with experimental data 
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Figure 6.73: 40% simulated BPNN with experimental data 

 

 

 

 

 

Figure 6.74: 30% simulated BPNN with experimental data 
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Figure 6.75: Comparison of FS with experimental data 

 

 

Figure 6.76: Simulated torque vs. experimental torque for all models 
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Figure 6.77: Trained torque vs. experimental torque for all models 

 

6.6 Comparing FS and BPNN model with RBF model (Sargolzaei and Kianifar, 2009) 

Table 6.13 shows R-squared values fitting line between predicted torque and experimental 

data. Figures 6.88, 6.89 and 6.80 compare the results of BPNN, FS, and RBF (Sargolzaei 

and Kianifar, 2009) models for measured torque of Rotor I, II and III. It is well illustrated 

in Table 6.13 and these figures shows that the BPNN and FS model have a high capability 

in predicting the performance parameters. 

 

Table 6.13: R-squared value for FS, BPNN and RBF 

Model R
2 

Rotor I Rotor II Rotor III 

FS 0.845 0.9965 0.9375 

BPNN 0.9885 0.9873 0.9565 

RBF 0.9626 0.7833 0.9916 
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Figure 6.78: Plot of all three models with experimental torque of rotor I 
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Figure 6.79: Plot of all three models with experimental torque of rotor II 
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Figure 6.80: Plot of all three models with experimental torque of rotor III 
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CHAPTER 7 

CONCLUSION 

 

7.1. Conclusion 

FS and BPNN modeling was carried out using trigonometric Fourier series and 

feedforward back propagation neural network architecture respectively to predict the 

aerodynamic characteristics of different Savonius wind turbine configurations and to 

compare the results with the main experimental datas collected. Based, on what is 

presented in this work, it can be concluded that the aims and objectives of the research is 

achieved. The following deductions can also be made: 

i. The feedforward back propagation neural network and the Fourier series perfectly 

predict the mechanical torque of the two bladed Savonius wind turbine studied by 

Ali (2013). Both combination of training/testing data sets gives a reasonable 

prediction but the 70/30% provides better result in the back propagation neural 

network model. The MSE is extremely small and the R
2 

is close to unity. 

ii. The same applies to the second experimental data of helical Savonius rotors with 

two and three blades at 90
0
 angle of twist studied by Debnath et al, (2014). Both 

models gives a good prediction of  Cp and Ct.  

iii. The back propagation gives a good prediction with extremely small MSE and R
2
 

close to unity for the three rotors of Sargolzaei and Kianifar (2009). Howecer, the 

Fourier series model only works with the datas for rotor II and III. Poor 

performance was obtained for rotor I with different input/output training and testing 

data sets. 

iv. Lastly, a comparison was made between the two models in this study with RBF 

model carried out by Sargolzaei and Kianifar (2009). The BPNN shows a good 

prediction for rotor I compared to other two models while FS works perfecly for 

rotor II and RBF for rotor III. 

 

7.2. Future Work  

Another artificial neural network model such as the FIS, ANFIS, GRNN etc. should be 

used in the future and their performance be evaluated. 
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