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ABSTRACT

Linear algebra is a main important part of the mathematics. It is a principal branch of

mathematics that is related to mathematical structures closed under the operations of addition

and scalar multiplication and that includes the theory of systems of linear equations, matrices,

determinants, vector spaces, and linear transformations. Linear algebra, is a mathematical

discipline that deals with vectors and matrices and, more generally, with vector spaces and linear

transformations. Unlike other parts of mathematics that are frequently invigorated by new ideas

and unsolved problems, linear algebra is very well understood. Its value lies in its many

applications, from mathematical physics to modem algebra and its usage in the engineering and

medical fields such as image processing and analysis.

This thesis is a detailed review and explanation of the linear algebra domain in which all

mathematical concepts and structures concerned with linear algebra are discussed. The thesis's

main aim is to point out the significant applications of the linear algebra in the medical

engineering field. Hence, the eigenvectors and eigenvalues which represent the core of linear

algebra are discussed in details in order to show how they can be used in many engineering

applications. The principal components analysis is one of the most important compression and

feature extraction algorithms used in the engineering field. It is mainly dependent on the

calculation and extraction of eigenvalues and eigenvectors that then be used to represent an

input; whether it is image or a simple matrix. In this thesis, the use of principal components

analysis for the compression of medical images is discussed as an important and novel

application of linear algebra.

Keywords: Linear algebra; addition; scalar; multiplication; linear equations; matrices;

determinants; vector spaces; linear transformations; image processing; eigenvectors; eigenvalues;

principal components analysis; compression
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ÖZET

Lineer Cebir matematiğin en önemli parçalarından biridir ve Matematiğin, toplama ve sayıl

çarpma gibi işlemlere göre daha kapalı olan Matematiksel yapılar ile ilgili olan ve doğrusal

denklem sistemi, matrisler, determinant, vektör uzayları ve lineer dönüşümler teorilerini içeren

bir ana bilim dalıdır. Lineer Cebir, vektörler ve matrisleri, daha genel anlamda ise vektör

uzayları ve lineer dönüşümleri ele alan bir matematik bilim dalıdır. Matematiğin sıklıkla yeni

fikirler ve çözümlenmemiş problemlerle gündemde kalan diğer dallarının aksine, lineer cebir

daha anlaşılır bir konumdadır. Lineer Cebirin değeri matematiksel fizikten modem Cebire kadar

uzanan birçok uygulama yanında görüntü işleme ve analiz gibi mühendislik ve tıp alanlarında da

kullanılmasından kaynaklanmaktadır.

Bu tez, Lineer Cebirle ilgili olan tüm Matematiksel kavramların ve yapıların ele alındığı, ve bu

alanla ilgili detaylı bir inceleme ve açıklamadır. Tezin esas amacı, Lineer Cebirin Medikal

Mühendislik alanında kullanılan önemli uygulamalarına dikkat çekmektir. Bu nedenle, lineer

Cebirin özünü oluşturan özvektörler ve özdeğerlerin birçok mühendislik uygulamasında nasıl

kullanılabileceğini göstermek amacıyla detaylıca ele alınmıştır. Ana bileşenler analizi,

mühendislik alanında kullanılan en önemli sıkıştırma ve öznitelik çıkarımı algoritmalarından

biridir. Bu esasen, daha sonradan bir veriyi temsil edecek olan özdeğerler ve özvektörler çıkanını

ve hesaplanmasına bağlıdır; bir görüntü veya basit bir matris de olabilir. Bu tezde, Lineer Cebirin

önemli ve yeni bir uygulaması olarak, ana bileşenler analizinin medikal görüntülerin

kompresyonu için kullanılması ele alınmıştır.

Anahtar kelimeler: Lineer cebir; ekleme; sayıl; çarpma; lineer denklemler; matrisler;

determinantlar; vektör uzayları; doğrusal dönüşümler; görüntü işleme; özvektörler; özdeğerler;

emel bileşenler analizi; sıkıştırma
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CHAPTERl
INTRODUCTION

1.1 Introduction

Linear algebra is an important course for a diverse number of students for at least two reasons.

First, few subjects can claim to have such widespread applications in other areas of mathematics­

multi variable calculus, differential equations, and probability, for example-as well as in physics,

biology, chemistry, economics, finance, psychology, sociology, and all fields of engineering.

Second, this subject presents the student at the sophomore level with an excellent opportunity to

learn how to handle abstract concepts.

Linear algebra is one of the most known mathematical disciplines because of its rich theoretical

foundations and its many useful applications to science and engineering. Solving systems of

linear equations and computing determinants are two examples of fundamental problems in

linear algebra that have been studied for a long time ago. Leibnitz found the formula for

eterminants in 1693, and in 1750 Cramer presented a method for solving systems of linear

equations, which is today known as Cramer's Rule. This is the first foundation stone on the

development of linear algebra and matrix theory. At the beginning of the evolution of digital

computers, the matrix calculus has received very much attention. John von Neumann and Alan

urıng were the world-famous pioneers of computer science. They introduced significant

contributions to the development of computer linear algebra. In 1947, von Neumann and

Goldstine investigated the effect of rounding errors on the solution of linear equations. One year

.ater, Turing [Tur48] initiated a method for factoring a matrix to a product of a lower triangular

::ıatrix with an echelon matrix (the factorization is known as LU decomposition). At present,

mputer linear algebra is broadly of interest. This is due to the fact that the field is now

ecognized as an absolutely essential tool in many branches of computer applications that require

mputations which are lengthy and difficult to get right when done by hand, for example: in

mputer graphics, in geometric modeling, in robotics, etc.

1 



1.2 Aims of Thesis 

The motivation for this thesis comes mainly from the purpose to understand the complexity of

mathematical problems in linear algebra. Many tasks of linear algebra are recognized usually as

elementary problems, but the precise complexity of them was not known for a long time ago.

The aims are of this thesis is to understand the eigenvalues and eigenvectors and to go through

some of their applications in the mathematical and engineering areas in order to show their

importance and impact.

1.3 Thesis Overview 

This thesis is structured as follows:

Chapter 1 is an introduction of the thesis; it presents the aims of thesis as well as the thesis

overvıew.

Chapter 2 introduces the basics of linear algebra. It first introduces the linear algebra as a

oncept. Then, it discusses the scalars properties such as distributivity, and commutativity etc..

the vectors space mathematical operation are also discussed such as addition, multiplication, and

subtraction.

Chapter 3 deals with matrices and their properties. In this chapter we also provide a clear

introduction to matrix transformations and an application of the dot product to statistics. This

hapter introduces the basic properties of determinants and some of their applications as well as

:he systems of linear equations

Chapter 4 presents a simple explanation of the linear combinationsas well as linear independence.

Chapter 5 presents different types of linear transformation of matrices and also different

propertiesof them.

1



Chapter 6 considers eigenvalues and eigenvectors. In this chapter we completely solve the

diagonalization problem for symmetric matrices in addition to other application of the

eigenvalues and eigenvectors such as PCA. In here, a detailed explanation of the PCA is

presented. A medical engineering application of the PCA is presented in this chapter in order to

point out the importance of the eigenvalues and eigenvectors in engineering applications.

Chapter 7 is a conclusion of the presented thesis.

1



CHAPTER TWO 
LINEAR ALGEBRA BASICS 

This chapter reviews the basic concepts and thoughts of linear algebra. It discusses and reviews

the scalars and their properties through equations. Moreover, it presents the vectors and their

:ransforınations such as multiplication, subtraction etc..

2.1 Introduction to Linear Algebra 

Linear Algebra is a standout amongst the most critical fundamental ranges in Mathematics,

aaving at any rate as awesome an effect as Calculus, and to be sure it gives a noteworthy piece of

.•..e hardware required to sum up Calculus to vector-esteemed elements of numerous variables.

Dissimilar to numerous logarithmic frameworks considered in Mathematics or connected inside

r out with it, a hefty portion of the issues concentrated on in Linear Algebra are manageable to

. recise and even algorithmic arrangements, and this makes them implementable on PCs - this

larifıes why so much calculational utilization of PCs includes this sort of polynomial math and

'hy it is so generally utilized. Numerous geometric subjects are examined making utilization of

- aeas from Linear Algebra, and the thought of a direct change is an arithmetical adaptation of

geometric change. At long last, a lot of present day unique variable based math constructs on

LinearAlgebra and regularly gives solid illustrations of general though (Poole, 201O).

The subject of linear algebra based math can be somewhat clarified by the means of the two

terms involving the title. "Linear" is a term you will acknowledge better toward the end of this

ourse, and in reality, achieving this gratefulness could be taken as one of the essential objectives

this course. However until further notice, you can comprehend it to mean anything that is

straight" or "level." For instance in the .xy-planeyou may be acclimated to portraying straight

.ines (is there some other kind?) as the arrangement of answers for a mathematical statement of

tae structure y=mx-t-b, where the slant m and they-capture bare constants that together depict

ıae line. In the event that you have contemplated multivariate analytics, then you will have

experienced planes. Living in three measurements, with directions portrayed by triples (x,y,z),

ıaey can be depicted as the arrangement of answers for mathematical statements of the structure

ıs-t-by-t-cz=d, where s.b.c.d are constants that together focus the plane. While we may depict

11



_ lanes as level, lines in three measurements may be portrayed as linear. From a multivariate

analytics course you will review that lines are sets of focuses portrayed by comparisons, for

example, x=3t-4, y=-7t+2, z=9t, where tis a parameter that can tackle any worth .

.Another perspective of this idea of levelness is to perceive that the arrangements of focuses

simply depicted are answers for mathematical statements of a moderately basic structure. These

mathematical statements include expansion and duplication just. We will have a requirement for

subtraction, and every so often we will isolate, yet for the most part you can depict linear

:nathematical statements as including just addition and multiplication (Kolman, 1996).

2.2 Scalars 

Before examining vectors, first we clarify what is implied by scalars. These are "numbers" of

different sorts together with logarithmic operations for consolidating them. The principle cases

'e will consider are the objective numbers Q, the genuine numbers Rand the mind boggling

:ıumbers C. Be that as it may mathematicians routinely work with different fields, for example,

tne limited fields (otherwise called Galois fields) which are essential in coding hypothesis,

cryptography and other advanced applications (Rajendra, 1996) .

..\ field of scalars (or only a field) comprises of a set F whose components are called scalars,

together with two arithmetical operations, expansion+ and augmentation x, for joining each pair

scalars x, y E F to give new scalars x + y E F and xx y E F. These operations are required to

fulfill the accompanying properties which are here and there known as the field

Associativity: For x, y, z E F,

(x + y) + z = x + (y + z),

(x X y) X z = X X (y X z)

(2.1)

(2.2)

Zero and unity: There are unique and distinct elements O, 1 E F such that for x E F,

X +Ü= X Ü+ X, (2.3)

(2.4)X X 1 X = 1 X X.

12



Distributivity: For x, y, z E F,

(x + y) X Z = X X Z + y X Z, (2.5)

Z X (x + y) = Z X X + Z X y. (2.6)

Commutativity: For x, y E F,

X + y = y + X, (2.7)

xxy=yxx. (2.8)

Additive and multiplicative inverses: For x E F there is a unique element -x E F (the- additive

inverse of x) for which

x + (-x) = O = (-x) + x (2.9)

For each non-zero y E F there is a unique element (!.) E F (the multiplicative inverse of y) for
y

.hich

y X (!)y
11 = -x Yy

(2. 10)

• Remarks 2.1. 

• Usually xy is written instead of x x y, and then we always have xy = yx.

• Because of commutativity, an above portion standards or rules are repetitive as in the sense that

:hey are results of others (Kolman, 1996).

• When working with vectors we will dependably have a particular field of scalars at the top of

:he priority list and will make utilization of these guidelines.

13



• Definition 2.1 

..\ real vector space is a set V of elements on which we have two operations EB and 8 defined

ith the following properties:

(a) if u and v are any elements in V. then u EB J vis in V, (We say that Vis closed under the

operation EB).

( 1) u EB v = v EB u for all u,v in V.

(2) u EB (v EB w) = (n EB v) EB w for all u, v, win V.

(3) There exists an element - u in V such that u EBu = - u EB u = O. 

(4) If u is any element in V and c is any real number, then c 0 n is in V (i.e., V is closed

under the operation 0).

(b) If u is any element in V and c is any real number, then c0n is in V (i.e., V is closed under

the operation 0).

(5) c 0 (u EB v) = c 0 uEB c 0 v for any u, v in V and any real number c.

(6) (c + d) 0 u = c 0 u EB d 0 u for any u in V and any real numbers f and d.

(7) c 0 (1 0 u) = (cd) 0 u for any u in V and any real numbers c and d.

(8) I 0 u = u for any u in V.

The elements of V are called vectors: the elements of the set of real numbers Rare called

scalars. The operation EB is called vector addition: the operation 0 is called scalar

multiplication. The vector O in property (3) is called a zero vector, The vector - u in property

(4) is called a negative ofu.

• Definition 2.2

Let V be a vector space and W a nonempty subset ofV. If Wis a vector space with respect to

the operations in V, then W is called a subspace of V.

It follows from Definition 2.2 that to verify that a subset W of a vector space V is a subspace,

one must check that (a), (b), and (1) through (8) of Definition 2.1 hold. However, the next

theorem says that it is enough to merely check that (a) an (b) hold to verify that a subset W of

a vector space Vis a subspace. Property (a) is called the closure property for EB, and property

(b) is called the closure property for 0.

14



• Theorem 2.1 

Let V be a vector space with operations EB and 0 and let W be a nonempty subset of V. Then W

· ~ a subspace of V if and only if the following conditions hold:

a) Ifu and v are any vectors in W, then uEBv is in W.

) If c is any real number and u is any vector in W. then e 0 u is in W.

• Proof 

~w is a subspace ofV, then it is a vector space and (a) and (b) of Definition 4.4 hold; these are
precisely (a) and (b) of the theorem

onversely, suppose that (a) and (b) hold. We wish to show that W is a subspace of V. First,

from(b) we have that ( - 1) 0 u is in W for any u in W. From (a) we have that u EB (-1) 0 u is in

·. But u EB (-1) 0 u = O, so O is in W. Then u EB O= u for any u in W. Finally, properties (1),

-), (5), (6), (7), and (8) hold in W because they hold in V. Hence Wis a subspace ofV.

• Example 2.1 

_et W be the set of all vectors in R3 of the form [ : ] where a and bare any real numbers. To
a+b 

erifyTheorem 2.1 (a) and (b), we let

[
aı ]

11

= aı ~ b, ·
and v = [. ~! J

cı2 + b2

~- two vectors in W. Then

U$V= [ 
{aı

a ı +aı J [ a ı + aı J
b I + bı = b I + bı

hı)+ (cıı + b2) (aı + cı2) + (bı + b2)

- in W. for W consists of all those vectors whose third entry is the sum of the first two entries.

Similarly,

[
aı J cO hı =

aı + b, [
caı. J [ caı Jchı = cl»,

cı(aı+bı) caı+cbı

15



· in W. Hence W is a subspace of R3•

Vector Algebra 
ere, we introduce a few useful operations which are defined for free vectors. Multiplication by

scalar If we multiply a vector A by a scalar a, the result is a vector B = aAı which has

::ıagnitudeB =/a/A. The vector B, is parallel to A and points in the same direction if a> O. For

<O, the vector Bis parallel to A but points in the opposite direction (antiparallel).

ultiplication by a scalar If we multiply a vector A by a scalar a, the result is a vector B = aA,

· ch has magnitude B = /a/A. The vector B, is parallel to A and points in the same direction if a 

> O. For a« O, the vector Bis parallel to A but points in the opposite direction (antiparallel)

-olman, 1996).

7 13~-aAfa(c,. >O) . . iha:nA
(u<O)

ce we multiply an arbitrary vector, A, by the inverse of its magnitude, (1/A), we obtain a unit

tor which is parallel to A. There exist several common notations to denote a unit vector, e.g.

·, eA, etc. Thus, we have that A ... = A/A = A//A/, and A =AA", /A ... /= 1. 

• Vector addition

'ector addition has a very simple geometrical interpretation. To add vector B to vector A, we

ply place the tail of Bat the head of A. The sum is a vector Cfrom the tail of A to the head of

Thus, we write C = A + B The same result is obtained if the roles ofA are reversed B. That is,

= A + B = B + A. This commutative property is illustrated below with the parallelogram

truction.

16



Since the result of adding two vectors is also a vector, we can consider the sum of multiple

ectors. It can easily be verified that vector sum has the property of association, that is,

(A + 8) + C = A + (8 + C) (2. 11)

"ector subtraction Since A -B =A+ (-BJ, in order to subtract Bfrom A, we simply multiply B 
:· -1 and then add (Golan, 1995).

• Scalar product ("Dot" product)

- is product involves two vectors and results in a scalar quantity. The scalar product between

-o vectors A and B, is denoted by A · B, and is defined as

A · 8 = AB cos 8 . (2.12)

.:ere 8, is the angle between the vectors A and Bwhen they are drawn with a common origin

• Vector product ("Cross" product)

- · s product operation involves two vectors A and B, and results in a new vector C= AxB. The

-agnitude of Cis given by,

C = AB sin 8, (2.13)

nere 8 is the angle between the vectors A and B when drawn with a common origin. To

~ate ambiguity, between the two possible choices, 8 is always taken as the angle smaller

n. We can easily show that Cis equal to the area enclosed by the parallelogram defined by A 
B. The vector C is orthogonal to both A and B, i.e. it is orthogonal to the plane defined by A

B. The direction of Cis determined by the right-hand rule as shown (Kolman, 1996).

17



C=A.xB

-rom this definition, it follows that

8 x A= -Ax 8, (2.14)

· ich indicates that vector multiplication is not commutative (but anticommutative). We also

·e that if A x B = O, then, either A and/or Bare zero, or, A and Bare parallel, although not

essarily pointing in the same direction. Thus, we also have A X A = O. Having defined vector

tiplication, it would appear natural to define vector division. In particular, we could say that

divided by B', is a vector Csuch that A= BX C. We see immediately that there are a number

: difficulties with this definition. In particular, if A is not perpendicular to B, the vector C does

• exist. Moreover, if A is perpendicular to Bthen, there are an infinite number of vectors that

isfy A= BX C. To see that, let us assume that Csatisfies, A= Bx C. Then, any vector D = C
_. PB, for 3 any scalar P, also satisfies A =Bx D, since Bx D =BX (C + PB) =Bx C = A. We

lude therefore, that vector division is not a well-defined operation (Golan, 2007).

Summary 

- · chapter presented a brief review of the linear algebra as a general topic. Moreover, a review

: scalarsand vectors including their properties and transformations was presented.

18
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CHAPTER THREE
SYSTEM OF LINEAR EQUATIONS AND MA TRICES

· chapter introduces the basic properties of determinants and some of their applications as

il as the systems of linear equations.

_.ı Systems of Linear Equations: An Introduction
""' discover the break-even point and the equilibrium point we need to understand two

ultaneous linear equations all together. These are two illustrations of real issues that require

solution of an arrangement of linear mathematical equations in two or more variables. In this

we take up a more orderly investigation of such frameworks. We start by considering an

gement of two direct mathematical equations in two variables. Review that such a

ework may be composed in the general structure (Gerald and Dianne, 2004).

ax+ by= h (3. 1)

ex+ dy = k (3.2)

bere a, b, c, d, h, and k are real constants and neither a and b nor c and d are both zero.

esently let's concentrate on the way of the solution of linear mathematical equations in more

il. Note that the diagram of every comparison in System (1) is a straight line in the plane, so

.t geometrically the answer for the system is the point(s) of intersection of the two straight

es Ll and L2. Given two lines Ll and L2, one and one and only of the next may happen:

L1 and L2 meet at precisely one point.

L 1 and L2 are parallel and coincident.

1 and L2 are parallel and distinct.

the first case of figure 3, the system has a unique solution comparing to the single purpose of

ssing point of the two lines. In the second case, the framework has boundlessly numerous

solutions comparing to the focuses lying on the same line. At long last, in the third case, the

. stern has no solutions on the grounds that the two lines don't meet (Howard, 2005).

19
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Figure 1: Different system solutions

• Example 3.1

nsider a system of equations with exactly one solution

2x - y = 1

3x + 2y = 12

·e solve the first equation for y in terms of x, we get the equation

Y = 2x - 1

- w substitute this equation for y into the second equation gives

3x + 2(2x - 1)2 = 12

3x + 4x - 2 = 12

7x = 14

x=2

20 
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Fiaally, we can obtain the following by substituting this value of x into the expression for y

y = 2(2) - 1 = 3 (3.6)

·oTE The result can be checked by substituting the values x = 2 and y = 3 into the equations.

us,

2(2) - (3) = 3

3(2) + 2(3) = 12

.,· this verification, we can conclude that point (2, 3) lies on both lines (David, 2005).

/
/2x:-y= I

It
i, (2. 3)

Figure 2: A system of equations with one solution

• Example 3.2

nsider a system of equations with infinitely many solutions

2x - y = 1 (3.7)

6x + 3y = 3 (3.8)

· ·e solve the first equation for yin terms of x, we get the equation below

Y = 2x-1 (3.9)

let's Substitute this expression for y into the second equation

6x- 3(2x- 1)2 = 3
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6x - 6x + 3 = 3

O=O 

- is is a true proclamation. This outcome takes after from the way that the second equation is

portionate to the first. Our calculations have uncovered that the solution of two mathematical

. tions is equal to the single mathematical equation 2x - y = 1. In this way, any requested

of numbers (x, y) fulfilling the mathematical equation 2x - y = 1 (or y = 2x - 1)

nstitutes an answer for the system (Bernard and David, 2007).

5

/

re 3: A system of equations with infinitely many solutions; each point on the line is a
solution

• Example 3.3

nsider a system of equations that has no solution

2x - y = 1 (3.10)

6x- 3y = 12 (3.11)

::ıe first equation is equivalent to y = 2x - 1. Therefore, if we substitute y into the second

cuation yields

6x- 3(2x- 1)2 = 12

6x - 6x + 3 = 12
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0=9 

'ch is plainly illogical. In this manner, there is no answer for the system of mathematical

ecuations (Stephen et al., 2002).

- decipher this circumstance geometrically, cast both equations in the slope-intercept form,

g

Y = 2x-1

Y = 2x- 4

(3.12)

(3.13)

"e note that without a moment's delay the lines that represent these equations are parallel (each

~ slope 2) and distinct since the first has y-intercept -1 and the second has y-intercept -4 (Fig.

. Systems without any solutions, for example, this one, are said to be inconsistent.

)/

2.x-y= l

Figure 4: A system of equations with no solution

Matrices and Elementary Row Operations

the previous we saw that changing over a linear system to an equivalent triangular system

·es a calculation to illuminating the straight system. The calculation can be streamlined by

uainting matrices which represent linear systems (David, 2005).

. 1 what is a matrix

• Definition 3.1

m x n matrix is an array of numbers with m rows and n column
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- r example consider this array is a 3 x 4 matrix

[
2 3 -1 4 l3 I O -2

-2 4 1 3

nen solving a linear system by the elimination method, only the coefficients of the variables

d the constants on the right-hand side are needed to find the solution. The variables are

ceholders. Utilizing the structure of a matrix, we can record the coefficients and the constants

_,. using the columns as placeholders for the variables.

{

-4xı + 2xz - 3x,1 = 11

.

2.q - x2. - 4x1 + 2x,..= - 3.·
3x2 - x,= O

-2xı + x., = 4

r example, the coefficients and constants of the linear system can be recorded in matrix form

p 2 O -3
11 l-1 -4 2 -3 

3 O -1 o
-2 o o ı 4

- · s matrix is called the augmented matrix of the linear system. Notice that for an m x n linear

ystemthe augmented matrix is m x (n + 1 ). The augmented matrix with the last column deleted

1 -4. 2 o -3 ·ı...·l
2 -1 -4 2
O 3 O -1 

-2 O O 1

- called the coefficient matrix. Notice that we always use a O to record any missing terms. The

zıethod of elimination on a linear system is equivalent to performing similar operations on the

s of the corresponding augmented matrix. The relationship is illustrated below:
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Lınear system

{
x+v- z= 1

2.ı:-y+ z=-l
-x-y+3z= 2

Using the operanons -2£1 + Eı-+ E2
and £1. + E.3 --ı, Es~ Y.ı>e obtain tbe equiv­
alent triangular systemr v- ı= I

-3y +3ı:=-3
2ı:= 3

Corresponding augmented nı.aırlx

[
1·. 1 - I. 1 ]:·· .••. 2 -1 1 -1 · 

-l -1 3 2 ·

Using the operations -2Rı + Rı-+ Rı
and Rı + R3 --+ R3, we obtain the equiv­
alent augmented matrix

[
1 I -1 1 l
~ -~ : -: .

-::.e notation used to describe the operations on an augmented matrix is similar to the notation we

oduced for equations. In the example above,

-2R1 + R2 ~ R2

ans replace row 2 with -2 times row 1 plus row 2. Analogous to the triangular form of a linear

em, a matrix is in triangular form provided that the first nonzero entry for each row of the

trix is to the right of the first nonzero entry in the row above it.

• Theorem 3.1

ey one of the following operations performed on the augmented matrix, corresponding to a

ear system, produces an augmented matrix corresponding to an equivalent linear system

ger and Charles, 1990).

terchanging any two rows.

Multiplying any row by a nonzero constant.

Adding a multiple of one row to another.
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-.3 Solving Linear Systems with Augmented Matrices
The operations in Theorem 3. 1 are called row operations. An m x n matrix A is called row

uivalent to an m x n matrix B if B can be obtained from A by a sequence of row operations.

:-:ıe following steps summarize a process for solving a linear system (Howard, 2005).

Write the augmented matrix of the linear system.

_ Use row operations to reduce the augmented matrix to triangular form.

• Interpret the final matrix as a linear system (which is equivalent to the original).

Use back substitution to write the solution.

Example3.2 illustrates how we can carry out steps 3 and 4.

• Example 3.4
Write the augmented matrix and solve the linear system (Larry, 1998).

[
1 O O 1 l [ I O O O 5 l [ 1 2 ı -1 1 lO 1 O 2 b, O 1 -1 O 1 • c, O 3 - ı O I
0013 00 013 00 O 00

a. Reading directly from the augmented matrix, we have X3 = 3, x2 = 2, and xı = 1. So the

system is consistent and has a unique solution.

b. In this case the solution to the linear system is X4 = 3, xz = 1 + X3, and xı = 5. So the

variable X3 is free, and the general solution is S = { ( 5, 1 + t, t, 3) / t E II!}

c. The augmented matrix is equivalent to the linear system

fXı + 2X2 + X3 - X4
l 3Xz - X3 = 1

1

d. Using back substitution, we have
1

Xz = 3(1 + X3) and
1 5 

Xı = 1 - 2X2 - X31 + X14 = 3 - 3 X3 + X14
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• Theorem 3.2
roperties of Matrix Addition and Scalar Multiplication Let A, B, and C be m x n matrices and c

d d be real numbers.

A+B=B+A

A + (B + C) = (A + B) + C

_ c(A + B) = cA + cB

(c+d)A=cA+dA

c(dA) = (cd)A

The m x n matrix with all zero entries, denoted by O, is such that A + O = O + A = A.

For any matrix A, the matrix -A, whose components are the negative of each component of A,

suchthat A+ (-A)= (-A)+ A= O (Stephen et al., 2002).

• Proof
In each case it is sufficient to show that the column vectors of the two matrices agree. We

will prove property 2 and leave the others as exercises. (2) Since the matrices A, B, and C

have the same size, the sums (A+ B) + C and A+ (B + C) are defined and also have the

same size. Let Ai, Bi, and Ci denote the ith column vector of A, B, and C, respectively. Then

e the components are real numbers, where the associative property of addition holds, we

27



. . . [ (a.ı, +.hı,)+. c.ı; l(A; + B,) + C, = : .
(amı + b,,,,} + C'm;

[
aıı +(b ..tı +. cu) l

= : = A;+ (B; + Ci)
llm.i + (b,.,; + Cm,)

~ this holds for every column vector, the matrices (A+ B) + C and A+ (B + C) are equal, and

have (A+ B) + C =A+ (B + C).

4 Matrix Multiplication 

_et A be an m x n matrix and B an n x p matrix; then the product AB is an m x p matrix. The ij

of AB is the dot product of the İth row vector of A with the ith column vector of B, so that

n

(AB)ıj =a,tblj +cı.;2b:t1 + ... +a1nbn; = La;1,:b11
.lı=l

is important to recognize that not all properties of real numbers carry over to properties of

trices. Because matrix multiplication is only defined when the number of columns of the

rrix on the left equals the number of rows of the matrix on the right, it is possible for AB to

ist with BA being undefined (Tomas, 2006). For example,

defined,but

[
3 -2 5 lBA= -1 4 -2 r 1 3 o.· ]
1 O 3 l 2 1 -3 .

ot. As a result, we cannot interchange the order when multiplying two matrices unless we

w beforehand that the matrices commute. We say two matrices A and B commute when AB

=BA
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• .5 Matrix Transpose 

.....•ne transpose of a matrix is obtained by interchanging the rows and columns of a matrix.

• Definition 3.2 
e transpose of a matrix is a new matrix whose rows are the columns of the original. (This

es the columns of the new matrix the rows of the original). Here is a matrix and its

zanspose:

3 )T 4
3 (

5
4
3

:1ıe superscript "T" means "transpose".

• Definition 3.3 

matrix A with real entries is called symmetric if AT = A.

6 Diagonal Matrix 
n x n matrix A = [a iJ J is called a diagonal matrix if a iJ = O for i f j. Thus, for a diagonal 

trix, the terms off the main diagonal are all zero. Note that O is a diagonal matrix. A scalar

trix is a diagonal matrix whose diagonal elements are equal. The scalar matrix In= [diJ},

ere dı, = 1 and diJ = O for i f j , is called the n x n identity matrix.

• Definition 3.4 
n x n matrix is called nonsingular if there exists an n x n matrix B such that AB = BA = In;

ha B is called an inverse of A. Otherwise, A is called singular, or noninvertible. 

• Definitions 3.5 

_et A = [aiJJ be an n x n matrix. The determinant function, denoted by det, is defined by

det(A) = L<±)a liı a211 · · · llnj,1,
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ere the summation is over all permutations}ı}ı · · ·Jn of the set S = ( 1, 2, ,n). The sign is

cen as + or - according to whether the permutation} ı j: · · · in is even or odd.

each term (±) aljı, a2j2,.... anj, of det(A), the row subscripts are in natural order and the

umn subscripts are in the order Iı jı · · 'in, Thus each term in det(A), with its appropriate sign,

a product of n entries of A with exactly one entry from each row and exactly one entry from

h column. Since we slim over all permutations of S, det(A) has n! terms in the sum. Another

tation for det(A) is IAI, We shall use both det(A) and IAI,

• Example 3.5 

A= [aıı aı,ı]..
a21 a22

n to obtain det(A), we write down the terms a1_a2_ and replace the dashes with all possible

ements of S2: The subscripts become 12 and 21. Now 12 is an even permutation and 21 is an

permutation. Thus

det(A) = aıı a22 - a12a21 •

..;ence we see that det(A) can be obtained by forming the product of the entries on the line from

to right and subtracting from this number the product of the entries on the line from right to

aı ı a12
~a21 a21

Taus, if A=[~ - ~], then IAI= (2)(5)_(-3)(4) = 22.
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CHAPTER4 
LINEAR COMBINATIONS AND LINEAR INDEPENDENCE 

LIBRARY 

This chapter presents an explanation of the linear combinations as well as linear independence .

. 1 Linear Combinations 

- r the most part, mathematics, you say that a linear combination of things is an entirety of

ducts of those things (Poole, 201 O). Along these lines, for instance, one linear combination of

e functions f(x), g(x), and h(x) is

2f(x) + 3g(x) - 4h(x) (4.1)

• Definition 4.1 

linear combination of vectors Vı, V2, ... , Vk in a vector space Vis an expression of the form

(4.2)

ere the cı's are scalars, that is, it's a whole of scalar products of them (Larry, 1998).

1.1 A basis for a vector space. 

Some bases for vector spaces officially are known, regardless of the possibility that we haven't

own them by that name. For example, in ~3 the three vectors i = (1, O, O) which focuses along

x-axis, j = (O, 1, O) which focuses along the y-axis, and k = (O, O, 1) which focuses along the

-axis together from the standard premise for ~3. Each vector (x, y, z) in ~3 is an extraordinary

.... ear combination of the standard basis vectors (Henry, 2008).

(4.3)

t's the one and only linear combination of i, j, and k that gives (x, y, z).
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• Definition 4.2 

(ordered) subset of a vector space V is a (requested) premise of V if every vector v in V may

interestingly represented as a linear combination of vectors from B.

(4.4)

- r a requested basis, the coefficients in that linear combination are known as the coordinates of

vector as for ~-

_ater on, when we study arranges in more detail, we'll compose the coordinates of a vector v as a

ent vector and give it a special notation.

Vı
Vz 

[V],B = (4.5)

though we have a standard basis for Rn, there are other bases (Lloyd and David, 1997).

• Example 4.1 

R3 let

v,=[J v,=[~l and v,=[ll
-.::e vector

v= UJ
a linear combination of Vı, V2, and V3 ifwe can find real numbers aı, aı, and a, so that
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(4.6)

Figure 5: Linear combination of vectors

stituting for v, Vı, V2, and V3, we have

a, HJ +aı [fl +a, [i] = [!].
uating corresponding entries leads to the linear system (verify)

aı + a2 + a3 = 2
2aı + a3 = I
aı =).

__ lving this linear system by the methods of Chapter 2 gives (verify) aı= 1, a2 = 2, and a3 = - 1,

'ch means that Vis a linear combination ofVr, V2, and V3. Thus

V =Vı + 2V2 - V3. (4.7)
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The Figure below shows V as a linear combination of V ı, V2, and V3.

o X

Figure 6: Linear combination of Vı, V2, and V3

• Definition 4.3 

- e vectors V ı, V2 Vt in a vector space V are said to be linearly dependent if there exist

nstants aı, a2, at, not all zero, such that

kLaj\'j = n.1\'1 + a2V2 + .. · + t1kVk = o_
J=l (4.8)

erwise, Vı, V2 .... ,Vk are called linearly independent. That is, Vı, V2 , ..... ,Vk are linearly

iependent if, whenever aıVı + a2V2 + ... + akVk= O,

al= a2 = =ak= O.

· S = {Vi. V2, ,Vct},then we also say that the set S is linearly dependent or linearly

ependent if the vectors have the corresponding property.
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• Example 4.2 

Determine whether the vectors

re linearly independent.

• Solution 

- rming Equation (1),

obtain the homogeneous system (verify)

3aı + a2 - a3 =0
2uı + 2a2 +2a3 =0

OJ - il3 =Ü.

- e corresponding augmented matrix is

[

3 l -.I
2 2 2
1 O -1

~].o

· ose reduced row echelon form is (verify)

[~
O -1
1 2
o o

- us there is a nontrivial solution
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[-~J, k ,f O (verify},

--~ the vectors are linearly dependent.

• Example 4.3 

e the vectors Vı = [1 O 1 2], V2 = [O 1 1 2], and V3 = [1 1 1 3] in n, linearly dependent or

early independent?

• Solution 

'e form Equation (1).

solve for aı, aı, and aı . The resulting homogeneous system is (verify)

aı + a3 =0
a2 + a3 = O

a-ı + a2 + a3 = O
2aı + 2a2 + 3'a3 =Ü.

- e corresponding augmented matrix is (verify)

1 o ııo
Io 1 ı : o
I

1 1 ı !o
2 2 3:0

its reduced row echelon form is (verify)

[

1 O
O 1
o o
o o

010]oio
1 : O .
o!o
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Thus the only solution is the trivial solution aı = a2 = a, = O, so the vectors are linearly

independent.

4.3 Testing for Linear Dependence of Vectors 
There are numerous circumstances when we may wish to know whether an arrangement of

·ectorsis linearly independent, that is if one of the vectors is some combinations of the others.

wo vectors u and v are linearly independent if the main numbers x and y fulfilling xu+yv=O

are x=y=O. On the off chance that we let

Ü=[~] and v = [~] (4.9)

·"'en xu + yv = O is equivalent to

o = X [~] + y [~] = [~ ~] G] (4.1 O)

• the event that u and v are linearly independent, then the main answer for this arrangement of

:::ıathematicalstatements is the trivial solution, x=y=O. For homogeneous systems this happens

·actly when the determinant is non-zero. We have now discovered a test for figuring out if a

given set of vectors is linearly independent: A set of n vectors of length n is linearly independent

: the matrix with these vectors as columns has a non-zero determinant. The set is obviously

endent if the determinant is zero (steven, 2006).
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CHAPTERS
LINEAR TRANSFORMATIONS

This chapter presents a brief explanation of the linear transformations in terms of examples,

definitionsand theorems.

_.ı Linear Transformations

• Definition 5.1

linear transformation, T:U-+V, is a capacity that conveys components of the vector space U

called the domain) to the vector space V (called the codomain), and which has two extra

perties

1. T(u1 + u2) = T(u1) + T(u2) for all u1,u2 EU 

2. T(au) = aT(u) for all ueU and all aeC. 

The two characterizing conditions in the meaning of a linear transformation ought to "feel

ear," whatever that implies. On the other hand, these two conditions could be taken as

cisely what it intends to be linear. As each vector space property gets from vector addition

scalar multiplication, so as well, every property of a linear transformation gets from these

.o characterizing properties. While these conditions may be reminiscent of how we test

spaces, they truly are entirely diverse, so don't befuddle the two (Defranza and Gagliardi,

_j()9).

u,F T T T(u,)ı:(u,)
u1 + u2 T(u1 + u2} =· T{uı) + T{u-,.,)

Figure 7: Definition of Linear Transformation, additive
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T ... T(u)U·

a·

T .au - 'T (au)= aT (u)

Figure 8: Definition of Linear Transformation, Multiplicative

Hereare several words about notations. T is the name of the Linear Transformation, and ought to

-~ utilized when we need to talk about the capacity in general. T(u) is the manner by which we

iscuss the output of the function, it is a vector in the vector space V. When we compose

(x+y)=T(x)+T(y), the plus sign on the left is the operation of vector addition in the vector

••..ace U, since x and y are components of U. The plus sign on the privilege is the operation of

·ectoraddition in the vector space V, since T(x) and T(y) are components of the vector space V.

Thesetwo cases of vector addition may be uncontrollably distinctive (Gilbert, 2009).

• Definition 5.2

. ;ı,T: Not a linear transformation

• Example 5.1

_et L: R3 ~ R3 be defined by

([ uı ]) . [uı .+. 1]L u2 = 2u2. .
U3 ll3

- determine whether L is a linear transformation. Let
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[ ll[]
u = uı

ll3

r ııı]
and v = I v2 ..

Ltı3

Then

L(u + v) = L (. [:~] + [. ::J) =L ([:: ! ::.]·).
l:13 U3 U3 + l.J3

[

(u ı + vı) + 1 ]
= 2(ıt2 + l'2) .

113 + 1J3

On the other hand

[
u1 + l l [uı + l] [(ı.ıı + v1) + 21

L(u) + L(v) = 2uı + 2vı = 2(u2 + v2) .
IJ3 V3 ll3 + V3

Letting ul = 1, u2 = 3, u3 = - 2, Vl = 2, V2 = 4, and V3 = 1, we see that L(u + v) ,tL (u) + L (v).

ence we conclude that the function L is not a linear transformation.

• Definition 5.3

TPP: Linear transformation, polynomials to polynomials

• Example 5.2

•..et L: P, ~P2 be defined by

L [p(t )] = tp(t}.

-, ow that L is a linear transformation.
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• Solution

Letp(t) and q(t) be vectors in P, and let c be a scalar. Then

L[p(t) + q(t)J = t[p(t} + q(t)]
= tp(r) + tq(t)

= L[p(t)J + L[q(t)],

And

L[cp(t)] = t[cp(t)]
= c[tp(t)]
= cL[p(t]J.

HenceL is a linear transformation.

5.2 Properties of Linear Transformation

et V and W be two vector spaces. Suppose T: V ~Wis a linear transformation (Gilbert, 2014).
Then

. T(O) = O.

-· T(-v) = -T(v) for all v EV.

3. T(u - v) = T(u) - T(v) for all u, v EV

. IfV = CıVı + C2V2 + · · · + CnVn

:ben 

(v) = T(CıVı + C2V2 + · · · + CnVn) = CıT (Vı)+c2T (Vz)+· · ·+CnT (Vn),
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• Proof

By property (2) we have

T(O) = T(OO) = OT(O) = O. (5.1)

So, (1) is proved. Similarly,

T(-v) = T((-l)v) = (-l)T(v) = -T(v). (5.2)

So, (2) is proved. Then, by property (1) of the definition 5.1, we have

T(u - v) = T(u + (-l)v) = T(u) + T((-l)v) = T(u)-T(v). (5.3)

The last equality follows from (2). So, (3) is proved. To prove (4), we use induction, on n. For n=

: we have

T(CıVı) = CıT(Vı). (5.4)

For n = 2, by the two properties of definition 5. 1, we have

T(CıVı + C2V2) = T(CıVı) + T(C2V2) = CıT(Vı) + C2T(V2). (5.5)

So, (4) is prove for n = 2. Now, we assume that the formula (4) is valid for n - 1 vectors and

roves it for n. We have

(cıvı+ C2V2 + · · · + CnVn) = T (cıvı+ C2V2 + · · · + Cn-lvn-l)+T (cnvn) = (cıT (vı) + c2T (v2) + ·

· + c0-lT (vn-1)) + c0T(v0). (5.6)

'"'o, the proof is complete.

5.4 Linear Transformations Given by Matrices

• Theorem 5.2

et A be a matrix of size m x n. Given a vector
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Then Tis a linear transformation from ın_n to ın_m (Katta, 2014).

• Proof

From properties of matrix multiplication, for u, v E ın_n and scalar c we have

(u + v) = A(u + v) = A(u) + A(v) = T(u) + T(v) and T(cu) = A(cu) = cAu = cT(u).

The proof is complete (Otto, 2004).

• Example 5.3

et L: R2 ~ R2 be defined by

L ( [ u 1 u2 ]} = [u~ 2uı J .

,,, La linear transformation?

• Solution

Let

u = [u ı u2] and Y = [ vı v2 J .

Then

L (U + V) = L ([ ııı 112] + [ vı vı])
= L ( [ u I + V ı u: t V2 ])

= [ (u1 + vı)2 2{ıı2 + uı)] .

n the other hand
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L(u)+L.(v)=[u{ 2u2]+[ur 2v2]

[
'Y . ? . . ]= ut+ Vj 2(u2 + vı) ı :

Since there are some choices ofu and v such that L(u + v) f. L(u) + L(v). we conclude that L is

not a linear transformation.
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CHAPTER6
APPLICATIONS OF EIGENVALUES AND EIGENVECTORS

This chapter presents a detailed introduction of the eigenvectors and eigenvalues. It explains the

methods to find the eigenvalues and eigenvectors in a matrix. Moreover, it discusses the

numerous applications of eigenvalues and eigenvectors in different fields.

6.1 Introduction to Eigenvalues and Eigenvectors

If we multiply an n x n matrix by an n x 1 vector we will get a new n x 1 vector back. In other

words,

A~=y (6.1)

What we want to know is if it is possible for the following to happen. Instead of just getting a

rand new vector out of the multiplication is it possible instead to get the following,

(6.2)

In other words is it possible, at least for certain )..., and ff, to have matrix multiplication be the

same as just multiplying the vector by a constant? Of course, we probably wouldn't be talking

about this if the answer was no. So, it is possible for this to happen, however, it won't happen

for just any value of)..., or ff. If we do happen to have a )..., and 'if for which this works (and they

ill always come in pairs) then we call X an eigenvalue ofA and if an eigenvector ofA

Jolliffe, 1986).

So, how do we go about find the eigenvalues and eigenvectors for a matrix? Well first notice

·'"'at if 'if= Ô then (6.1) is going to be true for any value of ), and so we are going to make the

assumptionthat if-:ı: Ö. With that out of the way let's rewrite (6.1) a little.
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A1]- A7] = Ö
Aij- MniJ = Ö

(A-M11)77=Ö

Notice that before we factored out the ff we added in the appropriately sized identity

:natrix. This is equivalent to multiplying things by a one and so doesn't change the value of

anything. We needed to do this because without it we would have had the difference of a

matrix,A, and a constant, A, and this can't be done. We now have the difference of two matrices

of the same size which can be done (Janardan et al., 2004).

So, with this rewrite we see that

(6.3)

is equivalent to (6.1). In order to find the eigenvectors for a matrix we will need to solve a

homogeneous system. Recall the fact from the previous section that we know that we will either

have exactly one solution Cif = Ô ) or we will have infinitely many nonzero solutions. Since

we've already said that don't want if= O this means that we want the second case.

Knowing this will allow us to find the eigenvalues for a matrix. We will need to determine the

alues of A for which we get,

d.et(A-AI) = O

Once we have the eigenvalues we can then go back and determine the eigenvectors for each

eigenvalue. Let's take a look at a couple of quick facts about eigenvalues and eigenvectors

Jolliffe, 1986).

Fact

A is an n x n matrix then det (A - Al) = O is an n1h degree polynomial. This polynomial is

called the characteristic polynomial. To find eigenvalues of a matrix all we need to do is solve a

polynomial. That's generally not too bad provided we keep n small. Likewise this fact also tells
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us that for an n x n matrix, A, we will have n eigenvalues if we include all repeated eigenvalues

(Mashal et al., 2005).

• Example 6.1

Find the eigenvalues and eigenvectors of the following matrix.

• Solution

The first thing that we need to do is find the eigenvalues. That means we need the following

matrix,

In particular we need to determine where the determinant of this matrix is zero.

det(A-AI) = (2-A)(-6-A) + 7 =.ıt2 + 4A-5 = (A+5)(A-1)

So, it looks like we will have two simple eigenvalues for this matrix, Aı = -5 and A:! = 1. We will

now need to find the eigenvectors for each of these. Also note that according to the fact above,

the two eigenvectors should be linearly independent (Smith, 2002).

To find the eigenvectors we simply plug in each eigenvalue into (6.2) and solve. So, let's do

that.

Aı = -5:

In this case we need to solve the following system.

Recall that officially to solve this system we use the following augmented matrix.
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7
-1

OJtR1 +R2 (7
o => o

7
o

Upon reducing down we see that we get a single equation

77Jı + 7rı2 = o => T/ı = -rı2

that will yield an infinite number of solutions. This is expected behavior, so we would get

infinitely many solutions.

Notice as well that we could have identified this from the original system. This won't always be

the case, but in the 2 x 2 case we can see from the system that one row will be a multiple of the

other and so we will get infinite solutions. From this point on we won't be actually solving

systems in these cases. We will just go straight to the equation and we can use either of the two

rows for this equation (Smith, 2002).

Now, let's get back to the eigenvector, since that is what we were after. In general then the

eigenvector will be any vector that satisfies the following,

To get this we used the solution to the equation that we found above.

We really don't want a general eigenvector however so we will pick a value for r/2 to get a

specific eigenvector. We can choose anything (except rJ2 =O), so pick something that will

make the eigenvector "nice". Note as well that since we've already assumed that the eigenvector

not zero we must choose a value that will not give us zero, which is why we want to

avoid rJ 2 = O in this case. Here's the eigenvector for this eigenvalue.

ij(l) = (~l} using 772 = 1

Xow we get to do this all over again for the second eigenvalue.
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We'll do much less work with this part than we did with the previous part. We will need to solve

the following system.

Clearly both rows are multiples of each other and so we will get infinitely many solutions. We

can choose to work with either row (Mashal et al., 2005). Doing this gives us,

Note that we can solve this for either of the two variables. The eigenvector is then,

,Th :;tQ

rtı = (-11], using Th= 1

Summarizingwe have,

A:2 = 1

ii(') = (-/J
ij(') = (-ı7J

Aı = -5

Note that the two eigenvectors are linearly independent as predicted.
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6.2 Applications of Eigenvectors and Eigenvalues

Many applications of matrices in both engineering and science utilize eigenvalues and,

sometimes, eigenvectors. Control theory, vibration analysis, electric circuits, advanced dynamics

and quantum mechanics are just a few of the application areas. Many of the applications involve

the use of eigenvalues and eigenvectors in the process of transforming a given matrix into a

diagonal matrix and we discuss this process in this Section. We then go on to show how this

process is invaluable in solving coupled differential equations and the applications of

eigenvalues and eigenvectors in Principal Components Analysis (Boldrimi et al., 1984).

Numerous applications of matrices; in both engineering and science use eigenvalues and, in

some cases, eigenvectors. Control hypothesis, vibration examination, electric circuits, propelled

motion and quantum mechanics are only a couple of the application zones. Large portions of the

applications include the utilization of eigenvalues and eigenvectors during the time spent

changing a given matrix into a diagonal matrix and we discuss this procedure in this Section.

6.2.1 Diagonalization of a matrix with distinct eigenvalues

Diagonalization means transforming a non-diagonal matrix into an equivalent matrix which is

diagonal and hence is simpler to deal with. A matrix A with distinct eigenvalues has eigenvectors

which are linearly independent (Boldrimi et al., 1984). If we form a matrix P whose columns are

these eigenvectors, it can then be shown that

det(P) =#=O

so that P -ı exists.

The product P -ı AP is then a diagonal matrix D whose diagonal elements are the eigenvalues

of A. Thus if Aı, A2, ... An are the distinct eigenvalues of A with associated eigenvectors Xı, X2, .. ,,Xn

respectively:

p [X1: X2: X3: ........•.....•... Xn] (6.4)

will produce a product
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Aı o ........o Io A2: •••...•• 0
p-1AP = D = I (6.5)

o O ........ An

We see that the order of the eigenvalues in D matches the order in which P is formed from the

eigenvectors.

Note 6.1

(a) The matrix Pis called the modal matrix ofA.

(b) Since D, as a diagonal matrix, has eigenvalues Aı, A2, ... ,An which are the same as those of A

then the matrices D and A are said to be similar. The transformation of A into D using p-ı AP

D = is said to be a similarity transformation.

• Example 6.2

Let A= [}2 \]. The eigenvalues ofA are A.1 = 2 and A.2 = 3 and associated vectors are

respectively. Thus

p = [ 1 1] and p-ı = [ 2 - I J (verify).I 2 . -1 I

Hence

-ı [ 2 -lJ[ l 1][1 l] [2 OJp A.P = -1 I -2 4 _ I 2. = 0 3 .

On the other hand, if we let A.1 = 3 and A.2 = 2, then
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x, = U]
[ l I]

P= 2 l

Md X2 = [!l
[ -I I.]and P ·· I = 2 - ı ·

And

p-'AP=[-1 l].[ ~ l][! 1]=[3 OJ.2 -.I -2 4 · ı. .I O 2

6.2.2 Systems of linear differential equations-Real, distinct eigenvalue

Now, it is time to start solving systems of differential equations. We've seen that solutions to the

system,

....•. , A-::
X = ..ci.ı\. (6.6)

will be of the form

(6.7)

where 1ı. and ff are eigenvalues and eigenvectors of the matrix A. We will be working with 2 x

2 systems so this means that we are going to be looking for two solutions, Xı ( t) and X::ı (t),
where the determinant of the matrix,

(6.8)

ıs nonzero.

We are going to start by looking at the case where our two eigenvalues, Aı. and A:! are real and

distinct. In other words they will be real, simple eigenvalues. Recall as well that the

eigenvectors for simple eigenvalues are linearly independent. This means that the solutions we

get from·these will also be linearly independent (Smith, 2002). If the solutions are linearly

independent the matrix X must be nonsingular and hence these two solutions will be a

fundamental set of solutions. The general solution in this case will then be,
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• Example 6.3

Solve the following IVP.

• Solution

So, the first thing that we need to do is find the eigenvalues for the matrix.

det (A - -1.!) = .1- ..1 2
1 3 2-A

=..12-3..1-4
=(..1+1)(..1-4)

Now let's find the eigenvectors for each of these.

21 =-1:

We'll need to solve,

The eigenvector in this case is,

=>

=>

ii(') = (~1),
53
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We'll need to solve,

=> -3TJı + 2TJ2 = o =>

The eigenvector in this case is,

=>

Then general solution is then,

Now, we need to find the constants. To do this we simply need to apply the initial conditions.

( _~) = X(O) = c1 ( ~1)+c2 (:)

All we need to do now is multiply the constants through and we then get two equations (one for
each row) that we can solve for the constants. This gives,

=> 8 4
C - -- C --­ı - 5' 2- 5

The solution is then,

_ ( ) 8 -t (- 1) 4 4t (2)x t = - Se I - 5e 3
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6.2.3 PCA based eigenvectors and eigenvalues

Principal Components Analysis (PCA) is a way of identifying patterns in data, and expressing

the data in such a way as to highlight their similarities and differences. It is one of several

statistical tools available for reducing the dimensionality of a data set based on calculating

eigenvectors and eigenvalues of the input data. Since patterns in data can be hard to find in data

of high dimension, where the luxury of graphical representation is not available, PCA is a

powerful tool for analyzing data. The other main advantage of PCA is that once you have found

these patterns in the data, and you compress the data, i.e. by reducing the number of dimensions,

without much loss of information. This technique used in image compression, as we will see in a

later section. This chapter will take you through the steps you needed to perform a Principal

Components Analysis on a set of data (Rafael, 2012).

• Definition 6.1

Let X jk indicate the particular value of the kth variable that is observed on the jth item. We let n

be the number of items being observed and p the number of variables measured. Such data are

organized and represented by a rectangular matrix X given by a multivariate data matrix.

Xıı X12 Xu Xıp
("21 X2:2 xu x2,, 

X= I
Xjt x;ı XJJ. Xjp

x,,, x,,ı Xı,ı Xııp

In a single-variable case where the matrix Xis n x 1,

X= 

(6.10)

The mean
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_ 1 ti

.:r=-~ .... ,ı L ../'1ı .
J""'I. (6.11)

And the variance

·ı j,
2 ~· ".;;'\?s = - L},~xı- x ş",,ı i,;,l (6.12)

In addition, the square root of the sample variance is known as the sample standard deviation.

• Example 6.4

If the matrix

X = [97 92 90 87 85 83 83 78 72 71 70 65r

is the set of scores out of 100 for an exam in linear algebra, then the associated descriptive

statistics arc x ~ 81, s2 ~ 90 .4, and the standard deviation s ~ 9. 5.

Mean of the kth variable

1 ,,
~'fı..: = - ı::x;ı,.. k: = 1. 2•.... p .

II j=I
(6.13)

Variance of the kth variable

1 II

' " - )'Si:= - L)XJk-Xk ~.
11 J=i

k = I, 2....• p .
(6.14)

For convenience of matrix notation, we shall use the alternative notation Skk for the variance of

the kth variable; that is,

,- _ ,.2 _ 1 L" r ; ,;:- )·2
·•kk - Jl'. - - "'ı'k - -'k •11 .

jd
k = I, 2•.... p.

(6.15)

A measure of the linear association between a pair of variables is provided by the notion of

covariance. The measure of association between the ith and kth variables in the multivariate data

matrix Xis given by
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l tr _ _

ccvariancc ee sa ;;;;; - ı)xjl - xi)(x;k - xı:),
II Jı.ırl

i ;;;;; I, 2 •... , p,
k = l . 2, .... /l, (6.16)

which is the average product of the deviations from their respective means. It follows that Sjk =

Ski, for all i and k, and that for i = k, the covariance is just the variance, s\ = .skk

Matrix of variances and covariances =

su sıı
. s2.1 sn

Sn=
I

.fp I -'>r,2 (6. 17)

The matrix Sn is a symmetric matrix whose diagonal entries arc the sample variances and the

subscript n is a notational device to remind us that the divisor n was used to compute the

variances and covariances. The matrix Sn is called the covariance matrix.

• Theorem 6.1

Let Sn be the p x p covariance matrix associated with the multivariate data matrix X. Let the

eigenvalues of Sn be Aj,j = 1, 2, ,p Al ~ A2 ~ ~ Ap z O, and let the associated orthonormal

eigenvectors be Uj , j = 1, 2 , p. Then the /h principal component Yi is given by the linear

combination of the columns of X, where the coefficients are the entries of the eigenvector uı; that

ıs,

-th • • I t X Yi= ı prıncıpa componen = uı

• Example 6.5

Let

39 21
59 28

X = 118 10
21 13
14 13
22 10
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Find the covariance matrix of X?

• Solution

We find that the means are

xı :R::: 28.8 and i2 ~, 15.8,

and thus we take the matrix ofmeans as

[28.8]:i = . 15.8 .

The variances are

su ~ 243.1 and sıı ~ 43.1,

While the covariances are

s,2 = sıı ~ 97.8.

Hence we take the covariance matrix as

[
243.1 97.8]·5~1 = 97J5 43. l • ..

• Example 6.6

Determine the PCA of y, and Y2 of covariance matrix in example 6.5?

• Solution:

we determined the eigenvalues of the matrix Sn .

Aı = 282.9744 and A2 =3.2256

and associated eigenvectors
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[
0.9260]

uı = 0.3775 [
0.3775]·

and u2 = -0.9260: ·

Then, using Theorem 6. 1 we find that the first principal component is

yl= 0.9260colı(X) + 0.3775colı(X)

and the second principal component is

y2=0.3775colı(X)- 0.3775colı(X)

6.2.4 PCA for image compression

Principal Component Analysis - PCA was used for the recognition of patterns and compression

of digital images used in Medicine. The description of Principal Component Analysis is made by

means of the explanation of eigenvalues and eigenvectors of a matrix. This concept is presented

on a digital image collected in the clinical routine of a hospital, based on the functional aspects

of a matrix. The analysis of potential for recovery of the original image was made in terms of the

rate of compression obtained.

Principal Components Analysis (PCA) is a mathematical formulation used in the reduction of

data dimensions. Thus, the PCA technique allows the identification of standards in data and their

expression in such a way that their similarities and differences are emphasized. Once patterns are

found, they can be compressed, i.e., their dimensions can be reduced without much loss of

information. In summary, the PCA formulation may be used as a digital image compression

algorithm with a low level of loss (Rafael, 2012).

Use of the PCA technique in data dimension reduction is justified by the easy representation of

multidimensional data, using the information contained in the data covariance matrix, principles

of linear algebra and basic statistics. The studies carried out by Mashal (Mashal et a., 2005)

adopted the PCA formulation in the selections of images from a multimedia database. According

to Smith (smith, 2002), PCA is an authentic image compression algorithm with minimal loss of

information. The relevance of this work is in the performance evaluation of the PCA formulation

in compressing digital images from the measurement of the degree of compression and the
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degree of information loss that the PCA introduces into the compressed images in discarding

some principal components.

6.2.4.1 MRI (Magnetic Resonance Imaging) image compression using PCA

The steps normally followed in a PCA of a digital image can now be established:

Step 1: In the computational model of a digital image, in equation (6.10), the variables Xl, X2

, ... ,Xp are the columns of the image. The PCA is begun by coding (correcting) the image to that

its columns have zero means and unitary variances. This is common, in order to avoid one or the

other of the columns having undue influence on the principal components (Gonzalez and Woods,

1992)

image corrected by the mean = image - mean of the image

Step 2: The covariance matrix C is calculated using equation (6.16), implemented

computationally, that is:

covimage = image corrected by the mean x (image corrected by the mean/

Step 3: The eigenvalues lı ,lı , ... ,lp and the corresponding eigenvectors aı , a2 , ... , ap . are

calculated.

Step 4: The value of a vector of characteristics is obtained, a matrix with vectors containing the

list of eigenvectors (matrix columns) of the covariance matrix (6. 16).

ve= (avl , av2 , av3 , ... , avn)

Step 5: The final data are obtained, that is, a matrix with all the eigenvectors (components) of

the covariance matrix.

finaldata = vc1x (Image - mean)1

Step 6: The original image is obtained from the final data without compression using the

expression Image

T = (vc)1x finaldata + mean"
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Step 7: Any components that explain only a small portion of the variation in data for the effect

of image compression are discarded. The eliminations have the effect of reducing the quantity of

eigenvectors of the characteristics vectors and can produce final data with a smaller dimension.

• Compression ration

According to Castro (Castro, 2010), low-loss compression afforded by the present method may

be expressed in terms of the compression factor of (r) and of the mean squared error (MSE)

committed in the approximation ofA (original image) by A (image obtained from the disposal of

some of the components) (Gonzalez and Woods, 1992). The compression factor is defined by:

Unit of memoryrequired to representA 
p::; Unitof memorialrequired Lo representA 

(6.18)

And the MSE committed in the approximation ofA by A is:

I.~ T
MSE = ı:c~ - 8ı) (a,-aJ

f,a:Q

(6.19)

• Example 6.7

Recovering a TIFF image with 512*512 pixels with all the components (512) of image
covariance matrix (without compression, i.e., steps 1 to 6).

Figure 9: MRI original image (512*512) (Rafael, 2012)
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:Memory necessary (final data)=5 l2x:512=262144 units of memory
Compression factor (p)=262J44/262144=1
Compression mle (li>)=M=O
Mean squared error (MSE)=O

Figure 10: Recovered image without compression (Rafael, 2012)

• Example 6.8

Recovery of a TIFF image with 512x512 pixels with 112 principal components of the

covariance matrix of the image (with compression, that is, steps from 1 to 5 to 7).

Figure 11: MRI brain original image (Rafael, 2012)
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Memory necessary (final data)= J 1'2x.S 12= .57344 units of memory
Compression factor (P) =57344/262144=0,.219
Compression rate ( 1-p)= 1..()•.2J9=0.781
Mean squared error (MSE)=02J3

Figure 12: compressed image using PCA (Rafael, 2012)

• Example 6.9

Recovery of an image with 32 principal components of the image covariance matrix (with

compression).

Original !matı: TIFF wldı 512.ıt512 :pbııfs•

Figure 13: Original MRI image 3 (Rafael, 2012)
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Memory necessary(fioal dat.t)=32:ôJ2=l6384 units of memory
Compression faetor (P)= 16384/262144=0.06:25
Compression rate (1-9)= l.0.06:25=0.9375
Mean squared error ( MSE.)=0.882.S

Figure 14: Compressed MRI image (32*512) (Rafael, 2012)

6.3 Results Discussion

Examples 6.3 to 6.5 show the effects of the reduction in number of principal components

(elevation of the image compression rate) in the increased loss of information. This application

may bring great savings in storage of medical images. However, the level of information

preserved depends on the parameters (compression rate), and should be modulated by the user's

interest. The higher the compression rate (the fewer principal components are used in the

characteristics vector) the more degraded the quality of the image recovered (Example 6.5). In

certain applications, such as brain function images, the central principle is the variation of the

resonance signal over time. In these conditions, the spatial information may be maintained in a

reference file, making it possible to compress subsequent images with no loss.

On the other hand, it is still necessary to evaluate the pertinence of the application of high

compression rates when an assessment of structures of reduced dimensions relative to the size of

the voxels is needed. Furthermore, the observation of the results from the application of the PCA

technique in medical images may be considered a complexity measure.

In other words, images with dense texture patterns tend to produce different results with the use

of the technique described. Nevertheless, this hypothesis was not tested in this project; it only
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points to the line of investigation, in which the results may certify and quantify this possibility.

New secondary applications (based on the results here described) may encompass various

conditions in the medical routine.
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CHAPTER 7
CONCLUSION

7.1 Conclusion

Overall, in addition to its mathematical usages, linear algebra has broad usages and applications

in most of engineering, medical, and biological field. As science and engineering disciplines

grow so the use of mathematics grows as new mathematical problems are encountered and new

mathematical skills are required. In this respect, linear algebra has been particularly responsive

to computer science as linear algebra plays a significant role in many important computer science

undertakings.

The broad utility of linear algebra to computer science reflects the deep connection that exists

between the discrete nature of matrix mathematics and digital technology. In this thesis we have

seen one important applications of the linear algebra which is called principal components ·

analysis. This technique is used broadly in the medical field for compressing the medical images

while keeping the good and needed features. However, this is not the only application of linear

algebra in this field. Linear algebra has many other applications in this field. It provides many

other concepts that are crucial to many areas of computer science, including graphics, image

processing, cryptography, machine learning, computer vision, optimization, graph algorithms,

quantum computation, computational biology, information retrieval and web search. Among

these applications are face morphing, face detection, image transformations such as blurring and

edge detection, image perspective removal, classification of tumors as malignant or benign,

integer factorization, error-correcting codes, and secret-sharing.
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