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ABSTRACT

The study is an examination of the definitions and basic properties of hypergeometric

function, confluent hypergeometric function, The main objective of the study confluent

hypergeomtric function with Kummer's first formula. Several properties such as

contiguous function relations., differential equations and Elementary series manipulation

for these hypergeomtric and confluent hypergeomtric families are obtained. Was to

ascertain an approximation of solution of confluent hypergeometric function. Were

therefore drawn from the study that the Kummer's function has wide application in various

subjects and hence proving stability or other properties were also drawn to be of paramount

importance.

Keywords: Hypergeomitric function; Confluent hypergeomtric function; Kummer's first

formula; Gamma function; Pochhammer function
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ÖZET

çalışma.Hipergeometrik fonksiyonların ve Birleşik hyperbolic fonksiyonların tanımlarını

ve temel özelliklerini inceler. Çalışmanın temel amacı birinci Kummer formula ile birleşik

hipergeometrik fonksiyonları çalışmaktır. Hipergeometrik ve birleşik hipergeometrik

ailelerinin differensiyel denklemleri, bitişik fonksiyon ilişkileri, ve temel seri

manipulasyonları gibi bası özellikler elde edilmiştir. Birleşik hipergeomertik fonksiyon

çözümlerinin yaklaşımları bulunmuştur. Kummer's fonksiyonları çeşitli kanlarda geniş

uygulama alanlarına sahiptir ve kararlılığı ve diğer özelliklerinin de oldukça önemli olduğu

bu tezde vurgulanmıştır.

Anahtar Kelimeler: Hipergeometrik fonksiyon; Birleşik Hipergeometrik fonksiyon;

Kummer in birinci formula; Gamma fonksiyon; Pochrnmar

fonksiyon
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CHAPTER! 

INTRODUCTION 

This chapter outlines several basic definitions, theorems and some properties of special

functions. This study thrives to proffer insights about the confluent hypergeometric function

with by employing the Kummer's formula. The notion behind the Kummer confluent

hypergeometric function (CHF) stems from an essential category of special functions of

mathematical physics. Kummer's formula in (CHF) can be decomposed into the following;

The initial Kummer's formula assumes the following form:

00_ L (c - a)n(-z)nez 1F1(a;c;z) = ()
1

= 1F1(c-a;c;-z),c 1= {o}U{-1,-2,-3, ..}
c nn.

n=O 

And, kummer's second formula

if a is not odd positive integer.

This study will therefore offer further explanations about the Kummer' s first formula in

confluent hyper geometric functions. Despite the fact that Gauss played an essential role in

the systematic study of the hypergeometric function, ( Kummer, 1837) assumed a critical role

in the development of properties of confluent hypergeometric functions. Kummer published

his work on this function in 1836 and since that time it has been commonly referred to as the

Kummer's function (Andrews, 1998). Under the hypergeometric function, the confluent

hypergeometric function is related to a countless number of different functions.

This work therefore outlines the general and basic properties of hypergeometric and confluent

hypergeometric function and the Kummer's first formula. This study will also extend to

incorporate the related examples and theorems.
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The first chapter deals with the synopsis of basic definitions, theorems and exceptions of the

hyper geometric functions while the second chapter is a blueprint of definitions, properties

and theorems of confluent hyper geometric functions. Meanwhile, chapter three lays out

examples and special cases of Kummer's first formula coupled with reinforcing explanations.

A recapitulation of properties of the hypergeometric functions is given in the fourth chapter

while the fifth chapter concludes this study by looking at conclusions that can be drawn from

this study.

1.2 Gamma Function 

It is undoubtable that most essential functions in applied sciences are defined via improper

integrals. Of notable effect is Gamma functions. Such functions have several applications in

Mathematics and Mathematical Physics.

1.2.1 Definition 

The elementary definition of the gamma function is Euler's integral (Gogolin, 2013)

00

I'(z) = J tz-ıe-t dt.
o

is converges for any Z>Ü

1.2.2 Some basic properties of Gamma function with their proofs(Özergin, 2011). 

00

I'(1) = J e:' dt = -e-t lg:'= 1
o

1 Joo -t co Vii
r (2) = ~ dt = 2I'(1) = 2 J e-u2 du = 2 27[ = Vii

o o

2



00 00 00

I'(x + 1) = I txe-t dt = +t" e-t ıg:ı- I xtx-1c-e-t)dt = x I tx-ıe-t dt = xI'(x).
o o o

1.2.3 Lemma 

The Gamma function satisfies the functional equation

I'(x + 1) = xI'(x) , x > O

Moreover, by iteration for x > O and n E N

n

I'(x + n) = I'(x + n - 1).... (x + 1)xI'(x) = n (x + 1 - i)I'(x)
i=l

n n

I'(n + 1) = en i)I'(x) = n (i) = n!
i=l i=l

In other words, the Gamma function can be interpreted as an extension of factorials.

1.3 Definition (Sebah, 2002) 

The beta function or Eulerian integral of the first kind is given by

00

B(x,y) = I tx-1(1- t)Y-l dt,
o

where x,y > O

This definition is also valid for complex numbers x and y such as

R(x) > O amd R(y) > O

1.3.1 Theorem (Gronan, 2003) 

I'(x)I'(y)
if R(x) > O and R(y) > O then B(x,y) = ( " = B(y,x)rx+y

3



1.3.2 Some special values for Beta function 

B(~ ~)=rr2'2 '

1
B(x 1) = - ,, X 

(n-1)! n ~ 1
B(x, n) = x(x + 1) ... (x + n 1)

1.4 Definition 

Let x be a real or complex number and n be a positive integer,

r(x+n)(x); = r(tj = x(x + 1).... (x + n - 1)

"Pochhammer Symbol" is where (x)n is used to represent the falling factorial sometimes

called the descending factorial, falling sequential product, lower factorial (Freeden, 2013).

1.4.1 Some properties of Pochhammer symbol 

(a)n+k
i) (a+ n)k = (a)n '

Where a is a real or complex number and n, k are natural numbers

. . (a)2k = (~) (~ !)
ı) 22k 2 k 2 + 2 k

Where a is a complex number and k is a natural number

.. (2k)! _ (!)
ıı) z2kk! - 2 k

nere k: is a natural number.

4



_iote 

a= 1 then we have(a)n = (1)n = 1 x 2 x 3 x ... x n = n!

If a= 2 then (2)n=Cn + 1) and also we have

(a)n = (-N)n = (-N)(-N + 1)(-N + 2) · · · (-N + n - 1) = O if a= -n,

n = {0,1,2, ... }.

(a)0 = 1, a* O

1.4.2 Theorem 

Show that for OS k S n,

(-ll(a)n
(a)n-k = (1- a - nh

_ ~ote particularly the special case a = 1 

Proof: 

Consider (a)n-k for OS k Sn,

(a)n-k = a(a + 1) ... (a+ n - k - 1)

_ a(a + 1)... (a+ n - k - l)[(a + n - k)(a + n - k + 1)... (a+ n - 1)
- (a+ n - k)(a + n - 2) ... (a+ n - k)

(a)n
=--------

(a+ n - k)k

(a)n
= (-l)k(l - a - nh

(-1/(a)n
- (1-a-nh

_;ot for a= 1, (n _ k)! = c-ılnı(-n)k .

5



1.4.3 Lemma 

Proof: 

(a)2n = a(a + l)(a + 2)

= 22n (i) (a ;
1) (i + 1) ... (i + n - 1) (a ;

1
+ n - 1)

(a) (a+ 1)(a ) (a ) (a+ 1)(a+ 1 ) (a+ 1 )=22n2 -2- 2+1 z+n-1 -2- --2-+1 ... -2-+n-1

= 22n(~)(~)
2 n 2 n

6



CHAPTER2 

CONFLUENT HYPERGEOMETRIC FUNCTION 

This section draws attention on the confluent hypergeometric function, its definition and

inherent properties. Due to the importance that is attached to the confluent hypergeometric

function in hypergeometric function; this study will therefore draw attention to the

examination of the hyper geometric function.

2.1 Hypergeometric Function 

The function 2F 1(a, b; c; x) corresponding to p=2, q=l is the first hyper geometric function to

be examined (and, in general, emerges in prominence especially in physical problems), as is

synonymously referred to as "the" hyper geometric equation or, more explicitly, Gauss's

hyper geometric function (Gauss, 1812; Barnes 1908). To confound matters much more, the

term "hyper geometric function" is less usually used to mean shut structure, and "hyper

geometric series" is sometimes used to mean hyper geometric function.

Hyper geometric functions are solutions to the hyper geometric differential equation, which

has a regular singular point at the starting point. A hyper geometric function can be derived

from the hyper geometric differential equation.

2.1.1 Definition 

(Rainville, 1965). Asserts that a hyper geometric function can be defined as follows;
00

I (a)n(b)n
F(ab;c;z) = 2F1(a,b;c; z) =F(b,a.c; z) = () 1 z" ,izi~ 1c nn.

( 2.1)
n=

For c neither zero nor negative integer. In 2.1, the notation

1 - Refers to number of parameters in denominator

2 - Refers to number of parameters in numerator

7



2.1.2 Functions with representations like Hypergeometric series

f (l)n fF(l,b,b,z) = L 7·zn = Lzn
n=O n=O

(
1 1 3 )arcsin z = F 2, 2; 2; z2

00 00

I c-1r I c1)ncı)nc-1rzn+ı (1 .1 )ln(l +z) = --zn = = zF ·-zn + 1 (2)n n! 2 '
n=O n=O

2.1.3 Properties of Hypergeometric functions

2.1.3.1 Differential representation

The Differential representation of the hypergeometric function is given by

d 00

dz F(a, b; c; z) = L (a)n (b)n zn-ı
n=ı (c)n (n - 1)!

ab
= -F(a + 1,b + l;c + l;z)

C

2.1.3.2 Integral representation

f(c) f ıF(a b· C' z) = tb-1(1 - t)c-b-1(1 - xt)a dt C > b > o
I I I I'(b)I'(c - b) Q

Where Gamma is defined by

8



2.1.3.3 The Hypergeometric equation 

The linear second-order DE

dw2 dw
z(l - z) dzı + (c - (a + b + l)z) dz - abw = O

is called the hypergeometric equation

These functions were studied by numerous mathematicians including Riemann who gathered

in their conduct as functions of a complex variable, also, concentrated on its analytic

continuation regarding it as a solution to the differential equation (Campos, 2001).

dw2 dw
z(l - z) dzı + (c - (a + b + l)z) dz - abw = O (2.1)

or, multiplying equation (4) by z and denoting 8 = z !!:._,
dz

[8(8 + c - 1) - z(8 + a)(8 + b)](z) = O (2.2)

Equation 2. 1 or 2.2, has three regular singular points at O, 1 and co, and it is

Up to standardization the general form of a second order linear differential equation with this

conduct.

Note if one of the numerator parameters a or b are equal to the denominator parameter c we

get

9

(
a, b . ) _ f, (b)n(a)n n

2F1 b , z - L (b)nn! z .
n=O 

izi < 1



2.1.4 Problem 

Which results in

[
-n b · ] (c - b)F ' ı 1 = n

c; (c)n

Solution 

Consider F(-n, b; c; 1).at once, if R(c - b) > O,

I'(c)I'(c - b + n) _ (c - b)n
F(-n, b; c; 1) = I'(c + n)I'(c - b) - (c)n

Actually the condition R ( c - b) > O is not necessary because of the termination of the series

involved.

2.2. Generalized Hypergeometric Function 

As outlined in the definition (1) there are two numerator parameters, a and b; and one

denominator, c. it is a natural generalization to move from the definition (1) to a similar

function with any number of numerator and denominator parameters.

We define a generalized hyper geometric function by

The parameters must be such that the denominator factors in the terms of the

series are never zero. When one of the numerator parameters ai equals -N, where N is a

10 



nonnegative integer, the hypergeometric function is a polynomial in z (see below). Otherwise,

the radius of convergence p of the hypergeometric series is given by

ifp<q+l 
ifp>q+l 
ifp=q+l 

This follows directly from the ratio test. In fact, we have

lim I Cn+ı I P = {:
n--.cxı Cm 1

ifp<q+l 
ifp>q+l 
ifp=q+l 

In the case that p = q + 1 the situation that izi = 1 is of special interest.

The hypergeometric series q+ıF P ( a1 a2 , ••• , aq+ı ; b1, b2 , ••• hp, z)

with izi = 1 converges absolutely if Re ( L bi - Lai) ~ O

The series converges conditionally if izi = 1 with z =t 1 and -1 < Re (L bi - L ai ) ~ O

And the series diverges if Re ( L bi - L ai ) s -1.

Two elementary instances of the P Fq follow if no numerator or denominator parameters are

present.

Which results to

Which is called the exponential function where z E (C

And also ifwe have one numerator parameter without denominator parameter, we obtain

(
a ) f (a)nzn

ıFo -; z = L __ , = (1 - z)", z E (C
n=O 

is called a binomial function

11



2.3 Bessel Function 

We already know that the 0F o is an exponential and that 1F o is a binomial. It is natural to

examine next the most general OFl, the only other pF q with less than two parameters. The

function we shall study is not precisely the 0F 1 but one that has an extra factor definition

below (Dickenstein,2004).

2.3.1 Definition 

If n is not a negative integer

(;f ( zı)fn(z) = rı1 , _, ıFo -; 1 + n; -4 ·

2.4 Confluent Hypergeometric Function 

This section provides an examination of the most powerful methods implemented to

accurately and efficiently evaluate the confluent hypergeometric function, Kummer's

(confluent hypergeometric) function M (a, b, z), introduced by (Kummer, 1837),

The term confluent refers to the merging of singular points of families of differential

equations; confluent is Latin for "to flow together.

2.4.1 Definition 

The Kummer confluent hypergeometric function is defined by the absolutely convergent

infinite power series"

cxı ) n
a ) L (a nZ- F . z = I,M(a, c. z) - ı ı C • (c)nn.

n=O 

-oo<z<oo

It is analytic, regular at zero entire single-valued transcendental function of all a, c, x, (real or

complex) except c=t= O or a negative integer.

12



Note 

The confluent hypergeometric function it is related to the hypergeometric function according

to

. (a. b z) . Ioo ca)n(b)ncir Ioo ca)nzn . (b)n Ioo ca)nzn
hm · - = hm = hm -- =
b->oo c ' b b-.oo (c)nn! (c)nn! rı-e co b" (c)nn!

n=O n=O n=O

So that limb-.oo (a/; ;) = m(a, c, z)

2.4.2 Relation to other functions 

i) m(-n; 1; z) = ln(z)

ii) m(a; a. z) = ez

ez
iii) m(l,; 2; 2z) = -sinhzz

2.4.3 Theorem 

m(a; a. z) = ez

Proof: 

I
oo (a) z" Loo z"

m(a,a,z) = n = - = ez
(a)nn! n!

n=O n=O

13



2.4.4 Elementary properties of Confluent Hypergeometric Function 

2.4.4.1 Differential representation 

Because of the similarity of definition to that of F (a, b; c; z), the function M (a; c; z)

obviously has many properties analogous to those of the hypergeometric function (ko, 2011).

For example, it is easy to show that;

d a
i)-d m(a, c; z) = -m(a + 1, c + 1; z).

Z C

Since 
00 00

d ~ (a)n zn-l ~ (a)n+ıZn
dz m(a, c; z) = ~ (c)n (n -1)! = ~ (c)n+ın!

n=l n=O

a= -m(a + 1; c + 1; z) ·
C

Also in general

.. dk (a)kıı) dxk m(a, c; z) = (c)k m(a + k, c + k; z), k = 1,2,3,...

2.4.4.2 Integral representation 

Based on Euler's integral representation for the 2 F 1 hypergeometric function, one might

expect that the confluent hypergeometric function satisfies

m(a;c;z) = 1F1(;; z)

(
a, b z)= lim ;-

b...• oo C b

14



f(c) r1= f (a)f(c - a) Jo e" ta-1(1 - t)c-a-1 dt, C > a > 0

2.4.4.3 Theorem 

For Rec> Re a> O we have

(
a ) f(c) f ııFı ; z = ezt ta-ı(l - t)c-a-ı dt
c I'(a)I'(c - a) 0

Proof: note that we have

L
oo Zn f ı

-, tn+a-ıcı - ty-a-1 dt
n. o

n=l

And Re a> R

e(c - a)> O

1L tn+a-1cı - ty-a-1dt = B(n + a, C - a)

f (n + a)I'(c - a)
f(n + c)

I'(a)I'(c - a) (a)n
r (c) (c)n

for n = 0,1,2,.,.,. this implies that

f(c) f ı Loo (a) z" a
ezt ta-ı(l - ty-a-ı = n = F ( ; z).

I'(a)I'(c - a) 0 (c)nn! 1 1 c
n=O 

2.4.4.5 Confluent Hypergeometric equation 

The Confluent hypergeometric equation established by (Buchholz, 2013) defines the

hypergeometric function y = F (a, b; c; z) as a solution of Gauss' equation

d2w dw
z(l - z) dzı + (c - (a + b + l)z) dz - abw = O (2.3)

ıs



By making the change of variable z = ; (2.6) becomes

( X) 11 ( Q + 1 ) 11- b w + c- x - =t= w - aw= O

and then allowing b-« oo we find

x w + (c - x) w' - aw = O (2.4)

For C fl. Z the general solution of the confluent hypergeometric differential equation (2.4) can

be written as

with A and B arbitrary constants

2.4.4.6 Multiplication formula 

A known formula, given by (Luke, 2014) can be utilized to determine the value of the

confluent hypergeometric function in terms of another confluent hypergeometric function

with the same parameters but with the variable of opposite sign. This formula can be specified

as follows;

1 ı z2
ıFı(a; b; z) XıF1(a; b; -z) =2F3(a,b - a; b,-b + - ;-)2 2 4

2.4.4.7 The Contiguous function relation 

The function m(a; c; z) also satisfies recurrence relations involving the contiguous functions

m(a ± 1; c; z)and m(a; c ± 1; z). from these four contiguous functions, taken two at a time,

we find six recurrence relations with coefficients at most linear in z (Pearson, 2009).

i) (c - a - l)m(a; c; z) + am(a + 1; c; z) = (c - l)m(a; c - 1; z)

ii) cm(a; c; z) - cm(a - 1; c; z) = zm(a; c + 1; z)

iii) (a - 1 + c)m(a; c; z) + (c - a)m(a - 1; c; z) = (c - l)m(a; c - 1; z)

iv) c(a + z)m(a; c; z) - acm(a + 1; c; z) = (c - a)zm(a; c + 1; z)

16



v) (c - a)m(a - 1; c; z) + (2a - c + z)m(a; c; z) = am(a + 1; c; z)

vi) c(c - 1)m(a; c - 1; z) - c(c - 1 + z)m(a; c; z) = (a - c)zm(a; c + 1: z)

2.4.5 Some example of confluent Hypergeometric function 

Example 1 

The function

z

erF(z) = JrrJ exp(-t2) dt
o

as defined by (Rainville, 1965) exhibits that

2z (1 3 z)erF(z) = .Ji1F1 2; 2; -z .

Solution. Let
z

erF(z) = JrrJ exp(-t2) dt.
o

Then,

erF(z) = ~ f c-1r I: t2n
.JrrL In=o n.

00 z
= ~ ~ c-1r Io zzn+ı

.Ji~ n! (2n + 1)

=
22

1F1 (! · ~, -zz).Ji 2'2'

17



Example2 

The incomplete gamma function may be defined by the equation

z

y(a,z) = f e-tta-1dt,R(a) > O.
o

So that

y(a, z) = a-1x-a1Fl(a; a+ 1; -z).

Solution: Let
z

y(a,z) = f e-tta-1dt,R(a) > O.
o

Then
z 00

y(a,z) = L I (-l)"tn+a-ı
n=o n.

00= ~ c-1rzn+a-ı
L n!(a+n)
n=o 

now, (a+ n) = a(a + l)n
(a)n

Hence

00

I (-lr(a) Zn
Y(a z) = a-1xa n = a-1x-a F (a· a+ 1· -z)' n! (a+ l)n ı ı ' ' .

n=o 
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CHAPTER3 

CONFLUENT HYPERGEOMTRIC FUNCTIONWITH KUMMER'S FIRST 
FORMULA 

This section introduces the Kummer's first formula and impact with both hypergeometric and

confluent hypergeometric function

z ca ) CX) (-l)nzn ("'cxı (a)kzk)We can explain the product e . ıFı c ; z = Ln=o n! ) L...k=O(c)kk!

CX) CX)

= ~ ~ c-1rzn (ahzk
LL n! (chk!
n=O k=O

When we have

cxı cxı cxı n

LLA(k,n)= LLA(k,n-)
n=Ok=O n=Ok=O

(3.1)

• (-nik'and sınce (n - k) ! = --·, O ~ k ~ n.
(-n)k

(3.2)

We may write

-f c-1rzn- L n! · 2Fı(-n, a; c; 1)
n=O

But we already know that

I'(c)I'(c - a+ n) I'(c - a+ n) I'(c + n)
2F1 (-n,a;c;l) = I'(c-a)I'(c+n), I'(c-a) = (b-a)n, r,._, = (b)n

So that,
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2Fı (-n,a; c; 1) = (c - a)n
(c)n

then,
00_ L (c - a)n(-z)ne z 1F1(a; c; z) = ( ) 1 = 1F1(c - a; c; -z ).

c nn.
n=O

This is Kummer first formula, ce= {-1,-2,-3 ... O}

Now under this definition, we will prove the following theorems,

3.1 Theorem 

e-t F(-k, a+ n; a; 1) = 1F1(-n; a; -t) , where k,n are non-negative integer

Proof 
k

e-t F(-k, a+ n; a; 1) = e-t L (-k)s(a + n)s
s=O (a)ss!

We know that (a+ n) = (a)n+s
s (a)n

(pochhmmer property)

So

f (-k)s(a)n+s
e-t F(-k, a+ n; a; 1) = e-t L s! (a)s(a)n

s=O

00 k
- '' (-k)s(a)n+s (-l)ktk- ~6 s! (a)s(a)n k! , by (3.2)

We obtain

00 k, , (-1)5k! (a)n+s (-lltk
- LL (k - s)! s! (a)5(a)n k!

k=O s=O
00 k, , (-1)5 (a)n+s (-l)ktk

- LL s! (a)s(a)n (k - s)!
k=Os=O

20
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Hence

ook 0000

LLA(s,k) = LLA(s,+s)
k=Os=O k=Os=O

(3.4)

So

ff (-1)5 (a)n+s (-ıl+stk+s = ff (a+ n)st5 (-tl
LL s! (a)5(a)n k! LL s! (a)5 k!
k=Os=O k=Os=O

00

= ~ e'" (a+ n)sts
L (a)5s!
s=O

= e " 1F1 ( +n; a; t)

And since ıF ı (a+ n; a; t) = 1F1et(-n; a; -t) by Kummer's first formula 3.3,

f e_/a+n)s = e-tet ıFı(-n;a;-t) ~ ıFı(-n;a;-t)L (a)5s!
s=O

e-tF(-k,a+n;a;1) = 1F1(-n;a;-t)

3.2 Theorem 

To prove that

dk [ ( )] (-n)k ( )
dzk ıFı a+n,a,-t = (ah 1F1 a+n,a+k,-t

Proof: 

dk dk
dzk [ ıFı (a+ n,a, -t)] = dzk [e-t 1F1 (-n, a, t)] by (3.3)

-t [(-n)k ]=e (a)k 1F1(-n+k,a+k,t)

= e-t [et (-n)k 1F1 (a+ k + n - k, a+ k, -t)] by (3.3)
(a)k

(3.5)
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(-n)k= (a)k ıFı(a+n,a+k,-t)

Not that theorem (3.5) is equal to zero ifk=n

dn dnn [
1F1(a + n, a, -t)] = n [e-t 1F1(-n, a, t)] by Kummer first formula

dz dz

-t [(-n)n ( ı=e (a)n 1F1 -n+n,a+n,t) =0

Note 

Examination of Kummer's first formula soon arouses interest in the special case when the

two (CHF) have the same parameters. This happens when b - a = a, b = 2a. we then obtain

1F1(a; 2a; z) = ez 1F1(a; 2a; -z),

or
z z

e-ı 1F1(a; 2a; z) = ez 1F1(a; 2a; -z) (3.6)

More pleasantly, (3.5) may be expressed by saying that the function

e-z 1F1 (a; 2a; 2z)

Is an even function of z. After some step in (Rainiville 1967) we get

(3.7)

If 2a is not an odd integer< O

Equation (3.7) is known as Kummer's second formula.
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3.3 Some example of Kummer's formula with (CHF) 

Problem 3.1 

Show that

00

ıFı (a; b; z) = r!a) J e-tta-ı 0F1 (-; b; zt)dt
o

Solution 3.1 

We know that

00

f(z) = J e-tta-1dt,
o

Re(a) > O.

Then
00

ıFı(a; b; z) = L (a)nzn
n=O n! (b)n

co
1 ~ I'(a +n)zn

= I'(a) L n! (b)n
n=O

00 00

1 J ~ ta+n-12n
= I'(a) e-t L n! (b)n dt

o n=O
00

= r!a) J e-tta-1 OF1(-; b; zt)dt I

o
Re(a) > O

Problem 3.2 

Show that the aid of the result in problem 1 .3, that

J
oo r (a)zn ( z2)

exp(-t2) tıa-n-ıfn(zt)dt = zn+ır(n + 1) ıFı a; n + 1; -4 .
o

23



Solution 3.2

we obtain

Put t2 = f3 • Then

= Zn I'(a) ( z2)
zn+lf(l + n) · -1- ıF1 a; n + 1; -4
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CHAPTER4 

SEVERAL PROPERTIES OF HYPERGEOMTRIC FUNCTION 

This chapter proffers an outline of the several properties of hypergeometric function and a

detailed discussion of the results.

4.1 Properties 

4.1.1 The Contiguous Function relations. 

Gauss defined as contiguous to F(a, b; c; z) each of the six function obtained by increasing or

decreasing one of the parameters by unity. For simplicity in printing we use the notation,

F = F(a, b; c; z)

F(a +) = F(a + 1, b; c; z)

F(a -) = F(a -1, b; c; z)

(4.1)

(4.2)

Together with similar notations F(b +), F(b -), F(c + )and F(c-) for the other four of the

six functions contiguous to F. After some step in (Rainville, 1965) we get this contiguous

function relations.

i) (a - b)F = aF(a +) - bF(b +)

ii) (a - c + 1)F = aF (a +) - (c - 1)F(c - )

iii) [a + (b - c)z]F = a(1 - z)F(a +) - c-1(c - a)(c - b)zF(c +)

iv) (1 - z)F = F(a -) - c-1(c - b)zF(c +)

v) (1 - z)F = F(b -) - c-1(c - a)zF(c +),

25



Example 4.1 

From these contiguous functions we can obtain other relations

1) from (iii) and (iv) we get

[a + (b - c)z - (c - a)(l - z)]F = a(l - z)F(a+) - (c - a)F(a-),

In the left hand We get

[a + bz - cz - [c - cz - a+ az]F = a(l - z)F(a+) - (c - a)F(a-),

So

[2a - c + (b - a)z]F = a(l - z)F(a +) - (c - a)F(a -). (4.3)

2) from (iii) and (vi) we get

[a + (b - c)z - (c - b)(l - z)]F = a(l - z)F(a+) - (c - b)F(b-)

So

[a + b - c]F = a(l - z)F(a +) - (c - b)F(b -).

3) from (2) and (3) we get

[a+ (b - c)z - (a - c + 1)(1 - z)]F

= (c - 1)(1 - z)F(c -) - c-1(c - a)(c - b)zF(c +)

(4.4)

Then

[c - 1 + (a + b - 2c + l)z]F

= (c - 1)(1 - z)F(c -) - c-1(c - a)(c - b)zF(c +). (4.5)

4) from (1) and (4.1) we get

[(a - b)(l - z) - 2a + c - (b - a)z]F

= (c - a)F(a-) - b(l - z)F(b+ ),

Then

[c - a - b]F = (c - a)F(a -) - b(l - z)F(b +). (4.6)
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4.1.2 Hypergeometric differential equation: 

The operator e = z (:J, already used in the chapter two of section (2. 1 .2.3) we resultantly

obtained this equation,

z(l - z)w" + [c - (a+ b + l)z]w' - abw = O (4.7)

Example 4.2 

In the deferential equation (4.7) for w = F(a, b; c; z) introduce a new dependent variable u

by w = (1- z)-au, thus obtaining

z(l - z)2u" + (1 - z)[c + (a - b - l)z]u' + a(c - b)u = O.

Next change the independent variable to x by putting x = ~ Show that the equation for u inı-z

terms of x is ,

d2u du
x(l - x) dxı + [c - (a + c - b + l)x] dx - a(c - b)u = O, (4.8)

And thus derive the solution

Solution 

We know that w = F(a, b; c; z) is a solution of the equation (4.7) in this equation we put

w = (1- z)-au then

w' = (1- z)-au' + a(l - z)-a-1u, (4.9)

C4.10)w" = (1 - z)-au" + 2a(1 - z)-a-1u' + a(a + 1)(1 - z)-a-2u.

Now we get the new equation from the eq (4.8),(4.9)and (4.7)

z(l - z)u" + 2azu' + a(a + 1)z(1- z)-1u +cu'+ ca(l - z)-1u - (a+ b + l)zu'

-a(a + b + 1)z(1- z)-1u - abu= O,
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Then

z(1-z)2 + (1 - z)[c + (a - b - l)z]u' + a(c - b)u = O. (4.11)

-z -x -z ı dx -ı 2Nowput x = - .thenz = - , x = - , 1 - z = - so - = --2= -(1 - x)ı-z ı-x ı-z ı-x dz (1-z)

d2x -2- = -- = -2(1-x)3dz2 (1-z)3

The old equation (4.11) above may be written

d2u [ c a - b - 1] du a(c - b)-+ + -+ u=Odz2 z(l - z) 1 - z dz z(l - z)2 '

Whichthen leads to the new equation

d2u [ {c(l - x)2 }] du(1 - x)4- + -2(1 - x)3 - (1 - x)2 + (a - b - 1)(1 - x) -dx2 -x dx

a(c - b)(l - x)3
- u=O

X

or

d2u du
x(l - x)- + [-2x - {-c(l -x) + (a-b - l)x}]-- a(c -b)u = O,

dx2 dx

Or

d2u du
x(l-x)-+ [x-(a-b + c + l)x]-- a(c-b)u = O

dx2 dx
(4.12)

Now (4.12) is a hypergeomtricequationwithparametersy = c, a + beta + 1

a -b+c+ 1,a{J=a(c - b).Hencea= a.B = c - b,y=c.Onesolutionof(4.12)

is

u = F(a,c-b; c; x),

So one solution of equation (4.7) is

c-b; -z ]
1-z[

a'w = (1-z)-1F
c;
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4.1.3 Elementary series manipulation 

(Choi, 2003) established some generalized principles of double series manipulations

some special cases of which are also written for easy reference in their use. Not that Ax,y

denotes a function of two variables x and y, and N is the set of positive integers

co oo co n

1) LLAk;n = LLAk;n-k; 
n=Ok=o n=Ok=o 

oo n oo co

2) LLAk;n = LLAk;n+k; 
n=Ok=o n=Ok=o 

n
00 00 00 2

3) LL Ak;n = LL Ak;n-2k 
n=Ok=o n=Ok=o 

n
oo 2 oo n

4) LL Ak;n = LL Ak;n+2k 
n=Ok=o n=Ok=o 

Example 4.2 

Prove that if 9n=F (-n, a; 1 + a - n; 1) and a is not an integer, then 9n = O for n 2: 1, g0 =

ı.

Solution 

Letgn= F (-n, a;1 +a-n; 1).

Then
n n

""' (-n)k(ah ""' n! (-a)k(a)k
Bn = ~ k! (1 + a - n)k = ~ n! (k - 1)! (a)n

k=O k=O 

Hence compute the series
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oo oo n
~ (-a)nBntn = ~ ~ (ah(-a)n-ktn
Z: n! Z: Z: kl (n - k)!
n=O n=Ok=o

= (1- t)a(l - t)-a

=1

Therefore, g0 = 1 and Bn= O for n 2:: 1. (Note: easiest to choose a.=/= integer, can actually do

better than that probably).

4.1.5 A quadratic transformation 

A quadratic transformation as established by( Rainville, 1965) is based on the following;

4.1.5.1 Theorem 

If 2b is neither zero nor negative integer and if both [x] < 1 and l4x(l + x)-21 < 1

[
1 la a-b+z;a b· 4x ' x2 .

I I = F 1
(l+x)-'"F[ 2b; (l+x)2] b+z;

Example 4.5 

In this theorem put b =OC, a =OC + ~ , 4x(l + x)-2 = z and thus prove that
2

1 ı ! [ 2 ]2cıc-ı
[

O( I O( + 2; Z = (1 - z)2 1 + .../1 - Z
2 oc;
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Solution 

Theorem 2 gives us

Then put b =o<, a =o< + .!. , 4x(1 + x)-2 = z
2

then

zx2 + 2(z - 2)x + z = O

zx = 2 - 3 ± .J z2 - 4z + 4 - 32 = 2 - z ± 2~

Now x = O when z = O, so

zx = 2 - z - 2J 1 - z = 1 - z + 1 - 2~

Therefore

(1-...ıı::::-i)2 (1-v'ı-z)[l - (1- z)]
x- -

- z - z(l + v'ı-z)

Thus

1-...ıı::::-i
x- - 1 + -ı/1 - z

And

2
x+l = (l+v'ı-z)

Then we obtain

2
4x (ı -v'ı-z) ( 1 - -ı/1 - z)

--- . -z(1 + x)2 - ( 1 + v'ı-z) 4 -

a check. Now with b = cc, a = cc + 1 theorem 4 yields
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Since

2
1 - ~ and 1 + X = 1 + Vl - Z1-x = 1 +vl-z

4~
(1-x2)=(1+~

Thus we have

[
OC oc + ! , l 2 r [ 2 ]-2 ıF ' 2' z = · (1 - z)-ı

2 oc; [ 1 -ı- .,ff:::;, 1 -ı- .,ff:::;,

2oc-ı

= (1- z)i [1 + ~] '

as defined. Now we use theorem 3 to see that

[ 1 l [ 1 lO( O(+-· 1 O( O(--·
F ' 2' z = (1 - z)-ı F ' 2' z

2 oc; 2 ex:;

So that we also get

[
! , l 2 2oc-ıex:, O( -z,

F 2 ex:; z = [1 + ~] '

as desired.
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4.1.6 Additional properties 

We will obtain one more identity as an example of those resulting from combinationof the

theoremproved earlier in this chapter. In the Identityof theorem 3, replace a by (}c - ~a)and

b by (}c + ~a - ~ ) to get

[
ic - ia, ic + ia - i ; ı [c - a, c + a - 1; ]F 4x(1 - x) = F x .

c; c;

Theorem 1 yields

[
c - a, c + a - 1; ] 1 [a, 1 - a; ]F x = (1- x) -c F x ,

c; c;

Which leads to the desiredresult.

4.1.6.1 Theorem 

If c is nether zero nor negative integer and if both [x] < 1 and l4x(1- x)] < 1

[
a 1 - a· ] [!c- !a !c + !a - ! · ıF , c; , x = (1- x)ı-cF z z , z c; z z ' 4x(1- x) .

Example 

Use this theoremto showthat

_ [a, 1 - a; ] [! _ ı ı ı ı .(1-x)ı 'F . x =(1-2x)a-cF ıc za,zc-za+z,4x(l-x)ı
c, c; (1- 2x)ı

Solution 

[

c-a c+a-1 la,1-a; --, ;
(1-x)1-'F[ c; x]=F 2 c;Z 4x(l-x)
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CHAPTERS 

CONCLUSION AND SUGGESTIONS FOR FUTURE 
lik

This study had presented definitions and examples of hypergeometric function; confluent

hypergeometric function, and Kummer confluent hypergeometric function. It can therefore be

concluded that theorems and some properties. Moreover, it can also be concluded that the

Kummer function has wide application in various subjects and hence proving stability or

other properties were drawn to be of paramount importance. This study centered on the

Kummer's first formula with confluent hypergeometric function. Future studies can endeavor

to extend insights on this area in depth.

6
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