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ABSTRACT 

In this study the wave characteristics (height and period of wave) were simulated by 

applying the Bretschneider spectrum and equations presented by Sverdrup-Munk- 

Bretschneider (SMB) by using the recorded data such as wind velocity and duration, 

differences between water and air temperature and the fetch length. It is essential for all 

offshore structures analysis to estimate the forces generated by the wave and current by 

developing a program for modeling wave and current forces on offshore structural 

members. Airy wave theory (linear theory) has been implemented in the present study, 

based on its attractiveness for engineering use. The Morison equation was used for 

converting the velocity and acceleration terms into resultant forces. For calibration and for 

comparison purposes, a developed program was checked against a well-known 

professional software package called Structural Analysis Computer System (SACS). 

Furthermore, a wide range still exists to improve the presented models as well as provides 

alternative to deterministic models. Therefore, this study investigates the possibility of 

utilizing the relatively current technique of artificial neural networks (ANN) for this 

purpose. Besides, the comparison of ANN models with the two characteristic prediction 

methods based on equations of SMB and Bretschneider equations showed a better 

performance for ANN models rather than SMB and Bretschneider equations. Different 

ANN architectures were used to by using sets of data with different parameters used in 

training process. The results confirm that a suitably trained network might supply 

acceptable outcomes in open wider areas, as well as when the sampling and predicting 

interval is enormous in order of magnitude of a week.  

 

Keywords: Bretschneider spectrum and equations, neural networks, offshore structures 

analysis, airy’s linear theory, structural analysis computer system  
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ÖZET 

Deniz suyundaki dalgaların üretimi  ve gelişimi çoğunlukla deniz yüzeyinde üfleme 

rüzgarları tarafından kontrol edilir. Bu çalışmada, dalga özellikleri (Yüksekliği ve süresi) 

Bretschneider spektrumunun ve Sverdrup-Munk-Bretschneider (SMB)'in kayededilen 

verilerle (rüzgar hızı, rüzgar süresi ve su / hava sıcaklığı farkları) kullanarak Simüle edildi. 

Dalga karakteristiğini tahmin etmek için sunulan çeşitli belirleyici modellere Karşın 

rüzgârın özelliklerinden, mevcut modelleri iyileştirmek veya onlara alternatif sunmak için 

geniş bir kapsam mevcuttur. Halbuki, bu araştırma maksadi, yeni yapay sinir ağları 

tekniğini (YSA) kullanilabilecek yontemleri kesfediyor. Etkili parametreleri belirlemek 

için, Çeşitli giriş parametrelerinin kombinasyonları ile farklı modeller düşünüldü. Rüzgar 

hızı,süresi ve getirme uzunluğu gibi paramentreler kullanimaktadir. Dahası, YSA 

modellerinin SMB ve Bretschneider denklemlerine dayanan iki karakteristik tahmin 

yöntemi ile karşılaştırılması YSA modelleri için daha iyi bir performans gösterdi.şebeke 

farklı YSA yapi ile eğitilmektedir. Sonuçlar, düzgün eğitilmiş bir ağın açık geniş alanlarda, 

derin sularda ve öngörme aralığı bir hafta büyüklüğüne göre büyük durumda tatmin edici 

sonuçlar verebileceğini gösterir.Basit bir 3 katmanlı ileri besleme tipi, deterministik 

modellerin aksine . 

Tüm açık deniz yapıların analizi için, açık deniz yapısal üyelerde dalga ve akım 

kuvvetlerinin modellenmesi için bir program geliştirerek dalga ve akım tarafından üretilen 

kuvvetleri tahmin etmek esastır.Bu çalışmada, lineer teori, mühendislik kullanımındaki 

cazibesine dayanarak uygulandı. Morrison denklemi hız ve ivme terimlerini sonuç 

kuvvetlerine dönüştürmek için kullanılmıştır. Kalibrasyon ve karşılaştırma , Yapısal Analiz 

Bilgisayar Sistemi adlı iyi bilinen bir profesyonel yazılım program karşın kontrol edildi 

 

Anahtar Kelimeler: Bretschneider spektrumu ve denklemleri, Nöral ağlar, Açık deniz 

yapıları analizi, Airy’s lineer teori, Yapısal Analiz bilgisayar sistemi. 
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CHAPTER 1 

1INTRODUCTION 

 

1.1 Background of Study 

The protection of coastal environments is very important especially with more than 9,600 

offshore fields worldwide. Offshore structures, such as platforms and wind Turbines are 

commonly adopted for such protection (Sadeghi, 2007). In recent years, the protection of 

offshore structures has been extensively studied; an understanding of their interaction with 

wind-wave relationship is far from complete.  

The major factor in coastal engineering design and analysis is a wave action on which must 

be taken into account. Much is known about wave mechanics when the wave height and 

period (or length) is known. Knowledge about waves and the forces they generate is 

important for the design of coastal projects since predication of wave conditions are 

needed in almost all coastal engineering studies (Holmes, 2001).  Actual waves found in 

nature are mostly random; but for the sake of analytical simplicity they are many times 

assumed to be regular. With physical processes the wave parameters can be predicted in 

complex circulation patterns based on wind recoded data (Bouws et al., 1998). 

In last decades, the wind-wave models by numerical equations uses have became essential 

for a prediction of wave characteristics. Generally, modeling is based on empirical, 

simplified or parametric and numerical or elaborate methods as deterministic equations. 

However, the numerical methods are far more accurate than the parametric and give 

information over a number of locations simultaneously (Tolman, 1992). 

Actually the damage that could happen to offshore structures occasionally arises; there are 

two general modes of failure modes being evident. Firstly, the wave forces that acting on 

structure members of jacket platform that caused incur substantial damage or even collapse 

in it. Secondly, the liquefaction or the erosion or the erosion in the surrounding area of the 

structure, subsequently, may led to the collapse of the structure as a whole (Cha et. al., 

2011). 
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Figure 1.1: Configuration of a jacket platform (Sadeghi, 2007) 

Consequently, the protection of offshore structures increased significantly due to growing 

attention of marine geotechnical and coastal engineering operations. The major concern for 

civil and coastal engineers in this field is that, attempting to deal with more accurate 

predictions of wave characteristics (height and period of wave) rather than unique wave 

height and period values of the above simplified schemes (Bouws et al., 1998). 

 

1.2 Artificial Neural Network   

Much research attention has been centered on solving one problem: ―How does the human 

brain work?‖ Artificial Neural Networks have been used to try to solve this problem. 

(Hagan et al., 1995) report that, the preliminary research in neural networks field is back to 

1943, by (McCulloch and Pitts, 1943)  when they assumed a simple mathematical process 
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to give details about the way neurons are working biologically. This was apparently one of 

the first significant study on artificial neural networks (ANN) (Hagan et al., 1995). 

The technique of (ANNs) is an alternative possible methodology. Many investigations and 

works for more than five decades found that the biological neural system was must suitable 

way to apply ANNs in real world. ANN is helpful in many cases where the essential 

process of physical for prediction are still not completely understood and compatible in 

dynamical systems modeling that based on period of time. However, until 1980’s the 

ANNs it has not been applied on a large scale to the problems of the real world. Therefore, 

common application were not training by algorithms because of the lack of their 

sophisticated (Cha et al., 2006).  

According to (Huang et al., 2009),  ANNs are one of the latest data-processing 

technologies available in the engineer’s toolbox. They serve as an important function in 

engineering applications.  In particular for predicting the evolution of dynamical systems, 

modeling the memory and performing pattern recognition. 

In contrast to conventional approaches derived from engineering mechanisms, the only 

requirement for obtaining accurate predictions with ANN models is a reliable dataset to 

achieve suitable training database with accurate predictions for a variety of engineering 

problems (Cha et al., 2011). 

 

1.3 Wave Forces on Offshore Structures 

Brief discussion on the theoretical aspect and simulation of the wave forces on offshore 

structural members has been presented. A computer program written in the FORTRAN 

language working under the Microsoft Power Station environment validated with a 

standard commercial package called Structural Analysis Computer System (SACS, version 

5.7) (Noorzaei et al., 2005). 
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1.4 Contributions of the Research 

The evaluation of wave characteristics (wave height & wave period) is important for civil 

and coastal engineers that involved in the design of coastal structures. In recent years, great 

efforts have been made for in predicting the wave characteristics by physical modeling and 

using traditional engineering methods including complicated deterministic equations. In 

this research, Artificial Neural Network (ANN) technology has been adopted to assist in 

the prediction of wave characteristics (Galavi et al., 2012; Sadeghi, 2007). 

The objective of this study is to establish an alternative approach for the prediction of wave 

characteristics (wave height & wave period) which is Artificial Neural Network (ANN). 

The database was generated using numerical models (Deo et al., 2001; Sadeghi, 2007).  

The specific goals of this study are to:  

 Exam the accuracy of various structured ANNs for the prediction of wave 

characteristics predicted by numerical methods. 

 Recommend the most effective and acceptable ANN model for the coastal 

engineering practice 

 To couple the written program to an existing 3-D finite element program (SACS). 

 

1.5 Thesis Structure  

Chapters are organized as:  

 Chapter 2 deals with the review of published literature (thesis, journal and 

articles). 

 Chapter 3 a discussion of the methodology of the research area, test samples, test 

procedures and statistical analysis were conducted in this chapter. 

 Chapter 4 a comparison of the developed models with other existing models was 

also performed under this chapter. 

 Chapter 5 the conclusion and recommendation of the study are given in Chapter 

five. 
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CHAPTER 2 

2LITERATURE REVIEW 

 

2.1 Background 

The wave’s generation in deep water is naturally caused by blow of wind over the sea 

level. Once the ocean surface hit by winds for an adequately limited duration and fetch, the 

growing of waves parameters are containing until they reach their maximum values in a 

particular conditions. From this point the wave period will stay constant even as they 

propagate into shallow water. ―Theories  and mechanics of waves  together with 

classifications of wave, governing different wave theories and their equations, for instance,  

Airy  theory,           ,            , Cnoidal, Solitary and Stream Function‖ (Deo, 2013; 

Sadeghi, 2008). 

 

Figure 2.1:  Wave progress to shoreline ( Sadeghi, 2008) 

Likewise, the most advanced prediction need techniques which currently are not available 

in any laboratories because needs to highly advanced equipment, as well as the complexity 

of those models. The knowledge of magnitude and behavior of ocean waves as well as the 

understanding of heights and periods of oscillatory short waves on the site which is a 

necessary for any activities in the offshore projects included design and planning, 

construction and operation related to harbor, coastal and structures (Shahidi, 2009; API, 

2007) .  
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Due to the assumptions that regarding the wave prediction based on traditional engineering 

mechanics, therefore, the application of the existing models limited by it. As a result, 

Artificial Neural Networks (ANNs) have been applied to various fields, such as business, 

science, and the engineering sphere (El-Reedy, 2012). It is a fresh approach to apply ANNs 

to the problem of wave predicting in marine environments. Thus, in this section, previous 

research for the wave height and period production is reviewed first, and then followed by 

the wave forces on subsea structural member (Bouws et al., 1998). 

 

2.2 Wave Characteristics Prediction 

The relationship between wind and wave has been investigated over more than five 

decades in the past by establishing empirical and  numerical equations that solving the 

equations of wave prediction (Sadeghi, 2007).  

 

Figure 2.2: Wave height predicting reproduced from (Sadeghi, 2007) 

However, the wave generation phenomenon complexity still exists despite of significant 

advances in techniques of computational, the solutions that found are not exactly uniformly 

can be applicable at all sites and times. Figure 2.2 reproduced from (Sadeghi, 2007),  it 

shows comparison between recorded heights of wave with  the  predicted values that 

applied by using Bretschneider spectrum and equations (Manual, S. P., 1984). 



7 

 

2.3 Empirical Methods 

The most two widely used empirical models are the Bretschneider and SMB (Sverdrup-

Munk and Bretschneider) models. Several other models exist, including those of 

Darbyshire and Draper (1963), Kruseman (1976), Toba (1978), Mitsuyasu et al. (1980) and 

Donclan (1980). The Sverdrup-Munk and Bretschneider (SMB) equations are based on 

dimensional analysis considerations. Empirical wave models can be applied to enclosed 

water bodies where swell is insignificant. The main assumption of these models is that the 

wind field over the wave generating area at any one time can be represented by a single 

value of velocity (Deo, 2007). 

 Sverdrup and Munk (1947) devised an empirical method to predict a so-called "significant 

wave height to describe the locally generated sea state. Since the birth of coastal 

engineering at that time, wave prediction models have evolved to the extent that computer 

models can now predict ocean wave spectra on a global scale (Bishop and Donelan, 1989).  

Dimensional analysis by Kitaigorodskii (1962) showed that all wave variables, when non-

dimensionalized in terries of the acceleration due to gravity ―g‖ and wind speed, should be 

functions of the dimensionless fetch       (Applications in Coastal Modeling edited by 

(Bishop and Donelan, 1989).  

 

2.4 Numerical Wave Modeling 

Ocean wave characteristics are mainly determined through field measurements, numerical 

simulation, physical models and analytical solutions. Each method has its own advantages 

and disadvantages. Numerical models were emerging as the most powerful method for the 

study of wave’s characteristics and sea water surface. It is expressed in the concepts of 

physical phenomena of wave numerical model, which depends on how the expression of 

the best phenomena in numerical schemes, in this case, the parameters can be estimated 

more accurately wave data (Thomas and Dwarakish, 2015).  

The wave models was based on numerical models developed on the energy balance 

equation with the different components function as an input sources (Deo, 2007). 
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The energy balance equation is given as: 

           

  
             (2.1) 

where, 

f : Represents the frequency 

  : Represents the propagation direction 

t : Represents the time  

x : Represents the geographic coordinates 

S : Represents the source function 

Where, they are dependent on each of the wave spectrum and the external factors of 

making wave such as local wind and current. 

Sørensen et al. (2004) developed a model and simulated for the North Sea, parts of 

Norwegian Sea and the Baltic Sea. The results are validated from wave rider buoy and 

found that the model is better in prediction than which does not use fine mesh. But due to 

the fine mesh the computing time required was higher at that time. 

Numerical wave models can be incorporated with sediment dynamics problems to 

understand the problem more in detail. A spectral wave model helps to assess the sediment 

dynamics. Using (WAVEWATCH III) parameters like Significant Wave Height (Hs), Peak 

Period (  ), Mean Wave Direction (MWD), Wind Velocity (   ) and Mean Wind 

Direction was extracted. This helped the authors to understand the wave energy in different 

coastal sectors. But the model (WAVEWATCH III) is mainly suitable for deep water 

regions and use of that model in coastal problems affected the accuracy of the study 

(Sørensen et al., 2004). 

At 2003, an investigation began in the English Channel, a campaign of measurement and 

evaluation where four of the widely numerical analysis of wave models were used. At that 

time, they summed up with taking into consideration that the specific agreement between 
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simulated and recorded wave parameters improved by currents, however the (RMSE) of 

the results of model were in actuality bigger than with the currents. That study was 

remarkable to solve some numerical models problems that were used. In particular, the 

artificial cause of swell on the wind sea growth was found to be a problem, It is a common 

feature of the development of standards derived from (Komen et al., 1984). 

 

2.5 Artificial Neural Networks 

ANN was originally introduced as simplified models of brain-function. The human brain 

consists of billions of interconnected neurons. These are cells which have specialized 

members that allow the transmission of singles to neighboring neurons (Cha et al., 2011). 

The neural networks theoretical concepts can be found in many studies as well as books 

include, (Kosko, 1992). Network applications in civil engineering prediction such as  

(French et al., 1992), (Kasperkiewicz et al., 1995), (Grubert, 1995), (Thirumalaiah and 

Deo, 1998)and (Deo and Kumar, 2000), with many application that  connected to 

prediction of rainfall, concrete strength and waves in onshore and offshore parts.  

Additionally, it has been applied ANN models in different engineering problems, for 

instance,  the generation of wave equations that based on hydraulic data  (Dibike et al., 

1999), parameters of water quality prediction (Maier and Dandy, 1997),  tidal prediction 

(Lee et al., 2002), prediction of shallow foundation settlement (Mohamed et al., 2002), 

dynamic amplification of the soil analysis prediction (Hurtado et al., 2001) and the 

prediction of concrete strength concrete (Rajasekaran et al., 2003). In this study, we will 

further apply ANNs to the prediction of the wave characteristics in the deep water 

conditions.  

2.5.1 Artificial neural networks applications in engineering 

The last five decades have witnessed several applications of ANN in engineering 

prediction. These include heights and periods predicting (Deo et al., 2001), wave reflection 

(Zanuttigh and Meer, 2008), and water level prediction (Patrick et al., 2003). Some 

previous work related to Artificial Neural Networks application in the area of engineering 
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and science will be summarized under the headings: structural engineering, geotechnical 

engineering, water resources, and coastal engineering. 

Makarynskyy et al., (2004) discussed the ANN approach to the problem of improving the 

prediction of the wave. In this paper, they used two different approaches. First, they used 

the initial simulations of the wave parameters with leading times from 1 to 24 hours. 

Second, they allowed for merging the measurements and initial forecasts. These results 

showed that an ANN model can provide accurate simulation and demonstrated the ability 

of neural networks to improve the initial expectations, it is estimated in terms of the 

correlation coefficient, root mean squared error and scatter index. 

Deo et al., (2001) presented practical methodologies for designing better ANN 

architectures for wave prediction. It demonstrates an improved in the predictions result and 

the actual observations which represented in the improvement of the correlation coefficient 

(R²) of 68%. They concluded that smaller differences in the characteristics of the wind at 

this location coupled with the single location wave and wind measurements led to 

improvement in predictions. 

Lee et al., (2001) developed an ANN model to predict the behavior of stub-girder system 

in structural analysis. In this paper, they believed that it is difficult task to modeling stub-

girder involving complex material behavior by traditional numerical modeling in 

computational. They concluded that, many of uncertainty and empirical problems within 

an approximate structural analysis can be solved successfully by the ANN models that 

require both an fast calculation with acceptable margin of error in structural engineering.  

Kim et al., (2001) presented how to utilize an accumulated database to evaluate particular 

tunnel sites and prediction of ground surface settlements due to tunneling using an ANN 

model. The ANN model based on past tunnel records that used as reliable database which 

leading to predicted the settlements of ground surface. They suggested that the ability to 

predict an accurate result is completely reliant on data quality and quantity that used in 

training ANNs. 

In water resources engineering, (French et al., 1992) used an ANN to predict rain- fall 

intensity. They used back-propagation network for the training, and they compared natural 
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rainfall history with an ANN predicted fields model. Their results indicated that the ANN 

is capable of learning the complex relationships describing the space-time evolution of 

rainfall that is inherent in a complex rainfall simulation model.  

Maier and Holger (2000) applied ANNs in prediction of water quality parameters. The 

authors reviewed the differences between ANNs and more traditional predicting methods, 

such as time series and physically based models, and applied the ANN model to predicting 

salinity in the River Murray at Mruuay Bridge, South Australia. They concluded that ANN 

models appear to be a useful tool for predicting salinity in rivers, even if they had difficult 

in determining the appropriate model inputs. Later, they investigated the relative 

performance of various training algorithms using feed-forward ANNs for salinity 

predicting. 

 

2.6 Hydrodynamic Forces  

The hydrodynamic forces evaluation that acts on platform legs requires knowledge of 

vector of stress which includes gradients of the velocity and dynamic pressure. However, 

the fluid motion usually consider as steady, which means linearized, with no more 

boundaries. As a result,  it is possible to relate the stress vector with the velocity of the 

rigid body relative to the fluid velocity in the far field by means of an integral equation of 

the first kind (Youngren and Acrivos, 2006). 

This approach was taken for the Stokes equation. In both cases, using the matching 

fundamental solution, at the first order integral equations system, valid at each point of the 

surface of the submerged rigid body, can be gained that link the stress vector with velocity 

of the rigid body. The numerical methods were developed numerical by the authors to 

calculate the stress vector and accordingly to gain a solution with details for the vector of 

stress which allows authors to calculate the hydrodynamic forces, Consisting of body 

forces and the stresses supposed to given by a potential, on the rigid body.  The wave force 

theories concerning offshore platforms were not existed until Morison equation was 

presented in 1950; the wave forces on a vertical pipe were shown to be as illustrated in Fig. 

2.2: 
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Figure 2.3: Hydrodynamic forces parameters on platform legs due to waves 

(Sadeghi, 2008) 

The coefficients of hydrodynamic forces including drag coefficient and inertia for various 

types of platforms such as square, rectangular or circular sections that will be subjected to 

hydrodynamic forces.  

The Morison formula is written below (Sadeghi, 2001):  

  
 

 
              

   

 
   (2.2) 

         (2.3) 

where, 

    : Represents the drag force 

    : Represents the inertia force 

The most important consideration in applying Morison’s equation is the selection of 

appropriate drag and inertia coefficients. However, there is considerable uncertainty in the 
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   and    values appropriate for the calculation of offshore structural members, with 

many values in publication. 

Some published studies reviewed by (Cassidy, 1999) in the literatures in his ―PhD diss‖. 

He evaluated that    ranged between (0.6 - 1.2) depends on cylinder configuration. For    

ranged from (1.75 – 2.0) depends on cylinder configuration as well. 

Morison Equation is based on following assumptions: 

i. Flow is assumed unstable by the presence of the structure  

ii. Force calculation is empirical calibrate by experimental results  

iii. The right coefficients should be used rely on the shape of the structure body  

iv. Validity range shall be checked before use and generally, the validity suitable range 

for most jacket type structures is D/L less than 0.2. 

where,  

D : Represents the diameter of the structural member 

L : Represents the wave length 

The forces and moments due to waves that applied on structure member such as legs, piles 

and braces are important for process design of offshore platforms. Different amount of 

forces and moments applied on those members in each moment caused by a particle 

suspended in a fluid. From the combination of drag force (  ) and inertia force (  ), the 

total amount of forces and moments can be calculated, with respect to a force sign 

(Sadeghi, 2008). 
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CHAPTER 3 

3METHODOLOGY 

  

3.1 Introduction 

The research was conducted in accordance with the following procedure; in this chapter, 

The SMB and Bretschneider equations are described to how predicting the wave 

characteristics. The effects of wind blowing velocity, wind duration, air/sea temperature 

difference, and fetch length are taken into account by Bretschneider equations (Manual, S. 

P., 1984). 

To ensure the accurate prediction of a wave’s characteristics using artificial neural network 

(ANN) model which need to establish a reliable database. Consequently, database was 

established by using numerical simulation of waves characteristics and downtime done by 

(Sadeghi, 2007). From the prediction of wave’s characteristics it can develop a program for 

modeling wave and current forces on a vertical and inclined cylinder offshore structural 

member.  

 

3.2 S.M.B Formulas 

The predictions of wave characteristics based on equations within methods such as  S.M.B. 

(Sverdrup-Munk-Bretschneider), Hasselmann , Pierson – Moskowitz and  (JONSWAP) 

(Deo, 2007).  The Sverdrup-Munk and Bretschneider (SMB) equations are based on 

dimensional analysis consideration for predict of wave characteristics which are the 

adjustment later by Bretschneider in 1958. 

The equations are set bellow: 

For deep-water conditions (Kabir Sadeghi, 2008): 

  

  
           [      [

  

  
]
    

] (3.1) 
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The above (H, T) values would occur only if the wind blows for a duration time given in 

terms of fetch (F) as follows (Sadeghi, 2008):  
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 (3.3) 

For shallow water conditions and fixed waterdepth (d) (Sadeghi, 2008):  
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where,    

exp{x}=    ,      

        ,  

K=6.5882, 

A=0.0161, 

B=0.3692, 

C=2.2024, 

D=0.8798  
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3.3 Bretschneider Formulas 

In Bretschneider equations, air-sea temperature difference (Ta and Ts) taken in 

consideration for prediction of wave characteristics. (Sadeghi, 2008): 
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 (3.8) 
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 (3.9) 
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The following equations can be used , in fully developed wave case (Sadeghi, 2008):  

    

  
             

(3.11) 

 

   

  
        (3.12) 

  

  
           (3.14) 

Bretschneider's method with waterdepth effect (Sadeghi, 2008): 
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 (3.17) 

where, 

                                 

                           

 

3.3.1 Stability factor 

Stability factor (RT) defined by Resio and Vincent in 1977 and consider as a significant 

factor in wave characteristics prediction within Bretschneider equations. RT can be from 

Figure 3.1, Which allows to consider the difference in temperature between the air and the 

sea (Sadeghi, 2008). 

 

Figure 3.1: Stability factor RT graph. 
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3.3.2 Distribution of wave heights 

These wave prediction methods are based on semi-empirical relations, which link the 

significant wave height Hs and significant wave period to wind speed, fetch, and 

waterdepth (Vandever et al., 2001). 

 

Figure 3.2: Statistical distribution of wave heights 

where, 

   (Mean wave height) = 0.64 times Hs  

   or      = Significant wave height  

      (Highest 10% wave height) = 1.27Hs  

        (Highest 1% wave height) = 1.67Hs  

     (Max probable wave height for a large sample) = about 2.0   

3.4 Basis of Empirical Equations 

The majority of the mathematical calculations are based on two basic elements: 

wavelength    and wave height    (the subscript o indicates fully developed deepwater 

conditions).  Fully deep-water waves subject to various changes as they approach the 

shoreline (Le Roux et al., 2010). 
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where, 

            (m) (3.18) 

Firstly, after decreasing in wave height, after the water particle velocity reaches a 

maximum in the wave crest, the breaking height will increase,  also expected decrease in 

the wavelength decrease that will happen and cause change in the form of a wave from a 

sinusoidal through trochoidal to reach cnoidal profile with the respect to the still water 

level shoreline with increasing of mean water level (Le Roux et al., 2010). 

Table 3.1: The parameters of water/air temperature from the recorded wind characteristics 

in the Caspian Sea 
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21 11 88 14.1 18.1 -4.0 

21 11 88 15.0 18.1 -3.1 

21 11 88 14.9 18.2 -3.3 

22 11 88 14.3 18.1 -3.8 

22 11 88 16.2 18.4 -2.2 

22 11 88 16.3 18.4 -2.1 

22 11 88 14.7 18.2 -3.5 

22 11 88 12.6 12.2 0.4 

22 11 88 14.1 18.0 -3.9 

22 11 88 15.2 17.9 -2.7 

22 11 88 15.6 18.0 -2.4 

22 11 88 15.8 18.1 -2.3 

23 11 88 15.7 17.9 -2.2 

23 11 88 15.3 18.1 -2.8 

23 11 88 16.9 18.3 -1.4 

All input and output data in the spreadsheet, except the operation criteria, are in SI units. In 

the data input area (cells B4:BA2728), measured wave height and period conditions are 

entered, where available. The parameters of water/air temperature in cell (cells E4:F2728) 

is required to differences in cell G, although the value in this cell may contains some 

negative values. 
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Table 3.2: The parameters of wind in the Caspian Sea 
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2.06 6.70 47 16200 2.293 1.970 

3.09 9.30 77 16200 3.413 3.214 

6.17 14.70 59 16200 6.838 7.555 

1.39 4.70 2 16200 1.545 1.21 

3.45 10.00 -152 16200 3.750 3.61 

0.67 2.70 -17 16200 0.725 0.48 

2.73 6.70 -175 16200 3.025 2.77 

2.42 8.70 -29 16200 2.379 2.06 

3.09 7.30 -156 16200 3.436 3.24 

3.60 9.30 -110 21600 3.969 3.87 

3.76 10.00 -109 16200 4.116 4.05 

5.14 14.00 -126 16200 5.617 5.93 

3.09 8.00 -86 16200 3.358 3.15 

1.70 5.30 71 16200 1.873 1.54 

0.36 2.00 -90 16200 0.380 0.22 

The sustained wind velocity which represented as (U10) is measured at a distance of 10 m 

above the SWL that supplied in cell Y as average in m/s units. The measured wind gust 

and its direction can also be entered in columns Z and AA, which automatically calculated 

values of wind duration in seconds in column AT. Correction to account for the non-linear 

relation between the measured wind speed and its stress on the seawater. 

Due to the shortage in date of wind for all points in southern part of Caspian Sea, wind 

data recorded at the buoy site mentioned above which located 30 km from Neka Harbor at 

a waterdepth of 35 m and operated by KEPCO were used for all points of the south 

Caspian Sea considering different fetch lengths (Sadeghi, 2007). The wind input such as 

fetch distance and duration of wind might be not necessary in neural networks. 
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3.5 Equations for Deepwater Wave Conditions 

The parameters that calculate as shown in Table 3.3 are included significant wave height 

(  ), maximum height of wave (Hmax), significant period of wave (  ) and peak period 

(  ) were calculated by the Bretschneider equation taking into consideration the air-sea 

water. 

Table 3.3: Output data of area of wave characteristics from the recorded wind 

characteristics in the Caspian Sea (Sadeghi, 2007) 
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0.127 0.235 1.965 1.867 

0.234 0.433 2.510 2.384 

0.681 1.259 3.848 3.656 

0.07 0.13 1.54 1.46 

0.27 0.50 2.66 2.53 

0.02 0.04 0.97 0.92 

0.19 0.36 2.33 2.21 

0.13 0.25 2.01 1.91 

0.24 0.44 2.52 2.39 

0.37 0.68 3.18 3.02 

0.31 0.58 2.82 2.68 

0.50 0.93 3.41 3.24 

0.23 0.42 2.48 2.36 

0.09 0.17 1.74 1.65 

0.01 0.01 0.65 0.62 

Columns AX15, AZ Table 3.3 calculate the significant wave height and significant wave 

period by using equations (3.8) and (3.9), respectively. While the maximum wave height 

ratio normally more than significant wave height by two. The Rayleigh ratio was used in 

this study for the benefit of simplicity (Sadeghi, 2001). 

3.5.1 Wave theories 

Wave theories yield the information on the wave motion such as the water particles 

kinematics and wave speed, using the input of wave height, its period and depth of water at 
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the site. There are more than a dozen different theories available in this regard. However, 

only a few of them are common in use and these are described below (Deo, 2013): 

 All wave theories involve some common assumptions 

 The waves have regular profiles 

 The flow is two-dimensional  

 The wave propagation is unidirectional (or long crested) 

 The fluid is ideal i.e. in-viscid, incompressible and irrational 

 The sea bed is impermeable and horizontal 

 

Figure 3.3: Displacement of water particle for shallow and deepwater waves 

The wave theories can be categorized into two types (El-Reedy, 2012):  

 Linear or Airy's (or sinusoidal amplitude) wave theory 

 Non-linear (or finite amplitude) wave theories. 

3.5.1.1 Formulation of Airy’s linear theory 

A relatively simple theory of wave motion, well-known as Airy’s linear theory, was given 

by George Biddell Airy in 1842 (Dawson, 1983). This description assumes the form of a 

sinusoidal wave shape, it has a slight increase in comparison with the wave length and 

depth of the water. Although not capable of strict application of the waves of the usual 
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design used in marine structural engineering, this theory is the value to preliminary 

calculations for the detection of the basic characteristics of a wave caused by the 

movement of water (Dawson, 1983). 

Airy’s linear theory provides an expression for vertical and horizontal velocity particle of 

water at place (x, y) and time, t as (Dawson, 1983): 

  
  

 
 
      

      
           (3.19) 

  
  

 
 
      

      
             (3.20) 

The wavenumber, k and wave angular frequency, ω are related through the Airy’s linear 

theory by the dispersion equation: 

            (3.21) 

Using the dispersion equation above, the wave speed may be expressed as: 

   
 

 
         ⁄  (3.22) 

The water particle accelerations are obtained as: 
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           (3.24) 

Where,  

         , 

           

The underlying assumption in the derivation of linear theory has its limits of y = d, which 

does not account above the SWL (i.e. y > d). This predicament is resolved by the linear 

surface correction, (Noorzaei et al., 2005): 
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             (3.25) 

Thus, at the free water surface, the vertical position of the wave becomes: 

      (3.26) 

The Morrison equation uses to transform the wave velocity and acceleration into forces, 

especially,  for slender offshore structures such as jacket platform  (Henderson, 2003). The 

Morison equation maybe expressed as: 

  
 

 
              

   

 
   (3.27) 

The graph that used to selecting the validity wave theory in different waterdepths and for 

various environmental conditions is given above in Figure 3.14. 

where, 

    : Represents denotes water density, 

    and     : denote the drag and inertia coefficients respectively  

  : Represents the diameter of the member 
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Figure 3.4: Validity of wave theories graph (Sadeghi, 2008) 

The term  that on the right hand of this equation, is referred to the drag term and is 

proportional to the square of the water velocity and the second term is referred to the 

inertia term and is proportional to the water acceleration (Sadeghi, 2008). 

The values of horizontal velocity particle of water     and water particle accelerations 

     in the Morison equation are calculated from a suitable wave theory, together with 

chosen values of     and    in Eqn. (3.27) yields at any instant in the wave cycle, the force 

distribution all along the member. 
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3.6   Artificial Neural Network 

An artificial neural network is a computing system consisting of number highly 

interconnected processing elements and processing of information by responding to the 

dynamics of the external input case (Caudil, 1987). The following section is a brief 

overview of the architecture, training rules, selection, and advantage and disadvantage of 

ANN models. 

3.6.1 Architecture of ANN 

The process of information with neural networks represent by trillions of neurons (nerve 

cells) formed the networks, electrical pulses occur by exchanging between cells called 

action potentials. Computer algorithms that imitative these structures of biological are 

properly called artificial neural networks to characterize them from the squishy things 

inside of animals (Birdi et al., 2013). 

 

Figure 3.5: Construction of a single neuron in the brain 

Figure 3.3 illustrates the relationship of a single neuron of the brain to its four parts, known 

by their biological names: dendrites (Input), soma (Process), axon (Turn input into output) 

and  
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Step function 

 

Sing function 

 

Sigmoid function 

 

Liner function 

Figure 3.6: Different types of activation functions 

Generally, there are three fundamentally different classes of networks, which are based on 

network architecture: single layer feedforward, multi-layer feedforward, and recurrent 

network (Haykin, 2004). 

3.6.1.1 Single layer feedforward 

A single layer feedforward network has a single layer of artificial neurons, and it processes 

input signals in a forward directional manner (Cha et al., 2011). 

3.6.1.2 Multi-layer feedforward 

The multi-layer feedforward is development of the single layer network, where used to for 

much more difficult and complicated problems cat not be solved by in single layer method 

or consume more time. It formation from the most important three  part in any networkers 

which are  an input layer of neurons, one or more hidden neurons layers and an output 

neurons layer (as illustrated in Figure 3.5). The hidden layer gives the network its power 

and allows it to extract extra features from the input (Cha et al., 2011). 
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Figure 3.7: Typical multi-layer feedforward architecture 

3.6.1.3 Recurrent network 

A recurrent network has similarities to a feedforward neural network, but it differs by 

having at least one feedback loop. These feedback connections propagate the outputs of 

some nodes or the network back to the inputs layers or nodes to perform repeated 

computations (Cha et al., 2011).  

3.6.2 Training of ANN 

An ANN has to be formation like that the application that produces desired outputs in 

response to training set of inputs. This study adopted the back propagation as a network 

training for all models, (BPNN) are the common network architecture (Rumelhart et al., 

2013). Algorithms are training in a supervised style by BPNNs. The input and output are 

used to train a network until the network can reach the minimum error (Haykin, 2004). 

This method is used for most of our ANN models.  In general, the networks trained with 

four algorithms and all achieved satisfactory results. The highest and fastest results were 

obtained when trained with resilient backpropagation algorithm (trainrp). 

Furthermore, these training algorithms can be divided into two categories, such as 

supervised and unsupervised training. 
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3.6.2.1 Supervised training 

Inside the supervised training style, comparison between actual outputs and desired output 

of an ANN, therefore it attempts that desired solutions are known for the training data sets. 

This consists reduce error with the passing time by adjusting the weights input until 

acceptable network accuracy is reached. Most representative supervised training 

algorithms use the backpropagation algorithm, which has been used since (McClelland et 

al., 1986).  

3.6.2.2 Unsupervised training 

In contrast, unsupervised training does not require a correct desired data set. In fact, the 

fundamental in the data or the links between the patterns in the data is exposed and 

organized into categories. This is especially useful when solutions are unknown (Cha et al., 

2011). 

3.6.3 Feedforward, back-propagation network 

The feedforward, backpropagation architecture was presented by the early of 1970’s by 

several independent source (Rumelhart et al., 2013).  Therefore, proliferation of articles  

 

Figure 3.8: Back propagation architecture 
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and talks at various conferences attempts to stimulate that entire industry to achieve this 

independent co-development.  

At the present time, this interactive developed of backpropagation architecture is become 

popular, valuable, and easy learning even for complex models, such as multi-layered 

networks.  The greatest strength of ANN is in its dealing with nonlinear solutions to 

indefinite problems. The professional back-propagation network has an input layer, an 

output layer, and at least one hidden layer (Demuth and Beale, 2002). 

BP algorithm is one of the most popular ANN algorithms. Rojas, (2013) claimed that BP 

algorithm could be packed up to four major steps. Once the weights chosen randomly, 

compute of necessary corrections are done by back propagation algorithm. The algorithm 

can be expressed in the following four steps (Cilimkovic, 2010): 

 Computation of feed-forward  

 Back propagation to the output layer 

 Propagation to the hidden layer 

 Weight updates 

While the function error value may become small enough, the algorithm is stopped. It 

considers being the basic formula for BP algorithm. With the variations proposed by other 

scientists, Rojas definition seems to be fairly accurate and simple to follow. The last step, 

weight updates is happening throughout the algorithm (Demuth and Beale, 2002; Rojas, 

2013). 

3.6.4 Selection of ANN 

The concept of neurons, transfer functions and connections are the essential elements that 

ANNs based on. The similarity between the different structures of ANN can be found in 

many studies. The majority of the variation stems from the various learning rules, as well 

as how these rules modify a network’s typical topology.  Generally, most applications of 

ANN can be divided following four categories (Cha et al., 2011): 

 Prediction: Uses input values to predict some output. The backpropagation 

network model is most commonly used for engineering predictions.  It is a 
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powerful mechanism for building nonlinear transfer functions between a number of 

continuous valued inputs and one or more continuously valued outputs. The 

network basically uses multi-layer perception architecture and gets its name from 

the manner in which it processes errors during training. In the current study we also 

build an ANN model for the prediction of wave characteristics based on this model. 

 Classification:   Uses input values to determine the classification. This model is 

generally used for pattern recognition. 

 Data association: Used simulate the classification, while also recognizing data that 

contains errors. 

 Data filtering: Analyses input data and makes it smooth for the output, such as 

taking noise out of telephone signals. 

3.6.5 Advantages and disadvantages of ANN  

3.6.5.1 Advantages 

The handle difficulty with very many parameters is the major advantage of neural network 

methods. Further, they are able to successfully to give accurate values and classify objects, 

despite the chaotic distribution of the objects. 

The ANN can incorporate the nature of the dependency without the need to be prompted, 

for example, where is no need to assume a model or to modify it. Besides, it goes directly 

from the data to the model without any of intermediary, recording, binging and without any 

simplification or questionable interpretation. 

Additionally, there are no conditions attached to the predicted variables. As a result the 

outputs can be a (Yes/No), a continuous value, or one or more classes, etc.  Finally the 

ANN is handled with ease, requires less human intervention than does a traditional 

analysis, and the ones does not to be need competent in nor have a mathematical back- 

ground (Cha et al., 2011). 
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3.6.5.2 Disadvantage 

The biggest disadvantage of neural networks is that they consume a lot of time, particularly 

in the training phase, especially supervised training.  Thus, for example the training is 

repeated until the desired output data is satisfied. Another significant disadvantage is the 

difficulty of determining how the decision is made in the net. Consequently, it is hard to 

determine which of the input data being used are significant and valuable for the 

prediction, and which are worthless. 

There are also limitations with training data. For instance, the capability of the ANN to 

identify indicators that intrusion is completely dependent on a training system. Hence, the 

effective outcomes are dependent upon both training data and the training methods that are 

critical to in each network. Therefore, qualified training data sets are essential to meet the 

desired results. 

In this study, we also face these difficulties and limitations. However, we nevertheless 

decided that it was still an interesting approach to use to predicting of wave parameters by 

using an ANN model (Cha et al., 2011). 

 

3.7 Modeling of Wave and Current Forces on Simple Offshore Structural Members 

It is essential for all offshore structural analysts to estimate the forces generated by fluid 

loading given the description of the wave and current environment (Borthwick et al.,1988). 

Considering the many applications of these platform structures mainly Jacket platform in 

marine industry. The design will be under large forces caused by wave plus current forces.  

The Morison equation is usually used to determine the hydrodynamic forces working on 

the cylinder submerged as a result of environmental actions such as wave action. ―The 

force is expressed as the sum of a velocity dependent drag force and an acceleration-

dependent inertia force‖  (Chandler et al., 1984).  

In this case, Morison (1950) equation is typically used as a computational method which 

requests two different coefficients, named drag (  ) and inertia    , to calculate the inline 
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force. In considering wave forces, the sea comprises of a large number of periodic wave 

components with different wave heights, periods and directions of travel which all occur at 

the same time in a given study area. The randomly varying sea surface elevation due to 

overlap of these entire wave components coupled with their dispersive behavior leads, 

which can be treated by statistical methods. However, to provide engineering solutions, the 

use of regular wave theories is common, since regular wave theories yield good 

mathematical models of long crested periodic waves, which are components of an irregular 

sea. There is a wide range of regular wave theories ranging from the simple Airy’s linear 

theory to the higher order formulations (Noorzaei et al., 2005). 

The combination of wave and current inline is used for a non-collinear current. Moreover, 

the presence of the current changes the apparent wave period. The wave particle velocity 

(u) is computed based on the apparent wave period. Therefore, the wave loading for a unit 

length of a structure member is founded from the modified Morison equation: 

The tidal currents and wind drift currents are the common currents considered in offshore 

structural analysis (Dawson, 1983). Both of them are usually considered as horizontal and 

varying with waterdepth. 

The tidal current velocity profile at any vertical distance from the seabed may be 

determined as  (Dawson, 1983):  

          
 

 
   ⁄  (3.29) 

The wind drift current velocity profile may be determined as: 

          
 

 
   (3.30) 

Where, d denotes the waterdepth, y is the vertical distance from the seabed,     and     

denote the tidal and wind drift current velocity at the water surface respectively. For 

regular design waves and a horizontal current of arbitrary waterdepth variation, the force 

exerted on an offshore structure is normally calculated by simply adding the horizontal 

water velocity caused by the waves to that component of current velocity (Dawson, 1983). 
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3.8 SACS Software 

SACS is an integrated finite element structural analysis package of applications that 

uniquely supply for the design of offshore structures, including oil and gas platforms, wind 

farms, and topsides of FPSOs and floating platforms (El-Reedy, 2012). 

The software depends on a collection of modules that should be used in each analysis. The 

main program carries the nodes, members, and loads on it, and other modules do the 

subroutine used for every analysis you need to perform. We briefly describe an in-place 

analysis as simple example of SACS software which has others analysis’s such as dynamic 

analysis, Seismic analysis, Collapse analysis and Fatigue analysis. 

The first step in SACS is to develop the name of the project as in (Figure 4. (Appendix 4) 

and define the location of the folder for this new project. Note that organizing the folder is 

very essential and important, as we will run a lot of input and output files during the 

analysis (El-Reedy, 2012).  

Figure 4.2 (Appendix 4) shows that you have three options, which modify an existing 

model that we  performed before, create a new one, or just open the last one. 

To create a new model, a menu appears, as in Figure 4.3 (Appendix 4), to ask about start 

from blank or use the existing library and choose the units. A wizard is available for fixed 

offshore platforms, so it is easy to use structure definition wizard. 

Start building the structure model through the Structure Definition dialog box; define the 

jack/pile using the following settings in the Elevations tab, as shown in Figure 4.4 

(Appendix 4). The input data that we can supply as following: 

 Working Point Elevation 

 Pile Connecting Elevation 

 Waterdepth 

 Mudline Elevation 

 Pile Stub Elevation 

 Leg Extension Elevation 

 Generate Seastate Hydrodynamic Data 
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 Other elevations 

After that, click on the legs tab, as in Figure 4.5 (Appendix 4), to enter the data for the 

jacket legs and set the following data: 

 Number of legs 

 Leg type 

 Leg spacing at working point 

 Row Labeling 

 Pile/Leg Batter 

For the conductor data, Click on the Conductors tab, set the following data should be set as 

shown in Figure 4.6 (Appendix 4). 

 Number of conductor well  

 Top conductor elevation 

  First conductor number 

 Number of conductors in X direction 

 Number of conductors in Y direction 

 Coordinate of LL corner 

 Distance between conductors 

 Disconnected elevations 

Then, the connectivity tab is pressed to choose the bracing system for the jacket as shown 

in Figure 4.7 (Appendix 4). 

To define the properties of the leg and the bracing members that can be created using size 

tab  as shown in Figure 4.8 (Appendix 4) and put the input sets easily. But for more details 

on the precede toolbar, select Property ˃ Member Group as Figure 4.9 (Appendix 4). The 

Member Group Manage dialog box appears. After named the group for example XPL, we 

highlight it in the Undefined Groups window, and then click on the Add button to define 

the section and material properties of XPL. 
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3.8.1 Input the load data in SACS software 

After you define geometry, the next step is to define the loads and the environmental load 

as wave, current, and wind. Illustrated here is the environmental load.  

To define the wave, current, wind, and dead/buoyancy load we go to Environment ˃ 

Loading ˃ Seastate. The data can be found in the design specifications.There are five tabs, 

then two for each Wave I and Wave II, Wind I and Wind II, Current I and Current II, 

Dead, and Drag. As shown in Figure 4.10a (Appendix 4), this is for load case LC1 the 

wave height is 10.67 m and time period is 9.67 s, the direction is zero.  For Current, enter 

the data of the current from the seabed to the sea level. As shown in Figure 4.10b 

(Appendix 4). 

3.8.2 Output data from SACS software 

The output data is presented by the postvue icon. When you select a member, it is 

identified in the menu on the right by its nodes, from Member ˃ Review Member. Select 

the member.  
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CHAPTER 4 

4RESULTS AND DISCUSSION 

 

The main objectives of this chapter are: 

i. To demonstrate the ANN model’s capability in the prediction of the wave 

parameters 

ii. To write a computer program that is able to simulate wave plus current forces on 

template offshore legs using traditional numerical methods with minimal sacrifice 

towards accuracy and couple the written program to an existing 3-D finite element 

program, with show the applicability of the coupled program by analyzing a simple 

offshore structure. 

4.1 Study Area 

The Caspian Sea was selected as study area for this study; because of the sufficient 

properties of wave data are not available for some parts at that time in the sea (Sadeghi, 

2007).  

 

Figure 4.1: Caspian Sea and the location of khazar buoy 
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4.2 Data Employed 

The Caspian Sea is the largest enclosed basin in the world, five countries are surrounded 

the Sea including; Iran, Turkmenistan, Kazakhstan, Russia and Azerbaijan. Consequently, 

important economic activities in the Caspian Sea, such as rich resources of oil and gas, 

agriculture, fisheries and the potential of transportation between Asia and Europe have 

made this sea vital.  

Wave characteristics (height & period) were predicted in the deep waters of the Caspian 

Sea on the basis of recorded wind data. The Bretschneider equations were used with 

various modeling equations (Sadeghi, 2001; Manual, S. P., 1984). 

 

4.3 ANN Models for Prediction of Wave Parameters 

Wave’s generation by wind by using physical process is not yet fully understood which 

make them extremely complex and uncertain. Neural network helps to model inputs in 

random environment to predict accurate output, besides; their application does not need to 

complex physical process as a precondition, which makes it applicable in various areas in 

yet to be proved (Shahidi and Mahjoobi, 2008) 

 

4.4 Establishment of Database 

A most important component in the successful execution of an ANN model is the dataset, 

which is essential for ANN model learning. As described in Chapter 3, ANN models are 

trained and perform through data collected in physical tests, historical records or analytical 

solutions. Therefore it is critical to set up a suitable dataset to ensure accurate findings. As 

noted in previous work (Sadeghi, 2007), the most important factors that affect wave height 

calculation are: 

The inputs of wave characteristics 

a) Average wind speed (U10 m/s), 

b) Depth (d), 
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c) Fetch Length (f), 

d) Stability Factor (RT), 

e) Water/air temperature differences (Ta-Ts (C)), 

f) Wind Duration (t sec.), 

g) Corrected wind speed (U m/s), 

To establish a good quality dataset covering all possible realistic ranges of environmental 

data, values were varied from the above parameters. As seen in the tables of the theoretical 

model that (outlined in Chapter 3) to predict the wave characteristics for more than 2500 

samples.  

 

4.5 The Neural Network 

ANNs, can be defined as simplified models that established by layers which are consisting 

of a number of neurons, among the layers being interrelated by identical weights sets. The 

information that given in the form of initial input goes through the input layer as neurons, 

from which the different transfer functions are used to obtain the outputs. The transfer 

functions that adopted in this study are expressed as, 

a) Log-sigmoid transfer functions 

                
 

     
 (4.1) 

b) Tan-sigmoid transfer function   

               
 

      
   (4.2) 

The interconnection weights in process of learning were adjusted in the input values, and 

this process is essential in the ANN model work. The algorithm of back-propagation was 

adopted for model training, because in a variety of ANN applications it is known as one of 

the best representative model. The hidden layer(s) is responsible for reduce the error of the 

network by propagated the data backward from the output to the input in sequential 

practice that called ―incorporation‖, until that the network achieves the target outputs. 
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Thus, the aim is to apply specific inputs in the network to obtain accurate outputs by use 

the error function, which is expressed as: 

  
 

 
∑         (4.3) 

4.5.1 Training of ANN 

In the current study, resilient backpropagation (TRAINRP function) was adopted as 

optimizing network by using a multi-layer network ANN, with a fixed network structure. 

The neuron is made as a combination of a bias and weighted input through a transfer 

function in the neural network to produces an output. Also, the network could have more 

than one connected neural layer. The weights and biases are determined by the function of 

learning, where a set of example of input as well as target output of an accurate behavior of 

network. The iterative process of learning of the biases and the weights within the network 

are adjusted until the network performance function reduced, for instance, (Mean Squared 

Error (MSE)) which is a default tool within feed forward network. 

4.5.2 Standard ANN model 

The ANN model does not need a traditional approach; it can perform training and testing 

procedures using an actual dataset. Generally, an ANN only needs reliable input data for 

predicate valid output data. It is one of the advantages of the ANN model. The chosen the 

ANN models that used for the prediction of wave characteristics, are illustrated in Figures 

(4.2), (4.3), (4.4), (4.5) and (4.6). The most commonly used in either engineering 

prediction or predicting problems is backpropagation network. 

The back propagation can be used to train a network by pairs  of input and output until the 

network can create a function (Haykin, 2004). Different functions with constant 

architecture such as [(inputs-hidden layers-outputs) (2-20-2)] were training by using the 

LOGSIG and TANSIG functions in the input layer and using the LOGSIG in output layer 

for the end results.  
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The preferable network structural design can be found by choosing a various number of 

neurons in one or more hidden layers where the minimum of  neurons can be found by 

used Equation 4.4  (Haykin, 2004):  

                                                         (4.4) 

In this case study, we used more than 1670 training samples of predict the wave 

characteristics from the numerical model, to get networks with ability to give an 

appropriate prediction, the training was conducted by using almost 80% of the database. 

This model feature is less time consuming and its simplicity. The model adopts two of high 

performance algorithms that able to converge 10 to100 times faster than the origin gradient 

descent, and gradient descent algorithms with momentum. Every algorithm in this section 

is operated in the batch mode and is invoked using train. The different numbers of hidden 

units tested by training function, adaption learning function and perform various functions. 

Among the results, we selected five cases of the most accurate results of prediction of the 

wave height by using the proposed ANN model. 

4.5.3 Description of the modeled cases 

The preliminary statistical analysis was the basis for formulating five predictions with 

more than 2300 inputs data. The cases differ from each other with regard to the methods of 

wave prediction methods and practically based on S.M.B. and Bretschneider equations.   

The parameters that used in Model (M 1.1) are: 

1 Average wind speed (U10) 

2 Fetch Length  

Three parameters used in Model (M 1.2) are: 

1 Average wind speed (U10) 

2 Fetch Length  

3 Depth  

Four parameters used in Model (M 2.1.1) are:  

1 Corrected Wind Speed 
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2 Depth  

3 Fetch Length  

4 Wind Duration 

Two parameters used in Model (M 2.1.2) are: 

1 Corrected Wind Speed 

2 Wind Duration 

Five parameters used in Model (M 2.2)  

1 Average wind speed (U10) 

2 Depth 

3 Fetch Length  

4 Wind Duration 

5 Wind Speed 

Figure 4.1: Training and testing periods of built networks 

Training period Testing period 

From     of November1988 to     of 

August 1989 

From     Of February 1989 to      of 

March 1989 

The effect of the following parameters was investigated and analyzed: 

i. Neurons number in hidden layer  

ii. Training algorithms  

iii. Transfer function in hidden layer 

iv. Initial weight change 
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4.5.4 Architecture of the proposed ANN: 

Model (M 1.1)  

 

Figure 4.2: Construction of the proposed ANN model for (M 1.1) 

Model (M 1.2) 

 

Figure 4.3: Construction of the proposed ANN model for (M 1.2) 
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Model (M 2.1.1) 

 

Figure 4.4: Construction of the proposed ANN model for (M 2.1.1) 

Model (M 2.1.2) 

 

Figure 4.5: Construction of the proposed ANN model for (M 2.1.2) 
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Model (M 2.2) 

 

Figure 4.6: Construction of the proposed ANN model for (M 2.2) 

Generally, the wave characteristics prediction determining based on the variability and 

different equations. Therefore, a separate ANNs models were used to simulate each wave 

parameter take into consideration the prediction methods (S.M.B and Bretschneider). 

However, Bretschneider equations are the adjustment of Sverdrup-Munk equations by 

Bretschneider in 1958. It was assumed that S.M.B equations have the first two models and 

Bretschneider equations have the last three models. As mention, the training algorithm that 

adopted and implemented was the resilient backpropagation (trainrp) whit maximum 

epochs number in each simulation was used which is equal 1000; the ANN models were 

established within a MATLAB environment. 

4.6 Network Modeling 

This study builds upon results presented by K. Sadeghi (2007) to evaluate the validity of 

this study as satisfied results correlation coefficient (R²) method was used. The parameters 

are defined as follows: 

   
∑                

∑          ∑         
 (4.7) 
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    ∑
  

 
 (4.8) 

    ∑
  

 
 (4.9) 

Lo Represents the wave height or wave period from observed data divided by number of 

the wave height; Lt represents the wave height from numerical model from the ANN model 

divided by number of the wave height. 

The efficiency of models prediction was determined by utilized the correlation coefficient 

(R²). A relationship between two random variables was indicated by using the correlation 

coefficient, which is the relative predictive power of a model. It is a descriptive measure 

between -1 and +1.  Minus sign indicates inverse proportion between two variables whilst 

plus sign represents a direct proportion. High correlations between two independent 

variables may indicate over-fit in the model.  

Table 4.1: A measure of correlation accuracy by R2 

 

 

The results of the case study K. Sadeghi (2007) were acceptable as an engineering 

application with correlation coefficient (R²) was over 80% as showed in Table (4.2). 

Table 4.2: The case study validity 

No.  R² 

674 83.072% 

R
2
 values Accuracy 

< 0.25 Not good 

0.25 - 0.55 Relatively good 

0.56 - 0.75 Good 

>  0.75 Very good 
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The objective was to obtain the best values of Hs and Ts by simultaneous of input some 

parameters. The neurons numbers within layers were selected due to prediction methods 

basic parameters for each. Table 1 shows that, the use of two inputs nodes (fetch Length 

(F) and wind speed (   )). The data were separated into five cases, in each, the different 

number of neurons layer was training and testing separately. 

Generally, the correlation coefficient (R²) values used to evaluate the efficiency of the 

prediction. These results are the most successful results among the ANN model tests 

conducted using these different parameters a. The overall prediction for wave 

characteristics agree with observed data. The correlation of the ANN model and the wave 

characteristics height and period was approximately over 95%, and this is acceptable for an 

engineering application. 

Figure (4.7) illustrates the predicted the height and period of wave obtained using the ANN 

model (M 1.1) versus the observed data, which two parameters were used (fetch length and 

wind speed).  

 

Figure 4.7: Predict wave characteristics using model (M 1.1) H and T predicting 
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Figure 4.8: Network performance of (M 1.1(2-60-2)) network according to initial weight 

change 

Table 4.3: Training details and result for (M 1.1) model 

Model Case 
No. of 

neurons  

Initial 

weight 

change 

Training 

No. 

Performance 

goal 
R² 

M
 1

.1
 

1 10 0.07 3 0 97.67% 

2 20 0.07 6 0.01 95.54% 

3 30 0.07 8 0.01 95.84% 

4 40 0.07 2 0 97.66% 

5 50 0.07 4 0.01 95.73% 

6 60 

0.07 11 

0.001 

93.22% 
0.05 2 97.13% 
0.09 4 95.66% 

     
Average  96.06% 

97,7% 

95,5% 
95,8% 

97,7% 

95,7% 

93,2% 

97,1% 

95,7% 

90,0%

92,0%

94,0%

96,0%

98,0%

100,0%

R
  
(T

es
ti

n
g

) 

No.of Neurons  
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The Figure (4.8) and Table (4.3) explains the saliency analysis application which based on 

changed rationally the number of neurons to simulate    and   . Table 4.3 analysis, for 

instance, shows that the use of 10 neurons layers and corresponding to three times training 

try improved the correlation coefficient of predict. A further complicate of the ANN 

architecture (2x60x2 net) produced a mixed effect: with initial weight 0.07 was less 

successful although with more number of neurons. Therefore, some changed was done in 

training parameters to improve the model performance as shown in Figure (4.8). The best 

result is Case 1 with 97.7% (R²). 

 

Figure 4.9:  Scatter diagrams for (Case 6 (I.W. = 0.09)) predict 

Figure (4.9) illustrates the case1 (the most successful testing correlation coefficient with 

(R² = 0.977) within the ANN model (M 1.1) against the observed data.  As shown by the 

figures, the well predictions of wave characteristics, by using ANN model (M 1.1), show a 

good agreement with the observed data. The average of correlation coefficient of the ANN 

model and the observed data is more than 96%. In this way, Case 6 is the best result within 

this model with 97.128% (R²). All the test results are tabulated in Table 4.3. 
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As shown in Figure (4.10), network of model (M 1.2) trained with three parameters (e.g. 

Average wind speed, Fetch length and waterdepth), the results of the average prediction 

shows a clearly agree between the wave characteristics predicted by using the ANN model 

and the wave observed data with more than 96% (Table (4.4)) . The best result shown in 

Figure 4.14, which is demonstrated by (Case 5 (I.W. = 0.09)) with (R² = 96.89%). 

 

Figure 4.10: Predict wave characteristics using model (M 1.2) for Hs and Ts 

predicting 

From both of Figure 4.11 and Table 4.4, fairly good predictions of the significant wave 

height and period were produced for all cases. The predictions of wave characteristics, 

using the ANN model (M 1.2), agree with the observed data. The results included two 

cases lower than 95%, but  with changed in training parameters, , e.g. Initial weight show 

sufficient improvement in comparison with the previous results in case 6, where the result 

increase to  0.954 to 0.968  after initial weight changing with range (0.05 – 0.09), 

respectively as shown in Figure (4.10). 
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Figure 4.11: Network performance of (M 1.2) network according to initial weight change 

Table 4.4: Training details and result for (M 1.2) model 

Model Case 
No. of 

neurons  

Initial 

weight 

change 

Training 

No. 

Performance 

goal 
R² 

M
 1

.2
 

1 10 0.07 4 0.01 96.09% 

2 20 0.07 3 0.01 96.78% 

3 30 0.07 7 0.01 93.82% 

4 40 0.07 5 0.01 96.35% 

5 50 0.07 6 0.01 94.54% 

6 60 

0.07 4 

0.01 

92.57% 
0.05 4 95.43% 
0.09 3 96.89% 

     

Average  95.31% 
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Figure 4.12 shows a good comparison between the wave characteristics and wave 

observed data within model (M 1.2). The best result demonstrated by (Case 6 (I.W = 

0.09)) with 96.89% (R²) tabulated in Table 4.4 with the rest of study results. 

 

 

Figure 4.12: Scatter diagrams for (Case 6 (I.W. = 0.09)) predict 

The results that shown in figure (4.13) of the average prediction of wave characteristics 

using the ANN model (M 2.1.1) agree with the wave observed data with average 

correlation of the ANN model and the observed data more than 96%. The best result shown 

in figure (4.14), which is demonstrated by (Case 5 (I.W. = 0.09)) with (R² = 96.89%).  
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Figure 4.13: Predict wave characteristics using model (M 2.1.1) for Hs and Ts predicting 

 

Figure 4.14: Network performance of (M 2.1.1) network according to initial 

weight change 

Table (4.5) tabulates results of model (M 2.1.1) predicting of wave characteristics versus 

corresponding observations. The model exhibited a successful performance with 
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correlation coefficient as such the previous models. The values were more than 97% in 

cases 5 and 6. 

Table 4.5: Training details and result for (M 2.1.1) model 

Model Case 
No. of 

neurons  

Initial 

weight 

change 

Training 

No. 

Performance 

goal 
R² 

M
 2

.1
.1

 

1 10 0.07 3 0.01 96.81% 

2 20 0.07 3 0.01 95.64% 

3 30 0.07 5 0.01 95.59% 

4 40 0.07 7 0.0001 94.58% 

5 50 
0.07 3 0.0001 93.05% 
0.05 3 0.0001 95.30% 
0.09 3 0.0001 97.64% 

6 60 0.07 3 0.01 97.07% 

     

Average  95.71% 

 

 

Figure 4.15: Scatter diagrams for (Case 6 (I.W. = 0.09)) predict 
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Figure (4.15) shows a comparison between the predictions of wave characteristics and 

ANN network. The values of training and testing coefficients obtained from MATLAB 

tool box method were 94.4% and 97.6% respectively.  

 

Figure 4.16: Predict wave characteristics using model (M 2.1.2) for Hs and Ts predicting 

Figure (4.16) illustrates the predicted the height of wave obtained using the ANN model 

versus the wave observed data using model (M 2.1.2), which were trained with two 

parameters (wind duration and corrected wind speed).  

 

Figure 4.17: Network performance of (M 2.1.2) network according to initial weight 

change 
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In this model, the results are tabulated in Table 4.6. The correlation of the ANN model 

and the wave observed data is on average 95.38%, which is clearly less than the previous 

results. Indeed, the average prediction of wave characteristics using the ANN model 

agree with the wave observed and acceptable as seen in Figure (4.17) 

Table 4.6: Training details and result for (M 2.1.2) model 

Model Case 
No. of 

neurons  

Initial 

weight 

change 

Training 

No. 

Performance 

goal 
R² 

M
 2

.1
.2

 

1 10 0.07 4 0.01 95.22% 

2 20 0.07 1 0.01 97.91% 

3 30 0.07 5 0.01 95.27% 

4 40 0.07 2 0.01 96.11% 

5 50 0.07 5 0.01 95.22% 

6 60 

0.07 7 
0.01 

92.24% 
0.05 6 95.27% 
0.09 6 95.84% 

     

Average  95.38% 

 

The overall best performance model was obtained with this model were relatively good 

with an even less number of nodes in both hidden and input layer(s) processing training 

with 97.91% (R²). The rest of test results are tabulated in Table (4.6) and Figure (4.17). 

Figure (4.18) showsx, the results of the average prediction of wave characteristics using 

the ANN model agree with wave observed data.  The average correlation of the ANN 

model and the wave observed data is more than 97%.  
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Figure 4.18: Scatter diagrams for (Case 5 (I.W. = 0.09)) 

The best results are demonstrated by Case 2 with 97.38% (R²). In Table (4.6) and Figure 

(4.18), the rest of test results are tabulated and shown respectively. 

 

Figure 4.19: Predict wave characteristics using model (M 2.2) for Hs and Ts predicting 

Figure (4.19) illustrates the predicted wave characteristics obtained using ANN model 
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versus the wave observed data (include five of wind parameters). The prediction was 

agreed between for wave characteristics and the observed data. 

                 

Figure 4.20: Network performance of (M 2.1.2) network according to initial weight 

changing 

The results clearly indicate that the average of correlation coefficient is better than the 

previous ANN models, such as in model (M 1.1) and Case (M 2.1.1) where the R² is 

greater than 96%. 

Table 4.7: Training details and result for (M 2.2) model 

Model Case 
No. of 

neurons  

Initial 

weight 

change 

Training 

try 

Performance 

goal 
R² 

M
 2

.2
 

1 10 0.07 2 0 97.30% 

2 20 0.07 2 0 97.38% 

3 30 0.07 2 0 97.02% 

4 40 0.07 2 0 97.28% 

5 50 0.07 4 0.01 95.59% 

6 60 0.07 4 0.01 95.80% 

     

Average  96.73% 
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Figure 4.21: Scatter diagrams for case 2 

From the results, we can identify that prediction outcome are vary with each ANN model 

even if we trained and tested the same cases. This difficulty commonly occurs when 

applying artificial neural networks to engineering. The ANNs training are based on a group 

of databases, composed of parameters from (Kabir Sadeghi, 2007) numerical simulation 

model. When we calculate wave characteristics using a numerical model, each parameter, 

such as wind speed, fetch, etc. are individually, important factors, and directly affect the 

results. However, when we apply these parameters to determine wave height using ANN 

model, each parameter is become one of the ANN neuron in the input layer. In other 

words, even if one parameter was missed as an input to the ANN model, it is still possible 

to obtain reasonable results.  
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4.7 A Comparison of Recorded wave Data with those Predicted by Bretschneider 

Equations and ANN Method.  

 

Figure 4.22: Comparison of wave height between prediction methods and recorded 

data (Model 1.1) 

 

Figure 4.23: Comparison of wave period between prediction methods and recorded 

data (Model 1.1) 
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Figure 4.24: Comparison of wave height between prediction methods and recorded 

data (Model 1.2) 

 

 

Figure 4.25: Comparison of wave period between prediction methods and recorded 

data (Model 1.2) 
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Figure 4.26: Comparison of wave height between prediction methods and recorded 

data (Model 2.1.1) 

 

 

Figure 4.27: Comparison of wave period between prediction methods and recorded 

data (Model 2.1.1) 
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Figure 4.28: Comparison of wave height between prediction methods and recorded 

data (Model 2.1.2) 

 

 

 

Figure 4.29: Comparison of wave period between prediction methods and recorded 

data (Model 2.1.2) 
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Figure 4.30: Comparison of wave height between prediction methods and recorded 

data (Model 2.2) 

 

 

Figure 4.31: Comparison of wave height between prediction methods and recorded 

data (Model 2.2) 
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Figure 4.32: Comparison of drag force from the maximum recorded wave data with 

the maximum of those predicted by Bretschneider equations and ANN 

 

 

Figure 4.33: Comparison of drag force from the average recorded wave data with 

the average of those predicted by Bretschneider equations and ANN 
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Figure 4.34: Comparison of drag force from the average of the maximum and the 

average recorded wave data with the average of those predicted by 

Bretschneider equations and ANN 

 

 

Figure 4.35: Comparison of drag & current forces from the maximum recorded 

wave data with the maximum of those predicted by Bretschneider 

equations and ANN 
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Figure 4.36: Comparison of drag & current forces from the average recorded wave 

data with the average of those predicted by Bretschneider equations 

and ANN 

 

 

Figure 4.37: Comparison of drag & current forces from the average of the 

maximum and the average recorded wave data with the average of 

those predicted by Bretschneider equations and ANN 
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Figure 4.38: Comparison of inertia force from the maximum recorded wave data 

with the maximum of those predicted by Bretschneider equations and 

ANN 

 

 

 

Figure 4.39: Comparison of inertia force from the average recorded wave data with 

the average of those predicted by Bretschneider equations and ANN 
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Figure 4.40: Comparison of inertia forces from the average of the maximum and 

average recorded wave data with the average of those predicted by 

Bretschneider equations and ANN 

 

 

 

Figure 4.41: Comparison of total force from the maximum recorded wave data with 

the maximum of those predicted by Bretschneider equations and ANN 
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Figure 4.42: Comparison of total force from the average recorded wave data with 

the average of those predicted by Bretschneider equations and ANN 

 

 

 

Figure 4.43: Comparison of total forces from the average of the maximum and 

average recorded wave data with the average of those predicted by 

Bretschneider equations and ANN 
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The results of ANN models in this study were compared with (Sadeghi, 2007) for the 

prediction of the wave characteristics using Bretschneider's formula for a specific area in 

the Caspian Sea which gave results considered satisfactory. However, there is a 

improvement in this study were 96.73, 95.71 and 96.06 % better for models (2.2), (2.1.1) 

and (1.1), respectively, in case to compared with that previous study (Sadeghi, 2007). 

Furthermore, an important issue is that the wave period output from Bretschneider's 

formula  (Sadeghi, 2007) gave overestimated unlike the wave height result in that location. 

This study results showed that wave characteristics obtained from almost all models leads 

to less error and higher correlation in comparison with the other models. This means that 

the ANN models are more appropriate than the other models for forecasting the wave 

characteristics for this location. 

  

4.8 Hydrodynamic Loads Calculation 

In this section, the primary objectives of the present study will be  

i. To write a computer program that is able to simulate wave and current forces on 

template offshore structures using traditional numerical methods with minimal 

sacrifice towards accuracy. 

ii. To couple the written program to an existing 3-D finite element program. 

Fixed offshore consider as unique structures because of their located in the ocean or sea, 

they construct to carry staff accommodations and offices as well as the equipment of 

industry that services oil and gas drilling and production. 
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Figure 4.44: The important loads act on the Jacket platforms 

The robust design of jacket offshore structure is reliant on defining the total applied load 

accurately. Most of loads that affect the platform laterally, such as wind and waves, are 

variable, so we depend on metocean environmental data for the location of the platform. 

4.8.1 Wave loads 

Wave loads are generated according to Morison's formula. Environmental conditions are 

based on the hydrodynamic coefficients of tubular members are taken in accordance with 

the recommendations of the API-RP 2A 21st edition.  

Table 4.7: Drag and inertia coefficients for vertical cylinders (Deo et al., 2001) 

Linear Theory 

Cm Cd 

0.95 1.0 

2.0 1.0 to 1.4 

 

Loads on offshore 
structure  

Functional 
loads 

Constant 
Static loads 

Dynamic 
loads 

Enviromentel 
loads 

Wind load  

Wave load  

Earthquake 
load  

Fatigue loads 
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Forces on the structure will be determined by applying Morrison's equation. Choosing an 

appropriate method for determining these coefficients for a specified data is hard and their 

computing is a time-consuming affair. Basic drag and inertia coefficients (   and   ) will 

be used to evaluate wave forces on cylindrical surfaces, which should be smaller than the 

values given in Table 4.9: 

For offshore design, the theories that will be used are determined by the policy under 

which the designing engineers are working. The selection of the best method is defined by 

the curve in Figure 3.14, (outlined in Chapter 3), from APIRP2A 

 Where, 

      : Represents dimensionless wave sleepiness. 
 

      : Represents dimensionless relativewaterdepth. 
 

d  : Represents mean waterdepth. 
 

T  : Represents wave period 
 

H : Represents wave height 
 

g : Represents the acceleration of gravity. 
 

For the purposes of calibration and comparison, two numerical examples have been 

selected, namely: 

 Numerical Example I - (comparing the results of total forces of the present study to 

that of SACS for a vertical cylinder by using Airy’s linear theory). 

 Numerical Example II - (comparing the results of total forces of the present study 

to that of SACS for vertical cylinder by using          order theory). 
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Table 4.8: The wave parameters and cylinder details 

Wave period (Sec.) 9.3 

Gravity    ⁄    9.81 

Depth (m) 22.8 

Wave height (m) 10.67 

Diameter (m) 1.22 

Density   
  

  ⁄    1030 

Kinematic viscosity(  
 

 ⁄ ) 1.17E-06 

 

Figure 4.45: Wave force distribution on a cylinder pipe 

A spreadsheet has been developed to calculate manually the wake kinematics, , and the 

corresponding fluid forces, through Morison equation, for a cylinder which is considered to 

be in the vertical position. The distributed wave force acting on that cylinder arising from 

the present study to calibrate and compare to the results of the SACS program as shown in 
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Figure 4.46. The wave parameters and cylinder details used in both of numerical examples 

are presented in Table 4.7. 

Table 4.9: Wave force calculations 

Deep water wave length: using Equation (3.18) 134.92 

Relative waterdepth          0.1689835 

Wave length for intermediate waterdepth L using Table C-2 " 

Shore protection manual" (Appandex 3-B)  

114.57 

Wave Number:  using Equation (3.22) 0.0548414 

Maximum horizontal velocity:  using Equation (3.20) 5.5013097 

Wind drift current (   ) using Equation 1.5 

Drag coefficient (  ) using Table (4.9) 1 

Inertia coefficient (  ) using Table (4.9) 2 

The results obtained from of two different wave kinematic theories: Airy´s linear wave 

theory and          theory were compared with a SACS static wave analysis, presents a 

comparison of the base shear force, per phase angle (Appendix 5-A). 

 

Figure 4.46: Base shear distribution per phase angle 
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Figure 4.47: Base shear distributions, per phase angle, comparison between linear 

wave calculations and SACS results 

A similar trend can be seen to that of the results of the 1st numerical example, with all 

results of the present study slightly underestimating the results of the SACS program. 

Figure 4.47shows the distribution of wave forces plus currents for a vertical cylinder 

arising from both Airy and         order theory for different phase angles. The average 

difference between the linear wave theory results between manual and SACS calculations 

was of less than 2%, the results can be considered as acceptable results. The differences in 

the results may lie in the tolerance for wave number (k) which is used in most equations of 

the wave kinematics, thus affecting subsequent results. (Appendix 5-B) presents a 

comparison between linear wave calculations and SACS results. 
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Figure 4.48: Wave surface comparisons for different theories 

Obviously, wave loads predicted from         order theory are significantly higher 

compared to that of Airy’s linear theory. In Figure 4.21 the maximum horizontal force 

arising from Airy’s linear theory predicted by SACS is 352.39KN and the maximum 

horizontal force arising from         order theory predicted by SACS is 446.33KN 

respectively.  

Apparently, the         order theory gave noteworthy higher load values than that we got 

by spreadsheet in linear theory as shown in Figure 4.47.   In this Case, Airy’s linear theory 

underestimated the forces arising from          order theory by 23.5%, which would be 

logically as expected, because of the correction made to the linear sinusoidal function of 

the wave surface equation with steeper crests and flatter troughs, as shown in Figure 4.48, 

where the         order theory results show considerable higher peak values for the base 

shear force and smaller values for the low points. 
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CHAPTER 5 

5CONCLUSION AND FUTURE WORKS 

 

5.1 Conclusion 

In this study, ANN was used for predicting the significant wave height and period values at 

buoy location in the south of the Caspian Sea. For this purpose, a feed forward-

backpropagation network that contains different transfer functions (log and tan-sigmoid) as 

well as one hidden layer consisting of limited range of neurons was used. 

The key of the current study was to apply ANNs to the complex process of wave 

characteristics prediction. One advantage of ANNs is that they do not require traditional 

engineering procedures or practices such as complex mathematical operations. We used 

ANN models for the prediction of wave height and period, then compare with numerical 

equations presented by typical engineering practice (e.g. K. Sadeghi, 2007 model). 

A comparison of the various ANN models with prediction methods of wave height and 

period are established by equations of S.M.B. (Sverdrup-Munk-Bretschneider) and 

Bretschneider. The equations were conducted (presented in Chapter 4). The results from 

the current study have extended previously known Artificial Neural Network (ANN) 

procedures for a specific control engineering dilemma, viz. the prediction of wave 

characteristics. The following six points summarize the research that has been added to the 

exiting knowledge: 

 A general ANN model for the prediction of height and wave period established and 

tested, provided that the results are acceptable from an engineering view-point, 

within the following average range of correlation coefficient (R²): 92 % to 97%. 

 There was no notable change in the results that obtained by resilient algorithm 

(trainrp) that we used in all prediction models if we compared it with a 

distinguishable three training algorithms such as: (1) traincgf, (2) trainoss and (3) 

trainlm. However, these algorithms provide similar accuracy in less epochs training 

requiring a smaller amount of computation. 

 The results show that increasing in the input layer of neurons, as well as hidden 
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layers of neurons has no special effect that leads to increase of the predictive 

accuracy (e.g. the correlation coefficient for the model (M 1.1) in case 1 and case 2 

(97.67% and  97.128%). However, the results show that increasing with applied the 

initial weight parameter to project better training.  

 The prediction of wave characteristics can be improved by using a multi artificial 

neural network model instead of single artificial neural network model, where the 

numerical results that were obtained in this study given prove that (MANN) are 

good for prediction of wave height and period. 

 SACS give larger results due to auto segmentation compared to dividing the load 

distribution into equal segments. 

 

5.2 Further work 

While the present study has extended current knowledge in the area of ANN for 

the prediction of wave characteristics, the following tasks need to be further 

considered in future   studies. 

 The over fitting can be avoided or eliminated by used of some techniques 

such as suitable pre-processing procedure or by undergoes of data set 

through optimal training.  

 The development of alternatives to feed-forward neural networks 

techniques to prediction techniques, such as Support vector machine 

(SVMs), Radial basis function network (RBF) Networks. Those techniques 

could provide a wider array of options for engineers requiring the practical 

solution of engineering problems. 
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APPENDIX (1-A) 

MATLAB code for Wave Simulation plots 

% Create database 

x=HR 

y=HP 

x1=PR 

y1=PP 

n=(1:674) 

hold on 

% Create figure 

figure1 = figure('Color',[1 1 1]); 

% Create subplot 

subplot1 = subplot(2,1,1,'Parent',figure1,... 

    'XTickLabel',{'','','','','','','','','','','','','','',''},... 

    'XTick',[0 50 100 150 200 250 300 350 400 450 500 550 600 650 674],... 

    'XMinorTick','on'); 

box(subplot1,'on'); 

hold(subplot1,'all'); 

% Create multiple lines using matrix input to plot 

plot1 = plot(n,x,n,y,'Parent',subplot1); 

set(plot1(1),'DisplayName','Observed'); 

set(plot1(2),'Color',[1 0 0],'DisplayName','Predicted'); 

% Create ylabel 

ylabel('Wave Height (m)'); 

% Create legend 
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legend1 = legend(subplot1,'show'); 

set(legend1,'Orientation','horizontal'); 

% Create subplot 

subplot2 = subplot(2,1,2,'Parent',figure1,... 

    

'XTickLabel',{'','1,Sep,89','','','','1,Oct,89','','','','','1,Nov,89','','',

'','21,Nov,89'},... 

    'XTick',[0 50 100 150 200 250 300 350 400 450 500 550 600 650 674],... 

    'XMinorTick','on'); 

box(subplot2,'on'); 

hold(subplot2,'all'); 

% Create multiple lines using matrix input to plot 

plot2 = plot(n,x1,n,y1,'Parent',subplot2); 

set(plot2(1),'DisplayName','Observed'); 

set(plot2(2),'Color',[1 0 0],'DisplayName','Predicted'); 

% Create xlabel 

xlabel('Time (Date)'); 

% Create ylabel 

ylabel('Wave Period (sec.)'); 

% Create legend 

legend2 = legend(subplot2,'show'); 

set(legend2,'Orientation','horizontal'); 
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APPENDIX (1-B) 

MATLAB code for a comparison between different prediction methods  

% Create database 

x=HR 

y=HP 

x1=PR 

y1=PP 

n=(1:674) 

hold on 

% Create figure 

figure1 = figure('Color',[1 1 1]); 

% Create axes 

axes1 = axes('Parent',figure1,'XTickLabel',{'','','','','','',''},... 

    'Position',[0.13 0.709264705882353 0.775 0.215735294117647]); 

hold(axes1,'all'); 

% Create plot 

plot(X1,Y1,'Parent',axes1,'DisplayName','Recorded'); 

% Create axes 

axes2 = axes('Parent',figure1,'XTickLabel',{'','','','','','',''},... 

    'Position',[0.13 0.409632352941176 0.775 0.215735294117647]); 

hold(axes2,'all'); 

% Create plot 
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plot(X1,Y2,'Parent',axes2,'Color',[0 0.498039215803146 0],... 

    'DisplayName','ANN (S.M.B)'); 

% Create ylabel 

ylabel('Wave Height (m)','FontWeight','bold','FontSize',14); 

% Create axes 

axes3 = axes('Parent',figure1,... 

    

'XTickLabel',{'','1,Sep,89','','','','1,Oct,89','','','','','1,Nov,89','','',

'','674'},... 

    'XTick',[0 50 100 150 200 250 300 350 400 450 500 550 600 650 674],... 

    'Position',[0.13 0.107481108312343 0.775 0.215735294117647],... 

    'FontSize',12); 

hold(axes3,'all'); 

% Create plot 

plot(X1,Y3,'Parent',axes3,'Color',[1 0 0],'DisplayName','Bretschneider'); 

 

% Create xlabel 

xlabel('Time (Date)','FontWeight','bold','FontSize',14); 

% Create legend 

legend1 = legend(axes3,'show'); 

set(legend1,... 

    'Position',[0.727696078431373 0.30098189240313 0.227941176470588 

0.0714199263608266]); 
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% Create legend 

legend2 = legend(axes2,'show'); 

set(legend2,'FontSize',12); 

% Create legend 

legend3 = legend(axes1,'show'); 

set(legend3,'FontSize',12); 
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APPENDIX (2-A) 

 

 

Figures 2.1, 2.2: Scatter diagrams for cases (2) and (3) in model (M 1.1) 
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 Figures 2.3, 2.4: Scatter diagrams for cases (4) and (5) in model (M 1.1) 
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Figures 2.5, 2.6: Scatter diagrams for cases (6a) and (6b) in model (M 1.1) 

 



94 

 

 

Figure 2.7: Scatter diagrams for case (6c) in model (M 1.1) 
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APPENDIX (2-B) 

 

 

Figures 2.8, 2.9: Scatter diagrams for cases (1) and (2) in model (M 1.2) 
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Figures 2.10, 2.11: Scatter diagrams for cases (3) and (4) in model (M 1.2) 
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Figures 2.12, 2.13: Scatter diagrams for cases (5) and (6a) in model (M 1.2) 
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Figure 2.14: Scatter diagrams for case (6b) in model (M 1.2) 

 

 

 

 

 

 

 

 

 

 

 

 



99 

 

APPENDIX (2-C) 

 

 

Figures 2.15, 2.16: Scatter diagrams for cases (1) and (2) in model (M 2.1.1) 
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Figures 2.17, 2.18: Scatter diagrams for cases (3) and (4) in model (M 2.1.1) 
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Figures 2.19, 2.20: Scatter diagrams for cases (5a) and (5b) in model (M 2.1.1) 
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Figure 2.21: Scatter diagrams for case (6) in model (M 2.1.1) 
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APPENDIX (2-D) 

 

`  

Figures 2.22, 2.23: Scatter diagrams for cases (1) and (3) in model (M 2.1.2) 
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Figures 2.24, 2.25: Scatter diagrams for cases (4) and (5) in model (M 2.1.2) 
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Figures 2.25, 2.26: Scatter diagrams for cases (6a) and (6b) in model (M 2.1.2) 
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Figure 2.27: Scatter diagrams for case (7) in model (M 2.1.2) 
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APPENDIX (2-E) 

 

 

Figures 2.28, 2.29: Scatter diagrams for cases (1) and (3) in model (M 2.2) 
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Figures 2.30, 2.31: Scatter diagrams for cases (4) and (5) in model (M 2.2) 
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Figure 2.32: Scatter diagrams for case (6) in model (M 2.2) 
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APPENDIX (3) 

Progress of calculation (SACS Software)  

 

Figure 3.1: Define the location 

 

Figure 3.2: Create a new model 
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Figure 3.3: Menu of selecting a new model 

 

 

Figure 3.4: Elevations tab 
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Figure 3.5: Legs tab. 

 

Figure 3.6: Conductor data. 
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Figure 3.7: Connectivity tab 

 

Figure 3.8: Size tab 

 

Figure 3.9: The member group manage dialog box 



114 

 

  

Figure 3.10 a Seastate load generation 

Wave tab 

Figure 3.10 b Seastate load generation 

Current tab 
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APPENDIX (4) 

Functions of d/L for even increments of     (from 0.1100 to 0.1690)  
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APPENDIX (5-A) 

Wave surface comparison for different theories 

(wt - kx) (º) η Airy (m) η Stoke (m) Ft Manual (N) Ft  SACS Linear 
Ft SACS 

Stoke 

0 5.33 6.82 331.86 352.39 446.33 

10 5.25 6.56 306.63 316.12 379.25 

20 5.01 5.83 263.06 261.62 266.68 

30 4.62 4.78 205.06 194.86 158.96 

40 4.08 3.57 138.39 123.47 66.65 

50 3.43 2.37 69.96 55.10 -2.10 

60 2.67 1.26 7.04 -4.02 -47.72 

70 1.82 0.30 -43.56 -49.67 -73.83 

80 0.93 -0.54 -76.33 -79.89 -85.84 

90 0.00 -1.24 -87.67 -94.91 -84.47 

100 -0.93 -1.85 -90.20 -95.97 -78.05 

110 -1.82 -2.35 -85.63 -90.74 -69.64 

120 -2.67 -2.75 -73.40 -84.26 -63.51 

130 -3.43 -3.07 -70.70 -80.10 -58.74 

140 -4.08 -3.33 -71.20 -76.55 -54.39 

150 -4.62 -3.54 -72.10 -72.27 -49.74 

160 -5.01 -3.70 -69.40 -66.26 -44.25 

170 -5.25 -3.81 -57.70 -57.85 -37.59 

180 -5.33 -3.85 -45.34 -46.59 -29.51 

190 -5.25 -3.81 -31.80 -32.30 -19.90 

200 -5.01 -3.70 -12.80 -15.03 -8.68 

210 -4.62 -3.54 3.42 4.86 4.08 

220 -4.08 -3.33 20.80 26.58 18.20 

230 -3.43 -3.07 36.90 48.82 33.30 

240 -2.67 -2.75 59.50 69.63 48.76 
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250 -1.82 -2.35 80.30 86.42 63.61 

260 -0.93 -1.85 97.80 99.76 76.62 

270 0.00 -1.24 116.60 118.70 89.98 

280 0.93 -0.54 139.70 142.91 109.73 

290 1.82 0.30 165.70 175.05 134.95 

300 2.67 1.26 203.70 214.00 170.70 

310 3.43 2.37 248.90 257.01 218.18 

320 4.08 3.57 290.50 299.70 277.70 

330 4.62 4.78 333.70 336.44 345.18 

340 5.01 5.83 357.80 360.78 408.43 

350 5.25 6.56 368.90 367.20 457.95 

360 5.33 6.82 356.90     
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APPENDIX (5-B) 

Forces distribution per phase angle 

(wt - kx) (º) η (x,t) (m) Fi (KN) Fd+c (KN) Fd (KN) Ft (KN) 
Ft Airy 

SACS (KN) 

Ft Stokes 

SACS (KN) 

0 5.330 0.000 331.861 185.950 331.861 352.390 446.330 

5 5.310 -7.641 329.340 184.538 321.700 334.170 412.250 

10 5.249 -15.224 321.854 180.343 306.631 316.120 379.250 

15 5.148 -22.690 309.631 173.494 286.940 288.480 325.290 

20 5.009 -29.984 293.041 164.198 263.056 261.620 266.680 

25 4.831 -37.050 272.589 152.738 235.538 227.440 209.450 

30 4.616 -43.834 248.896 139.463 205.062 194.860 158.960 

35 4.366 -50.285 222.682 124.775 172.397 157.930 109.310 

40 4.083 -56.352 194.744 109.120 138.392 123.470 66.650 

45 3.769 -61.991 165.931 92.975 103.939 87.700 29.360 

50 3.426 -67.158 137.117 76.830 69.959 55.100 -2.100 

55 3.057 -71.814 109.179 61.176 37.365 23.750 -27.090 

60 2.665 -75.923 82.965 46.488 7.042 -4.020 -47.720 

65 2.253 -79.455 59.272 33.212 -20.182 -28.660 -62.340 

70 1.823 -82.382 38.820 21.752 -43.561 -49.670 -73.830 

75 1.380 -84.682 22.230 12.456 -62.451 -66.450 -81.790 

80 0.926 -86.337 10.007 5.607 -76.330 -79.890 -85.840 

85 0.465 -87.335 2.521 1.413 -84.814 -88.830 -86.030 

90 0.000 -87.669 0.000 0.000 -87.669 -94.910 -84.470 

95 -0.465 -86.679 -2.521 -1.413 -89.200 -96.030 -81.200 

100 -0.926 -80.193 -10.007 -5.607 -90.200 -95.970 -78.050 

105 -1.380 -66.960 -22.230 -12.456 -89.190 -94.160 -73.450 

110 -1.823 -46.810 -38.820 -21.752 -85.630 -90.740 -69.640 

115 -2.253 -18.218 -59.272 -33.212 -77.490 -86.760 -66.210 

120 -2.665 9.565 -82.965 -46.488 -73.400 -84.260 -63.510 

125 -3.057 37.179 -109.179 -61.176 -72.000 -81.650 -60.890 

130 -3.426 66.417 -137.117 -76.830 -70.700 -80.100 -58.740 

135 -3.769 95.031 -165.931 -92.975 -70.900 -77.960 -56.410 

140 -4.083 123.544 -194.744 -109.120 -71.200 -76.550 -54.390 

145 -4.366 150.882 -222.682 -124.775 -71.800 -74.170 -51.970 

150 -4.616 176.796 -248.896 -139.463 -72.100 -72.270 -49.740 

155 -4.831 200.489 -272.589 -152.738 -72.100 -69.110 -46.940 

160 -5.009 223.641 -293.041 -164.198 -69.400 -66.260 -44.250 

165 -5.148 246.331 -309.631 -173.494 -63.300 -61.970 -40.900 

170 -5.249 264.154 -321.854 -180.343 -57.700 -57.850 -37.590 

175 -5.310 278.210 -329.340 -184.538 -51.130 -52.190 -33.550 

180 -5.330 286.521 -331.861 -185.950 -45.340 -46.590 -29.510 
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185 -5.310 290.440 -329.340 -184.538 -38.900 -39.460 -24.710 

190 -5.249 290.054 -321.854 -180.343 -31.800 -32.300 -19.900 

195 -5.148 288.131 -309.631 -173.494 -21.500 -23.700 -14.290 

200 -5.009 280.241 -293.041 -164.198 -12.800 -15.030 -8.680 

205 -4.831 269.249 -272.589 -152.738 -3.340 -5.120 -2.290 

210 -4.616 252.316 -248.896 -139.463 3.420 4.860 4.080 

215 -4.366 234.382 -222.682 -124.775 11.700 15.720 11.190 

220 -4.083 215.544 -194.744 -109.120 20.800 26.580 18.200 

225 -3.769 193.831 -165.931 -92.975 27.900 37.780 25.840 

230 -3.426 174.017 -137.117 -76.830 36.900 48.820 33.300 

235 -3.057 155.079 -109.179 -61.176 45.900 59.460 41.170 

240 -2.665 142.465 -82.965 -46.488 59.500 69.630 48.760 

245 -2.253 130.072 -59.272 -33.212 70.800 78.490 56.400 

250 -1.823 119.120 -38.820 -21.752 80.300 86.420 63.610 

255 -1.380 112.320 -22.230 -12.456 90.090 92.950 70.300 

260 -0.926 107.807 -10.007 -5.607 97.800 99.760 76.620 

270 0.000 116.600 0.000 0.000 116.600 118.700 89.980 

280 0.926 129.693 10.007 5.607 139.700 142.910 109.730 

290 1.823 126.880 38.820 21.752 165.700 175.050 134.950 

300 2.665 120.735 82.965 46.488 203.700 214.000 170.700 

310 3.426 111.783 137.117 76.830 248.900 257.010 218.180 

320 4.083 95.756 194.744 109.120 290.500 299.700 277.700 

330 4.616 80.000 248.896 139.463 333.700 336.440 345.180 

340 5.009 55.000 293.041 164.198 357.800 360.780 408.430 

350 5.249 32.000 321.854 180.343 368.900 367.200 457.950 

360 5.330 0.320 331.861 185.950 356.900 
  

 


