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ABSTRACT

In this study the wave characteristics (height and period of wave) were simulated by
applying the Bretschneider spectrum and equations presented by Sverdrup-Munk-
Bretschneider (SMB) by using the recorded data such as wind velocity and duration,
differences between water and air temperature and the fetch length. It is essential for all
offshore structures analysis to estimate the forces generated by the wave and current by
developing a program for modeling wave and current forces on offshore structural
members. Airy wave theory (linear theory) has been implemented in the present study,
based on its attractiveness for engineering use. The Morison equation was used for
converting the velocity and acceleration terms into resultant forces. For calibration and for
comparison purposes, a developed program was checked against a well-known

professional software package called Structural Analysis Computer System (SACS).

Furthermore, a wide range still exists to improve the presented models as well as provides
alternative to deterministic models. Therefore, this study investigates the possibility of
utilizing the relatively current technique of artificial neural networks (ANN) for this
purpose. Besides, the comparison of ANN models with the two characteristic prediction
methods based on equations of SMB and Bretschneider equations showed a better
performance for ANN models rather than SMB and Bretschneider equations. Different
ANN architectures were used to by using sets of data with different parameters used in
training process. The results confirm that a suitably trained network might supply
acceptable outcomes in open wider areas, as well as when the sampling and predicting

interval is enormous in order of magnitude of a week.

Keywords: Bretschneider spectrum and equations, neural networks, offshore structures

analysis, airy’s linear theory, structural analysis computer system



OZET

Deniz suyundaki dalgalarin iiretimi ve gelisimi c¢ogunlukla deniz ylizeyinde iifleme
riizgarlar tarafindan kontrol edilir. Bu ¢alismada, dalga 6zellikleri (Yiiksekligi ve siiresi)
Bretschneider spektrumunun ve Sverdrup-Munk-Bretschneider (SMB)'in kayededilen
verilerle (riizgar hizi, riizgar siiresi ve su / hava sicakligr farklari) kullanarak Simiile edildi.
Dalga karakteristigini tahmin etmek i¢in sunulan gesitli belirleyici modellere Karsin
riizgarin 6zelliklerinden, mevcut modelleri iyilestirmek veya onlara alternatif sunmak icin
genis bir kapsam mevcuttur. Halbuki, bu arastirma maksadi, yeni yapay sinir aglari
teknigini (YSA) kullanilabilecek yontemleri kesfediyor. Etkili parametreleri belirlemek
icin, Cesitli giris parametrelerinin kombinasyonlari ile farkli modeller diisiiniildii. Riizgar
hizi,siiresi ve getirme uzunlugu gibi paramentreler kullanimaktadir. Dahasi, YSA
modellerinin SMB ve Bretschneider denklemlerine dayanan iki karakteristik tahmin
yontemi ile karsilagtiritlmast YSA modelleri i¢in daha iyi bir performans gosterdi.sebeke
farkli YSA yapi ile egitilmektedir. Sonugclar, diizgilin egitilmis bir agin agik genis alanlarda,
derin sularda ve 6ngérme araligi bir hafta biiytikliigiine gore biiylik durumda tatmin edici
sonuclar verebilecegini gosterir.Basit bir 3 katmanl ileri besleme tipi, deterministik

modellerin aksine .

Tim acik deniz yapilarin analizi i¢in, acik deniz yapisal lyelerde dalga ve akim
kuvvetlerinin modellenmesi i¢in bir program gelistirerek dalga ve akim tarafindan tiretilen
kuvvetleri tahmin etmek esastir.Bu ¢alismada, lineer teori, miithendislik kullanimindaki
cazibesine dayanarak uygulandi. Morrison denklemi hiz ve ivme terimlerini sonug
kuvvetlerine doniistiirmek icin kullanilmistir. Kalibrasyon ve karsilagtirma , Yapisal Analiz

Bilgisayar Sistemi adl1 iyi bilinen bir profesyonel yazilim program karsin kontrol edildi

Anahtar Kelimeler: Bretschneider spektrumu ve denklemleri, Noral aglar, A¢ik deniz

yapilari analizi, Airy’s lineer teori, Yapisal Analiz bilgisayar sistemi.
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CHAPTER 1

INTRODUCTION

1.1 Background of Study

The protection of coastal environments is very important especially with more than 9,600
offshore fields worldwide. Offshore structures, such as platforms and wind Turbines are
commonly adopted for such protection (Sadeghi, 2007). In recent years, the protection of
offshore structures has been extensively studied; an understanding of their interaction with

wind-wave relationship is far from complete.

The major factor in coastal engineering design and analysis is a wave action on which must
be taken into account. Much is known about wave mechanics when the wave height and
period (or length) is known. Knowledge about waves and the forces they generate is
important for the design of coastal projects since predication of wave conditions are
needed in almost all coastal engineering studies (Holmes, 2001). Actual waves found in
nature are mostly random; but for the sake of analytical simplicity they are many times
assumed to be regular. With physical processes the wave parameters can be predicted in

complex circulation patterns based on wind recoded data (Bouws et al., 1998).

In last decades, the wind-wave models by numerical equations uses have became essential
for a prediction of wave characteristics. Generally, modeling is based on empirical,
simplified or parametric and numerical or elaborate methods as deterministic equations.
However, the numerical methods are far more accurate than the parametric and give

information over a number of locations simultaneously (Tolman, 1992).

Actually the damage that could happen to offshore structures occasionally arises; there are
two general modes of failure modes being evident. Firstly, the wave forces that acting on
structure members of jacket platform that caused incur substantial damage or even collapse
in it. Secondly, the liquefaction or the erosion or the erosion in the surrounding area of the
structure, subsequently, may led to the collapse of the structure as a whole (Cha et. al.,
2011).



Figure 1.1: Configuration of a jacket platform (Sadeghi, 2007)

Consequently, the protection of offshore structures increased significantly due to growing
attention of marine geotechnical and coastal engineering operations. The major concern for
civil and coastal engineers in this field is that, attempting to deal with more accurate
predictions of wave characteristics (height and period of wave) rather than unique wave

height and period values of the above simplified schemes (Bouws et al., 1998).

1.2 Artificial Neural Network

Much research attention has been centered on solving one problem: “How does the human
brain work?” Artificial Neural Networks have been used to try to solve this problem.
(Hagan et al., 1995) report that, the preliminary research in neural networks field is back to
1943, by (McCulloch and Pitts, 1943) when they assumed a simple mathematical process



to give details about the way neurons are working biologically. This was apparently one of
the first significant study on artificial neural networks (ANN) (Hagan et al., 1995).

The technique of (ANNS) is an alternative possible methodology. Many investigations and
works for more than five decades found that the biological neural system was must suitable
way to apply ANNs in real world. ANN is helpful in many cases where the essential
process of physical for prediction are still not completely understood and compatible in
dynamical systems modeling that based on period of time. However, until 1980’s the
ANN:Ss it has not been applied on a large scale to the problems of the real world. Therefore,
common application were not training by algorithms because of the lack of their
sophisticated (Cha et al., 2006).

According to (Huang et al., 2009), ANNs are one of the latest data-processing
technologies available in the engineer’s toolbox. They serve as an important function in
engineering applications. In particular for predicting the evolution of dynamical systems,
modeling the memory and performing pattern recognition.

In contrast to conventional approaches derived from engineering mechanisms, the only
requirement for obtaining accurate predictions with ANN models is a reliable dataset to
achieve suitable training database with accurate predictions for a variety of engineering
problems (Cha et al., 2011).

1.3 Wave Forces on Offshore Structures

Brief discussion on the theoretical aspect and simulation of the wave forces on offshore
structural members has been presented. A computer program written in the FORTRAN
language working under the Microsoft Power Station environment validated with a
standard commercial package called Structural Analysis Computer System (SACS, version
5.7) (Noorzaei et al., 2005).



1.4 Contributions of the Research

The evaluation of wave characteristics (wave height & wave period) is important for civil

and coastal engineers that involved in the design of coastal structures. In recent years, great

efforts have been made for in predicting the wave characteristics by physical modeling and

using traditional engineering methods including complicated deterministic equations. In

this research, Artificial Neural Network (ANN) technology has been adopted to assist in

the prediction of wave characteristics (Galavi et al., 2012; Sadeghi, 2007).

The objective of this study is to establish an alternative approach for the prediction of wave

characteristics (wave height & wave period) which is Artificial Neural Network (ANN).

The database was generated using numerical models (Deo et al., 2001; Sadeghi, 2007).

The specific goals of this study are to:

Exam the accuracy of various structured ANNs for the prediction of wave
characteristics predicted by numerical methods.

Recommend the most effective and acceptable ANN model for the coastal
engineering practice

To couple the written program to an existing 3-D finite element program (SACS).

1.5 Thesis Structure

Chapters are organized as:

Chapter 2 deals with the review of published literature (thesis, journal and
articles).

Chapter 3 a discussion of the methodology of the research area, test samples, test
procedures and statistical analysis were conducted in this chapter.

Chapter 4 a comparison of the developed models with other existing models was
also performed under this chapter.

Chapter 5 the conclusion and recommendation of the study are given in Chapter
five.



CHAPTER 2

LITERATURE REVIEW

2.1 Background

The wave’s generation in deep water is naturally caused by blow of wind over the sea
level. Once the ocean surface hit by winds for an adequately limited duration and fetch, the
growing of waves parameters are containing until they reach their maximum values in a
particular conditions. From this point the wave period will stay constant even as they
propagate into shallow water. “Theories and mechanics of waves together with
classifications of wave, governing different wave theories and their equations, for instance,
Airy theory, Stockes?™d, Stockes®™, Cnoidal, Solitary and Stream Function” (Deo, 2013;
Sadeghi, 2008).

-~ j+~-—Mass transport

t Y
\//
Deep water particle orbit
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r ! . Run-up
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Figure 2.1: Wave progress to shoreline ( Sadeghi, 2008)

Likewise, the most advanced prediction need techniques which currently are not available
in any laboratories because needs to highly advanced equipment, as well as the complexity
of those models. The knowledge of magnitude and behavior of ocean waves as well as the
understanding of heights and periods of oscillatory short waves on the site which is a
necessary for any activities in the offshore projects included design and planning,
construction and operation related to harbor, coastal and structures (Shahidi, 2009; API,
2007) .



Due to the assumptions that regarding the wave prediction based on traditional engineering
mechanics, therefore, the application of the existing models limited by it. As a result,
Artificial Neural Networks (ANNSs) have been applied to various fields, such as business,
science, and the engineering sphere (El-Reedy, 2012). It is a fresh approach to apply ANNs
to the problem of wave predicting in marine environments. Thus, in this section, previous
research for the wave height and period production is reviewed first, and then followed by

the wave forces on subsea structural member (Bouws et al., 1998).

2.2 Wave Characteristics Prediction

The relationship between wind and wave has been investigated over more than five
decades in the past by establishing empirical and numerical equations that solving the

equations of wave prediction (Sadeghi, 2007).
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Figure 2.2: Wave height predicting reproduced from (Sadeghi, 2007)

However, the wave generation phenomenon complexity still exists despite of significant
advances in techniques of computational, the solutions that found are not exactly uniformly
can be applicable at all sites and times. Figure 2.2 reproduced from (Sadeghi, 2007), it
shows comparison between recorded heights of wave with the predicted values that

applied by using Bretschneider spectrum and equations (Manual, S. P., 1984).
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2.3 Empirical Methods

The most two widely used empirical models are the Bretschneider and SMB (Sverdrup-
Munk and Bretschneider) models. Several other models exist, including those of
Darbyshire and Draper (1963), Kruseman (1976), Toba (1978), Mitsuyasu et al. (1980) and
Donclan (1980). The Sverdrup-Munk and Bretschneider (SMB) equations are based on
dimensional analysis considerations. Empirical wave models can be applied to enclosed
water bodies where swell is insignificant. The main assumption of these models is that the
wind field over the wave generating area at any one time can be represented by a single

value of velocity (Deo, 2007).

Sverdrup and Munk (1947) devised an empirical method to predict a so-called "significant
wave height to describe the locally generated sea state. Since the birth of coastal
engineering at that time, wave prediction models have evolved to the extent that computer

models can now predict ocean wave spectra on a global scale (Bishop and Donelan, 1989).

Dimensional analysis by Kitaigorodskii (1962) showed that all wave variables, when non-
dimensionalized in terries of the acceleration due to gravity “g” and wind speed, should be
functions of the dimensionless fetch gF /U2 (Applications in Coastal Modeling edited by

(Bishop and Donelan, 1989).

2.4 Numerical Wave Modeling

Ocean wave characteristics are mainly determined through field measurements, numerical
simulation, physical models and analytical solutions. Each method has its own advantages
and disadvantages. Numerical models were emerging as the most powerful method for the
study of wave’s characteristics and sea water surface. It is expressed in the concepts of
physical phenomena of wave numerical model, which depends on how the expression of
the best phenomena in numerical schemes, in this case, the parameters can be estimated

more accurately wave data (Thomas and Dwarakish, 2015).

The wave models was based on numerical models developed on the energy balance

equation with the different components function as an input sources (Deo, 2007).



The energy balance equation is given as:

ds(f, x,t,0)

= = 1 2-1
T S = In + nl + Dis (2.1)

where,
f : Represents the frequency
0 : Represents the propagation direction
t : Represents the time
X : Represents the geographic coordinates
S : Represents the source function

Where, they are dependent on each of the wave spectrum and the external factors of

making wave such as local wind and current.

Serensen et al. (2004) developed a model and simulated for the North Sea, parts of
Norwegian Sea and the Baltic Sea. The results are validated from wave rider buoy and
found that the model is better in prediction than which does not use fine mesh. But due to

the fine mesh the computing time required was higher at that time.

Numerical wave models can be incorporated with sediment dynamics problems to
understand the problem more in detail. A spectral wave model helps to assess the sediment
dynamics. Using (WAVEWATCH Il1) parameters like Significant Wave Height (Hs), Peak
Period (Tp), Mean Wave Direction (MWD), Wind Velocity (U10) and Mean Wind
Direction was extracted. This helped the authors to understand the wave energy in different
coastal sectors. But the model (WAVEWATCH I1I) is mainly suitable for deep water
regions and use of that model in coastal problems affected the accuracy of the study
(Serensen et al., 2004).

At 2003, an investigation began in the English Channel, a campaign of measurement and
evaluation where four of the widely numerical analysis of wave models were used. At that

time, they summed up with taking into consideration that the specific agreement between



simulated and recorded wave parameters improved by currents, however the (RMSE) of
the results of model were in actuality bigger than with the currents. That study was
remarkable to solve some numerical models problems that were used. In particular, the
artificial cause of swell on the wind sea growth was found to be a problem, It is a common

feature of the development of standards derived from (Komen et al., 1984).

2.5 Artificial Neural Networks

ANN was originally introduced as simplified models of brain-function. The human brain
consists of billions of interconnected neurons. These are cells which have specialized
members that allow the transmission of singles to neighboring neurons (Cha et al., 2011).

The neural networks theoretical concepts can be found in many studies as well as books
include, (Kosko, 1992). Network applications in civil engineering prediction such as
(French et al., 1992), (Kasperkiewicz et al., 1995), (Grubert, 1995), (Thirumalaiah and
Deo, 1998)and (Deo and Kumar, 2000), with many application that connected to

prediction of rainfall, concrete strength and waves in onshore and offshore parts.

Additionally, it has been applied ANN models in different engineering problems, for
instance, the generation of wave equations that based on hydraulic data (Dibike et al.,
1999), parameters of water quality prediction (Maier and Dandy, 1997), tidal prediction
(Lee et al., 2002), prediction of shallow foundation settlement (Mohamed et al., 2002),
dynamic amplification of the soil analysis prediction (Hurtado et al., 2001) and the
prediction of concrete strength concrete (Rajasekaran et al., 2003). In this study, we will
further apply ANNs to the prediction of the wave characteristics in the deep water

conditions.
2.5.1 Artificial neural networks applications in engineering

The last five decades have witnessed several applications of ANN in engineering
prediction. These include heights and periods predicting (Deo et al., 2001), wave reflection
(Zanuttigh and Meer, 2008), and water level prediction (Patrick et al., 2003). Some

previous work related to Artificial Neural Networks application in the area of engineering



and science will be summarized under the headings: structural engineering, geotechnical

engineering, water resources, and coastal engineering.

Makarynskyy et al., (2004) discussed the ANN approach to the problem of improving the
prediction of the wave. In this paper, they used two different approaches. First, they used
the initial simulations of the wave parameters with leading times from 1 to 24 hours.
Second, they allowed for merging the measurements and initial forecasts. These results
showed that an ANN model can provide accurate simulation and demonstrated the ability
of neural networks to improve the initial expectations, it is estimated in terms of the

correlation coefficient, root mean squared error and scatter index.

Deo et al., (2001) presented practical methodologies for designing better ANN
architectures for wave prediction. It demonstrates an improved in the predictions result and
the actual observations which represented in the improvement of the correlation coefficient
(R?) of 68%. They concluded that smaller differences in the characteristics of the wind at
this location coupled with the single location wave and wind measurements led to

improvement in predictions.

Lee et al., (2001) developed an ANN model to predict the behavior of stub-girder system
in structural analysis. In this paper, they believed that it is difficult task to modeling stub-
girder involving complex material behavior by traditional numerical modeling in
computational. They concluded that, many of uncertainty and empirical problems within
an approximate structural analysis can be solved successfully by the ANN models that

require both an fast calculation with acceptable margin of error in structural engineering.

Kim et al., (2001) presented how to utilize an accumulated database to evaluate particular
tunnel sites and prediction of ground surface settlements due to tunneling using an ANN
model. The ANN model based on past tunnel records that used as reliable database which
leading to predicted the settlements of ground surface. They suggested that the ability to
predict an accurate result is completely reliant on data quality and quantity that used in
training ANNS.

In water resources engineering, (French et al., 1992) used an ANN to predict rain- fall

intensity. They used back-propagation network for the training, and they compared natural
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rainfall history with an ANN predicted fields model. Their results indicated that the ANN
Is capable of learning the complex relationships describing the space-time evolution of

rainfall that is inherent in a complex rainfall simulation model.

Maier and Holger (2000) applied ANNs in prediction of water quality parameters. The
authors reviewed the differences between ANNs and more traditional predicting methods,
such as time series and physically based models, and applied the ANN model to predicting
salinity in the River Murray at Mruuay Bridge, South Australia. They concluded that ANN
models appear to be a useful tool for predicting salinity in rivers, even if they had difficult
in determining the appropriate model inputs. Later, they investigated the relative
performance of various training algorithms using feed-forward ANNs for salinity

predicting.

2.6 Hydrodynamic Forces

The hydrodynamic forces evaluation that acts on platform legs requires knowledge of
vector of stress which includes gradients of the velocity and dynamic pressure. However,
the fluid motion usually consider as steady, which means linearized, with no more
boundaries. As a result, it is possible to relate the stress vector with the velocity of the
rigid body relative to the fluid velocity in the far field by means of an integral equation of
the first kind (Youngren and Acrivos, 2006).

This approach was taken for the Stokes equation. In both cases, using the matching
fundamental solution, at the first order integral equations system, valid at each point of the
surface of the submerged rigid body, can be gained that link the stress vector with velocity
of the rigid body. The numerical methods were developed numerical by the authors to
calculate the stress vector and accordingly to gain a solution with details for the vector of
stress which allows authors to calculate the hydrodynamic forces, Consisting of body
forces and the stresses supposed to given by a potential, on the rigid body. The wave force
theories concerning offshore platforms were not existed until Morison equation was
presented in 1950; the wave forces on a vertical pipe were shown to be as illustrated in Fig.
2.2:
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Figure 2.3: Hydrodynamic forces parameters on platform legs due to waves
(Sadeghi, 2008)

The coefficients of hydrodynamic forces including drag coefficient and inertia for various
types of platforms such as square, rectangular or circular sections that will be subjected to

hydrodynamic forces.

The Morison formula is written below (Sadeghi, 2001):

1 mD?
==0pCpD |ulu+ pC; —ax (2.2)
f ZPD PLy 4

where,
Fp : Represents the drag force
F; . Represents the inertia force

The most important consideration in applying Morison’s equation is the selection of

appropriate drag and inertia coefficients. However, there is considerable uncertainty in the
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Cp and Cp values appropriate for the calculation of offshore structural members, with

many values in publication.

Some published studies reviewed by (Cassidy, 1999) in the literatures in his “PhD diss”.
He evaluated that C,, ranged between (0.6 - 1.2) depends on cylinder configuration. For Cp

ranged from (1.75 — 2.0) depends on cylinder configuration as well.
Morison Equation is based on following assumptions:
i.  Flow is assumed unstable by the presence of the structure
ii.  Force calculation is empirical calibrate by experimental results
iii.  The right coefficients should be used rely on the shape of the structure body

iv.  Validity range shall be checked before use and generally, the validity suitable range

for most jacket type structures is D/L less than 0.2.

where,

D : Represents the diameter of the structural member

L : Represents the wave length
The forces and moments due to waves that applied on structure member such as legs, piles
and braces are important for process design of offshore platforms. Different amount of
forces and moments applied on those members in each moment caused by a particle
suspended in a fluid. From the combination of drag force (FD) and inertia force (FI), the

total amount of forces and moments can be calculated, with respect to a force sign
(Sadeghi, 2008).
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CHAPTER 3

METHODOLOGY

3.1 Introduction

The research was conducted in accordance with the following procedure; in this chapter,
The SMB and Bretschneider equations are described to how predicting the wave
characteristics. The effects of wind blowing velocity, wind duration, air/sea temperature
difference, and fetch length are taken into account by Bretschneider equations (Manual, S.
P., 1984).

To ensure the accurate prediction of a wave’s characteristics using artificial neural network
(ANN) model which need to establish a reliable database. Consequently, database was
established by using numerical simulation of waves characteristics and downtime done by
(Sadeghi, 2007). From the prediction of wave’s characteristics it can develop a program for
modeling wave and current forces on a vertical and inclined cylinder offshore structural

member.

3.2 S.M.B Formulas

The predictions of wave characteristics based on equations within methods such as S.M.B.
(Sverdrup-Munk-Bretschneider), Hasselmann , Pierson — Moskowitz and (JONSWAP)
(Deo, 2007). The Sverdrup-Munk and Bretschneider (SMB) equations are based on
dimensional analysis consideration for predict of wave characteristics which are the

adjustment later by Bretschneider in 1958.
The equations are set bellow:

For deep-water conditions (Kabir Sadeghi, 2008):
gH gF 0.42
0= 0.283 tanh [0.0125 [F] (3.1)
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T F . 5
Z%I—U — 1.20 tanh [0.077 [%] l 3.2)

The above (H, T) values would occur only if the wind blows for a duration time given in
terms of fetch (F) as follows (Sadeghi, 2008):

——688[ l (3.3)

For shallow water conditions and fixed waterdepth (d) (Sadeghi, 2008):

oH ad® 0.0125 [ﬁ—i]m
=7 = 0.283 tanh [0.530 [ﬁ] l tanh —o7 (3.5)
tanh [0.530 ] ]
\ U
o 07 ( 0.077 [g 0.25
Z =12 tan h[O 833 [ ] l tanh T — (36)
T tanh [0.833 ] ]
\ U
1
gt gF|’ gF1 | gF
le(exp A In[UZ] —Bln[m]+ Cl +DIn m] (3.7)
where,

exp{x}=el,
In = log, ,
K=6.5882,
A=0.0161,
B=0.3692,
C=2.2024,

D=0.8798
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3.3 Bretschneider Formulas

In Bretschneider equations, air-sea temperature difference (Ta® and Ts°) taken in

consideration for prediction of wave characteristics. (Sadeghi, 2008):

1

H Fl2
S mo_ 16x1073 [g—Zl
UA UA
1
T F|s
Sm_ 2857 x 10 g—z
2
t FJs
5 = 688x10|%

The following equations can be used , in fully developed wave case (Sadeghi, 2008):

H

BTmo _ 5433 x 10-1
Ua

gy

°m_ 8134

Ua

gt

- = 7.15x 10%

Ua

Bretschneider's method with waterdepth effect (Sadeghi, 2008):

gH
Ua

gT
— = 7.54tanh |0.833
Uy

gd
— = 0.283 tanh [ 0.530 —
U

g

.

Uz

3

A

3

8
l tanh

4
l tanh

1
0.00565 [%]2
Ui

3
tanh [0.530 [%]4]
Ua

1
0.0379 [%]3
U4

3
tanh [0.833 [%]8]
Ua
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gt gT

9t _ 537x1 z[_ (3.17)
U, 5.37 x 10 U,

where,

U,y = 0.710123 m/s

U:RTXUlom/S

3.3.1 Stability factor

Stability factor (RT) defined by Resio and Vincent in 1977 and consider as a significant
factor in wave characteristics prediction within Bretschneider equations. RT can be from

Figure 3.1, Which allows to consider the difference in temperature between the air and the
sea (Sadeghi, 2008).

________
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-
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T

Example 2

!
o e
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-20 -I§ -5 0 5 {e 15 20

Air-sea temperature difference (T —TS) °C
(Resio & Vincent, 1977b)

Figure 3.1: Stability factor RT graph.
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3.3.2 Distribution of wave heights

These wave prediction methods are based on semi-empirical relations, which link the
significant wave height Hs and significant wave period to wind speed, fetch, and
waterdepth (Vandever et al., 2001).

Most probable H {(Hm}

LA A

/ /) H
e —33.3% ———————|

Figure 3.2: Statistical distribution of wave heights

where,

H,, (Mean wave height) = 0.64 times Hs

Hg or H; /3 = Significant wave height

H, /10 (Highest 10% wave height) = 1.27xHs

H,/100 (Highest 1% wave height) = 1.67xHs

H,,.. (Max probable wave height for a large sample) = about 2.0xH,
3.4 Basis of Empirical Equations

The majority of the mathematical calculations are based on two basic elements:
wavelength L, and wave height H, (the subscript o indicates fully developed deepwater
conditions). Fully deep-water waves subject to various changes as they approach the
shoreline (Le Roux et al., 2010).
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where,
L, = 1.56 * T? (m) (3.18)

Firstly, after decreasing in wave height, after the water particle velocity reaches a
maximum in the wave crest, the breaking height will increase, also expected decrease in
the wavelength decrease that will happen and cause change in the form of a wave from a
sinusoidal through trochoidal to reach cnoidal profile with the respect to the still water

level shoreline with increasing of mean water level (Le Roux et al., 2010).

Table 3.1: The parameters of water/air temperature from the recorded wind characteristics
in the Caspian Sea

B|C|D E F G
3
o =
= g
= > (7}
| E | & =) 3 )
@ [ 3] © D = |o
S12|> |8 Ty (T
5 g
< =
D
)
21 | 11|83 | 14.1 18.1 -4.0
21 | 11| 88 | 15.0 18.1 -3.1
21 | 11| 88 | 14.9 18.2 -3.3

22 |11 | 88 | 143 18.1 -3.8
22 |11 | 88 | 16.2 18.4 -2.2
22 |11 | 88 | 16.3 184 2.1
22 | 11 | 88 | 14.7 18.2 -3.5
22 111 |88 | 12.6 12.2 0.4
22 111 188 | 14.1 18.0 -3.9
22 |11 | 88 | 15.2 17.9 -2.7
22 |11 | 88 | 15.6 18.0 -2.4
22 |11 | 88 | 15.8 18.1 -2.3
23 |11 | 88 | 15.7 17.9 -2.2
23 |11 | 88 | 153 18.1 -2.8
23 111 |88 | 16.9 18.3 -1.4

All input and output data in the spreadsheet, except the operation criteria, are in Sl units. In
the data input area (cells B4:BA2728), measured wave height and period conditions are
entered, where available. The parameters of water/air temperature in cell (cells E4:F2728)
is required to differences in cell G, although the value in this cell may contains some

negative values.
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Table 3.2: The parameters of wind in the Caspian Sea

Y VA AA AT AU AV
e}

2 s

o = c _ &

2 |15} [=) ) ol
Lo] += ) = g

< S| 53| € ) ™
eS| o8 | OQ 50| xo| X
g2 L o o = = | Jw

-_— o) o (e»)

> ; o= c 11

< S = I
> = 2 - <
© = )
—

5 =

|_

2.06 6.70 47 16200 | 2.293 | 1.970
3.09 9.30 77 16200 | 3.413 | 3.214
6.17 14.70 59 16200 | 6.838 | 7.555
1.39 4.70 2 16200 | 1.545 | 1.21
3.45 10.00 | -152 | 16200 | 3.750 | 3.61
0.67 2.70 -17 | 16200 | 0.725 | 0.48
2.73 6.70 | -175 | 16200 | 3.025 | 2.77
2.42 8.70 -29 | 16200 | 2.379 | 2.06
3.09 7.30 | -156 | 16200 | 3.436 | 3.24
3.60 9.30 | -110 | 21600 | 3.969 | 3.87
3.76 10.00 | -109 | 16200 | 4.116 | 4.05
5.14 14.00 | -126 | 16200 | 5.617 | 5.93
3.09 8.00 -86 | 16200 | 3.358 | 3.15
1.70 5.30 71 16200 | 1.873 | 1.54
0.36 2.00 -90 | 16200 | 0.380 | 0.22

The sustained wind velocity which represented as (U10) is measured at a distance of 10 m
above the SWL that supplied in cell Y as average in m/s units. The measured wind gust
and its direction can also be entered in columns Z and AA, which automatically calculated
values of wind duration in seconds in column AT. Correction to account for the non-linear

relation between the measured wind speed and its stress on the seawater.

Due to the shortage in date of wind for all points in southern part of Caspian Sea, wind
data recorded at the buoy site mentioned above which located 30 km from Neka Harbor at
a waterdepth of 35 m and operated by KEPCO were used for all points of the south
Caspian Sea considering different fetch lengths (Sadeghi, 2007). The wind input such as
fetch distance and duration of wind might be not necessary in neural networks.
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3.5 Equations for Deepwater Wave Conditions

The parameters that calculate as shown in Table 3.3 are included significant wave height
(Hs), maximum height of wave (Hmax), significant period of wave (T's) and peak period
(Tm) were calculated by the Bretschneider equation taking into consideration the air-sea

water.

Table 3.3: Output data of area of wave characteristics from the recorded wind
characteristics in the Caspian Sea (Sadeghi, 2007)

AX AY | AZ | BA

—~~ — - G
S S D D
= - I
I9 « T = £y
TR= ] ED o D
== e

28 |8 |FB|F&
> > = =
IE =] >
£| E| E| E
= e 25 )

0.127 | 0.235 | 1.965 | 1.867
0.234 | 0.433 | 2.510 | 2.384
0.681 | 1.259 | 3.848 | 3.656
0.07 | 013 | 154 | 146
0.27 | 0.50 | 2.66 | 2.53
0.02 | 0.04 | 0.97 | 0.92
019 | 036 | 233 | 2.21
0.13 | 025 | 201 | 191
024 | 044 | 252 | 2.39
0.37 | 0.68 | 3.18 | 3.02
0.31 | 058 | 282 | 2.68
050 | 093 | 341 | 3.24
023 | 042 | 248 | 2.36
009 | 017 | 1.74 | 1.65
001 | 0.01 | 0.65 | 0.62

Columns AX15, AZ Table 3.3 calculate the significant wave height and significant wave
period by using equations (3.8) and (3.9), respectively. While the maximum wave height
ratio normally more than significant wave height by two. The Rayleigh ratio was used in
this study for the benefit of simplicity (Sadeghi, 2001).

3.5.1 Wave theories

Wave theories yield the information on the wave motion such as the water particles
kinematics and wave speed, using the input of wave height, its period and depth of water at
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the site. There are more than a dozen different theories available in this regard. However,

only a few of them are common in use and these are described below (Deo, 2013):

e All wave theories involve some common assumptions

e The waves have regular profiles

e The flow is two-dimensional

e The wave propagation is unidirectional (or long crested)

e The fluid is ideal i.e. in-viscid, incompressible and irrational

e The sea bed is impermeable and horizontal
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Figure 3.3: Displacement of water particle for shallow and deepwater waves

The wave theories can be categorized into two types (El-Reedy, 2012):

e Linear or Airy's (or sinusoidal amplitude) wave theory

e Non-linear (or finite amplitude) wave theories.
3.5.1.1 Formulation of Airy’s linear theory

A relatively simple theory of wave motion, well-known as Airy’s linear theory, was given
by George Biddell Airy in 1842 (Dawson, 1983). This description assumes the form of a
sinusoidal wave shape, it has a slight increase in comparison with the wave length and

depth of the water. Although not capable of strict application of the waves of the usual
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design used in marine structural engineering, this theory is the value to preliminary
calculations for the detection of the basic characteristics of a wave caused by the

movement of water (Dawson, 1983).

Airy’s linear theory provides an expression for vertical and horizontal velocity particle of

water at place (x, y) and time, t as (Dawson, 1983):

oH cosh ky
= — — 3.19
> il cos(kx — ot) (3.19)
oH sinh ky
_ N 3.20
ATV sin(kx — ot) (3.20)

The wavenumber, k and wave angular frequency, ® are related through the Airy’s linear

theory by the dispersion equation:
o? = gktanhkd (3.21)

Using the dispersion equation above, the wave speed may be expressed as:
_ 8 1/2
c= (E tanh kd) (3.22)

The water particle accelerations are obtained as:

o H cosh ky
= — ' — (3.23)
ax > snhkd sin(kx — ot)
o H sinh ky
= — — (3.24)
ay snhkd cos(kx — wt)
Where,
ax = du/dt,
ay = dv/dt

The underlying assumption in the derivation of linear theory has its limits of y = d, which
does not account above the SWL (i.e. y > d). This predicament is resolved by the linear

surface correction, (Noorzaei et al., 2005):
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H
n== cos(kx — wt) (3.25)

Thus, at the free water surface, the vertical position of the wave becomes:
y=n+d (3.26)

The Morrison equation uses to transform the wave velocity and acceleration into forces,
especially, for slender offshore structures such as jacket platform (Henderson, 2003). The

Morison equation maybe expressed as:

DZ

1 I
f= EpCDD lulu+ pG ™ (3.27)

The graph that used to selecting the validity wave theory in different waterdepths and for

various environmental conditions is given above in Figure 3.14.
where,

o Represents denotes water density,

Cp and C; : denote the drag and inertia coefficients respectively

D : Represents the diameter of the member
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Figure 3.4: Validity of wave theories graph (Sadeghi, 2008)

The term that on the right hand of this equation, is referred to the drag term and is
proportional to the square of the water velocity and the second term is referred to the

inertia term and is proportional to the water acceleration (Sadeghi, 2008).

The values of horizontal velocity particle of water (u) and water particle accelerations
(ax) in the Morison equation are calculated from a suitable wave theory, together with
chosen values of C;, and C; in Egn. (3.27) yields at any instant in the wave cycle, the force

distribution all along the member.
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3.6 Artificial Neural Network

An artificial neural network is a computing system consisting of number highly
interconnected processing elements and processing of information by responding to the
dynamics of the external input case (Caudil, 1987). The following section is a brief
overview of the architecture, training rules, selection, and advantage and disadvantage of
ANN models.

3.6.1 Architecture of ANN

The process of information with neural networks represent by trillions of neurons (nerve
cells) formed the networks, electrical pulses occur by exchanging between cells called
action potentials. Computer algorithms that imitative these structures of biological are
properly called artificial neural networks to characterize them from the squishy things
inside of animals (Birdi et al., 2013).

Oligodendrocyte
Cell body

/\Cell Body (Soma) j

Nucleus

Dendrites

/yon Terminal

Myelin

Axon

Figure 3.5: Construction of a single neuron in the brain

Figure 3.3 illustrates the relationship of a single neuron of the brain to its four parts, known
by their biological names: dendrites (Input), soma (Process), axon (Turn input into output)

and
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Figure 3.6: Different types of activation functions

Generally, there are three fundamentally different classes of networks, which are based on
network architecture: single layer feedforward, multi-layer feedforward, and recurrent
network (Haykin, 2004).

3.6.1.1 Single layer feedforward

A single layer feedforward network has a single layer of artificial neurons, and it processes
input signals in a forward directional manner (Cha et al., 2011).

3.6.1.2 Multi-layer feedforward

The multi-layer feedforward is development of the single layer network, where used to for
much more difficult and complicated problems cat not be solved by in single layer method
or consume more time. It formation from the most important three part in any networkers
which are an input layer of neurons, one or more hidden neurons layers and an output
neurons layer (as illustrated in Figure 3.5). The hidden layer gives the network its power

and allows it to extract extra features from the input (Cha et al., 2011).
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Figure 3.7: Typical multi-layer feedforward architecture

3.6.1.3 Recurrent network

A recurrent network has similarities to a feedforward neural network, but it differs by
having at least one feedback loop. These feedback connections propagate the outputs of
some nodes or the network back to the inputs layers or nodes to perform repeated

computations (Cha et al., 2011).
3.6.2 Training of ANN

An ANN has to be formation like that the application that produces desired outputs in
response to training set of inputs. This study adopted the back propagation as a network
training for all models, (BPNN) are the common network architecture (Rumelhart et al.,
2013). Algorithms are training in a supervised style by BPNNs. The input and output are
used to train a network until the network can reach the minimum error (Haykin, 2004).
This method is used for most of our ANN models. In general, the networks trained with
four algorithms and all achieved satisfactory results. The highest and fastest results were

obtained when trained with resilient backpropagation algorithm (trainrp).

Furthermore, these training algorithms can be divided into two categories, such as

supervised and unsupervised training.
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3.6.2.1 Supervised training

Inside the supervised training style, comparison between actual outputs and desired output
of an ANN, therefore it attempts that desired solutions are known for the training data sets.
This consists reduce error with the passing time by adjusting the weights input until
acceptable network accuracy is reached. Most representative supervised training
algorithms use the backpropagation algorithm, which has been used since (McClelland et
al., 1986).

3.6.2.2 Unsupervised training

In contrast, unsupervised training does not require a correct desired data set. In fact, the
fundamental in the data or the links between the patterns in the data is exposed and
organized into categories. This is especially useful when solutions are unknown (Cha et al.,
2011).

3.6.3 Feedforward, back-propagation network

The feedforward, backpropagation architecture was presented by the early of 1970’s by

several independent source (Rumelhart et al., 2013). Therefore, proliferation of articles

FEED-FORWARD

INPUT

Hidden layer

ERROR PROPAGATION

Figure 3.8: Back propagation architecture
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and talks at various conferences attempts to stimulate that entire industry to achieve this
independent co-development.

At the present time, this interactive developed of backpropagation architecture is become
popular, valuable, and easy learning even for complex models, such as multi-layered
networks. The greatest strength of ANN is in its dealing with nonlinear solutions to
indefinite problems. The professional back-propagation network has an input layer, an
output layer, and at least one hidden layer (Demuth and Beale, 2002).

BP algorithm is one of the most popular ANN algorithms. Rojas, (2013) claimed that BP
algorithm could be packed up to four major steps. Once the weights chosen randomly,
compute of necessary corrections are done by back propagation algorithm. The algorithm

can be expressed in the following four steps (Cilimkovic, 2010):

e Computation of feed-forward

e Back propagation to the output layer
e Propagation to the hidden layer

e \Weight updates

While the function error value may become small enough, the algorithm is stopped. It
considers being the basic formula for BP algorithm. With the variations proposed by other
scientists, Rojas definition seems to be fairly accurate and simple to follow. The last step,
weight updates is happening throughout the algorithm (Demuth and Beale, 2002; Rojas,
2013).

3.6.4 Selection of ANN

The concept of neurons, transfer functions and connections are the essential elements that
ANNSs based on. The similarity between the different structures of ANN can be found in
many studies. The majority of the variation stems from the various learning rules, as well
as how these rules modify a network’s typical topology. Generally, most applications of

ANN can be divided following four categories (Cha et al., 2011):

e Prediction: Uses input values to predict some output. The backpropagation

network model is most commonly used for engineering predictions. It is a
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powerful mechanism for building nonlinear transfer functions between a number of
continuous valued inputs and one or more continuously valued outputs. The
network basically uses multi-layer perception architecture and gets its name from
the manner in which it processes errors during training. In the current study we also

build an ANN model for the prediction of wave characteristics based on this model.

e Classification: Uses input values to determine the classification. This model is
generally used for pattern recognition.

e Data association: Used simulate the classification, while also recognizing data that
contains errors.

e Data filtering: Analyses input data and makes it smooth for the output, such as

taking noise out of telephone signals.
3.6.5 Advantages and disadvantages of ANN
3.6.5.1 Advantages

The handle difficulty with very many parameters is the major advantage of neural network
methods. Further, they are able to successfully to give accurate values and classify objects,

despite the chaotic distribution of the objects.

The ANN can incorporate the nature of the dependency without the need to be prompted,
for example, where is no need to assume a model or to modify it. Besides, it goes directly
from the data to the model without any of intermediary, recording, binging and without any

simplification or questionable interpretation.

Additionally, there are no conditions attached to the predicted variables. As a result the
outputs can be a (Yes/No), a continuous value, or one or more classes, etc. Finally the
ANN is handled with ease, requires less human intervention than does a traditional
analysis, and the ones does not to be need competent in nor have a mathematical back-
ground (Cha et al., 2011).
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3.6.5.2 Disadvantage

The biggest disadvantage of neural networks is that they consume a lot of time, particularly
in the training phase, especially supervised training. Thus, for example the training is
repeated until the desired output data is satisfied. Another significant disadvantage is the
difficulty of determining how the decision is made in the net. Consequently, it is hard to
determine which of the input data being used are significant and valuable for the

prediction, and which are worthless.

There are also limitations with training data. For instance, the capability of the ANN to
identify indicators that intrusion is completely dependent on a training system. Hence, the
effective outcomes are dependent upon both training data and the training methods that are
critical to in each network. Therefore, qualified training data sets are essential to meet the

desired results.

In this study, we also face these difficulties and limitations. However, we nevertheless
decided that it was still an interesting approach to use to predicting of wave parameters by
using an ANN model (Cha et al., 2011).

3.7 Modeling of Wave and Current Forces on Simple Offshore Structural Members

It is essential for all offshore structural analysts to estimate the forces generated by fluid
loading given the description of the wave and current environment (Borthwick et al.,1988).
Considering the many applications of these platform structures mainly Jacket platform in

marine industry. The design will be under large forces caused by wave plus current forces.

The Morison equation is usually used to determine the hydrodynamic forces working on
the cylinder submerged as a result of environmental actions such as wave action. “The
force is expressed as the sum of a velocity dependent drag force and an acceleration-

dependent inertia force” (Chandler et al., 1984).

In this case, Morison (1950) equation is typically used as a computational method which

requests two different coefficients, named drag (Cp) and inertia(C;), to calculate the inline
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force. In considering wave forces, the sea comprises of a large number of periodic wave
components with different wave heights, periods and directions of travel which all occur at
the same time in a given study area. The randomly varying sea surface elevation due to
overlap of these entire wave components coupled with their dispersive behavior leads,
which can be treated by statistical methods. However, to provide engineering solutions, the
use of regular wave theories is common, since regular wave theories yield good
mathematical models of long crested periodic waves, which are components of an irregular
sea. There is a wide range of regular wave theories ranging from the simple Airy’s linear

theory to the higher order formulations (Noorzaei et al., 2005).

The combination of wave and current inline is used for a non-collinear current. Moreover,
the presence of the current changes the apparent wave period. The wave particle velocity
(u) is computed based on the apparent wave period. Therefore, the wave loading for a unit

length of a structure member is founded from the modified Morison equation:

The tidal currents and wind drift currents are the common currents considered in offshore
structural analysis (Dawson, 1983). Both of them are usually considered as horizontal and

varying with waterdepth.

The tidal current velocity profile at any vertical distance from the seabed may be
determined as (Dawson, 1983):

Ur () = Upr )7 (3:29)

The wind drift current velocity profile may be determined as:

U ) = Uow () (330)

Where, d denotes the waterdepth, y is the vertical distance from the seabed, U,t and U,w
denote the tidal and wind drift current velocity at the water surface respectively. For
regular design waves and a horizontal current of arbitrary waterdepth variation, the force
exerted on an offshore structure is normally calculated by simply adding the horizontal
water velocity caused by the waves to that component of current velocity (Dawson, 1983).
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3.8 SACS Software

SACS is an integrated finite element structural analysis package of applications that
uniquely supply for the design of offshore structures, including oil and gas platforms, wind
farms, and topsides of FPSOs and floating platforms (El-Reedy, 2012).

The software depends on a collection of modules that should be used in each analysis. The
main program carries the nodes, members, and loads on it, and other modules do the
subroutine used for every analysis you need to perform. We briefly describe an in-place
analysis as simple example of SACS software which has others analysis’s such as dynamic

analysis, Seismic analysis, Collapse analysis and Fatigue analysis.

The first step in SACS is to develop the name of the project as in (Figure 4. (Appendix 4)
and define the location of the folder for this new project. Note that organizing the folder is
very essential and important, as we will run a lot of input and output files during the
analysis (El-Reedy, 2012).

Figure 4.2 (Appendix 4) shows that you have three options, which modify an existing

model that we performed before, create a new one, or just open the last one.

To create a new model, a menu appears, as in Figure 4.3 (Appendix 4), to ask about start
from blank or use the existing library and choose the units. A wizard is available for fixed
offshore platforms, so it is easy to use structure definition wizard.

Start building the structure model through the Structure Definition dialog box; define the
jack/pile using the following settings in the Elevations tab, as shown in Figure 4.4

(Appendix 4). The input data that we can supply as following:

e Working Point Elevation
e Pile Connecting Elevation
e Waterdepth

e Mudline Elevation

e Pile Stub Elevation

e Leg Extension Elevation

e Generate Seastate Hydrodynamic Data
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e Other elevations

After that, click on the legs tab, as in Figure 4.5 (Appendix 4), to enter the data for the
jacket legs and set the following data:

e Number of legs

e Legtype

e Leg spacing at working point
e Row Labeling

e Pile/Leg Batter

For the conductor data, Click on the Conductors tab, set the following data should be set as

shown in Figure 4.6 (Appendix 4).

e Number of conductor well

e Top conductor elevation

e  First conductor number

e Number of conductors in X direction
e Number of conductors in Y direction
e Coordinate of LL corner

e Distance between conductors

e Disconnected elevations

Then, the connectivity tab is pressed to choose the bracing system for the jacket as shown
in Figure 4.7 (Appendix 4).

To define the properties of the leg and the bracing members that can be created using size
tab as shown in Figure 4.8 (Appendix 4) and put the input sets easily. But for more details
on the precede toolbar, select Property > Member Group as Figure 4.9 (Appendix 4). The
Member Group Manage dialog box appears. After named the group for example XPL, we
highlight it in the Undefined Groups window, and then click on the Add button to define
the section and material properties of XPL.
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3.8.1 Input the load data in SACS software

After you define geometry, the next step is to define the loads and the environmental load

as wave, current, and wind. lllustrated here is the environmental load.

To define the wave, current, wind, and dead/buoyancy load we go to Environment >
Loading > Seastate. The data can be found in the design specifications. There are five tabs,
then two for each Wave | and Wave Il, Wind | and Wind Il, Current | and Current II,
Dead, and Drag. As shown in Figure 4.10a (Appendix 4), this is for load case LC1 the
wave height is 10.67 m and time period is 9.67 s, the direction is zero. For Current, enter
the data of the current from the seabed to the sea level. As shown in Figure 4.10b
(Appendix 4).

3.8.2 Output data from SACS software

The output data is presented by the postvue icon. When you select a member, it is
identified in the menu on the right by its nodes, from Member > Review Member. Select

the member.
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CHAPTER 4

RESULTS AND DISCUSSION

The main objectives of this chapter are:

i. To demonstrate the ANN model’s capability in the prediction of the wave

parameters

To write a computer

template offshore legs using traditional numerical methods with minimal sacrifice
towards accuracy and couple the written program to an existing 3-D finite element

program, with show the applicability of the coupled program by analyzing a simple

offshore structure.

4.1 Study Area

The Caspian Sea was selected as study area for this study; because of the sufficient

properties of wave data are
2007).
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4.2 Data Employed

The Caspian Sea is the largest enclosed basin in the world, five countries are surrounded
the Sea including; Iran, Turkmenistan, Kazakhstan, Russia and Azerbaijan. Consequently,
important economic activities in the Caspian Sea, such as rich resources of oil and gas,
agriculture, fisheries and the potential of transportation between Asia and Europe have
made this sea vital.

Wave characteristics (height & period) were predicted in the deep waters of the Caspian
Sea on the basis of recorded wind data. The Bretschneider equations were used with

various modeling equations (Sadeghi, 2001; Manual, S. P., 1984).

4.3 ANN Models for Prediction of Wave Parameters

Wave’s generation by wind by using physical process is not yet fully understood which
make them extremely complex and uncertain. Neural network helps to model inputs in
random environment to predict accurate output, besides; their application does not need to
complex physical process as a precondition, which makes it applicable in various areas in
yet to be proved (Shahidi and Mahjoobi, 2008)

4.4 Establishment of Database

A most important component in the successful execution of an ANN model is the dataset,
which is essential for ANN model learning. As described in Chapter 3, ANN models are
trained and perform through data collected in physical tests, historical records or analytical
solutions. Therefore it is critical to set up a suitable dataset to ensure accurate findings. As
noted in previous work (Sadeghi, 2007), the most important factors that affect wave height

calculation are:

The inputs of wave characteristics

a) Average wind speed (U10 m/s),
b) Depth (d),
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c) Fetch Length (f),

d) Stability Factor (RT),

e) Water/air temperature differences (Ta-Ts (C 9),
f)  Wind Duration (t sec.),

g) Corrected wind speed (U m/s),

To establish a good quality dataset covering all possible realistic ranges of environmental
data, values were varied from the above parameters. As seen in the tables of the theoretical
model that (outlined in Chapter 3) to predict the wave characteristics for more than 2500

samples.

4.5 The Neural Network

ANNSs, can be defined as simplified models that established by layers which are consisting
of a number of neurons, among the layers being interrelated by identical weights sets. The
information that given in the form of initial input goes through the input layer as neurons,
from which the different transfer functions are used to obtain the outputs. The transfer
functions that adopted in this study are expressed as,

a) Log-sigmoid transfer functions

= j = 4.1

f@) = logsign) = 7—= (4.1)
b) Tan-sigmoid transfer function

f(x) = tansig(n) = Tron 1 (4.2)

The interconnection weights in process of learning were adjusted in the input values, and
this process is essential in the ANN model work. The algorithm of back-propagation was
adopted for model training, because in a variety of ANN applications it is known as one of
the best representative model. The hidden layer(s) is responsible for reduce the error of the
network by propagated the data backward from the output to the input in sequential

practice that called “incorporation”, until that the network achieves the target outputs.
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Thus, the aim is to apply specific inputs in the network to obtain accurate outputs by use

the error function, which is expressed as:

E = %Z(Dx — 0x)? (4.3)

4.5.1 Training of ANN

In the current study, resilient backpropagation (TRAINRP function) was adopted as
optimizing network by using a multi-layer network ANN, with a fixed network structure.
The neuron is made as a combination of a bias and weighted input through a transfer
function in the neural network to produces an output. Also, the network could have more
than one connected neural layer. The weights and biases are determined by the function of
learning, where a set of example of input as well as target output of an accurate behavior of
network. The iterative process of learning of the biases and the weights within the network
are adjusted until the network performance function reduced, for instance, (Mean Squared

Error (MSE)) which is a default tool within feed forward network.
4.5.2 Standard ANN model

The ANN model does not need a traditional approach; it can perform training and testing
procedures using an actual dataset. Generally, an ANN only needs reliable input data for
predicate valid output data. It is one of the advantages of the ANN model. The chosen the
ANN models that used for the prediction of wave characteristics, are illustrated in Figures
(4.2), (4.3), (4.4), (4.5) and (4.6). The most commonly used in either engineering

prediction or predicting problems is backpropagation network.

The back propagation can be used to train a network by pairs of input and output until the
network can create a function (Haykin, 2004). Different functions with constant
architecture such as [(inputs-hidden layers-outputs) (2-20-2)] were training by using the
LOGSIG and TANSIG functions in the input layer and using the LOGSIG in output layer

for the end results.
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The preferable network structural design can be found by choosing a various number of
neurons in one or more hidden layers where the minimum of neurons can be found by
used Equation 4.4 (Haykin, 2004):

Number of Hidden layer (HN) = Number of Input layer (IN) + 1 (4.4)

In this case study, we used more than 1670 training samples of predict the wave
characteristics from the numerical model, to get networks with ability to give an
appropriate prediction, the training was conducted by using almost 80% of the database.

This model feature is less time consuming and its simplicity. The model adopts two of high
performance algorithms that able to converge 10 to100 times faster than the origin gradient
descent, and gradient descent algorithms with momentum. Every algorithm in this section
is operated in the batch mode and is invoked using train. The different numbers of hidden
units tested by training function, adaption learning function and perform various functions.
Among the results, we selected five cases of the most accurate results of prediction of the

wave height by using the proposed ANN model.
4.5.3 Description of the modeled cases

The preliminary statistical analysis was the basis for formulating five predictions with
more than 2300 inputs data. The cases differ from each other with regard to the methods of

wave prediction methods and practically based on S.M.B. and Bretschneider equations.

The parameters that used in Model (M 1.1) are:
1 Average wind speed (U10)

2 Fetch Length

Three parameters used in Model (M 1.2) are:

1 Average wind speed (U10)
2 Fetch Length
3 Depth

Four parameters used in Model (M 2.1.1) are:
1 Corrected Wind Speed
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2 Depth

3 Fetch Length

4 Wind Duration

Two parameters used in Model (M 2.1.2) are:

1 Corrected Wind Speed

2 Wind Duration

Five parameters used in Model (M 2.2)

1 Average wind speed (U10)
2 Depth

3 Fetch Length

4 Wind Duration

5 Wind Speed

Figure 4.1: Training and testing periods of built networks

Training period

Testing period

From 215tof November1988 to 23"%of
August 1989

March 1989

From 24*"Of February 1989 to 24" of

The effect of the following parameters was investigated and analyzed:

iv.

Neurons number in hidden layer
Training algorithms
Transfer function in hidden layer

Initial weight change
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4.5.4 Architecture of the proposed ANN:

Model (M 1.1)

Hidden layer

Input layer Output layer

Average wind
speed (U10)

Fetch Length
F)

Figure 4.2: Construction of the proposed ANN model for (M 1.1)

Model (M 1.2)

Hidden laver

Input layer

Average wind

speed (1710) Output layer

... N,
XS
Fetch Length NN
AN

(1:) o f/ \‘i}

—r >

s i

//;/ -~ g ,‘J
Waterdepth ayd
(d)

Figure 4.3: Construction of the proposed ANN model for (M 1.2)
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Model (M 2.1.1)

Input layer Hidden layer

Corrected wind
speed (Ua) N
Waterdepth O
@
Fetch Length 4)0:
{F) S
V4
Wind Duration O/

(t)

Output laver

Figure 4.4: Construction of the proposed ANN model for (M 2.1.1)

Model (M 2.1.2)

Hidden layer

Qutput layer

Corrected wind
speed (Ua)

Wind Duration
(t)

Figure 4.5: Construction of the proposed ANN model for (M 2.1.2)
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Model (M 2.2)

Input layver

Average wind
spead (U10)

Fetch Length 40\

Hidden layer

Output layver

~

Corrected wind
speed (Ua)

F)
N ‘1\\

- >

Waterdepth . g )(,
(d) - SN
\ - /T

Wind Duration O
()

Figure 4.6: Construction of the proposed ANN model for (M 2.2)

Generally, the wave characteristics prediction determining based on the variability and
different equations. Therefore, a separate ANNs models were used to simulate each wave
parameter take into consideration the prediction methods (S.M.B and Bretschneider).
However, Bretschneider equations are the adjustment of Sverdrup-Munk equations by
Bretschneider in 1958. It was assumed that S.M.B equations have the first two models and
Bretschneider equations have the last three models. As mention, the training algorithm that
adopted and implemented was the resilient backpropagation (trainrp) whit maximum
epochs number in each simulation was used which is equal 1000; the ANN models were
established within a MATLAB environment.

4.6 Network Modeling

This study builds upon results presented by K. Sadeghi (2007) to evaluate the validity of
this study as satisfied results correlation coefficient (R?) method was used. The parameters

are defined as follows:

,  X(Lo—Lo)(Lt—Lt)
~ (Lo —Lo")? (Lt — Lt")?

4.7)
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Lo

Lo'= ) —
n

Lt

Lt'= ) —
n

(4.8)

(4.9)

Lo Represents the wave height or wave period from observed data divided by number of

the wave height; Lt represents the wave height from numerical model from the ANN model

divided by number of the wave height.

The efficiency of models prediction was determined by utilized the correlation coefficient

(R?). A relationship between two random variables was indicated by using the correlation

coefficient, which is the relative predictive power of a model. It is a descriptive measure

between -1 and +1. Minus sign indicates inverse proportion between two variables whilst

plus sign represents a direct proportion. High correlations between two independent

variables may indicate over-fit in the model.

Table 4.1: A measure of correlation accuracy by R?

R? values Accuracy
<0.25 Not good
0.25-0.55 Relatively good
0.56 - 0.75 Good
> 0.75 Very good

The results of the case study K. Sadeghi (2007) were acceptable as an engineering

application with correlation coefficient (R?) was over 80% as showed in Table (4.2).

Table 4.2: The case study validity

No.

R2

674

83.072%
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The objective was to obtain the best values of Hs and Ts by simultaneous of input some
parameters. The neurons numbers within layers were selected due to prediction methods
basic parameters for each. Table 1 shows that, the use of two inputs nodes (fetch Length
(F) and wind speed (U;()). The data were separated into five cases, in each, the different

number of neurons layer was training and testing separately.

Generally, the correlation coefficient (R?) values used to evaluate the efficiency of the
prediction. These results are the most successful results among the ANN model tests
conducted using these different parameters a. The overall prediction for wave
characteristics agree with observed data. The correlation of the ANN model and the wave
characteristics height and period was approximately over 95%, and this is acceptable for an

engineering application.

Figure (4.7) illustrates the predicted the height and period of wave obtained using the ANN
model (M 1.1) versus the observed data, which two parameters were used (fetch length and

wind speed).

4

Recorded

Predicted

Wave Height (m)
N [#%)
T T
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Recorded Predicted

Wave Period (sec.)

0 | | 1 | 1 1 | | | 1 | 1 | 1 | 1 | 1 L4 1
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Time (Date)

Figure 4.7: Predict wave characteristics using model (M 1.1) H and T predicting
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1

R (Testing)

Figure 4.8: Network performance of (M 1.1(2-60-2)) network according to initial weight

00,0%

98,0% | 27.7%

96,0% |
94,0% |

92,0% |

90,0% -

97,7%

\\ .
S

No.of Neurons

change
Table 4.3: Training details and result for (M 1.1) model
Initial .
Model | Case No. of weight Training | Performance R?
neurons No. goal
change
1 10 0.07 3 0 97.67%
2 20 0.07 6 0.01 95.54%
3 30 0.07 8 0.01 95.84%
—
i
=
4 40 0.07 2 0 97.66%
5 50 0.07 4 0.01 95.73%
0.07 11 93.22%
6 60 0.05 2 0.001 97.13%
0.09 4 95.66%
Average | 96.06%
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The Figure (4.8) and Table (4.3) explains the saliency analysis application which based on
changed rationally the number of neurons to simulate Hs and T's. Table 4.3 analysis, for
instance, shows that the use of 10 neurons layers and corresponding to three times training
try improved the correlation coefficient of predict. A further complicate of the ANN
architecture (2x60x2 net) produced a mixed effect: with initial weight 0.07 was less
successful although with more number of neurons. Therefore, some changed was done in
training parameters to improve the model performance as shown in Figure (4.8). The best
result is Case 1 with 97.7% (R?).

Training: R=0.94543 Validation: R=0.93512

=
=]

Data
Fit
....... Y=T

=]

QOutput ~= 0.89*Target + 0.18
Qutput ~= 0.88*Target + 0.17
- R W s o - o W

10

6 8
Target

Test: R=0.9766 All: R=0.94832

Data Data

Output ~= 0.9*Target + 0.16

Output ~= 0.96*Target + 0.098

Target

Figure 4.9: Scatter diagrams for (Case 6 (I.W. = 0.09)) predict

Figure (4.9) illustrates the casel (the most successful testing correlation coefficient with
(R? = 0.977) within the ANN model (M 1.1) against the observed data. As shown by the
figures, the well predictions of wave characteristics, by using ANN model (M 1.1), show a
good agreement with the observed data. The average of correlation coefficient of the ANN
model and the observed data is more than 96%. In this way, Case 6 is the best result within
this model with 97.128% (R?). All the test results are tabulated in Table 4.3.
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As shown in Figure (4.10), network of model (M 1.2) trained with three parameters (e.g.
Average wind speed, Fetch length and waterdepth), the results of the average prediction
shows a clearly agree between the wave characteristics predicted by using the ANN model
and the wave observed data with more than 96% (Table (4.4)) . The best result shown in
Figure 4.14, which is demonstrated by (Case 5 (I.W. = 0.09)) with (R? = 96.89%).
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Predicted

Vvave Height {m)
%] (%)
T T
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Predicted

Wave Period (sec.)

1 L 1 L
1,Sep,89 1.0ct,89 1,Nov,89 21, Nov,89
Time (Date)

Figure 4.10: Predict wave characteristics using model (M 1.2) for Hs and Ts
predicting

From both of Figure 4.11 and Table 4.4, fairly good predictions of the significant wave
height and period were produced for all cases. The predictions of wave characteristics,
using the ANN model (M 1.2), agree with the observed data. The results included two
cases lower than 95%, but with changed in training parameters, , e.g. Initial weight show
sufficient improvement in comparison with the previous results in case 6, where the result
increase to 0.954 to 0.968 after initial weight changing with range (0.05 — 0.09),
respectively as shown in Figure (4.10).
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Figure 4.11: Network performance of (M 1.2) network according to initial weight change

Table 4.4: Training details and result for (M 1.2) model

Initial I
Model | Case No. of weight Training | Performance R2
neurons No. goal
change
1 10 0.07 4 0.01 96.09%
2 20 0.07 3 0.01 96.78%
3 30 0.07 7 0.01 93.82%
N
—
p=
4 40 0.07 5 0.01 96.35%
5 50 0.07 6 0.01 94.54%
0.07 4 92.57%
6 60 0.05 4 0.01 95.43%
0.09 3 96.89%
Average | 95.31%
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Figure 4.12 shows a good comparison between the wave characteristics and wave
observed data within model (M 1.2). The best result demonstrated by (Case 6 (LW =
0.09)) with 96.89% (R?) tabulated in Table 4.4 with the rest of study results.

Training: R=0.94463 Validation: R=0.94025

Data
Fit
....... Y=T

=]

- (=]

Output ~= 0.9*Target + 0.16
;%]

Qutput ~= 0.89*Target + 0.16

Target

All: R=0.94755

Data

Output ~= 0.93*Target + 0.11
- MW N h =~ o W

Output ~= 0.9*Target + 0.15

Target Target

Figure 4.12: Scatter diagrams for (Case 6 (I.W. = 0.09)) predict

The results that shown in figure (4.13) of the average prediction of wave characteristics
using the ANN model (M 2.1.1) agree with the wave observed data with average
correlation of the ANN model and the observed data more than 96%. The best result shown
in figure (4.14), which is demonstrated by (Case 5 (I.W. = 0.09)) with (R? = 96.89%).
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Figure 4.13: Predict wave characteristics using model (M 2.1.1) for Hs and Ts predicting
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Figure 4.14: Network performance of (M 2.1.1) network according to initial

weight change

Table (4.5) tabulates results of model (M 2.1.1) predicting of wave characteristics versus

corresponding observations. The model exhibited a successful performance with
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correlation coefficient as such the previous models. The values were more than 97% in

cases 5 and 6.

Table 4.5: Training details and result for (M 2.1.1) model

Initial .
Model | Case No. of weight Training | Performance R
neurons No. goal
change
1 10 0.07 3 0.01 96.81%
2 20 0.07 3 0.01 95.64%
3 30 0.07 5 0.01 95.59%
—
i
N 4 40 0.07 7 0.0001 94.58%
=
0.07 3 0.0001 93.05%
5 50 0.05 3 0.0001 95.30%
0.09 3 0.0001 97.64%
6 60 0.07 3 0.01 97.07%
Average 95.71%
Training: R=0.94423 Validation: R=0.94551
(-] 10 : : ' ' - .
g —& 5ol
%8' o ¥=T ;u?""Y:T
! Ml 5
3 o 83883 5-
I 3
o 2 4 6 a 10 : 2 4 G g
Target Target
Test: R=0.97636 o All: R=0.94856
% al —Ei?m r;- Data
bt =T L

Target

Figure 4.15: Scatter diagrams for (Case 6 (1.W. = 0.09)) predict
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Figure (4.15) shows a comparison between the predictions of wave characteristics and
ANN network. The values of training and testing coefficients obtained from MATLAB

tool box method were 94.4% and 97.6% respectively.
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Figure 4.16: Predict wave characteristics using model (M 2.1.2) for Hs and Ts predicting

Figure (4.16) illustrates the predicted the height of wave obtained using the ANN model
versus the wave observed data using model (M 2.1.2), which were trained with two
parameters (wind duration and corrected wind speed).
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Figure 4.17: Network performance of (M 2.1.2) network according to initial weight
change
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In this model, the results are tabulated in Table 4.6. The correlation of the ANN model
and the wave observed data is on average 95.38%, which is clearly less than the previous
results. Indeed, the average prediction of wave characteristics using the ANN model

agree with the wave observed and acceptable as seen in Figure (4.17)

Table 4.6: Training details and result for (M 2.1.2) model

Initial -
Model | Case No. of weight Training | Performance R?
neurons No. goal
change
1 10 0.07 4 0.01 95.22%
2 20 0.07 1 0.01 97.91%
~ 3 30 0.07 5 0.01 95.27%
i
N
=
4 40 0.07 2 0.01 96.11%
5 50 0.07 5 0.01 95.22%
0.07 7 92.24%
6 60 0.05 6 0.01 95.27%
0.09 6 95.84%
Average | 95.38%

The overall best performance model was obtained with this model were relatively good
with an even less number of nodes in both hidden and input layer(s) processing training
with 97.91% (R?). The rest of test results are tabulated in Table (4.6) and Figure (4.17).

Figure (4.18) showsx, the results of the average prediction of wave characteristics using
the ANN model agree with wave observed data. The average correlation of the ANN

model and the wave observed data is more than 97%.
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Figure 4.18: Scatter diagrams for (Case 5 (I.W. = 0.09))

The best results are demonstrated by Case 2 with 97.38% (R?). In Table (4.6) and Figure

(4.18), the rest of test results are tabulated and shown respectively.
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Figure 4.19: Predict wave characteristics using model (M 2.2) for Hs and Ts predicting

Figure (4.19) illustrates the predicted wave characteristics obtained using ANN model
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versus the wave observed data (include five of wind parameters). The prediction was

agreed between for wave characteristics and the observed data.
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Figure 4.20: Network performance of (M 2.1.2) network according to initial weight

changing

The results clearly indicate that the average of correlation coefficient is better than the
previous ANN models, such as in model (M 1.1) and Case (M 2.1.1) where the R? is
greater than 96%.

Table 4.7: Training details and result for (M 2.2) model

Model | Case nlzlt(jr.oorfs vl\?elit;llt Trziirr;/ing Perf;(r)r;lance R?
change

1 10 0.07 2 0 97.30%

2 20 0.07 2 0 97.38%

~ 3 30 0.07 2 0 97.02%
g 4 40 0.07 2 0 97.28%

5 50 0.07 4 0.01 95.59%

6 60 0.07 4 0.01 95.80%

Average 96.73%
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Figure 4.21: Scatter diagrams for case 2

From the results, we can identify that prediction outcome are vary with each ANN model
even if we trained and tested the same cases. This difficulty commonly occurs when
applying artificial neural networks to engineering. The ANNS training are based on a group
of databases, composed of parameters from (Kabir Sadeghi, 2007) numerical simulation
model. When we calculate wave characteristics using a numerical model, each parameter,
such as wind speed, fetch, etc. are individually, important factors, and directly affect the
results. However, when we apply these parameters to determine wave height using ANN
model, each parameter is become one of the ANN neuron in the input layer. In other
words, even if one parameter was missed as an input to the ANN model, it is still possible

to obtain reasonable results.
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4.7 A Comparison of Recorded wave Data with those Predicted by Bretschneider
Equations and ANN Method.
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Figure 4.22: Comparison of wave height between prediction methods and recorded
data (Model 1.1)
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Figure 4.23: Comparison of wave period between prediction methods and recorded
data (Model 1.1)
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Figure 4.24: Comparison of wave height between prediction methods and recorded
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Figure 4.25: Comparison of wave period between prediction methods and recorded

data (Model 1.2)
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Figure 4.26: Comparison of wave height between prediction methods and recorded
data (Model 2.1.1)
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Figure 4.27: Comparison of wave period between prediction methods and recorded
data (Model 2.1.1)
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Figure 4.28: Comparison of wave height between prediction methods and recorded
data (Model 2.1.2)
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Figure 4.29: Comparison of wave period between prediction methods and recorded
data (Model 2.1.2)
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Figure 4.30: Comparison of wave height between prediction methods and recorded
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Figure 4.32: Comparison of drag force from the maximum recorded wave data with
the maximum of those predicted by Bretschneider equations and ANN
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Figure 4.33: Comparison of drag force from the average recorded wave data with
the average of those predicted by Bretschneider equations and ANN
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Figure 4.37: Comparison of drag & current forces from the average of the
maximum and the average recorded wave data with the average of
those predicted by Bretschneider equations and ANN
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Figure 4.38: Comparison of inertia force from the maximum recorded wave data

with the maximum of those predicted by Bretschneider equations and
ANN
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Figure 4.39: Comparison of inertia force from the average recorded wave data with
the average of those predicted by Bretschneider equations and ANN

68



Total forces (KN)

Recorded
—— ANN : |
Bretschneider f--------4------ooemmnndeaan

20l NG

Inertia force (KN)

-20

_____________________________________

....................

N S N P R B I R I I |
30 60 90 120 150 180 210 240 270 300 330 360
Angle phase (Degrees)

Figure 4.40: Comparison of inertia forces from the average of the maximum and
average recorded wave data with the average of those predicted by
Bretschneider equations and ANN
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Figure 4.41: Comparison of total force from the maximum recorded wave data with
the maximum of those predicted by Bretschneider equations and ANN
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Figure 4.42: Comparison of total force from the average recorded wave data with
the average of those predicted by Bretschneider equations and ANN
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Figure 4.43: Comparison of total forces from the average of the maximum and
average recorded wave data with the average of those predicted by
Bretschneider equations and ANN
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The results of ANN models in this study were compared with (Sadeghi, 2007) for the
prediction of the wave characteristics using Bretschneider's formula for a specific area in
the Caspian Sea which gave results considered satisfactory. However, there is a
improvement in this study were 96.73, 95.71 and 96.06 % better for models (2.2), (2.1.1)
and (1.1), respectively, in case to compared with that previous study (Sadeghi, 2007).

Furthermore, an important issue is that the wave period output from Bretschneider's
formula (Sadeghi, 2007) gave overestimated unlike the wave height result in that location.
This study results showed that wave characteristics obtained from almost all models leads
to less error and higher correlation in comparison with the other models. This means that
the ANN models are more appropriate than the other models for forecasting the wave

characteristics for this location.

4.8 Hydrodynamic Loads Calculation

In this section, the primary objectives of the present study will be
i.  To write a computer program that is able to simulate wave and current forces on
template offshore structures using traditional numerical methods with minimal
sacrifice towards accuracy.

ii.  To couple the written program to an existing 3-D finite element program.

Fixed offshore consider as unique structures because of their located in the ocean or sea,
they construct to carry staff accommodations and offices as well as the equipment of
industry that services oil and gas drilling and production.
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Figure 4.44: The important loads act on the Jacket platforms

The robust design of jacket offshore structure is reliant on defining the total applied load
accurately. Most of loads that affect the platform laterally, such as wind and waves, are

variable, so we depend on metocean environmental data for the location of the platform.

4.8.1 Wave loads

Wave loads are generated according to Morison's formula. Environmental conditions are
based on the hydrodynamic coefficients of tubular members are taken in accordance with
the recommendations of the API-RP 2A 21st edition.

Table 4.7: Drag and inertia coefficients for vertical cylinders (Deo et al., 2001)

Cm Cd
Linear Theory 0.95 1.0
2.0 10to1.4
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Forces on the structure will be determined by applying Morrison's equation. Choosing an
appropriate method for determining these coefficients for a specified data is hard and their
computing is a time-consuming affair. Basic drag and inertia coefficients (C; and C;) will
be used to evaluate wave forces on cylindrical surfaces, which should be smaller than the

values given in Table 4.9:

For offshore design, the theories that will be used are determined by the policy under
which the designing engineers are working. The selection of the best method is defined by
the curve in Figure 3.14, (outlined in Chapter 3), from APIRP2A

Where,

H/gT? : Represents dimensionless wave sleepiness.

d/gT? : Represents dimensionless relativewaterdepth.

d : Represents mean waterdepth.

T - Represents wave period

H - Represents wave height

g : Represents the acceleration of gravity.
For the purposes of calibration and comparison, two numerical examples have been
selected, namely:

e Numerical Example I - (comparing the results of total forces of the present study to
that of SACS for a vertical cylinder by using Airy’s linear theory).

e Numerical Example Il - (comparing the results of total forces of the present study

to that of SACS for vertical cylinder by using stock®™ order theory).
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Table 4.8: The wave parameters and cylinder details

Wave period (Sec.) 9.3
Gravity (M/g)? 9.81
Depth (m) 22.8
Wave height (m) 10.67
Diameter (m) 1.22
Density (8/ ) 1030
Kinematic viscosity( ™°/) 1 17E-06
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; c.)rcel cylinder
distribution |
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+»
+
Sea bed
VI USRI
Ty

Figure 4.45: Wave force distribution on a cylinder pipe

A spreadsheet has been developed to calculate manually the wake kinematics, , and the
corresponding fluid forces, through Morison equation, for a cylinder which is considered to
be in the vertical position. The distributed wave force acting on that cylinder arising from

the present study to calibrate and compare to the results of the SACS program as shown in
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Figure 4.46. The wave parameters and cylinder details used in both of numerical examples

are presented in Table 4.7.

Table 4.9: Wave force calculations

Deep water wave length: using Equation (3.18) 134.92
Relative waterdepth (d/Lo) 0.1689835
Wave length for intermediate waterdepth L using Table C-2 " 114.57
Wave Number: using Equation (3.22) 0.0548414
Maximum horizontal velocity: using Equation (3.20) 5.5013097
Wind drift current (m/s) using Equation 1.5
Drag coefficient (Cp) using Table (4.9) 1
Inertia coefficient (Cy,) using Table (4.9) 2

The results obtained from of two different wave kinematic theories: Airy’s linear wave

theory and stock®t™ theory were compared with a SACS static wave analysis, presents a

comparison of the base shear force, per phase angle (Appendix 5-A).

== Drag force == = Drag & Current force Inertia force == Total force
500,00
400,00
Y -
300,00
N rd
200,00 Q

0,00 -

-
100,00 -\\\\ /,//

Wave Shear Forces (kN)

-100,00 N 7
/
-200,00 A 7
> /
-300,00 M~
-400,00 (wt-kx)-()
0 3 60 9 120 150 180 210 240 270 300 330

360

Figure 4.46: Base shear distribution per phase angle
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Figure 4.47: Base shear distributions, per phase angle, comparison between linear
wave calculations and SACS results

A similar trend can be seen to that of the results of the 1st numerical example, with all
results of the present study slightly underestimating the results of the SACS program.

Figure 4.47shows the distribution of wave forces plus currents for a vertical cylinder
arising from both Airy and stock®™order theory for different phase angles. The average
difference between the linear wave theory results between manual and SACS calculations
was of less than 2%, the results can be considered as acceptable results. The differences in
the results may lie in the tolerance for wave number (k) which is used in most equations of
the wave kinematics, thus affecting subsequent results. (Appendix 5-B) presents a

comparison between linear wave calculations and SACS results.
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Figure 4.48: Wave surface comparisons for different theories

Obviously, wave loads predicted from stock>order theory are significantly higher
compared to that of Airy’s linear theory. In Figure 4.21 the maximum horizontal force
arising from Airy’s linear theory predicted by SACS is 352.39KN and the maximum
horizontal force arising from stock>®order theory predicted by SACS is 446.33KN

respectively.

Apparently, the stock®™order theory gave noteworthy higher load values than that we got
by spreadsheet in linear theory as shown in Figure 4.47. In this Case, Airy’s linear theory
underestimated the forces arising from stock>™" order theory by 23.5%, which would be
logically as expected, because of the correction made to the linear sinusoidal function of
the wave surface equation with steeper crests and flatter troughs, as shown in Figure 4.48,
where the stock®™®order theory results show considerable higher peak values for the base

shear force and smaller values for the low points.
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CHAPTER 5

CONCLUSION AND FUTURE WORKS

5.1 Conclusion

In this study, ANN was used for predicting the significant wave height and period values at
buoy location in the south of the Caspian Sea. For this purpose, a feed forward-
backpropagation network that contains different transfer functions (log and tan-sigmoid) as

well as one hidden layer consisting of limited range of neurons was used.

The key of the current study was to apply ANNs to the complex process of wave
characteristics prediction. One advantage of ANNSs is that they do not require traditional
engineering procedures or practices such as complex mathematical operations. We used
ANN models for the prediction of wave height and period, then compare with numerical

equations presented by typical engineering practice (e.g. K. Sadeghi, 2007 model).

A comparison of the various ANN models with prediction methods of wave height and
period are established by equations of S.M.B. (Sverdrup-Munk-Bretschneider) and
Bretschneider. The equations were conducted (presented in Chapter 4). The results from
the current study have extended previously known Artificial Neural Network (ANN)
procedures for a specific control engineering dilemma, viz. the prediction of wave
characteristics. The following six points summarize the research that has been added to the
exiting knowledge:

e A general ANN model for the prediction of height and wave period established and
tested, provided that the results are acceptable from an engineering view-point,
within the following average range of correlation coefficient (R?): 92 % to 97%.

e There was no notable change in the results that obtained by resilient algorithm
(trainrp) that we used in all prediction models if we compared it with a
distinguishable three training algorithms such as: (1) traincgf, (2) trainoss and (3)
trainlm. However, these algorithms provide similar accuracy in less epochs training
requiring a smaller amount of computation.

e The results show that increasing in the input layer of neurons, as well as hidden
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layers of neurons has no special effect that leads to increase of the predictive
accuracy (e.g. the correlation coefficient for the model (M 1.1) in case 1 and case 2
(97.67% and 97.128%). However, the results show that increasing with applied the
initial weight parameter to project better training.

The prediction of wave characteristics can be improved by using a multi artificial
neural network model instead of single artificial neural network model, where the
numerical results that were obtained in this study given prove that (MANN) are
good for prediction of wave height and period.

SACS give larger results due to auto segmentation compared to dividing the load

distribution into equal segments.

5.2 Further work

While the present study has extended current knowledge in the area of ANN for

the prediction of wave characteristics, the following tasks need to be further

considered in future studies.

The over fitting can be avoided or eliminated by used of some techniques
such as suitable pre-processing procedure or by undergoes of data set
through optimal training.

The development of alternatives to feed-forward neural networks
techniques to prediction techniques, such as Support vector machine
(SVMs), Radial basis function network (RBF) Networks. Those techniques
could provide a wider array of options for engineers requiring the practical

solution of engineering problems.
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APPENDIX (1-A)

MATLAB code for Wave Simulation plots

% Create database

x1=PR

y1=PP

n=(1:674)

hold on

% Create figure

figurel = figure('Color',[1 1 11]1);

% Create subplot

subplotl = subplot(2,1,1, 'Parent',figurel, ...
IxXIilekigloal? , {9, 0V,00,00,00, 00, 00,00, 00, 00,00, 00, 0V, 00,00},
'XTick', [0 50 100 150 200 250 300 350 400 450 500 550 600 650 6741, ...
'XMinorTick', 'on');

box (subplotl, 'on') ;

hold(subplotl, 'all'");

% Create multiple lines using matrix input to plot

plotl = plot(n,x,n,y, 'Parent',subplotl);

set (plotl(l), 'DisplayName', 'Observed') ;

set (plotl(2), 'Color',[1 0 0], 'DisplayName', 'Predicted"');

% Create ylabel

ylabel ('Wave Height (m)');

o)

% Create legend
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legendl = legend(subplotl, 'show');
set (legendl, 'Orientation', '"horizontal');

% Create subplot

subplot2 = subplot(2,1,2, 'Parent',figurel, ...

'XTiCkLabel',{",'1,Sep,89',",",",'1,0Ct,89',",",",",'l,NOV,89',",",
'','21,Nov,89'}, ...

'XTick', [0 50 100 150 200 250 300 350 400 450 500 550 600 650 6747, ...
'XMinorTick', 'on");

box (subplot2, 'on') ;

hold (subplot2, "all'");

% Create multiple lines using matrix input to plot

plot2 = plot(n,xl,n,yl, '"Parent',subplot?2);

set (plot2(1l), 'DisplayName', 'Observed"') ;

set (plot2(2), 'Color',[1 0 0], 'DisplayName', 'Predicted"') ;

% Create xlabel

xlabel ('Time (Date)');

% Create ylabel

ylabel ('Wave Period (sec.)"'):;

% Create legend

legend2 = legend(subplot2, 'show');

set (legend2, 'Orientation', 'horizontal');
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APPENDIX (1-B)

MATLAB code for a comparison between different prediction methods

% Create database

[

% Create figure

figurel = figure('Color',[1 1 11]);

% Create axes

axesl = axes ('Parent',6 figurel, 'XTickLabel',{""', """, "', "', "', "', ""},...
'Position', [0.13 0.709264705882353 0.775 0.2157352941176471) ;

hold(axesl, 'all'");

% Create plot

plot (X1,Y1l, 'Parent’',axesl, 'DisplayName', 'Recorded') ;

% Create axes

axes2 = axes ('Parent', figurel, 'XTickLabel',{""', "', """, "', "', "', "'},
'Position', [0.13 0.409632352941176 0.775 0.2157352941176471) ;

hold (axes2, 'all');

o)

% Create plot
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plot (X1,Y2, 'Parent',axes2, 'Color', [0 0.498039215803146 0], ...
'DisplayName', 'ANN (S.M.B)"'");

% Create ylabel

ylabel ('Wave Height (m)', 'FontWeight', 'bold', 'FontSize',14);

% Create axes

axes3 = axes ('Parent',figurel, ...

'XTickLabel',{'','1l,S8ep,89',""', "', "', '1,0ct,89","", "', ', "', '"1,Nov,89"', "', '"',

YY,'eT74%), ...
'XTick', [0 50 100 150 200 250 300 350 400 450 500 550 600 650 6741, ...
'Position', [0.13 0.107481108312343 0.775 0.2157352941176471, ...
'FontSize',12);

hold (axes3, 'all');

% Create plot

plot (X1,Y3, 'Parent',axes3, 'Color',[1 0 0], 'DisplayName', 'Bretschneider') ;

% Create xlabel

xlabel ('Time (Date)', 'FontWeight', 'bold', 'FontSize',14);

% Create legend

legendl = legend(axes3, 'show');

set (legendl, ...

'Position', [0.727696078431373 0.30098189240313 0.227941176470588
0.0714199263608266]) ;
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o)

% Create legend

legend2 = legend(axes2, 'show');
set (legend2, 'FontSize',12);

% Create legend

legend3 = legend(axesl, 'show');

set (legend3, 'FontSize',12);
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APPENDIX (2-A)
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Output ~= 0.89*Target + 0.18

Qutput ~= 0.96*Target + 0.098

Figures 2.3, 2.4: Scatter diagrams for cases (4) and (5) in model (M 1.1)
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Figures 2.5,
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APPENDIX (2-B)
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Training: R=0.95866 Validation: R=0.91614
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APPENDIX (2-C)
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Figures 2.15, 2.16: Scatter diagrams for cases (1) and (2) in model (M 2.1.1)

Training: R=0.94457 Validation: R=0.95706
10 T T T T

I“_'- Data : Data

S Gl|—Ft | S 4 Fit

+ Ce Y=T + O ¥=T

- -

[ @

2 2

o ] ]

= =

o L=2]

<] ] (=]

n (]

] ]

- -

= =

o b o

k= £

= =
(s} o

10 [ 8
Target Target
Test: R=0.95643 All: R=0.94841
10

“!. g © Data

S -

+ 8 b ‘f_'

-

B | -

&’ S

m A ] 5

X =

as 1 @

S 4 | o

1] ]

L3 15

= =

o 2 1 =

5 S

o 1 ©

Target

99
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Figures 2.17, 2.18: Scatter diagrams for cases (3) and (4) in model (M 2.1.1)
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Figures 2.19,
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2.20: Scatter diagrams for cases (5a) and (5b) in model (M 2.1.1)
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Training: R=0.94378 Validation: R=0.94948
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Figure 2.21: Scatter diagrams for case (6) in model (M 2.1.1)
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APPENDIX (2-D)
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Figures 2.22, 2.23: Scatter diagrams for cases (1) and (3) in model (M 2.1.2)
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Training: R=0.94873 Validation: R=0.94351
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Figures 2.24, 2.25: Scatter diagrams for cases (4) and (5) in model (M 2.1.2)
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Figures 2.25, 2.26: Scatter diagrams for cases (6a) and (6b) in
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Figure 2.27: Scatter diagrams for case (7) in model (M 2.1.2)
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APPENDIX (2-E)
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Figures 2.28, 2.29: Scatter diagrams for cases (1) and (3) in model (M 2.2)

Training: R=0.94016 Validation: R=0.96177
10 T T T T

= Data - Data
S — Fit c 8 Fit ]
E L1 Y=T ::: ¢

o o j
2 2

L L]
i e
o -
(-] £=1]
S o 1
1} n

1 1
- -

3 3 4
B B
= =
o o
10 8
Target
Test: R=0.97301 All: R=0.94827
10

ﬂ_ s Data '; Data

(=] o

+ +

B i

2 2

o o

N =

et o

o «©

o o

n n

] ' 1

- -

= =

g g

= 3

o o

Target

107



Training: R=0.94989% Validation: R=0.91635
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Figures 2.30, 2.31: Scatter diagrams for cases (4) and (5) in model (M 2.2)
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Training: R=0.94632 Validation: R=0.9515
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Figure 2.32: Scatter diagrams for case (6) in model (M 2.2)
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APPENDIX (3)

Progress of calculation (SACS Software)
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Figure 3.2: Create a new model
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% Start Structure Definition Wizard
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Figure 3.3: Menu of selecting a new model
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Figure 3.4: Elevations tab
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Structure Definition EI = @
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Figure 3.5: Legs tab.
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Figure 3.6: Conductor data.

112



Structure Definition
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Figure 3.7: Connectivity tab
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Seastate Load Generation
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Figure 3.10 a Seastate load generation Figure 3.10 b Seastate load generation
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APPENDIX (4)

Functions of d/L for even increments of d /L (from 0.1100 to 0.1690)
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APPENDIX (5-A)

Wave surface comparison for different theories

Wt-kx) () | nAiry (m) | nStoke(m) | FtManual (N) | Ft SACS Linear ngﬁgs
0 5.33 6.82 331.86 352.39 446.33
10 5.25 6.56 306.63 316.12 379.25
20 5.01 5.83 263.06 261.62 266.68
30 462 478 205.06 194.86 158.96
40 408 357 138.39 123.47 66.65
50 343 237 69.96 55.10 2.10
60 2.67 1.26 7.04 -4.02 -47.72
70 182 0.30 4356 -49.67 73.83
80 0.93 054 76.33 -79.89 85.84
% 0.00 124 87.67 -94.91 84.47
100 0.93 185 -90.20 -95.97 78.05
110 182 235 85.63 -90.74 69.64
120 -2.67 -2.75 -73.40 -84.26 -63.51
130 -3.43 -3.07 -70.70 -80.10 -58.74
140 -4.08 -3.33 -71.20 -76.55 -54.39
150 -4.62 -3.54 -72.10 -72.27 -49.74
160 5.01 -3.70 69.40 -66.26 -44.25
170 -5.25 -3.81 -57.70 -57.85 -37.59
180 -5.33 -3.85 -45.34 -46.59 -29.51
190 -5.25 -3.81 -31.80 -32.30 -19.90
200 501 -3.70 112.80 -15.03 8.68
210 -4.62 -3.54 3.42 4.86 4.08
220 -4.08 -3.33 20.80 26.58 18.20
230 -3.43 -3.07 36.90 48.82 33.30
240 -2.67 -2.75 59.50 69.63 48.76
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250 -1.82 -2.35 80.30 86.42 63.61
260 -0.93 -1.85 97.80 99.76 76.62
270 0.00 -1.24 116.60 118.70 89.98
280 0.93 -0.54 139.70 142.91 109.73
290 1.82 0.30 165.70 175.05 134.95
300 2.67 1.26 203.70 214.00 170.70
310 3.43 2.37 248.90 257.01 218.18
320 4.08 3.57 290.50 299.70 277.70
330 4.62 4.78 333.70 336.44 345.18
340 5.01 5.83 357.80 360.78 408.43
350 5.25 6.56 368.90 367.20 457.95
360 5.33 6.82 356.90
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APPENDIX (5-B)

Forces distribution per phase angle

Wt-k) () | nexO@m) | Fi(KN) | Fdsc(KN) | FA(KN) | FLKN) | o ;éQEQ/N) sitcssfo(lr(frfl)
0 5.330 0.000 331.861 185.950 331.861 352.390 446.330
5 5.310 -7.641 329.340 184.538 321.700 334.170 412.250
10 5.249 -15.224 321.854 180.343 306.631 316.120 379.250
15 5.148 -22.690 309.631 173.494 286.940 288.480 325.290
20 5.009 -29.984 293.041 164.198 263.056 261.620 266.680
25 4,831 -37.050 272.589 152.738 235.538 227.440 209.450
30 4616 -43.834 248.896 139.463 205.062 194.860 158.960
35 4,366 -50.285 222.682 124.775 172.397 157.930 109.310
40 4,083 -56.352 194.744 109.120 138.392 123.470 66.650
45 3.769 -61.991 165.931 92.975 103.939 87.700 29.360
50 3.426 -67.158 137.117 76.830 69.959 55.100 -2.100
55 3.057 -71.814 109.179 61.176 37.365 23.750 -27.090
60 2.665 -75.923 82.965 46.488 7.042 -4.020 -47.720
65 2.253 -79.455 59.272 33.212 -20.182 -28.660 -62.340
70 1.823 -82.382 38.820 21.752 -43.561 -49.670 -73.830
75 1.380 -84.682 22.230 12.456 -62.451 -66.450 -81.790
80 0.926 -86.337 10.007 5.607 -76.330 -79.890 -85.840
85 0.465 -87.335 2.521 1.413 -84.814 -88.830 -86.030
90 0.000 -87.669 0.000 0.000 -87.669 -94.910 -84.470
95 -0.465 -86.679 -2.521 -1.413 -89.200 -96.030 -81.200

100 -0.926 -80.193 -10.007 -5.607 -90.200 -95.970 -78.050
105 -1.380 -66.960 -22.230 -12.456 -89.190 -94.160 -73.450
110 -1.823 -46.810 -38.820 -21.752 -85.630 -90.740 -69.640
115 -2.253 -18.218 -59.272 -33.212 -77.490 -86.760 -66.210
120 -2.665 9.565 -82.965 -46.488 -73.400 -84.260 -63.510
125 -3.057 37.179 -109.179 -61.176 -72.000 -81.650 -60.890
130 -3.426 66.417 -137.117 -76.830 -70.700 -80.100 -58.740
135 -3.769 95.031 -165.931 -92.975 -70.900 -77.960 -56.410
140 -4.083 123.544 -194.744 -109.120 -71.200 -76.550 -54.390
145 -4.366 150.882 -222.682 -124.775 -71.800 -74.170 -51.970
150 -4.616 176.796 -248.896 -139.463 -72.100 -72.270 -49.740
155 -4.831 200.489 -272.589 -152.738 -72.100 -69.110 -46.940
160 -5.009 223.641 -293.041 -164.198 -69.400 -66.260 -44.250
165 -5.148 246.331 -309.631 -173.494 -63.300 -61.970 -40.900
170 -5.249 264.154 -321.854 -180.343 -57.700 -57.850 -37.590
175 -5.310 278.210 -329.340 -184.538 -51.130 -52.190 -33.550
180 -5.330 286.521 -331.861 -185.950 -45.340 -46.590 -29.510
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185 -5.310 290.440 -329.340 -184.538 -38.900 -39.460 -24.710
190 -5.249 290.054 -321.854 -180.343 -31.800 -32.300 -19.900
195 -5.148 288.131 -309.631 -173.494 -21.500 -23.700 -14.290
200 -5.009 280.241 -293.041 -164.198 -12.800 -15.030 -8.680
205 -4.831 269.249 -272.589 -152.738 -3.340 -5.120 -2.290
210 -4.616 252.316 -248.896 -139.463 3.420 4.860 4.080
215 -4.366 234.382 -222.682 -124.775 11.700 15.720 11.190
220 -4.083 215.544 -194.744 -109.120 20.800 26.580 18.200
225 -3.769 193.831 -165.931 -92.975 27.900 37.780 25.840
230 -3.426 174.017 -137.117 -76.830 36.900 48.820 33.300
235 -3.057 155.079 -109.179 -61.176 45.900 59.460 41.170
240 -2.665 142.465 -82.965 -46.488 59.500 69.630 48.760
245 -2.253 130.072 -59.272 -33.212 70.800 78.490 56.400
250 -1.823 119.120 -38.820 -21.752 80.300 86.420 63.610
255 -1.380 112.320 -22.230 -12.456 90.090 92.950 70.300
260 -0.926 107.807 -10.007 -5.607 97.800 99.760 76.620
270 0.000 116.600 0.000 0.000 116.600 118.700 89.980
280 0.926 129.693 10.007 5.607 139.700 142.910 109.730
290 1.823 126.880 38.820 21.752 165.700 175.050 134.950
300 2.665 120.735 82.965 46.488 203.700 214.000 170.700
310 3.426 111.783 137.117 76.830 248.900 257.010 218.180
320 4.083 95.756 194.744 109.120 290.500 299.700 277.700
330 4.616 80.000 248.896 139.463 333.700 336.440 345.180
340 5.009 55.000 293.041 164.198 357.800 360.780 408.430
350 5.249 32.000 321.854 180.343 368.900 367.200 457.950
360 5.330 0.320 331.861 185.950 356.900
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