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ABSTRACT 

 

 

A priori estimations play one of the central roles in investigating stability, existence and 

uniqueness of the solutions of the differential equations. 

Green’s function method is one of the effective methods to get this type of estimations. 

However, construction of the Green’s function in explicit form for many problems is 

problematic. 

Similar problems arise in the investigation of the finite difference equations. In addition to 

continuous problems Green’s function method in the discrete problems are very effective in 

the determination (in solving convergence problem) of the rate of convergence of finite 

difference solution to the exact solution of the differential equation as discretization parameter 

approaches zero. 

In this thesis the existing in the literature techniques of the Green’s function method for the 

Laplace difference operator are reviewed and investigated. As it follows from the existing 

results the obtained by discrete Green’s function method error estimations the maximum order 

was 𝑂(ℎ4). 

 Also in this thesis, in the case of discrete Dirichlet problem for Poisson’s equation on the 

square grid with step size ℎ by using discrete Green’s function  𝑂(ℎ6) order of error estimation 

is obtained. 

 

Keywords: Green’s function; Laplace and Poisson’s equation; Dirichlet problem; finite 

difference method;  error estimations 
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ÖZET 

 

 

Differensiyel denklemlerin çözümleri için öncül tahminlerde en önemli rol çözümün 

kararlılığı, varlığı ve tekliği oynamaktadır. 

Green fonksiyon metodu bu tip tahminleri elde etmek için etkili bir yöntemdir. Bununla 

birlikte, pek çok problem için kapalı formdaki Green fonksiyonu oluşturmak problemlidir. 

Benzer problemler sonlu fark denklemlerinin araştırılmasındada ortaya çıkmaktadır. Sürekli 

problemlere ek olarak, ayrık problemlerde Green fonksiyon yöntemi sonlu fark çözümünün 

diferensiyel denklemin kesin çözümüne yakınsaklık hızı ayrıklaştırma parametresinin sıfıra 

yaklaşması probleminde çok etkili bir çözüm oldu. 

Bu tezde, Laplace Fark operatörü için Green fonksiyon metodunun mevcut olan teknikleri 

gözden geçirilmiş ve araştırılmıştır. Ayrık Green fonksiyonu yöntemi ile elde edilen mevcut 

sonuçlarda yakınsaklık hatasının 𝑂(ℎ4)olduğu elde edilmiştir. 

Ayrıca bu tez çalışmasında, Poisson denklemi için ayrık Dirichlet problem durumunda ızgara 

üzerinde ızgara adımı h olmak üzere ayrık Green fonksiyon kullanılarak yakınsaklık 

hatası 𝑂(ℎ6) elde edilmiştir. 

 

Anahtar Kelimeler: Green funksiyon; Laplace ve Poisson denklemleri; Dirichlet problem; 

sonlu farklar metodu; hata tahmini 
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CHAPTER 1 

INTRODUCTION 

 

The finite- difference method is one of the most widely applied methods for the approximation 

of ordinary and partial differential equations. 

We can practice this discretization method in many science applications such as in dynamical 

meteorology, aerodynamic, mathematical physics, oceanography, and many other disciplines. 

Therefore, the convergence analysis and the error estimation of this scheme hold practical, as 

well as theoretical importance. 

An example of the application of finite-difference can also be seen in Richardson’s 

extrapolation method. We use the finite-difference analogue of an equation in this method to 

improve the order of convergence, so resulting in a more accurate method. Then we can show 

that the finite-difference is the first step for the improvement of error estimation. 

When analyzing the error estimation and the convergence of the applied finite-difference 

scheme, the determination of the order of accuracy by the suggested scheme is important. 

Moreover, with investigation of the scheme, it might be possible to structure schemes with 

increased accuracy. 

In the usual study of the discretization error resulting from approximating boundary value 

problems for elliptic equations by finite difference methods, for the error estimation in 

maximum norm, there are three effective methods: 

(i) The methods which based on maximum principle.  

(ii) The methods which based on discrete Green’s function. 

(iii) The methods which based on energy inequalities with embedding theorems. 

In 1930 S. Gershgorin gave a method for estimating the order of convergence of the solution 

to a certain class of finite difference analogues to the solution of the Dirichlet problem for 

elliptic equations of order 𝑂(ℎ). His method was based on a maximum principle for the finite 

difference analogue. In 1933 L.Collatz proposed a certain boundary approximation and using 

the techniques of Gershgorin, showed that this approximation gives rise to an 𝑂(ℎ2)estimate 
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for the truncation error. The estimates of both Gershgorin and Collatz assume the knowledge 

of bounds for certain higher derivatives of the solution of the Dirichlet problem.  

From an analogy to probability theory Courant, Friedrichs, and Lewy give a finite difference 

Green’s function for the Dirichlet problem for Poisson’s equation. Using this Green’s function 

they give an analogue of Green’s third identity. Wasow studies the asymptotic behavior of the 

finite difference Green’s function and Laasonen uses an explicit representation of the finite 

difference Green’s function for the rectangle to obtain bounds in that case. 

A.Samarskii obtained a priori estimates for the solution of finite difference problems by the 

method of energy inequalities. This estimation is used to get error estimation in maximum 

norm by applying the discrete forms of the embedding theorems. 

In this thesis, the error analysis for two different finite-difference schemes have been 

reviewed. Furthermore, the discrete Green’s function method in the case of square grids to get 

𝑂(ℎ6) is improved. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The global convergence as mesh step ℎ → 0 was proved first for the Laplace equation on a 

square mesh by R.G.D. Richardson in (1917) and by Phillips and Wiener in (1922); the aim of 

these authors was to establish existence theorems for solutions of the Dirichlet problem for 

∇2𝑢 = 0 from algebraic existence theorems for ∇ℎ
2𝑢 = 0. In (Courant, Friedrichs, and Lewy, 

1928) it was proved that, all difference quotients of given order converge to the appropriate 

derivatives, as ℎ → 0.  

The maximum principle was applied to the Poisson equation by (Gerschgorin, 1930) to prove 

𝑂(ℎ) global accuracy. (Collatz, 1933), proved this result by using linear interpolation on the 

boundary, under appropriate differentiability assumptions to prove 𝑂(ℎ2) accuracy. Also by 

(Wasow, 1952), and by (P. Laasonen, 1957) the loss of accuracy introduced by corners is 

discussed.  

There was a study by (Walsh and Young, 1954), for the effect on the error of the smoothness 

of the boundary values. They proved for the Dirichlet problem, by using Fourier series, that 

|𝑈 − 𝑢| ≤ 𝑀ℎ for continuous and piecewise differentiable boundary values 𝑔(𝑠), provided 

that 𝑔′′(𝑠)is bounded except where 𝑔′(𝑠) has jumps,  𝑀 is a constant independent of ℎ.  

Also (Collatz, 1933) gives a recipe for fitting boundary values on a general domain by 

approximate values at nodes of a square mesh.    

The complete subject was carefully reconsidered by Bramble and Hubbard, who used the 

Green’s function approach systematically. The accuracy of the five-point difference 

approximation with variable coefficients has been studied by (Bramble, Hubbard, Kellogg, 

and Thomee, 1968), under weakened assumptions of smoothness on the boundary. Finally, the 

𝑂(ℎ2) convergence of all difference quotients to the appropriate derivatives was proved for the 

Laplace differential equation on a square mesh by V.Thomee in Birkhoff-Varga, and by Achi 

Brandt. Making stronger smoothness assumptions, also Thomee showed that difference 

quotients converge at the same rate as the solution in the interior. 
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Also (Bramble, Hubbard, and Zlamal, 1968) studied the effect of singularities, and they 

obtained error bounds for the Poisson equation. Thomee, also has proved convergence of order 

𝑂(ℎ
1
2⁄ ) for simple difference approximations to the Dirichlet problem for any linear, constant-

coefficient equation of elliptic type, and the global error bounds for difference approximations 

to certain mildly nonlinear elliptic problems was obtained by (McAllister, 1969). Hence, 

Bramble has shown that one can reduce the error of difference approximations to 𝐿[𝑢] = 𝑓 for 

uniformly elliptic 𝐿, by appropriately smoothing 𝑓.  

By (Bahvalov,1959) it was proved that the regularity demands on the solution 𝑢  of the 

continuous problem in some cases can be relaxed by essentially two derivatives at the 

boundary without losing the convergence estimate and that for still less regular 𝑢 one can 

obtain correspondingly weaker convergence estimates. (Bahvalov, 1959) was using his error 

bounds to estimate the number of arithmetic operations needed to obtain 𝑢 to a prescribed 

accuracy. Also related results were obtained in special cases by (Wasow, 1952), (Laasonen, 

1958), and by (Volkov, 1966) and references there in.  

 

2.1 Green’s Function for the Differential Equations 

Further estimation of a solution of the boundary-value problem for a second-order difference 

equation will involve its representation in terms of Green’s function. The boundary-value 

problem for the differential equation 

 

𝐿𝑢 =
𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝑢

𝑑𝑥
) − 𝑞(𝑥)𝑢 = −𝑓(𝑥),              0 < 𝑥 < 1 , 

 

𝑢(0) = 0 ,        𝑢(1) = 0 ,       𝑘(𝑥) ≥ 𝑐1 > 0,        𝑞(𝑥) ≥ 0,                    (2.1) 

 

can add interest and aid in understanding. As known, the solution of this problem arranges 

itself as an integral 
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𝑢(𝑥) = ∫ 𝐺(𝑥, 𝜉)𝑓(𝜉)𝑑𝜉
1

0
 ,                                                                        (2.2) 

 

where 𝐺(𝑥, 𝜉)  is the source function or Green’s function. Function (2.2) is a solution to 

equation (2.1) subject to the boundary conditions 𝑢(0) = 0 and 𝑢(1) = 0 if Green’s function 

𝐺(𝑥, 𝜉) as a function of 𝑥 for fixed 𝜉 satisfies the conditions  

 

𝐿𝑥𝐺(𝑥, 𝜉) =
𝑑

𝑑𝑥
(𝑘(𝑥)

𝑑𝐺(𝑥, 𝜉)

𝑑𝑥
) − 𝑞(𝑥)𝐺(𝑥, 𝜉) = 0 

 

𝑥 ≠ 𝜉 ,       0 < 𝑥 < 1 ,        𝐺(0, 𝜉) =  𝐺(1, 𝜉) = 0                                   (2.3) 

 

[𝐺] = 𝐺(𝜉 + 0, 𝜉) − 𝐺(𝜉 − 0, 𝜉) = 0   ,       [𝑘
𝑑𝐺

𝑑𝑥
] = −1   for    𝑥 = 𝜉 . 

 

It’s proved that this type of defined Green’s function is nonnegative and symmetric: 

 

𝐺(𝑥, 𝜉) ≥ 0        ,         𝐺(𝑥, 𝜉) = 𝐺(𝜉, 𝑥), 

 

and  𝐺(𝑥, 𝜉) can be written in the explicit form  

 

𝐺(𝑥, 𝜉) = {

𝛼(𝑥)𝛽(𝜉)

𝛼(1)
𝑓𝑜𝑟𝑥 ≤ 𝜉

𝛼(𝜉)𝛽(𝑥)

𝛼(1)
𝑓𝑜𝑟𝑥 ≥ 𝜉

     ,                                                             (2.4) 

 

where  𝛼(𝑥)  and  𝛽(𝑥) are solutions of the following problems: 

 

𝐿𝛼 = 0 ,      0 < 𝑥 < 1 ,      𝛼(0) = 0 ,     𝑘(0)𝛼 ′(0) = 1 , 

 

 𝐿𝛽 = 0 ,      0 < 𝑥 < 1 ,      𝛽(1) = 0 ,     𝑘(1)𝛽′(1) = −1.                      (2.5) 
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From this analysis follows the difficulties of the construction of the exact form of Green’s 

function. 

 

2.2 Green’s Function for the Difference Equations 

Consider the closed rectangle  

 

�̅� = {(𝑥, 𝑦): 0 ≦ 𝑥 ≦ 𝑎 , 0 ≦ 𝑦 ≦ 𝑏} , 

 

such that the ratio 𝑎 𝑏⁄  is rational. The square grid on which the difference equation will be 

considered consists of the node points (𝑥𝑚, 𝑦𝑛) : 

 

  
𝑥 = 𝑥𝑚 = 𝑚ℎ ,           (𝑚 = 0,1, … , 𝑀),      (𝑀ℎ = 𝑎),

𝑦 = 𝑦𝑛 = 𝑛ℎ,            (𝑛 = 0,1, … , 𝑁) ,        (𝑁ℎ = 𝑏).
                            (2.6) 

 

Denote a parameter point by (𝜉, 𝜂) or  

 

𝜉 = 𝜇ℎ,     𝜂 = 𝑣ℎ, (0 ≦ 𝜇 ≦ 𝑀    ,   0 ≦ 𝑣 ≦ 𝑁).                                     (2.7) 

 

For the sake of simplicity set  

 

𝑛′ = 𝑁 − 𝑛 ,            𝑣 ′ = 𝑁 − 𝑣   . 

 

Replace Laplace’s equation by its simplest analogue, namely,  

 

Δℎ𝑢(𝑥, 𝑦) =
1

ℎ
2
[𝑢(𝑥 + ℎ, 𝑦) + 𝑢(𝑥, 𝑦 + ℎ) + 𝑢(𝑥 − ℎ, 𝑦) + 𝑢(𝑥, 𝑦 − ℎ)

− 4𝑢(𝑥, 𝑦)] = 0 . 

 

Green’s function 𝐺ℎ(𝑥, 𝑦; 𝜉, 𝜂) is now defined on the grid by the difference equations  
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 Δℎ𝐺ℎ(𝑥, 𝑦; 𝜉, 𝜂) = {
0 ,         𝑤ℎ𝑒𝑛     (𝑥, 𝑦) ≠ (𝜉, 𝜂)

ℎ
−2 ,      𝑤ℎ𝑒𝑛         𝑥 = 𝜉𝑎𝑛𝑑𝑦 = 𝜂   

,                       (2.8) 

 

and by the condition that it must vanish on the boundary of the rectangle. This function can be 

represented by the following expressions: 

 

𝐺ℎ(𝑚ℎ, 𝑛ℎ; 𝜇ℎ, 𝑣ℎ) 

= {
−

2

𝑀
∑

sin𝜇𝛼𝑘 sin𝑚𝛼𝑘 sin ℎ𝑣′𝛽𝑘 sinℎ𝑛𝛽𝑘

sin ℎ𝛽𝑘 sin ℎ𝑁𝛽𝑘
       (𝑛 ≦ 𝑣)𝑀−1

𝑘=1

−
2

𝑀
∑

sin𝜇𝛼𝑘 sin𝑚𝛼𝑘 sin ℎ𝑣𝛽𝑘 sin ℎ𝑛′𝛽𝑘

sin ℎ𝛽𝑘 sin ℎ𝑁𝛽𝑘
         (𝑛 ≧ 𝑣)𝑀−1

𝑘=1

,                        (2.9) 

 

with  

 

𝛼𝑘 =
𝑘𝜋

𝑀
=

𝑘𝜋ℎ

𝑎
,      cos ℎ𝛽𝑘 = 2 − 𝑐𝑜𝑠𝛼𝑘    ,                                           (2.10) 

 

From the expression (2.9) follows the symmetry of the discrete Green’s function with respect 

to its two kind of variables (𝑥, 𝑦) and (𝜉, 𝜂).  

 

If 𝑀  increases indefinitely and, correspondingly, ℎ decreases, then the factors   𝛼𝑘  and 𝛽𝑘 

approach zero; but the terms in these sums converge to the related terms in the following 

infinite series:  

 

 𝐺(𝑥, 𝑦; 𝜉, 𝜂) =

{
 
 

 
 −

2

𝜋
∑

sin
𝑘𝜋𝜉

𝑎
sin

𝑘𝜋𝑥

𝑎
𝑠ℎ
𝑘𝜋𝜂′

𝑎
𝑠ℎ
𝑘𝜋𝑦

𝑎

𝑘𝑠ℎ
𝑘𝜋𝑏

𝑎

           (𝑦 ≦ 𝜂),∞
𝑘=1

−
2

𝜋
∑

sin
𝑘𝜋𝜉

𝑎
sin

𝑘𝜋𝑥

𝑎
𝑠ℎ
𝑘𝜋𝜂

𝑎
𝑠ℎ
𝑘𝜋𝑦′

𝑎

𝑘𝑠ℎ
𝑘𝜋𝑏

𝑎

(𝑦 ≧ 𝜂).∞
𝑘=1

            (2.11) 
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In (Pentti Laansonen, 1958), estimate for the rate of convergence of 𝐺ℎ(𝑥, 𝑦; 𝜉, 𝜂)  to 

𝐺(𝑥, 𝑦; 𝜉, 𝜂) for a decreasing  ℎ  was established by the following inequality  

 

|𝐺ℎ(𝑥, 𝑦; 𝜉, 𝜂) − 𝐺(𝑥, 𝑦; 𝜉, 𝜂)| ≦ 2.15 (
ℎ

𝜌
)
2

  ,                                          (2.12) 

 

where 𝜌 is the distance  

 

𝜌 = √(𝑥 − 𝜉)2 + (𝑦 − 𝜂)2   . 

 

2.3 Effective error estimation in rectangular domain 

By means of estimate (2.12) it is now possible to compute some bounds for the error made in 

approximating the solution of Poisson’s equation by the finite difference analogue. The 

solution 𝑢ℎ of Poisson’s difference equation  

 

Δℎ𝑢ℎ = 𝑓(𝑥, 𝑦) , 

where  

 

𝛥ℎ𝑢(𝑥, 𝑦) =
1

ℎ2
[𝑢(𝑥 + ℎ, 𝑦) + 𝑢(𝑥, 𝑦 + ℎ) + 𝑢(𝑥 − ℎ, 𝑦) + 𝑢(𝑥, 𝑦 − ℎ) −

4𝑢(𝑥, 𝑦)], 

 

and 𝑢ℎ = 0 on the boundary nodes.  

The solution of this finite-difference problem by using the above defined discrete Green’s 

function can be represented as follows: 

 

𝑢ℎ(𝜇ℎ, 𝑣ℎ) = ℎ
2 ∑ ∑𝐺ℎ(𝑚ℎ, 𝑛ℎ; 𝜇ℎ, 𝑣ℎ)𝑓(𝑚ℎ, 𝑛ℎ)

𝑁−1

𝑛=1

𝑀−1

𝑚=1
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The corresponding formula for the solution of Poisson’s differential equation is  

 

𝑢(𝜉, 𝜂) = ∫∫𝐺(𝑥, 𝑦; 𝜉, 𝜂)𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦   .

𝑏

0

𝑎

0

 

 

The difference 𝑢ℎ − 𝑢 at a node point  𝜉 = 𝜇ℎ,𝜂 = 𝑣ℎ may be decomposed into the following 

terms: 

 

𝑢ℎ − 𝑢 = ℎ
2𝐺ℎ(𝜇ℎ, 𝑣ℎ; 𝜇ℎ, 𝑣ℎ)𝑓(𝜇ℎ, 𝑣ℎ) −∬ 𝐺(𝑥, 𝑦; 𝜉, 𝜂)𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦

𝑆𝑚,𝑛
+

ℎ
2∑ ′∑ ′[𝐺ℎ(𝑚ℎ, 𝑛ℎ; 𝜇ℎ, 𝑣ℎ) − 𝐺(𝑚ℎ, 𝑛ℎ; 𝜇ℎ, 𝑣ℎ)]𝑓(𝑚ℎ, 𝑛ℎ) −

∑ ′∑ ′𝐺(𝑚ℎ, 𝑛ℎ; 𝜇ℎ, 𝑣ℎ)∬ [(𝑓(𝑥, 𝑦) − 𝑓(𝑚ℎ, 𝑛ℎ)]𝑑𝑥𝑑𝑦
𝑆𝑚,𝑛

−

∑ ′∑ ′𝑓(𝑚ℎ, 𝑛ℎ)∬ [(𝐺(𝑥, 𝑦; 𝜇ℎ, 𝑣ℎ) − 𝐺(𝑚ℎ, 𝑛ℎ; 𝜇ℎ, 𝑣ℎ)]𝑑𝑥𝑑𝑦
𝑆𝑚,𝑛

−

∑ ′∑ ′∬ [(𝐺(𝑥, 𝑦; 𝜇ℎ, 𝑣ℎ) − 𝐺(𝑚ℎ, 𝑛ℎ; 𝜇ℎ, 𝑣ℎ)]×[𝑓(𝑥, 𝑦) −
𝑆𝑚,𝑛

𝑓(𝑚ℎ, 𝑛ℎ)]𝑑𝑥𝑑𝑦 − ∑ ′′∑ ′′∬ 𝐺(𝑥, 𝑦; 𝜉, 𝜂)𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑆𝑚,𝑛

.                   (2.13) 

 

All double sums affixed with primes range over all (ℎ×ℎ) squares 𝑆𝑚,𝑛 with the interior node 

points (𝑚ℎ, 𝑛ℎ) as their centers, with the exception of the square about  ℎ , 𝑣ℎ . The sums 

affixed with double primes range over all those parts of the boundary squares 𝑆𝑚,𝑛 (where 𝑚 

is either 0 or 𝑀, or 𝑛 is either 0 or 𝑁 ) which are inside the rectangle.  

If 𝑓  is continuous , 𝔚  the maximum of  |𝑓|  , 𝜖(𝑟)  the modulus of continuity , i.e., the 

maximum variation of 𝑓 between any two points with distance less than or equal to 𝑟 , and 𝑑 

is the largest of the two sides 𝑎 and 𝑏 , then an estimate for the total error reads : 

 

|𝑢ℎ − 𝑢| 

≦ (21.4 + 18.8 log
𝑑

ℎ
) ℎ

2𝔚+ 2.83𝑑2𝜖 (
ℎ

√2
) + 11.4 ℎ𝑑𝜖 (

ℎ

√2
).              (2.14) 
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This estimate proves that the truncation error tends to zero for decreasing ℎ. Furthermore 

construction of this result is not essentially impaired if discontinuous of bounded variation are 

allowed on certain rectifiable curves whose total length is bounded, because these only 

generate an additional term of magnitude  𝑂(ℎ2 log(𝑑 ℎ⁄ )) . 

In order to have a check on the accuracy obtainable by the assume method applied, on the 

contrary, that 𝑓 is not only continuous but also has continuous first order and bounded second 

order derivatives. In this case the result is  

 

|𝑢ℎ − 𝑢| = [(21.4 + 18.8  log
𝑑

ℎ
)𝔚 + 8.1 𝑑𝔚′ + 2.7 𝑑2𝔚′′] ℎ

2.           (2.15) 

 

 Where 𝔚′ is the maximum of grad 𝑓 and 𝔚′′ the maximum of the second order derivatives. 

This result may now be compared with a previously known error estimate.  

If the function 𝑓(𝑥, 𝑦) of the Poisson’s equation is analytic and if the boundary of a domain is 

an analytic curve, then, of course, the solution with vanishing boundary values is analytic in 

the closed domain. The results of Gerschgorin show in this case, that if the grid can be chosen 

so that all boundary nodes are on the curve, then the truncation error of the associated discrete 

approximations is of the order 𝑂(ℎ2) . Now, the result (2.15) gives the rate 𝑂(ℎ2 log ℎ
−1) for 

the rectangular domain. This lower result than 𝑂(ℎ2) of the convergence rate is the presence 

of the corners at the boundary. 
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CHAPTER 3 

GREEN’S FUNCTION ON THE DOMAINS WITH CURVED BOUNDARIES 

 

The approach taken here is to define an appropriate related finite difference Green’s function 

for various finite difference analogues. In each case the analogue of Green’s third identity is 

given and used to obtain estimates for the truncation error.  

In the second order estimate the truncation error is studied for a finite difference 

approximation. Although at points near the boundary the finite difference operator 

approximates the Laplace operator only to 𝑂(ℎ) it is seen that the resulting contribution to the 

truncation error is  𝑂(ℎ3) . 

 

3.1 Second Order Estimates 

Consider the finite – difference approximation of the boundary value problem  

 

∆𝑢(𝑥, 𝑦) = 𝐹(𝑥, 𝑦),           (𝑥, 𝑦) ∈ 𝑅 , 

𝑢(𝑥, 𝑦) = 𝑓(𝑥, 𝑦),          (𝑥, 𝑦) ∈ 𝐶 .                                                           (3.1) 

 

We assume that 𝑅  is a bounded region in the (𝑥, 𝑦) plane with boundary 𝐶 . 

 

Let 𝑅ℎ be the set of mesh points in 𝑅 whose nearest neighbours in the 𝑥 and 𝑦 directions lie in 

𝑅. Those grid points in 𝑅 which do not belong to 𝑅ℎ will makeup the set called 𝐶ℎ
∗ . The points 

of intersection of the grid with the boundary 𝐶 form the set 𝐶ℎ.  

For any point  𝑃 belonging to  𝑅ℎ + 𝐶ℎ
∗ + 𝐶ℎ we define the neighbors 𝑁(𝑃) to be those nearest 

points in 𝑅ℎ + 𝐶ℎ
∗ + 𝐶ℎ lying along grid lines.  

If 𝑉(𝑥, 𝑦) is an arbitrary mesh function defined on 𝑅ℎ + 𝐶ℎ
∗ + 𝐶ℎ  then for such vectors we 

define the finite difference operator ∆ℎ.  

If (𝑥, 𝑦) ∈ 𝑅ℎ , then  
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∆ℎ𝑉(𝑥, 𝑦) = ℎ
−2{𝑉(𝑥 + ℎ, 𝑦) + 𝑉(𝑥, 𝑦 + ℎ) + 𝑉(𝑥 − ℎ, 𝑦) + 𝑉(𝑥, 𝑦 − ℎ) −

4𝑉(𝑥, 𝑦)}.                                                                                                   (3.2) 

 

This is the usual 𝑂(ℎ2) approximation of ∆ for functions 𝑉(𝑥, 𝑦) ∈ 𝐶4(�̅�). In fact,  

 

|∆𝑉(𝑥, 𝑦) − ∆ℎ𝑉(𝑥, 𝑦)| ≤
ℎ
2

6
𝑀4     ,        (𝑥, 𝑦) ∈ 𝑅ℎ   ,                              (3.3) 

 

where we have used the notation  

 

𝑀𝑗 = 𝑠𝑢𝑝𝑃∈𝑅 {|
𝜕𝑗𝑈(𝑃)

𝜕𝑥𝑖𝜕𝑦𝑗−𝑖
| : 𝑖 = 0,1, … , 𝑗}.                                                    (3.4) 

 

At points of 𝐶ℎ
∗,  ∆ℎ  is defined to be the 5-point divided difference approximation to ∆ .  

 

For example, if  (�̅�, �̅�) ∈ 𝐶ℎ
∗ , we use for the approximation  

𝜕2𝑣

𝜕𝑥2
  and  

𝜕2𝑣

𝜕𝑦2
  the following: 

 

𝜕2𝑣

𝜕𝑥2
≅ 𝑉�̅�𝑥 =

1

(
ℎ+𝛼ℎ

2
)
(
𝑉(�̅� + ℎ, �̅�) − 𝑉(�̅�, �̅�)

ℎ
−
𝑉(�̅�, �̅�) − 𝑉(�̅� − 𝛼ℎ, �̅�)

𝛼ℎ
) 

 

=
2

ℎ
2(1 + 𝛼)

{𝑉(�̅� + ℎ, �̅�) − (1 +
1

𝛼
)𝑉(�̅�, �̅�) +

1

𝛼
𝑉(�̅� − 𝛼ℎ, �̅�)} 

 

=
2

ℎ
2(1+𝛼)

𝑉(�̅� + ℎ, �̅�) −
2

ℎ
2(1+𝛼)

∙ (
𝛼+1

𝛼
)𝑉(�̅�, �̅�) +

2

ℎ
2𝛼(1+𝛼)

𝑉(�̅� − 𝛼ℎ, �̅�). 

 

Similarly,  

 



13 

 

𝜕2𝑣

𝜕𝑦2
≅ 𝑉�̅�𝑦 =

2

ℎ
2(1 + 𝛽)

{𝑉(�̅�, �̅� + 𝛽) − (1 +
1

𝛽
)𝑉(�̅�, �̅�) +

1

𝛽
𝑉(�̅�, �̅� − 𝛽ℎ)} 

 

=
2

ℎ
2(1 + 𝛽)

𝑉(�̅�, �̅� + 𝛽) −
2

ℎ
2(1 + 𝛽)

∙ (
𝛽 + 1

𝛽
)𝑉(�̅�, �̅�)

+
2

ℎ
2𝛽(1 + 𝛽)

𝑉(�̅�, �̅� − 𝛽ℎ) 

 

      ∆ℎ𝑉(�̅�, �̅�) = 2ℎ
−2 {(

1

𝛼+1
)𝑉(�̅� + ℎ, �̅�) +

1

𝛼(𝛼+1)
𝑉(�̅� − 𝛼ℎ, �̅�) +

(
1

𝛽+1
)𝑉(�̅�, �̅� + ℎ) +

1

𝛽(𝛽+1)
𝑉(�̅�, �̅� − 𝛽ℎ) − (

1

𝛼
+

1

𝛽
)𝑉(�̅�, �̅�)}.            (3.5) 

 

Combining these, as  ∆ℎ𝑉 = 𝑉�̅�𝑥 + 𝑉�̅�𝑦 , we obtain (3.5). 

If 𝛼 = 𝛽 = 1  ,   then ∆ℎ takes the same form as in (3.2). 

 

We note that ∆ℎ as defined in (3.5) approximates ∆ to 𝑂(ℎ) for 𝑉(𝑥, 𝑦) ∈ 𝐶3 in R, 

i.e.  

 

|∆𝑉(�̅�, �̅�) − ∆ℎ𝑉(�̅�, �̅�)| ≤
2𝑀3ℎ

3
   .                                                              (3.6) 
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Figure 3.1: Regular and Irregular Points 

 

The following is finite difference analogues of (3.1),  

 

∆ℎ𝑈(𝑥, 𝑦) = 𝐹(𝑥, 𝑦),           (𝑥, 𝑦) ∈ 𝑅ℎ + 𝐶ℎ
∗    , 

𝑈(𝑥, 𝑦) = 𝑓(𝑥, 𝑦),          (𝑥, 𝑦) ∈ 𝐶ℎ .                                                         (3.7) 

 

This is a system of simultaneous linear equations for the determination of the mesh 

function 𝑈(𝑥, 𝑦). 

The truncation error 𝜀(𝑃) ≡ 𝑢(𝑃) − 𝑈(𝑃) ,    𝑃 ∈ 𝑅ℎ + 𝐶ℎ
∗ + 𝐶ℎ  satisfies an inequality of the 

type 

|𝜀|𝑀 ≤ 𝐾ℎ
2
,                                                                                               (3.8) 

 

where   𝐾  is a constant independent of 𝑃 and ℎ . In (3.8) we have used the notation  

 

𝜓𝑀 = 𝑠𝑢𝑝𝑃∈𝑆⊂�̅�𝜓(𝑃) ,                                                                              (3.9) 
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for any function   𝜓 defined on a subset   𝑆 of    �̅� .        

                        

Finite Difference Analogue of Green’s function 𝐺ℎ(𝑃, 𝑄) is  

 

∆ℎ,𝑃𝐺ℎ(𝑃, 𝑄) = −𝛿(𝑃, 𝑄)ℎ−2    ,       𝑃𝜖 𝑅ℎ + 𝐶ℎ
∗ , 

𝐺ℎ(𝑃, 𝑄) = 𝛿(𝑃, 𝑄)      ,     𝑃 ∈ 𝐶ℎ  ,                                                        (3.10) 

 

 for     𝑄 ∈ 𝑅ℎ + 𝐶ℎ
∗ + 𝐶ℎ 

 

𝛿(𝑃, 𝑄) = {
1         ,     𝑃 = 𝑄   ,
0         ,       𝑃 ≠ 𝑄  .

                                                                (3.11) 

 

Lemma 1. (Maximum Principle) 

For any mesh function 𝑉(𝑃)  defined on 𝑅ℎ + 𝐶ℎ
∗ + 𝐶ℎ   if ∆ℎ𝑉(𝑃) ≥ 0  for 𝑃𝜖 𝑅ℎ + 𝐶ℎ

∗  then 

𝑉(𝑃) takes on its maximum on 𝐶ℎ.  

 

Lemma 2.  (Green’s Third Identity) 

Let 𝑉(𝑃) be any arbitrary mesh function defined on 𝑅ℎ + 𝐶ℎ
∗ + 𝐶ℎ . Then for any 𝑃 ∈ 𝑅ℎ +

𝐶ℎ
∗ + 𝐶ℎ 

 

 𝑉(𝑃) = ℎ
2∑ 𝐺ℎ(𝑃, 𝑄)[−∆ℎ𝑉(𝑄)]𝑄∈𝑅ℎ+𝐶ℎ

∗ + ∑ 𝐺ℎ(𝑃, 𝑄)𝑉(𝑄)𝑄∈𝐶ℎ
 .      (3.12) 

 

Proof: Let 𝑃 ∈ 𝑅ℎ + 𝐶ℎ
∗ 

∆ℎ𝑊(𝑃) = ℎ
2∆ℎ𝐺ℎ(𝑃, 𝑃)[−∆ℎ𝑉(𝑃)] 

= ℎ
2 ∙ (−ℎ

−2)(−∆ℎ𝑉(𝑃)) 

= ∆ℎ𝑉(𝑃). 
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Let 𝑃 ∈ 𝐶ℎ then  

 

𝑊(𝑃) = 𝐺ℎ(𝑃, 𝑃)𝑉(𝑃) = 𝑉(𝑃). 

 

It follows that  

 

∆ℎ𝑊(𝑃) = ∆ℎ𝑉(𝑃) ,             𝑃𝜖𝑅ℎ + 𝐶ℎ
∗ ,                                                 (3.13) 

 

𝑊(𝑃) = 𝑉(𝑃).            𝑃 ∈ 𝐶ℎ .                                                                (3.14) 

 

Lemma 3.                     𝐺ℎ(𝑃, 𝑄) ≥ 0 , 𝑄 ∈ 𝑅ℎ + 𝐶ℎ
∗ + 𝐶ℎ .                                   (3.15) 

 

Proof:   Substitute  −𝐺ℎ(𝑃, 𝑄)  into Green’s operator  

i.e.   

∆ℎ,𝑃(−𝐺ℎ(𝑃, 𝑄)) = 𝛿(𝑃, 𝑄)ℎ
−2 ≥ 0   on   𝑅ℎ + 𝐶ℎ

∗, 

 

    −𝐺ℎ(𝑃, 𝑄) = −𝛿(𝑃, 𝑄) ≤ 0       on    𝐶ℎ . 

 

By the maximum principle, it can obtain its maximum on  𝐶ℎ . 

 

Hence  

 

−𝐺ℎ(𝑃, 𝑄) ≤ 0𝑃 ∈ 𝑅ℎ + 𝐶ℎ
∗ , 

 

𝐺ℎ(𝑃, 𝑄) ≥ 0. 

 

Lemma 4.                ∑ 𝐺ℎ(𝑃, 𝑄)𝑄∈𝐶ℎ
∗ ≤ 1,  𝑃 ∈ 𝑅ℎ + 𝐶ℎ

∗ + 𝐶ℎ .                             (3.16) 

Proof: Let the mesh function 𝑊(𝑃) be given by  
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𝑊(𝑄) = {
1       ,   𝑄 ∈ 𝑅ℎ + 𝐶ℎ

∗ ,
0         ,      𝑄 ∈ 𝐶ℎ .

                                                               (3.17) 

 

Then ∆ℎ𝑊(𝑃) = 0 , 𝑄 ∈ 𝑅ℎ . It is easily seen from the definition of ∆ℎ on 𝐶ℎ
∗ that −∆ℎ𝑊(𝑃) ≥

ℎ
−2

 .  

Applying lemma 2.2 it follows that for 𝑃 ∈ 𝑅ℎ + 𝐶ℎ
∗ 

 

1 = ℎ2∑ 𝐺ℎ(𝑃, 𝑄)[−∆ℎ𝑊(𝑄)]𝑄∈𝐶ℎ
∗ ≥ ∑ 𝐺ℎ(𝑃, 𝑄)𝑄∈𝐶ℎ

∗ . 

 

If  𝑃 ∈ 𝐶ℎ , then  

  

∑ 𝐺ℎ(𝑃, 𝑄)𝑄∈𝐶ℎ
∗ ≤ 1  . 

 

Lemma 5.  If 𝑑 is the diameter of the smallest circumscribed circle containing 𝑅  then   

 

ℎ
2∑ 𝐺ℎ(𝑃, 𝑄) ≤

𝑑2

16𝑄∈𝑅ℎ+𝐶ℎ
∗     ,     𝑃 ∈ 𝑅ℎ + 𝐶ℎ

∗ + 𝐶ℎ .                              (3.18) 

 

Proof:  Let 0 be the center of the circumscribed circle about  𝑅  of diameter 𝑑 .  

Let 𝑊(𝑃) =
𝑟(𝑃)2

4
    for   𝑃 ∈ 𝑅ℎ + 𝐶ℎ

∗ + 𝐶ℎ ,   where 𝑟(𝑃) is the Euclidean distance from 0 

to 𝑃. 

 Then,  

 

∆ℎ𝑊(𝑃) = 1       ,     𝑃 ∈ 𝑅ℎ + 𝐶ℎ
∗ , 

 

𝑊(𝑃) =
𝑥1
2+𝑥2

2

4
    as   ∆ℎ,𝛼𝑥𝛼

2 = 2 ,    
1

4
(∆ℎ(𝑥1

2 + 𝑥2
2)) =

4

4
= 1 . 

 

Now define the mesh function  



18 

 

𝑉(𝑃) = ℎ
2∑ 𝐺ℎ(𝑃, 𝑄)𝑄∈𝑅ℎ+𝐶ℎ

∗ . 

 

We see from (3.10) that  

 

∆ℎ𝑉(𝑃) = −1  ,  𝑃 ∈ 𝑅ℎ + 𝐶ℎ
∗     (as ∆ℎ𝑉(𝑃) = ℎ

2 ∑ 𝐺ℎ(𝑃, 𝑄)𝑄∈𝑅ℎ+𝐶ℎ
∗ = 1), 

𝑉(𝑃) = 0             ,    𝑃 ∈ 𝐶ℎ  .                                                                  (3.19) 

 

Hence   ∆ℎ[𝑉(𝑃) +𝑊] = 0   for   𝑃 ∈ 𝑅ℎ + 𝐶ℎ
∗    and   𝑉(𝑃) +𝑊(𝑃) ≤

d2

16
=

r(P)2

4
=

(d 2⁄ )2

4
    

for  𝑃 ∈ 𝐶ℎ  .  

By the maximum principle, since 𝑊 ≥ 0 , it follows that  

 

𝑉(𝑃) ≤
𝑑2

16
    ,     𝑃 ∈ 𝑅ℎ + 𝐶ℎ

∗ + 𝐶ℎ , 

 

i.e.   

ℎ2∑ 𝐺ℎ(𝑃, 𝑄) ≤
𝑑2

16𝑄∈𝑅ℎ+𝐶ℎ
∗       ,     𝑃 ∈ 𝑅ℎ + 𝐶ℎ

∗ + 𝐶ℎ 

 

Theorem 1. Let 𝑢(𝑥, 𝑦) be the solution of (3.1) and 𝑈(𝑥, 𝑦) the solution of (3.7). Then the 

truncation error 𝜀(𝑃) = 𝑢(𝑃) − 𝑈(𝑃) satisfies the inequality  

 

|𝜀|𝑀 ≤
𝑀4𝑑

2

96
ℎ2 +

2𝑀3

3
ℎ3 .                                                                        (3.20) 

 

Proof:   Since 𝜀(𝑃) = 0  ,  𝑃 ∈ 𝐶ℎ  we see from Lemma (2) that   

 

𝜀(𝑃) = ℎ2∑ 𝐺ℎ(𝑃, 𝑄)[−∆ℎ𝜀(𝑄)]𝑄∈𝑅ℎ+𝐶ℎ
∗ .                                              (3.21) 

 

Since                                            
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|−∆ℎ𝜀(𝑄)| = |∆ℎ𝑢(𝑄) − ∆𝑢(𝑄)| ,                                                          (3.22) 

 

we have that  

 

|𝜀(𝑃)| = ℎ2 ∑ 𝐺ℎ(𝑃, 𝑄)[−∆ℎ𝜀(𝑄)]

𝑄∈𝑅ℎ

+ ℎ2 ∑ 𝐺ℎ(𝑃, 𝑄)[−∆ℎ𝜀(𝑄)]

𝑄∈𝐶ℎ
∗

 

≤ |ℎ2 ∑ 𝐺ℎ(𝑃, 𝑄)

𝑄∈𝑅ℎ

|
ℎ2𝑀4

6
+ ℎ2 |∑ 𝐺ℎ(𝑃, 𝑄)

𝑄∈𝐶ℎ
∗

|
2𝑀3ℎ

3

3
 

≤
𝑀4𝑑

2

96
ℎ2 +

2𝑀3

3
ℎ3. 

 

3.2 Other Boundary Approximations 

3.2.1 Zero Order Interpolation 

Let 𝐺ℎ
∗(𝑃, 𝑄) be the finite difference Green’s function for 𝑅ℎ with boundary 𝐶ℎ

∗ . This is given 

by  

 

∆ℎ,𝑃𝐺ℎ
∗(𝑃, 𝑄) = −𝛿(𝑃, 𝑄)ℎ−2      ,      𝑃 ∈ 𝑅ℎ , 

𝐺ℎ
∗(𝑃, 𝑄) = 𝛿(𝑃, 𝑄)             ,       𝑃 ∈ 𝐶ℎ

∗                                                 (3.23) 

 

for all 𝑃 ∈ 𝑅ℎ + 𝐶ℎ
∗ .   

  

Just as in Lemma 2  we have the identity  

 

𝑉(𝑃) = ℎ
2∑ 𝐺ℎ

∗(𝑃, 𝑄)[−∆ℎ𝑉(𝑄)]𝑄∈𝑅ℎ
+ ∑ 𝐺ℎ

∗(𝑃, 𝑄)𝑉(𝑄)𝑄∈𝐶ℎ
∗  .           (3.24) 

 

In addition all of the other lemmas of section (3.1) are valid if we make the substitutions  
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𝐺ℎ → 𝐺ℎ
∗ , 

𝑅ℎ + 𝐶ℎ
∗ → 𝑅ℎ , 

𝐶ℎ → 𝐶ℎ
∗ .                                                                                                  (3.25) 

 

We shall also need the following Lemma: 

 

Lemma 1.      For      𝑃 ∈ 𝑅ℎ + 𝐶ℎ
∗ , 

 

∑ 𝐺ℎ
∗(𝑃, 𝑄)𝑄∈𝐶ℎ

∗ = 1  .                                                                              (3.26) 

 

Proof:  Apply (3.24) to 𝑉(𝑃) ≡ 1. 

Let 𝑉(𝑃) ≡ 1  . Then  

 

∆ℎ,𝑃𝐺ℎ
∗(𝑃, 𝑄) = −ℎ

−2
  if 𝑃 ∈ 𝑅ℎ , 

 

𝑉(𝑃) = 1 = ℎ
2 ∙ ℎ−2 + 0 = 1    if     𝑃 ∈ 𝐶ℎ

∗ , 

 

𝑉(𝑃) = 1 = 0 + ∑ 𝐺ℎ
∗(𝑃, 𝑄)𝑉(𝑃)𝑄∈𝐶ℎ

∗  , 

 

∑ 𝐺ℎ
∗(𝑃, 𝑄)𝑄∈𝐶ℎ

∗ = 1  . 

 

Let 𝑉(𝑃) satisfy  

  

∆ℎ𝑈(𝑃) = 𝐹(𝑃)    ,   𝑃 ∈ 𝑅ℎ , 

𝑈(𝑃) = 𝑓(𝑃′)        ,  𝑃 ∈ 𝐶ℎ
∗   ,                                                                (3.27) 

 

where 𝑃′ is one of the neighbours of 𝑃 in 𝐶ℎ .  
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Theorem 2.  Let 𝑢(𝑥, 𝑦) be the solution of (3.1)  and 𝑈(𝑥, 𝑦) the solution of  (3.27) . Then the 

truncation error 𝜀(𝑃) = 𝑢(𝑃) − 𝑈(𝑃)  satisfies the inequality  

 

|𝜀|𝑀 ≤ ℎ𝑀1 + 
𝑀4𝑑

2

96
ℎ
2
 .                                                                           (3.28) 

 

Proof:   From (3.24) 

 

𝜀(𝑃) = ℎ
2∑ 𝐺ℎ

∗(𝑃, 𝑄)[−∆ℎ𝜀(𝑃, 𝑄)]𝑄∈𝑅ℎ
+ ∑ 𝐺ℎ

∗(𝑃, 𝑄)𝜀(𝑄)𝑄∈𝐶ℎ
∗ .          (3.29) 

 

We note that for 𝑄 ∈ 𝐶ℎ
∗ 

 

|𝜀(𝑄)| = |𝑢(𝑄) − 𝑈(𝑄)| = |𝑢(𝑄) − 𝑈(𝑄′)| ≤ ℎ𝑀1  .                           (3.30) 

 

We have that 

                      

|∆ℎ𝜀(𝑄)| ≤
ℎ
2

6
𝑀4      ,               𝑄 ∈ 𝑅ℎ .                                                    (3.31) 

 

Taking absolute values of both sides of (3.29) and substituting the inequalities obtained we 

end up with  

   

|𝜀|𝑀 ≤ ℎ𝑀1 + 
𝑀4𝑑

2

96
ℎ
2
. 

 

Since in (3.30) we have 𝑄′ as the closest point to  𝑄 on the boundary  

Hence 

 

𝑈(𝑄′) = 𝑓(𝑄′) = 𝑢(𝑄′). 
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Thus 

|𝑢(𝑄) − 𝑢(𝑄′)| ≤ |𝑢′(𝜉)| ∙ |𝑄 − 𝑄′| ≤ 𝑀1ℎ . 

 

3.2.2The first order interpolation 

We consider here the finite difference analogue of (3.1) given in (Collatz, 1933). He defines 

the following approximation to (3.1) 

 

∆ℎ𝑈(𝑃) = 𝐹(𝑃),           𝑃 ∈ 𝑅ℎ , 

𝑈(𝑃) = 𝑓(𝑃),        𝑃 ∈ 𝐶ℎ  .                                                                     (3.32) 

 

At a point 𝑃 of 𝐶ℎ
∗ he prescribes that 𝑈(𝑃) lie on a straight line between the values of 𝑈 at two 

neighbours of 𝑃, one of which is in 𝑅ℎ , the other in 𝐶ℎ. For example for the point (�̅�, �̅�) of 

Fig.1 we have 

 

𝑈(�̅�, �̅�) =
𝛼

𝛼+1
𝑈(�̅� + ℎ, �̅�) +

1

𝛼+1
𝑈(�̅� − 𝛼ℎ, �̅�).                                     (3.33) 

 

Alternatively we could have interpolated in the 𝑦 direction. 

As (Collatz, 1933) has shown this method gives rise to an estimate of the truncation error 

which is 𝑂(ℎ2) . The contribution to the truncation error arising from the points of 𝐶ℎ
∗ is also 

𝑂(ℎ2) . The following analysis again yields similar results. 

 

Theorem 3. (Collatz): Let 𝑢(𝑥, 𝑦) be the solution of (3.1) and 𝑈(𝑥, 𝑦) the solution of (3.32) 

and (3.33) . Then the truncation error 𝜀(𝑃) = 𝑢(𝑃) − 𝑈(𝑃)  satisfies  

 

|𝜀|𝑀 ≤ [𝑀2 + 
𝑀4𝑑

2

48
] ℎ

2
 .                                                                          (3.34) 

 

Proof:  For  𝑄 ∈ 𝐶ℎ
∗ 
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|𝜀(�̅�, �̅�)| = |𝑢(�̅�, �̅�) − 𝑈(�̅�, �̅�)| 

= |𝑢(�̅�, �̅�) −
𝛼

𝛼+1
𝑈(�̅� + ℎ, �̅�) −

1

𝛼+1
𝑈(�̅� − 𝛼ℎ, �̅�)|.                                (3.35) 

 

Using the triangle inequality,  

 

|𝜀(�̅�, �̅�)| = |𝑢(�̅�, �̅�) −
𝛼

𝛼 + 1
(𝑢(�̅� + ℎ, �̅�) − 𝜀(�̅� + ℎ, �̅�)) −

1

𝛼 + 1
𝑢(�̅�

− 𝛼ℎ, �̅�)| 

 

≤ |𝑢(�̅�, �̅�) −
𝛼

𝛼+1
𝑢(�̅� + ℎ, �̅�) −

1

𝛼+1
𝑢(�̅� − 𝛼ℎ, �̅�)| +

𝛼

𝛼+1
|𝜀|𝑀 .             (3.36) 

 

[ 𝜀(�̅� − 𝛼ℎ, �̅�) = 0  as point is on boundary ] 

Expanding this using Taylor series, and keeping in mind that 0 < 𝛼 ≤ 1, we obtain  

 

|𝜀(𝑄)| ≤
𝑀2

2
ℎ
2 +

1

2
|𝜀|𝑀 .                                                                         (3.37) 

 

Combining with earlier results, we obtain  

 

|𝜀(𝑄)| ≤
1

2
|𝜀|𝑀 + (

𝑀2

2
+
𝑀4𝑑

2

96
) ℎ

2
 . 

 

Then 

 

|𝜀|𝑀 = 𝑚𝑎𝑥𝑅ℎ
|𝜀(𝑝)| ≤

1

2
|𝜀|𝑀 + (

𝑀2

2
+
𝑀4𝑑

2

96
) ℎ

2
, 

 

2|𝜀|𝑀 ≤ |𝜀|𝑀 + (𝑀 +
𝑀4𝑑

2

48
) ℎ

2
. 

 



24 

 

Therefore, 

 

|𝜀|𝑀 ≤ (𝑀2 +
𝑀4𝑑

2

48
) ℎ

2
.                                                                           (3.38) 

 

3.2.3 The second order interpolation. 

We can show an example of a finite difference analogue of (3.1) which fails to be of positive 

type at points of 𝐶ℎ
∗.  

Let 𝑈(𝑃) satisfy the system  

 

∆ℎ𝑈(𝑃) = 𝐹(𝑃),           𝑃 ∈ 𝑅ℎ , 

𝑈(𝑃) = 𝑓(𝑃) ,            𝑃 ∈ 𝐶ℎ .                                                                  (3.39) 

 

 At a point 𝑃 of 𝐶ℎ
∗ let 𝑈(𝑃) lie on a parabola through value of 𝑈(𝑃) at a neighboring point of 

𝐶ℎ and two points of 𝑅ℎ + 𝐶ℎ
∗ . All four points involved must of course be collinear. In addition 

we require one of the points of 𝑅ℎ + 𝐶ℎ
∗ to be a neighbour of 𝑃 and the other to be taken at a 

distance 3ℎ from 𝑃. For example, for the point (�̅�, �̅�) in Figure (3.1). 

 

𝑈(�̅�, �̅�) =
3

3+𝛼(𝛼+4)
{𝑈(�̅� − 𝛼ℎ, �̅�) +

𝛼

2
(𝛼 + 3)𝑈(�̅� + ℎ, �̅�) −

𝛼

6
(𝛼 +

1)𝑈(�̅� + 3ℎ, �̅�)}.                                                                         (3.40) 

 

From Taylor’s formula it is easy to see that for a sufficiency smooth function  𝑈(𝑃) in 𝑅 we 

have an inequality of the type  

 

|𝑢(�̅�, �̅�) −
3

3+𝛼(𝛼+4)
{𝑢(�̅� − 𝛼ℎ, �̅�) +

𝛼

2
(𝛼 + 3)𝑢(�̅� + ℎ, �̅�) −

𝛼

6
(𝛼 +

1)𝑈(�̅� + 3ℎ, �̅�)}| ≤
14ℎ

3𝑀3

3
  ,                                                                   (3.41) 
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where (�̅�, �̅�) ∈ 𝐶ℎ
∗ .In some cases the interpolation will be in the 𝑦 direction.   

Theorem 4. Let 𝑢(𝑥, 𝑦) be the solution of (3.1) and 𝑈(𝑥, 𝑦) the solution of (3.39) and (3.40). 

Then the truncation error 𝜀(𝑃) = 𝑢(𝑃) − 𝑈(𝑃)  satisfies 

 

|𝜀|𝑀 ≤
𝑑2𝑀4

12
ℎ
2 +

112

3
𝑀3ℎ

3
 .                                                                    (3.42) 

 

Proof: The proof follows in a manner analogous to that of Theorem 3.   

 We have the inequality  

 

|𝜀(�̅�, �̅�)| ≤ |𝑢(�̅�, �̅�) −
3

3+𝛼(𝛼+4)
{𝑢(�̅� − 𝛼ℎ, �̅�) +

𝛼

2
(𝛼 + 3)𝑢(�̅� + ℎ, �̅�) −

𝛼

6
(𝛼 + 1)𝑢(�̅� + 3ℎ, �̅�)| +

7

8
|𝜀|𝑀.                                                (3.43) 

 

For the point (�̅�, �̅�) of Fig (1), it follows that 

  

|𝜀(𝑄)| ≤
14

3
𝑀3ℎ

3 +
7

8
|𝜀|𝑀   ,                                                                   (3.44) 

 

where   𝑄 ∈ 𝐶ℎ
∗ . 

The inequality follows,  

 

|𝜀|𝑀 −
7

8
|𝜀|𝑀 =

1

8
|𝜀|𝑀 ≤

𝑑2𝑀4

96
ℎ
2 +

14𝑀3

3
ℎ
3
 

 

|𝜀|𝑀 ≤
𝑑2𝑀4

12
ℎ
2 +

112

3
𝑀3ℎ

3
. 
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CHAPTER 4 

HIGHER – ACCURATE SCHEMES 

 

In this chapter we will consider two methods for the construction of sixth order approximation 

for the Dirichlet problem for Poisson’s equation on rectangular domains. Moreover, we will 

define Discrete Green’s function for the constructed sixth order difference operator to prove 

the sixth order convergence theorem in the maximum norm. 

 

4.1 The Dirichlet Poisson Problem on the Rectangle 

The structure of difference schemes for the numerical solution of Poisson problem with 

Dirichlet conditions on the rectangular sides is analyzed. We obtain the system of 9-point 

difference equations by using the 5-point stencils. 

 

Let 

 

𝑅 = {(𝑥, 𝑦): 0 < 𝑥 < 𝑎, 0 < 𝑦 < 𝑏} 

 

be an open rectangle  𝛾𝑗 ,  𝑗 = 1,2,3,4 be the sides of this rectangle including the vertices. Let 

the numbering be in counter clockwise direction starting from the side which lies on the x-

axis. 

The Dirichlet Poisson equation on a rectangle is  

 

∆𝑢 =
𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
= 𝑓(𝑥, 𝑦) 𝑜𝑛 𝑅 ,                                                              (4.1) 

𝑢 = 𝜑𝑚𝑜𝑛 𝛾𝑚   ,     𝑚 = 1,2,3,4 . 
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4.2The First Method 

Let us draw two systems as shown in Figure (4.1) of parallel lines on the plane: 

𝑥 = 𝑥0 + 𝑖ℎ = 𝑥𝑖 ,                                                                                

𝑦 = 𝑦0 + 𝑘ℎ = 𝑦𝑘 .                                         (4.2) 

 

 

Figure 4.1:  5-point stencil 

 

Consider the node (𝑖, 𝑘) of the net, and take the nodes closest to it which are (𝑖 + 1, 𝑘) , (𝑖, 𝑘 +

1), (𝑖 − 1, 𝑘) , (𝑖, 𝑘 − 1), (𝑖 + 1, 𝑘 + 1), (𝑖 + 1, 𝑘 − 1) , (𝑖 − 1, 𝑘 − 1), (𝑖 − 1, 𝑘 + 1) as shown 

in Figure (4.2), and expand them about the point 𝑢𝑖,𝑘 using Taylor’s formula. The expressions 

for the neighboring points of  𝑢𝑖,𝑘 are as follows : 

 

𝑢𝑖+1,𝑘 − 𝑢𝑖,𝑘 = ℎ𝑢𝑥 +
ℎ
2

2!
𝑢𝑥2 +

ℎ
3

3!
𝑢𝑥3 +

ℎ
4

4!
𝑢𝑥4 +⋯ 

𝑢𝑖−1,𝑘 − 𝑢𝑖,𝑘 = −ℎ𝑢𝑥 +
ℎ
2

2!
𝑢𝑥2 −

ℎ
3

3!
𝑢𝑥3 +

ℎ
4

4!
𝑢𝑥4 +⋯ 

𝑢𝑖,𝑘+1 − 𝑢𝑖,𝑘 = ℎ𝑢𝑦 +
ℎ
2

2!
𝑢𝑦2 +

ℎ
3

3!
𝑢𝑦3 +

ℎ
4

4!
𝑢𝑦4 +⋯ 

𝑢𝑖,𝑘−1 − 𝑢𝑖,𝑘 = −ℎ𝑢𝑦 +
ℎ
2

2!
𝑢𝑦2 +

ℎ
3

3!
𝑢𝑦3 +

ℎ
4

4!
𝑢𝑦4 +⋯                              (4.3) 
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𝑢𝑖+1,𝑘+1 − 𝑢𝑖,𝑘 = ℎ (
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
)𝑢 +

ℎ
2

2!
(
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
)
2

𝑢 +
ℎ
3

3!
(
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
)
3

𝑢 +⋯ 

𝑢𝑖−1,𝑘+1 − 𝑢𝑖,𝑘 = ℎ (−
𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
)𝑢 +

ℎ
2

2!
(−

𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
)
2

𝑢 +
ℎ
3

3!
(−

𝜕

𝜕𝑥
+
𝜕

𝜕𝑦
)
3

𝑢

+⋯ 

𝑢𝑖−1,𝑘−1 − 𝑢𝑖,𝑘 = ℎ (−
𝜕

𝜕𝑥
−
𝜕

𝜕𝑦
)𝑢 +

ℎ
2

2!
(−

𝜕

𝜕𝑥
−
𝜕

𝜕𝑦
)
2

𝑢 +
ℎ
3

3!
(−

𝜕

𝜕𝑥
−
𝜕

𝜕𝑦
)
3

𝑢

+⋯ 

𝑢𝑖+1,𝑘−1 − 𝑢𝑖,𝑘 = ℎ (
𝜕

𝜕𝑥
−

𝜕

𝜕𝑦
) 𝑢 +

ℎ
2

2!
(
𝜕

𝜕𝑥
−

𝜕

𝜕𝑦
)
2

𝑢 +
ℎ
3

3!
(
𝜕

𝜕𝑥
−

𝜕

𝜕𝑦
)
3

𝑢 +⋯     (4.4) 

 

 

Figure  4.2 :  9-point stencil 

 

With the above differences we form the sums ⊡𝑢𝑖,𝑘 and ⊞𝑢𝑖,𝑘 which gives  
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⊡𝑢𝑖,𝑘 = 𝑢𝑖+1,𝑘 + 𝑢𝑖,𝑘+1 + 𝑢𝑖−1,𝑘 + 𝑢𝑖,𝑘−1 − 4𝑢𝑖,𝑘 = 2 [
ℎ
2

2!
(𝑢𝑥2 + 𝑢𝑦2) +

ℎ
4

4!
(𝑢𝑥4 + 𝑢𝑦4) +

ℎ
6

6!
(𝑢𝑥6 + 𝑢𝑦6) +⋯ ] ,                                                   (4.5) 

 

and 

 

⊞𝑢𝑖,𝑘 = 𝑢𝑖+1,𝑘+1 + 𝑢𝑖−1,𝑘+1 + 𝑢𝑖−1,𝑘−1 + 𝑢𝑖+1,𝑘−1 − 4𝑢𝑖,𝑘 =

4 [
ℎ
2

2!
(𝑢𝑥2 + 𝑢𝑦2) +

ℎ
4

4!
(𝑢𝑥4 + 6𝑢𝑥2𝑦2 + 𝑢𝑦4) +

ℎ
6

6!
(𝑢𝑥6 + 15𝑢𝑥4𝑦2 +

15𝑢𝑥2𝑦4 + 𝑢𝑦6) + ⋯ ].                                                                    (4.6) 

 

Finally we will look for the combination 𝑐1⊡𝑢𝑖,𝑘 + 𝑐2⊞𝑢𝑖,𝑘  to get an approximate 

expression for ∆𝑢 . There is no way to choose 𝑐1 and 𝑐2 such that the fourth order derivatives 

will vanish, however by choosing 𝑐1 =
2

3ℎ
2  and 𝑐2 =

1

6ℎ
2   the term with the fourth order 

derivatives form an operator  

 

∆∆𝑢 =
𝜕4𝑢

𝜕𝑥4
+ 2

𝜕4𝑢

𝜕𝑥2𝜕𝑦2
+
𝜕4𝑢

𝜕𝑦4
 , 

 

which is known since ∆𝑢 = 𝑓(𝑥, 𝑦) and  ∆∆𝑢 = ∆𝑓(𝑥, 𝑦) .  

Therefore we get the high accurate scheme  

 

1

6ℎ
2 (4 ⊡ 𝑢𝑖,𝑘 +⊞ 𝑢𝑖,𝑘) = ∆𝑢 +

2ℎ
2

4!
∆2𝑢 +

2ℎ
4

6!
(∆3𝑢 + 2

𝜕4

𝜕𝑥2𝜕𝑦2
∆𝑢) + 𝑅𝑖,𝑘   , 

 

𝑅𝑖,𝑘 =
2

3

ℎ
6

8!
[3∆4𝑢 + 16

𝜕4

𝜕𝑥2𝜕𝑦2
∆2𝑢 + 20

𝜕8𝑢

𝜕𝑥4𝜕𝑦4
] + ⋯                               (4.7) 

 

If we had expanded the equations (4.4) by Taylors formula with reminder term, by taking 

derivatives of up to the seventh order at the point (𝑖, 𝑘), and derivatives of the eighth order at 
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some mean points , including them in the reminder term of the formula , we obtain for 𝑅𝑖,𝑘 an 

expression of the following type : 

 

𝑅𝑖,𝑘 =
520ℎ

6

3∙8!
𝑀8 .                                                                                         (4.8) 

 

Let  𝑢𝑖,𝑘 be the point in Figure (4.1) and we define ∆ℎ to be the usual nine point operator there,  

i.e.  

 

∆ℎ

(9)
𝑢ℎ ≡

1

6ℎ
2 [4∑ 𝑢𝑖

4
𝑖=1 + ∑ 𝑢𝑖

8
𝑖=5 − 20𝑢ℎ] . 

 

Hence  

|∆ℎ

(9)
𝑢 − ∆𝑢| ≤

520ℎ
6

3∙8!
𝑀8 .                                                                          (4.9) 

 

4.3 The Second Method 

On the basis of the 5-point scheme, we can construct operators giving an error approximation 

of  𝑂(|ℎ4|) or 𝑂(|ℎ6|) for a solution within the square (cube) grid.  

Consider 𝑢 = 𝑢(𝑥) satisfiying the equation  

 

Δ𝑤 = ∑
𝜕2𝑢

𝜕𝑥𝛼
2

𝑃
𝛼=1 = −𝑓(𝑥)                                                                        (4.10) 

 

For 𝑃 = 2 (2D case) we have 

  

∆𝑢 = (𝐿1 + 𝐿2)𝑢 = 𝐿1𝑢 + 𝐿2𝑢    ,      𝐿𝛼𝑢 =
𝜕2𝑢

𝜕𝑥𝛼
2    ,      𝛼 = 1,2 . 

 

By appealing to the difference operator  
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Λ𝑢 = (Λ1 + Λ2)𝑢 = Λ1𝑢 + Λ2u  ,      Λ𝛼𝑢 = 𝑢�̅�𝛼𝑥𝛼  ,     𝛼 = 1,2 . 

 

Let 𝑢 = 𝑢(𝑥) possess all necessary derivatives. So that 

Λ𝑢 − 𝐿𝑢 =
ℎ1
2

12
𝐿1
2𝑢 +

ℎ2
2

12
𝐿2
2𝑢 + 𝑂(|ℎ4|).                                                  (4.11) 

 

By the equation 𝐿1𝑢 + 𝐿2𝑢 = −𝑓(𝑥)  we find that 

 

𝐿1
2𝑢 = −𝐿1𝑓 − 𝐿1𝐿2𝑢 ,       𝐿2

2𝑢 = −𝐿2𝑓 − 𝐿1𝐿2𝑢  . 

 

In order that  

 

Λ𝑢 = 𝐿𝑢 −
ℎ1
2

12
𝐿1𝑓 −

ℎ2
2

12
𝐿2𝑓 −

ℎ1
2+ℎ2

2

12
𝐿1𝐿2𝑢 + 𝑂(|ℎ

4|) .                          (4.12) 

 

 

Figure  4.3 : 9-Point on Rectangle Domain 
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We substitute here – 𝑓 in place of 𝐿𝑢 and change   𝐿1𝐿2𝑢 by the difference operator,  

 

Λ1Λ2𝑢 = 𝑢�̅�1𝑥1�̅�2𝑥2 − 𝐿1𝐿2𝑢 =
𝜕4𝑢

𝜕𝑥1
2𝜕𝑥2

2 . 

 

This operator is defined on the 9-point pattern given in figure and we have  Λ1Λ2𝑢 , as 

follows,  

Λ1Λ2𝑢 = Λ1 [
𝑢(𝑥1, 𝑥2 − ℎ2) − 2𝑢(𝑥1, 𝑥2) + 𝑢(𝑥1, 𝑥2 + ℎ2)

ℎ2
2 ] 

 

=
1

ℎ1
2

ℎ2
2 {𝑢(𝑥1 − ℎ1, 𝑥2 − ℎ2) − 2𝑢(𝑥1, 𝑥2 − ℎ2) + 𝑢(𝑥1 + ℎ1, 𝑥2 − ℎ2) +

4𝑢(𝑥1, 𝑥2) − 2𝑢(𝑥1 − ℎ1, 𝑥2) + 𝑢(𝑥1 − ℎ1, 𝑥2 + ℎ2) − 2𝑢(𝑥1, 𝑥2 + ℎ2) −

2𝑢(𝑥1 + ℎ1, 𝑥2) + 𝑢(𝑥1 + ℎ1, 𝑥2 + ℎ2)} . 

 

Is required within the estimation of the error of approximation to Λ1Λ2𝑢 − 𝐿1𝐿2𝑢  through 

advantage of the good-established expansion  

 

Λ𝑟 = 𝑟�̅�𝑥 =
𝑟(𝑥+ℎ)−2𝑟(𝑥)+𝑟(𝑥−ℎ)

ℎ
2 𝑟(𝜆) ,    𝜆 = 𝑥 + 𝜃ℎ  ,    |𝜃| ≤ 1 .         (4.13) 

 

Suppose that  𝑟(𝑥) ∈ 𝐶2[𝑥 − ℎ, 𝑥 + ℎ] , so that  

 

Λ𝑟 = 𝑟�̅�𝑥 = 𝑟 ′′(𝑥) +
ℎ
2

12
𝑟(4)(𝜆∗) ,       𝜆∗ = 𝑥 + 𝜃∗ℎ ,    |𝜃∗| ≤ 1 ,         (4.14) 

𝑟(𝑥) ∈ 𝐶4[𝑥 − ℎ, 𝑥 + ℎ] . 

 

 By taking 𝑥1 to be fixed we have  

 

Λ2𝑟 = 𝐿2𝑟(𝑥1, 𝑥2) +
ℎ2
2

12

𝜕4𝑟

𝜕𝑥2
4 (𝑥1, 𝜆2)  ,    𝜆2 = 𝑥2 + 𝜃2ℎ2   ,   |𝜃2| ≤ 1  , 
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Λ1Λ2𝑢(𝑥1, 𝑥2) = Λ1𝐿2𝑢(𝑥1, 𝑥2) +
ℎ2
2

12
Λ1

𝜕4𝑢

𝜕𝑥2
4 (𝑥1, 𝜆2)  . 

 

Applying equation (4.14) with 𝑟 = 𝐿2𝑢 and 𝑥 = 𝑥1 to the first summand yields  

 

Λ1𝐿2𝑢(𝑥1, 𝑥2) = 𝐿1𝐿2𝑢(𝑥1, 𝑥2) +
ℎ1
2

12
Λ1

𝜕4𝑢

𝜕𝑥1
4 (𝜆1

∗ , 𝑥2) ,   𝜆1
∗ = 𝑥1 + 𝜃1

∗ℎ1  ,   

|𝜃1
∗| ≤ 1. 

 

By the similar method for the second summand with respect to equation (4.12) 

 

ℎ2
2

12
Λ1

𝜕4𝑢

𝜕𝑥2
4 (𝑥1, 𝜆2) =

ℎ2
2

12
Λ1

𝜕6𝑢

𝜕𝑥1
2𝜕𝑥2

4 (𝜆1, 𝜆2),     𝜆1 = 𝑥1 + 𝜃1ℎ1  ,   |𝜃2| ≤ 1  . 

 

What must be done is to bring together the outcomes acquired:  

 

(Λ1Λ2 − 𝐿1𝐿2)𝑢(𝑥1, 𝑥2) = Λ1Λ2𝑢(𝑥1, 𝑥2) − 𝐿1𝐿2𝑢(𝑥1, 𝑥2) = 𝑂(ℎ1
2) +

𝑂(ℎ2
2) = 𝑂(|ℎ|2) . 

 

Substituting into equation (4.12) the difference operator Λ1Λ2𝑢 into place of 𝐿1𝐿2𝑢 ,  

 

𝐿1𝐿2𝑢 = Λ1Λ2𝑢 + 𝑂(|ℎ|
2) , 

 

and – 𝑓(𝑥) into place of 𝐿𝑢 , we finally obtain  

 

Λ𝑢 = 𝐿𝑢 −
ℎ1
2 + ℎ2

2

12
Λ1Λ2𝑢 −

ℎ1
2

12
𝐿1𝑓 −

ℎ2
2

12
𝐿2𝑓 + 𝑂(|ℎ

4|) 

= (𝑓 +
ℎ1
2

12
𝐿1𝑓 +

ℎ2
2

12
𝐿2𝑓) −

ℎ1
2+ℎ2

2

12
Λ1Λ2𝑢 + 𝑂(|ℎ

4|).                              (4.15) 
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Since, the equation  

 

Λ
′𝑦 = −𝜙 ,   Λ

′𝑦 = Λ𝑦 +
ℎ1
2+ℎ2

2

12
Λ1Λ2𝑦 , 

𝜙 = 𝑓 +
ℎ1
2

12
𝐿1𝑓 +

ℎ2
2

12
𝐿2𝑓 ,                                                                       (4.16) 

 

provides an approximation of order 4 for a solution 𝑢 = 𝑢(𝑥) of Poisson’s equation (4.10). In 

fact, equation (4.15) gives  

 

Λ
′𝑢 + 𝜙 = Λ

′𝑢 + 𝜙 − 𝐿𝑢 − 𝑓 = 𝑂(|ℎ4|) ,       𝐿 = 𝐿1 + 𝐿2 . 

 

The operator Λ
′
 formed using the nodes in Figure (4.3) (𝑥1 +𝑚1ℎ1, 𝑥2 +𝑚2ℎ2) ;  𝑚1, 𝑚2 =

−1,0,1 , and used in (4.16) is represented by  

 

5

3
(
1

ℎ1
2 +

1

ℎ2
2) 𝑢 =

1

6
(
5

ℎ1
2 −

1

ℎ2
2) (𝑢

+11 + 𝑢−11) +
1

6
(
5

ℎ2
2 −

1

ℎ1
2) (𝑢

+12 + 𝑢−12) +

1

12
(
1

ℎ1
2 +

1

ℎ2
2) (𝑢

(+11,+12) + 𝑢(−11,−12) + (𝑢(−11,−12) + 𝑢(−11,+12) + 𝜑.   (4.17) 

 

Here, 

 

𝑢+11 = 𝑢(𝑥1 + ℎ1, 𝑥2) , 𝑢
−11 = 𝑢(𝑥1 − ℎ1, 𝑥2) , 𝑢

(+11,−12) = 𝑢(𝑥1 +

ℎ1, 𝑥2 − ℎ2). 

 

When the equidistant grid is considered in all directions (If  ℎ1 = ℎ2 = ℎ) the equation is 

obtained as : 
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5

3
∙
2

ℎ
2 𝑢ℎ(𝑥, 𝑦) =

1

6
(
4

ℎ
2) (𝑢ℎ(𝑥 + ℎ, 𝑦) + 𝑢ℎ(𝑥 − ℎ, 𝑦)) +

1

6
(
4

ℎ
2) (𝑢(𝑥, 𝑦 + ℎ) +

𝑢ℎ(𝑥, 𝑦 − ℎ)) +
1

12
(
2

ℎ
2) (𝑢ℎ(𝑥 + ℎ, 𝑦 + ℎ)+𝑢ℎ(𝑥 − ℎ, 𝑦 − ℎ)) +

(𝑢ℎ(𝑥 − ℎ, 𝑦 − ℎ)+𝑢ℎ(𝑥 − ℎ, 𝑦 + ℎ)) + 𝜑 . 

 

2

3ℎ
2 (𝑢ℎ(𝑥 + ℎ, 𝑦) + 𝑢ℎ(𝑥 − ℎ, 𝑦) + 𝑢ℎ(𝑥, 𝑦 + ℎ) + 𝑢ℎ(𝑥, 𝑦 − ℎ)) +

1

6ℎ
2 (𝑢(𝑥 + ℎ, 𝑦 + ℎ) + 𝑢ℎ(𝑥 + ℎ, 𝑦 − ℎ)+𝑢ℎ(𝑥 − ℎ, 𝑦 − ℎ) + 𝑢ℎ(𝑥 − ℎ, 𝑦 +

ℎ)) −
10

3ℎ
2 𝑢ℎ(𝑥, 𝑦) + 𝜑 = 0 . 

 

Therefore,  

 

𝑢0 =
4(𝑢1 + 𝑢2 + 𝑢3 + 𝑢4) + 𝑢5 + 𝑢6 + 𝑢7 + 𝑢8

20
+
3

10
ℎ
2𝜙 . 

 

(See Figure 4.1) 

 

To avoid exhaustive computations, we put Λ1𝑓 in place of L1𝑓  and  Λ2𝑓  in place of L2𝑓 into 

the equation of 𝜙 and replace 𝜙 by 𝑂(|ℎ4|) , as 𝜓 = Λ
′𝑢 + 𝜙 = 𝑂(|ℎ4|) , so that  

𝜙 = 𝑓 +
ℎ1
2

12
Λ1𝑓 +

ℎ2
2

12
Λ2𝑓. 

 

4.4 Discrete Green’s Function for the Six Order Error Estimation 

From the sections (4.2) and (4.3) follows: 

 

|∆ℎ

(9)
𝑢(𝑥, 𝑦) − ∆𝑢(𝑥, 𝑦)| ≤

520ℎ
6

3∙8!
𝑀8.                                                      (4.18) 

 

For the Dirichlet problem for Poisson’s equation we have the following finite difference 

problem  
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∆ℎ

(9)𝑈(𝑥, 𝑦) = 𝐹(𝑥, 𝑦),           (𝑥, 𝑦) ∈ 𝑅ℎ    , 

𝑈(𝑥, 𝑦) = 𝑓(𝑥, 𝑦),          (𝑥, 𝑦) ∈ 𝐶ℎ .                                                       (4.19) 

 

Lemma 1. For any mesh function 𝑉(𝑃) defined on 𝑅ℎ + 𝐶ℎ  if ∆ℎ

(9)𝑉(𝑃) ≥ 0 for 𝑃𝜖𝑅ℎ then 

𝑉(𝑃) takes on its maximum on 𝐶ℎ.  

 

From Lemma 1 follows that the solution of problem (4.19) exists and unique.  

 

We define the Finite difference analogue of Green’s function 𝐺ℎ(𝑃, 𝑄) as  

 

∆ℎ,𝑃
(9)𝐺ℎ(𝑃, 𝑄) = −𝛿(𝑃, 𝑄)ℎ

−2
    ,      𝑃𝜖𝑅ℎ , 

𝐺ℎ(𝑃, 𝑄) = 𝛿(𝑃, 𝑄)      ,       𝑃 ∈ 𝐶ℎ  ,                                                      (4.20) 

 

 for     𝑄 ∈ 𝑅ℎ + 𝐶ℎ, and 

 

𝛿(𝑃, 𝑄) = {
1         ,     𝑃 = 𝑄 ,
0         ,       𝑃 ≠ 𝑄 .

                                                                 (4.21) 

 

Lemma 2. (Green’s Third Identity). 

Let 𝑉(𝑃) be any arbitrary mesh function defined on 𝑅ℎ + 𝐶ℎ . Then for any 𝑃 ∈ 𝑅ℎ + 𝐶ℎ  

 

𝑉(𝑃) = ℎ
2∑ 𝐺ℎ(𝑃, 𝑄)[−∆ℎ

(9)𝑉(𝑄)]𝑄∈𝑅ℎ
+ ∑ 𝐺ℎ(𝑃, 𝑄)𝑉(𝑄)𝑄∈𝐶ℎ

 .          (4.22) 

 

Proof: Let 𝑃 ∈ 𝑅ℎ and let  

 

𝑊(𝑃) = ℎ
2∑ 𝐺ℎ(𝑃, 𝑄)[−∆ℎ

(9)𝑉(𝑄)]𝑄∈𝑅ℎ
+ ∑ 𝐺ℎ(𝑃, 𝑄)𝑉(𝑄)𝑄∈𝐶ℎ

. 

 

We calculate  
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∆ℎ

(9)𝑊(𝑃) = ℎ
2∆ℎ𝐺ℎ(𝑃, 𝑃)[∆ℎ

(9)𝑉(𝑃)] 

= ℎ
2 ∙ (−ℎ

−2)(−∆ℎ𝑉(𝑃)) 

= ∆ℎ𝑉(𝑃) . 

 

Let 𝑃 ∈ 𝐶ℎ then 𝑊(𝑃) = 𝐺ℎ(𝑃, 𝑃)𝑉(𝑃) = 𝑉(𝑃).  

 

Lemma 3.                   𝐺ℎ(𝑃, 𝑄) ≥ 0  ,      𝑄 ∈ 𝑅ℎ + 𝐶ℎ  .                                       (4.23) 

 

Proof:  From (4.20), it follows that  

      

∆ℎ,𝑃
(9)(−𝐺ℎ(𝑃, 𝑄)) = 𝛿(𝑃, 𝑄)ℎ−2 ≥ 0   on   𝑅ℎ , 

−𝐺ℎ(𝑃, 𝑄) = −𝛿(𝑃, 𝑄) ≤ 0       on    𝐶ℎ . 

 

By Lemma 1, the function 𝐺ℎ(𝑃, 𝑄) can obtain its maximum on  𝐶ℎ . 

Hence  

 

−𝐺ℎ(𝑃, 𝑄) ≤ 0 ,       𝑃 ∈ 𝑅ℎ  , 

or                                                

 𝐺ℎ(𝑃, 𝑄) ≥ 0 

 

Lemma 4.  If 𝑑 is the diameter of the smallest circumscribed circle containing 𝑅  then   

 

ℎ
2∑ 𝐺ℎ(𝑃, 𝑄) ≤

𝑑2

16𝑄∈𝑅ℎ
    ,     𝑃 ∈ 𝑅ℎ + 𝐶ℎ    .                                         (4.24) 

 

Proof:  Let 0 be the center of the circumscribed circle about  𝑅  of diameter 𝑑, and let for any 

𝑃 = 𝑃(𝑥1, 𝑥2) ∈ 𝑅ℎ + 𝐶ℎ, 
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𝑊(𝑃) =
𝑥1
2 + 𝑥2

2

4
 . 

 

Then 

 

∆ℎ

(9)
𝑊 =

1

6ℎ
2
[4((𝑥1 + ℎ)2 + 𝑥2

2 + 𝑥1
2 + (𝑥2 + ℎ)2 + (𝑥1 − ℎ)2 + 𝑥2

2 + 𝑥1
2

+ (𝑥2 − ℎ)2) + (𝑥1 + ℎ)2 + (𝑥2 + ℎ)2 + (𝑥1 − ℎ)2

+ (𝑥2 + ℎ)2 + (𝑥1 − ℎ)2 + (𝑥2 − ℎ)2 + (𝑥1 + ℎ)2

+ (𝑥2 − ℎ)2 − 20(𝑥1
2 + 𝑥2

2)] 

 

=
1

6ℎ
2 [4(𝑥1

2 + 2𝑥1ℎ+ ℎ
2 + 𝑥2

2 + 𝑥1
2 + 𝑥2

2 + 2𝑥2ℎ+ ℎ
2 + 𝑥1

2 − 2𝑥1ℎ+ ℎ
2

+ 𝑥2
2 + 𝑥1

2 + 𝑥2
2 − 2𝑥2ℎ+ ℎ

2) + 𝑥1
2 + 2𝑥1ℎ+ ℎ

2 + 𝑥2
2

+ 2𝑥2ℎ+ ℎ
2 + 𝑥1

2 − 2𝑥1ℎ+ ℎ
2 + 𝑥2

2 + 2𝑥2ℎ + ℎ
2 + 𝑥1

2

− 2𝑥1ℎ+ ℎ
2 + 𝑥2

2 − 2𝑥2ℎ+ ℎ
2 + 𝑥1

2 + 2𝑥1ℎ+ ℎ
2 + 𝑥2

2

− 2𝑥2ℎ+ ℎ
2 − 20(𝑥1

2 + 𝑥2
2)] 

 

=
1

6ℎ
2 [16𝑥1

2 + 16𝑥2
2 + 16ℎ

2 + 4𝑥1
2 + 4𝑥2

2 + 8ℎ
2 − 20(𝑥1

2 + 𝑥2
2)] 

 

=
1

6ℎ
2 [24ℎ

2] = 4 . 

 

So that    

∆ℎ

(9) 𝑥1
2 + 𝑥2

2

4
= 1 . 

 

Now define the mesh function  



39 

 

𝑉(𝑃) = ℎ
2
∑ 𝐺ℎ(𝑃, 𝑄)

𝑄∈𝑅ℎ

 . 

 

We see from (4.20) that  

 

∆ℎ

(9)𝑉(𝑃) = −1  ,  𝑃 ∈ 𝑅ℎ     (as ∆ℎ

(9)𝑉(𝑃) = ℎ
2
∑ 𝐺ℎ(𝑃, 𝑄)𝑄∈𝑅ℎ

= 1) 

𝑉(𝑃) = 0             ,    𝑃 ∈ 𝐶ℎ 

 

Hence  

 

[∆ℎ

(9)𝑉(𝑃) +  𝑊] = 0   For  𝑃 ∈ 𝑅ℎ 

  And 

 

𝑉(𝑃) +𝑊(𝑃) ≤
𝑑2

16
=

𝑟(𝑃)2

4
=

(𝑑 2⁄ )2

4
     for   𝑃 ∈ 𝐶ℎ  . 

 

By the maximum principle, since 𝑊 ≥ 0 , it follows that  

𝑉(𝑃) ≤
𝑑2

16
    ,     𝑃 ∈ 𝑅ℎ + 𝐶ℎ . 

i.e. 

ℎ
2∑ 𝐺ℎ(𝑃, 𝑄) ≤

𝑑2

16𝑄∈𝑅ℎ
      ,     𝑃 ∈ 𝑅ℎ + 𝐶ℎ 

 

Theorem 1. Let 𝑢(𝑥, 𝑦) be the solution of (3.1) and 𝑈(𝑥, 𝑦) the solution of (4.19). Then the 

truncation error 𝜀(𝑃) = 𝑢(𝑃) − 𝑈(𝑃) satisfies the inequality  

 

|𝜀|𝑀 ≤
65 𝑑2𝑀8

6∙8!
ℎ
6
                                                                                     (4.25) 

 

Proof:   Since 𝜀(𝑃) = 0  ,  𝑃 ∈ 𝐶ℎ  we see from Lemma 2 that   
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𝜀(𝑃) = ℎ
2 ∑ 𝐺ℎ(𝑃, 𝑄)[−∆ℎ

(9)𝜀(𝑄)]

𝑄∈𝑅ℎ

 . 

 As     

|−∆ℎ

(9)𝜀(𝑄)| = |∆ℎ𝑢(𝑄) − ∆𝑢(𝑄)|, 

 

since we have  

 

|∆ℎ

(9)𝑢(𝑥, 𝑦) − ∆𝑢(𝑥, 𝑦)| ≤
520ℎ

6

3 ∙ 8!
𝑀8 . 

 

Therefore, 

 

|𝜀(𝑃)| = ℎ
2 ∑ 𝐺ℎ(𝑃, 𝑄)[−∆ℎ

(9)𝜀(𝑄)]

𝑄∈𝑅ℎ

 

 

≤ |ℎ2 ∑ 𝐺ℎ(𝑃, 𝑄)

𝑄∈𝑅ℎ

|
520 ℎ6𝑀8

3 ∙ 8!
 

 

≤
𝑑2

16
(
520 ℎ6𝑀8

3 ∙ 8!
) 

 

≤
65 𝑑2𝑀8

6∙8!
ℎ
6
. 
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CHAPTER 5 

CONCLUSION (RESULTS) 

 

In this thesis, we have discussed the finite-difference approximation of elliptic equations, and 

we obtained some more estimates of the type suggested by Gershgorin. Here we take the 

approaches to define a related finite difference Green’s function for various finite difference 

analogues. The analogue of Green’s third identity is given in each case and used to obtain 

estimates for the truncation error.  

When the boundary value problem is defined on a rectangular domain by discrete Green’s 

function method to obtain effective error estimations are analyzed. 

In the case of problem on domains with curved boundaries by discrete Green’s function 

method, when different type of interpolation formula on the irregular grids are used, the first 

and the second order error estimations are obtained. 

Furthermore, Bramble and Hubbard (1962), by constructing fourth order interpolation in 

irregular grids and using 9-point approximation on square regular grids by using discrete 

Green’s function method obtained 𝑂(ℎ4) order of estimation. 

In this thesis, when solution domain is a rectangle we have used the 9-point approximation on 

square grid, and by applying Green’s function method we obtain  𝑂(ℎ6) order of uniform 

convergence of the approximate solution. 

To extend this result for the problem on the domain with curved boundary in the irregular 

grids higher order than Bramble and Hubbard’s (1962) formula is needed.  
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