
 

 

INVESTIGATIONS ON THE PREDICTION OF 

CONCRETE CARBONATION DEPTH BY 

ARTIFICIAL NEURAL NETWORKS 

 

 

A THESIS SUBMITTED TO THE GRADUATE 

SCHOOL OF APPLIED SCIENCES 

OF 

NEAR EAST UNIVERSITY 

By 

 

IKENNA DESMOND UWANUAKWA 

 

 

In Partial Fulfillment of the Requirements for 

the Degree of Master of Science  

in 

Civil Engineering 

 

 

 

NICOSIA, 2016 



 

 

Ikenna Desmond UWANUAKWA: INVESTIGATIONS ON THE 

PREDICTION OF CONCRETE CARBONATION DEPTH BY 

ARTIFICIAL NEURAL NETWORKS  

 

Assoc. Prof. Dr. Nadire ÇAVUŞ 

We certify this thesis is satisfactory for the award of the degree of Masters of 

Science in Civil Engineering 

 

Examining Committee in Charge: 

 

Prof Dr Adnan Khashman  Committee Chairman, Electrical and 

Electronic Engineering, FIU. 

 
 

Asst Prof Dr Ertuğ Aydın  Committee Member, Civil Engineering 

Department, EUL. 

 
 

 

Asst Prof Dr Pınar Akpınar Supervisor,  Civil Engineering 

Department, NEU. 

 

 

 

 

 



 

 

I hereby declare that all information in this document has been obtained and presented in 

accordance with academic rules and ethical conduct. I also declare that, as required by these 

rules and conduct, I have fully cited and referenced all material and results that are not 

original to this work.  

 

Name, Last name:  

 

Signature:  

 

Date 



i 

 

ACKNOWLEDGEMENTS 

Without the help and guidance of some individuals, I may have failed to present this work. 

My supervisor Asst. Prof. Dr. Pınar Akpınar, brought out in me the confidence to explore 

more options; Hocam, çok teşekkür ederim. 

A fully activated network of family members kept me going with their love and prayers 

among whom are; Nwakudu A. C. (Dad), Uwanuakwa A. C. (Mum), Enyinnaya, Ij, 

Chidinma, Azo, Edo, Kelechi and not the least Blessing. I have loved and missed you all. 

Special thanks to Professor Dr. Adnan Khashman for the insights he made us gain through 

his valuable comments. Also, many thanks to Asst. Prof. Dr. Boran Şekeroğlu, Mr. Cemal 

Kavalcıoğlu and Mr Olaniyi Ebenezer for their valuable supports and for the technical 

information that they have provided. 

Assoc. Prof. Dr. Nadire Çavuş, I thank you for valuable input.  

Okey U. O. (CEng), Prof. Ukachukwu S.N., Williams E. N. your supports have been not 

forgotten. My layers of friends, gracias.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To Okey Obioma U……. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

 

ABSTRACT 

Carbonation problem in concrete occurs as a result of the chemical reaction between the 

products of cement hydration and CO2 penetrating into the concrete porosity. This chemical 

reaction do not only alter the concrete microstructure, but it is also known to cause initiation 

of reinforcement corrosion. Hence, the service life of the structure is affected. An adequate 

model capable of considering the effects of influencing factors for the prediction of the 

progress of carbonation process in concrete would provide benefits in maintaining the 

designed service life of structures.  

  

This study aims to investigate the feasibility of Artificial Neural Networks (ANN) for the 

prediction of carbonation depths progressing in concrete as a non-destructive method. A 

supervised neural network models based on the Feed-Forward backpropagation learning 

algorithm was used. 18 input parameters including binders’ composition, mix design 

parameters, curing properties and environmental factors, that are known to influence 

carbonation process, were employed in the model. 225 experimental cases obtained from the 

related literature were used to train and test the proposed ANN model and carbonation depth 

was predicted as the output. A combination of 14 different optimization functions with three 

training/testing ratios and five different numbers of hidden neurons was studied.  

 The results obtained indicates the feasibility of ANN use for carbonation depth predictions; 

correlation coefficient (R) values that were greater than 0.9 in all cases, together with the 

network training mean square error (MSE) converging to a threshold of 0.001 were obtained. 

The results shows that optimized combination of training/testing ratios, number hidden 

neurons and the optimization function yielding best performance was found to be Scaled 

Conjugate Gradient (SCG) under 60:40 traning:testing distribution with 10 hidden neurons. 

  

 

Keywords: Concrete durability; carbonation problem; factors affecting carbonation depth in 

concrete; artificial neural networks; feed-forward backpropagation algorithm 
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ÖZET 

Betondaki karbonatlaşma problemi, atmosferdeki CO2 gazının beton mikrostrüktürüne 

girerek çimento hidratasyon ürünleri ile reaksiyona girmesiyle oluşur. Bu reaksiyon, hem 

beton mikrostrüktüründe değişimlerin meydana getirmekte, hem de donatı korozyonunun 

başlamasına neden olabilmektedir. Donatı korozyonu ile birlikte betondaki karbonatlaşma 

problemi, betonarme binalarda ciddi hasarlara neden olabilmekte ve böylelikle binaların 

servis ömrünü etkileyebilmektedir. İlgili tüm faktörleri göz önünde bulundurarak 

karbonatlaşma probleminin beton içerisinde ilerlemesini öngörebilecek bir modelin 

oluşturulması ile binaların tasarlanan servis ömürlerini sürdürebilmeleri konusunda yarar 

sağlaması beklenmektedir 

 

Bu tez çalışması, betondaki karbonatlaşma derinliğinin tahribatsız bir yöntemle 

belirlenebilmesi ve karbonatlama probleminin ilerlemesinin tahminin yapılabilmesinde 

“Yapay Sinir Ağları”nın uygulanabilirliğini araştırmaktadır. Literatür taramasından elde 

edilen 225 deneysel numune bilgileri ileri beslemeli geriye yayınım yapay sinir ağları ile üç 

katmanlı bir modelde 14 algoritma ile üç değişik eğitim/test dağılımı ve beş farklı gizli noron 

sayısı kullanılırak çalışıldı. 

 

Bu çalışmada elde edilen sonuçlar yapay sinir ağları ile karbonatlaşma derinliği tahmini 

çalışmalarının başarılı şekilde yapılabileceğini göstermektedir; çalışmada kullanılan tüm 

değerler ile bulunan korelasyon katsayıları (R) 0.9’dan daha yüksek, ve karesel ortalama 

hata (MSE) değerleri 0.001’e yaklaşmış olarak elde edilmiştir. Tüm elde edilen sonuçlara 

bakıldığında, “Scaled Conjugate Gradient (SCG)” fonksiyonunun 60:40 oranındaki 

eğitim/test veri dağılımı ve 10 gizli nöron ile kullanılmasıyla en başarılı karbonatlaşma 

tahmininin elde edildiği gözlemlenmiştir. 

  

Anahtar Kelimeler: Beton dürabilitesi; karbonatlaşma problem; karbonatlaşma derinliğini 

etkileyen faktörler; yapay sinir ağları; ileri beslemeli geriye yayınım yöntemi 
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CHAPTER 1 

INTRODUCTION 

 

1.1.  Carbonation Problem in Concrete  

Concrete is the most widely used construction material in the world. It can be moulded into 

any desired form and can be used for both offshore and onshore structures. However, some 

of its advantages may cease in time as certain concrete durability problems may occur 

throughout the lifetime of a reinforced concrete structure. Carbonation problem in concrete 

has been identified as one of the potentially severe durability problems since it can lead to 

the initiation of corrosion in reinforcing steel bars along with the alterations it causes in 

hydrated cement paste microstructure.  

Carbonation in concrete occurs when carbon dioxide from the air penetrates into concrete 

and reacts with cement hydration compounds, such as calcium hydroxide, to form calcium 

carbonates. The process is continuous if sufficient CO2, adequate moisture and favourable 

temperature are maintained from the external environment. As the carbonation process 

progresses inwards within the concrete, pH level is reduced as a result of newly formed 

compound with different alkalinity. The decrease in pH of the concrete leads to destruction 

of protective layer over the steel bar. Continuous supply of oxygen and moisture that can be 

easily available from the atmosphere triggers corrosion of steel bars in concrete, and 

therefore deteriorations on the structure is inevitable. 

1.2.  Definition of the Problem  

Majority of the conventional experimental methods (see section 2.2.3) used to predict 

carbonation depth in concrete are mainly destructive and they are capable of providing only 

approximate results.  

Other non-destructive methods such as Infrared spectroscopy and x-ray diffraction methods 

are not cost effective. Moreover, these methods cannot provide information the individual 

effects of each influencing parameter on the extent of the progress of carbonation. 
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1.3.  The Objectives, Scope and the Significance of the Study  

This study aims to carry out preliminary studies for determining the feasibility of Artificial 

Neural Network as a non-destructive method for the prediction of carbonation depth in 

concrete. The choice of using Artificial Neural Networks (ANN) was mainly based on the 

well-known capability of ANN to predict non-linear data by developing experience from the 

previous examples introduced to the model.  

The previous work in the literature (see section 3.10) on the application of ANN application 

on carbonation depth prediction is found out to be very limited and a need for improved 

ANN models capable of covering more aspects of carbonation problem is detected. 

In this study, the level of accuracy of the ANN model for prediction of carbonation depth 

was studied with the special focus on the effect of varying training:testing distribution and 

number of hidden neurons. The study was carried out with an extensive set of experimental 

data selected from the related literature. 

The use of ANN for the prediction of carbonation depth in an efficient way has the potential 

to provide a reliable and non-destructive alternative to costly and laborious experimental test 

methods. The application of ANN also has the potential to provide insight on the individual 

effects of each parameter influencing the progress of carbonation in concrete. Hence, this 

study may also serve as a basis for a future application of ANN in the mix design stage for 

designing a concrete with a desired carbonation performance in a defined lifetime.  

1.4.  The Structure of the Thesis 

The problem that was addressed in this thesis, as well as the objectives, scope and the 

significance of the study are introduced in chapter one.  

Chapter two and three are dedicated to review of literature on concrete carbonation and 

artificial neural networks respectively Chapter four deals with methodology of the study, 

with details of ANN model used and mode adopted for selection of network parameters. 

Results are presented and extensively discussed in chapter five. Finally, conclusions that are 

drawn from the results, and the recommendations for future studies are presented in chapter 

six. 

 The detailed results showing model training performance graph and correlation between 

measure and predicted normalized carbonation depth are provided at the end of the thesis in 

the appendix, as an electronic copy.  
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CHAPTER 2 

LITERATURE REVIEW ON CONCRETE CARBONATION 

 

2.1. Concrete Durability in General  

The advent of today cement (Portland) in 1824 as patent by Leeds Builder Joseph Aspdin  

(Neville and Brooks, 2010) introduced the word into the production of reinforced concrete 

as seen in the works of Joseph Monier in 1867 and many more (Wang and Salmon 1985).  

Though it proffers solution to the much needed long spanning encountered by classical 

builders who used pointed Arches (Gothic architecture) or rows of Arches (Aqueduct of C. 

Sextilius Pollio, Ephesus) to overcome a given span. The durability of reinforced concrete 

structure has become a major challenge to the scientific community. It is expected of every 

concrete structure within their service life to be structurally stable. The durability of concrete 

structures is a function of the amount of free water within concrete pores (Auroy et al., 2015) 

and therefore require that every concrete structure be manufactured to reduce pore spaces in 

concrete. Studies on concrete durability have shown that carbonation attack is the principal 

culprit of chemically induced deterioration in cementitious materials as it open the gate for 

other attacks such as sulphate, alkali-aggregate reaction and chlorides attacks. Carbonation 

has been defined by various authors, Houst, (1996) defined carbonation of cement as 

neutralisation reaction of bases by an acid formed by carbon dioxide in the air. Castelloteet. 

al., (2008) defined carbonation as a slow and complex physicochemical process involving 

the interaction of atmospheric CO2 with cementitious materials in presence of water which 

modifies the structure of the concrete. In summary carbonation is hereby defined as a 

continuous physicochemical neutralisation reaction of hydrated Ca(OH)2 in the presence of 

water resulting to precipitate of CaCO3 and modification of  micro structure and properties 

of hardened cement materials. 

2.2.  Concrete Carbonation Mechanism 

Carbonation is a continuous (Castellote et al., 2008), and gradual attack in cement paste and 

concrete. The process involves physical and chemical processes of diffusion, permeability 

and absorption of CO2 and H2O into cement matrix, which dissolves in the pore solution to 

form HCO3
- and CO3

2- ions, and reacts with Ca2+ from portlandite (Ca(OH)2), calcium 
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silicate hydrate (C-S-H) and the hydrated calcium aluminate and ferroaluminate to give a 

precipitate of calcium carbonate (CaCO3), silica gel and hydrated aluminium and iron oxide. 

(Parrott, 1987;  Borges et al., 2010) 

CO2   +   H2O   ⇌  H2CO3   (2.1)  

H2CO3  +  Ca(OH)2→   CaCO3       (2.2)  

H2CO3  +  CaCO3  →   Ca(HCO3)2       (2.3) 

Ca(HCO3)  +  Ca(OH)2  →   2CaCO3  +  2H2O     (2.4) 

Atmospheric air supplies the needed CO2 that penetrates the pore spaces and react with 

moisture to give aqueous carbonic acid (H2CO3). The chemical reaction creates a 

modification between the solution and the hydrates with a precipitate of (CaCO3). Calcium 

carbonate formed fill and increase the densification of the microstructure with a decrease of 

the hydrated cement pH from 13.5 to 9.5 (Berkely and Pathmanaban, 1990; Ahmad, 2003), 

resulting to de-passivation hence deterioration of the “cementitious” structure set in (Villain 

et al., 2007).  

Physically the process is governed by the absorption and penetration rate of CO2 into the 

pore space of the matrix and the amount of exposure, percentage of CO2 content in air, 

internal and external relative humidity of the concrete and the influence of temperature 

(Saetta et al., 1993; Salvodi el al., 2015).  Salvodi el  

al., (2015) further reviewed that ambient humidity can substitute the internal humidity of the 

concrete on the assumption that the external relative humidity will reach a steady rate with 

the internal relative humidity. For measurement of rate of carbonation, it is important to 

consider these prevailing factors which influences carbonation. CO2 as an inert gas does not 

readily react with other compounds except certain conditions are met. CO2 is a stable gas 

and goes into reaction in an aqueous solution to form carbonic acid. The reaction of CO2 

with hydrated cement can only take place in solution hence the rate of carbonation is 

dependent on relative humidity of the atmosphere (Parrott, 1987; Sevelsted and Skibsted 

2015). 

According to Houst (1996) concluded; the water held in pores of hydrated cement paste 

(hcp), are in form of absorbed water, condensed capillary water and free water found in large 
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capillaries pores resulting from a decrease in vapour pressure above a concave liquid 

meniscus over the pressure above a plane liquid surface. The pressure decrease gives rise to 

capillary condensation which may occur at a relative humidity lower than 100%.  Kelvin’s 

equation estimates the maximum radius of pores (𝑟𝑘) filled by water in capillary 

condensation as given below; 

𝑟𝑘 = −
2𝑟𝑉𝑚

𝑅𝑇𝑙𝑛(𝑝
𝑝𝑜⁄ )

         (2.5) 

r= surface tension of water  

𝑟𝑘 = Maximum radius of pores filled with water  

p/po = Relative humidity,  T= Absolute temperature  

R = Gas constant 

Also the condensation is made possible when films of water molecules overlays the matrix 

pore walls to a thickness tn, which decrease the real pore radius 𝑟𝑝 of the hydrated cement 

paste. 

𝑟𝑝 =  𝑟𝑘 + 𝑡𝑛         (2.6) 

2.2.1.  Transportation mechanism of carbonation in concrete 

Carbonation transport mechanism is characterized by the physicochemical model. It involves 

transport of liquid and gas in pore spectrum. The microstructure properties of the cement 

matrix such as pore size distribution, level of porosity, connectivity of the pores, specific 

surface area are dependent factors that influence carbonation transport in hydrated cement 

paste and concrete elements (Morandeau et al., 2014). Carbonation under normal 

environmental conditions of CO2 concentration and RH is largely controlled by diffusion 

through the empty pores in the exposed surface layer (Parrott, 1991) driven by concentration, 

and in finer pore sizes capillary absorption controls the movement with is based on the 

surface tension. Apparently in larger pores with high liquid concentration, suction due to 

pressure gradient is the prime mechanism (Hanžič et al., 2010) the acid attack is normally 

carried out by a combination of absorption, permeability and diffusion mechanism through 

the distribution and size of the microstructure in the matrix. Thiery et al. (2012), reported 
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that the pore matrix is controlled by water/cement (w/c) ratio and that carbonation is capable 

of producing large capillary pores for high w/c. the transportation process begins with the 

ingress of CO2 in into the hydrated cement paste matrix by diffusion mechanism (Houst, 

1996) which moves inward in solution with the help of moisture content of the pore spaces 

producing a poor solute (Castellote et al., 2008). 

Initial carbonation is usually faster and its rate begins to decrease as carbonation process 

modifies the microstructure of the hydrated cement paste. Since the CO2 diffuses further in 

the concrete paste to regions having lower concentration, its rate is dependent on the porosity 

of the hydrated paste and relative humidity. In Houst (1996) investigation, the diffusivity of 

CO2 is influenced by cement content, w/c ratio, degree of hydration and independent of the 

pore size for large pores “θ ≥ 450 nm for CO2, at 20oC and 1 atm” and proportional to the 

pore diameter for finer pores (θ ≥ 45 nm), the ambient relative humidity and pore sizes 

distribution controls the humidity of the pore space (water content) which governs that 

gaseous diffusion in free volume. The report further analysed the movement of CO2 using 

the Flick’s first law. A one dimensional diffusion of a gas passing through a porous system 

as is given as;  

𝐽 = 𝐷𝑒
∆𝐶

𝑑
         (2.7) 

Where J = flux of the gas; De = effective diffusion coefficient; ∆C = concentration of CO2 

in air that makes contact with the material; d = the depth of carbonation.  

In Conciatori et al., (2008), estimation of d takes into account the molar concertation of 

carbonation reaction, the atmospheric concentration of carbon dioxide.  The CO2 diffusion 

coefficient is predominantly influenced by concrete permeability, the moisture content and 

the chemical reaction rate in the concrete pores. 

𝑑 =  
√2∙[𝐶𝑂2]∙𝐷𝑒 𝐶𝑜2

[𝐶𝑎(𝑂𝐻)2]+3∙[𝐶𝑆𝐻]
√𝑡        (2.8) 

Where [CO2] = molar concentration of CO2; [Ca(OH)2] & [CSH] = molar concentration of 

calcium hydroxide and silicate; De CO2 = CO2  diffusion coefficient; t = time  

The rate of permeability governs the ingress rate of CO2, and the degree at which the pores 

is said to be permeable is a function quantity of Ca(OH)2 available to react with percolated 

CO2 (Lammertijn & De Belie, 2008).  

Beside the permeability properties discussed above, relative humidity is another factor that 

affects the transportation of mechanism of carbonation in hydrate cement paste. All other 

factors can be said to be directly govern by this two. More so, it has been established that 
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carbonation processes cannot take place in the absence of water. Thiery et al. (2007), 

reported that a low relative humidity induces dehydration of the capillary pores and in turn 

reduces the rate of the CO2 dissolution-dissociation and the dissolution of hydrates, while 

high relative humidity causes capillary water condensation in the pores and reduces the rate 

CO2 diffusion into the concrete pores. However, it has been confirmed that a relative 

humidity between 50% and 70% enhances an optimum carbonation transportation 

mechanism which create a partial moisture content in the pores and enhance phase diffusion 

of CO2 gas and formation of carbonic acid.  

2.2.2.  Modification of microstructure of cement paste 

Development of microstructure of a concrete matrix starts from the first stage of concrete 

production, which chemically sets a transformation from fluid to plastic phase within the 

first few days after mixing with water. The amount of water used in concrete production is 

important factor to consider which affects first the workability, strength and porosity of a 

produced concrete structure. Hydroscopic and hydrophilic properties of cement paste and 

the presence of sub-microscopic pores in cement with respect to ambient humidity also 

contributes to   increased water content of cement paste (Neville, 2005). Water added during 

mixing is partly consumed in the chemical reaction of cement paste, while the unused water 

wither bleeds to the surface or trapped within the concrete mixture. Dehydration in hardened 

concrete paste leads to loss of trapped water either to the atmosphere or used up incurring 

process thereby creating pores within the concrete matrix. From the forgoing it is evident 

and has been confirmed that the amount of trapped water is proportional to degree of porosity 

and transport properties of hydrated cement phase. Also air bubbles trapped within the 

concrete pore may contribute to pore connectivity. Carbonation reactions leads to 

restructuring of the microstructure with decrease in porosity caused by formation calcium 

carbonate crystals. Formation of calcite result to decrease in amount of portlandite, ettringite 

and C-S-H gel of cement paste phase (Castellote et al., 2008). Carbonation produces a 

clogging of pores within its zones (Auroy et al., 2015) as a result precipitated carbonates 

which has a low solubility and causes an expansion in volume of the pores and development 

micro-cracks in carbonated zones (Johannesson & Utgenannt, 2001), the precipitates causes 

a loss in pore connectivity.  
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Castellote et al. (2008) reported that the rate of change which occurred on each phase 

different in carbonation process (Portlandite, Ettringite and CSH phases) disappeared with 

respect to an exponential decay of first order, with formation of calcite.  

In summary, it is not worthy to state herewith that carbonation destroys the interconnections 

of porous network with a reduction in gaseous diffusivity coefficient with the carbonation 

zone (Castellote et al., 2009) and is attributed to increase in the formation of calcite from 

carbonation of C-S-H at high pressure (Hyvert et al., 2010). 

2.2.3. Testing Methods used for carbonation problem in concrete 

a. Phenolphthalein: This has been the oldest method known to detecting carbonation in 

concrete. When core samples are extracted from the concrete structure, a solution of diluted 

phenolphthalein in alcohol is spread over the sample. Region coloured in pink represents the 

free Ca(OH)2 while the other uncoloured region is the carbonated portion. According to 

RILEM (1988), precautions should be taking while measuring depth  of  carbonation and 

measurement taken within the a  series  of  tests and to  the  nearest  0.5  mm, where depths  

less  than  0.5  mm  are  not  differentiated. 

 

b. X-ray Diffraction: one of the early used laboratory techniques. XRD used for 

identification of atomic and molecular structure of crystals, where a crystalline atom causes 

a beam of incident X-rays to diffract in different directions. The angles and intensities of 

diffracted beams imprint a 3-D image of density of electrons within the crystals. Mean 

positions of atoms in the crystals, their chemical bonds and other information.  

 

c. Infrared Spectroscopy (Spectrophotometer) 

Fourier Transformation Infrared Spectroscopy (FT-IR) 

The application of infrared spectrum fingerprint of molecules which identifies elements by 

their unique absorption of infrared radiation. In FT-IR spectroscopy, characterization is done 

by passing a sample through and infrared radiation each element resonates according to its 

absorption frequency with the electromagnetic spectrum region and all frequency are 

measured simultaneously. Fourier transformation is applied to the signals in spectral through 

plotting absorption against each wavelength. 
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According to Lo and Lee (2002), FT-IR characterization of concrete element is a complex 

instrumentation analysis, because large number of characteristic peak may be found and at 

the same time some overlapping peaks may characterize different functional groups.  

IR has also been used in detecting phase transformation of in hardened concrete (Gao et al., 

1999), early stage hydration of OPC (Mollah et al., 2000; Yimén et al., 2009), while Lo & 

Cui,  (2004) studied the phase transformation characteristics of the Interfacial Zone using FT-

IR.  

 

d. Thermogravimetric Analysis (TGA): TGA is classified under thermal methods of analysis 

in chemical instrumentation. Thermal analysis is a technique in which physical 

properties/reaction products of an substance is measured with respect to temperature under a 

controlled temperature programme (Mackenzie, 1979), while TGA is an analytical method in 

which the continuous record of the mass of a sample in a controlled atmosphere is made and 

which is a function of the linearity of temperature/time of the reviewed sample on (Skoog & 

Leary, 1992) thermal decomposition curve (Earnest, 1984). This method quantifies the 

calcium carbonates and CH contents in a sample of carbonated concrete (Parrott & Killoh 

1989; Platret and Deloye 1994; Villain et al., 2007), it gives accurate quantitative analysis of 

the chemical phases linearly against depth of carbonation. 

Samples are taken from power extracted from sawn slice to avoid mixed with aggregate 

particles because calcite of limestone sand contaminates the result of calcite resulting from 

carbonation, hence Chemical analysis is combined with TGA on the sample for evaluation of 

cement and sand content of the studied concrete mix (Villain et al., 2007; Thiery et al., 2007) 

 

e. Chemical Analysis(CA): This method of analysis is employed to proportion the mineral 

phase and gradation of carbonated and un-carbonated concrete sample (Villain et al., 2007).  

 

f. Gammadensimetry:  It is a non-destructive test procedure is based on absorption of the 

gamma rays produced by a radioactive source of Cesium Cs137 with respect to Lambert law:  

𝑁 = 𝑁𝑜 exp(−𝜇𝜌𝑙)         (2.9) 

From the above equation, and with a given data of N, No, µ, and l, the density ρ, can be 

estimate hereunder; 

𝜌 =
−1

𝜇𝑙
ln (

𝑁

𝑁𝑜
)         (2.10) 
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g. Mercury Intrusion Porosimetry (MIP): The mercury intrusion porosimetry method, 

provides information on the distribution of pore. Because mercury is non-wetting and liquid 

at normal temperatures, liquid mercury is intruded in the pores under high pressure, its pore 

sizes are quantify from the relationship between the volume of intruded mercury and applied 

pressure. However, it is also important to note that this method do not measure the shapes 

and location of pores (Tanaka & Kurumisawa, 2002). 

2.2.4.  Factors affecting concrete performance against carbonation problem 

Carbonation been a major contributor to deterioration concrete structures especially 

reinforced concrete in dependant of other physical, chemical and atmospheric factors to 

undermine the performance of concrete structures. With respect to location, condition of 

exposure of concrete surfaces and the prevailing micro and macro climatic condition, the 

effect of carbonation on concrete can be evaluated. These micro factors are grouped into 5 

major categories; 

1. Climatic   

2. Physical 

3. Chemical 

4. Transportation Mechanism  

5. Material 

 

a. Climatic Factors 

i. Temperature:  Studies has shown that temperature is the one of the principal micro factors 

affecting the performance of concrete structures. Temperature of mixed, placed and 

hardening and hardened concrete control its mechanical, physical and chemical properties 

(Ma et al., 2015; Karagol et al., 2015). Most compound react vigorously at higher 

temperature, corresponding linearly with the rate of the reaction. Temperature rise, increases 

the value of collision fraction exponentially needed to produce required kinetic energy to 

overcome the barrier at transition state (Activation Energy Ea) between reactants and 

products (Burns, 2003; Burrows et al., 2009; McMurry & Fay, 2008). In concrete (cement 

paste reaction), individual reactions of C2S, C3S and C3A has been evaluated by different 

researchers (Ciach & Swenson 1971; Kamiński & Zielenkiewicz, 1982; Berhane, 1983; 

Bensted, 1983). As defined in ASTM C 403-92, higher ambient temperature accelerates the 

setting time in concrete and increased demand of water in fresh concrete resulting to plastic 
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shrinkage cracking and crazing with crack ranging from 0.1 to 3 mm developed over a length 

of 1m (Neville, 2003). More so, concrete placed in lower temperature less than 13 oC pose a 

threat to the strength and internal structure development of concrete due to freeing thawing 

action. In arid regions, ingress of water into these micro cracks under freezing-thawing 

action will further create more connection between pores. Diffusion of CO2 in aqueous 

solution do not follow the trend of temperature is  directly proportional to rate of reaction, 

rather the solubility of CO2 decreases with increasing temperature at a given pressure 

(Jödecke et al., 2015), with reduction in concentration of dissolved CO2, causing the 

equilibrium to shift to the left (Practical Chemistry, 2015) of the Equation 1. 

 

ii. Relative Humidity: The assessment of concrete structures’ durability requires a defined 

evaluation of moisture transportation throughout the service life of the structure, with the 

analysis focusing computation of water flow in unsaturated condition, water sorption 

isotherm and the permeability characteristics of the hardened concrete (Drouet et al., 2015). 

The diffusion coefficient of water in porous materials (hardened concrete) is strongly 

dependent on temperature which involves an activation process, and the characteristic 

energy depends on the temperature range (Glover & Raask, 1972). But its retention within 

the pores is also affected by the temperature (Drouet et al., 2015). 

 Table 2.1:  The solubility (S) of CO2 in water at different temperatures and pressures   

(Liu et al., 2011) 

 

 

        The solubility (S) of CO2 in water at different temperatures and pressures.

35.0 °C 45.0 °C 50.0 °C 55.0 °C

P/MPa S/wt% P/MPa S/wt% P/MPa S/wt% P/MPa S/wt%

2.1 2.25 2.08 1.81 2.1 1.65 2.86 2.01

4.09 3.76 4.1 3.13 4.11 2.81 4.37 2.85

6.08 4.83 6.09 4.08 6.12 3.75 6.11 3.59

8.09 5.3 8.11 4.8 8.1 4.32 8.48 4.28

10.08 5.47 10.08 5.14 10.1 4.75 9.99 4.56

12.05 5.61 12.06 5.28 12.04 4.95 12.2 4.88

14.01 5.79 14.11 5.36 15.99 5.12 13.19 4.99

15.83 5.88 15.86 5.43 15.23 5.05
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Figure 2.1:  Comparison of CO2 solubility in water at 35.0 ◦ C and 50.0 ◦ C and pressures   

….to  18.0MPa determined by different authors (Liu et al., 2011) 

 

Although, water content of both internal and external wall surfaces of concrete pore is  been 

control by ambient relative humidity, and at equilibrium of a given material they at equal 

(Wu et al., 2014).From the foregoing;  that water held within the matrix is grossly a function 

of the percent of ambient relative humidity and temperature. While the former provided the 

provide the means (water) the later effect its movement into the pores. As stated earlier, 

carbonation is largely driven by the amount of water present for the chemical reaction to 

take place, thus the prevailing relative humidity data must be handy from pre-design to 

maintenance stage for effective designing of protective measures needed for optimum 

performance of the structure. In summary, increase in temperature at a constant RH results 

to equilibrium change between the adsorbed phase (exothermic process) and water vapour 

(endothermic reaction), water consequently is released (Drouet et al., 2015).  

 

b. Physical Factors: Microstructure: The size, distribution, surface characteristics and the 

connectivity of hardened concrete pores are of importance in determination its effect on 
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performance of concrete structure subjected to carbonation. Duan et al. (2013), grouped pore 

development in hardened cement paste matrix into four;  

i. Gel pores: they are micro-pores between 0.5 to 10 nm in dimension. 

ii. Capillary pores: meso-pores of radius 5 to 5000 nm. 

iii. Entrained air Macro-pores; developed as a result of entrained air in fresh concrete 

iv. Compaction macro-pores: resulting from inadequate compaction. 

Other microstructural development identified by Duan et al. (2013), are cracks around 

aggregate, cracks developed due to shrinkage. The microstructure affects the permeability, 

frost resistance and mechanical characteristics performance of concrete (Duan et al., 2013, 

Song and   Kwon 2007), as it affects the gaseous diffusion and liquid permeability in 

concrete (Tanaka & Kurumisawa, 2002). 

Moreover, among research in cement paste and related field, it has been agreed upon that the 

microstructure of is generally controlled by water/cement ratio. For a higher w/c produces 

more pores and connectivity with decrease in strength and a lowered w/c of below 0.4 

produces a more durable concrete. 

 

Permeability and Diffusion Coefficient: Permeability and diffusion coefficient has been 

discussed in 2.2.1. It is also noteworthy to further give details on their effect on concrete 

durability performance. In hardened cement paste, the coefficient of permeability subjected 

to carbonation decreases with time, this is due to formation of hydrates from reaction of 

Ca(OH)2 with carbonic acid formed resulting to densification of the pores (Song & Kwon, 

2007).CO2(g)requires a gaseous  phase of 1012 m2  s-2  coefficient for ingress action into the 

concrete in that in liquid phase, the diffusion coefficient of 104 m2  s-2 is smaller when 

compared to gaseous phase (Baroghel-Bouny, 2007).  

Porosity: Porosity in concrete is govern by different parameters such the clinker 

composition, reactivity of aggregates, modulus of fineness of aggregates, water/cement ratio 

and admixtures used. In a typical OPC concrete mix, aggregate comprises of 75% by volume 

while cement takes the 25%.  In a traditional mix, pore sizes are highest with high occurrence 

of porosity at the Paste-aggregate interface (Grattan-Bellew, 1996). 

Interfacial Transition Zone (ITZ) in concrete is considered as a weak zone with respect to 

strength and porosity. Its microstructure is determined by the packing of the anhydrous 

cement particles against the bulk particles of the aggregates (Scrivener & Kamran 1996), 

which control the pore sizes in a concrete mix. It has been observed that the due to anhydrous 
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cement packing at the aggregate surface, the water/cement ratio is found to be higher that 

the bulk cement paste in concrete. (Laugesen, 1993) and decreased stiffness (Cohen  et al., 

1994).  

 

 

Figure 2.2: Diagram showing  the  large  contribution  of  pores  at  the  paste-aggregate   

….interface  to  the  total  porosity  in  concrete (Grattan-Bellew, 1996) 

 

Ferdi et al. (2008), in Handbook of Porous Solids presented different methods of 

characterisation of porosity in solids. MIP is widely accepted method of measuring pore 

profile of harden concrete specimen through analysis of its percolation and pore diameter 

distribution. Although Diamond, (2004), believes that though MIP may characterize pore 

profile of less than 0.1 µm, SEM (Backscattered Electron) gives a better validation.  

In MIP characterization pore profiles are assumed to be circular and evaluated using 

Equation 2.11 (Washburn, 1921), where radius r (assumed to be cylindrical),  is the radius 

of pores P is the imposed pressure, γ (surface tension) is the interfacial energy of mercury 

and the contact angle of mercury with the material is θ Lawrence et al. (2007). 

 

𝑝 =
−2𝛾𝐶𝑜𝑠𝜃

𝑟
                                                                                                  (2.11) 
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SEM examination detects spherical air voids found in cement-paste system with no air-

entraining agent, irregular pores in high w/c (Diamond 2004) such found in ITZ (Laugesen, 

1993).  

 

 

Figure 2.3: Area showing dense and porous patches in a laboratory-mixed w:c 0.50 concrete 

.    hydrated for 28 days (Diamond, 2004) 

 

c. Chemical Factors: Chemical Equilibrium Effect on Carbonation: In chemical reactions of 

both reactants and products that moves towards a dynamic equilibrium has much significant 

on the concentration of both product and reactants but the concentration remains unchanged 

in equilibrium mixture (Atkins, 1994). Carbonation chemical reaction is dependent on two 

major factors; moisture and concentration of the solute. 
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Figure 2.4: Binary segmented images showing the distribution of pores within cement paste 

.  sampling units 0 to10 µm from the aggregate surface in three-day-old quartzite 

.  aggregate concrete (Diamond, 2001) 

 

Visser (2014) stated that though the carbonation reaction of ambient CO2 concentration is a 

slow process, and increase in concentration can only accelerate the rate of diffusion of CO2 

without affecting the chemical reaction and transportation mechanism, provided the concrete 

maintains a sufficient degree of dryness to allow gaseous diffusion. 

According to Burrows et al., (2009), CO2 is a weak acid which reacts with water to form 

carbonic acid (H2CO3), a further dissociation will produce hydrogen carbonate (HCO3
-) and 

carbonate (CO3
2-) anions.  

CO2(g)⇌ CO2(aq)         (2.12) 

CO2(aq) + H2O(l)  ⇌ CO2(aq)         (2.13) 

H2CO3(aq) + H2O(l)  ⇌ HCO3
2-

(aq)  +  H3O
+

(aq)       (2.14) 

HCO3
- + H2O ⇌ CO3

2-
(aq)  +  H3O

+
(aq)       (2.15) 
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At a constant temperature, the reaction is largely dependent on the magnitude of the 

equilibrium constant K, and when the reaction reaches equilibrium, the concentration of each 

species remains constant. The chemical equilibrium is delicate in that a change in pH 

changes the concentration of H3O
+ ions and alters the equilibria of the 3 other species 

(H2CO3, HCO3
- and CO3

2-).  

From the above equations (10), (11), (12) and (13), it can be deduced that formation of 

carbonic acid in carbonation reaction is in dynamic equilibrium. K (Thermodynamic 

equilibrium constant) is given as; 

𝐾 =  
(𝑎(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠))𝑒𝑞𝑚

𝑉𝑝

(𝑎(𝑅𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠))𝑒𝑞𝑚
𝑉𝑅

        (2.16) 

= Product of  

a = Equilibrium activities of the products and reactants  

Vp = stoichiometry of products    

VR = stoichiometry of reactants     

 

According to Henry’s Law, the solubility of a gas is directly proportional to the pressure 

over the solution (Burrows et al., 2009), and approximate atmospheric pressure at sea level 

is 760 mmHg (Ebbing & Gammon, 2005), of which 0.03% represents the partial atmospheric 

pressure of CO2 (Castellote et al., 2009; Hyvert et al., 2010.). It has been proven that the 

increase in pressure (accelerated carbonation) increases the rate of carbonation with respect 

pressure/CO2 solubility (Liu et al., 2011). 

Therefore, chemical equilibrium of CO2 polymerisation reaction is a key factor in 

determining the rate of carbonation as it affects the concentration of aqueous CO2 with 

respect to concentration of gaseous CO2. Also the pressure with the solution and the 

atmospheric pressure affects the production of aqueous carbon dioxide (Liu et al., 2011). 

 

d. Transportation Mechanism: The distinction between porosity and permeability in 

concrete is important in order to appreciate structure of transport mechanism and their 

interdependency. Porosity is associated with the percentage of pore occupied in a given 

concrete volume. Neville (2005), noted that disconnected pores contributes to low 
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permeability vis-à-vis high permeability and should be between 120 -160 nm in diameter to 

support fluid transportation, and further defined permeability as the flow due to differential 

pressure. Furthermore, connectivity of pores in concrete paste is responsibly to 

transportation in concrete paste. Sequel to presentation of high porosity of ITZ in hardened 

concrete, Larbi (1993), as presented in Neville (2005), argued that despite the high porosity 

of the interfacial zone, the permeability is determined by the continuous phase of the bulk 

hardened cement paste present in concrete. Sidney Diamond in two separate publications in 

2001 and 2004, clearly deviated from the typical characterisation of ITZ (aureole de 

transition) in ordinary concrete. Diamond (2004) considered the acclaimed properties ITZ 

as a function of local deficiency of cement particles closed to the aggregate in fresh concrete 

after mixing.   

Acclaimed properties of ITZ may be as a result of poor quality in concrete production. 

Diamond (2001) concluded that the effect of heterogeneous nucleation and crystallisation 

growth of CH along aggregate and porosity is not different from bulk regions away from 

ITZ and shows no evident of concentration of pores in the cement paste with few µm of the 

aggregate.  

Consequently, transportation mechanism can be view to be a function of connected pores 

usually due to high w/c leading to bleeding, entrained air and gross packing density. The 

mechanism controlling the absorption in porous concrete include:  

Absorption: This takes place in partially dry concrete at low relative humidity.  Since 

diffusion and capillary action is the key transport mechanism in porous concrete, the can be 

a very slow process leaving out capillary and the main culprit of transportation of 

deterioration agents into concrete in partially saturated concrete surface. 

Diffusion: Diffusion herewith is as a result of differential concentration gradient in pores. 

Theoretically diffusivity coefficient of a gas is inversely proportional to square root of its 

molar mass (Papadakis et al., 1991). CO2(g) ingress into hardened concrete is by diffusion 

and controlled by relative humidity, porosity and temperature. Also movement of water 

vapour under differential concentration occurs due to differential humidity on two opposing 

faces, an increase in relative humidity reduces the available air-filled pores for diffusion. 

Similarly, chloride and sulfates are transported by diffusion in pore water (Henry & Kurtz 

1963; Neville, 2005).  

Diffusion coefficient is given by; 

𝐽 =  −𝐷
𝑑𝑐

𝑑𝐿
                                                                                                          (2.17) 
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Where 
𝑑𝑐

𝑑𝐿
 = concentration gradient in kg/m4 or moles/m4; D = diffusion coefficient in m2/s; 

J = mass transport rate in kg/m2 s (moles/m2 s); L = thickness of the sample in metre. 

 

e. Material: Materials constitute the essential ingredients of concrete, in fact with materials 

there will be no concrete. The understanding of properties of individual constituents of 

concrete is essential prerequisite for designing and construction of concrete structures. 

According to Neville and Brooks (2010), concrete and steel are the major construction 

materials in use with the former requiring expertise in its construction since is not premade 

like the later. It therefore demands an extensive care in all the processes involved from 

batching to curing of constructed elements. 

With respect to carbonation, this research work shall only focus on cement in that the effect 

of other materials other than cement can be controlled and minimized through appropriate 

selection of materials. 

Modern cement is believed to have been invent in 1756 in the experiment of John Smeaton 

for production of mortar needed for construction foundation and masonry of the Eddystone 

Lighthouse, where hydraulic material was produced from mixture of Aberthau blue lias, 

South Wales limestone and Italian pozzolana. Structure like Brunel’s Thames Tunnel and 

Stephenson’s Britannia Bridge foundation were constructed with cement (Illston, 1994). 

Before the patency of OPC by Joseph Aspdin in 1824 (Neville & Brooks, 2010), other 

nineteenth century contributors include M. Vcat and James Frost (Raina, 1990). 

Cement Composition: cement is made chiefly from Lime and Silica (Illston, 1994), bauxite 

for high-alumina cement (Neville, 2005). The argillaceous and calcareous including other 

materials are partially fused at about 1450 oC (in the kiln) to form clinker, and grinded to 

range of 2 – 80 µm on cooling with gypsum (Gambhir, 1995; Illston 1994). Chatterjee, 

(2011) sum up the process as follows 

a. Dissociation of limestone 

b. Solid-state reactions  

c. Liquid-phase sintering  

d. Reorganisation of clinker microstructure through cooling.  

 

The review of the following cement type properties will grant us a better understanding in 

its effect on carbonation process. 
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i. Ordinary Portland Cement: Portland cement is a product from the partial fusion with the 

production of “nodules of clinker” between the mixture of limestone and clay or other similar 

materials at about 1450 oC. The clinker is further mixed with calcium sulphate which 

controls the rate off set and also influences the rate of strength development (Talylor, 1997). 

Since 1843 of its first production by William Aspdin, there has been an evolution in 

technology of production and cement chemistry. The development of new cementitious 

binders with view of reducing CO2 emission for production of sustainable construction 

materials have in the past and present decay seen production of blended cement; 

Supplementary Cementitious Materials (SCMs).   

SCMs already have partly replaced the conventional Portland cement with Portland cement 

clinker burnt in a rotary kiln been the main component of Portland-composite cements 

(Ludwig & Zhang2015). 

 

ii. Clinker: The partial or complete fusion at high temperature (1450 oC) between mixed 

chalk, clay and other materials in a rotary kiln.  

Portland cement clinker is a hydraulic material consisting of mainly, of calcium silicates 

((CaO)3SiO2 and (CaO)2SiO2), aluminium oxide (AL2O3), iron oxide (Fe2O3) and other 

oxides (Hewlett, 2004). The mass composition of clinker constituent as reported by 

Telschow (2012) shows that 40-80% C3S, 10-50% C2S, 0-15% C3A and 0-20% C4AF.  

Production of Portland Cement Clinker (PCC), takes place in a heated rotary kiln inclined to 

the horizontal (1 – 3 oC) heated from the lower, calcination process preceding the 

clinkerisation occurs between 800 to 900 oC, and as the raw mixed material moves down the 

kiln and at 1250 oC solid state reaction occurs with gradual formation of belite, aluminate 

and ferrite. Towards the lower end of the kiln of between 1300 to 1500 oC formation of 

sticky solid particles from granulation/nodulation of molten aluminate, ferrite and ferrite and 

some quantity of belite. Alite present in clinker is then formed from free CaO and belite. Re-

crystallisation of the finely grained aluminate phase is done from fast cooling at 1200-1250 

oC, which enhances slow controllable hydration reaction of cement  (Bye, 1983; Taylor, 

1997; Telschow, 2012).Furthermore, according to Telschow (2012) clinker it is generally 

composed crystal phases;  

1. Calcium silicate phase contains alite (Ca3SiO5) at tricalcium silicate phase and belite 

(Ca2SiO4) at dicalcium silicate phase. 
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2. Aluminate phase formed from CaO and Al2O3 contains aluminate (Ca3Al2O6) at 

tricalcium aluminate phase. 

3. Ferrite phase produced from CaO, Al2O3 and Fe2O3 at tetracalcium aluminoferrite 

phase (Ca4Al2Fe2O10). 

 

Supplementary Cementitious  Materials (SCM) 

Supplementary cementitious materials (SCMs) are widely used in concrete mixtures as a 

replacement of a percentage of clinker in cement or as a replacement of a percentage of 

cement in concrete.  It is an age long practice in the construction industry, with evidence in 

lowered cost of concrete, environmental impact and higher long-term strength and improved 

durability. (Juenger & Siddique, 2015).  

According ENV 197-1: 1992 the term CEM used in describing any cementitious materials 

containing certain percentage of Portland cement. See table below for percentage of Portland 

cement clinker in various types of cement as described by EN 197-1:1992. Though ASTM 

C 1157-94a, describe non Portland Cement as “blended hydraulic cement”  

“which consist of two or more inorganic constituents that contributes to the strength-gaining 

properties of the cement, with or without other constituents, processing additions and functional 

additions” (Neville, 2005). 

  

Table 2.2: Classification of main cements according to EN 197-1:1992 (Neville, 2005) 

Types  Designation  Mass as percentage of mass of cementitious materials  

  Portland  

Cement  

Clinker  

Pozzolana or 

fly ash  

 

Silica fume  

 

ggbs 

 

I Portland  95-100 -- -- -- 

II/A Portland slag 80-94 -- -- 6-20 

II/B  65-79 -- -- 21-35 

II/A Portland 

pozzolana or 

Portland fly 

ash  

80-94 6-20 -- -- 

II/B 65-79 21-35 -- -- 

II/A Portland 

silica fume 

90-94 -- 6-10 -- 
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II/A Portland 

composite  

80-94 6-20 6-20 6-20 

II/B 65-79 21-35 21-35 21-35 

II/A Blastfurnace 35-64 -- -- 36-65 

II/B 20-34 -- -- 66-80 

II/C 5-19 -- -- 81-95 

II/A Pozzolanic 65-89 11-35 11-35 -- 

II/B 45-64 36-55 36-55 -- 

 

SCM could be in form of ternary blended and binary blended cements, the later consisting 

of only the percentage blending of SCM with PC.  

Ternary blended cement consisting of Portland cement, granulated blast-furnace slag and fly 

ash (PC–SL–FA system has been reported to improve the performance of concrete as 

compared to conventional Portland cement and binary blended cements.(Uchikawa & 

Okamura, 1993; Khalil & Anwar, 2015).    The addition of fly ash can increase workability 

and reduce bleeding of slag cement concrete. (Berry, 1980; Khalil & Anwar, 2015) 

In their inference, Khalil and Anwar (2015) observed that the rate of carbonation is inversely 

proportional to the strength of concrete irrespective of it cementitious content.  

 

Figure 2.5: Carbonation vs compressive strength.( Khalil & Anwar, 2015) 

 

 

 



23 

 

CHAPTER 3 

LITERATURE REVIEW ON ARTIFICIAL NEURAL NETWORKS 

 

3.1.  Evolution of Computation 

Throughout history the human brain has been the only source of computation, though it 

might seemed to be slow in performance of complex computation but its values can never 

be equated to machines.  

Origin of computation is dated back around 400 to 300 B.C, when Greek mathematician 

Euclid invented greatest common divisor (gcd) of two positive integers and in ninth century 

when Mohammed al-Khowârizmî, provided the step-by-step rules of add/subtract/multiply& 

divide of ordinary decimal numbers. The name algorithm gotten from Latin written 

Algorimusfor al-Khowârizmî (Harel & Feldman, 2004). 

Other computational methods include abacus, slide rule, the log tables etc. 

3.1.1.  Artificial intelligence 

Overview of Intelligence  

Artificial intelligence (AI) borders on computation that requires computer program to 

perform a similar function to that of a human brain. Depending on the task and amount of 

input data, AI could be complex and requires advanced reasoning.  

For years long, human rely on general or common-sense knowledge to gain experience and 

make prediction. 

Declaration knowledge and procedural knowledge, generally are factual processes 

employed by humans in identifying and carrying out a specific task.  For a particular 

experience the general or common-sense knowledge acquired provides the domain-specific 

knowledge; our general or common-sense knowledge tell us that parents are older than their 

children (Finlay & Dix, 1996) 

 

Neuroscience 

According Mackay (1967), among “all the natural phenomena to which science can turn its 

attention none exceeds in its fascination the working of the human brain”  
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The human brain encompasses of complex organic living tissue, of about 100 billion neurons 

or nerve cells  (Beatty, 1995),  10 percent of the cells (neurons) are dedicated for conduction 

of electrical signal while glial or glue cells forms the other 90 percent of support cells to 

neurons (Bose & Liang, 1996). The neurons are linked together through a cellular contact of 

over 10 trillion connections (Beatty, 1995). 

The neurons is divided into three parts, the Cell body, (or soma), an axon, and dendrites. 

The cell body is located at the center of the neurons and contains the nucleus of the cell in 

association with the cell’s genetic materials.  It also provide the molecular synthesizing 

mechanism; for transfer of information, repair and maintenance of the cell including 

excretion of bye-products from the cell (washington.edu; retrieved January 30, 2016). 

The axon on the other hand are excitable membrane that connects the cell body and the 

regions of synaptic contact together. They have the capabilities of generating and 

transmitting a distinctive electrical potential response (single solitary traveling pulse of 

action potential) along the entire length of the axon (Katz, 1966; Hille, 1984; Beatty, 1995). 

The dendrites is a treelike form of extensions from the cell body as can be seen in fig 3.1 

below.  Beatty, (1995) inferred that dendritic spread pattern can predict the functional 

properties of a neuron.  Dendrites receives information through chemical in the form of 

chemicals discharge from axon terminals of adjacent neurons.   

 

 

Figure 3.1: Anatomy of a Multipolar Neuron (wikimedia.org-Blausen, 2016) 

Synapses is connection point between and two neurons where impulse are exchanged. It can 

be chemical or electrical synapses depending on the location. According Beatty, (1995) 

depolarization or hyperpolarization of the cell membrane takes place at the end foot of an 

axon (synapses) as an electrical responses in the receiving cell to chemical inducement of 
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neurotransmitter (neuromodulator) releases from the axon. Electrically, synapses transmits 

and  provides continuous and direct flow of ionic current between cells.   

The complexity transduction (electrical-to-chemical transduction) processes of the transfer 

of impulse determines the synaptic strength while Synaptic plasticity measures the adaptive 

(learning) ability of nervous system to her environment acquired and strength true time and 

experience (Benfenati, 2007). 

Neurons are highly polarized cells which can transmit only a digital stereotyped signal (the 

action potential) information over long distances that cannot be modulated in amplitude, 

rather in frequency, and the synaptic digital-to-analogic process enables the transmission of 

a highly modulatable identical signal across a synaptic cleft (Zucker,1996; Benfenati et al., 

1999; Benfenati, 2007). 

 

 

Figure 3.2: Schematic of a Synapse (dreamstime.com, 2016) 

 

Synaptic cleft: is complex fluid secreted gap of about 20-30 nanometer wide between 

presynaptic and postsynaptic membrane (Beatty, 1995).  

3.1.2.  Biological neural network (BNN) 

BNN consist of the neuron which receives and process information. Their network is 

complex as compared to ANN.  

Biological neural network do not operate as a single independent unit, the co-exist as a large 

network (MoukamKakmeni & Nguemaha, 2016) of closely packed neuronal network.  
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The networks of neurons are dynamic but non-linear, which forms electrophysiological 

spatiotemporal  patterns from rapid communication between  neurons  in  the  network (Gross  

et  al., 1995). 

To generate an input (signals), sensory receptors and effectors collect and transmit input 

signal from the internal and external environment through constant observation of 

occurrence changes the brain (neurons) for processing in a “feed-forward-back system” via 

a relay line of axons. Stimulated receptors propagates generates potentials (electrical charge) 

through ionic movement across the synaptic cleft (from presynaptic to postsynaptic neuron). 

For a graded potentials to occur at the postsynaptic neuron, the summation of 

transmembrane potential difference across the axon hillock must exceed a threshold in order 

to trigger excitation (depolarization) along the axon resulting from influx and leakage of 

Na+, K+ and Ca2+ within the cell membrane which generates electrical impulse (action 

potential). The strength of the spike is dependent on frequency. Threshold potential is 

approximately measured at -55 mV, where resting potential is -70 mV’ therefore for 

depolarization (activation) to take place, an influx of about +35 mV is required from 

positively charged Na+ into the cell needed to cause a release of neurotransmitters from the 

synaptic vesicles located at presynaptic membrane. An electrical potential is induced at the 

postsynaptic membrane due to diffused neurotransmitter across the synaptic cleft. This set 

of algorithm is a continuous process between neurons both in inflow of input and 

transmission of processed reaction (output) with the CNS (Kandel et al., 2000; Bose & 

Liang, 1996; Benfenati, 2007; Beatty, 1995).  

3.2.  Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) are particularly employed in decision and regression 

tasks as nonparametric estimator. Coined from mimicking the BNN, it has the capabilities 

of developing its own experience of the environment and use acquired knowledge in 

generalizing new targets for a given input set.  

It is characterized by pattern connections between neurons (network architecture), 

calculation of its weight over the connections (training, or learning, algorithm) with its 

activation function (Fausett, 1994). 

ANN consists of a large number of processing elements known as neurons, units or nodes. 

Individual have direct communication link with other neurons of the network with 

corresponding connection weights. The connection weights serve as the network memory 
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for storage and recalling of data or patterns. Within each neuron exist its activation level 

(activation), a function of input received and it is used to send signal to other neuron one at 

a time (Fausett, 1994). 

Artificial neural networks has been applied to a wide range of problem in pattern and 

character recognition, performing general mappings, finding solutions to constrained 

optimization problems (Fausett, 1994). 

3.3.  Learning Process 

Learning which basically means acquiring or receiving knowledge and instructions from the 

environment.  

The Neural Network in mimicking the human pattern, also learning from its environment 

through a interactive process of adjusting its synaptic weights and bias levels and improves 

thereupon from successive iteration in accordance with prescribed measures (Haykin, 1999).    

Therefor learning in this context according to Mendel and McLaren (1970), is define as “a 

process by which the free parameters of a network are adapted through a process of 

stimulation by the environment in which the network is embedded and determined by the 

manner in which the parameter changes take place”. 

Experienced gained remains the control parameter in which the network interacts with its 

environment. 

3.3.1.  Learning rules 

Error-Correction Learning: implies the minimization of a cost function or index function 

from sequential corrective adjustment of the synaptic weights (real-valued numbers) of 

neurons  leading to the delta rule (learning rule). The corrective adjustment is applied until 

output signal converges to a desired response in a step-by-step manner (Belciug & 

Gorunescu2014; Haykin, 1999). 

 

Memory-Based Learning: Is a learning algorithm who’s desired respond variables depends 

on information (past experience) stored in a large memory from the previous input-output 

attributes (Haykin, 1999; Bennamoun, lecture note, retrieved on May 31, 2016). 

{(𝑥𝑖, 𝑑𝑖)}
𝑖=1

𝑁
 where xi = input vector; di = desired responds. 
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Hebbian Learning: It is  feed forward, unsupervised learning algorithm with the  learning 

signal equal to the neuron’s output. Prior to learning the weights are initialization at small 

random values around wi=0,. Each excitations results to either increase or decrease of the 

weights. Also in Hebbian rules, if two neurons are simultaneously activated, the connection 

strength is increase otherwise it decreases in an asynchronously activation. It also important 

to point out that the Hebbian synapses is time dependent, and learning takes place only when 

two signals interacts in a concurrent manner (Bennamoun, 2016). 

 

Competitive Learning: Output neurons compete to get active with only a single neuron been 

activated at a time. Learning by a neuron takes place when synaptic weights shifts from 

inactive to active input nodes. This is possible if a synaptic weights are distributed randomly 

to a set of neurons which responds differently to subset of input signals. Only one neuron 

(winner-takes-all-neuron) is activated within a set after competing with other neurons with 

a limit imposed on the strength of each neurons. The pattern induces individual neurons of 

the network to specialize on ensemble of similar patterns in order to become a feature 

detectors. Potential winning neuron k induces a local field vk for a specific input pattern x. 

The output signal yk of winning neuron is set to one while others that lost is set to zero. The 

winning neuron also at its input node releases a some proportion of its synaptic weights 

which is redistributed equally among the active input nodes (Haykin, 1999). 

𝑦𝑘 {
1
0

    𝑖𝑓 𝑣𝑗 > 𝑣𝑗  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑗 ≠ 𝑘 𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒  

∑ 𝑤𝑘𝑗 = 1    𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘

𝑗

 

∆𝑤𝑘𝑗 = {
𝜂(𝑥𝑗 − 𝑤𝑘𝑗)     𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘 𝑤𝑖𝑛𝑠 𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛                

0               𝑖𝑓 𝑛𝑒𝑢𝑟𝑜𝑛 𝑘 𝑙𝑜𝑠𝑒𝑠  𝑡ℎ𝑒 𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛
 

𝜂 = 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒  

 

Boltzmann Learning: It is a stochastic learning algorithm named after Ludwig Boltzmann. 

A neural network learning based on Boltzmann rule is called Boltzmann Machine. It is 

characterized by an energy function, E, the value is set by a particular state occupied by the 

individual neurons of the machine. A neuron is choosing at random by BM, and with 

probability flips its state from xk to –xk at a certain pseudotemperature temperature T. 

Learning takes place when the machine reaches thermal equilibrium if the process is repeated 

(Haykin, 1999). 
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𝐸 = −
1

2
∑ ∑ 𝑤𝑘𝑗𝑥𝑘𝑥𝑗𝑘𝑗

𝑗 ≠ 𝑘
        (3.1) 

𝑃(𝑥𝑘 → −𝑥𝑘 ) =
1

1+𝑒𝑥𝑝(
−∆𝐸𝑘

𝑇⁄ )
       (3.2) 

Where ΔEk = energy change 

 

3.4.  Learning Algorithm 

The process or rather the steps of learning herein is referred to as the learning algorithm. 

Neural networks learning depends on the activities that talks place in a network. It is function 

of collective actions of all neurons participating in the network. 

In Janabi-Sharifi and Wilson (1993), learning is said to be adaptive, self-organized, self-

repair and inductive and can be further be defined as a system during it interaction with the 

environment acquires an information or knowledge and applies acquired new knowledge in 

optimizing performance in subsequent operation of the system. 

Considering Hebbian learning law, a synaptic connection between two neurons and j 

increases its strength wij when through an input stimulus, the two neurons are repeatedly 

simultaneously activated. The change in weight Δwij is a function of the product of the two 

neurons (i;j)  activation values (ai; aj) (Kasabov, 1996). 

∆𝑤𝑖𝑗 = 𝑐.  𝑎𝑖.  𝑎𝑗 

The process is repeated with the network reacting positively until there is no more changes 

in the synaptic weight, hence the network is said to have stopped learning and is to refers to 

as network convergence (Kasabov, 1996). 

Three learning algorithm is discussed hereunder; 

 

a. Supervised Learning (Learning with Teacher) 

The input and output signals (training data) comprising representing the knowledge of the 

environment which is unknown to the neural networks. It is an approximate process of a set 

of training vectors towards a desired respond by the network parameters iteratively (Haykin, 

1999). 
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b. Unsupervised Learning (Learning without Teacher) 

Unsupervised learning is a learning algorithm used where only the input datasets are used to 

estimate the desired responses. Is a self-adaptive process where patterns in the input space 

are identified, without direct feedback from a teacher or supervisor (Watanabe & 

Tzafestas1990; Kohonen, 1982, 1987). This algorithms use no knowledge of the eventual 

targets to understand its operation by observing the input data (Becker & Plumbley, 1996). 

 

c.  Reinforced Learning. 

Experience has been the tool employed by infants to adapt and interact with their 

environment.  Reinforced learning basically has four components; the policy (goal), reward 

function, value function and the model of the environment. If we consider these components 

in relation to learning, reinforced learning is learning through mapping (Sutton & Barto, 

1998), through continuous interaction with the environment with goal of minimizing the 

scalar index of performance (Haykin, 1999). 

The network systems configured to observe under delayed reinforcement a temporal 

sequence stimuli(primary reinforcement signal) from the environment,  which is then 

transformed it a stronger signal know as heuristic reinforcement signal(Haykin, 1999). 

3.5.  The Perceptron 

Perceptron as a supervised learning binary classifier, introduced by Rosenblatt, (1958, 1961). 

Is a single-layer network that can train weights and biases to produce a correct target vector 

from corresponding input vector (mathworks.com, perceptron-neural-networks, June 15, 

2016). The network is a feedforward, three layered connection and graphically represent as 

a two layer network since the weights between the buffer layer and the second layer (feature 

layer) are constant.  

Sensory data are stored in the first layer whose elements are fully or arbitrarily connected to 

the feature layer which function as a linear combiner of signals from different sensory 

element. The neurons from the output layer (perceptronlayer) are connected with neurons 

from the corresponding features layers. Therefore, learning takes place only when an input 

vector is misclassified from training example (Kasabov, 1996; Haykin, 1999). 
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3.6.    Major Types of Neural Networks 

a. Feedforward Networks 

The main features of this network is that the connections between the input and out nodes 

are only in a forward direction. The networks do not store previous values of activations 

state of its neurons and output values.  

 

Figure 3. 3 Feedforward Network (Si-Moussa et al., 2008) 

 

It comprises of 3 basic layers, the input, hidden and output layer. The layers are linked during 

presentation of input signals with a feedforward connection. While an error corrections 

algorithm is applied hidden units in order to adjust the connection weights (Kapageridis, 

1999). 

 

b. Radial Basis Function Networks (RBF) 

RBF is a 3 layered neural networks based on interpolation in a multidimensional space with 

each layer performing a different function. The input layer contains the sources nodes which 

receives inputs from the environment (Haykin, 1999), the hidden layer neurons are activated 

by a RBF, where hidden neurons nodes contains a centre c vector (with the same parameter 

as input vector x) whose distance between the centre and the network input vector (x) is 

given as;  

‖𝑥(𝑡) − 𝑐𝑗(𝑡)‖         (3.3) 
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While the output of the hidden layer can be estimated from a nonlinear function ((ℎ𝑗(𝑡) =

𝑒𝑥𝑝 (−
‖𝑥(𝑡)−𝑐𝑗(𝑡)‖

2

2𝑏𝑗
2 ) , 𝑗 = 1, … … … 𝑚      (3.4) 

Where m = number of hide nodes, bj = positive scalar (Liu, 2013). 

 

c. Recurrent Networks 

Recurrent networks is different from feedforward network in that there is at least one 

feedback loop.  The feedback can be a local applied to a single neuron or global to the entire 

network (Haykin, 1999). 

 The network keeps records of its previous parameters, hence the subsequent state of the 

network depends on the combined effect of the previous networks state and the connections 

weights. It is also important to note that this type of topology can be risky if it is not properly 

applied. 

 

d. Self-Organisation Networks 

Self-organisation networks is an unsupervised learning topology based on vector 

quantization.  

The networks tend to learn from an n-dimensional input space into a two-dimensional space 

with a topological map (Elhag, 2002). 

3.7.  Transfer Function 

The processing elements (neurons) of a network with its adjustable internal parameter 

(weights) Duch and Jankowski (1999), the transformation of the neurons from input space 

to output space is determined by a non-linear function (transfer function).  

Their primary function is to define exactly how the scale or magnitude of a neurons response 

to applied signal.  

Furthermore, Duch and Jankowski (1999) defined Transfer function as a composition of “the 

activation function and the output function” together determines the values of a neuron 

outgoing signals in the N-dimensional input space (parameter space). The activation function 

is a linear combiner whose function is to determine the total signal a neuron receives. If a 

neuron i connects to neuron j (if j=1….,N) with signal sent (xj) and connection strength of 

wij, total activation Ii(x) is given as;  

𝐼𝑖(𝑥) = ∑ 𝑤𝑖𝑗𝑥𝑗
𝑁
𝑗=0          (3.5) 
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Where wi,0= ϴ (threshold) and x0 = 1 

Also, the output function which operates on a scalar activations and returns scalar values are 

responsible neurons signal processing.  

Different types of transfer function used in ANNs are discussed hereunder.  

 

Sigmoid Functions: Sigmoid functions isan S-shape curves exhibiting a graceful balance 

between linear and non-linear behaviours (Menon et al., 1996), they are natural and a good 

squashing functions for unbounded activation (Duch & Jankowski, 1999).  

 

Hard-limited Threshold function: The neuron is said to be activated and the activation value 

set to 1 if the net input value to the neuron exceed a particular threshold, otherwise it remains 

inactive at the activation value of 0 (Kasabov, 1996).  

 

The linear threshold function: Unlike hard-limited threshold function, the activation value 

linear increase is directly proportional to increase in the net input signal until a certain 

threshold with saturated output (Kasabov, 1996).  
 

3.8.  Other Properties of the Neural Networks 

Input Neurons: Neurons are computing elements of the network.  Input neurons are external 

neurons located at the source node of the network which receives input signals from the 

environment.  

 

Output Neurons: They are neurons at the sink nodes which represents the network target. 

Neurons at the output nodes are also external neurons because they receive processed signals 

from the hidden layer in a multilayer learning networks.  

 

Hidden Layers: The hidden layer(s)sometimes called the processing layer are introduced to 

increase the computation power of the network. In a simple input/output layered network, 

they are limited and cannot compute an Exclusive OR (XOR) function. The hidden neurons 

or rather the hidden units are processing units contained in the hidden nodes which is 

responsible for processing input signals. 
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Weights: They are values associated with each vector and nodes in the network and 

determines how the input relates to the output. (measures the relevance of input data to output 

data). Each neuron in the network is able to receive input signals, to process them and to 

send an output signal. Because individual neurons are connected to at least one neuron, and 

their connection is evaluated by a real number (weight coefficient), that reveals the degree 

of importance of a given connection in the network (Svozil et al., 1997). Adjustment of 

weights in the work represents the learning. 

 

Bias: Weights assigned to individual nodes of the network. Their values are initial set to 1 

and updated as the networks is trained.  

The weights represent the memory of the network. 

 

3.9.  Properties of the Model 

Coefficient of Correlation: commonly known as R, it measures the linear correlation between 

two variables. It is given as; 

𝑅 = √
∑(𝑦𝑒𝑠𝑡−�̂�𝑖)2

∑(𝑦−�̂�𝑖)2

±
         (3.6) 

Where ∑(𝑦𝑒𝑠𝑡 − �̂�𝑖)
2 = explained variation (Spiegel & Stephens, 1999)  

 

note that a higher R does not simply means that the model is fitted, different parameters 

can lead to overfitting which include; 

1. slope of regression 

2. size of dataset and distribution 

3. Ratio of independent parameters to number of dataset. 

 

Performance Error: The network performance error will be calculate using Mean Square 

Error (MSE).   

3.10.  Review of Related Literature 

 

Works of Kwon and Song (2010), Liu et al. (2008), Lu and Liu (2009) and Taffese et al. 

(2015) are reviewed hereunder. Due to lack of information provided by BU et al. (2009) the 

literature will not be reviewed herewith.  
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Input nodes: in Kwon and Song (2010), 4 units was employed comprising “water/cement 

ratio, total volume ratio of sand and coarse aggregate and relative humidity”. Liu et al. (2008) 

modelling was based on “water/gel ratio, cement content and time of exposure”. Stress level 

of concrete, testing age, water/cement ratio, cement/fine aggregate ratio and cement/coarse 

aggregate ratio are five input used in Lu and Liu (2009). Taffese et al. (2015) considered 25 

variables at input node consisting of carbonation duration, cement type, admixtures, 

additives, mix properties in including test for workability and environmental condition.  

Hidden layer and neurons: all four studies used 1 hidden layer, only Lu and Liu (2009) 

reported the size of hidden neurons used which was 10 units.  

Output node: Within the four studies, one node was established as target unit. All except 

Kwon and Song (2010) have carbonation depth as output node, while the former established 

CO2 diffusion coefficient as target node.  

Dataset: 19 datset was used by Lu and Liu (2009), 12 dataset by Kwon and Song (2010), Liu 

et al. (2008) used 70 samples while Taffese et al. (2015) did not provide number sample 

used. 

Within this studies, high R values (correlation coefficient) was obtained, however input 

nodes used did not reflect the exact factors influencing the progress of carbonation in 

concrete with respect to cement composition. Also modelling was based on one optimization 

function with limited dataset.  

  



36 

 

CHAPTER 4 

METHODOLOGY USED FOR THE PREDICTION OF CARBONATION DEPTH 

USING ANN 

 

4.1.   Introduction 

Behaviour of factors influencing carbonation is nonlinear and neural networks is an 

appropriate approach. Application of ANN for any given problem requires a sufficient 

dataset for training of the network. Dataset acquired was treated to conform to method used. 

Since logistic sigmoid function was used as transfer function between the layers, dataset was 

converted into binary form to avoid earlier saturation in the network. Details of sample input 

and output sample sizes was also outlined in this section. 

4.2.  Data Selection 

Extracted dataset was based on factors influencing the progress of carbonation. These factors 

include;  

a. Concrete microstructure and Porosity 

1. Binder Properties (input) 

i. Cement and cement additives composition 

ii. Water/cement ratio   

2. Mix properties (input) 

i. Cement quantity  

ii. Cement additives quantity 

iii. Water quantiy 

iv. Water/binder ratio 

b. Curing properties (input) 

1. Curing Relative humidity 

2. Duration. 

c. Environment influencing parameters (input) 

i.Relative humidity 

ii.Carbon dioxide concentration 

iii.Temperature  
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d. Age of concrete: duration of carbonation. (input) 

e. Carbonation depth in mm (Output) 

 

18 influencing factors was isolated been refer to as input data. Within each test number a 

corresponding carbonation depth was recorded. 

 

Table 4.1: List of input parameters 

No Description  unit 

1 Cement CaO content % 

2 Cement SiO2 content % 

3 Cement Fe2O3 content % 

4 Cement Al2O3 content % 

5 Fly Ash CaO content % 

6 Fly Ash SiO2 content % 

7 Fly Ash Fe2O3 content % 

8 Fly Ash Al2O3 content % 

9 Total cement content kg/m3 

10 Total fly ash content kg/m3 

11 Water content kg/m3 

12 Water/binder ratio % 

13 Curing time  day 

14 Curing relative humidity % 

15 external temperature  o C 

16 external CO2 content  % 

17 external relative humidity  % 

18 Carbonation duration day 
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Table 4.2: List of scientific papers where dataset was extracted 

s/n Name of paper  Author/s Dataset 

number  

1 “The experimental investigation of concrete carbonation depth 

Cement and Concrete Research 36 (2006) 1760– 1767” 

Cheng-Feng Chang;  Jing-Wen 

Chen 
2 

2 “Analysis of an accelerated carbonation test with severe preconditioning; 

Cement and Concrete Research, Volume 57, March 2014, Pages 70–78” 

Ph. Turcrya,  L. Oksri-Nelfiaa, A. 

Younsib, A. Aït-Mokhtara 
10 

3 “Measurement methods of carbonation profiles in concrete: 

Thermogravimetry, chemical analysis and gammadensimetry; Cement and 

Concrete Research 37 (2007) 1182–1192”.  

Géraldine Villain, MickaëlThiery, 

Gérard Platret 3 

4 “Different methods to measure the carbonation profiles in concrete; 

International RILEM Workshop on Performance Based Evaluation and 

Indicators for Concrete Durability: Madrid, Spain, 19-21 March 2006” 

G. Villain, M. Thiery, V. 

Baroghel-Bouny, G. Platret 
10 

 

5 “Accelerated carbonation and testing of concrete made with fly ash; 

Construction and Building Materials, Volume 17, Issue 3, April 2003, Pages 

147–152” 

Cengiz Duran Atiş 

40 

6 “A model for predicting carbonation of high-volume fly ash concrete; Cement 

and Concrete Research, Volume 30, Issue 5, May 2000, Pages 699–702”. 

LinhuaJianga,  BaoyuLinb, 

YueboCai 
36 

7 “A performance based approach for durability of concrete exposed to 

carbonation; Construction and Building Materials, Volume 23, Issue 1, 

January 2009, Pages 190–199” 

Emmanuel Rozièrea, Ahmed 

Loukilia,  François Cussighb 32 

8 “Reactive transport modelling of long-term carbonation; Cement and 

Concrete Composites, Volume 52, September 2014, Pages 42–53”. 

O.P. Kari, ,J. Puttonen, E. Skantz 
44 

9 “Effects of curing upon carbonation of concrete; Construction and Building 

Materials, Vol 9, No. 2, pp. 91-95, 1995”. 

J.P. Balayssac, Ch.H. Détriché, J. 

Grandet 
48 
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4.3.   Data Pre-processing: Normalization 

Variables presented in this study are in binary form (0 to 1), since transfers functions used 

in neural networks gives outputs within a specified range, and faster convergence of training 

set is needed to reduce number of training iteration.  Saturation of neurons leading to slow 

convergence in a logistic Sigmoid mapped network (Franzini, 1987; Dahl, 1987; Fahlman, 

1989; Chen & Mars, 1990; Lee et al., 1991; Balakrishnan & Honavar, 1992; Spartz & 

Honavar, 1993; Parekh et al., 1993;Vitela & Reifman, 1993;Vitela & Reifman, 1997) are 

attributed normalization of training set (Sola & Sevilla, 1997).  While considering the 

importance of normalization in input dataset, Khashman (2010), argued that normalizing the 

whole set with by dividing the it with highest number will cause the some figure to become 

insignificant since their values after normalization is scaled towards zero.  Sola and Sevilla, 

(1997), observed that network error decreases as normalization minimizes the changes 

between the variation range of different variables.  

Therefore, normalization will be perform within each variables.  

4.4.   Feedforward Multilayer Perceptron Networks 

The works of Rumelhart et al. (1986), Werbos (1990) and many more gave a leeway to 

research in MLPs.  The presence of hidden layers differentiates multilayer networks from 

single layer networks. Unlike the single-layer networks where computational nodes are 

located at the output layer, hidden layer with its corresponding nodes (hidden units or 

neurons) constitutes the computation nodes of the network. 

 

 

Figure 4.1: Feedforward Multilayer Network (Svozil et al., 1997) 
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Also, the problem associated with linear separability of the perceptrons with cases of solving 

OXR problems distinguishes MLPs from single layer netwoks. MLPs neurons contains 

“continuous value inputs and outputs, summation input function, and nonlinear activation 

function”. In order to minimize global error E, a gradient descent rule is applied to optimize 

connection weights Wij. Change of weight ΔWij in the direction of negative gradient of the 

error at a cycle (t + 1) is given as (Kasabov, 1996).; 

∆𝑊𝑖𝑗(𝑡 + 1) = −𝑙𝑟𝑎𝑡𝑒(𝜕𝐸 𝜕𝑊𝑖𝑗(𝑡)⁄ )      (4.1) 

 Irate= learning rate. 

If E is as a surface weight in the weights’ vector space, a global error for all training may be 

given as (Kasabov, 1996). ; 

𝐸 = ∑ ∑ 𝐸𝑟𝑟
(𝑝)

(𝑓)(𝑝)          (4.2) 

Where 𝐸𝑟𝑟 =
(𝑦𝑗

(𝑝) − 0𝑗
(𝑝))

3

2  
⁄  𝑎𝑠 𝑎 𝑀𝑆𝐸 

For every completed cycle representing the network epoch or iteration training propagated 

through the network, error is calculated. 

4.5.  Feedforward Backpropagation Algorithm  

Backpropagation algorithm also known as “generalized delta rule” that apply gradient error 

function method to minimize the total squared errors of the output computed by the network 

in three phases; 

1. Feedforward of the input training signals  

2. Calculation and propagation of associated error 

3. Adjustment of connection weights. 

Forward pass propagates input signals received at by the input units Xi via the hidden units 

Zj  unto the output units Yk. At the input and hidden layers, respective activation xi and zi is 

computed and sends signals xi and zi to connected units in the next layer. 

Output unit initiates the backward pass by computing its activation yk and compare it with 

target value tk to compute associated error. Thereafter 𝛿𝑘   factor (k= 1, ……, m)is computed 

and used to distribute error at the output unit 𝑌𝑘 back to all units connected to the output 

layer from the hidden layer. Also in a similar case but simultaneously, 𝛿𝑗 factor (j= 1, ……,p) 
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of hidden units 𝑍𝑗 are computed and used to update the weight connections of  inputs and 

hidden layers (Fausett, 1994; Kasabov, 1996). 

Fausett, (1994) presented a summarized algorithm for backpropagation neural networks as 

follows; 

Step 0.  

“Initialize weights. (set to small random values)”. 

Step 1.  

   “While stopping is false, do steps 2-9” 

 Step 2.  “for each training pair, do steps 3-8” 

Feedforward: 

 Step 3.  “Each input unit (Xi, i = 1, ……., n) gets input signal xi and   

       transmits it to all neurons in the hidden layer”.  

 Step 4.  1. “Each hidden neurons (Zj, j = 1, ……., p) calculations its  

weighted  input signals”,  

𝑧_𝑖𝑛𝑗
= 𝑣𝑜𝑗 + ∑ 𝑥𝑖𝑣𝑖𝑗 ,

𝑛

𝑖=1

 

2. “activation function is applied to calculate output signal” 

𝑧𝑗 = 𝑓(𝑧_𝑖𝑛𝑗), 

3. “activated signal is sent to all neurons in the output layer”.  

 Step 5.  “Each output neurons (Yk, k= 1, ……., m) calculates it  

weighted applied signals”,  

𝑦_𝑖𝑛𝑘
= 𝑤𝑜𝑘 + ∑ 𝑧𝑗𝑤𝑗𝑘,

𝑝

𝑗=1

 

2. “activation function is applied to calculate output signal” 

𝑦𝑘 = 𝑓(𝑦_𝑖𝑛𝑘), 

 

Backpropagation of error 

Step 6.  1. “each output neurons (Yk, k = 1,….m) obtains a”  

“Corresponding input training  target pattern, and evaluates the error”.  

   𝛿𝑘 = (𝑡𝑘 − 𝑦𝑘)𝑓′(𝑦_𝑖𝑛𝑘), 

   2. “calculates weight correction term for updating wjk” 

   Δ𝑤𝑗𝑘 = 𝛼𝛿𝑘𝑧𝑗,  



42 

 

   3. computes bias correction term for updating 𝑤𝑜𝑘 

   Δ𝑤𝑜𝑘 = 𝛼𝛿𝑘, 

   4. applies 𝛿𝑘 to neurons in the layer below. 

 Step 7.  1. individual hidden neurons (Zj, j=1,...,p) calculates its delta  

inputs from the neurons in the output layer. 

𝛿_𝑖𝑛𝑗
= ∑ 𝛿𝑘𝑤𝑗𝑘 ,

𝑚

𝑘=1

 

2. computes error term by multiplying the derivative of its activation 

function.  

𝛿_𝑖𝑛𝑗 = 𝛿_𝑖𝑛𝑗𝑓′(𝑧_𝑖𝑛𝑗), 

3.  computes weight correction term for updating vij  

Δ𝑣𝑖𝑗 = 𝛼𝛿𝑗𝑥𝑖
, 

4. computes bias correction term for updating voj 

Δ𝑣𝑜𝑗 = 𝛼𝛿𝑗 . 

Weight and Bias Update 

 Step 8.  1. individual output neurons (Yk, k =1,……., m) updates its  

bias and weight (j = 0, …….p):  

𝑤𝑗𝑘(𝑛𝑒𝑤) = 𝑤𝑗𝑘(𝑜𝑙𝑑) + Δ𝑤𝑗𝑘 

 

   2. Individual hidden neurons (Zj, j=1,…….., p) updates its  

bias and weights (i= 0, ……., n): 

𝑣𝑖𝑗(𝑛𝑒𝑤) = 𝑣𝑖𝑗(𝑜𝑙𝑑) + Δ𝑣𝑖𝑗 

 

Step 9.  Test stopping condition met. 

4.5.1. Activation function 

Binary sigmoid function (0, 1) is preferred.  Since normalization of independent variables 

are between zero and one, it requires an activation function with continuous, differentiable 

and monotonically non-decreasing for efficient computation.  



43 

 

 

Figure 4.2: Sigmoid function 

 

𝑓1(𝑥) =
1

1+𝑒(−𝑥) , with          (4.3) 

𝑓1
′(𝑥) = 𝑓1(𝑥)[1 − 𝑓1(𝑥)]        (4.4) 

 

4.5.2  Training functions (optimization methods) 

Conjugate-Gradient method: is suitable for training MLPs owning to numerous adjustable 

parameters. It differs from method of steepest descent of slow convergence and can be 

applied in large-scale problems. This I a second-order optimization problem (Haykin, 1999). 

It was proposed in 1964 by fletcher and Reeves, the method applies successive conjugate 

direction based on the gradient and the residue. If the objective function is a quadratic 

function, the search direction is minimized exactly at each epoch. Network weights are 

updated in the descent direction S(n) according to unidirectional search (Robitaille et 

al.,1996).  

∆𝑤(𝑛) = 𝜆(𝑛)𝑆(𝑛)         (4.5) 

Where  𝑆(𝑛) = 𝐺(𝑛) +
‖𝐺(𝑛)‖

‖𝐺(𝑛+1)‖
𝑆(𝑛 + 1) 

Scaling factor used include;  

Polak – Ribière = 
𝑟𝑇(𝑛)(𝑟(𝑛)−𝑟(𝑛−1))

𝑟𝑇(𝑛−1)𝑟(𝑛−1)
       (4.6) 

Fletcher-Reeves = 
𝑟𝑇(𝑛)𝑟(𝑛)

𝑟𝑇(𝑛−1)𝑟(𝑛−1)
       (4.7) 

 

Quasi-Newton Method: Quasi-Newton method directly approximate the inverse Hessian 

matrix [H(n)]-1 from the derivative, G(n).  

Here the descent direction S(n)= -[H(n)]-1G(n).  
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4.6.  Distribution of Dataset 

Percentage of dataset distributed in training-testing-validation minimises the problem of 

over-fitting cause by poor generalization as a result of network remembering by heart during 

validation. Here the margin is clear on network accuracy between testing and cross-

validation sets.  

Yadollahi et al., (2016) adopted 74% -26% in “predicting the optimal mixture of radiation 

shielding concrete” with 3 inputs and 3 outputs. Taffese and Sistonen, (2016) in their study 

for  prediction for deterioration risk analysis of concrete façade element used 75% training  

and 25% testing with Outdoor RH and temperature of ambient air as input variables. As 

input neurons increases the complexity of model also increases making it more likely to have 

overfitting (Haykin, 1999).  

To insure that the model is not generalizing by heart, and adopting Khashman, (2010) 

suggestion of a close range of 40% - 60%, 50% - 50% and 60% - 40% training-to-testing 

data distribution. Above distribution ensure that with whatever experience the network gains, 

it can predict and the accuracy of the result can be justified.   

The training set is further divided into estimation (train and select model) and validation (test 

or validate model) subset (Haykin, 1999). But in this study, data division above testing and 

validation are grouped together in order to appreciate the size of training subset. Also the 

data distribution is refers in this study as learning scheme (LS), with LS1, LS2 and LS3 

representing 40% - 60%, 50% - 50% and 60% - 40% training/Testing respectively.  

  4.7.   Number of Hidden neurons  

There is a perception that increase in hidden neurons is directly proportional to decrease in 

network error. This is generally the case for most new users of artificial neural networks. 

The behaviour of ANN is yet to be fully understood, early researchers called the method “the 

blackbox” referring to unexplained phenomenon associated with it. 

The difficulty in selecting the number of hidden neurons and proposed solutions (Zhang et 

al., 2003; Yuan et al., 2003) are yet to be accepted among researchers (Atici, 2011). 

Earlier proposals were not scientific as some suggest number of hidden neurons can be 

estimated by adding the number of input neurons and output neurons and divide by two. 

Other suggestions are maximum number of hidden neurons may not exceed number of 

samples. In Yuan et al. (2003) view these methods, in the first case, factors that affect 
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network structure cannot be ruled out such number of samples in the training set, noise size 

of sample and complexity of learning function. While in the second case viewed, it can only 

solve cases of overlearning in the network.  

This is study is not to establish an algorithm or function for selection of number of hidden 

neurons, it is beyond the scope of this study. Traditional method of training with a series of 

hidden neurons will be applied and the number with optimum performance will be selected. 

Hidden neuron sizes used are 5, 10, 15, 20, and 25 representing ANN-1, ANN-2, ANN-3, 

ANN-4, and ANN-5 respectively.  

4.8.  Optimisation Methods  

a. Steepest Decent Methods  

i. Gradient Descent Backpropagation (GD) 

Gradient descent is a batch steepest descent algorithm with weights and bias of the network 

updated along negative gradient. Since the learning rate multiplies the negative of the 

gradient, in order to estimate weights and bias changes, larger rate for learning force the 

network to converge quickly while   for smaller learning rate, the network is much longer. 

ii. Gradient descent with Adaptive Learning Rate Backpropagation (GDA).  

GDA is a modified algorithm from GD reported in the previous subsection. Adaptive 

learning rate here implies that the learning rate of the network is not constant throughout the 

training. There is modification according to error of the network at each epoch, weight and 

bias are either retained or discarded with respect to the value of the new and the old error. 

Increase and decrease of learning rate are performed by multiplying the learning rate with   

lr_inc   and lr_dec to obtain a new learning rate. 

iii.  Gradient Descent with Momentum Backpropagation (GDM).  

Addition of a momentum filter to learning parameters maintains stability of the algorithm 

even when larger learning rate is used. Also convergence is accelerates when the trajectory 

is moving in a consistent direction (Hagan et al., 1996).  With addition momentum, the result 

is expected improve within the learning scheme when compared with other steepest descent. 

iv. Gradient Descent with Momentum and Adaptive Learning Rate Backpropagation (GDX) 
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b. Conjugate Gradient Method.  

i. Conjugate Gradient Backpropagation with Powell-Beale Restarts (CGB) 

Conjugate gradient algorithms with restarts at point when the orthogonality between the 

current gradient and the previous gradient is small (mathworks.com, retrieved August 31, 

2016). 

ii. Conjugate gradient backpropagation with Fletcher-Reeves updates (CGF) 

This is a steepest descent direction search based algorithm. Search lines are perform to 

determine the optimal distance required for any given search direction. It is fast converging 

algorithm suitable for estimating carbonation problem. 

iii. Conjugate Gradient Backpropagation with Polak-Ribiére updates (CGP). 

This method is similar to Fletcher-Reeves updates method of conjugate gradient. It is 

difficult to analyses network performance based on number of iteration as there is no pre-

determined search direction stipulated for the network. As discussed earlier in GDM and 

GDA, “gradient descent with momentum and adaptive learning rate backpropagation” 

combines both methods for optimization of network models 

iv. Scaled Conjugate Gradient (SCG) 

Unlike conjugate gradient backpropagation with Fletcher-Reeves updates, conjugate 

gradient backpropagation with Polak-Ribiére updates and gradient backpropagation with 

Powell-Beale restarts, scaled conjugate gradient method despite been a conjugate direction 

algorithm do not perform a line search at each iteration. It uses a Levenberg-Marquardt 

method in order to scale the step size (Moller, 1993). Absence of line search in this method 

can be seen in the maximum epoch obtained in each set of training. Increase in the number 

of hidden neurons also decreases the computational cost. 

 

c. Levenberg-Marquardt Backpropagation (LM) 

i. Levenberg-Marquardt Backpropagation (LM) 

Levenberg-Marquardt algorithm is a non-linear least iterative technique that minimizes a 

least square function to sum of its square.  A search direction is performed and can alternate 
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between Gauss-Newton direction and the steepest descent direction (www.mathworks.com 

retrieved on September 15, 2016).  

 

d.  Bayesian Regularization Backpropagation (BR) 

Proposed by McKay, (1992). Variables are adjusted according to Levenberg-Marquardt 

algorithm which uses the backpropagation to calculate the Jacobian jX of performance in 

connection to the weight and bias of the variables X (mathworks.com, retrieved August 29, 

2016). 

 

e. BFGS Methods  

i. BFGS Quasi-Newton Backpropagation (BFG) 

Named after the contributions of Broyden, Fletcher, Goldfarb, and Shanno. It convergences 

faster than conjugate gradient method and does not require to second derivatives. At each 

epoch, approximate Hessian matrix is updated (mathworks.com, retrieved August 29,      

2016).  

ii. One-step Secant Backpropagation OSS 

one step secant is a  method that is neither fully BFGS algorithm nor fully conjugate gradient 

algorithm,  the algorithm requires less storage computation per epoch than BFGS and  more 

than the conjugate gradient algorithm 

f. Random order incremental training with learning functions (R) 

Weights and bias are updated incrementally after input are presented randomly 

(mathworks.com, 2016).      

 

g. Resilient backpropagation (RP) 

Proposed in Riedmiller and Braun (1993), to overcome problem of weight updates in 

gradient-descent. Weight-steps are according to sequence of signs, not on the magnitude of 

the derivatives causing the learning to be distributed evenly over the entire network.  
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CHAPTER 5 

RESULTS AND DISCUSSION 

 

5.1.  Results and Discussion Overview   

In the cause of this study, several difficulties were met, overcome and some limited the 

progress of the study. 

 Experimental carbonation dataset was limited owning to limited information 

provided by some authors on the properties of cement and concrete mix. 

 Acquired dataset  

 Times was a major factor in this study. Experimental evaluation was replaced and 

option of extracting data from published literature was adopted.  

 Publication on the subject with respect to neural networks is also limited as the time 

of this study, hence major citations was done from similar problem on ANN 

prediction.  

 Difficultly in estimating the number of hidden neurons was a major problem. 

As explained in the previous chapters, distribution of number of hidden neurons forms the 

ANN models.  Five different models were proposed based on trial analysis; ANN-1, ANN-

2, ANN-3, ANN-4 and ANN-5 which refer to 5, 10, 15, 20 and 25 hidden neurons, 

respectively contained in the hidden layer. While LS1, LS2 and LS3 representing 40:60, 

50:50 and 60:40 % of data distribution, respectively. 

 

Table 5.1 below presents have results according to learning scheme, Table 5.1 to 5.3, are 

results of LS1, LS2 and LS3, respectively. Correlation coefficient (R), mean square error 

(MSE) and iteration are presented as the network results. R values presented in the cross-

validation table 5.4 - 5.16 are training R, testing R and total R of the network.  

 

Network performances are discussed according to method of optimization with respect to 

changes in learning scheme and number of hidden neurons.  
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Table 5.1: Results of learning scheme-1 with changing ANN model 

Learning 
Scheme  

Optimization 
Method 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15) ANN-3 (20) ANN-3 (25) 

R MSE iter R MSE iter R MSE iter R MSE iter R MSE iter 

40:60 

GD 0.944 0.0038 20000 0.936 0.0042 20000 0.931 0.0047 20000 0.933 0.0047 20000 0.908 0.0069 20000 

GDA 0.943 0.0039 20000 0.943 0.0040 20000 0.945 0.0038 20000 0.925 0.0059 3848 0.953 0.0032 20000 

GDM 0.933 0.0045 20000 0.919 0.0054 20000 0.936 0.0045 20000 0.928 0.0048 20000 0.927 0.0052 20000 

GDX 0.936 0.0045 8434 0.940 0.0041 20000 0.932 0.0047 20000 0.936 0.0045 20000 0.939 0.0046 20000 

CGB 0.966 0.0025 1120 0.953 0.0032 419 0.965 0.0024 390 0.950 0.0035 538 0.942 0.0043 417 

CGF 0.939 0.0041 1077 0.950 0.0035 392 0.942 0.0040 607 0.963 0.0044 103 0.951 0.0034 447 

CGP 0.963 0.0025 1828 0.966 0.0023 464 0.946 0.0037 487 0.956 0.0031 597 0.951 0.0037 456 

SCG 0.947 0.0036 688 0.960 0.0027 489 0.941 0.0043 523 0.935 0.0045 311 0.930 0.0050 277 

LM 0.959 0.0029 28 0.944 0.0046 15 0.942 0.0041 50 0.949 0.0036 16 0.940 0.0041 8 

BR 0.943 0.0039 429 0.937 0.0043 1091 0.941 0.0040 26 0.946 0.0037 1206 0.938 0.0043 1248 

BFG 0.954 0.0032 367 0.954 0.0032 167 0.948 0.0036 52 0.931 0.0048 198 0.933 0.0049 266 

OSS 0.956 0.0033 3189 0.943 0.0039 1766 0.942 0.0040 2222 0.944 0.0038 1506 0.929 0.0048 376 

R 0.917 0.0063 20000 0.944 0.0044 20000 0.946 0.0041 20000 0.942 0.0040 20000 0.904 0.0070 349 

RP 0.951 0.0034 20000 0.949 0.0035 11638 0.939 0.0045 655 0.947 0.0036 9489 0.937 0.0042 8660 

 

* different colours above delineates grouping of optimization function.    
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Table 5.2: Results of learning scheme-2 with changing ANN model 

Learning 
Scheme  

Optimization 
Method 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15) ANN-3 (20) ANN-3 (25) 

R MSE iter R MSE iter R MSE iter R MSE iter R MSE iter 

50:50 

GD 0.915 0.0057 20000 0.937 0.0043 20000 0.952 0.0033 20000 0.936 0.0043 20000 0.953 0.0033 20000 

GDA 0.950 0.0036 20000 0.948 0.0037 20000 0.945 0.0039 20000 0.948 0.0037 20000 0.941 0.0041 20000 

GDM 0.951 0.0034 20000 0.935 0.0046 20000 0.945 0.0038 20000 0.938 0.0042 20000 0.939 0.0041 20000 

GDX 0.945 0.0037 20000 0.951 0.0034 20000 0.946 0.0037 20000 0.952 0.0034 20000 0.956 0.0030 20000 

CGB 0.967 0.0023 683 0.970 0.0021 643 0.964 0.0025 841 0.968 0.0023 559 0.963 0.0025 524 

CGF 0.939 0.0043 1141 0.966 0.0024 661 0.960 0.0028 697 0.962 0.0026 807 0.958 0.0029 509 

CGP 0.970 0.0020 994 0.975 0.0018 547 0.956 0.0031 395 0.946 0.0037 562 0.954 0.0032 596 

SCG 0.967 0.0023 550 0.969 0.0022 675 0.963 0.0029 600 0.965 0.0024 719 0.972 0.0020 559 

LM 0.967 0.0023 26 0.963 0.0026 42 0.958 0.0030 53 0.965 0.0024 53 0.958 0.0030 29 

BR 0.952 0.0033 173 0.948 0.0036 909 0.953 0.0033 22 0.946 0.0037 2486 0.946 0.0037 575 

BFG 0.966 0.0026 339 0.951 0.0034 354 0.966 0.0024 258 0.948 0.0037 272 0.951 0.0034 98 

OSS 0.961 0.0027 2007 0.951 0.0035 2432 0.965 0.0025 2115 0.957 0.0031 2317 0.947 0.0039 2638 

R 0.945 0.0038 20000 0.862 0.0091 20000 0.910 0.0063 20000 0.934 0.0048 11266 0.916 0.0057 1322 

RP 0.964 0.0025 18630 0.956 0.0030 20000 0.944 0.0038 20000 0.958 0.0029 6783 0.939 0.0042 10184 

 

* different colours above delineates grouping of optimization function.    
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Table 5.3: Results of learning scheme-3 with changing ANN model 

Learning 
Scheme  

Optimization 
Method 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15) ANN-3 (20) ANN-3 (25) 

R MSE iter R MSE iter R MSE iter R MSE iter R MSE iter 

60:40 

GD 0.947 0.0037 20000 0.953 0.0032 20000 0.955 0.0031 20000 0.948 0.0036 20000 0.954 0.0031 20000 

GDA 0.953 0.0032 20000 0.954 0.0031 20000 0.952 0.0034 20000 0.952 0.0033 20000 0.960 0.0028 20000 

GDM 0.945 0.0038 20000 0.941 0.0040 20000 0.948 0.0036 20000 0.943 0.0039 20000 0.942 0.0040 20000 

GDX 0.945 0.0038 20000 0.964 0.0025 20000 0.961 0.0027 20000 0.966 0.0023 20000 0.962 0.0026 20000 

CGB 0.971 0.0020 618 0.974 0.0018 572 0.973 0.0019 423 0.967 0.0022 537 0.968 0.0022 597 

CGF 0.976 0.0017 1385 0.980 0.0014 1561 0.976 0.0017 738 0.962 0.0027 554 0.962 0.0027 540 

CGP 0.976 0.0017 1009 0.977 0.0016 537 0.970 0.0021 555 0.970 0.0022 888 0.972 0.0019 631 

SCG 0.970 0.0021 890 0.980 0.0014 676 0.961 0.0027 514 0.969 0.0022 422 0.970 0.0022 611 

LM 0.960 0.0028 49 0.959 0.0028 29 0.973 0.0019 41 0.972 0.0020 50 0.972 0.0020 23 

BR 0.952 0.0033 240 0.954 0.0032 1106 0.950 0.0034 1746 0.954 0.0032 960 0.947 0.0036 1691 

BFG 0.971 0.0020 714 0.960 0.0027 318 0.957 0.0029 294 0.963 0.0025 306 0.968 0.0022 284 

OSS 0.970 0.0021 3789 0.973 0.0020 2778 0.969 0.0021 2932 0.967 0.0023 2125 0.956 0.0031 1599 

R 0.951 0.0034 20000 0.968 0.0023 20000 0.953 0.0032 18972 0.950 0.0034 20000 0.959 0.0039 20000 

RP 0.967 0.0023 20000 0.967 0.0023 12749 0.957 0.0029 16806 0.958 0.0029 12524 0.967 0.0023 14950 

* different colours above delineates grouping of optimization function.    

        Steepest gradient descent functions.                     Resilient backpropagation function. 

        Conjugate gradient functions.        Bayesian Regularization Backpropagation 

function. 

        Levenberg-Marquardt backpropagation function. 

        BFGS functions 

        Random order incremental training with learning function. 
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Table 5.4:  Cross validation analysis for steepest gradient descent method for varying hidden neurons at constant 40:60 train:test distribution 

(LS1) 

LS1 Opt 

fcn 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

40:60 

 

GD 0.950 0.942 0.944 38 0.972 0.961 0.936 42 0.966 0.893 0.931 47 0.976 0.889 0.933 47 0.977 0.898 0.908 69 

GDA 0.935 0.965 0.943 39 0.979 0.923 0.943 40 0.956 0.927 0.945 38 0.985 0.885 0.925 59 0.947 0.968 0.953 32 

GDM 0.956 0.929 0.933 45 0.969 0.889 0.919 54 0.976 0.918 0.936 45 0.946 0.921 0.928 48 0.979 0.907 0.927 52 

GDX 0.974 0.891 0.936 45 0.975 0.963 0.94 41 0.977 0.922 0.932 47 0.966 0.921 0.936 45 0.980 0.916 0.939 46 

 

 

Table 5.5:  Cross validation analysis for steepest gradient descent method for varying hidden neurons at constant 50:50 train:test distribution    

(LS2) 

LS2 Opt 

fcn 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

50:50 

 

GD 0.931 0.913 0.915 57 0.950 0.813 0.937 43 0.979 0.898 0.952 33 0.953 0.897 0.936 43 0.968 0.941 0.953 33 

GDA 0.962 0.940 0.95 36 0.968 0.915 0.948 37 0.952 0.820 0.945 39 0.982 0.883 0.948 37 0.960 0.915 0.941 41 

GDM 0.953 0.879 0.951 34 0.957 0.886 0.935 46 0.976 0.935 0.945 38 0.961 0.873 0.938 42 0.970 0.878 0.939 41 

GDX 0.963 0.943 0.945 37 0.976 0.878 0.951 34 0.982 0.874 0.946 37 0.967 0.920 0.952 34 0.979 0.925 0.956 30 
 

Table 5.6:  Cross validation analysis for steepest gradient descent method for varying hidden neurons at constant 60:40 train:test distribution 

(LS3) 

LS4 Opt 

fcn 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

60:40 

 

GD 0.953 0.919 0.947 37 0.966 0.910 0.953 32 0.978 0.917 0.955 31 0.968 0.952 0.948 36 0.950 0.951 0.954 31 

GDA 0.970 0.883 0.953 32 0.950 0.960 0.954 31 0.970 0.830 0.952 34 0.972 0.912 0.952 33 0.956 0.943 0.96 28 

GDM 0.958 0.940 0.945 38 0.955 0.862 0.941 40 0.973 0.800 0.948 36 0.977 0.913 0.943 39 0.984 0.869 0.942 40 

GDX 0.969 0.855 0.945 38 0.973 0.942 0.964 25 0.973 0.959 0.961 27 0.984 0.908 0.966 23 0.971 0.931 0.962 26 
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5.2.  Discussion of Results for Steepest Gradient Method 

 Generally results obtained in this method shows that all steepest gradient descent method 

require additional iteration for optimization of network performance. Although total R 

values were high within the four sub-methods, training subset did not converge to 0.001 

MSE. 

In LS1, total R values within the methods was decreasing as number of hidden neurons 

increases. When the size of training subset set was increased from 40% to 50% for LS2, total 

R values within the sub-methods increased slightly, also training subset R (train R), 

increased also.  

Performance of network in LS3 having 60% of sample size in the training subset, showed a 

significant improvement in total R values and MSE. Although within 5 hidden neurons, 

changes in R values when compared with LS1 and LS2 did not show a sharp increase. 

However, total R values and MSE in 10, 15 and 20 hidden neurons in LS3 increased 

significantly and slightly in 25 hidden neurons.  

Network epoch (iteration) remains 20,000 except in GDX (8434 iteration) and GDA (3848 

iteration) in LS1 at 5 and 20 hidden neurons respectively. The training subset was found to 

have converge to 0.001 MSE in both GDX and GDA mentioned above.  When the R value 

of training subset and testing set was compared, it was discovered that less iteration in both 

cases was as a result of overfitting (learning by heart).  

Consequently, it should be noted that steepest descent method for predicting carbonation 

depth in concrete require additional computation cost other than the limit set in this study. 

Notwithstanding, since R values are high and validation MSE are within 0.001, this method 

can be effectively used in predicting carbonation depth in concrete.  Within this method 

combination of 60:40, 20 hidden neurons and with GDX optimization method was the best 

obtained method based total R value and MSE. Fig. 5.1 shows the behavour of training in 

GDX method. Also it can also be seen on blue line, that the training subset did not converge 

to set threshold.  Corresponding fig. 5.2 shows the cross-validation R values of the 3 subsets 

and the total network R. 
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Figure 5.1: MSE graph for descent method at 60:40, GDX-20H 

 

 
Figure 5. 2: Regression plot for predicted against measured carbonation depth for 

training, testing and validation dataset for highest R value obtained in Steeped 

Descent method at 60:40, GDX-20H 
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5.3.  Discussion of Results for Conjugate Gradient Descent Method 

Results in conjugate gradient decent method are present in Table 5.7 -5.9 Additional graphs 

are attached in appendix. 

Reliability of this method for predicting carbonation in concrete increased as training subset 

is increased from 40% to 60%. In learning scheme-1, there was an increase in total R value 

when hidden neurons was increased from 5 to 10 units. Further increase of hidden neurons 

from 10 to 25 units caused a decrease in total R values, vice versa increase in MSE. 

 

 

 

Figure 5.3: MSE graph for conjugate gradient descent method at 60:40, SCG-10H 

 

Results obtained in LS2 shows an increase in total R value and MSE across the sub-methods 

within conjugate gradient descent group. Network performance improved when hidden 

neurons was increased from 5 units to 10 units, and later decreases with increase of hidden 

units from 10 to 25 units except in SCG where reliability increases with increased in hidden 

neurons. Similar, increase in hidden neurons in LS2 did not affect the network iteration 

linearly.  
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However, in this method linear relationship could not be established between iteration and 

number of hidden neuron, since the network is not likely to choose the search direction for 

every training.  
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Table 5.7: Cross validation analysis for conjugate  gradient descent method (LS1) 

LS1 Opt 

fcn 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test R Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

40:60 

 

CGB 0.989 0.922 0.966 25 0.983 0.980 0.953 32 0.980 0.945 0.965 24 0.952 0.939 0.950 35 0.987 0.937 0.942 43 

CGF 0.967 0.942 0.939 41 0.986 0.906 0.95 35 0.976 0.915 0.942 40 0.981 0.915 0.963 44 0.986 0.920 0.951 34 

CGP 0.985 0.961 0.963 25 0.984 0.973 0.966 23 0.979 0.841 0.946 37 0.985 0.926 0.956 31 0.982 0.941 0.951 37 

SCG 0.959 0.920 0.947 36 0.986 0.943 0.96 27 0.972 0.925 0.941 43 0.984 0.882 0.935 45 0.985 0.922 0.93 50 

 

Table 5.8: Cross validation analysis for conjugate gradient descent method (LS2) 

LS2 Opt 

fcn 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test R Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

50:50 

 

CGB 0.985 0.954 0.967 23 0.980 0.934 0.970 21 0.988 0.886 0.964 25 0.989 0.941 0.968 23 0.988 0.926 0.963 25 

CGF 0.978 0.896 0.939 43 0.984 0.949 0.966 24 0.981 0.961 0.96 28 0.987 0.906 0.962 26 0.983 0.942 0.958 29 

CGP 0.984 0.963 0.97 20 0.983 0.954 0.975 18 0.978 0.919 0.956 31 0.959 0.959 0.946 37 0.980 0.893 0.954 32 

SCG 0.984 0.941 0.967 23 0.989 0.960 0.969 22 0.986 0.888 0.963 29 0.963 0.954 0.965 24 0.985 0.971 0.972 20 

 

Table 5.9: Cross validation analysis for conjugate  gradient descent method (LS3) 

LS3 Opt 

fcn 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test R Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

60:40 CGB 0.978 0.961 0.971 20 0.986 0.947 0.974 18 0.984 0.946 0.973 19 0.977 0.922 0.967 22 0.983 0.951 0.968 22 

CGF 0.988 0.941 0.976 17 0.986 0.981 0.98 14 0.983 0.944 0.976 17 0.980 0.961 0.962 27 0.985 0.954 0.962 27 

CGP 0.986 0.930 0.976 17 0.982 0.981 0.977 16 0.988 0.933 0.97 21 0.987 0.957 0.97 22 0.987 0.947 0.972 19 

SCG 0.975 0.974 0.97 21 0.984 0.978 0.98 14 0.985 0.923 0.961 27 0.986 0.968 0.969 22 0.987 0.960 0.97 22 
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LS3 result shows that increase in training subset increases network performance. Also in this 

learning scheme 3, 10 hidden neuron model, was found to be optimized hidden unit size and 

it decreases as hidden units increases.  

60:40, 10 hidden neurons and SCG, was seen to have performed better than the other method within 

this group. SCG cross-validation was also better when compared to other methods of conjugate 

gradient method. Fig.  5.4 shows the obtained R values with 60:40, SCG-10H, while fig 5.3 illustrates 

the network progressive performance. Both training (blue line) and testing (testing) subsets 

converged to MSE. This shows that the network experience was sufficient to predict carbonation 

depth in concrete effectively . 

 

 
Figure 5. 4: Regression plot for predicted against measured carbonation depth for training, testing 

and validation dataset for highest R value obtained in conjugate gradient descent method 

at 60:40, SCG-10H 
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5.4.  Discussion of Results for Levenberg-Marquardt Method 

This method presents an optimized computation cost. Comparison of the result within this 

method as presented in table 5.1 -5.3 and 5.10, shows that network performance increases as 

training subset is increased. The behaviour of LM is somewhat different form the other 

methods, network optimization within LS3 increasing as size of hidden units are increased. 

Moreover, increase in training subset size increases gross total R value of the model. Fig. 

5.5 and 5.6 for display optimised network performance and R values respectively. 

 

 
Figure 5.5: MSE graph for Levenberg-Marquardt method at 60:40, LM-15H 

 

In all three learning schemes, rate of convergence was fast, causing the network to learn by 

heart (overfitting). Table 5.10 and fig. 5.6 shows a significant difference in train and testing 

R values.  

Also, reliability of this method increases with increase in training size.  

 



60 

 

 
Figure 5. 6: Regression plot for predicted against measured carbonation depth for training, 

testing and validation dataset for highest R value obtained in Levenberg-  

Marquardt Method at 60:40, LM-15H 

 

 

5.5.  Discussion of Results for Bayesian Regularization Backpropagation (BR) Method 

All Levenberg-Marquardt are known to have faster convergence when compare with 

gradient decent algorithms. BR results obtained as presented in Table 5.11, shows that LS1 

generally did not show a remarkable change in its MSE and total R value. When size of 

hidden neurons are changed from 40% to 50%, network performance was found to have 

increase sharply, and decreased as number of hidden neurons increases further from 5 units 

except with a sharp increase at 15 units. Furthermore within LS3,  total R values in hidden 

neuron   sizes  of  5, 10, 15  and 20 units are higher than   values in 25 hidden neurons.  

Model for predicting carbonation depth in concrete using Bayesian regularization 
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backpropagation method require smaller amount hidden units for optimal network 

performance. Since total R values recorded in the learning schemes are high with LS3 as the 

optimal learning scheme, this can be used for prediction of carbonation depth in concrete. In 

fig. 5.7 and 5.8 optimised network performance and R values combination is presented. In 

the performance graph, it can be seen that the training subset did not converge to 0.001 MSE 

unlike other methods, rather network was stop when minimum gradient was reached.  

 

 

Figure 5.7:  MSE graph for Bayesian regularization backpropagation method at 60:40, BR-

20H 
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Figure 5.8: Regression plot for predicted against measured carbonation depth for training, 

testing and validation dataset for highest R value obtained in Bayesian 

regularization backpropagation method at 60:40, BR-20H 
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Table 5.10: Cross validation analysis for Levenberg-Marquardt Method 

LS ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test R Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

40:60 0.987 0.916 0.959 29 0.963 0.919 0.944 46 0.977 0.963 0.942 41 0.982 0.891 0.949 36 0.986 0.891 0.94 41 

50:50 0.980 0.953 0.967 23 0.983 0.930 0.963 26 0.967 0.964 0.958 30 0.989 0.827 0.965 24 0.990 0.901 0.958 30 

60:40 0.990 0.898 0.96 28 0.976 0.936 0.959 28 0.987 0.941 0.973 19 0.988 0.929 0.972 20 0.977 0.949 0.972 20 

 

Table 5.11: Cross validation analysis for Bayesian “Regularization backpropagation” (BR) Method 

LS ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

40:60 0.967 0.912 0.943 39 0.971 0.920 0.937 43 0.976 0.917 0.941 40 0.978 0.918 0.946 37 0.972 0.933 0.938 43 

50:50 0.966 0.952 0.952 33 0.972 0.973 0.948 36 0.983 0.946 0.953 33 0.962 0.907 0.946 37 0.977 0.940 0.946 37 

60:40 0.966 0.925 0.952 33 0.967 0.959 0.954 32 0.949 0.935 0.950 34 0.968 0.943 0.954 32 0.948 0.948 0.947 36 

 

Table 5.12: Cross validation analysis for BFGS method (LS1) 

LS1 Opt 

fcn 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test R Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

40:60 

 

BFG 0.986 0.902 0.954 32 0.983 0.9376 0.954 32 0.979 0.922 0.948 36 0.97 0.934 0.931 48 0.962 0.848 0.933 49 

OSS 0.986 0.950 0.956 33 0.971 0.924 0.943 39 0.983 0.916 0.942 40 0.986 0.892 0.944 38 0.972 0.901 0.929 48 
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Table 5.13: Cross validation analysis for BFGS Method (LS2) 

LS2 Opt 

fcn 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test R Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

50:50 

 

BFG 0.988 0.948 0.966 26 0.9803 0.8865 0.951 34 0.987 0.922 0.966 24 0.958 0.956 0.948 37 0.981 0.904 0.951 34 

OSS 0.980 0.952 0.961 27 0.961 0.929 0.951 35 0.979 0.952 0.965 25 0.987 0.926 0.957 31 0.970 0.933 0.947 39 

 

Table 5.14: Cross validation analysis for BFGS Method (LS1) 

LS3 Opt 

fcn 

ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test R Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

60:40 

 

BFG 0.978 0.943 0.971 20 0.986 0.9204 0.960 27 0.972 0.894 0.957 29 0.973 0.951 0.963 25 0.981 0.945 0.968 22 

OSS 0.985 0.987 0.97 21 0.985 0.965 0.973 20 0.983 0.951 0.969 21 0.986 0.929 0.967 23 0.973 0.823 0.956 31 
 
 

Table 5.15: Cross validation analysis for “random order incremental training with learning functions” (R) Method 

LS ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

40:60 0.981 0.915 0.917 63 0.972 0.875 0.944 44 0.974 0.942 0.946 41 0.982 0.916 0.942 40 0.988 0.831 0.904 70 

50:50 0.981 0.892 0.945 38 0.942 0.850 0.862 91 0.953 0.894 0.91 63 0.989 0.850 0.934 48 0.984 0.879 0.916 57 

60:40 0.972 0.893 0.951 34 0.972 0.967 0.968 23 0.987 0.880 0.953 32 0.976 0.949 0.95 34 0.980 0.867 0.959 39 

 

Table 5.16: Cross validation analysis for “Resilient backpropagation” (RP) Method 

LS ANN-1 (5H) ANN-2 (10H) ANN-3 (15H) ANN-4 (20H) ANN-5 (25H) 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

Train 

R 

Test 

R 

Total 

R 

MSE 

10-3 

40:60 0.973 0.967 0.951 34 0.977 0.881 0.949 35 0.988 0.860 0.939 45 0.967 0.948 0.947 36 0.946 0.927 0.937 42 

50:50 0.982 0.961 0.964 25 0.955 0.898 0.956 30 0.963 0.952 0.944 38 0.981 0.964 0.958 29 0.975 0.928 0.939 42 

60:40 0.970 0.987 0.967 23 0.980 0.841 0.967 23 0.982 0.936 0.957 29 0.987 0.939 0.958 29 0.984 0.920 0.967 23 
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5.6.  Discussion of Results for BFGS Methods 

OSS is partially BFGS, result in table 5.1-3 OSS and  BFG  have one common trend;  

increase in hidden neurons decreases the number of network epoch.  

In LS1 both OSS and BFG, 5 hidden neurons was the optimal network hidden unit size, its 

performance (total R value and MSE) decrease as the size of hidden neuron were increased. 

Moreover, when the training subset was increased from 40% to 50 and 60 % respectively, 

network was seen to have improved total R values and MSE at 15 hidden neurons in LS2 for 

both OSS and BFG, and at 5 hidden neurons at LS3.  

Generally, reliability within the learning scheme improved with increase in training subset. 

However this method is also suitable for predicting carbonation depth in concrete owning to 

its performance behavior as shown in fig 5.9. Training subset was progressive while 

validation and testing subset exhibited similar trend in their response to training experience. 

 

 
Figure 5.9: MSE graph for BFGS Methods at 60:40, OSS-10H. 
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Figure 5. 10: Regression plot for predicted against measured carbonation depth for 

training, testing and validation dataset for highest R value obtained in 

BFGS Methods at 60:40, OSS-10H 

5.7. Discussion of Results for “Random order incremental training with learning 

functions” (R) Method 

“Random order incremental training with learning functions” is very expensive to apply in 

carbonation problem. A minimum of 6 hours is   for each training set as against an average 

of 5mins when compared to other optimisation. Despite a slower training rate per each epoch 

approximately 1.08 sec/epoch, R values recorded in the three learning schemes are low when 

compared to other optimization methods. Additional cost is required to optimize the model.  
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Figure 5.11: MSE graph for “Random order incremental training with learning functions”    

Method at 60:40, R-10H 

 
Figure 5.12: Regression plot for predicted against measured carbonation depth for training, 

testing and validation dataset for highest R value obtained in for “Random 

order incremental training with learning functions” at 60:40, R-10H 
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Increase in training subset also increased network performance between LS1 and LS3. With 

exception of learning scheme 2, network total R values was optimized between 10 and 15 

hidden neurons. Overfitting within this method can be observed in all the learning schemes, 

since the method did not have adjustable learning parameters as seen in the other methods, 

to control the performance of the network. Where other methods are available, this method 

is not suitable for carbonation depth prediction. But fig. 5.11 shows clearly that the 3 subsets 

exhibit similar trait, although none converged to 0.001 MSE, but the case of overfitting was 

minimised.  

5.8.  Discussion of Results for “Resilient backpropagation” (RP) Method 

Results obtained when compared with steepest descent methods, shows improvement in total 

R values and updated MSE. Within the learning scheme, increase in training subset from 40-

50-60 %,  increases network performance.  

Increase in size of hidden neurons did not affect network iteration.  Rather in LS1 &2, 

increase in hidden neurons decreases network performance. This is seen in sharp decreases 

in total  R values and corresponding decrease in   MSE.  Resilient backpropagation 

application in predicting carbonation depth in concrete is reliable since total R values are 

high and training subset converged to 0.001 MSE. Care should be taken why training this 

model, network should be stopped when there is a significant decrease is R values of testing 

and validating subset as can be seen in Fig. 5.13. 
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Figure 5.13: MSE graph for “Resilient backpropagation” (RP) Method at 60:40, RP-10H 

 

 
Figure 5.14: Regression plot for predicted against measured carbonation depth for training, 

testing and validation dataset for highest R value obtained in “Resilient 

backpropagation” Method at 60:40, RP-10H 
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5.9.  Discussion of Result for Comparison with Existing Literature 

Kwon and Song (2010), in their work used backpropagation neural networks with four inputs 

of water/cement ratio, unit weight of cement, total aggregate volume and relative humidity. 

Diffusion coefficient was set as output neuron and a total of 12 dataset was trained using 

tansig as transfer function. Network threshold for epoch and MSE was set at 1000 and 0.0001 

respectively. However, details of optimization function, number of hidden layer and hidden 

units used was not given. In comparison, 225 dataset and 18 input neurons was provided 

within this study giving a detailed and extensive input units. There was also increase within 

input nodes accounting for better learning experience for the network. Besides cement 

content, this study also provided cement compound composition responsible for progress of 

carbonation in concrete.  

With respect to aforementioned information on ANN architecture and training methods, 

output neuron of Kwon and Song (2010) output neuron was diffusion coefficient which 

differs from output of this study. Although it is an important parameter showing the progress 

of carbonation in concrete, maximum error obtained was 6.3%  which is within comparable 

region with error values obtained in this study.  

 In CaPrM, at study presented Taffese et. al. (2015),  25 input neurons was extracted from 

concrete mix properties, curing properties, environmental conditions age of concrete and 

properties of fresh and hardened concrete. Carbonation depth in concrete was network 

output. The study trained a feedforward backpropagation neural network using Levenberg-

Marquardt and tansig as optimization  and transfer functions respectively. When compared 

to results in this study, Taffese et. al. (2015) had R value of 0.9701 is within comparable 

region for LM method since  0.97286 was recorded against LM method in this study.   
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CHAPTER 6 

CONCLUSION AND RECOMMENDATION 

 

6.1. Conclusion 

225 datasets were extracted from nine different research papers presenting experimental 

studies on carbonation problem in concrete. Dataset used, includes both accelerated test and 

natural carbonation. Three learning scheme of sample distribution was adopted along with 

five different sets of hidden neurons. The combination of three learning scheme and five 

hidden neuron sizes was training using 14 different optimization algorithm in a feedforward 

backpropagation algorithm of neural networks.  

210 sets of training were performed on 2015a MATLAB. Results obtained were analyzed 

based on MSE, total R value of the network and cross-validation behavior of the set. It was 

observed that learning scheme-1 containing 40:60 % of training:testing sample performed 

poorly in all the optimization methods and sizes of hidden neurons. MSE within LS1 was 

the highest. Thereafter, increase in training subset from 40 through 50 and 60 % increased 

network performance.  

In predicting carbonation depth in concrete, optimized hidden neuron range was found to be 

within 10 to 15 hidden neurons’ yielding effective results with all the learning scheme (see 

table 5.17). Moreover, models with higher hidden neuron sizes tend to have lower 

computation cost but not necessarily improving the network. R values decreases when size 

of hidden neurons increases from 15 to 25 units. Likewise the MSE was also on the increase 

within the above mention hidden neuron range.  

Steepest gradient-descent (GD, GDA, GDM and GDX) and Random order incremental 

training with learning functions algorithms performance were poor, network computation 

cost was also expensive. Generally all 5 algorithms training were stopped when 20,000 

iteration was reached without training subset converging to 0.001 MSE.  

Conjugate-gradient descent results shows a consistent improvement alone the learning 

scheme. Besides LM, BFG and BR, the conjugate gradient descent have less iteration. This 

optimized the network performance.  
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Table 5.17: Summary of results obtained within the learning scheme 

Learning scheme 
Best optimization 

fun 
R value MSE Iteration 

Hidden 

neuron size 

LS1 CGP 0.966 0.0023 464 10 

LS2 CGP 0.975 0.0018 547 10 

LS3 SCG 0.980 0.0014 676 10 

 

For carbonation depth prediction using artificial neural networks, with respect to obtained 

results, dataset feed to the network should be sufficient enough to minimize overfitting and 

extrapolation in the model. Where it is necessary for steepest gradient descent method is to 

be adopted, training epoch should be increased beyond 20,000. Oscillation should be avoided 

by using smaller learning rate and where adaptation learning is applicable. Adequate 

attention should be paid to size of  lr_inc and lr_dec (multiplication constant).  

 

However, Batch steepest descent algorithms was found to have higher computational cost, 

while search line based algorithms and Levenberg-Marquardt step size methods have 

lowered cost and provided better performance within the set threshold.  

 

A combination of conjugate gradient descent and Levenberg-Marquardt methods (SCG) was 

found to yield the best optimized result with respect to R value of 0.980, MSE of 0.0014 and 

computational cost 676 iterations under 10 hidden neurons with 60:40 testing:training 

distribution. 

6.2.  Recommendations for Further Studies  

In this study three layer feedforward backpropagation was used with one hidden layer. 

Although various ANN references, which are not directly related to carbonation problem, 

used in this study suggested the used one hidden layer is sufficient, it is important to carry 

out future studies on influence of using two or more hidden layer sizes for carbonation 

studies.    

Furthermore, the behaviour of the model when training sample exceed 60% and alternating 

testing and validating ratio should also be investigated with larger hidden neuron size. 

Although backpropagation algorithm is widely used, other algorithms in neural networks 

should be studied and result compared to establish a more reliable ANN algorithm for 

carbonation studies.  
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Comparison with multi linear regression analysis is believe to provide an external 

independent assessment of the network performance and a better perspective capabilities of 

ANN in prediction of carbonation in concrete. Such study is also recommended.  
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APPENDIX A 

MATLAB TRAINING FUNCTION CODE 

 

trainbfg 

%Maximum number of epochs to train 

net.trainParam.epochs=20000; 

%Show training window  

net.trainParam.showWindow=TRUE; 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show=50; 

%Performance goal  

net.trainParam.goal=0.005; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

%Minimum performance gradient  

net.trainParam.min_grad=1.00E-06; 

%Maximum validation failures  

net.trainParam.max_fail=20000; 

%Name of line search routine to use  

net.trainParam.searchFcn='srchbac'; 

net.trainParam.searchFcn='srchbac'; 

net.trainParam.scal_tol 20=; 

net.trainParam.alpha=0.0001; 

net.trainParam.beta=0.1; 

net.trainParam.bmax=26; 

net.trainParam.delta=0.01; 

net.trainParam.gama=0.1; 

net.trainParam.low_lim=0.1; 

net.trainParam.up_lim=0.5; 

net.trainParam.maxstep=100; 

net.trainParam.minstep=1.00E-006; 
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trainbr 

%Network parameters 

%Maximum number of epochs to train 

net.trainParam.epochs=20000; 

%Performance goal  

net.trainParam.goal=0.005; 

%Marquardt adjustment parameter  

net.trainParam.mu=0.0005; 

%Decrease factor for mu  

net.trainParam.mu_dec=0.1; 

%Increase factor for mu  

net.trainParam.mu_inc=10; 

%Maximum value for mu  

net.trainParam.mu_max=1.00E+10; 

%Maximum validation failures  

net.trainParam.max_fail=20000; 

%Minimum performance gradient  

net.trainParam.min_grad=1.00E-07; 

%Epochs between displays (NaN for no displays)  

net.trainParam.show=50; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 
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traincgb 

%Maximum number of epochs to train 

net.trainParam.epochs=20000; 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show=50; 

%Show training GUI  

net.trainParam.showWindow=TRUE; 

%Performance goal  

net.trainParam.goal=0.005; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

%Minimum performance gradient  

net.trainParam.min_grad=1.00E-10; 

%Maximum validation failures  

net.trainParam.max_fail=20000; 

%Name of line search routine to use  

net.trainParam.searchFcn='srchcha'; 

%Divide into delta to determine tolerance 

for linear search.  

net.trainParam.scal_tol=20; 

%Scale factor that determines sufficient 

reduction in perf  

net.trainParam.alpha=0.001; 

%Scale factor that determines sufficiently 

large step size  

net.trainParam.beta=0.1; 

%Initial step size in interval location step

  

net.trainParam.delta=0.01; 

%Parameter to avoid small reductions in 

performance, usually set to 0.1 (see 

srch_cha)  

net.trainParam.gama=0.1; 

%Lower limit on change in step size  

net.trainParam.low_lim=0.1; 

%Upper limit on change in step size  

net.trainParam.up_lim=0.5; 

%Maximum step length  

net.trainParam.maxstep=100; 

%Minimum step length  

net.trainParam.minstep=1E-0006; 

%Maximum step size  

net.trainParam.bmax=26; 
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traincgf 

%Maximum number of epochs to train 

net.trainParam.epochs=20000; 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show=1; 

%Performance goal  

net.trainParam.goal=0.001; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

%Minimum performance gradient  

net.trainParam.min_grad=1.00E-10; 

%Maximum validation failures  

net.trainParam.max_fail=20000; 

%Name of line search routine to use  

net.trainParam.searchFcn='srchcha'; 

%Divide into delta to determine tolerance 

for linear search.  

net.trainParam.scal_tol 20=; 

%Scale factor that determines sufficient 

reduction in perf  

net.trainParam.alpha=0.0001; 

%Scale factor that determines sufficiently 

large step size  

net.trainParam.beta=0.1; 

%Initial step size in interval location step 

net.trainParam.delta=0.001; 

%Parameter to avoid small reductions in 

performance, usually set to 0.1 (see 

srch_cha)  

net.trainParam.gama=0.1; 

%Lower limit on change in step size  

net.trainParam.low_lim=0.1; 

%Upper limit on change in step size  

net.trainParam.up_lim=0.5; 

%Maximum step length  

net.trainParam.maxstep=100; 

%Minimum step length  

net.trainParam.minstep=1E-006; 

%Maximum step size  

net.trainParam.bmax=26; 
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traincgp 

%Maximum number of epochs to train 

net.trainParam.epochs=20000; 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show=1; 

%Performance goal  

net.trainParam.goal=0.001; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

%Minimum performance gradient  

net.trainParam.min_grad=1E-10; 

%Maximum validation failures  

net.trainParam.max_fail=20000; 

%Name of line search routine to use  

net.trainParam.searchFcn='srchcha'; 

%Divide into delta to determine tolerance 

for linear search.  

net.trainParam.scal_tol=20; 

%Scale factor that determines sufficient 

reduction in perf  

net.trainParam.alpha=0.001; 

%Scale factor that determines sufficiently 

large step size  

net.trainParam.beta=0.1; 

%Initial step size in interval location step

  

net.trainParam.delta=0.01; 

%Parameter to avoid small reductions in 

performance, usually set to 0.1 (see 

srch_cha)  

net.trainParam.gama=0.1; 

%Lower limit on change in step size  

net.trainParam.low_lim=0.1; 

%Upper limit on change in step size  

net.trainParam.up_lim=0.5; 

%Maximum step length  

net.trainParam.maxstep=100; 

%Minimum step length  

net.trainParam.minstep=1E-0006; 

%Maximum step size  

net.trainParam.bmax=26; 
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traingd  

%Maximum number of epochs to train 

net.trainParam.epochs=20000; 

%Performance goal  

net.trainParam.goal=0.001; 

%Learning rate  

net.trainParam.lr=1.4; 

%Maximum validation failures  

net.trainParam.max_fail=20000; 

%Minimum performance gradient  

net.trainParam.min_grad=1E-07; 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show=1; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

 

 

traingdm 

%Maximum number of epochs to train 

net.trainParam.epochs=1000; 

%Performance goal  

net.trainParam.goal=0; 

%Learning rate  

net.trainParam.lr=0.01; 

%Maximum validation failures  

net.trainParam.max_fail=1000; 

%Momentum constant  

net.trainParam.mc=0.9; 

%Minimum performance gradient  

net.trainParam.min_grad=1.00E-05; 

%Epochs between showing progress  

net.trainParam.show=25; 

%Generate command-line output  

net.trainParam.showCommandLine=FAL

SE; 

%Show training GUI  
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net.trainParam.showWindow=TRUE; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

 

traingdx  

%Maximum number of epochs to train 

net.trainParam.epochs=1000; 

%Performance goal  

net.trainParam.goal=0; 

%Learning rate  

net.trainParam.lr=0.01; 

%Ratio to increase learning rate  

net.trainParam.lr_inc=1.05; 

%Ratio to decrease learning rate  

net.trainParam.lr_dec=0.7; 

%Maximum validation failures  

net.trainParam.max_fail=1000; 

%Maximum performance increase  

net.trainParam.max_perf_inc=1.04; 

%Momentum constant  

net.trainParam.mc=0.9; 

%Minimum performance gradient  

net.trainParam.min_grad=1.00E-05; 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show=25; 

%Generate command-line output  

net.trainParam.showCommandLine=FAL

SE; 

%Show training GUI  

net.trainParam.showWindow=TRUE; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 
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trainlm 

%Maximum number of epochs to train 

net.trainParam.epochs 1000 

%Performance goal  

net.trainParam.goal 0 

%Maximum validation failures  

net.trainParam.max_fail 6 

%Minimum performance gradient  

net.trainParam.min_grad 1.00E-07 

%Initial mu  

net.trainParam.mu 0.001 

%mu decrease factor  

net.trainParam.mu_dec 0.1 

%mu increase factor  

net.trainParam.mu_inc 10 

%Maximum mu  

net.trainParam.mu_max 1.00E+10 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show 25 

%Generate command-line output  

net.trainParam.showCommandLine

 FALSE 

%Show training GUI  

net.trainParam.showWindow TRUE 

%Maximum time to train in seconds  

net.trainParam.time inf 
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trainoss 

%Maximum number of epochs to train 

net.trainParam.epochs=1000; 

%Performance goal  

net.trainParam.goal=0; 

%Maximum validation failures  

net.trainParam.max_fail=6; 

%Minimum performance gradient  

net.trainParam.min_grad=1.00E-10; 

%Name of line search routine to use  

net.trainParam.searchFcn='srchbac'; 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show=25; 

%Generate command-line output  

net.trainParam.showCommandLine=FAL

SE; 

%Show training GUI  

net.trainParam.showWindow=TRUE; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

%Divide into delta to determine tolerance 

for linear search.  

net.trainParam.scal_tol=20; 

%Scale factor that determines sufficient 

reduction in perf  

net.trainParam.alpha=0.001; 

%Scale factor that determines sufficiently 

large step size  

net.trainParam.beta=0.1; 

%Initial step size in interval location step

  

net.trainParam.delta=0.01; 

%Parameter to avoid small reductions in 

performance, usually set to 0.1 (see 

srch_cha)  

net.trainParam.gama=0.1; 

%Lower limit on change in step size  

net.trainParam.low_lim=0.1; 

%Upper limit on change in step size  

net.trainParam.up_lim=0.5; 

%Maximum step length  

net.trainParam.maxstep=100; 

%Minimum step length  

net.trainParam.minstep=1.00E-06; 

%Maximum step size  

net.trainParam.bmax=26; 
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trainr  

%Maximum number of epochs to train 

net.trainParam.epochs=1000; 

%Performance goal  

net.trainParam.goal=0; 

%Maximum validation failures  

net.trainParam.max_fail=1000; 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show=25; 

%Generate command-line output  

net.trainParam.showCommandLine=FAL

SE; 

%Show training GUI  

net.trainParam.showWindow=TRUE; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

 

 

 

 

 

trainrp 

%Maximum number of epochs to train 

net.trainParam.epochs=1000; 

%Epochs between displays (NaN for no 

displays)  

net.trainParam.show=25; 

%Generate command-line output  

net.trainParam.showCommandLine=FAL

SE; 

%Show training GUI  

net.trainParam.showWindow=TRUE; 

%Performance goal  

net.trainParam.goal=0; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

%Minimum performance gradient  

net.trainParam.min_grad=1.00E-05; 

%Maximum validation failures  

net.trainParam.max_fail=1000; 

%Learning ratenet.trainParam.lr=0.01; 

%Increment to weight change  

net.trainParam.delt_inc=1.2; 

%Decrement to weight change  

net.trainParam.delt_dec=0.5; 

%Initial weight change  

net.trainParam.delta0=0.07; 

%Maximum weight change  

net.trainParam.deltamax=50; 
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trainscg  

%Maximum number of epochs to train 

net.trainParam.epochs=1000; 

%Epochs between displays (NaN for no displays)  

net.trainParam.show=25; 

%Generate command-line output  

net.trainParam.showCommandLine=FALSE; 

%Show training GUI  

net.trainParam.showWindow=TRUE; 

%Performance goal  

net.trainParam.goal=0; 

%Maximum time to train in seconds  

net.trainParam.time=inf; 

%Minimum performance gradient  

net.trainParam.min_grad=1.00E-06; 

%Maximum validation failures  

net.trainParam.max_fail=1000; 

%Determine change in weight for second derivative approximation  

net.trainParam.sigma=5.00E-05; 

%Parameter for regulating the indefiniteness of the Hessian  

net.trainParam.lambda=5.00E-07; 


