
OBSTACLE DETECTION AND PATHFINDING FOR
MOBILE ROBOTS

A THESIS SUBMITTED TO THE GRADUTE
SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By
MURAT ARSLAN

In Partial Fulfillment of the Reguirements for

The Degree of Master of Science
in

Computer Engineering

NICOSIA, 2016

ONAY SAYFASI

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are

not original to his work.

Name, Last name:

Signature:

Date:

ACKNOWLEDGEMENTS

Studying at the Department of Computer Engineering, working with a highly devoted

teaching community, remain one of the most memorable experiences of my life. This

acknowledgement is an attempt to earnestly thank my teachers who have directly helped

me during preparation of my thesis.

I would like to take special privilege to thank my supervisor Prof.Dr. Rahib Abiyev who

allocated me a thesis in the area of my interest. It was because of his invaluable

suggestions, motivation, cooperation and timely help in overcoming problems that the

work is successful.

i

ABSTRACT

In this thesis, obstacle detection via image of objects and then pathfinding problems of

NAO humanoid robot is considered. NAO's camera is used to capture the images of world

map. The captured image is processed and classified into two classes; area with obstacles

and area without obstacles. For classification of images, Support Vector Machine (SVM) is

used. After classification the map of world is obtained as area with obstacles and area

without obstacles. This map is input for path finding algorithm. In the thesis A* path

finding algorithm is used to find path from the start point to the goal.

The aim of this work is to implement a support vector machine based solution to robot

guidance problem, visual path planning and obstacle avoidance. The used algorithms allow

to detect obstacles and find an optimal path. The thesis describe basic steps of navigation

of mobile robots.

Keywords:​ ​A*; image processing; motion planning; NAO; path finding; support vector

machine

ii

ÖZET

Bu tezde, objelerin resimlerinden, engel tanima ve yon bulma yöntemleri, insansi NAO

robot kullanilarak uygulanmıştır. Objelerin fotoğraflarını çekmek için NAO robotun

kamerası kullanılmıştır. Çekilen bu fotoğraf resim işleme teknikleri kullanılarak, engel

olan ve engel olmayan olarak iki farklı şekilde sınıflandırılmıştır. Bu sınıflandırılma için

Support Vector Machine (SVM) kullanılmıştır. Bu sınıflandırılmadan sonraki bilgiler yön

bulma algoritmasının girdisidir. Bu tezde başlangıç ile bitiş noktasındaki yolu bulabilmek

için A* yön bulma algortiması kullanılmıştır.

Bu çalışmanın amacı, görsel yol planlama ve engelden kaçmak için robota SVM tabanlı bir

çözüm uygulamaktır. Kullanılan algoritmalar engelleri algılamak ve en uygun yolu bulmak

için kullanılmıştır. Bu tez mobil robotların navigasyonunun temel adımlarını

açıklamaktadır.

Anahtar Kelimeler​ :​ A*; hareket planlama; NAO; resim işleme; support vector machine;

yön bulma

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS​……………………………………………………... i

ABSTRACT​…………………………………………………………………….. ii

ÖZET​……………………………………………………………………………. iii

TABLE OF CONTENTS ​………………………………….…………………... iv

LIST OF FIGURES​……………………………………………………………. vi

LIST OF TABLES​...……………………………………………………………. vii

LIST OF ABBREVIATIONS​…………………………………………….......... viii

CHAPTER 1: INTRODUCTION………………………………………………​ 1

CHAPTER 2: LITERATURE REVIEW

2.1 Obstacle Detection.....…………….…………………………………………... 3

2.1.1 Naive bayes classifier ……………………………………………… 3

2.1.2 Artificial neural network………………………………………….... 4

2.1.3 Support vector machine ……………………………………………. 6

2.1.4 Decision tree learning …………………………………………….... 7

2.2 Pathfinding …………………………………………………………………... 8

2.2.1 Artificial potential field……………………………………………. 9

2.2.2 Vector field histogram …………………………………………….. 11

2.2.3 Dijkstra’s algorithm………………………………………………… 12

2.2.4 A* algorithm……………………………………………………....... 13

iv

2.2.5 D* algorithm……………………………………………………….. 14

2.2.6 Rapidly exploring random tree………………………………....….. 15

2.3 Related Works………………………………………………………………... 15

2.4 Summary……………………………………………………………………… 17

CHAPTER 3: OBJECT DETECTION BASED ON IMAGE PROCESSING

3.1 Object Detection …………………………………………………………….. 18

3.2 Support Vector Machines……………………………………………………. 18

3.2.1 Linear SVM…..…………………………………………………….. 21

3.2.2 Non-linear SVM.…………………………………………………... 23

3.2.3 Multiclass SVM.………………………………………………….... 23

CHAPTER 4: PATHFINDING FOR MOBILE ROBOTS

4.1 A* Search Algorithm…………………………………………………………. 26

4.1.1 Description………………………………………………………….. 27

4.1.2 Properties………………………………………………………….... 28

CHAPTER 5 : DESIGN OF SYSTEM

5.1 Hardware……………………………………………………………………... 31

5.2 Software………………………………………………………………………. 34

5.2.1 The NAOqi process………………………………………………... 35

5.3 System Design………………………………………………………………... 41

CHAPTER 6 : CONCLUSION……………………………………………..….. ​56

v

REFERENCES………………………….………………………………………. ​58

APPENDIX: ​Source Code.…………………………………………………….. 64

vi

LIST OF TABLES

Table 3.1: ​Error Rate of SVM and MLP For Text Verification.…………………….. 25

Table 4.1: ​Results ……………….....………………………………………………. 30

Table 5.1: ​NAO Robot Parameters

…………………………………………………..

34

vii

LIST OF FIGURES

Figure 3.1:​ Support Vector Machines…………………………………………….. 20

Figure 3.2: ​Multi-Class Support Vector Machines……………………………….. 25

Figure 4.1:​ A* Algorithm………………………………………………………… 28

Figure 4.2:​ A*, RRT, APF………………………………………………………... 30

Figure 5.1:​ NAO Robot ……………………………………………………………. 32

Figure 5.2:​ NAO Robot Specifications…………………………………………….. 33

Figure 5.3:​ NAO Robot Cross-Platform System…………………………………... 35

Figure 5.4:​ NAOqi Libraries and Modules………………………………………… 36

Figure 5.5:​ NAOqi Libraries Modules and Methods………………………………. 37

Figure 5.6:​ NAOqi Memory System……………………………………………….. 38

Figure 5.7:​ Steps of the system………………………………………………….... 42

Figure 5.8:​ Graphical User Interface……………………………………………... 45

Figure 5.9: ​Static Area with Obstacles………………………………………….... 46

Figure 5.10:​ Static Area After Perspective Correction…………………………… 47

Figure 5.11:​ Processed Area……………………………………………………… 48

Figure 5.12: ​Dataset………………………………………………………………. 49

Figure 5.13:​ Area in Binary Matrix Format………………………………………. 50

Figure 5.14:​ Area with Path………………………………………………………. 51

Figure 5.15:​ Perspective Correction Steps………………………………………... 52

Figure 5.16:​ Preprocess Steps…………………………………………………….. 53

Figure 5.17:​ Processed Area to Matrix Format…………………………………… 54

Figure 5.18:​ Processed Area to Matrix Format…………………………………… 55

viii
LIST OF ABBREVIATIONS

ANN:​ Artificial Neural Network

APF: ​ Artificial Potential Field

HOG:​ Histogram of Oriented Graphs

HSV: ​ Hue Saturation Value

LPA: ​ Label Propagation Algorithm

MLP: ​ Multi Layer Perceptron

NAO: ​ NAO is an autonomous, programmable humanoid robot

OSPF:​ Open Shortest Path First

RGB: ​ Red, Green, Blue

RRT: ​ Rapidly Exploring Random Tree

SVM:​ Support Vector Machine

VFH: ​ Vector Field Histogram

ix

CHAPTER 1

INTRODUCTION

Nowadays robotics are actively use in our daily life. They started to apply in domestic,

industry, game playing, army etc. Robots started to help human in many fields. They are

helping to improve product quality and also capacity in industry.

One of important problem in robotics is the designing intelligent robots performing all the

human actions in certain fields. For designing such intelligent robots using new soft

computing techniques and science. The designing of intelligent robots, needs to design set

of modules such as object detection, image processing, path planning, obstacle avoidance,

motion control etc. problems.

Obstacle detection and obstacle avoidance are important problems in robot navigation. One

way of detecting obstacles is the use of image recognition. Using image recognition the

world map can be classified in area with obstacles and without obstacles. This information

in future can be used for path-finding.

Robots are moving in unpredictable, cluttered, unknown complex and dynamic

environments. In this environment, the avoidance of mobile robots from obstacles becomes

an important problem. Many obstacle avoidance algorithms are proposed. "Bug"

algorithms follow the edges of obstacles without considering the goal. They are time

consuming. Artificial potential field (APF) is most commonly used method that utilizes

attractive and repulsive fields for goals and obstacles, respectively. But the APF has

several disadvantages: (a) when there are many obstacles in the environment the field may

contain a local minima; (b) the robot unable to pass through small openings such as

through doors; (c) the robot may exhibit oscillations inits motions. Vector Field Histogram

(VFH) uses a two-dimensional Cartesian histogram grid as a world model and the concept

of potential fields. The VFH algorithm selects a shorter path than bug algorithms but it

takes more time to manipulate. Other goal oriented algorithms are dynamic window,

“​agoraphilic​” and Rapidly-exploring Random Trees (RRT) algorithm is a faster algorithm

1

and can be applied for pathfinding in dynamic environments. But frequently the path

determined by RRTs may be very long. The RRT-smooth algorithm was proposed to

shorten the RRT length. In this thesis A* search algorithm was used. A* is an informed

search algorithm, or a best-first search, meaning that it solves problems by searching

among all possible paths to the solution for the one that incurs the smallest cost (least

distance traveled, shortest time, etc.), and among these paths it first considers the ones that

appear to lead the most quickly to the solution (Abiyev and others, 2015).

The aim of the thesis is the design of efficient algorithms for detection and avoidance of

obstacles and also pathfinding, using ​NAO robot. The design of algorithms are based on

image processing and decision making technique.

In robot guidance problem, some extra sensors, like ultrasound sensors, infrared distance

sensors used to detect obstacles. These sensors do not give information about obstacle​’​s

shape and color. In this project, only camera was used to detect obstacles.

The design of a mobile robot that can navigate and localize obstacle in an unknown

environment is based on visual ques such as a camera, path-finding is based on a

navigation algorithm that final path for the robot to the goal.

This thesis is split into 5 chapters, conclusions, references and appendix

● Chapter​ ​1​ is​ ​i​ntroduction to pathfinding and image processing.

● Chapter ​2 ​r​epresents literature review on object localization and path-finding

algorithms.

● Chapter 3 ​g​oes over the problem of detecting real world objects in images or series

of images such as videos.

● Chapter 4 ​g​oes over the current techniques in the field of path finding.

● Chapter 5 ​c​overs the design of our mobile robot, given detailed information about

hardware and software also about the design of the system.

Conclusions includes important results obtained from the thesis. In Appendix, source code

is given with detailed comments.

2

CHAPTER 2

LITERATURE REVIEW

2.1 ​Obstacle Detection

Robot navigation includes obstacle detection, pathfinding and obstacle avoidance

algorithms. Obstacle detection is an important step which includes set of algorithms.

Object detection is a computer technology linked to computer vision and image processing

that deals with detecting objects such as humans, cars, building, obstacles etc. in digital

images and videos.

In this thesis classification technique for obstacle detection is applied. Various machine

learning algorithms are used for object detection some of which are outlined below.

2.1.1 Naive bayes classifier

Naive Bayes has been studied extensively since the 1950​’​s. It was introduced under a

different name into the text retrieval community in the early 1960​’​s (Russel and others,

2003). It is a popular (baseline) method for text categorization, the problem of judging

documents as belonging to one category or the other (such as spam or legitimate, sports or

politics, etc.) with word frequencies as the features. With appropriate pre-processing, it is

competitive in this domain with more advanced methods including support vector

machines. (Rennie and others, 2003) It also finds application in automatic medical

diagnosis (Rish, 2001).

Naive Bayes classifiers are a family of simple probabilistic classifiers based on applying

Bayes​’​ theorem with strong (naive) independence assumptions between the features.

Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the

number of variables (features/predictors) in learning problem. Maximum-likelihood

training can be done by evaluating a closed-form expression, which takes linear time,

3

rather than by expensive iterative approximation as used for many other types of

classifiers.

In the statistics and computer science literature, Naive Bayes models are kenned under a

variety of denominations, including simple Bayes and independence Bayes (Hand and Yu,

2001). All these denominations reference the utilization of Bayes​’ theorem in the

classifier​’​s decision rule, but Naive Bayes is not (obligatorily) a Bayesian method (Rennie

and others, 2003; Hand and Yu, 2001).

2.1.2 Artificial neural network

Warren McCulloch and Walter Pitts (1943) designed a computational model for neural

networks predicated on mathematics and algorithms called threshold logic. This model

paved the way for neural network research to split into two distinct approaches. One

approach fixated on biological processes in the brain and the other fixated on the

application of neural networks to artificial intelligence (McCulloch and others, 1943).

Artificial neural networks (ANNs) are a family of models inspired by biological neural

networks (the central nervous systems of animals, in particular the brain) which are used to

estimate or approximate functions that can depend on a large number of inputs and are

generally unknown. Artificial neural networks are typically specified using three things,

● Architecture specifies what variables are involved in the network and their

topological relationships for example the variables involved in a neural network

might be the weights of the connections between the neurons, along with activities

of the neurons.

● Activity Rule Most neural network models have short time-scale dynamics: local

rules define how the activities of the neurons change in response to each other.

Typically the activity rule depends on the weights (the parameters) in the network.

4

● Learning Rule The learning rule specifies the way in which the neural network​’​s

weights change with time. This learning is usually viewed as taking place on a

longer time scale than the time scale of the dynamics under the activity rule.

Usually the learning rule will depend on the activities of the neurons. It may also

depend on the values of the target values supplied by a teacher and on the current

value of the weights.

For example, a neural network for handwriting recognition is defined by a set of input

neurons which may be activated by the pixels of an input image. After being weighted and

transformed by a function (determined by the network​’​s designer), the activations of these

neurons are then passed on to other neurons. This process is repeated until finally, the

output neuron that determines which character was read is activated.

A key advance that came later was the backpropagation algorithm which efficaciously

solved the exclusive-or problem, and more commonly the problem of fastly training

multi-layer neural networks (Werbos, 1974).

In the mid-1980s, parallel distributed processing became accepted under the name

connectionism. The textbook by David E. Rumelhart and James McClelland (1986)

provided a full exposition of the use of connectionism in computers to simulate neural

processes.

Neural networks, as utilized in artificial intelligence, have traditionally been viewed as

simplified models of neural processing in the brain, even though the affiliation between

this model and the biological architecture of the brain is debated; it​’​s not clear to what

degree artificial neural networks mirror brain function (Russel, 2012).

Support vector machines and other methods, much simpler such as linear classifiers slowly

overtook neural networks in machine learning popularity.

5

2.1.3 Support vector machine

The original SVM algorithm was created by Vladimir N. Vapnik and Alexey Ya.

Chervonenkis in 1963. In 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N.

Vapnik suggested a way to create nonlinear classifiers by applying the kernel trick to

maximum-margin hyperplanes (Boser and others, 1992). The current standard incarnation

(soft margin) was proposed by Corinna Cortes and Vapnik in 1993 and published in 1995.

Support Vector Machine is a model under the Supervised Learning model of Neural

Networks. The algorithm emphasises on analyze data and recognition patterns that are used

for classification and regression analyses. SVM categorizes the training set into one of the

two categories, SVM​’​s Algorithm builds a model to assign new coming sets into one

category or the other, making it a non-probabilistic binary linear classifier.

The dataset in the SVM model is represented by points in space. When new dataset come

they classify by the side where there in. With the help of the ​“​Kernel Trick​” SVM can also

perform nonlinear classification. SVM implicitly maps the inputs into p-dimensional

feature spaces.

When data are not labeled, supervised learning is impossible, and an unsupervised learning

is required, which attempts to find natural clustering of the data to groups, and then map

new data to these formed groups. The clustering algorithm which provides an enhancement

to the support vector machines is named support vector clustering and is usually used when

only some data is labeled or data is not labeled as a preprocessing for a classification pass

(Ben-Hur and others, 2001).

SVMs are useful in text and hypertext categorization as their application can significantly

reduce the need for labeled training instances in both the standard inductive and

transductive settings.

Categorization of images can also be performed by using SVMs. Experimental results

show that SVMs have higher search accuracy than traditional query refinement schemes

6

after just three to four rounds of relevance feedback. This is also true of image

segmentation systems, including those using a changed version SVM that uses the

privileged approach as suggested by Vapnik (Barghout, 2015).

The SVM algorithm has been commonly applied in the biological and other sciences. They

have been used to classify proteins with up to ninety percent of the compounds categorized

correctly. Permutation tests based on SVM weights have been suggested as a mechanism

for interpretation of SVM models (Cuingnet and others, 2011). Support vector machine

weights have also been used to interpret SVM models in the past.(Statnikov and others,

2006) Posthoc interpretation of support vector machine models in order to classify features

used by the model to make predictions is a almost new area of research with special

significance in the biological sciences.

2.1.4 Decision tree learning

Decision tree learning uses a decision tree as a predictive model which maps observations

about an item to conclusions about the item​’​s target value. It is one of the predictive

modeling approaches used in statistics, data mining and machine learning. Tree models

where the target variable can take a finite set of values are called classification trees. In

these tree structures, leaves represent class labels and branches represent conjunctions of

features that lead to those class labels. Decision trees where the target variable can take

continuous values (typically real numbers) are called regression trees.

Decision trees can also be seen as generative models of induction rules from empirical

data. An optimal decision tree is then defined as a tree that accounts for most of the data,

while minimizing the number of levels (or ​“​questions​”​).(Michalski and others, 2013)

Several algorithms to generate such optimal trees have been devised, such as ID3/4/5,

CLS, ASSISTANT, CART (Utgoff, 1989).

7

2.2 Pathfinding

Path planning has been one of the important problems in robotics. Path planning is finding

a continuous collision-free path, from a start point, to a goal point or region, and obstacles

in the space.

In a static and known environment, the robot knows the entire information of the

environment before it starts moving. Because of this the optimal path could be computed

offline before to the movement of the robot begins.

The path planning methods for a static, known environment are relatively mature.

Representative path planning methods for known static environment include the Visibility

Graph method (Lozano-Perez and Wesley, 1979), Voronoi diagrams method

(Aurenhammer, 1991), the Cell Decomposition method (Sleumer and Tschichold-Gurman,

1999), the Potential Field method (Ge and Cui,2002) and Vector Field Histogram

(Borenstein and Koren, 1991).

Visibility Graph is using in computational geometry and robot path planning, it is a graph

of intervisible locations, typically for a set of points and obstacles in the Euclidean plane.

Every node in the graph means a point location, and every edge represents a visible

connection between them. If the line segment connecting two locations does not cross with

any obstacle, an edge is drawn between them in the graph. When the set of locations lies in

a line, this means as an ordered series. Visibility graphs have been extended to the realm of

time series analysis.

Voronoi Diagram is a partitioning of a plane into regions predicated on distance to points

in a concrete subset of the plane.That set of points is designated beforehand, and for each

seed there is a corresponding region consisting of all points more proximate to that seed

than to any other.

Cell Decomposition is that a path between the initial configuration and the goal

configuration can be resolute by subdividing the free space of the robot​’​s configuration into

8

more minuscule regions called cells. After this decomposition, a connectivity graph, is

constructed according to the adjacency relationships between the cells, where the nodes

represent the cells in the free space, and the links between the nodes show that the

corresponding cells are adjacent to each other. From this connectivity graph, a perpetual

path, or channel, can be tenacious by simply following adjacent free cells from the initial

point to the goal point.

Potential Field method​’​s approach is to treat the robot​’​s configuration as a point

(customarily electron) in a potential field that amalgamates magnetization to the goal, and

repulsion from obstacles. The resulting trajectory is output as the path. This approach has

advantages in that the trajectory is engendered with little computation. However, they can

become trapped in local minima of the potential field, and fail to find a path.

Also, the genetic algorithm, the simulated annealing algorithm, and other optimization

methods have been used to obtain the optimal path for mobile robots. Davidor (1991)

developed a custom genetic algorithm with a modified crossover operator to optimize robot

path. Nearchou (1998) used the number of vertices produced in visibility graphs to build

fixed length chromosomes in which the presence of a vertex within the path is indicated by

setting of a bit at the appropriate locus. The method applied a reordering operator for

performance enhancement, and the algorithm was capable of determining a near-optimal

solution. Fan and others (2004) developed a fixed-length decimal encoding mechanism to

replace the variable-length encoding mechanism and other fixed-length binary encoding

mechanisms used in the genetic approach for robot path planning.

A sensor-based path planning method was proposed to help underwater robotic vehicles

perform real-time path planning in a static and unknown environment (Ying and others,

2000).

2.2.1 Artificial potential field

The application of artificial potential fields for avoidance the obstacles was first created by

Khatib. This design uses repulsive potential fields around the obstacles to push the robot

9

away and an attractive potential field around goal to attract the robot. Therefore, the robot

experiences a generalized force equal to the negative of the total potential gradient. This

force runs the robot downhill towards its goal configuration until it arrives a minimum and

it stops. The artificial potential field approach can be applied to both global and local

methods (Janabi-Sharifi and Vinke, 1993; Park and others, 2001).

The potential force has two components: attractive force and repulsive force. The goal

position produces an attractive force which makes the mobile robot move towards it.

Obstacles generate a repulsive force, which is inversely proportional to the distance from

the robot to obstacles and is pointing away from obstacles. the robot moves from high to

low potential field along the negative of the total potential field. Consequently, the robot

moving to the goal position can be considered from a high-value state to a low-value state.

The Artificial potential fields can be achieved by direct equation similar to electrostatic

potential fields or can be drive by set of linguistic rules (Fakoor and others, 2015).

The artificial potential field methods provide simple and effective motion planners for

practical purposes. However, there is a major problem with the artificial potential field

approach. It is the formation of local minima that can trap the robot before reaching its

goal. The avoidance of local minima has been an active research topic in potential field

path planning. As one of the powerful techniques for escaping local minima, simulated

annealing has been applied to local and global path planning.

The avoidance of local minimum has been an effective research topic in the APF based

path finding. However, the previous solutions are limited to simple formations of obstacles

or available for known environments. But Lee and Park designed a virtual obstacle concept

is proposed as an idea to escape a local minimum. The imaginary obstacle is located

around local minimum point to force the robot from the point. This technique is useful for

the local pathfinding in unknown areas. The sensor based discrete modeling method is also

planned for the simple modeling of a mobile robot with range sensors. This modeling is

easy and good because it is designed for a real-time path planning (Lee and Park, 2003).

10

2.2.2 Vector field histogram

In robotics, Vector Field Histogram (VFH) is a real time motion planning algorithm

proposed by Borenstein and Koren (1991). The VFH utilizes a statistical representation of

the robot​’​s environment through the so-called histogram grid, and therefore places great

emphasis on dealing with uncertainty from sensor and modeling errors. Unlike other

obstacle avoidance algorithms, VFH takes into account the dynamics and shape of the

robot, and returns steering commands specific to the platform. While considered a local

path planner, i.e., not designed for global path optimality, the VFH has been shown to

produce near optimal paths.

The original VFH algorithm was based on previous work on Virtual Force Field, a local

path-planning algorithm. VFH was updated and renamed VFH+ (Ulrich and Borenstein,

1991). The approach was updated again and was renamed VFH*(Ulrich and Borenstein,

2000). VFH is currently one of the most popular local planners used in mobile robotics,

competing with the later developed dynamic window approach. Many robotic development

tools and simulation environments contain built-in support for the VFH.

At the center of the VFH algorithm is the use of statistical representation of obstacles,

through histogram grids (see also occupancy grid). Such representation is well suited for

inaccurate sensor data, and accommodates fusion of multiple sensor readings.

The VFH algorithm contains three major components:

● Cartesian histogram grid: a two-dimensional Cartesian histogram grid is

constructed with the robot​’​s range sensors, such as a sonar or a laser rangefinder.

The grid is continuously updated in real time.

● Candidate valley: consecutive sectors with a polar obstacle density below threshold,

known as candidate valleys, is selected based on the proximity to the target

direction.

11

● Once the center of the selected candidate direction is determined, orientation of the

robot is steered to match. The speed of the robot is reduced when approaching

obstacles head-on.

The VFH+ algorithm improvements include:

● Threshold hysteresis: a hysteresis increases the smoothness of the planned

trajectory.

● Robot body size: robots of different sizes are taken into account, eliminating the

need to manually adjust parameters via low-pass filters.

● Obstacle look-ahead: sectors that are blocked by obstacles are masked in VFH+, so

that the steer angle is not directed into an obstacle.

● Cost function: a cost function was added to better characterize the performance of

the algorithm, and also gives the possibility of switching between behaviors by

changing the cost function or its parameters.

In VFH*, the algorithm verifies the steering command produced by using the A* search

algorithm to minimize the cost and heuristic functions. While simple in practice, it has

been shown in experimental results that this look-ahead verification can successfully deal

with problematic situations that the original VFH and VFH+ cannot handle (the resulting

trajectory is fast and smooth, with no significant slowdown in presence of obstacles).

2.2.3 Dijkstra​’​s algorithm

Dijkstra​’​s algorithm is an algorithm for finding the shortest paths between nodes in a graph,

which may represent, for example, road networks. It was conceived by computer scientist

Edsger W. Dijkstra in 1956 and published three years later (Dijkstra, 1959).

The algorithm exists in many variants; Dijkstra​’​s original variant found the shortest path

between two nodes, but a more common variant fixes a single node as the ​“​source​” node

and finds shortest paths from the source to all other nodes in the graph, producing a

shortest-path tree.

12

For a given source node in the graph, the algorithm finds the shortest path between that

node and every other (Melhorn and Sandres, 2008). It can also be used for finding the

shortest paths from a single node to a single destination node by stopping the algorithm

once the shortest path to the destination node has been determined. For example, if the

nodes of the graph show cities and edge path costs show driving distances between pairs of

cities connected by a direct road, Dijkstra​’​s algorithm can be used to find the shortest way

between one city and all other cities. As a result, the shortest path algorithm is generally

used in network routing protocols, most notably IS-IS and Open Shortest Path First

(OSPF). It is also employed as a subroutine in other algorithms such as Johnson​’​s.

2.2.4 A* algorithm

AI researcher Nils Nilsson was trying to improve the pathfinding done by a robot in 1968,

the robot that could navigate in a room with obstacles. This path-finding algorithm which

is called A1, was faster than the best method, Dijkstra​’​s algorithm, for finding shortest way

in graphs. Bertram Raphael did some significant improvements on this algorithm, naming

the revision A2. Then Peter E. Hart designed an argument that established A2, with only

small changes, to be the best possible algorithm for finding the shortest paths. Rapheal,

Hart and Nilsson developed a proof that the revised A2 algorithm was perfect for finding

shortest ways under certain well-defined conditions.

This algorithm is generally used in pathfinding and graph travelsal, the process of plotting

and efficiently traversable way between multiple points, named nodes. Noted for its

performance and accuracy, it enjoys widespread use. On the other hand, in practical

travel-routing designs, it is generally less performed by algorithms which can pre-process

the graph to attain better performance (Delling and others, 2009), even though other works

has found A* to be superior to other ways (Zeng and Church, 2009).

Hart and others (1968) first explained the algorithm. It is an extension of Edger Dijkstra​’​s

1959 algorithm. A* shows better performance by using heuristics to guide its search.

13

2.2.5 ​ ​D* algorithm

D* (pronounced ​“​D star​”​) is any one of the following three related additional search

algorithms:

● The original D*, Stentz (1995), is an informed incremental search algorithm.

● Focused D* is an informed incremental heuristic search algorithm by Stentz (1995)

that combines ideas of A* (Hart and others, 1968) and the original D*. Focused D*

resulted from a further development of the original D*.

● D* Lite is an incremental heuristic search algorithm by Koenig and others (2004)

that builds on LPA*, an incremental heuristic search algorithm that combines ideas

of A* and Dynamic SWSF-FP (Ramalingam and Reps, 1996).

All three algorithms solve the same assumption-based path finding problems, including

planning with the freespace assumption, where a robot has to navigate to given coordinates

in unknown terrain. It makes expectations about the unknown part of the terrain (for

example: that it doesn​’​t contain obstacles) and finds a shortest way from its actual

coordinates to the goal coordinates under these assumptions (Koening and others, 2003).

The robot then follows the way. When it observes new map information (such as

previously unknown obstacles), it adds the information to its map and, if necessary, plans a

new shortest way from its current coordinates to the given goal coordinates. It repeats the

process until it reaches the goal coordinates or determines that the goal coordinates cannot

be reached. When traversing unknown terrain, new obstacles may be discovered

frequently, so this planning needs to be fast. Incremental (heuristic) search algorithms

speed up searches for sequences of similar search problems by using experience with the

previous problems to speed up the search for the current one. Assuming the goal

coordinates do not change, all three search algorithms are more capable than repeated A*

searches. D* and its variants have been actively used for mobile robot and autonomous

vehicle navigation. Current systems are typically based D* Lite rather than the original D*

or Focused D*. In fact, even Stentz​’​s lab uses D* Lite rather than D* in some

implementations (Wooden, 2006). Such navigation designs include a prototype system

tested on the Mars rovers Opportunity and Spirit and the navigation system of the winning

entry in the DARPA Urban Challenge, both developed at Carnegie Mellon University.

14

The original D* was submitted by Anthony Stentz in 1994. The name D* comes from the

term ​“​Dynamic A*​”​, because the algorithm behaves like A* except that the arc costs can

change as the algorithm works.

2.2.6 Rapidly exploring random tree

A rapidly exploring random tree (RRT) is an algorithm designed to efficiently search

nonconvex, high-dimensional spaces by randomly building a space-filling tree. The tree is

constructed incrementally from samples drawn randomly from the search space and is

inherently biased to grow towards large unsearched areas of the problem. RRTs were

submitted by LaValle (1998). They easily handle problems with obstacles and differential

constraints (nonholonomic and kinodynamic) and have been widely used in autonomous

robotic path planning (LaValle and Kuffner, 2001).

RRTs can be viewed as a technique to generate open loop trajectories for nonlinear

systems with state constraints. An RRT can also be considered as a Monte-Carlo method to

bias search into the largest Voronoi regions of a graph in a configuration space. Some

variations can even be considered stochastic fractals.

2.3 Related Works

Obstacle detection and obstacle avoidance are important problems for robot navigation.

Many techniques and different algorithms have been used in this topic. Obstacle detection

systems for mobile robots have included bump sensors, ultrasonic sensors, laser range

finders and stereo vision. Ubbens and Schuurman (2009) propose a single camera feeding a

support vector machine (SVM) classifier to autonomously navigate a ground-based mobile

robot around obstacles. A single camera is mounted to the robot. SVM is trained to classify

obstacles on different surfaces. Anything that is not recognizable on floor surface is

classified as an obstacle. Images are preprocessed using a Fast Fourier Transform (FFT).

The results were satisfactory. But small obstacles and obstacles that have similar intensity

15

on the floor caused misclassifications. This problem can be solved by using another

preprocessing techniques.

Similar techniques were used for aerial vehicles. Cooper and others (2016) developed a

controller for a helicopter to detect obstacles and avoid them. They used live image

sequence captured by the camera mounted in front of a helicopter as an input of the system.

This system detects obstacles and suggests the best turning angles for the helicopter to

avoid obstacles. Image was divided 64x64 pixels and manually labeled with 0 and 1 which

represents obstacles and free space. They have developed a vision-based algorithm to

detect obstacles from single image which is captured from the camera by using support

vector machine (SVM) based on spectral signature. They were the first group applying

spectral signature to solve obstacle detection. They achieved 3 frame-per-second detection

rate and it is little bit slow. Test results show that they had %75 success rate for corridor

and open area. More improvements needed to apply to the system.

Another techniques were applied for obstacle detection and avoidance. Ulrich and

Nourbakhsh (2000) designed a wheel chair which has vision-based obstacle detection

system by using single passive color camera. It works in real-time, and provides a binary

obstacle image. This system is based on the appearance of individual pixels. Any pixel that

differs in appearance from the ground as classified as an obstacle. But there are some

assumptions like obstacle should differ from the ground which is relatively flat and no

overhanging obstacles. In the first step 320 × 260 color input image is filtered with a 5 × 5

Gaussian filter to reduce noise. In the second step, RGB values are converted into the HSI

(hue, saturation, and intensity) color space. In the third, hue and intensity values of the

reference area are histogramed into two one-dimensional histograms, one for hue and one

for intensity. In the last step, all pixels of the filtered input image are compared to the hue

and intensity histograms and classified as an obstacle or ground.

As a result, there are some studies about this topic and various techniques were applied in

similar ways. Some range-based obstacle sensors were used like, ultrasonic sensors, laser

rangefinders and radars. Ultrasonic sensors are cheap but has poor resolution and effects

16

from reflections. Lasers and radars have better resolution but they are complex and

expensive. These sensors may help monocular vision systems for getting better results. In

monocular vision based obstacle detection systems, some used poor preprocessing

techniques to decreasing process times for real-time systems. But it causes

misclassifications. Some tried to apply new techniques but new things need improvements

as expected. ​S​ome did not use regular classification algorithms. These topics are open to

discuss and one of them may works better than the others in some different environments.

But none of them use path-finding algorithms to find the shortest and suitable way. In real

time applications time and energy saving are important.

2.4 Summary

Path planning has been one of the important problems in robotics. Path planning is finding

a continuous collision-free path, from a start point, to a goal point or region, and obstacles

in the space. In previous works, a path is calculated by searching a graph or a grid of free

spaces. In recent years, the randomized approaches such as Rapidly exploring random tree

algorithm and Extended Rapidly exploring random tree algorithm appears to be successful

in many practical applications which require high-dimensional motion planning.

All these above mentioned works are search-based. Another set of algorithms are called

potential field these family of algorithms are more suitable for for real-time path planning

domains.

In the field of pattern recognition, a variety of classification methods have been used.

Among them, this work choose to use support vector machine (SVM) as a classifier. SVM

is one of the powerful classifiers and has been successfully applied to many object

recognition tasks such as 3D object recognition, face recognition, and pattern

matching-based tracking. ​This paper describes our support vector machine-based path

planner (called SVPP).

17

CHAPTER 3

OBJECT DETECTION BASED ON IMAGE PROCESSING

3.1 ​Object Detection

Object recognition is an important task in image processing and computer vision. It is the

process of classifying a specific object in a digital image or video, which mostly means

finding instances of real-world objects such as faces, cars, and buildings in images or series

of images such as videos. This method is widely used in applications such as image

retrieval, surveillance, security, and automated vehicle parking systems.

Humans recognize large range of objects in images with small effort, despite the fact that

the image of the objects may vary somewhat in different viewpoints in many different sizes

and scales or even when they are rotated. Objects can even be recognized when they are

partially obstructed from view. This task is still a challenge for computer vision systems.

Many approaches to the task have been implemented over multiple decades.

Object detection algorithms typically use extracted features and learning algorithms to

recognize instances of an object category. Common techniques include edges, gradients,

Histogram of Oriented Gradients (HOG), Haar wavelets, classification techniques and

linear binary patterns.

Object detection is useful in applications such as video stabilization, automated vehicle

parking systems, and cell counting in bio-imaging.

3.2​ ​Support Vector Machines

In the context of machine learning, a support vector machine (SVM) is a supervised

learning model and learning algorithms that is used to analyze data to create a model that

can be used for classification and regression analysis.

18

It works by taking two sets of training data each of them marked belonging to one category

of two categories, an SVM algorithm will build a model that will assign new examples into

either one of the categories, making it a what is called non-probabilistic binary linear

classifier.

An SVM model is a description of the samples in the training data as points in space, they

are mapped so that samples of the separate categories are divided by a gap that is as large

as possible. New samples are then mapped into that same space and predicted to belong to

a category based on which side of the gap they fall on. This is linear classification.

With the help of a technique called a kernel trick a SVM can efficiently perform a

nonlinear classification, implicitly mapping their inputs into high-dimensional feature

spaces.

In addition to using SVMs for supervised learning (which means all sample data is labeled

as belonging to one or the other category.) SVMs can be used to do unsupervised learning

(using unlabeled data), which attempts to find natural clustering of the data into categories,

and then new samples are mapped to these categories. This clustering algorithm which

provides an improvement to the support vector machines is called support vector

clustering.

Formally in order to do classification or regression, a SVM algorithm must constructs a

hyperplane or set of hyperplanes in a high- or infinite-dimensional space. The hyperplane

with the largest distance to the nearest sample data point of any class (also known as

functional margin) is selected to to achieve good separation. The larger the margin the

lower the generalization error of the classifier.

It is often the case that the sets to classify are not linearly separable in that space. It was

proposed that the original finite-dimensional space be mapped into a much

higher-dimensional space, in order to make the separation easier in high dimensional

space.

19

In order to make the computational load reasonable mapping used in SVM schemes are

designed so that they ensure that dot products may be computed easily in terms of the

variables in the original space, by defining them in terms of a kernel function (,) κ χ γ

selected to suit the particular problem. The hyperplanes in the higher-dimensional space

are defined as the set of points whose dot product with a vector in that space is constant.

The vectors defining the hyperplanes can be chosen to be linear combinations with

parameters images of feature vectors that occur in the database. With this choice of aiα iχ

hyperplane, the points in the feature space that are mapped into the hyperplane are χ

defined by the relation: . Note that if (,) becomes small as ∑

ik(χi,) constantα χ = κ χ γ γ

grows further away from ​to the corresponding data base point . In this way, the sum of χ iχ

kernels above can be used to measure the relative nearness of each test point to the data

points originating in one or the other of the sets to be discriminated. Note the fact that the

set of points mapped into any hyperplane can be quite convoluted as a result, allowing χ

much more complex discrimination between sets which are not convex at all in the original

space.

Figure 3.1:​ Support vector machines

20

3.2.1 Linear SVM

Given a training dataset of ​n ​samples in the form of (1,), … , (n,) where thex

→
1γ x

→
nγ

are either 1 or -1 , each indicating the category to which the point belongs to. Each iγ x→ x
→

is a -dimensional real vector.We want to find the "maximum-margin hyperplane"ρ

that divides the group of points for which from the group of points for which xi
→

 1yi
→

=

, which is defined so that the distance between the hyperplane and the nearest yi
→

= − 1

point from either group is maximized.

A hyperplane can be written as the set of points satisfying the followingxi
→

. + b = 0, where is the normal vector to the hyperplane (can be non normalized).w
→

 x
→

 w
→

The parameter determines the offset of the hyperplane from the origin along the normal b
||w||

→

vector .w→

Hard Margin: ​If the samples in the training dataset are linearly separable, one can select

two parallel hyperplanes that separates the two classes of data, so that the distance between

them is as large as possible. The region within these two hyperplanes is called the

"margin", and the maximum-margin hyperplane is the hyperplane that lies halfway

between them. These hyperplanes can be described using the equations

. + b = 1w
→

x
→

(3.1)

and

. + b = -1w
→

x
→

(3.2)

21

Geometrically, the distance between these two hyperplanes is , so in order to maximize 2
||w||

→

the distance between the planes one wants to minimize . Also in order to prevent data w
→

points from falling into the margin, following constraints can be added: for each eitheri

. + b 1 , if = 1w
→

xi
→

≥ iγ (3.3)

or

. + b -1 , if = -1w
→

xi
→

≤ iγ

(3.4)

These constraints ensure that every data point must be on the correct side of the margin.

Which can be rewritten as:

. + b) 1, for all 1 i(w γ
→

xi
→

≥ i n≤ ≤

(3.5)

Above can be combined into a optimization problem:

“​Minimize || || subject to . + b) 1, for i = 1, … , n​”w→ i(w γ
→

x
→

≥

The and b that solve this problem determine our classifier, ​sgn(. + b).w
→

 x
→

→ w
→

x
→

An easy-to-see but important consequence of this geometric description is that max-margin

hyperplane is completely determined by those which lie nearest to it. These are ix
→

 ix
→

called support vectors.

Soft Margin: ​In order to use SVMs in cases where the data is not linearly separable, the

hinge loss function can be used,

max​(0, 1 - . + b))i(w γ
→

x
→

(3.6)

This function is zero if the constraint in the above is satisfied, which means that, if lies x i
→

on the correct side of the margin. For data on the wrong side of the margin, the function​’​s

22

value is proportional to the distance from the margin. Then the following should be

minimized

+ || || ax(0, i(w . x b))[n
1 ∑

n

i=1
m 1 − γ

→ →
+] λ w

→
 2 (3.7)

where the parameter determines the trade off between increasing the margin-size and λ

ensuring that the lie on the correct side of the margin. Thus, for sufficiently small x i
→

values of , the soft-margin SVM will behave identically to the hard-margin SVM λ

assuming that the input data are linearly classifiable, but should still learn a viable

classification rule if not.

3.2.2 Non-linear SVM

Vapnik who constructed a linear classifier in 1963, proposed the original maximum-margin

hyperplane algorithm. In 1992, Vladimir N. Vapnik, Bernhard E. Boser and Isabelle M.

Guyon suggested a technique to design nonlinear classifiers by applying the kernel trick to

maximum-margin hyperplanes. The result was formally similar, except that each dot

product is replaced by a nonlinear kernel function. This allows the algorithm to fit the

maximum-margin hyperplane in a transformed feature space. The transformation may be

nonlinear and the transformed space high dimensional; although the classifier is a

hyperplane in the transformed feature space, it may be nonlinear in the original input

space.

Some common kernels include:

● Polynomial (homogeneous): ,) = ,)(xik
→

xj
→

xi(
→

xj
→

 d

● Polynomial (inhomogeneous): ,) = ,)(xik
→

xj
→

xi(
→

xj
→

+ 1 d

● Gaussian radial basis function: ,) = exp(- -), for . (xik
→

 xj
→

 ||xiγ
→

 ||xj
→

 2

 γ > 0

Sometimes parametrized using /2σγ = 1 2

● Hyperbolic tangent: ,) = , + c), for some (not every) k > 0 and(xik
→

xj
→

anh(kxit
→

xj
→

 c < 0

23

The kernel is related to the transform using the equation ,) = . (xi)φ
→

 (xik
→

 xj
→

 φ(xi)
→

 (xj). φ
→

The value w is also in the transformed space, with = i Dot products with w
→

 ∑

 iγiφ(xi).α

→

w for classification can again be computed by the kernel trick, i.e. . = i w
→

 (x).φ
→

 ∑

 iγik(xiα

→

,).x
→

3.2.3​ ​Multiclass SVM

Multiclass SVM tries to assign samples into categories by using support vector machines,

where the categories are chosen from a finite set of several categories.

The most common approach for doing so is to reduce the single multiclass problem into

multiple binary classification problems. Common methods for such a technique include:

● Using a binary classifiers which distinguishes between one of the categories and the

rest also called one-versus-all or between every pair of categories also called

one-versus-one. Classification of new samples for the one-versus-all technique is

done by using a winner-takes-all strategy, which means the classifier with the

highest output function assigns the category. For the one-vs-one technique,

classification is done by a max-wins strategy, which means that every classifier

assigns the instance to one of the two classes, then the vote for the assigned class is

increased by one vote, and finally the class with the most votes determines the

instance classification.

● Error-correcting output codes

● Directed acyclic graph SVM (DAGSVM)

● Crammer and Singer proposed a multiclass SVM method which casts the multi

class classification problem into a single optimization problem.

24

Figure 3.2:​ Multi-class support vector machines

Chen and Odobez (2002) compared support vector machines and neural networks for text

texture verification. They used 2400 candidate text regions. The performance of

verification listed in Table 3.1. is measured error rate of sample vectors. SVM shows better

performance than multiple layer perceptron (MLP).

Table 3.1:​ Error rate of SVM and MLP for text verification.

Training Tools DIS DERI CV DCT

MLP 7.70% 6.00% 7.61% 5.77%

SVM 2.56% 3.99% 1.07% 2.92%

25

CHAPTER 4

PATHFINDING FOR MOBILE ROBOTS

Pathfinding is a fundamental problem for mobile robots. Path finding usually describes the

process of finding the shortest path between two points using a computer application. No

mobile robot could work on almost any task without moving to another point in the their

environment. There are various ways for determining the shortest path between points in

space, but the majority of them uses graph searching methods. The field is based heavily

on Dijkstra​’​s algorithm for finding the shortest path on a weighted graph. A path finding

method searches a graph by starting at one point and exploring adjacent nodes until the

destination node is reached, generally with the intent of finding the shortest route.

4.1 A* Search Algorithm

In computer science, A* is a computer algorithm which is commonly used for pathfinding,

it is the process of calculating an efficiently path between two nodes. It is commonly used

because of its performance and accuracy. However, in practice when used for

travel-routing systems, it is outperformed by algorithms which can preprocess the graph to

gain better runtime performance, although other works has found A* to be superior to other

approaches.

Nils Nilsson who is an AI researcher was trying to improve the pathfinding used in the

robot called Shakey. This robot that can navigate a room filled with obstacles. A1 which is

faster version of the best known method, Dijkstra​’​s algorithm, used for finding the shortest

paths in graphs. After that Bertram Raphael improved this algorithm and gave a name A2.

Then Peter E. Hart introduced A2, with only small changes, to be best algorithm for

finding shortest paths. Haart, Nilsson and Raphael then jointly developed a proof that the

revised A2 algorithm was optimal for finding shortest paths under certain conditions.

26

4.1.1 Description

A* solves problems by searching all possible paths to the goal for the one that incurs the

smallest cost depending on the cost function, and among these paths it will first consider

the ones that leads to least costly solution. It is formulated with weighted graphs, starting

from a specific point, it builds a tree of paths starting from that point, expanding the paths

one step at a time, until one of the paths reaches at the goal point.

A* needs to determine which of the partial paths to expand in order to reach the goal node

at each iteration. It does this using an estimate of the cost (total weight) still to go to the

goal node. Specifically, A* selects the path that minimizes

f(n)=g(n)+h(n)

(4.1)

where ​n is the last node on the path, ​g(n) is the cost of the path from the start node to ​n​, and

h(n) is a heuristic function that estimates the cost of the cheapest path from n to goal. There

are multiple heuristic functions to choose from depending on the problem. For the

algorithm to find the actual shortest path, the heuristic function must be admissible, which

means that function can never overestimates the actual cost to get to the nearest goal node.

As an example, when searching for the shortest route on a map, ​h(x) might represent the

straight-line distance to the goal, since that is physically the smallest possible distance

between any two points.

A typical implementation of A* uses a priority queue to perform the repeated selection of

minimum cost nodes to expand. This priority queue is called the open set. At each iteration

of the algorithm, the node with the lowest ​f(x) value is removed from the queue, the f and g

values of its neighbors are updated accordingly, and these neighbors are added to the

queue. The algorithm continues until a goal node has a lower f value than any node in the

queue (or until the queue is empty). The f value of the goal is then the length of the shortest

path, since h at the goal is zero in an admissible heuristic.

27

If the heuristic h satisfies the additional condition ​h(x) <= d(x, y) + h(y) for every edge ​(x,

y) of the graph (where d denotes the length of that edge), then h is called monotone, or

consistent. In such a case, A* can be implemented more efficiently—roughly speaking, no

node needs to be processed more than once (see closed set below) and A* is equivalent to

running Dijkstra​’​s algorithm with the reduced cost ​d(x, y) = d(x, y) + h(y) - h(x)​.

Additionally, if the heuristic is monotonic (or consistent, see below), a closed set of nodes

already traversed may be used to make the search more efficient.

Figure 4.1: ​A* algorithm

4.1.2 Properties

Like breadth-first search, A* is complete and will always find a solution if one exists. If

the heuristic function h is admissible, meaning that it never overestimates the actual

minimal cost of reaching the goal, then A* is itself admissible (or optimal) if we do not use

a closed set. If a closed set is used, then h must also be monotonic (or consistent) for A* to

28

be optimal. This means that for any pair of adjacent nodes ​x and ​y​, where ​d(x,y) denotes the

length of the edge between them, we must have:

h(x) <= d(x,y) + h(y)

(4.2)

This ensures that for any path X from the initial node to​ x​:

L(X) + h(x) <= L(X) + d(x,y) + h(y) = L(Y) + h(y)

(4.3)

where L is a function that denotes the length of a path, and Y is the path X extended to

include y. In other words, it is impossible to decrease (total distance so far + estimated

remaining distance) by extending a path to include a neighboring node. (This is analogous

to the restriction to nonnegative edge weights in Dijkstra​’​s algorithm.) Monotonicity

implies admissibility when the heuristic estimate at any goal node itself is zero, since

(letting P = (f,v1,v2,...,vn,g) be a shortest path from any node f to the nearest goal g):

h(f) <= d(f,v_1) + h(v_1) =< d(f,v_1) + d(v_1,v_2) + h(v_2) <= <= L(P) +

h(g) = L(P)

(4.4)

A* is also optimally efficient for any heuristic h, which means that no optimal algorithm

employing the same heuristic will expand fewer nodes than A*, except when there are

multiple partial solutions where h exactly predicts the cost of the optimal path. Even in this

case, for each graph there exists some order of breaking ties in the priority queue such that

A* examines the fewest possible nodes.

One of the most common solutions is to implement the A* search algorithm. This

algorithm has been described in 1968 and has been used in many different ways. A* is

optimally efficient for a certain heuristic. In practice however, pathfinding using A*

algorithm might have problems with memory and time for certain applications shortest

path is not always desired, because finding the shortest optimal path can take sometime to

29

calculate other methods such as RRT tries to work around this by calculating a path fast

which is not guaranteed to be optimal.

Figure 4.2 depicts the graphical simulation result of robot navigation. Table 4.1

demonstrate the simulation results using A*, APF and RRT obstacle avoidance algorithms.

Here the results are obtained for 1000 runs and environment was fixed. RRT algorithm

runs faster than the others but length is long. APF algorithm finds the shortest path but

running time is not acceptable. As shown the time and distance results of the A* obstacle

avoidance algorithm is better for finding the path and running time. (Abiyev and others,

2015)

Table 4.1: ​Results

Methods Time Length

A* 22.534779 792.2

APF 102.47793 732.0

RRT 8.2619800 849.9

 Figure 4.2: ​A*, RRT, APF

30

CHAPTER 5

DESIGN OF THE SYSTEM

This chapter covers the design of the system. It includes detailed information about

hardware and software. The basic software and hardware parts of N​AO robot are explained.

The stages of the designed system are described. The realisation of each stage is

represented.

5.1 Hardware

There are a lot of humanoid robots like Darwin, MiniHUBO, Bioloid etc.. can be used in

this project. But N​AO robot​’​s educational version is cheaper and its performance is better

than the others. It has also useful API​’​s for Python and C++ programming languages. And

a lot of examples can be found on internet. Because of these reasons ​NAO was used in this

project.

NAO is an autonomous, programmable humanoid robot developed by Aldebaran Robotics

(Figure 5.1)​. ​Several versions of the robot have been released since 2008. The ​NAO

Academics Edition which was used for the research, was developed for universities and

laboratories for research and education purposes. It was released to institutions in 2008,

and was made publicly available by 2011. ​NAO robots have been used for research and

education purposes in numerous academic institutions worldwide.

The various versions of the ​NAO robotics platform feature either 14, 21 or 25 degrees of

freedom (DoF). All ​NAO Academics versions feature an inertial measurement unit with

accelerometer, gyrometer and four ultrasonic sensors that provide ​NAO with stability and

positioning within space. The legged versions included eight force-sensing resistors and

two bumpers.

The ​NAO robot is controlled by a specialized Linux-based operating system, dubbed

NAOqi. The OS powers the robot​’​s multimedia system, which includes four microphones

31

(for voice recognition and sound localization), two speakers (for multilingual

text-to-speech synthesis) and two HD cameras (for computer vision, including facial and

shape recognition). The robot also comes with a software suite that includes a graphical

programming tool dubbed Choregraphe, a simulation software package and a software

developer​’​s kit.

Figure 5.1:​ ​NAO​ robot

The structure of ​NAO robot is given in Figure 5.2. The robot has the following parts,

tacticle sensors, cameras, sonars, joints etc. ​NAO has two identical cameras which are

located in the forehead. Those cameras work up to 1280x960 resolution at 30 fps and can

be used to identify objects in the visual field such as obstacles and goals.

The ​NAO robotics platform feature either 14, 21 or 25 degrees of freedom. It has internal

measurement unit with accelerometer, gyrometer and four ultrasonic sensors which are for

stability and positioning. It also has eight force-sensing resistors and two bumpers.

32

NAO robot has 25 motors. All movement is controlled by these motors. Three different

kind of motors are used. Type 1 motors are used in the legs, type 2 motors in the hands and

type three motors used in the head and arms. All motors are controlled by using PID.

Torque and Velocity are recorded for all the movements. There are many joints on ​NAO

robot. Some of them moved individually, or be mirrored.

Figure 5.2:​ ​NAO​ robot specification

33

Table 5.1: ​NAO​ robot parameters

Height 58 centimetres (23 in)

Weight 4.3 kilograms (9.5 lb)

Power supply lithium battery providing 48.6 Wh

Autonomy 90 minutes (active use)

Degrees of freedom 25

CPU Intel Atom @ 1.6 GHz

Built-in OSNAOqi 2.0 (Linux-based)

Programming languages C++, Python, Java, MATLAB, Urbi, C,

.Net

Sensors Two HD cameras, four microphones, sonar

rangefinder two infrared emitters and

receivers, inertial board nine tactile

sensors, eight pressure sensors

Connectivity Ethernet, Wi-Fi

Compatible OS Windows, Mac OS, Linux

5.2 Software

Interacting with the robot hardware is handled by the NAOqi framework. NAOqi is the

main software which runs on the robot and controls it. The NAOqi Framework is the

programming framework used to program NAO. It answers to common robotics needs

including: parallelism, resources, synchronization, events. This framework allows

homogeneous communication between different modules, homogeneous programming and

homogeneous information sharing.

34

NAO​qi framework:

● is cross-platform. It can be developed in Windows, Linux or Mac operating

systems.

● is cross-language. It has a API for both C++ and Python.

● also provides introspection, which means the ​NAO​qi framework knows which

functions are available in the different modules and where.

Figure 5.3: ​NAO​ Robot Cross-Platform System

It is possible to develop in C++ and Python. In two cases, programming techniques are

exactly the same, all existing API can be indifferently called from any supported

languages. In this thesis Python language is used to implement the algorithms.

5.2.1 The ​NAO​qi process

The NAOqi framework which works on the ​NAO robot is a broker. It loads a preferences

file called autoload.ini that chooses which libraries it should load at the beginning. Every

library contains one or more modules that use the broker to advertise their methods.

35

Figure 5.4 : ​NAO​qi libraries and modules

The broker afford lookup services so that every module in the tree or across the network

can find any method that has been advertised.

Loading modules forms a tree of methods connected to modules, and modules connected to

a broker.

Broker:​ ​A broker is an object which has two main roles:
● It provides directory services: Letting you to find modules and methods.
● It provides network access: Allowing the methods of attached modules to be called

from outside the process.

Brokers works on backwards transparently, let you to develop that will be the same for
calls to “local modules” (in the same process) or “remote modules”.

36

Figure 5.5: ​NAO​qi libraries, modules and methods

Proxy:​ ​A proxy is an object that will act as the module it represents.

For instance, if you create a proxy to the ALMotion module, you will get an object

including all the ALMotion methods.

When creating proxy to a module, you have two options:

● Easily use the name of the module. In this case, the running code and the connected

module must be in the same broker. This is a local call.

● Use the name of the module, and the IP and port of a broker. In this situation, the

module must be in the corresponding broker.

Modules:​ ​Every Module is a class within a library. When the library is called from the

autoload.ini, it will automatically instantiate the module class.

37

In the constructor of a class that derives from ALModule, you can “bind” methods. This

advertises their names and method signatures to the broker so that they become available to

others.

A module can be either remote or local.

● If the module is remote, the module is compiled as an executable file, and can be

execute outside the ​NAO​ robot. Remote modules are simply to use and can be

debugged quickly from the outside, but the remote modules are less efficient for

speed and memory usage.

● If the module is local, the module is compiled as a library, and can only be worked

on the robot. But, they are more efficient than a remote module.

Memory:​ ​ALMemory is the ​NAO​ robot​’​s memory. Every modules can read or write data,

subscribe on events so as to be called when events are raised.

ALMemory is an array of ALValue​’​s. Accessing the variable is thread safe. Read and write

critical sections can be used to avoid bad performance when memory is read.

Figure 5.6: ​NAO​qi memory system

ALMemory contains three types of data and provides three different APIs.

38

● Mainly data from sensors and joints

● Event

● Micro-event

Python:​ ​Python is a widely used high-level, general-purpose, interpreted, dynamic

programming language. Its design philosophy emphasizes code readability, and its syntax

allows programmers to express concepts in fewer lines of code than would be possible in

languages such as C++ or Java. The language provides constructs intended to enable clear

programs on both a small and large scale.

Python supports multiple programming paradigms, including object-oriented, imperative

and functional programming or procedural styles. It features a dynamic type system and

automatic memory management and has a large and comprehensive standard library.

Python interpreters are available for many operating systems, allowing Python code to run

on a wide variety of systems. Using third-party tools, such as Py2exe or Pyinstaller, Python

code can be packaged into standalone executable programs for some of the most popular

operating systems, so Python-based software can be distributed to, and used on, those

environments with no need to install a Python interpreter.

CPython, the reference implementation of Python, is free and open-source software and

has a community-based development model, as do nearly all of its variant

implementations. CPython is managed by the non-profit Python Software Foundation.

OpenCV:​ ​For processing camera images from the ​NAO​ robot OpenCV computer vision

library is used. OpenCV (Open Source Computer Vision) is a library mainly aimed at

real-time computer vision, originally developed by Intel​’​s research center in Russia, later

supported by Willow Garage and now maintained by Itseez. The library is cross-platform

and free for use under the open-source BSD license.

OpenCV​’​s application areas include:

39

● 2D and 3D feature toolkits

● Egomotion estimation

● Facial recognition system

● Gesture recognition

● Human–computer interaction (HCI)

● Mobile robotics

● Motion understanding

● Object identification

● Segmentation and recognition

● Stereopsis stereo vision: depth perception from 2 cameras

● Structure from motion (SFM)

● Motion tracking

● Augmented reality

To support the above areas, OpenCV includes a statistical machine learning library that

contains:

● Boosting

● Decision tree learning

● Gradient boosting trees

● Expectation-maximization algorithm

● k-nearest neighbor algorithm

● Naive Bayes classifier

● Artificial neural networks

● Random forest

● Support vector machine (SVM)

Scikit-learn:​ Scikit-learn is a free software machine learning library for the Python

programming language. It features various classification, regression and clustering

algorithms including support vector machines, random forests, gradient boosting, k-means

and DBSCAN, and is designed to interoperate with the Python numerical and scientific

libraries NumPy and SciPy.

40

The scikit-learn project started as scikits.learn, a Google Summer of Code project by David

Cournapeau. Its name stems from the notion that it is a ​“​SciKit​” (SciPy Toolkit), a

separately-developed and distributed third-party extension to SciPy. The original codebase

was later rewritten by other developers. Of the various scikits, scikit-learn as well as

scikit-image were described as ​“​well-maintained and popular​”​ in November 2012.

As of 2015, scikit-learn is under active development and is sponsored by INRIA, Telecom

ParisTech and occasionally Google (through the Google Summer of Code).

Scikit-learn is largely written in Python, with some core algorithms written in Cython to

achieve performance. Support vector machines are implemented by a Cython wrapper

around LIBSVM; logistic regression and linear support vector machines by a similar

wrapper around LIBLINEAR.

NumPy (pronounced ​“​Numb Pie​” or sometimes ​“​Numb pee​”​) is an open source extension to

the Python programming language, adding support for large, multidimensional arrays and

matrices, along with a large library of high-level mathematical functions to operate on

these arrays.

5.3 System Design

The design of system includes the following steps, shown in Figure 5.7

41

Figure 5.7:​ Steps of the system

Steps of the system

1) Image Capturing

a) Image is captured by the camera which is located on ​NAO​ robot​’​s forehead.

2) Obtaining Map of World

a) Image is read by using opencv and converted from rgb to hsv value to find

the fixed white area.

b) Lower and upper white hsv values defined.

c) Threshold the HSV image to get only white colors by using opencv​’​s

cv2.inRange() function.

d) cv2.morphologyEx() function​’​s closing technique is used for the remove

small holes.

e) Images is blurred to fix erosion by using cv2.GaussianBlur function.

42

f) To getting contours cv2.threshold() and cv2.findContours() function is

applied.

g) To get coordinates of a rectangle around the contour

"tuple(cnt[cnt[:,:,0].argmin()][0])" technique is used for four coordinates.

h) Lines and dots are drawn to show the area by using cv2.line() and

cv2.circle() functions.

i) Four coordinates are put in the array to be used for perspective correction.

3) Perspective Correction

a) The width of the new image is computed which will be the maximum

distance between bottom-right and bottom-left x-coordinates or the top-right

and top-left x-coordinates by using this technique.

widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))

widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))

maxWidth = max(int(widthA), int(widthB))

b) The height of the new image is computed, which will be the maximum

distance between the top-right and bottom-right y-coordinates or the top-left

and bottom-left y-coordinates by using this technique.

heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))

heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))

maxHeight = max(int(heightA), int(heightB))

c) The dimension of the new image is get, the set of destination points to

obtain a ​“​birds eye view​” of the image constructed, top-left, top-right,

bottom-right, and bottom-left points are specified by using this technique.

dst = np.array([

[0, 0],

[maxWidth - 1, 0],

[maxWidth - 1, maxHeight - 1],

[0, maxHeight - 1]], dtype = "float32")

d) Perspective transform matrix computed and applied by using

cv2.getPerspectiveTransform() and cv2.warpPerspective() functions.

43

e) Perspective corrected image is saved.

4) Preprocessing the Image

a) Canny Edge Detection technique is used for finding the edges.

b) Corner Harris Detection technique is used for detecting the corners.

c) Contour detection is applied by using opencv​’​s cv2.findContours() function

and rectangles are drawn around obstacles for safety region.

5) Detection of Obstacles

a) Preprocessed image is split into 20x20 pixels 768 pieces.

b) All images are separated ​“​negative​”​ and ​“​positive​”​ in two classes.

c) Selected images are put into folders for training SVM and dataset is created.

6) Classification

a) Pictures are selected one by one to get histograms values for training SVM.

b) Depend on histograms values all images are identified 1 or 0.

c) SVM is trained.

7) Binary Transforming the Map

a) Depend on this values binary matrix are created.

8) Pathfinding

a) Using binary matrix, A* algorithm is applied to find shortest path.

b) From this coordinates waypoints are found.

9) Control of Robot

a) Imaginary path is processed and turned it into real path values.

b) Movement commands which are ​NAO​qi framework​’​s commands for moving

the ​NAO robot, are sent from computer to ​NAO robot by using robots ip and

port.

44

Figure 5.8: ​Graphical user interface

A simple graphical user interface (Figure 5.8) was written to control ​NAO robot. It includes

some movement functions and process steps. You can move ​NAO robot through this gui

application.

NAO stands a place where can see the fixed area. The obstacles which are different colors

and shapes located on the fixed white area. An image is captured using the on board

camera on the ​NAO Robot​’​s head. Firstly software connects to predefined ​NAO’​s ip and

port. ​NAO has 2 cameras and they provide a up to 1280x960 resolution at 30 frames per

second. But in this project 640x480 resolution was used. Because if the resolution

increases preprocess step also increases. After that photo will be taken in array format and

then convert it into real image by using opencv. Next problem is to find fixed area​’​s

corners for performing perspective corrections. If the image​’​s width is not enough for to

see all fixed white area, ​NAO​ can go back until the area fit the image.

45

Figure 5.9:​ Static area with obstacles

First we need to read this image for converting from RGB (Red, Green, Blue) to HSV (Hue

Saturation Value). Then we define white colors lower and upper boundaries because of the

fixed area​’​s color. If the fixed area​’​s color is different; this color​’​s boundaries must be used.

In other case, If the area​’​s color is not homogeneous, texture recognition can be applied.

After finding the white fixed area with erosion, some filtering applied to the image such as

closing. Closing fills small holes inside the foreground objects, or small black points on the

object. Then we find the contour of fixed white area and get the coordinates of a rectangle​’​s

corners. We compute the width of the new image, which will be the maximum distance

between bottom-right and bottom-left x-coordinates or the top-right and top-left

x-coordinates. And then we compute the height of the new image, which will be the

maximum distance between the top-right and bottom-right y-coordinates or the top-left and

bottom-left y-coordinates. Now that we have the dimensions of the new image, construct

46

the set of destination points to obtain a ​“​birds eye view​” of the image, again specify points

in the top-left, top-right, bottom-right, and bottom-left order. Finally save the image.

Figure 5.10:​ Static area after perspective correction

Now our fixed white area (Figure 5.10) is ready to apply processing steps. First we apply

canny edge detection to detect a wide range of edges in images. In this step contrast is a

factor that affect the performance of segmentation. You need to provide a natural contrast

for the segmented image to get a more accurate segmentation process. If contrast between

obstacles and floor is not much, segmentation process will be hard. After we apply corner

detection and contours to rectangles around and inside obstacles for to describe safe area.

Because A* search algorithm gives us to shortest path and this path is too close to

obstacles but ​NAO​ robot needs place to avoid obstacles.

47

Figure 5.11:​ Processed area

In this step, we crop our fixed area which is 640x480 pixels, into 20x20 pixels 768 pieces

(Figure 5​.​12) for converting image into binary matrix. After that we allocate this little

images, positive and negative folders. Mostly white pictures were put in negative folder

and mostly black pictures were put in positive folder. Positive represents the area without

obstacles. Negative represents the area with obstacles. Mostly black images are area and

mostly white images are obstacles. Finally a dataset created to train the SVM.

48

Figure 5.12:​ Dataset

An SVM is trained to detect obstacles in the image. Image histograms are used for training

the SVM. ​S​ystem knows which image is obstacle or not. After that we created a binary

matrix ​(Figure 5.13) which represents the fixed area. In this matrix, 1 is area with obstacle

and 0 is area without obstacle.

49

Figure 5.13:​ Area in binary matrix format

Pathfinding is applied to find a path to guide the robot to its destination ​(Figure 5.14)​. But

the problem is ​NAO doesn​’​t know where the path begins. Because of this reason a marker

should show the starting point. For solving this problem i put ​NAO’​s red ball on start point.

Because ​NAO​qi framework has a special function for finding red ball and return the

coordinates of red ball. By using these coordinates ​NAO can reach the starting point. After

that ​NAO​ can follow the path and reach the destination.

50

Figure 5.14: ​Area with path

Image capturing is handled by the on board camera and the software. Captured image is

then transferred to the host computer for processing. Perspective correction is done using

the following method. Image is read, by default OpenCV uses the RGB color model which

is an additive color model in which red, green and blue light are added together in various

ways to reproduce a broad array of colors. The name of the model comes from the initials

of the three additive primary colors, red, green and blue, in order to make the image

processing easier RGB model is then converted to HSV model which is the two most

common cylindrical-coordinate representations of points in an RGB color model. This

representations rearrange the geometry of RGB in an attempt to be more intuitive and

perceptually relevant than the cartesian (cube) representation. Then the image is

thresholded using the colors of the obstacles and a closing rectangle of the surface is

calculated, the image is blurred to get rid of imperfections and the contours of the surface

51

is calculated. Perspective correction is applied to account for the location and height of the

robot. The resulting image is saved for further processing ​(Figure 5.15)​.

Figure 5.15:​ Perspective correction steps

Surface area extracted from the above process is further processed to actually find the

obstacle on the surface. It is done by applying canny edge detection. Canny edge detector

is an edge detection operator that uses a multi-stage algorithm to detect a wide range of

edges in images. It was developed by John F. Canny in 1986. Corner harris detection is

applied which is an approach used within computer vision systems to extract certain kinds

of features and infer the contents of an image in this case corners of the obstacles are

detected ​(Figure 5.16)​.

52

Figure 5.16:​ Preprocessi​ng​ steps

A dataset is created to be used by the SVM, by taking the image and splitting the image

into smaller images that are 20x20 pixels. Positive set of images contains the obstacles on

the surface and the negative set of images that contains the images that the robot can move.

SVM is trained that detects smaller images with obstacles and without obstacles.

Histograms for the images are used for features for the SVM. Given a set of training

examples, each marked for belonging to one of two categories, SVM training algorithm

builds a model that assigns new examples into one category or the other, making ​it a

non-probabilistic binary linear classifier.

53

Figure 5.17:​ ​Converting image to matrix

Once the above steps are done. Mobile robot has the ability to detect new obstacles on the

surface. At this point path-finding can be applied to the surface using the previously trained

SVM. Designed system works by taking picture of the surface detecting obstacles using the

trained SVM which returns a binary matrix of the surface then applying A* path-finding

algorithm on the surface. Then the robot moves to the start position which is denoted by a

red ball. Finally robot follows the path calculated ​(Figure 5.18)​.

54

Figure 5.18:​ Main steps of pathfinding

55

CHAPTER 6

CONCLUSION

In this thesis, robot navigation system based on Support Vector Machine and path finding

algorithm is designed and used in real time application by using ​NAO robot. Code is

available for testing and some videos proof its good behavior.

Analysis of mobile robots have shown that one of important blocks in robot navigation are

object detection and path finding. Review of object detection algorithms have been done.

SVM classification algorithm and image processing techniques are used for detection of

objects. Perspective correction techniques are also used for image processing.Image

capturing and processing are done using ​NAO​ robot

The structure of designed robot navigation systems is presented. The functions of their

main steps are described.

For the classification of the images MLP and SVM algorithms were compared and SVM is

chosen for classification purpose. A support vector machine which is a supervised learning

algorithm is used to analyze data and create model of real world. Results of SVM

classification is used in path finding.

One of the difficulty was finding fixed area. The fixed area in first image which was

captured from ​NAO’​s camera was perspective because of the angle. To solve this problem

perspective correction was applied. The other problem was light system. If the light

changes, fixed white areas white color range​’​s changes too. To solve this problem, special

software which finds range of colors, was used.

After classification of world map A* algorithm is applied for path finding problem. The

theoretical background of A* algorithm has been given. Some path planning algorithms

were compared and A* algorithms is chosen for path selection.

56

The image processing techniques, SVM algorithm and A* path-finding algorithm are used

in navigation of ​NAO​ robot.

Designed system relies on only vision data to navigate. This allows the mobile robot to

navigate in environments where other traditional sensors (sonars, magnetometers etc.)

won​’​t work or does not work reliably. But they can be used for improvements for suitable

environments. New techniques, like Deep Learning, can be tried to improve this system.

Designed systems applications include industrial automation, mobile robots in hazardous

environments.

Currently designed system works on static obstacles, for future work the designed system

will be modified to work with dynamic moving obstacles.

57

58

REFERENCES

Abiyev, A. H., Akkaya, N., Aytac, E., Günsel, I. & Çagman, A. (2015, January). Brain

 Based Control of Wheelchair. In Proceedings of the International Conference on

 Artificial Intelligence (ICAI) (p. 542) Las Vegas: USA.

Abiyev, R. H., Akkaya, N., Aytac, E., Arici, M. & Bayezit, M. NEUIslanders Team

 Description Paper 2012. Robocup SSL, MexicoCity, Mexico.

Abiyev, R., Ibrahim, D. & Erin, B. (2010). Navigation of mobile robots in the presence of

 obstacles. Advances in engineering software, 41(10), 1179-1186.

Abiyev, R., Ibrahim, D. & Erin, B. (2010). EDURobot: An Educational Computer

 Simulation Program for Navigation of Mobile Robots in the Presence of Obstacles.

 International Journal of Engineering Education. Vol.26. No.1, pp.18-29, 2010.

Abiyev, R. H., Akkaya, N., Aytac, E. & Ibrahim, D. (2014). Behavior Tree Based Control

 For Efficient Navigation of Holonomic Robots. International Journal of Robotics a

 and Automation, 29(1), 32-38.

Abiyev, R. H., Günsel, I., Akkaya, N., Aytac, E., Çağman, A. & Abizada, S. (2016).

 Robot Soccer Control Using Behaviour Trees and Fuzzy Logic. In Proceedings of

 the International Conference on Procedia Computer Science (pp. 477-484).

 Jakarta: Indonesia.

Abiyev, R. H., Akkaya, N., Aytac, E., Günsel, I. & Çağman, A. (2015). Improved Path-

 Finding Algorithm for Robot Soccers. Journal of Automation and Control

 Engineering Vol, 3(5), 77-83.

Abiyev, R. H., Akkaya, N. & Aytac, E. (2013, June). Control of soccer robots using

 behaviour trees. In Proceeding of the Control Conference on ASCC, 9th Asian (pp.

 1-6). Istanbul: Turkey.

59

Abiyev, R. H., Akkaya, N. & Aytac, E. (2012, May). Navigation of mobile robot in

 dynamic environments. In Proceedings of the International Conference on

 Computer Science and Automation Engineering (pp. 480-484). Zhangjiajie: China.

Abiyev, R. H., Bektas, S., Akkaya, N. & Aytac, E. (2013). Behavior Tree Based Control

 of Holonomic Robots. In International Journal of Robotics and Automation, 24(8),

 120-124.

Abiyev, R. H., Akkaya, N., Aytac, E., Günsel, I. & Çağman, A. (2015) Improved Path-

 Finding Algorithm for Robot Soccers. Journal of Automation and Control

 Engineering, 3(5), 38-42.

ARSLAN, M., ARICI, M., CAGMAN, A., HUSEYIN, S., EMREM, F., YILMAZ, B. &

AYTAC, E. (2011). NEUIslanders 2016 Team Description Paper.

Ben-Hur, A., Horn, D., Siegelmann, H. T. & Vapnik, V. (2001). Support vector clustering.

Journal of machine learning research, 2(12), 125-137.

Borenstein, J. & Koren, Y. (1991). The vector field histogram-fast obstacle avoidance for

mobile robots. Journal of Robotics and Automation, 7(3), 278-288.

Boser, B. E., Guyon, I. M. & Vapnik, V. N. (1992, July). A training algorithm for optimal

margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory (pp. 144-152). Pittsburgh: USA.

Cortes, C. & Vapnik, V. (1995). Support-vector networks. Machine learning. In the

 Proceedings of the International Conference in Artificial Neural Networks, (pp.

 273-297). Bochum: Germany.

Cuingnet, R., Rosso, C., Chupin, M., Lehéricy, S., Dormont, D., Benali, H. & Colliot,

 O. (2011). Spatial regularization of SVM for the detection of diffusion alterations

associated with stroke outcome. Journal of Medical Image Analysis, 15(5), 729-

 737.

60

Davidor, Y. (1991). Genetic Algorithms and Robotics: A heuristic strategy for

 optimization. Journal of World Scientific, 16(5), 654-660.

Delling, D., Sanders, P., Schultes, D. & Wagner, D. (2009). Engineering route planning

 algorithms. In Proceedings of the International of Algorithmics of large and

 complex networks, (pp. 117-139). Berlin: Germany.

Dijkstra, E. W. (1959). Numerische Mathematik. Amsterdam: Holland.

Erin, B., Abiyev, R. & Ibrahim, D. (2010). Teaching robot navigation in the presence of

obstacles using a computer simulation program. International Journal of Procedia-

 Social and Behavioral Sciences, 2(2), 565-571.

Fakoor, M., Kosari, A. & Jafarzadeh, M. (2015). Revision on fuzzy artificial potential

 field for humanoid robot path planning in unknown environment. International

 Journal of Advanced Mechatronic Systems, 6(4), 174-183.

Fan, J., Wu, G., Ma, F. & Liu, J. (2004, August). Reinforcement Learning and ART2

 Neural Network Based Collision Avoidance System of Mobile Robot. In

 International Journal on Neural Networks, 5(6), 150-155.

Ge, S. S., & Cui, Y. J. (2002). Dynamic motion planning for mobile robots using potential

field method. International Journal of Autonomous Robots, 13(3), 207-222.

Hand, D. J., & Yu, K. (2001). Idiot’s Bayes—not so stupid after all. International Journal

 of statistical review, 69(3), 385-398.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for the heuristic

 determination of minimum cost paths. International Journal of Systems Science

 and Cybernetics, 4(2), 100-107.

61

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968). A formal basis for the heuristic

 determination of minimum cost paths. International Journal of Systems Science

 and Cybernetics, 4(2), 100-107.

Janabi-Sharifi, F. & Vinke, D. (1993, August). Integration of the artificial potential field

 approach with simulated annealing for robot path planning. International Journal

 of Intelligent Control Systems, (pp. 536-541).

Koenig, S. & Likhachev, M. (2005). Fast replanning for navigation in unknown terrain.

International Journal of Navigation on Robotics, 21(3), 354-363.

Koenig, S., Likhachev, M. & Furcy, D. (2004). Lifelong planning A*. International

 Journal of Artificial Intelligence, 155(1), 93-14

LaValle, S. M. & Kuffner, J. J. (2001). Randomized kinodynamic planning. The

 International Journal of Robotics Research, 20(5), 378-400.

Lee, M. C. & Park, M. G. (2003, July). Artificial potential field based path planning for

 mobile robots using a virtual obstacle concept. In Proceedings of the International

 Conference on the Advanced Intelligent Mechatronics. (pp. 735-740). Kobe:

 Japan

Lozano-Pérez, T. & Wesley, M. A. (1979). An algorithm for planning collision-free paths

among polyhedral obstacles. International Journal of Communications of the ACM,

 22(10), 560-570.

McCulloch, W. S. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous

activity. International Journal of the bulletin of mathematical biophysics, 5(4),

 115- 133.

Mehlhorn, K. & Sanders, P. (2008). Algorithms and data structures: The basic toolbox.

International Journal of Science & Business Media, 10(15), 216-223.

62

Michalski, R. S., Carbonell, J. G. & Mitchell, T. M. (2013). Machine learning: An

 artificial intelligence approach. International Journal of Science & Business Media,

 8(12), 356-363.

Park, M. G., Jeon, J. H. & Lee, M. C. (2001). Obstacle avoidance for mobile robots using

 artificial potential field approach with simulated annealing. International Journal of

 Industrial Electronics, 9(13), 1530-1535.

Rahib, H., GUNSEL, A. P. D. I., AKKAYA, N., ARSLAN, M., ARICI, M., CAGMAN, A.

 & AYTAC, E. NEUIslanders 2015 Team Description Paper.

Rahib, H., GUNSEL, A. P. D. I., AKKAYA, N., ARSLAN, M., ARICI, M., CAGMAN, A.

 & AYTAC, E. NEUIslanders 2014 Team Description Paper.

Ramalingam, G. & Reps, T. (1996). An incremental algorithm for a generalization of the

shortest-path problem. Journal of Algorithms, 21(2), 267-305.

Rish, I. (2001, August). An empirical study of the naive Bayes classifier. International

 Journal of empirical methods in artificial intelligence, 22(15), 41-46.

Stentz, A. (1995, August). The focussed D* algorithm for real-time replanning.

 International Journal in artificial intelligence, 5(11) 1652-1659).

Ulrich, I. & Borenstein, J. (2000, April). VFH*: Local obstacle avoidance with look-ahead

verification. In Proceedings of the International Conference on Robotics and

 Automation (pp. 2505-2511). San Francisco: USA

Ulrich, I. & Nourbakhsh, I. (2000, July). Appearance-based obstacle detection with

 monocular color vision. In Proceedings of the International Conference Innovative

 Applications of Artificial Intelligence. (pp. 866-871). Austin: USA

63

Ying, N. A. N., Eicher, L., Xunzhang, W., Seet, G. G., & Lau, M. W. (2000). Real-time 3D

path planning for sensor-based underwater robotics vehicles in unknown

environment. In Proceedings of the International Conference in OCEANS MTS,

(pp. 2051-2058). California: USA.

Zeng, W. & Church, R. L. (2009). Finding shortest paths on real road networks: the case

 for A*. International journal of geographical information science, 23(4), 531-543.

Russell, I. (2012). ​Neural Networks Module.

APPENDIX
SOURCE CODE

ball.py

import motion

import math

import time

from ​NAO​qi import ALBroker

from ​NAO​qi import ALProxy

import config as c

class ​NAO​():

 def __init__(self):

 self.myBroker = ALBroker("myBroker","0.0.0.0",0,c.IP,c.PORT)

 self.motion = ALProxy("ALMotion")

 self.tracker = ALProxy("ALRedBallTracker")

 self.vision = ALProxy("ALVideoDevice")

 self.tts = ALProxy("ALTextToSpeech")

 self.currentCamera = 0

 self.setTopCamera()

 self.tracker.setWholeBodyOn(False)

 self.tracker.startTracker()

 self.ballPosition = []

 self.targetPosition = []

 def __del__(self):

 self.tracker.stopTracker()

64

 pass

 # If ​NAO​ has ball returns True

 def hasBall(self):

 self.checkForBall()

 time.sleep(0.5)

 if self.checkForBall():

 return True

 else:

 return False

 # ​NAO​ scans around for the redball

 def searchBall(self):

 self.motion.stiffnessInterpolation("Body", 1.0, 0.1)

 self.motion.walkInit()

 for turnAngle in [0,math.pi/1.8,math.pi/1.8,math.pi/1.8]:

 if turnAngle > 0:

 self.motion.walkTo(0,0,turnAngle)

 if self.hasBall():

 self.turnToBall()

 return

 for headPitchAngle in [((math.pi*29)/180),((math.pi*12)/180)]:

 self.motion.angleInterpolation("HeadPitch",

 headPitchAngle,0.3,True)

 for headYawAngle in [-((math.pi*40)/180),-((math.pi*20)/180),

 0,((math.pi*20)/180),((math.pi*40)/180)]:

 self.motion.angleInterpolation("HeadYaw",

 headYawAngle,0.3,True)

 time.sleep(0.3)

65

 if self.hasBall():

 self.turnToBall()

 return

 # ​NAO​ walks close to ball

 def walkToBall(self):

 ballPosition = self.tracker.getPosition()

 headYawTreshold = ((math.pi*10)/180)

 x = ballPosition[0]/2 + 0.05

 self.motion.stiffnessInterpolation("Body", 1.0, 0.1)

 self.motion.walkInit()

 self.turnToBall()

 self.motion.post.walkTo(x,0,0)

 while True:

 dist = self.getDistance()

 print dist

 self.setTopCamera()

 if dist < 0.7:

 self.setBottomCamera()

 if dist == None:

 self.motion.stopWalk()

 print "Stop!"

 break

 if dist < 0.1:

 self.motion.stopWalk()

 print "Stop!"

 break

 headYawAngle = self.motion.getAngles("HeadYaw", False)

 if headYawAngle[0] >= headYawTreshold or headYawAngle[0] <=

 -headYawTreshold:

66

 while dist > 0.1111111:

 self.motion.stopWalk()

 self.turnToBall()

 self.walkToBall()

 break

 # ​NAO​ turns to ball

 def turnToBall(self):

 if not self.hasBall():

 return False

 self.ballPosition = self.tracker.getPosition()

 b = self.ballPosition[1]/self.ballPosition[0]

 z = math.atan(b)

 self.motion.stiffnessInterpolation("Body", 1.0, 0.1)

 self.motion.walkInit()

 self.motion.walkTo(0,0,z)

 # checks ball

 def checkForBall(self):

 newdata = self.tracker.isNewData()

 if newdata == True:

 self.tracker.getPosition()

 return newdata

 if newdata == False:

 self.tracker.getPosition()

 return newdata

 # has to be called after walkToBall()

67

 def walkToPosition(self):

 x = (self.targetPosition[0]/2)

 self.motion.walkTo(x,0,0)

 # Determine safe position

 def safePosition(self):

 if self.hasBall():

 self.targetPosition = self.tracker.getPosition()

 else:

 return False

 # gets the distance from ball

 def getDistance(self):

 if self.hasBall():

 ballPosition = self.tracker.getPosition()

 return math.sqrt(math.pow(ballPosition[0],2) +

 math.pow(ballPosition[1],2))

 # setting up top camera

 def setTopCamera(self):

 self.vision.setParam(18,0)

 self.currentCamera = 0

 # setting up bottom camera

 def setBottomCamera(self):

 self.vision.setParam(18,1)

 self.currentCamera = 1

68

 # protection off to move free

 def protectionOff(self):

 self.motion.setExternalCollisionProtectionEnabled("All", False)

 print "Protection Off"

 # protection on

 def protectionOn(self):

 self.motion.setExternalCollisionProtectionEnabled("All", True)

 print "Protection On"

NAO​().protectionOff()

NAO​().searchBall()

if ​NAO​().hasBall() == True:

 ​NAO​().walkToBall()

config.py

​NAO

IP = "192.168.10.13"

PORT = 9559

CAMERAID = 18

RESOLUTION = 2 # Image Size

COLORSPACE = 11 # Select RGB

GUI

GLADE_FILE_PATH = "ui/​NAO​.glade"

DATASET_DIRECTORY = "/home/murat/Desktop/Desktop/​NAO​/dataset"

NEGATIVE = "/home/murat/Desktop/Desktop/​NAO​/dataset/negative"

69

POSITIVE = "/home/murat/Desktop/Desktop/​NAO​/dataset/positive"

hsv.py

import cv2

import numpy as np

cap = cv2.imread("image.png")

def nothing(x):

 pass

Creating a window for later use

cv2.namedWindow(​’​result​’​)

Starting with 100​’​s to prevent error while masking

h,s,v = 100,100,100

Creating track bar

cv2.createTrackbar(​’​h​’​, ​’​result​’​,0,179,nothing)

cv2.createTrackbar(​’​s​’​, ​’​result​’​,0,255,nothing)

cv2.createTrackbar(​’​v​’​, ​’​result​’​,0,255,nothing)

while(1):

 frame = cv2.imread("image.png")

 #converting to HSV

 hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV)

 # get info from track bar and appy to result

 h = cv2.getTrackbarPos(​’​h​’​,​’​result​’​)

70

 s = cv2.getTrackbarPos(​’​s​’​,​’​result​’​)

 v = cv2.getTrackbarPos(​’​v​’​,​’​result​’​)

 # Normal masking algorithm

 lower_blue = np.array([h,s,v])

 upper_blue = np.array([180,255,255])

 mask = cv2.inRange(hsv,lower_blue, upper_blue)

 result = cv2.bitwise_and(frame,frame,mask = mask)

 cv2.imshow(​’​result​’​,result)

 k = cv2.waitKey(5) & 0xFF

 if k == 27:

 break

cap.release()

cv2.destroyAllWindows()

movement.py

import sys

import os

import time

from gi.repository import Gtk, GObject

from ​NAO​qi import ALProxy

import config as c

71

import photo as p

import svm

tts = ALProxy("ALTextToSpeech", c.IP, c.PORT)

motion = ALProxy("ALMotion", c.IP, c.PORT)

posture = ALProxy("ALRobotPosture", c.IP, c.PORT)

photo = ALProxy("ALPhotoCapture", c.IP, c.PORT)

#navigation = ALProxy("ALNavigation", c.IP, c.PORT)

headposition = 0

protection = 0

class ​NAO​Controller:

 """Represents ​NAO​ Controller GUI

 params: glade_file_path - path:string

 """

 def __init__(self, glade_file_path=c.GLADE_FILE_PATH):

 self.glade_file_path = glade_file_path

 # Gtk Builder Init

 self.builder = Gtk.Builder()

 self.builder.add_from_file(self.glade_file_path)

 self.builder.connect_signals(self)

 # Add UI Components

 self.window = self.builder.get_object("​NAO​ControllerWindow")

 self.speechbox = self.builder.get_object("speechbox")

 # Show UI

72

 self.window.show_all()

 ### ​NAO​ Posture Functions

 def ​NAO​StandInit(self, widget):

 posture.goToPosture("StandInit", 1.0)

 print "Stand Init"

 def ​NAO​Relax(self, widget):

 posture.goToPosture("SitRelax", 1.0)

 print "Sit Relax"

 def ​NAO​Zero(self, widget):

 posture.goToPosture("StandZero", 1.0)

 print "Stand Zero"

 def ​NAO​Belly(self, widget):

 posture.goToPosture("LyingBelly", 1.0)

 print "Lying Belly"

 def ​NAO​Back(self, widget):

 posture.goToPosture("LyingBack", 1.0)

 print "Lying Back"

 def ​NAO​Stand(self, widget):

 posture.goToPosture("Stand", 1.0)

 print "Stand"

 def ​NAO​Crouch(self, widget):

 posture.goToPosture("Crouch", 1.0)

 print "Crouch"

73

 def ​NAO​Sit(self, widget):

 posture.goToPosture("Sit", 1.0)

 print "Sit"

 ### ​NAO​ Motion Functions

 def ​NAO​Enough(self, widget):

 motion.moveInit()

 motion.post.wakeUp()

 tts.say("Enough")

 print "WakeUp"

 def ​NAO​Charge(self, widget):

 motion.moveInit()

 motion.post.rest()

 tts.say("Charge me")

 print "Rest"

 ### Text to Speech

 def ​NAO​Say(self, widget):

 tts.say(self.speechbox.get_text())

 print "Say: %s" % self.speechbox.get_text()

 ### Destroy GUI

 def destroy(self, widget):

 print "destroyed"

 Gtk.main_quit()

 ### SVM Preprocessing Functions

 def openCamera(self, widget):

 p.openCamera()

74

 def perspective(self, widget):

 p.perspective()

 def preprocess(self, widget):

 p.process()

 def ball(self, widget):

 p.ball()

 def takePhoto(self, widget):

 p.takePhoto()

 def cropImage(self, widget):

 p.cropImage()

 def nameChanger(self, widget):

 p.nameChanger()

 def drawGrid(self, widget):

 p.drawGrid()

 def giveMePath(self, widget):

 svm.path()

 def goToFinish(self, widget):

 svm.moveToPoint()

 ### Key Pressed Event to control ​NAO​ remotely

 def keyPressed(self, widget, event):

 global headposition

 global protection

75

 key_code = event.get_keycode()[1]

 if key_code == 33: # P Protection On / Off

 if protection == 0:

 motion.setExternalCollisionProtectionEnabled

 ("All", False)

 protection = 1

 print "Protection Off"

 else:

 motion.setExternalCollisionProtectionEnabled

 ("All", True)

 protection = 0

 print "Protection On"

 if key_code == 111: # UP ​NAO​ Forward

 print "Moving Forward..."

 motion.moveInit()

 motion.walkTo(0.1, 0, 0)

 if key_code == 116: # Down ​NAO​ Backward

 print "Moving Backward..."

 motion.moveInit()

 motion.moveTo(-0.1, 0, 0)

 if key_code == 113: # Left ​NAO​ Left

 print "Moving Left..."

 motion.moveInit()

 motion.moveTo(0, 0.1, 0)

 if key_code == 114: # Right ​NAO​ Right

76

 print "Moving Right..."

 motion.moveInit()

 motion.moveTo(0, -0.1, 0)

 if key_code == 38: # a Turn Left

 print "Turning Left..."

 motion.moveInit()

 motion.moveTo(0, 0, 1)

 if key_code == 40: # d Turn Right

 print "Turning Right..."

 motion.moveInit()

 motion.moveTo(0, 0, -1)

 if key_code == 25: # w Head Down

 headposition = headposition + 0.1

 motion.angleInterpolation("HeadPitch",

 headposition, 0.5, True)

 if headposition > 0.5:

 headposition = 0.5

 print "Head Position: %s" % headposition

 if key_code == 39: # s Head UP

 headposition = headposition - 0.1

 motion.angleInterpolation("HeadPitch",

 headposition, 0.5, True)

 if headposition < -0.5:

 headposition = -0.5

 print "Head Position: %s" % headposition

 #print "keyPressed: %s" % key_code

77

 def keyReleased(self, widget, event):

 key_code = event.get_keycode()[1]

 #print "keyReleased: %s" % key_code

NAO​.py

from gi.repository import Gtk

import movement

if __name__ == "__main__":

 controller = movement.​NAO​Controller()

 Gtk.main()

perspective.py

import cv2

import numpy as np

Load image

im = cv2.imread(​’​image.png​’​)

img = cv2.imread(​’​image.png​’​)

Kernel configuration

kernel = np.ones((35,35),np.uint8)

Convert BGR to HSV

hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV)

define range of white color in HSV

lower_blue = np.array([0,0,168])

78

upper_blue = np.array([179,255,255])

Threshold the HSV image to get only green colors

mask = cv2.inRange(hsv, lower_blue, upper_blue)

Closing

closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

Blur

blur = cv2.GaussianBlur(closing,(5,5),10)

Getting contours

ret, thresh = cv2.threshold(blur, 127, 255,0)

contours,hierarchy = cv2.findContours(thresh,2,1)

cnt = contours[0]

Get coordinates of a rectangle around the contour

leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])

topmost = tuple(cnt[cnt[:,:,1].argmin()][0])

bottommost = tuple(cnt[cnt[:,:,1].argmax()][0])

rightmost = tuple(cnt[cnt[:,:,0].argmax()][0])

print leftmost

print topmost

print bottommost

print rightmost

79

Drawing lines and circles

hull = cv2.convexHull(cnt,returnPoints = False)

defects = cv2.convexityDefects(cnt,hull)

for i in range(defects.shape[0]):

 s,e,f,d = defects[i,0]

 start = tuple(cnt[s][0])

 end = tuple(cnt[e][0])

 far = tuple(cnt[f][0])

 cv2.line(im,start,end,[0,255,0],2)

 cv2.circle(im,far,5,[0,0,255],-1)

Corner coordinates

#coordinates = [(topmost[0],topmost[1]), (bottommost[0], topmost[1])

,(rightmost[0], rightmost[1]), (leftmost[0],leftmost[1])]

coordinates = [(155,348),(471,352),(569,402),(58,394)]

Put coordinates in array

pts = np.array(coordinates, dtype = "float32")

print pts

(tl, tr, br, bl) = pts

compute the width of the new image, which will be the

maximum distance between bottom-right and bottom-left

x-coordiates or the top-right and top-left x-coordinates

widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))

80

widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))

maxWidth = max(int(widthA), int(widthB))

compute the height of the new image, which will be the

maximum distance between the top-right and bottom-right

y-coordinates or the top-left and bottom-left y-coordinates

heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))

heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))

maxHeight = max(int(heightA), int(heightB))

now that we have the dimensions of the new image, construct

the set of destination points to obtain a "birds eye view",

(i.e. top-down view) of the image, again specifying points

in the top-left, top-right, bottom-right, and bottom-left

order

dst = np.array([

 [0, 0],

 [maxWidth - 1, 0],

 [maxWidth - 1, maxHeight - 1],

 [0, maxHeight - 1]], dtype = "float32")

compute the perspective transform matrix and then apply it

M = cv2.getPerspectiveTransform(pts, dst)

warped = cv2.warpPerspective(img, M, (maxWidth, maxHeight))

resize = cv2.resize(warped, (640,480))

show the original and warped images

81

cv2.imshow("HSV", hsv)

cv2.imshow("Original", img)

cv2.imshow("Trapezoid found", im)

cv2.imshow("Warped", resize)

#cv2.imwrite("areas/edge.jpg",resize)

cv2.waitKey(0)

cv2.destroyAllWindows()

photo.py

Image Library

import Image

import cv

import cv2

import os

import glob

from ​NAO​qi import ALProxy

import numpy as np

import config as c

from sys import executable

from subprocess import Popen

image = "areas/area.jpg"

directory = c.DATASET_DIRECTORY

negative = c.NEGATIVE

positive = c.POSITIVE

def openCamera():

 # Live Camera

 Popen([executable, ​’​video.py​’​])

def perspective():

82

 # Perspective Correction

 Popen([executable, ​’​perspective.py​’​])

def process():

 # Preprocessing

 Popen([executable, ​’​preprocess.py​’​])

def ball():

 # Preprocessing

 Popen([executable, ​’​ball.py​’​])

def takePhoto():

 # Setting up proxy

 cameraProxy = ALProxy("ALVideoDevice", c.IP, c.PORT)

 # Camera ID

 cameraProxy.kCameraSelectID = c.CAMERAID

 # Camera Parameters

 cameraProxy.setParam(cameraProxy.kCameraSelectID,c.CAMERAID)

 # Subscribe Camera Proxy

 videoClient = cameraProxy.subscribe("python_client",

 c.RESOLUTION, c.COLORSPACE, 5)

 # image[6] contains ASCII

 ​NAO​Image = cameraProxy.getImageRemote(videoClient)

 # Unsubscribe Camera Proxy

 cameraProxy.unsubscribe(videoClient)

83

 # Image Size and Pixel Array

 imageWidth = ​NAO​Image[0]

 imageHeight = ​NAO​Image[1]

 imageArray = ​NAO​Image[6]

 # Create an Image

 im = Image.frombytes("RGB", (imageWidth, imageHeight), imageArray)

 img = np.array(im)

 gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

 #ret,thresh = cv2.threshold(graY144 ,0,255,

 cv2.THRESH_BINARY+cv2.THRESH_OTSU)

 # Save image.

 cv2.imwrite(​’​image.png​’​,img)

 # Show image

 #cv2.imshow(​’​Image​’​,thresh)

 print "Photo Taken..."

def cropImage():

 img = cv2.imread("tmp/contour.jpg")

 i = 0

 if os.path.isdir(directory) == False:

 os.mkdir(directory) # Create a folder

 os.chdir(directory) # Change directory

 else:

 os.chdir(directory) # Change directory

 os.mkdir("negative")

 os.mkdir("positive")

84

 for v in range(0, 640, 20):

 for c in range (0, 480, 20):

 crop_img = img[c:20+c, v:20+v] # Crop from x, y, w, h

 #cv2.imshow("cropped", crop_img)

 cv2.imwrite(str(i) + ​’​.png​’​, crop_img)

 i += 1

 print "Image Cropped and dataset created..."

def nameChanger():

 global positive

 global negative

 os.chdir(negative)

 for i, f in enumerate(glob.glob(​’​*.png​’​)):

 print "%s -> %s.png" % (f, i)

 os.rename(f, "%s.png" % i)

 os.chdir(positive)

 for i, f in enumerate(glob.glob(​’​*.png​’​)):

 print "%s -> %s.png" % (f, i)

 os.rename(f, "%s.png" % i)

def drawGrid():

 img = cv2.imread(image)

 x1 = 0

 x2 = 700

 for k in range(0, 700, 20):

 y1 = k

85

 y2 = k

 cv2.line(img,(x1,y1),(x2,y2),(255,0,0),1)

 y1 = 0

 y2 =700

 for k in range(0, 700, 20):

 x1 = k

 x2 = k

 cv2.line(img,(x1,y1),(x2,y2),(255,0,0),1)

 cv2.imwrite(​’​image.png​’​, img)

if __name__ == ​’​__main__​’​:

 showImage()

preprocess.py

import cv2

import numpy as np

from matplotlib import pyplot as plt

EDGE DECTECTION

image = cv2.imread(​’​areas/edge.jpg​’​,0)

edges = cv2.Canny(image,50,70)

blur = cv2.GaussianBlur(edges,(5,5),100)

cv2.imwrite(​’​tmp/edge.jpg​’​,blur)

86

#CORNER

filename = ​’​tmp/edge.jpg​’

img = cv2.imread(filename)

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

gray = np.float32(gray)

dst = cv2.cornerHarris(gray,2,3,0.04)

#dst = cv2.dilate(dst,None)

cornerimg = cv2.convertScaleAbs(dst)

cornershow = cornerimg.copy()

iterate over pixels to get corner positions

w, h = gray.shape

for y in range(0, h):

 for x in range (0, w):

 #harris = cv2.cv.Get2D(cv2.cv.fromarray(cornerimg), y, x)

 #if harris[0] > 10e-06:

 if cornerimg[x,y] > 164:

 # print("corner at ", x, y)

 cv2.circle(cornershow, # dest

 (y,x), # pos

 4, # radius

 (255,0,0) # color

)

cv2.imwrite(​’​tmp/corner.jpg​’​,cornershow)

87

CONTOUR

im = cv2.imread(​’​tmp/corner.jpg​’​)

imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)

ret,thresh = cv2.threshold(imgray,127,255,0)

contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,

cv2.CHAIN_APPROX_SIMPLE)

len(contours)

cnt = contours[0]

print(len(cnt))

for h,cnt in enumerate(contours):

 # Draw rectangles around and inside obstacles

 rect = cv2.minAreaRect(cnt)

 box = cv2.cv.BoxPoints(rect)

 box = np.int0(box)

 #print box

 if box[0][0] > 100:

 cv2.drawContours(im,[box]*2,0,(255,255,255),-50)

 cv2.drawContours(im,[box]*2,0,(255,255,255),50)

#SHOW IMAGES

plt.subplot(221),plt.imshow(image,cmap = ​’​gray​’​)

plt.title(​’​Original Image​’​), plt.xticks([]), plt.yticks([])

plt.subplot(222),plt.imshow(edges,cmap = ​’​gray​’​)

plt.title(​’​Edge Image​’​), plt.xticks([]), plt.yticks([])

plt.subplot(223),plt.imshow(cornershow,cmap = ​’​gray​’​)

88

plt.title(​’​Corner Image​’​), plt.xticks([]), plt.yticks([])

plt.subplot(224),plt.imshow(im,cmap = ​’​gray​’​)

plt.title(​’​Contour Image​’​), plt.xticks([]), plt.yticks([])

cv2.imwrite(​’​tmp/contour.jpg​’​,im)

resized_image = cv2.resize(im, (640, 480))

cv2.imwrite(​’​areas/area2.jpg​’​,resized_image)

plt.show()

svm.py

import os

import sys

import fnmatch

import getopt

import cv2

import numpy as np

import numpy

import datetime

from sklearn import svm

from heapq import *

from gasp import *

from matplotlib import pyplot as plt

from math import degrees, atan2

from ​NAO​qi import ALProxy

number_of_bins = 64

positive = ​’​dataset/positive​’

negative = ​’​dataset/negative​’

89

ds = ​’​dataset​’

data = []

angle = 0

Get all ​’​png​’​ images from ​’​negative​’​ and ​’​positive​’​ folder

def getImages():

 imageFiles = []

 for i in range(2):

 if i == 0:

 path = positive

 elif i == 1:

 path = negative

 for j in sorted(os.listdir(path)):

 if fnmatch.fnmatch(j, ​’​*.png​’​):

 imageFiles.append(j)

 i += 1

 return imageFiles

Returns histogram result

def getHistogram(imageFiles):

 image = cv2.imread(imageFiles)

 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

 histogram = cv2.calcHist([gray],[0],None,[number_of_bins],

 [0,number_of_bins])

 transp = histogram.transpose()

 return transp.astype(np.float64)

Gets all pictures​’​ histograms

90

def getHistograms():

 images = getImages()

 histogramMap = {}

 for i in images:

 im = positive +​’​/​’​+ i

 histogramMap[im] = getHistogram(im)

 for i in images:

 im = negative +​’​/​’​+ i

 histogramMap[im] = getHistogram(im)

 return histogramMap.values()

Sets the values positive 1 negative 0 for svm values

def getValues():

 values = []

 for i in range(2):

 if i == 0:

 path = positive

 j = 0

 elif i == 1:

 path = negative

 j = 1

 for i in sorted(os.listdir(path)):

 values.append((j,))

 return values

Splits the matrix in desired format

def split(mtx,num):

 matrix = np.array(mtx)

 matrix_splitted = np.array(np.split(matrix, num))

91

 return np.flipud(matrix_splitted)

SVM learn and classify

def train():

 now = datetime.datetime.now()

 array = []

 trainData = map(lambda x: x[0], getHistograms())

 value = getValues()

 classify = svm.SVC(kernel=​’​linear​’​)

 classify.fit(trainData, value)

 for j in range(768):

 predict = getHistogram(ds +​’​/​’​+ str(j)+​’​.png​’​)

 result = classify.predict(predict)

 if result == [1]:

 i = 0

 else:

 i = 1

 array.append(i)

 array = split(array,32).T

 #array = np.flipud(array)

 array = np.fliplr(array)

 print " "

 print "Prediction Time : " + str(datetime.datetime.now() - now)

 print " "

 print "##"

92

 print " Area "

 print "##"

 print " "

 print array

 #array[0,0] = 3

 return array

A* Algorithm

def heuristic(a, b):

 return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2

def path():

 array = train()

 start = (24,1)

 goal = (2,25)

 neighbors = [(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1),(-1,1),(-1,-1)]

 closeSet = set()

 cameFrom = {}

 gscore = {start:0}

 fscore = {start:heuristic(start, goal)}

 oheap = []

 heappush(oheap, (fscore[start], start))

 while oheap:

93

 current = heappop(oheap)[1]

 if current == goal:

 global data

 while current in cameFrom:

 data.append(current)

 current = cameFrom[current]

 ## Draws path

 img = cv2.imread(​’​areas/edge.jpg​’​,0)

 for i in range(0,len(data)) :

 x = int(data[i:][0][0]) #takes first element of first list

 y = int(data[i:][0][1]) #takes second element of first list

 j = i + 1

 if j>len(data)-1:

 j = len(data)-1 # should be -1 coz no more list

 z = int(data[j:][0][0]) # takes first element of second list

 t = int(data[j:][0][1]) # takes second element of second list

 array[x,y] = 4 # puts 4 in array

 cv2.circle(img,(y*20,x*20), 2, (255,0,0), -1) # circle path

 cv2.line(img,(y*20,x*20),(t*20,z*20),(5,5,2),5) # line path

 #print x

 #print y

 print " "

 print "##"

 print " Area with PATH "

 print "##"

94

 print " "

 print array

 print data[::-1]

 cv2.imwrite(​’​areas/area-path.png​’​,img)

 # SHOW PICTURES

 org = cv2.imread(​’​areas/edge.jpg​’​,0)

 path = cv2.imread(​’​areas/area-path.png​’​,0)

 plt.subplot(221),plt.imshow(org,cmap = ​’​gray​’​)

 plt.title(​’​Original Image​’​), plt.xticks([]), plt.yticks([])

 plt.subplot(222),plt.imshow(path,cmap = ​’​gray​’​)

 plt.title(​’​Path Image​’​), plt.xticks([]), plt.yticks([])

 plt.show()

 return data

 closeSet.add(current)

 for i, j in neighbors:

 neighbor = current[0] + i, current[1] + j

 tentative_g_score = gscore[current] + heuristic(current, neighbor)

 if 0 <= neighbor[0] < array.shape[0]:

 if 0 <= neighbor[1] < array.shape[1]:

 if array[neighbor[0]][neighbor[1]] == 1:

 continue

 else:

 # array bound y walls

 continue

 else:

 # array bound x walls

 continue

95

 if neighbor in closeSet and tentative_g_score >=

 gscore.get(neighbor, 0):

 continue

 if tentative_g_score < gscore.get(neighbor, 0) or neighbor not in

 [i[1]for i in oheap]:

 cameFrom[neighbor] = current

 gscore[neighbor] = tentative_g_score

 fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal)

 heappush(oheap, (fscore[neighbor], neighbor))

 path = heappush(oheap, (fscore[neighbor], neighbor))

 return False

End of A* algorithm

Bearing Algorithm

def gb(x, y, center_x, center_y):

 global angle

 angle = degrees(atan2(y - center_y, x - center_x))

 bearing1 = (angle + 360) % 360

 bearing2 = (90 - angle) % 360

 #print "gb: x=%2d y=%2d angle=%6.1f bearing1=%5.1f bearing2=%5.1f" %

 (x, y, angle, bearing1, bearing2)

 #print angle

 return angle

def moveToPoint():

 checkpoint = []

96

 point_list = []

 way_point = []

 angle_point = []

 coordinates = []

 cm = 0.07

 for i in range(len(data)-1):

 gb(data[i][0],data[i][1],data[i+1][0],data[i+1][1])

 first_point = (data[i][0],data[i][1])

 second_point = (data[i+1][0],data[i+1][1])

 lst = (angle, first_point, second_point)

 point_list.append(lst)

 way_point.append(point_list[0][1])

 for i in range(len(point_list)-1):

 if point_list[i][0] != point_list[i+1][0]:

 way_point.append(point_list[i+1][1])

 way_point.append(point_list[len(point_list)-1][1])

 way_point = way_point[::-1]

 print point_list

 print way_point

 for i in range(len(way_point)-1):

 gb(way_point[i][0],way_point[i][1],way_point[i+1][0],

 way_point[i+1][1])

 first_point = (way_point[i][0],way_point[i][1])

 second_point = (way_point[i+1][0],way_point[i+1][1])

 lst = (angle,second_point)

 if i == 0:

97

 angle_point.append(data[-1])

 angle_point.append(lst)

 if i == 0:

 coordinates.append(tuple(numpy.subtract(angle_point[0],

 angle_point[1][1])))

 if i > 0:

 coordinates.append(tuple(numpy.subtract(angle_point[i][1],

 angle_point[i+1][1])))

 print coordinates

 motion = ALProxy("ALMotion", "192.168.10.13", 9559)

 tts = ALProxy("ALTextToSpeech", "192.168.10.13", 9559)

 postureProxy = ALProxy("ALRobotPosture", "192.168.10.13", 9559)

 motion.moveInit()

 motion.setStiffnesses("Body", 1.0)

 motion.setMoveArmsEnabled(True, True)

 motion.setMotionConfig([["ENABLE_FOOT_CONTACT_PROTECTION", False]])

 motion.setExternalCollisionProtectionEnabled("All", False)

 print "Protection Off"

 tts.say("Hummm, it seams easy!")

 for i in range(len(coordinates)):

 print "Walking"

 print coordinates[i][0]*cm, coordinates[i][1]*cm

 if coordinates[i][0] > 0 and coordinates[i][1] < 0:

 motion.moveTo(0, 0, -0.785398,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1

 motion.waitUntilMoveIsFinished()

 motion.moveTo(coordinates[i][0] * cm, 0, 0,

 [["MaxStepFrequency", 0.5], # low frequency

98

 ["TorsoWy", 0.1]]) # torso bend 0.1 rad in front)

 motion.waitUntilMoveIsFinished()

 motion.moveTo(0, 0, 0.785398,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1

 motion.waitUntilMoveIsFinished()

 elif coordinates[i][0] > 0 and coordinates[i][1] == 0:

 motion.moveTo(coordinates[i][0] * cm, 0, 0,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1 rad in front))

 motion.waitUntilMoveIsFinished()

 elif coordinates[i][0] > 0 and coordinates[i][1] > 0:

 motion.moveTo(0, 0, 0.785398,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1

 motion.waitUntilMoveIsFinished()

 motion.moveTo(coordinates[i][0] * cm, 0, 0,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1 rad in front))

 motion.waitUntilMoveIsFinished()

 motion.moveTo(0, 0, -0.785398,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1

 motion.waitUntilMoveIsFinished()

 elif coordinates[i][0] == 0 and coordinates[i][1] < 0:

 motion.moveTo(0, 0, -1.5708,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1

99

 motion.waitUntilMoveIsFinished()

 motion.moveTo(abs(coordinates[i][1]) * cm, 0, 0,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1 rad in front))

 motion.waitUntilMoveIsFinished()

 motion.moveTo(0, 0, 1.5708,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1

 motion.waitUntilMoveIsFinished()

 elif coordinates[i][0] < 0 and coordinates[i][1] == 0:

 motion.moveTo(0, 0, 1.5708,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1

 motion.waitUntilMoveIsFinished()

 motion.moveTo(abs(coordinates[i][0]) * cm, 0, 0,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1 rad in front))

 motion.waitUntilMoveIsFinished()

 motion.moveTo(0, 0, -1.5708,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1

 motion.waitUntilMoveIsFinished()

 motion.moveTo(0.6,0,0,

 [["MaxStepFrequency", 0.5], # low frequency

 ["TorsoWy", 0.1]]) # torso bend 0.1)

 postureProxy.goToPosture("Sit", 1.0)

 tts.say("Finish")

 print "Finish"

100

video.py

import sys

from PyQt4.QtGui import QWidget, QImage, QApplication, QPainter

from ​NAO​qi import ALProxy

To get the constants relative to the video.

import vision_definitions

class ImageWidget(QWidget):

 """

 Tiny widget to display camera images from ​NAO​qi.

 """

 def __init__(self, IP, PORT, CameraID, parent=None):

 """

 Initialization.

 """

 QWidget.__init__(self, parent)

 self._image = QImage()

 self.setWindowTitle(​’NAO’​)

 self._imgWidth = 640

 self._imgHeight = 480

 self._cameraID = CameraID

 self.resize(self._imgWidth, self._imgHeight)

 # Proxy to ALVideoDevice.

 self._videoProxy = None

101

 # Our video module name.

 self._imgClient = ""

 # This will contain this alImage we get from ​NAO​.

 self._alImage = None

 self._registerImageClient(IP, PORT)

 # Trigget ​’​timerEvent​’​ every 100 ms.

 self.startTimer(100)

 def _registerImageClient(self, IP, PORT):

 """

 Register our video module to the robot.

 """

 self._videoProxy = ALProxy("ALVideoDevice", IP, PORT)

 resolution = vision_definitions.kQVGA # 320 * 240

 colorSpace = vision_definitions.kRGBColorSpace

 self._imgClient = self._videoProxy.subscribe("_client",

 resolution, colorSpace, 5)

 # Select camera.

 self._videoProxy.setParam(vision_definitions.kCameraSelectID,

 self._cameraID)

 def _unregisterImageClient(self):

 """

 Unregister our ​NAO​qi video module.

102

 """

 if self._imgClient != "":

 self._videoProxy.unsubscribe(self._imgClient)

 def paintEvent(self, event):

 """

 Draw the QImage on screen.

 """

 painter = QPainter(self)

 painter.drawImage(painter.viewport(), self._image)

 def _updateImage(self):

 """

 Retrieve a new image from ​NAO​.

 """

 self._alImage = self._videoProxy.getImageRemote(self._imgClient)

 self._image = QImage(self._alImage[6], # Pixel array.

 self._alImage[0], # Width.

 self._alImage[1], # Height.

 QImage.Format_RGB888)

 def timerEvent(self, event):

 """

 Called periodically. Retrieve a ​NAO​ image, and update the widget.

 """

 self._updateImage()

 self.update()

103

 def __del__(self):

 """

 When the widget is deleted, we unregister our ​NAO​qi video module.

 """

 self._unregisterImageClient()

if __name__ == ​’​__main__​’​:

 IP = "192.168.10.13" # Replace here with your ​NAO​Qi​’​s IP address.

 PORT = 9559

 CameraID = 0

 # Read IP address from first argument if any.

 if len(sys.argv) > 1:

 IP = sys.argv[1]

 # Read CameraID from second argument if any.

 if len(sys.argv) > 2:

 CameraID = int(sys.argv[2])

 app = QApplication(sys.argv)

 myWidget = ImageWidget(IP, PORT, CameraID)

 myWidget.show()

 sys.exit(app.exec_())

104

