
OBSTACLE DETECTION AND PATHFINDING FOR 
MOBILE ROBOTS 

 
 

 
 

A THESIS SUBMITTED TO THE GRADUTE 
SCHOOL OF APPLIED SCIENCES 

OF 
NEAR EAST UNIVERSITY 

 
 
 

 

By 
MURAT ARSLAN 

 
 
 

 
In Partial Fulfillment of the Reguirements for  

The Degree of Master of Science 
in 

Computer Engineering 
 

 
 

NICOSIA, 2016 

 



 
 

 

 

 

 

 

 

ONAY SAYFASI 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
I hereby declare that all information in this document has been obtained and presented in               

accordance with academic rules and ethical conduct. I also declare that, as required by              

these rules and conduct, I have fully cited and referenced all material and results that are                

not original to his work. 

 

Name, Last name: 

Signature: 

Date: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ACKNOWLEDGEMENTS 

 

 

Studying at the Department of Computer Engineering, working with a highly devoted            

teaching community, remain one of the most memorable experiences of my life. This             

acknowledgement is an attempt to earnestly thank my teachers who have directly helped             

me during preparation of my thesis. 

 

I would like to take special privilege to thank my supervisor Prof.Dr. Rahib Abiyev who               

allocated me a thesis in the area of my interest. It was because of his invaluable                

suggestions, motivation, cooperation and timely help in overcoming problems that the           

work is successful. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 

 

 

 



ABSTRACT 

 

 

In this thesis, obstacle detection via image of objects and then pathfinding problems of              

NAO humanoid robot is considered. NAO's camera is used to capture the images of world               

map. The captured image is processed and classified into two classes; area with obstacles              

and area without obstacles. For classification of images, Support Vector Machine (SVM) is             

used. After classification the map of world is obtained as area with obstacles and area               

without obstacles. This map is input for path finding algorithm. In the thesis A* path               

finding algorithm is used to find path from the start point to the goal.  

 

The aim of this work is to implement a support vector machine based solution to robot                

guidance problem, visual path planning and obstacle avoidance. The used algorithms allow            

to detect obstacles and find an optimal path. The thesis describe basic steps of navigation               

of mobile robots. 

 

Keywords:​    ​A*; image processing; motion planning; NAO; path finding;  support vector 

machine  
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ÖZET 

 

 

Bu tezde, objelerin resimlerinden, engel tanima ve yon bulma yöntemleri, insansi NAO            

robot kullanilarak uygulanmıştır. Objelerin fotoğraflarını çekmek için NAO robotun         

kamerası kullanılmıştır. Çekilen bu fotoğraf resim işleme teknikleri kullanılarak, engel          

olan ve engel olmayan olarak iki farklı şekilde sınıflandırılmıştır. Bu sınıflandırılma için            

Support Vector Machine (SVM) kullanılmıştır. Bu sınıflandırılmadan sonraki bilgiler yön          

bulma algoritmasının girdisidir. Bu tezde başlangıç ile bitiş noktasındaki yolu bulabilmek           

için A* yön bulma algortiması kullanılmıştır. 

 

Bu çalışmanın amacı, görsel yol planlama ve engelden kaçmak için robota SVM tabanlı bir              

çözüm uygulamaktır. Kullanılan algoritmalar engelleri algılamak ve en uygun yolu bulmak           

için kullanılmıştır. Bu tez mobil robotların navigasyonunun temel adımlarını         

açıklamaktadır. 

 

Anahtar Kelimeler​ :​   A*; hareket planlama; NAO; resim işleme; support vector machine; 

yön bulma  
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CHAPTER 1 

INTRODUCTION 
 
 
 

Nowadays robotics are actively use in our daily life. They started to apply in domestic,               

industry, game playing, army etc. Robots started to help human in many fields. They are               

helping to improve product quality and also capacity in industry. 

 

One of important problem in robotics is the designing intelligent robots performing all the              

human actions in certain fields. For designing such intelligent robots using new soft             

computing techniques and science. The designing of intelligent robots, needs to design set             

of modules such as object detection, image processing, path planning, obstacle avoidance,            

motion control etc. problems. 

 

Obstacle detection and obstacle avoidance are important problems in robot navigation. One            

way of detecting obstacles is the use of image recognition. Using image recognition the              

world map can be classified in area with obstacles and without obstacles. This information              

in future can be used for path-finding. 

 

Robots are moving in unpredictable, cluttered, unknown complex and dynamic          

environments. In this environment, the avoidance of mobile robots from obstacles becomes            

an important problem. Many obstacle avoidance algorithms are proposed. "Bug"          

algorithms follow the edges of obstacles without considering the goal. They are time             

consuming. Artificial potential field (APF) is most commonly used method that utilizes            

attractive and repulsive fields for goals and obstacles, respectively. But the APF has             

several disadvantages: (a) when there are many obstacles in the environment the field may              

contain a local minima; (b) the robot unable to pass through small openings such as               

through doors; (c) the robot may exhibit oscillations inits motions. Vector Field Histogram             

(VFH) uses a two-dimensional Cartesian histogram grid as a world model and the concept              

of potential fields. The VFH algorithm selects a shorter path than bug algorithms but it               

takes more time to manipulate. Other goal oriented algorithms are dynamic window,            

“​agoraphilic​” and Rapidly-exploring Random Trees (RRT) algorithm is a faster algorithm           
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and can be applied for pathfinding in dynamic environments. But frequently the path             

determined by RRTs may be very long. The RRT-smooth algorithm was proposed to             

shorten the RRT length. In this thesis A* search algorithm was used. A* is an informed                

search algorithm, or a best-first search, meaning that it solves problems by searching             

among all possible paths to the solution for the one that incurs the smallest cost (least                

distance traveled, shortest time, etc.), and among these paths it first considers the ones that               

appear to lead the most quickly to the solution (Abiyev and others, 2015). 

 

The aim of the thesis is the design of efficient algorithms for detection and avoidance of                

obstacles and also pathfinding, using ​NAO robot. The design of algorithms are based on              

image processing and decision making technique. 

 

In robot guidance problem, some extra sensors, like ultrasound sensors, infrared distance            

sensors used to detect obstacles. These sensors do not give information about obstacle​’​s             

shape and color.  In this project, only camera was used to detect obstacles. 

 

The design of a mobile robot that can navigate and localize obstacle in an unknown               

environment is based on visual ques such as a camera, path-finding is based on a               

navigation algorithm that final path for the robot to the goal. 

 

This thesis is split into 5 chapters, conclusions, references and appendix  

● Chapter​ ​1​ is​  ​i​ntroduction to pathfinding and image processing. 

● Chapter ​2 ​r​epresents literature review on object localization and path-finding          

algorithms.  

● Chapter 3 ​g​oes over the problem of detecting real world objects in images or series               

of images such as videos. 

●  Chapter 4  ​g​oes over the current techniques in the field of path finding.  

● Chapter 5 ​c​overs the design of our mobile robot, given detailed information about             

hardware and software also about the design of the system.  

Conclusions includes important results obtained from the thesis. In Appendix, source code            

is given with detailed comments. 
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CHAPTER 2 

LITERATURE REVIEW 
 

 
2.1  ​Obstacle Detection 
 
Robot navigation includes obstacle detection, pathfinding and obstacle avoidance         

algorithms. Obstacle detection is an important step which includes set of algorithms. 

 

Object detection is a computer technology linked to computer vision and image processing             

that deals with detecting objects such as humans, cars, building, obstacles etc. in digital              

images and videos.  

 

In this thesis classification technique for obstacle detection is applied. Various machine            

learning algorithms are used for  object detection some of which are outlined below. 

 

2.1.1   Naive bayes classifier 
 
Naive Bayes has been studied extensively since the 1950​’​s. It was introduced under a              

different name into the text retrieval community in the early 1960​’​s (Russel and others,              

2003). It is a popular (baseline) method for text categorization, the problem of judging              

documents as belonging to one category or the other (such as spam or legitimate, sports or                

politics, etc.) with word frequencies as the features. With appropriate pre-processing, it is             

competitive in this domain with more advanced methods including support vector           

machines. (Rennie and others, 2003) It also finds application in automatic medical            

diagnosis (Rish, 2001). 

 

Naive Bayes classifiers are a family of simple probabilistic classifiers based on applying             

Bayes​’​ theorem with strong (naive) independence assumptions between the features. 

 

Naive Bayes classifiers are highly scalable, requiring a number of parameters linear in the              

number of variables (features/predictors) in learning problem. Maximum-likelihood        

training can be done by evaluating a closed-form expression, which takes linear time,             
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rather than by expensive iterative approximation as used for many other types of             

classifiers. 

 

In the statistics and computer science literature, Naive Bayes models are kenned under a              

variety of denominations, including simple Bayes and independence Bayes (Hand and Yu,            

2001). All these denominations reference the utilization of Bayes​’ theorem in the            

classifier​’​s decision rule, but Naive Bayes is not (obligatorily) a Bayesian method (Rennie             

and others, 2003; Hand and Yu, 2001). 

 

2.1.2  Artificial neural network 
 
Warren McCulloch and Walter Pitts (1943) designed a computational model for neural            

networks predicated on mathematics and algorithms called threshold logic. This model           

paved the way for neural network research to split into two distinct approaches. One              

approach fixated on biological processes in the brain and the other fixated on the              

application of neural networks to artificial intelligence (McCulloch and others, 1943). 

 

Artificial neural networks (ANNs) are a family of models inspired by biological neural             

networks (the central nervous systems of animals, in particular the brain) which are used to               

estimate or approximate functions that can depend on a large number of inputs and are  

generally unknown. Artificial neural networks are typically specified using three things, 

 

● Architecture specifies what variables are involved in the network and their           

topological relationships for example the variables involved in a neural network           

might be the weights of the connections between the neurons, along with activities             

of the neurons. 

 

● Activity Rule Most neural network models have short time-scale dynamics: local           

rules define how the activities of the neurons change in response to each other.              

Typically the activity rule depends on the weights (the parameters) in the network. 
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● Learning Rule The learning rule specifies the way in which the neural network​’​s             

weights change with time. This learning is usually viewed as taking place on a              

longer time scale than the time scale of the dynamics under the activity rule.              

Usually the learning rule will depend on the activities of the neurons. It may also               

depend on the values of the target values supplied by a teacher and on the current                

value of the weights. 

 

For example, a neural network for handwriting recognition is defined by a set of input               

neurons which may be activated by the pixels of an input image. After being weighted and                

transformed by a function (determined by the network​’​s designer), the activations of these             

neurons are then passed on to other neurons. This process is repeated until finally, the               

output neuron that determines which character was read is activated. 

 

A key advance that came later was the backpropagation algorithm which efficaciously            

solved the exclusive-or problem, and more commonly the problem of fastly training            

multi-layer neural networks (Werbos, 1974). 

 

In the mid-1980s, parallel distributed processing became accepted under the name           

connectionism. The textbook by David E. Rumelhart and James McClelland (1986)           

provided a full exposition of the use of connectionism in computers to simulate neural              

processes. 

 

Neural networks, as utilized in artificial intelligence, have traditionally been viewed as            

simplified models of neural processing in the brain, even though the affiliation between             

this model and the biological architecture of the brain is debated; it​’​s not clear to what                

degree artificial neural networks mirror brain function (Russel, 2012). 

 

Support vector machines and other methods, much simpler such as linear classifiers slowly             

overtook neural networks in machine learning popularity.  
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2.1.3   Support vector machine 
 
The original SVM algorithm was created by Vladimir N. Vapnik and Alexey Ya.             

Chervonenkis in 1963. In 1992, Bernhard E. Boser, Isabelle M. Guyon and Vladimir N.              

Vapnik suggested a way to create nonlinear classifiers by applying the kernel trick to              

maximum-margin hyperplanes (Boser and others, 1992). The current standard incarnation          

(soft margin) was proposed by Corinna Cortes and Vapnik in 1993 and published in 1995. 

 

Support Vector Machine is a model under the Supervised Learning model of Neural             

Networks. The algorithm emphasises on analyze data and recognition patterns that are used             

for classification and regression analyses. SVM categorizes the training set into one of the              

two categories, SVM​’​s Algorithm builds a model to assign new coming sets into one              

category or the other, making it a non-probabilistic binary linear classifier. 

 

The dataset in the SVM model is represented by points in space. When new dataset come                

they classify by the side where there in. With the help of the ​“​Kernel Trick​” SVM can also                  

perform nonlinear classification. SVM implicitly maps the inputs into p-dimensional          

feature spaces. 

 

When data are not labeled, supervised learning is impossible, and an unsupervised learning             

is required, which attempts to find natural clustering of the data to groups, and then map                

new data to these formed groups. The clustering algorithm which provides an enhancement             

to the support vector machines is named support vector clustering and is usually used when               

only some data is labeled or data is not labeled as a preprocessing for a classification pass                 

(Ben-Hur and others, 2001). 

 

SVMs are useful in text and hypertext categorization as their application can significantly             

reduce the need for labeled training instances in both the standard inductive and             

transductive settings. 

 

Categorization of images can also be performed by using SVMs. Experimental results            

show that SVMs have higher search accuracy than traditional query refinement schemes            
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after just three to four rounds of relevance feedback. This is also true of image               

segmentation systems, including those using a changed version SVM that uses the            

privileged approach as suggested by Vapnik (Barghout, 2015). 

 

The SVM algorithm has been commonly applied in the biological and other sciences. They              

have been used to classify proteins with up to ninety percent of the compounds categorized               

correctly. Permutation tests based on SVM weights have been suggested as a mechanism             

for interpretation of SVM models (Cuingnet and others, 2011). Support vector machine            

weights have also been used to interpret SVM models in the past.(Statnikov and others,              

2006) Posthoc interpretation of support vector machine models in order to classify features             

used by the model to make predictions is a almost new area of research with special                

significance in the biological sciences. 

 

2.1.4   Decision tree learning 
 
Decision tree learning uses a decision tree as a predictive model which maps observations              

about an item to conclusions about the item​’​s target value. It is one of the predictive                

modeling approaches used in statistics, data mining and machine learning. Tree models            

where the target variable can take a finite set of values are called classification trees. In                

these tree structures, leaves represent class labels and branches represent conjunctions of            

features that lead to those class labels. Decision trees where the target variable can take               

continuous values (typically real numbers) are called regression trees. 

 

Decision trees can also be seen as generative models of induction rules from empirical              

data. An optimal decision tree is then defined as a tree that accounts for most of the data,                  

while minimizing the number of levels (or ​“​questions​”​).(Michalski and others, 2013)           

Several algorithms to generate such optimal trees have been devised, such as ID3/4/5,             

CLS, ASSISTANT, CART (Utgoff, 1989). 

 

 

 

 

7 



 

2.2 Pathfinding 
 
Path planning has been one of the important problems in robotics. Path planning is finding               

a continuous collision-free path, from a start point, to a goal point or region, and obstacles                

in the space. 

 

In a static and known environment, the robot knows the entire information of the              

environment before it starts moving. Because of this the optimal path could be computed              

offline before to the movement of the robot begins. 

 

The path planning methods for a static, known environment are relatively mature.            

Representative path planning methods for known static environment include the Visibility           

Graph method (Lozano-Perez and Wesley, 1979), Voronoi diagrams method         

(Aurenhammer, 1991), the Cell Decomposition method (Sleumer and Tschichold-Gurman,         

1999), the Potential Field method (Ge and Cui,2002) and Vector Field Histogram            

(Borenstein and Koren, 1991). 

 

Visibility Graph is using in computational geometry and robot path planning, it is a graph               

of intervisible locations, typically for a set of points and obstacles in the Euclidean plane.               

Every node in the graph means a point location, and every edge represents a visible               

connection between them. If the line segment connecting two locations does not cross with              

any obstacle, an edge is drawn between them in the graph. When the set of locations lies in                  

a line, this means as an ordered series. Visibility graphs have been extended to the realm of                 

time series analysis. 

 

Voronoi Diagram is a partitioning of a plane into regions predicated on distance to points               

in a concrete subset of the plane.That set of points is designated beforehand, and for each                

seed there is a corresponding region consisting of all points more proximate to that seed               

than to any other. 

 

Cell Decomposition is that a path between the initial configuration and the goal             

configuration can be resolute by subdividing the free space of the robot​’​s configuration into              
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more minuscule regions called cells. After this decomposition, a connectivity graph, is            

constructed according to the adjacency relationships between the cells, where the nodes            

represent the cells in the free space, and the links between the nodes show that the                

corresponding cells are adjacent to each other. From this connectivity graph, a perpetual             

path, or channel, can be tenacious by simply following adjacent free cells from the initial               

point to the goal point. 

 

Potential Field method​’​s approach is to treat the robot​’​s configuration as a point             

(customarily electron) in a potential field that amalgamates magnetization to the goal, and             

repulsion from obstacles. The resulting trajectory is output as the path. This approach has              

advantages in that the trajectory is engendered with little computation. However, they can             

become trapped in local minima of the potential field, and fail to find a path. 

 

Also, the genetic algorithm, the simulated annealing algorithm, and other optimization           

methods have been used to obtain the optimal path for mobile robots. Davidor (1991)              

developed a custom genetic algorithm with a modified crossover operator to optimize robot             

path. Nearchou (1998) used the number of vertices produced in visibility graphs to build              

fixed length chromosomes in which the presence of a vertex within the path is indicated by                

setting of a bit at the appropriate locus. The method applied a reordering operator for               

performance enhancement, and the algorithm was capable of determining a near-optimal           

solution. Fan and others (2004) developed a fixed-length decimal encoding mechanism to            

replace the variable-length encoding mechanism and other fixed-length binary encoding          

mechanisms used in the genetic approach for robot path planning. 

 

A sensor-based path planning method was proposed to help underwater robotic vehicles            

perform real-time path planning in a static and unknown environment (Ying and others,             

2000). 

 

2.2.1   Artificial potential field 
 
The application of artificial potential fields for avoidance the obstacles was first created by              

Khatib. This design uses repulsive potential fields around the obstacles to push the robot              
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away and an attractive potential field around goal to attract the robot. Therefore, the robot               

experiences a generalized force equal to the negative of the total potential gradient. This              

force runs the robot downhill towards its goal configuration until it arrives a minimum and               

it stops. The artificial potential field approach can be applied to both global and local               

methods (Janabi-Sharifi and Vinke, 1993; Park and others, 2001). 

 

The potential force has two components: attractive force and repulsive force. The goal             

position produces an attractive force which makes the mobile robot move towards it.             

Obstacles generate a repulsive force, which is inversely proportional to the distance from             

the robot to obstacles and is pointing away from obstacles. the robot moves from high to                

low potential field along the negative of the total potential field. Consequently, the robot              

moving to the goal position can be considered from a high-value state to a low-value state.  

 

The Artificial potential fields can be achieved by direct equation similar to electrostatic             

potential fields or can be drive by set of linguistic rules (Fakoor and others, 2015). 

 

The artificial potential field methods provide simple and effective motion planners for            

practical purposes. However, there is a major problem with the artificial potential field             

approach. It is the formation of local minima that can trap the robot before reaching its                

goal. The avoidance of local minima has been an active research topic in potential field               

path planning. As one of the powerful techniques for escaping local minima, simulated             

annealing has been applied to local and global path planning. 

 

The avoidance of local minimum has been an effective research topic in the APF based               

path finding. However, the previous solutions are limited to simple formations of obstacles             

or available for known environments. But Lee and Park designed a virtual obstacle concept              

is proposed as an idea to escape a local minimum. The imaginary obstacle is located               

around local minimum point to force the robot from the point. This technique is useful for                

the local pathfinding in unknown areas. The sensor based discrete modeling method is also              

planned for the simple modeling of a mobile robot with range sensors. This modeling is               

easy and good because it is designed for a real-time path planning (Lee and Park, 2003). 
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2.2.2   Vector field histogram 
 
In robotics, Vector Field Histogram (VFH) is a real time motion planning algorithm             

proposed by Borenstein and Koren (1991). The VFH utilizes a statistical representation of             

the robot​’​s environment through the so-called histogram grid, and therefore places great            

emphasis on dealing with uncertainty from sensor and modeling errors. Unlike other            

obstacle avoidance algorithms, VFH takes into account the dynamics and shape of the             

robot, and returns steering commands specific to the platform. While considered a local             

path planner, i.e., not designed for global path optimality, the VFH has been shown to               

produce near optimal paths. 

 

The original VFH algorithm was based on previous work on Virtual Force Field, a local               

path-planning algorithm. VFH was updated and renamed VFH+ (Ulrich and Borenstein,           

1991). The approach was updated again and was renamed VFH*(Ulrich and Borenstein,            

2000). VFH is currently one of the most popular local planners used in mobile robotics,               

competing with the later developed dynamic window approach. Many robotic development           

tools and simulation environments contain built-in support for the VFH. 

 

At the center of the VFH algorithm is the use of statistical representation of obstacles,               

through histogram grids (see also occupancy grid). Such representation is well suited for             

inaccurate sensor data, and accommodates fusion of multiple sensor readings. 

 

The VFH algorithm contains three major components: 

 

● Cartesian histogram grid: a two-dimensional Cartesian histogram grid is         

constructed with the robot​’​s range sensors, such as a sonar or a laser rangefinder.              

The grid is continuously updated in real time. 

● Candidate valley: consecutive sectors with a polar obstacle density below threshold,           

known as candidate valleys, is selected based on the proximity to the target             

direction. 
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● Once the center of the selected candidate direction is determined, orientation of the             

robot is steered to match. The speed of the robot is reduced when approaching              

obstacles head-on. 

 

The VFH+ algorithm improvements include: 

 

● Threshold hysteresis: a hysteresis increases the smoothness of the planned          

trajectory. 

● Robot body size: robots of different sizes are taken into account, eliminating the             

need to manually adjust parameters via low-pass filters. 

● Obstacle look-ahead: sectors that are blocked by obstacles are masked in VFH+, so             

that the steer angle is not directed into an obstacle. 

● Cost function: a cost function was added to better characterize the performance of             

the algorithm, and also gives the possibility of switching between behaviors by            

changing the cost function or its parameters. 

 

In VFH*, the algorithm verifies the steering command produced by using the A* search              

algorithm to minimize the cost and heuristic functions. While simple in practice, it has              

been shown in experimental results that this look-ahead verification can successfully deal            

with problematic situations that the original VFH and VFH+ cannot handle (the resulting             

trajectory is fast and smooth, with no significant slowdown in presence of obstacles). 

 

2.2.3   Dijkstra​’​s algorithm 
 
Dijkstra​’​s algorithm is an algorithm for finding the shortest paths between nodes in a graph,               

which may represent, for example, road networks. It was conceived by computer scientist             

Edsger W. Dijkstra in 1956 and published three years later (Dijkstra, 1959). 

 

The algorithm exists in many variants; Dijkstra​’​s original variant found the shortest path             

between two nodes, but a more common variant fixes a single node as the ​“​source​” node                

and finds shortest paths from the source to all other nodes in the graph, producing a                

shortest-path tree. 
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For a given source node in the graph, the algorithm finds the shortest path between that                

node and every other (Melhorn and Sandres, 2008). It can also be used for finding the                

shortest paths from a single node to a single destination node by stopping the algorithm               

once the shortest path to the destination node has been determined. For example, if the               

nodes of the graph show cities and edge path costs show driving distances between pairs of                

cities connected by a direct road, Dijkstra​’​s algorithm can be used to find the shortest way                

between one city and all other cities. As a result, the shortest path algorithm is generally                

used in network routing protocols, most notably IS-IS and Open Shortest Path First             

(OSPF). It is also employed as a subroutine in other algorithms such as Johnson​’​s. 

 

2.2.4   A* algorithm 
 
AI researcher Nils Nilsson was trying to improve the pathfinding done by a robot in 1968,                

the robot that could navigate in a room with obstacles. This path-finding algorithm which              

is called A1, was faster than the best method, Dijkstra​’​s algorithm, for finding shortest way               

in graphs. Bertram Raphael did some significant improvements on this algorithm, naming            

the revision A2. Then Peter E. Hart designed an argument that established A2, with only               

small changes, to be the best possible algorithm for finding the shortest paths. Rapheal,              

Hart and Nilsson developed a proof that the revised A2 algorithm was perfect for finding               

shortest ways under certain well-defined conditions. 

 

This algorithm is generally used in pathfinding and graph travelsal, the process of plotting              

and efficiently traversable way between multiple points, named nodes. Noted for its            

performance and accuracy, it enjoys widespread use. On the other hand, in practical             

travel-routing designs, it is generally less performed by algorithms which can pre-process            

the graph to attain better performance (Delling and others, 2009), even though other works              

has found A* to be superior to other ways (Zeng and Church, 2009). 

 

Hart and others (1968) first explained the algorithm. It is an extension of Edger Dijkstra​’​s               

1959 algorithm. A* shows better performance by using heuristics to guide its search. 

 

13 



 

2.2.5  ​ ​D* algorithm 
 
D* (pronounced ​“​D star​”​) is any one of the following three related additional search              

algorithms: 

● The original D*, Stentz (1995), is an informed incremental search algorithm. 

● Focused D* is an informed incremental heuristic search algorithm by Stentz (1995)            

that combines ideas of A* (Hart and others, 1968) and the original D*. Focused D*               

resulted from a further development of the original D*. 

● D* Lite is an incremental heuristic search algorithm by Koenig and others (2004)             

that builds on LPA*, an incremental heuristic search algorithm that combines ideas            

of A* and Dynamic SWSF-FP (Ramalingam and Reps, 1996). 

 

All three algorithms solve the same assumption-based path finding problems, including           

planning with the freespace assumption, where a robot has to navigate to given coordinates              

in unknown terrain. It makes expectations about the unknown part of the terrain (for              

example: that it doesn​’​t contain obstacles) and finds a shortest way from its actual              

coordinates to the goal coordinates under these assumptions (Koening and others, 2003).            

The robot then follows the way. When it observes new map information (such as              

previously unknown obstacles), it adds the information to its map and, if necessary, plans a               

new shortest way from its current coordinates to the given goal coordinates. It repeats the               

process until it reaches the goal coordinates or determines that the goal coordinates cannot              

be reached. When traversing unknown terrain, new obstacles may be discovered           

frequently, so this planning needs to be fast. Incremental (heuristic) search algorithms            

speed up searches for sequences of similar search problems by using experience with the              

previous problems to speed up the search for the current one. Assuming the goal              

coordinates do not change, all three search algorithms are more capable than repeated A*              

searches. D* and its variants have been actively used for mobile robot and autonomous              

vehicle navigation. Current systems are typically based D* Lite rather than the original D*              

or Focused D*. In fact, even Stentz​’​s lab uses D* Lite rather than D* in some                

implementations (Wooden, 2006). Such navigation designs include a prototype system          

tested on the Mars rovers Opportunity and Spirit and the navigation system of the winning               

entry in the DARPA Urban Challenge, both developed at Carnegie Mellon University. 
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The original D* was submitted by Anthony Stentz in 1994. The name D* comes from the                

term ​“​Dynamic A*​”​, because the algorithm behaves like A* except that the arc costs can               

change as the algorithm works. 

 

2.2.6   Rapidly exploring random tree 
 
A rapidly exploring random tree (RRT) is an algorithm designed to efficiently search             

nonconvex, high-dimensional spaces by randomly building a space-filling tree. The tree is            

constructed incrementally from samples drawn randomly from the search space and is            

inherently biased to grow towards large unsearched areas of the problem. RRTs were             

submitted by LaValle (1998). They easily handle problems with obstacles and differential            

constraints (nonholonomic and kinodynamic) and have been widely used in autonomous           

robotic path planning (LaValle and Kuffner, 2001). 

 

RRTs can be viewed as a technique to generate open loop trajectories for nonlinear              

systems with state constraints. An RRT can also be considered as a Monte-Carlo method to               

bias search into the largest Voronoi regions of a graph in a configuration space. Some               

variations can even be considered stochastic fractals. 

 

2.3   Related Works 
 
Obstacle detection and obstacle avoidance are important problems for robot navigation.           

Many techniques and different algorithms have been used in this topic. Obstacle detection             

systems for mobile robots have included bump sensors, ultrasonic sensors, laser range            

finders and stereo vision. Ubbens and Schuurman (2009) propose a single camera feeding a              

support vector machine (SVM) classifier to autonomously navigate a ground-based mobile           

robot around obstacles. A single camera is mounted to the robot. SVM is trained to classify                

obstacles on different surfaces. Anything that is not recognizable on floor surface is             

classified as an obstacle. Images are preprocessed using a Fast Fourier Transform (FFT).             

The results were satisfactory. But small obstacles and obstacles that have similar intensity             
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on the floor caused misclassifications. This problem can be solved by using another             

preprocessing techniques. 

 

Similar techniques were used for aerial vehicles. Cooper and others (2016) developed a             

controller for a helicopter to detect obstacles and avoid them. They used live image              

sequence captured by the camera mounted in front of a helicopter as an input of the system.                 

This system detects obstacles and suggests the best turning angles for the helicopter to              

avoid obstacles. Image was divided 64x64 pixels and manually labeled with 0 and 1 which               

represents obstacles and free space. They have developed a vision-based algorithm to            

detect obstacles from single image which is captured from the camera by using support              

vector machine (SVM) based on spectral signature. They were the first group applying             

spectral signature to solve obstacle detection. They achieved 3 frame-per-second detection           

rate and it is little bit slow. Test results show that they had %75 success rate for corridor                  

and open area. More improvements needed to apply to the system. 

 

Another techniques were applied for obstacle detection and avoidance. Ulrich and           

Nourbakhsh (2000) designed a wheel chair which has vision-based obstacle detection           

system by using single passive color camera. It works in real-time, and provides a binary               

obstacle image. This system is based on the appearance of individual pixels. Any pixel that               

differs in appearance from the ground as classified as an obstacle. But there are some               

assumptions like obstacle should differ from the ground which is relatively flat and no              

overhanging obstacles. In the first step 320 × 260 color input image is filtered with a 5 × 5                   

Gaussian filter to reduce noise. In the second step, RGB values are converted into the HSI                

(hue, saturation, and intensity) color space. In the third, hue and intensity values of the               

reference area are histogramed into two one-dimensional histograms, one for hue and one             

for intensity. In the last step, all pixels of the filtered input image are compared to the hue                  

and intensity histograms and classified as an obstacle or ground. 

 

As a result, there are some studies about this topic and various techniques were applied in                

similar ways. Some range-based obstacle sensors were used like, ultrasonic sensors, laser            

rangefinders and radars. Ultrasonic sensors are cheap but has poor resolution and effects             
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from reflections. Lasers and radars have better resolution but they are complex and             

expensive. These sensors may help monocular vision systems for getting better results. In             

monocular vision based obstacle detection systems, some used poor preprocessing          

techniques to decreasing process times for real-time systems. But it causes           

misclassifications. Some tried to apply new techniques but new things need improvements            

as expected. ​S​ome did not use regular classification algorithms. These topics are open to              

discuss and one of them may works better than the others in some different environments.               

But none of them use path-finding algorithms to find the shortest and suitable way. In real                

time applications time and energy saving are important. 

 

2.4 Summary 
 
Path planning has been one of the important problems in robotics. Path planning is finding               

a continuous collision-free path, from a start point, to a goal point or region, and obstacles                

in the space. In previous works, a path is calculated by searching a graph or a grid of free                   

spaces. In recent years, the randomized approaches such as Rapidly exploring random tree             

algorithm and Extended Rapidly exploring random tree algorithm appears to be successful            

in many practical applications which require high-dimensional motion planning. 

 

All these above mentioned works are search-based. Another set of algorithms are called             

potential field these family of algorithms are more suitable for for real-time path planning              

domains. 

 

In the field of pattern recognition, a variety of classification methods have been used.              

Among them, this work choose to use support vector machine (SVM) as a classifier. SVM               

is one of the powerful classifiers and has been successfully applied to many object              

recognition tasks such as 3D object recognition, face recognition, and pattern           

matching-based tracking. ​This paper describes our support vector machine-based path          

planner (called SVPP). 
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CHAPTER 3 

OBJECT DETECTION BASED ON IMAGE PROCESSING 
 
 
 

3.1 ​Object Detection 
 
Object recognition is an important task in image processing and computer vision. It is the               

process of classifying a specific object in a digital image or video, which mostly means               

finding instances of real-world objects such as faces, cars, and buildings in images or series               

of images such as videos. This method is widely used in applications such as image               

retrieval, surveillance, security, and automated vehicle parking systems. 

 

Humans recognize large range of objects in images with small effort, despite the fact that               

the image of the objects may vary somewhat in different viewpoints in many different sizes               

and scales or even when they are rotated. Objects can even be recognized when they are                

partially obstructed from view. This task is still a challenge for computer vision systems.              

Many approaches to the task have been implemented over multiple decades. 

 

Object detection algorithms typically use extracted features and learning algorithms to           

recognize instances of an object category. Common techniques include edges, gradients,           

Histogram of Oriented Gradients (HOG), Haar wavelets, classification techniques and          

linear binary patterns. 

 

Object detection is useful in applications such as video stabilization, automated vehicle            

parking systems, and cell counting in bio-imaging. 

 

3.2​ ​Support Vector Machines 
 
In the context of machine learning, a support vector machine (SVM) is a supervised              

learning model and learning algorithms that is used to analyze data to create a model that                

can be used for classification and regression analysis.  
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It works by taking two sets of training data each of them marked belonging to one category                 

of two categories, an SVM algorithm will build a model that will assign new examples into                

either one of the categories, making it a what is called non-probabilistic binary linear              

classifier. 

 

An SVM model is a description of the samples in the training data as points in space, they                  

are mapped so that samples of the separate categories are divided by a gap that is as large                  

as possible. New samples are then mapped into that same space and predicted to belong to                

a category based on which side of the gap they fall on. This is linear classification.  

 

With the help of a technique called a kernel trick a SVM can efficiently perform a                

nonlinear classification, implicitly mapping their inputs into high-dimensional feature         

spaces. 

 

In addition to using SVMs for supervised learning (which means all sample data is labeled               

as belonging to one or the other category.) SVMs can be used to do unsupervised learning                

(using unlabeled data), which attempts to find natural clustering of the data into categories,              

and then new samples are mapped to these categories. This clustering algorithm which             

provides an improvement to the support vector machines is called support vector            

clustering.  

 

Formally in order to do classification or regression, a SVM algorithm must constructs a              

hyperplane or set of hyperplanes in a high- or infinite-dimensional space. The hyperplane             

with the largest distance to the nearest sample data point of any class (also known as                

functional margin) is selected to to achieve good separation. The larger the margin the              

lower the generalization error of the classifier. 

 

It is often the case that the sets to classify are not linearly separable in that space. It was                   

proposed that the original finite-dimensional space be mapped into a much           

higher-dimensional space, in order to make the separation easier in high dimensional            

space. 
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In order to make the computational load reasonable mapping used in SVM schemes are              

designed so that they ensure that dot products may be computed easily in terms of the                

variables in the original space, by defining them in terms of a kernel function ( , )              κ χ γ  

selected to suit the particular problem. The hyperplanes in the higher-dimensional space            

are defined as the set of points whose dot product with a vector in that space is constant.                  

The vectors defining the hyperplanes can be chosen to be linear combinations with             

parameters images of feature vectors that occur in the database. With this choice of aiα     iχ           

hyperplane, the points in the feature space that are mapped into the hyperplane are   χ             

defined by the relation: . Note that if ( , ) becomes small as    ∑
 

 
ik(χi, ) constantα χ =      κ χ γ      γ

grows further away from ​to the corresponding data base point . In this way, the sum of    χ         iχ        

kernels above can be used to measure the relative nearness of each test point to the data                 

points originating in one or the other of the sets to be discriminated. Note the fact that the                  

set of points mapped into any hyperplane can be quite convoluted as a result, allowing   χ              

much more complex discrimination between sets which are not convex at all in the original               

space. 

 

 

 
Figure 3.1:​ Support vector machines 
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3.2.1   Linear SVM 
 
Given a training dataset of ​n ​samples in the form of  ( 1, ), … , ( n, ) where thex 

→
1γ x 

→
nγ  

are either 1 or -1 , each indicating the category to which the point  belongs to. Each iγ x→ x 
→

 

is a -dimensional real vector.We want to find the "maximum-margin hyperplane"ρ  

that divides the group of points for which from the group of points for which        xi
→

    1yi 
→

=         

, which is defined so that the distance between the hyperplane and the nearest  yi 
→

=  − 1               

point from either group is maximized. 

 

A hyperplane can be written as the set of points  satisfying the followingxi
→

 

. + b = 0, where is the normal vector to the hyperplane (can be non normalized).w 
→

 x 
→

      w 
→

            

The parameter determines the offset of the hyperplane from the origin along the normal  b
||w||

→             

vector .w→  

 

Hard Margin: ​If the samples in the training dataset are linearly separable, one can select               

two parallel hyperplanes that separates the two classes of data, so that the distance between               

them is as large as possible. The region within these two hyperplanes is called the               

"margin", and the maximum-margin hyperplane is the hyperplane that lies halfway           

between them. These hyperplanes can be described using the equations 

  

.   + b = 1w 
→

x 
→

 

 

(3.1) 

 

and 

 

.  + b = -1w 
→

x 
→

 

 

(3.2) 
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Geometrically, the distance between these two hyperplanes is , so in order to maximize        2
||w||

→       

the distance between the planes one wants to minimize . Also in order to prevent data         w 
→

       

points from falling into the margin, following constraints can be added: for each  eitheri  

.  + b   1 , if  = 1w 
→

xi
→

≥ iγ  (3.3) 

 

or 

 

.  + b   -1 , if  = -1w 
→

xi
→

≤ iγ  

 

(3.4) 

 

These constraints ensure that every data point must be on the correct side of the margin.                

Which can be rewritten as: 

 

. + b)   1, for all 1 i(w γ
→

xi 
→

≥ i n≤  ≤   

 

(3.5) 

 

Above can be combined into a optimization problem: 

“​Minimize || || subject to . + b)  1, for i = 1, … , n​”w→ i(w γ
→

x 
→

≥   

The  and b that solve this problem determine our classifier,  ​sgn( .  + b).w 
→

  x 
→

→ w 
→

x 
→

 

An easy-to-see but important consequence of this geometric description is that max-margin            

hyperplane is completely determined by those which lie nearest to it. These are      ix 
→

       ix 
→

  

called support vectors. 

 

Soft Margin: ​In order to use SVMs in cases where the data is not linearly separable, the                 

hinge loss function can be used, 

 

max​(0, 1 - . + b))i(w γ
→

x 
→

 

 

(3.6) 

 

This function is zero if the constraint in the above is satisfied, which means that, if lies                 x i
→

 

on the correct side of the margin. For data on the wrong side of the margin, the function​’​s                  
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value is proportional to the distance from the margin. Then the following should be              

minimized 

+ || || ax(0, i(w . x b))[ n
1 ∑

n

i=1
m 1 − γ

→ →
+  ] λ w 

→
 2  (3.7) 

 

where the parameter determines the trade off between increasing the margin-size and   λ           

ensuring that the lie on the correct side of the margin. Thus, for sufficiently small   x i
→

             

values of , the soft-margin SVM will behave identically to the hard-margin SVM  λ            

assuming that the input data are linearly classifiable, but should still learn a viable              

classification rule if not. 

 

3.2.2   Non-linear SVM 
 
Vapnik who constructed a linear classifier in 1963, proposed the original maximum-margin            

hyperplane algorithm. In 1992, Vladimir N. Vapnik, Bernhard E. Boser and Isabelle M.             

Guyon suggested a technique to design nonlinear classifiers by applying the kernel trick to              

maximum-margin hyperplanes. The result was formally similar, except that each dot           

product is replaced by a nonlinear kernel function. This allows the algorithm to fit the               

maximum-margin hyperplane in a transformed feature space. The transformation may be           

nonlinear and the transformed space high dimensional; although the classifier is a            

hyperplane in the transformed feature space, it may be nonlinear in the original input              

space. 

 

Some common kernels include: 

● Polynomial (homogeneous): , ) = , )(xik
→

xj
→

xi(
→

xj
→

 d  

● Polynomial (inhomogeneous): , ) = , )(xik
→

xj
→

xi(
→

xj
→

+ 1  d  

● Gaussian radial basis function: , ) = exp(- - ), for .    (xik
→

 xj
→

  ||xiγ
→

 ||xj 
→

 2
 

  γ > 0  

Sometimes parametrized using /2σγ = 1 2  

● Hyperbolic tangent: , ) = , + c), for some (not every) k > 0 and(xik
→

xj
→

anh(kxit
→

xj
→

 

 c < 0 
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The kernel is related to the transform using the equation , ) = .       (xi)φ
→

    (xik
→

 xj
→

 φ(xi) 
→

 (xj). φ
→

The value w is also in the transformed space, with = i Dot products with          w 
→

 ∑
 

 
 iγiφ(xi).α

→
    

w for classification can again be computed by the kernel trick, i.e. . = i            w 
→

 (x).φ
→

 ∑
 

 
 iγik(xiα

→

, ).x 
→

 

 

3.2.3​   ​Multiclass SVM 
 
Multiclass SVM tries to assign samples into categories by using support vector machines,             

where the categories are chosen from a finite set of several categories. 

 

The most common approach for doing so is to reduce the single multiclass problem into               

multiple binary classification problems. Common methods for such a technique include: 

 

● Using a binary classifiers which distinguishes between one of the categories and the             

rest also called one-versus-all or between every pair of categories also called            

one-versus-one. Classification of new samples for the one-versus-all technique is          

done by using a winner-takes-all strategy, which means the classifier with the            

highest output function assigns the category. For the one-vs-one technique,          

classification is done by a max-wins strategy, which means that every classifier            

assigns the instance to one of the two classes, then the vote for the assigned class is                 

increased by one vote, and finally the class with the most votes determines the              

instance classification. 

● Error-correcting output codes 

● Directed acyclic graph SVM (DAGSVM)  

● Crammer and Singer proposed a multiclass SVM method which casts the multi            

class classification problem into a single optimization problem. 
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Figure 3.2:​ Multi-class support vector machines 

 

Chen and Odobez (2002) compared support vector machines and neural networks for text             

texture verification. They used 2400 candidate text regions. The performance of           

verification listed in Table 3.1. is measured error rate of sample vectors. SVM shows better               

performance than multiple layer perceptron (MLP). 

 

Table 3.1:​ Error rate of SVM and MLP for text verification.  

Training Tools DIS DERI CV DCT 

MLP 7.70% 6.00% 7.61% 5.77% 

SVM 2.56% 3.99% 1.07% 2.92% 

 
 

 

 

 

 

 

25 



 

CHAPTER 4 

PATHFINDING FOR MOBILE ROBOTS 

 
 
 
Pathfinding is a fundamental problem for mobile robots. Path finding usually describes the             

process of finding the shortest path between two points using a computer application. No              

mobile robot could work on almost any task without moving to another point in the their                

environment. There are various ways for determining the shortest path between points in             

space, but the majority of them uses graph searching methods. The field is based heavily               

on Dijkstra​’​s algorithm for finding the shortest path on a weighted graph. A path finding               

method searches a graph by starting at one point and exploring adjacent nodes until the               

destination node is reached, generally with the intent of finding the shortest route. 

 

4.1 A* Search Algorithm 
 
In computer science, A* is a computer algorithm which is commonly used for pathfinding,              

it is the process of calculating an efficiently path between two nodes. It is commonly used                

because of its performance and accuracy. However, in practice when used for            

travel-routing systems, it is outperformed by algorithms which can preprocess the graph to             

gain better runtime performance, although other works has found A* to be superior to other               

approaches. 

 

Nils Nilsson who is an AI researcher was trying to improve the pathfinding used in the                

robot called Shakey. This robot that can navigate a room filled with obstacles. A1 which is                

faster version of the best known method, Dijkstra​’​s algorithm, used for finding the shortest              

paths in graphs. After that Bertram Raphael improved this algorithm and gave a name A2.               

Then Peter E. Hart introduced A2, with only small changes, to be best algorithm for               

finding shortest paths. Haart, Nilsson and Raphael then jointly developed a proof that the              

revised A2 algorithm was optimal for finding shortest paths under certain conditions. 
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4.1.1   Description 
 
A* solves problems by searching all possible paths to the goal for the one that incurs the                 

smallest cost depending on the cost function, and among these paths it will first consider               

the ones that leads to least costly solution. It is formulated with weighted graphs, starting               

from a specific point, it builds a tree of paths starting from that point, expanding the paths                 

one step at a time, until one of the paths reaches at the goal point. 

 

A* needs to determine which of the partial paths to expand in order to reach the goal node                  

at each iteration. It does this using an estimate of the cost (total weight) still to go to the                   

goal node. Specifically, A* selects the path that minimizes 

 

f(n)=g(n)+h(n) 

 

(4.1) 

 

where ​n is the last node on the path, ​g(n) is the cost of the path from the start node to ​n​, and                       

h(n) is a heuristic function that estimates the cost of the cheapest path from n to goal. There                  

are multiple heuristic functions to choose from depending on the problem. For the             

algorithm to find the actual shortest path, the heuristic function must be admissible, which              

means that function can never overestimates the actual cost to get to the nearest goal node. 

 

As an example, when searching for the shortest route on a map, ​h(x) might represent the                

straight-line distance to the goal, since that is physically the smallest possible distance             

between any two points. 

 

A typical implementation of A* uses a priority queue to perform the repeated selection of               

minimum cost nodes to expand. This priority queue is called the open set. At each iteration                

of the algorithm, the node with the lowest ​f(x) value is removed from the queue, the f and g                   

values of its neighbors are updated accordingly, and these neighbors are added to the              

queue. The algorithm continues until a goal node has a lower f value than any node in the                  

queue (or until the queue is empty). The f value of the goal is then the length of the shortest                    

path, since h at the goal is zero in an admissible heuristic. 
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If the heuristic h satisfies the additional condition ​h(x) <= d(x, y) + h(y) for every edge ​(x,                  

y) of the graph (where d denotes the length of that edge), then h is called monotone, or                  

consistent. In such a case, A* can be implemented more efficiently—roughly speaking, no             

node needs to be processed more than once (see closed set below) and A* is equivalent to                 

running Dijkstra​’​s algorithm with the reduced cost ​d(x, y) = d(x, y) + h(y) - h(x)​. 

 

Additionally, if the heuristic is monotonic (or consistent, see below), a closed set of nodes               

already traversed may be used to make the search more efficient. 

 

 
 

Figure 4.1: ​A* algorithm 
 

4.1.2   Properties 
 
Like breadth-first search, A* is complete and will always find a solution if one exists. If                

the heuristic function h is admissible, meaning that it never overestimates the actual             

minimal cost of reaching the goal, then A* is itself admissible (or optimal) if we do not use                  

a closed set. If a closed set is used, then h must also be monotonic (or consistent) for A* to                    
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be optimal. This means that for any pair of adjacent nodes ​x and ​y​, where ​d(x,y) denotes the                  

length of the edge between them, we must have: 

 

h(x) <= d(x,y) + h(y) 

 

(4.2) 

 

This ensures that for any path X from the initial node to​ x​: 

 

L(X) + h(x) <= L(X) + d(x,y) + h(y) = L(Y) + h(y) 

 

(4.3) 

 

where L is a function that denotes the length of a path, and Y is the path X extended to                    

include y. In other words, it is impossible to decrease (total distance so far + estimated                

remaining distance) by extending a path to include a neighboring node. (This is analogous              

to the restriction to nonnegative edge weights in Dijkstra​’​s algorithm.) Monotonicity           

implies admissibility when the heuristic estimate at any goal node itself is zero, since              

(letting P = (f,v1,v2,...,vn,g) be a shortest path from any node f to the nearest goal g): 

 

h(f) <= d(f,v_1) + h(v_1) =< d(f,v_1) + d(v_1,v_2) + h(v_2) <= .... <= L(P) + 

h(g) = L(P)  

 
 
(4.4) 

 

A* is also optimally efficient for any heuristic h, which means that no optimal algorithm               

employing the same heuristic will expand fewer nodes than A*, except when there are              

multiple partial solutions where h exactly predicts the cost of the optimal path. Even in this                

case, for each graph there exists some order of breaking ties in the priority queue such that                 

A* examines the fewest possible nodes. 

 

One of the most common solutions is to implement the A* search algorithm. This              

algorithm has been described in 1968 and has been used in many different ways. A* is                

optimally efficient for a certain heuristic. In practice however, pathfinding using A*            

algorithm might have problems with memory and time for certain applications shortest            

path is not always desired, because finding the shortest optimal path can take sometime to               
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calculate other methods such as RRT tries to work around this by calculating a path fast                

which is not guaranteed to be optimal. 

 

Figure 4.2 depicts the graphical simulation result of robot navigation. Table 4.1            

demonstrate the simulation results using A*, APF and RRT obstacle avoidance algorithms.            

Here the results are obtained for 1000 runs and environment was fixed. RRT algorithm              

runs faster than the others but length is long. APF algorithm finds the shortest path but                

running time is not acceptable. As shown the time and distance results of the A* obstacle                

avoidance algorithm is better for finding the path and running time. (Abiyev and others,              

2015)  

 

Table 4.1: ​Results 
 

Methods Time Length 

A* 22.534779 792.2 

APF 102.47793 732.0 

RRT 8.2619800 849.9 

 
 

 
 

   Figure 4.2: ​A*, RRT, APF 
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CHAPTER 5 

DESIGN OF THE SYSTEM 

 

 

This chapter covers the design of the system. It includes detailed information about             

hardware and software. The basic software and hardware parts of N​AO robot are explained.              

The stages of the designed system are described. The realisation of each stage is              

represented. 

 

5.1 Hardware 
 
There are a lot of humanoid robots like Darwin, MiniHUBO, Bioloid etc.. can be used in                

this project. But N​AO robot​’​s educational version is cheaper and its performance is better              

than the others. It has also useful API​’​s for Python and C++ programming languages. And               

a lot of examples can be found on internet. Because of these reasons ​NAO was used in this                  

project. 

 

NAO is an autonomous, programmable humanoid robot developed by Aldebaran Robotics           

(Figure 5.1)​. ​Several versions of the robot have been released since 2008. The ​NAO              

Academics Edition which was used for the research, was developed for universities and             

laboratories for research and education purposes. It was released to institutions in 2008,             

and was made publicly available by 2011. ​NAO robots have been used for research and               

education purposes in numerous academic institutions worldwide. 

 

The various versions of the ​NAO robotics platform feature either 14, 21 or 25 degrees of                

freedom (DoF). All ​NAO Academics versions feature an inertial measurement unit with            

accelerometer, gyrometer and four ultrasonic sensors that provide ​NAO with stability and            

positioning within space. The legged versions included eight force-sensing resistors and           

two bumpers.  

 

The ​NAO robot is controlled by a specialized Linux-based operating system, dubbed            

NAOqi. The OS powers the robot​’​s multimedia system, which includes four microphones            
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(for voice recognition and sound localization), two speakers (for multilingual          

text-to-speech synthesis) and two HD cameras (for computer vision, including facial and            

shape recognition). The robot also comes with a software suite that includes a graphical              

programming tool dubbed Choregraphe, a simulation software package and a software           

developer​’​s kit. 

 

 
 

Figure 5.1:​ ​NAO​ robot 
 

The structure of ​NAO robot is given in Figure 5.2. The robot has the following parts,                

tacticle sensors, cameras, sonars, joints etc. ​NAO has two identical cameras which are             

located in the forehead. Those cameras work up to 1280x960 resolution at 30 fps and can                

be used to identify objects in the visual field such as obstacles and goals. 

 

The ​NAO robotics platform feature either 14, 21 or 25 degrees of freedom. It has internal                

measurement unit with accelerometer, gyrometer and four ultrasonic sensors which are for            

stability and positioning. It also has eight force-sensing resistors and two bumpers. 
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NAO robot has 25 motors. All movement is controlled by these motors. Three different              

kind of motors are used. Type 1 motors are used in the legs, type 2 motors in the hands and                    

type three motors used in the head and arms. All motors are controlled by using PID.                

Torque and Velocity are recorded for all the movements. There are many joints on ​NAO               

robot. Some of them moved individually, or be mirrored. 

 

 
 

Figure 5.2:​ ​NAO​ robot specification 
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Table 5.1: ​NAO​ robot parameters 
 

Height 58 centimetres (23 in) 

Weight 4.3 kilograms (9.5 lb) 

Power supply lithium battery providing 48.6 Wh 

Autonomy 90 minutes (active use) 

Degrees of freedom  25 

CPU Intel Atom @ 1.6 GHz 

Built-in OSNAOqi 2.0 (Linux-based) 

Programming languages C++, Python, Java, MATLAB, Urbi, C,      

.Net 

Sensors Two HD cameras, four microphones, sonar      

rangefinder two infrared emitters and     

receivers, inertial board nine tactile     

sensors, eight pressure sensors 

Connectivity Ethernet, Wi-Fi  

Compatible OS Windows, Mac OS, Linux 

 

5.2 Software  
 
Interacting with the robot hardware is handled by the NAOqi framework. NAOqi is the              

main software which runs on the robot and controls it. The NAOqi Framework is the               

programming framework used to program NAO. It answers to common robotics needs            

including: parallelism, resources, synchronization, events. This framework allows        

homogeneous communication between different modules, homogeneous programming and        

homogeneous information sharing. 
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NAO​qi framework: 

● is cross-platform. It can be developed in Windows, Linux or Mac operating             

systems. 

● is cross-language. It has a API for both C++ and Python. 

● also provides introspection, which means the ​NAO​qi framework knows which          

functions are available in the different modules and where. 

 

 

 
Figure 5.3: ​NAO​ Robot Cross-Platform System 

 

It is possible to develop in C++ and Python. In two cases, programming techniques are               

exactly the same, all existing API can be indifferently called from any supported             

languages. In this thesis Python language is used to implement the algorithms. 

 

5.2.1   The ​NAO​qi process 
 
The NAOqi framework which works on the ​NAO robot is a broker. It loads a preferences                

file called autoload.ini that chooses which libraries it should load at the beginning. Every              

library contains one or more modules that use the broker to advertise their methods. 
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Figure 5.4 : ​NAO​qi libraries and modules 

 

The broker afford lookup services so that every module in the tree or across the network                

can find any method that has been advertised. 

 

Loading modules forms a tree of methods connected to modules, and modules connected to              

a broker. 

 

Broker:​ ​A broker is an object which has two main roles: 
● It provides directory services: Letting you to find modules and methods. 
● It provides network access: Allowing the methods of attached modules to be called 

from outside the process. 
 
Brokers works on backwards transparently, let you to develop that will be the same for 
calls to “local modules” (in the same process) or “remote modules”. 
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Figure 5.5: ​NAO​qi libraries, modules and methods 

 

Proxy:​ ​A proxy is an object that will act as the module it represents. 
 

For instance, if you create a proxy to the ALMotion module, you will get an object 

including all the ALMotion methods. 

 

When creating proxy to a module, you have two options: 

● Easily use the name of the module. In this case, the running code and the connected 

module must be in the same broker. This is a local call. 

● Use the name of the module, and the IP and port of a broker. In this situation, the 

module must be in the corresponding broker. 

 

Modules:​ ​Every Module is a class within a library. When the library is called from the 

autoload.ini, it will automatically instantiate the module class. 
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In the constructor of a class that derives from ALModule, you can “bind” methods. This 

advertises their names and method signatures to the broker so that they become available to 

others. 

 

A module can be either remote or local. 

 

● If the module is remote, the module is compiled as an executable file, and can be 

execute outside the ​NAO​ robot. Remote modules are simply to use and can be 

debugged quickly from the outside, but the remote modules are less efficient for 

speed and memory usage. 

● If the module is local, the module is compiled as a library, and can only be worked 

on the robot. But, they are more efficient than a remote module. 

 

Memory:​ ​ALMemory is the ​NAO​ robot​’​s memory. Every modules can read or write data, 

subscribe on events so as to be called when events are raised. 

 

ALMemory is an array of ALValue​’​s. Accessing the variable is thread safe. Read and write 

critical sections can be used to avoid bad performance when memory is read. 

 

 
Figure 5.6: ​NAO​qi memory system 

 
 

ALMemory contains three types of data and provides three different APIs. 
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● Mainly data from sensors and joints 

● Event 

● Micro-event 

 

Python:​ ​Python is a widely used high-level, general-purpose, interpreted, dynamic 

programming language. Its design philosophy emphasizes code readability, and its syntax 

allows  programmers to express concepts in fewer lines of code than would be possible in 

languages such as C++ or Java. The language provides constructs intended to enable clear 

programs on both a small and large scale. 

 

Python supports multiple programming paradigms, including object-oriented, imperative        

and functional programming or procedural styles. It features a dynamic type system and             

automatic memory management and has a large and comprehensive standard library. 

 

Python interpreters are available for many operating systems, allowing Python code to run             

on a wide variety of systems. Using third-party tools, such as Py2exe or Pyinstaller, Python               

code can be packaged into standalone executable programs for some of the most popular 

operating systems, so Python-based software can be distributed to, and used on, those             

environments with no need to install a Python interpreter. 

 

CPython, the reference implementation of Python, is free and open-source software and            

has a community-based development model, as do nearly all of its variant            

implementations. CPython is managed by the non-profit Python Software Foundation. 

 
OpenCV:​ ​For processing camera images from the ​NAO​ robot OpenCV computer vision 

library is used.  OpenCV (Open Source Computer Vision) is a library mainly aimed at 

real-time computer vision, originally developed by Intel​’​s research center in Russia, later 

supported by Willow Garage and now maintained by Itseez. The library is cross-platform 

and free for use under the open-source BSD license. 

 

 

OpenCV​’​s application areas include: 

39 



 

● 2D and 3D feature toolkits 

● Egomotion estimation 

● Facial recognition system 

● Gesture recognition 

● Human–computer interaction (HCI) 

● Mobile robotics 

● Motion understanding 

● Object identification 

● Segmentation and recognition 

● Stereopsis stereo vision: depth perception from 2 cameras 

● Structure from motion (SFM) 

● Motion tracking 

● Augmented reality 

 

To support the above areas, OpenCV includes a statistical machine learning library that             

contains: 

● Boosting 

● Decision tree learning 

● Gradient boosting trees 

● Expectation-maximization algorithm 

● k-nearest neighbor algorithm 

● Naive Bayes classifier 

● Artificial neural networks 

● Random forest 

● Support vector machine (SVM) 

 

Scikit-learn:​ Scikit-learn is a free software machine learning library for the Python 

programming language. It features various classification, regression and clustering 

algorithms including support vector machines, random forests, gradient boosting, k-means 

and DBSCAN, and is designed to interoperate with the Python numerical and scientific 

libraries NumPy and SciPy. 
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The scikit-learn project started as scikits.learn, a Google Summer of Code project by David              

Cournapeau. Its name stems from the notion that it is a ​“​SciKit​” (SciPy Toolkit), a               

separately-developed and distributed third-party extension to SciPy. The original codebase          

was later rewritten by other developers. Of the various scikits, scikit-learn as well as              

scikit-image were described as ​“​well-maintained and popular​”​ in November 2012. 

 

As of 2015, scikit-learn is under active development and is sponsored by INRIA, Telecom              

ParisTech and occasionally Google (through the Google Summer of Code). 

 

Scikit-learn is largely written in Python, with some core algorithms written in Cython to              

achieve performance. Support vector machines are implemented by a Cython wrapper           

around LIBSVM; logistic regression and linear support vector machines by a similar            

wrapper around LIBLINEAR. 

 

NumPy (pronounced ​“​Numb Pie​” or sometimes ​“​Numb pee​”​) is an open source extension to              

the Python programming language, adding support for large, multidimensional arrays and           

matrices, along with a large library of high-level mathematical functions to operate on             

these arrays. 

 

5.3 System Design 
 
The design of system includes the following steps, shown in Figure 5.7 
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Figure 5.7:​ Steps of the system 
 
 
Steps of the system 
 

1) Image Capturing 

a) Image is captured by the camera which is located on ​NAO​ robot​’​s forehead. 
 

2) Obtaining Map of World 

a) Image is read by using opencv and converted from rgb to hsv value to find               

the fixed white area. 

b) Lower and upper white hsv values defined. 

c) Threshold the HSV image to get only white colors by using opencv​’​s            

cv2.inRange() function. 

d) cv2.morphologyEx() function​’​s closing technique is used for the remove         

small holes. 

e) Images is blurred to fix erosion by using cv2.GaussianBlur function. 
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f) To getting contours cv2.threshold() and cv2.findContours() function is        

applied. 

g) To get coordinates of a rectangle around the contour         

"tuple(cnt[cnt[:,:,0].argmin()][0])" technique is used for four coordinates. 

h) Lines and dots are drawn to show the area by using cv2.line() and             

cv2.circle() functions. 

i) Four coordinates are put in the array to be used for perspective correction. 

 

3) Perspective Correction 

a) The width of the new image is computed which will be the maximum             

distance between bottom-right and bottom-left x-coordinates or the top-right         

and top-left x-coordinates by using this technique. 

widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) 

widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) 

maxWidth = max(int(widthA), int(widthB)) 

b) The height of the new image is computed, which will be the maximum             

distance between the top-right and bottom-right y-coordinates or the top-left          

and bottom-left y-coordinates by using this technique. 

heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) 

heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) 

maxHeight = max(int(heightA), int(heightB)) 

c) The dimension of the new image is get, the set of destination points to              

obtain a ​“​birds eye view​” of the image constructed, top-left, top-right,           

bottom-right, and bottom-left points are specified by using this technique. 

dst = np.array([ 

[0, 0], 

[maxWidth - 1, 0], 

[maxWidth - 1, maxHeight - 1], 

[0, maxHeight - 1]], dtype = "float32") 

d) Perspective transform matrix computed and applied by using        

cv2.getPerspectiveTransform() and cv2.warpPerspective() functions. 
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e) Perspective corrected image is saved. 

 

4) Preprocessing the Image 

a) Canny Edge Detection technique is used for finding the edges. 

b) Corner Harris Detection technique is used for detecting the corners. 

c) Contour detection is applied by using opencv​’​s cv2.findContours() function         

and rectangles are drawn around obstacles for safety region. 

 

5) Detection of Obstacles 

a) Preprocessed image is split into 20x20 pixels 768 pieces. 

b) All images are separated ​“​negative​”​ and ​“​positive​”​ in two classes. 

c) Selected images are put into folders for training SVM and dataset is created. 

 

6) Classification 

a) Pictures are selected one by one to get histograms values for training SVM. 

b) Depend on histograms values all images are identified 1 or 0. 

c) SVM is trained. 

 

 

7) Binary Transforming the Map 

a) Depend on this values binary matrix are created. 

 

8) Pathfinding 

a) Using binary matrix, A* algorithm is applied to find shortest path. 

b) From this coordinates waypoints are found. 

 

9) Control of Robot 

a) Imaginary path is processed and turned it into real path values. 

b) Movement commands which are ​NAO​qi framework​’​s commands for moving         

the ​NAO robot, are sent from computer to ​NAO robot by using robots ip and               

port. 
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Figure 5.8: ​Graphical user interface 
 

A simple graphical user interface (Figure 5.8) was written to control ​NAO robot. It includes               

some movement functions and process steps. You can move ​NAO robot through this gui              

application. 

 

NAO stands a place where can see the fixed area. The obstacles which are different colors                

and shapes located on the fixed white area. An image is captured using the on board                

camera on the ​NAO Robot​’​s head. Firstly software connects to predefined ​NAO’​s ip and              

port. ​NAO has 2 cameras and they provide a up to 1280x960 resolution at 30 frames per                 

second. But in this project 640x480 resolution was used. Because if the resolution             

increases preprocess step also increases. After that photo will be taken in array format and               

then convert it into real image by using opencv. Next problem is to find fixed area​’​s                

corners for performing perspective corrections. If the image​’​s width is not enough for to              

see all fixed white area, ​NAO​ can go back until the area fit the image. 
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Figure 5.9:​ Static area with obstacles 

 

First we need to read this image for converting from RGB (Red, Green, Blue) to HSV (Hue                 

Saturation Value). Then we define white colors lower and upper boundaries because of the              

fixed area​’​s color. If the fixed area​’​s color is different; this color​’​s boundaries must be used.                

In other case, If the area​’​s color is not homogeneous, texture recognition can be applied.               

After finding the white fixed area with erosion, some filtering applied to the image such as                

closing. Closing fills small holes inside the foreground objects, or small black points on the               

object. Then we find the contour of fixed white area and get the coordinates of a rectangle​’​s                 

corners. We compute the width of the new image, which will be the maximum distance               

between bottom-right and bottom-left x-coordinates or the top-right and top-left          

x-coordinates. And then we compute the height of the new image, which will be the               

maximum distance between the top-right and bottom-right y-coordinates or the top-left and            

bottom-left y-coordinates. Now that we have the dimensions of the new image, construct             
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the set of destination points to obtain a ​“​birds eye view​” of the image, again specify points                 

in the top-left, top-right, bottom-right, and bottom-left order. Finally save the image. 

 

 
 

Figure 5.10:​ Static area after perspective correction 
 

Now our fixed white area (Figure 5.10) is ready to apply processing steps. First we apply                

canny edge detection to detect a wide range of edges in images. In this step contrast is a                  

factor that affect the performance of segmentation. You need to provide a natural contrast              

for the segmented image to get a more accurate segmentation process. If contrast between              

obstacles and floor is not much, segmentation process will be hard. After we apply corner               

detection and contours to rectangles around and inside obstacles for to describe safe area.              

Because A* search algorithm gives us to shortest path and this path is too close to                

obstacles but ​NAO​ robot needs place to avoid obstacles. 

47 



 

 
 

Figure 5.11:​ Processed area 
 

In this step, we crop our fixed area which is 640x480 pixels, into 20x20 pixels 768 pieces                 

(Figure 5​.​12) for converting image into binary matrix. After that we allocate this little              

images, positive and negative folders. Mostly white pictures were put in negative folder             

and mostly black pictures were put in positive folder. Positive represents the area without              

obstacles. Negative represents the area with obstacles. Mostly black images are area and             

mostly white images are obstacles. Finally a dataset created to train the SVM. 
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Figure 5.12:​ Dataset 
 

An SVM is trained to detect obstacles in the image. Image histograms are used for training                 

the SVM. ​S​ystem knows which image is obstacle or not. After that we created a binary                

matrix ​(Figure 5.13) which represents the fixed area. In this matrix, 1 is area with obstacle                

and 0 is area without obstacle. 
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Figure 5.13:​ Area in binary matrix format 
 

Pathfinding is applied to find a path to guide the robot to its destination ​(Figure 5.14)​. But                 

the problem is ​NAO doesn​’​t know where the path begins. Because of this reason a marker                

should show the starting point. For solving this problem i put ​NAO’​s red ball on start point.                 

Because ​NAO​qi framework has a special function for finding red ball and return the              

coordinates of red ball. By using these coordinates ​NAO can reach the starting point. After               

that ​NAO​ can follow the path and reach the destination. 
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Figure 5.14: ​Area with path 

 

Image capturing is handled by the on board camera and the software. Captured image is               

then transferred to the host computer for processing. Perspective correction is done using             

the following method. Image is read, by default OpenCV uses the RGB color model which               

is an additive color model in which red, green and blue light are added together in various                 

ways to reproduce a broad array of colors. The name of the model comes from the initials                 

of the three additive primary colors, red, green and blue, in order to make the image                

processing easier RGB model is then converted to HSV model which is the two most               

common cylindrical-coordinate representations of points in an RGB color model. This           

representations rearrange the geometry of RGB in an attempt to be more intuitive and              

perceptually relevant than the cartesian (cube) representation. Then the image is           

thresholded using the colors of the obstacles and a closing rectangle of the surface is               

calculated, the image is blurred to get rid of imperfections and the contours of the surface                
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is calculated. Perspective correction is applied to account for the location and height of the               

robot. The resulting image is saved for further processing ​(Figure 5.15)​. 

 

 
 

Figure 5.15:​ Perspective correction steps 

 

Surface area extracted from the above process is further processed to actually find the              

obstacle on the surface. It is done by applying canny edge detection. Canny edge detector               

is an edge detection operator that uses a multi-stage algorithm to detect a wide range of                

edges in images. It was developed by John F. Canny in 1986. Corner harris detection is                

applied which is an approach used within computer vision systems to extract certain kinds              

of features and infer the contents of an image in this case corners of the obstacles are                 

detected ​(Figure 5.16)​. 
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Figure 5.16:​ Preprocessi​ng​ steps 

 

A dataset is created to be used by the SVM, by taking the image and splitting the image                  

into smaller images that are 20x20 pixels. Positive set of images contains the obstacles on               

the surface and the negative set of images that contains the images that the robot can move. 

 

SVM is trained that detects smaller images with obstacles and without obstacles.            

Histograms for the images are used for features for the SVM. Given a set of training                

examples, each marked for belonging to one of two categories, SVM training algorithm             

builds a model that assigns new examples into one category or the other, making ​it a                

non-probabilistic binary linear classifier. 
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Figure 5.17:​ ​Converting image to matrix 

 

Once the above steps are done. Mobile robot has the ability to detect new obstacles on the                 

surface. At this point path-finding can be applied to the surface using the previously trained               

SVM. Designed system works by taking picture of the surface detecting obstacles using the              

trained SVM which returns a binary matrix of the surface then applying A* path-finding              

algorithm on the surface. Then the robot moves to the start position which is denoted by a                 

red ball. Finally robot follows the path calculated ​(Figure 5.18)​. 
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Figure 5.18:​ Main steps of pathfinding 
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CHAPTER 6 

CONCLUSION 
 
 
 

In this thesis, robot navigation system based on Support Vector Machine and path finding              

algorithm is designed and used in real time application by using ​NAO robot. Code is               

available for testing and some videos proof its good behavior. 

 

Analysis of mobile robots have shown that one of important blocks in robot navigation are               

object detection and path finding. Review of object detection algorithms have been done.             

SVM classification algorithm and image processing techniques are used for detection of            

objects. Perspective correction techniques are also used for image processing.Image          

capturing and processing are done using ​NAO​ robot  

 

The structure of designed robot navigation systems is presented. The functions of their             

main steps are described. 

 

For the classification of the images MLP and SVM algorithms were compared and SVM is               

chosen for classification purpose. A support vector machine which is a supervised learning             

algorithm is used to analyze data and create model of real world. Results of SVM               

classification  is used in path finding. 

 

One of the difficulty was finding fixed area. The fixed area in first image which was                

captured from ​NAO’​s camera was perspective because of the angle. To solve this problem              

perspective correction was applied. The other problem was light system. If the light             

changes, fixed white areas white color range​’​s changes too. To solve this problem, special              

software which finds range of colors, was used. 

 

After classification of world map A* algorithm is applied for path finding problem. The              

theoretical background of A* algorithm has been given. Some path planning algorithms            

were compared and A* algorithms is chosen for path selection. 
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The image processing techniques, SVM algorithm and A* path-finding algorithm are used            

in navigation of ​NAO​ robot. 

 

Designed system relies on only vision data to navigate. This allows the mobile robot to               

navigate in environments where other traditional sensors (sonars, magnetometers etc.)          

won​’​t work or does not work reliably. But they can be used for improvements for suitable                

environments. New techniques, like Deep Learning, can be tried to improve this system.             

Designed systems applications include industrial automation, mobile robots in hazardous          

environments. 

 

Currently designed system works on static obstacles, for future work the designed system             

will be modified to work with dynamic moving obstacles. 
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APPENDIX 
SOURCE CODE 

 
 

ball.py 

import motion 

import math 

import time 

 

from ​NAO​qi import ALBroker 

from ​NAO​qi import ALProxy 

import config as c 

 

class ​NAO​(): 

 

    def __init__(self): 

        self.myBroker = ALBroker("myBroker","0.0.0.0",0,c.IP,c.PORT) 

        self.motion   = ALProxy("ALMotion") 

        self.tracker  = ALProxy("ALRedBallTracker") 

        self.vision   = ALProxy("ALVideoDevice") 

        self.tts      = ALProxy("ALTextToSpeech") 

        self.currentCamera = 0 

        self.setTopCamera() 

        self.tracker.setWholeBodyOn(False) 

        self.tracker.startTracker() 

        self.ballPosition = [] 

        self.targetPosition = [] 

 

 

    def __del__(self): 

        self.tracker.stopTracker() 
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        pass 

 

 

    # If ​NAO​ has ball returns True 

    def hasBall(self): 

        self.checkForBall() 

        time.sleep(0.5) 

        if self.checkForBall(): 

            return True 

        else: 

            return False 

 

 

    # ​NAO​ scans around for the redball 

    def searchBall(self): 

        self.motion.stiffnessInterpolation("Body", 1.0, 0.1) 

        self.motion.walkInit() 

        for turnAngle in [0,math.pi/1.8,math.pi/1.8,math.pi/1.8]: 

            if turnAngle > 0: 

                self.motion.walkTo(0,0,turnAngle) 

            if self.hasBall(): 

                self.turnToBall() 

                return 

            for headPitchAngle in [((math.pi*29)/180),((math.pi*12)/180)]: 

                self.motion.angleInterpolation("HeadPitch",  

                headPitchAngle,0.3,True) 

                for headYawAngle in [-((math.pi*40)/180),-((math.pi*20)/180), 

                0,((math.pi*20)/180),((math.pi*40)/180)]: 

                    self.motion.angleInterpolation("HeadYaw", 

                    headYawAngle,0.3,True) 

                    time.sleep(0.3) 
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                    if self.hasBall(): 

                        self.turnToBall() 

                        return 

 

 

    # ​NAO​ walks close to ball 

    def walkToBall(self): 

        ballPosition = self.tracker.getPosition() 

        headYawTreshold = ((math.pi*10)/180) 

        x = ballPosition[0]/2 + 0.05 

        self.motion.stiffnessInterpolation("Body", 1.0, 0.1) 

        self.motion.walkInit() 

        self.turnToBall() 

        self.motion.post.walkTo(x,0,0) 

        while True: 

        dist = self.getDistance() 

        print dist 

        self.setTopCamera() 

        if dist < 0.7: 

        self.setBottomCamera() 

        if dist == None: 

        self.motion.stopWalk() 

                print "Stop!" 

                break 

        if dist < 0.1: 

        self.motion.stopWalk() 

                print "Stop!" 

                break 

            headYawAngle = self.motion.getAngles("HeadYaw", False) 

            if headYawAngle[0] >= headYawTreshold or headYawAngle[0] <= 

            -headYawTreshold: 
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        while dist > 0.1111111:  

            self.motion.stopWalk() 

                    self.turnToBall() 

                    self.walkToBall() 

            break 

 

 

    # ​NAO​ turns to ball  

    def turnToBall(self): 

        if not self.hasBall(): 

            return False 

        self.ballPosition = self.tracker.getPosition() 

        b = self.ballPosition[1]/self.ballPosition[0] 

        z = math.atan(b) 

        self.motion.stiffnessInterpolation("Body", 1.0, 0.1) 

        self.motion.walkInit() 

        self.motion.walkTo(0,0,z) 

 

 

    # checks ball 

    def checkForBall(self): 

        newdata = self.tracker.isNewData() 

        if newdata == True: 

            self.tracker.getPosition() 

            return newdata 

        if newdata == False: 

            self.tracker.getPosition() 

            return newdata 

 

 

    # has to be called after walkToBall() 
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    def walkToPosition(self): 

        x = (self.targetPosition[0]/2) 

        self.motion.walkTo(x,0,0) 

 

 

    # Determine safe position 

    def safePosition(self): 

        if self.hasBall(): 

            self.targetPosition = self.tracker.getPosition() 

        else: 

            return False 

 

 

    # gets the distance from ball 

    def getDistance(self): 

        if self.hasBall(): 

            ballPosition = self.tracker.getPosition() 

            return math.sqrt(math.pow(ballPosition[0],2) +  

            math.pow(ballPosition[1],2)) 

 

 

    # setting up top camera 

    def setTopCamera(self): 

        self.vision.setParam(18,0) 

        self.currentCamera = 0 

 

 

    # setting up bottom camera 

    def setBottomCamera(self): 

        self.vision.setParam(18,1) 

        self.currentCamera = 1 
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    # protection off to move free 

    def protectionOff(self): 

        self.motion.setExternalCollisionProtectionEnabled( "All", False ) 

        print "Protection Off" 

 

 

    # protection on 

    def protectionOn(self): 

        self.motion.setExternalCollisionProtectionEnabled( "All", True ) 

        print "Protection On" 

 

NAO​().protectionOff() 

NAO​().searchBall() 

if ​NAO​().hasBall() == True: 

    ​NAO​().walkToBall() 

 

 

config.py 

# ​NAO 

IP = "192.168.10.13" 

PORT = 9559 

CAMERAID = 18 

RESOLUTION =  2   # Image Size 

COLORSPACE = 11   # Select RGB 

 

# GUI 

GLADE_FILE_PATH = "ui/​NAO​.glade" 

DATASET_DIRECTORY = "/home/murat/Desktop/Desktop/​NAO​/dataset" 

NEGATIVE = "/home/murat/Desktop/Desktop/​NAO​/dataset/negative" 
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POSITIVE = "/home/murat/Desktop/Desktop/​NAO​/dataset/positive" 

 

 

hsv.py 

import cv2 

import numpy as np 

 

cap = cv2.imread("image.png") 

 

def nothing(x): 

    pass 

# Creating a window for later use 

cv2.namedWindow(​’​result​’​) 

 

# Starting with 100​’​s to prevent error while masking 

h,s,v = 100,100,100 

 

# Creating track bar 

cv2.createTrackbar(​’​h​’​, ​’​result​’​,0,179,nothing) 

cv2.createTrackbar(​’​s​’​, ​’​result​’​,0,255,nothing) 

cv2.createTrackbar(​’​v​’​, ​’​result​’​,0,255,nothing) 

 

while(1): 

 

    frame = cv2.imread("image.png") 

 

    #converting to HSV 

    hsv = cv2.cvtColor(frame,cv2.COLOR_BGR2HSV) 

 

    # get info from track bar and appy to result 

    h = cv2.getTrackbarPos(​’​h​’​,​’​result​’​) 
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    s = cv2.getTrackbarPos(​’​s​’​,​’​result​’​) 

    v = cv2.getTrackbarPos(​’​v​’​,​’​result​’​) 

 

    # Normal masking algorithm 

    lower_blue = np.array([h,s,v]) 

    upper_blue = np.array([180,255,255]) 

 

    mask = cv2.inRange(hsv,lower_blue, upper_blue) 

 

    result = cv2.bitwise_and(frame,frame,mask = mask) 

 

    cv2.imshow(​’​result​’​,result) 

 

    k = cv2.waitKey(5) & 0xFF 

    if k == 27: 

        break 

 

cap.release() 

 

cv2.destroyAllWindows() 

 

 

movement.py 

import sys 

import os 

import time 

from gi.repository import Gtk, GObject 

from ​NAO​qi import ALProxy 

 

 

import config as c 
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import photo  as p 

import svm 

 

tts        = ALProxy("ALTextToSpeech", c.IP, c.PORT) 

motion     = ALProxy("ALMotion", c.IP, c.PORT) 

posture    = ALProxy("ALRobotPosture", c.IP, c.PORT) 

photo      = ALProxy("ALPhotoCapture", c.IP, c.PORT) 

#navigation = ALProxy("ALNavigation", c.IP, c.PORT) 

 

headposition = 0 

protection   = 0 

 

class ​NAO​Controller: 

 

        """Represents ​NAO​ Controller GUI 

 

        params: glade_file_path - path:string 

        """ 

    def __init__(self, glade_file_path=c.GLADE_FILE_PATH): 

            self.glade_file_path = glade_file_path 

 

            # Gtk Builder Init 

            self.builder = Gtk.Builder() 

            self.builder.add_from_file(self.glade_file_path) 

            self.builder.connect_signals(self) 

 

            # Add UI Components 

            self.window = self.builder.get_object("​NAO​ControllerWindow") 

            self.speechbox = self.builder.get_object("speechbox") 

 

            # Show UI 
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            self.window.show_all() 

 

        ### ​NAO​ Posture Functions 

    def ​NAO​StandInit(self, widget): 

        posture.goToPosture("StandInit", 1.0) 

            print "Stand Init" 

 

    def ​NAO​Relax(self, widget): 

        posture.goToPosture("SitRelax", 1.0) 

            print "Sit Relax" 

 

    def ​NAO​Zero(self, widget): 

        posture.goToPosture("StandZero", 1.0) 

            print "Stand Zero" 

 

    def ​NAO​Belly(self, widget): 

        posture.goToPosture("LyingBelly", 1.0) 

            print "Lying Belly" 

 

    def ​NAO​Back(self, widget): 

        posture.goToPosture("LyingBack", 1.0) 

            print "Lying Back" 

 

    def ​NAO​Stand(self, widget): 

        posture.goToPosture("Stand", 1.0) 

            print "Stand" 

 

    def ​NAO​Crouch(self, widget): 

        posture.goToPosture("Crouch", 1.0) 

            print "Crouch" 
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    def ​NAO​Sit(self, widget): 

        posture.goToPosture("Sit", 1.0) 

            print "Sit" 

 

    ### ​NAO​ Motion Functions 

    def ​NAO​Enough(self, widget): 

        motion.moveInit() 

            motion.post.wakeUp() 

        tts.say("Enough")  

            print "WakeUp" 

 

    def ​NAO​Charge(self, widget): 

        motion.moveInit() 

            motion.post.rest()  

        tts.say("Charge me") 

        print "Rest" 

 

        ### Text to Speech  

        def ​NAO​Say(self, widget): 

            tts.say(self.speechbox.get_text()) 

            print "Say: %s" % self.speechbox.get_text() 

 

        ### Destroy GUI 

        def destroy(self, widget): 

            print "destroyed" 

            Gtk.main_quit() 

 

    ### SVM Preprocessing Functions 

    def openCamera(self, widget): 

            p.openCamera() 
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    def perspective(self, widget): 

            p.perspective() 

 

    def preprocess(self, widget): 

            p.process() 

 

    def ball(self, widget): 

            p.ball() 

 

        def takePhoto(self, widget): 

            p.takePhoto() 

 

        def cropImage(self, widget): 

            p.cropImage() 

 

        def nameChanger(self, widget): 

            p.nameChanger() 

 

        def drawGrid(self, widget): 

            p.drawGrid() 

 

        def giveMePath(self, widget): 

            svm.path() 

 

        def goToFinish(self, widget): 

            svm.moveToPoint() 

 

        ### Key Pressed Event to control ​NAO​ remotely 

        def keyPressed(self, widget, event): 

            global headposition 

            global protection 
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            key_code = event.get_keycode()[1] 

 

            if key_code == 33:  # P Protection On / Off 

                    if protection == 0: 

                            motion.setExternalCollisionProtectionEnabled 

                            ( "All", False ) 

                            protection = 1 

                            print "Protection Off" 

                    else: 

                            motion.setExternalCollisionProtectionEnabled 

                            ( "All", True ) 

                            protection = 0 

                            print "Protection On" 

 

            if key_code == 111:  # UP ​NAO​ Forward 

                    print "Moving Forward..." 

                    motion.moveInit() 

                    motion.walkTo(0.1, 0, 0) 

 

            if key_code == 116: # Down ​NAO​ Backward 

                    print "Moving Backward..." 

                    motion.moveInit() 

                    motion.moveTo(-0.1, 0, 0) 

 

            if key_code == 113: # Left ​NAO​ Left 

                    print "Moving Left..." 

                    motion.moveInit() 

                    motion.moveTo(0, 0.1, 0) 

 

            if key_code == 114: # Right ​NAO​ Right 
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                    print "Moving Right..." 

                    motion.moveInit() 

                    motion.moveTo(0, -0.1, 0) 

 

            if key_code == 38: # a Turn Left 

                    print "Turning Left..." 

                    motion.moveInit() 

                    motion.moveTo(0, 0, 1) 

 

            if key_code == 40: # d Turn Right 

                    print "Turning Right..." 

                    motion.moveInit() 

                    motion.moveTo(0, 0, -1) 

 

            if key_code == 25: # w Head Down 

                    headposition = headposition + 0.1 

                    motion.angleInterpolation("HeadPitch", 

                    headposition, 0.5, True) 

                    if headposition > 0.5: 

                            headposition = 0.5 

                    print "Head Position: %s" % headposition 

 

            if key_code == 39: # s Head UP 

                    headposition = headposition - 0.1 

                    motion.angleInterpolation("HeadPitch", 

                    headposition, 0.5, True) 

                    if headposition < -0.5: 

                            headposition = -0.5 

                    print "Head Position: %s" % headposition 

 

            #print "keyPressed: %s" % key_code  
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        def keyReleased(self, widget, event): 

            key_code = event.get_keycode()[1] 

            #print "keyReleased: %s" % key_code 

 

NAO​.py 

from gi.repository import Gtk 

import movement 

 

if __name__ == "__main__": 

        controller = movement.​NAO​Controller() 

    Gtk.main() 

 

perspective.py 

import cv2 

import numpy as np 

 

# Load image 

im = cv2.imread(​’​image.png​’​) 

img = cv2.imread(​’​image.png​’​) 

 

# Kernel configuration 

kernel = np.ones((35,35),np.uint8) 

 

 

# Convert BGR to HSV 

hsv = cv2.cvtColor(im, cv2.COLOR_BGR2HSV) 

 

 

# define range of white color in HSV 

lower_blue = np.array([0,0,168]) 
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upper_blue = np.array([179,255,255]) 

 

 

# Threshold the HSV image to get only green colors 

mask = cv2.inRange(hsv, lower_blue, upper_blue) 

 

 

# Closing  

closing = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel) 

 

 

# Blur 

blur = cv2.GaussianBlur(closing,(5,5),10) 

 

 

# Getting contours 

ret, thresh = cv2.threshold(blur, 127, 255,0) 

contours,hierarchy = cv2.findContours(thresh,2,1) 

cnt = contours[0] 

 

 

# Get coordinates of a rectangle around the contour 

leftmost = tuple(cnt[cnt[:,:,0].argmin()][0]) 

topmost = tuple(cnt[cnt[:,:,1].argmin()][0]) 

bottommost = tuple(cnt[cnt[:,:,1].argmax()][0]) 

rightmost = tuple(cnt[cnt[:,:,0].argmax()][0]) 

 

print leftmost 

print topmost 

print bottommost 

print rightmost 
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# Drawing lines and circles 

hull = cv2.convexHull(cnt,returnPoints = False) 

defects = cv2.convexityDefects(cnt,hull) 

 

for i in range(defects.shape[0]): 

    s,e,f,d = defects[i,0] 

    start = tuple(cnt[s][0]) 

    end = tuple(cnt[e][0]) 

    far = tuple(cnt[f][0]) 

    cv2.line(im,start,end,[0,255,0],2) 

    cv2.circle(im,far,5,[0,0,255],-1) 

 

 

# Corner coordinates 

#coordinates = [(topmost[0],topmost[1]), (bottommost[0], topmost[1]) 

,(rightmost[0], rightmost[1]), (leftmost[0],leftmost[1])] 

coordinates = [(155,348),(471,352),(569,402),(58,394)] 

 

 

# Put coordinates in array 

pts = np.array(coordinates, dtype = "float32") 

print pts 

(tl, tr, br, bl) = pts 

 

 

# compute the width of the new image, which will be the 

# maximum distance between bottom-right and bottom-left 

# x-coordiates or the top-right and top-left x-coordinates 

widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2)) 
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widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2)) 

maxWidth = max(int(widthA), int(widthB)) 

 

 

# compute the height of the new image, which will be the 

# maximum distance between the top-right and bottom-right 

# y-coordinates or the top-left and bottom-left y-coordinates 

heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2)) 

heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2)) 

maxHeight = max(int(heightA), int(heightB)) 

 

 

# now that we have the dimensions of the new image, construct 

# the set of destination points to obtain a "birds eye view", 

# (i.e. top-down view) of the image, again specifying points 

# in the top-left, top-right, bottom-right, and bottom-left 

# order 

dst = np.array([ 

    [0, 0], 

    [maxWidth - 1, 0], 

    [maxWidth - 1, maxHeight - 1], 

    [0, maxHeight - 1]], dtype = "float32") 

 

 

# compute the perspective transform matrix and then apply it 

M = cv2.getPerspectiveTransform(pts, dst) 

warped = cv2.warpPerspective(img, M, (maxWidth, maxHeight)) 

 

resize = cv2.resize(warped, (640,480)) 

 

# show the original and warped images 
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cv2.imshow("HSV", hsv) 

cv2.imshow("Original", img) 

cv2.imshow("Trapezoid found", im) 

cv2.imshow("Warped", resize) 

#cv2.imwrite("areas/edge.jpg",resize) 

cv2.waitKey(0) 

cv2.destroyAllWindows() 

 

photo.py 

# Image Library 

import Image 

import cv 

import cv2 

import os 

import glob 

from ​NAO​qi import ALProxy 

import numpy as np 

import config as c 

from sys import executable 

from subprocess import Popen 

 

image     = "areas/area.jpg" 

directory = c.DATASET_DIRECTORY 

negative = c.NEGATIVE 

positive = c.POSITIVE 

 

def openCamera(): 

    # Live Camera 

    Popen([executable, ​’​video.py​’​]) 

 

def perspective(): 
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    # Perspective Correction 

    Popen([executable, ​’​perspective.py​’​]) 

 

def process(): 

    # Preprocessing 

    Popen([executable, ​’​preprocess.py​’​]) 

 

def ball(): 

    # Preprocessing 

    Popen([executable, ​’​ball.py​’​]) 

 

def takePhoto(): 

 

  # Setting up proxy 

  cameraProxy = ALProxy("ALVideoDevice", c.IP, c.PORT) 

 

  # Camera ID 

  cameraProxy.kCameraSelectID = c.CAMERAID 

 

  # Camera Parameters 

  cameraProxy.setParam(cameraProxy.kCameraSelectID,c.CAMERAID) 

 

  # Subscribe Camera Proxy 

  videoClient = cameraProxy.subscribe("python_client", 

  c.RESOLUTION, c.COLORSPACE, 5) 

 

  # image[6] contains ASCII 

  ​NAO​Image = cameraProxy.getImageRemote(videoClient) 

 

  # Unsubscribe Camera Proxy 

  cameraProxy.unsubscribe(videoClient) 
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  # Image Size and Pixel Array 

  imageWidth  = ​NAO​Image[0] 

  imageHeight = ​NAO​Image[1] 

  imageArray  = ​NAO​Image[6] 

 

  # Create an Image 

  im = Image.frombytes("RGB", (imageWidth, imageHeight), imageArray) 

  img = np.array(im) 

  gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) 

  #ret,thresh = cv2.threshold(graY144   ,0,255, 

  cv2.THRESH_BINARY+cv2.THRESH_OTSU) 

 

  # Save image. 

  cv2.imwrite(​’​image.png​’​,img) 

 

  # Show image 

  #cv2.imshow(​’​Image​’​,thresh) 

  print "Photo Taken..." 

 

def cropImage(): 

    img = cv2.imread("tmp/contour.jpg") 

    i = 0 

    if os.path.isdir(directory) == False: 

        os.mkdir(directory)  # Create a folder 

        os.chdir(directory)  # Change directory 

    else: 

        os.chdir(directory)  # Change directory 

 

    os.mkdir("negative") 

    os.mkdir("positive") 
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    for v in range(0, 640, 20): 

        for c in range (0, 480, 20): 

            crop_img = img[c:20+c, v:20+v] # Crop from x, y, w, h  

            #cv2.imshow("cropped", crop_img) 

            cv2.imwrite(str(i) + ​’​.png​’​, crop_img) 

            i += 1 

    print "Image Cropped and dataset created..." 

 

 

def nameChanger(): 

    global positive 

    global negative 

    os.chdir(negative) 

    for i, f in enumerate(glob.glob(​’​*.png​’​)): 

        print "%s -> %s.png" % (f, i) 

    os.rename(f, "%s.png" % i) 

 

    os.chdir(positive) 

    for i, f in enumerate(glob.glob(​’​*.png​’​)): 

    print "%s -> %s.png" % (f, i) 

    os.rename(f, "%s.png" % i) 

 

 

 

def drawGrid(): 

    img = cv2.imread(image) 

    x1 = 0 

    x2 = 700 

    for k in range(0, 700, 20): 

        y1 = k 
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        y2 = k 

        cv2.line(img,(x1,y1),(x2,y2),(255,0,0),1)  

 

    y1 = 0 

    y2 =700 

    for k in range(0, 700, 20): 

        x1 = k 

        x2 = k 

        cv2.line(img,(x1,y1),(x2,y2),(255,0,0),1)  

 

    cv2.imwrite(​’​image.png​’​, img) 

 

 

if __name__ == ​’​__main__​’​: 

  showImage() 

 

 

preprocess.py 

import cv2 

import numpy as np 

from matplotlib import pyplot as plt 

 

 

# EDGE DECTECTION 

 

image = cv2.imread(​’​areas/edge.jpg​’​,0) 

edges = cv2.Canny(image,50,70) 

blur = cv2.GaussianBlur(edges,(5,5),100) 

cv2.imwrite(​’​tmp/edge.jpg​’​,blur) 
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#CORNER 

 

filename = ​’​tmp/edge.jpg​’ 

img = cv2.imread(filename) 

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) 

 

gray = np.float32(gray) 

dst = cv2.cornerHarris(gray,2,3,0.04) 

#dst = cv2.dilate(dst,None) 

 

cornerimg = cv2.convertScaleAbs(dst) 

 

cornershow = cornerimg.copy() 

 

# iterate over pixels to get corner positions 

w, h = gray.shape 

for y in range(0, h): 

  for x in range (0, w): 

    #harris = cv2.cv.Get2D( cv2.cv.fromarray(cornerimg), y, x) 

    #if harris[0] > 10e-06: 

    if cornerimg[x,y] > 164: 

     # print("corner at ", x, y) 

      cv2.circle( cornershow,  # dest 

              (y,x),       # pos 

              4,           # radius 

              (255,0,0)    # color 

              ) 

cv2.imwrite(​’​tmp/corner.jpg​’​,cornershow) 

 

 

87 



 

# CONTOUR 

 

im = cv2.imread(​’​tmp/corner.jpg​’​) 

imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY) 

ret,thresh = cv2.threshold(imgray,127,255,0) 

contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE, 

cv2.CHAIN_APPROX_SIMPLE) 

 

len(contours) 

cnt = contours[0] 

print(len(cnt)) 

 

for h,cnt in enumerate(contours): 

    # Draw rectangles around and inside obstacles 

    rect = cv2.minAreaRect(cnt) 

    box = cv2.cv.BoxPoints(rect) 

    box = np.int0(box) 

    #print box 

    if box[0][0] > 100: 

        cv2.drawContours(im,[box]*2,0,(255,255,255),-50) 

        cv2.drawContours(im,[box]*2,0,(255,255,255),50) 

 

 

 

#SHOW IMAGES 

 

plt.subplot(221),plt.imshow(image,cmap = ​’​gray​’​) 

plt.title(​’​Original Image​’​), plt.xticks([]), plt.yticks([]) 

plt.subplot(222),plt.imshow(edges,cmap = ​’​gray​’​) 

plt.title(​’​Edge Image​’​), plt.xticks([]), plt.yticks([]) 

plt.subplot(223),plt.imshow(cornershow,cmap = ​’​gray​’​) 
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plt.title(​’​Corner Image​’​), plt.xticks([]), plt.yticks([]) 

plt.subplot(224),plt.imshow(im,cmap = ​’​gray​’​) 

plt.title(​’​Contour Image​’​), plt.xticks([]), plt.yticks([]) 

 

cv2.imwrite(​’​tmp/contour.jpg​’​,im) 

 

resized_image = cv2.resize(im, (640, 480))  

cv2.imwrite(​’​areas/area2.jpg​’​,resized_image) 

 

plt.show() 

 

svm.py 

import os 

import sys 

import fnmatch 

import getopt 

import cv2 

import numpy as np 

import numpy 

import datetime 

from sklearn import svm 

from heapq import * 

from gasp import * 

from matplotlib import pyplot as plt 

from math import degrees, atan2 

from ​NAO​qi import ALProxy 

 

 

number_of_bins = 64 

positive = ​’​dataset/positive​’ 

negative = ​’​dataset/negative​’ 
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ds = ​’​dataset​’ 

data = [] 

angle = 0 

 

 

# Get all ​’​png​’​ images from ​’​negative​’​ and ​’​positive​’​ folder 

def getImages(): 

    imageFiles = [] 

    for i in range(2): 

        if i == 0: 

            path = positive 

        elif i == 1: 

            path = negative 

        for j in sorted(os.listdir(path)): 

            if fnmatch.fnmatch(j, ​’​*.png​’​): 

                imageFiles.append(j) 

        i += 1 

    return imageFiles 

 

 

# Returns histogram result 

def getHistogram(imageFiles): 

    image = cv2.imread(imageFiles) 

    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) 

    histogram = cv2.calcHist([gray],[0],None,[number_of_bins], 

    [0,number_of_bins]) 

    transp = histogram.transpose() 

    return transp.astype(np.float64) 

 

 

# Gets all pictures​’​ histograms 
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def getHistograms(): 

    images = getImages() 

    histogramMap = {} 

    for i in images: 

        im = positive +​’​/​’​+ i 

        histogramMap[im] = getHistogram(im) 

    for i in images: 

        im = negative +​’​/​’​+ i 

        histogramMap[im] = getHistogram(im) 

    return histogramMap.values() 

 

 

# Sets the values positive 1 negative 0 for svm values 

def getValues(): 

    values = [] 

    for i in range(2): 

        if i == 0: 

            path = positive 

            j = 0 

        elif i == 1: 

            path = negative 

            j = 1 

        for i in sorted(os.listdir(path)): 

            values.append((j,)) 

    return values 

 

 

# Splits the matrix in desired format 

def split(mtx,num): 

    matrix = np.array(mtx) 

    matrix_splitted = np.array(np.split(matrix, num)) 
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    return np.flipud(matrix_splitted) 

 

 

# SVM learn and classify 

def train(): 

    now = datetime.datetime.now() 

    array = [] 

    trainData = map(lambda x: x[0], getHistograms()) 

    value = getValues() 

 

    classify = svm.SVC(kernel=​’​linear​’​) 

    classify.fit(trainData, value) 

 

 

    for j in range(768): 

        predict = getHistogram(ds +​’​/​’​+ str(j)+​’​.png​’​) 

        result = classify.predict(predict) 

 

        if result == [1]: 

            i = 0 

        else: 

            i = 1 

        array.append(i) 

    array = split(array,32).T 

    #array = np.flipud(array) 

    array = np.fliplr(array) 

 

    print " " 

    print "Prediction Time : " + str(datetime.datetime.now() - now) 

    print " " 

    print "##################################################" 
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    print "                     Area                        " 

    print "##################################################" 

    print " " 

    print array 

 

    #array[0,0] = 3 

    return array 

 

 

 

# A* Algorithm  

def heuristic(a, b): 

    return (b[0] - a[0]) ** 2 + (b[1] - a[1]) ** 2 

 

def path(): 

 

    array = train() 

    start = (24,1) 

    goal  = (2,25) 

 

    neighbors = [(0,1),(0,-1),(1,0),(-1,0),(1,1),(1,-1),(-1,1),(-1,-1)] 

 

    closeSet = set() 

    cameFrom = {} 

    gscore = {start:0} 

    fscore = {start:heuristic(start, goal)} 

    oheap = [] 

 

    heappush(oheap, (fscore[start], start)) 

 

    while oheap: 

93 



 

 

        current = heappop(oheap)[1] 

 

        if current == goal: 

            global data 

            while current in cameFrom: 

                data.append(current) 

                current = cameFrom[current] 

 

 

            ## Draws path 

        img = cv2.imread(​’​areas/edge.jpg​’​,0) 

 

            for i in range(0,len(data)) : 

                  x = int(data[i:][0][0])  #takes first element of first list 

                  y = int(data[i:][0][1]) #takes second element of first list 

          j = i + 1 

          if j>len(data)-1: 

            j = len(data)-1     # should be -1 coz no more list 

          z = int(data[j:][0][0]) # takes first element of second list 

          t = int(data[j:][0][1]) # takes second element of second list 

                  array[x,y] = 4   # puts 4 in array 

          cv2.circle(img,(y*20,x*20), 2, (255,0,0), -1)  # circle path 

          cv2.line(img,(y*20,x*20),(t*20,z*20),(5,5,2),5)  # line path 

 

                #print x 

                #print y 

            print " " 

            print "##################################################" 

            print "                Area  with PATH                   " 

            print "##################################################" 

94 



 

            print " " 

            print array 

        print data[::-1] 

 

        cv2.imwrite(​’​areas/area-path.png​’​,img) 

 

         # SHOW PICTURES 

        org = cv2.imread(​’​areas/edge.jpg​’​,0) 

        path = cv2.imread(​’​areas/area-path.png​’​,0) 

        plt.subplot(221),plt.imshow(org,cmap = ​’​gray​’​) 

        plt.title(​’​Original Image​’​), plt.xticks([]), plt.yticks([]) 

        plt.subplot(222),plt.imshow(path,cmap = ​’​gray​’​) 

        plt.title(​’​Path Image​’​), plt.xticks([]), plt.yticks([]) 

        plt.show() 

 

            return data 

 

        closeSet.add(current) 

        for i, j in neighbors: 

            neighbor = current[0] + i, current[1] + j  

            tentative_g_score = gscore[current] + heuristic(current, neighbor) 

            if 0 <= neighbor[0] < array.shape[0]: 

                if 0 <= neighbor[1] < array.shape[1]:  

                    if array[neighbor[0]][neighbor[1]] == 1: 

                        continue 

                else: 

                    # array bound y walls 

                    continue 

            else: 

                # array bound x walls 

                continue 
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            if neighbor in closeSet and tentative_g_score >=  

            gscore.get(neighbor, 0): 

                continue 

 

            if  tentative_g_score < gscore.get(neighbor, 0) or neighbor not in  

            [i[1]for i in oheap]: 

                cameFrom[neighbor] = current 

                gscore[neighbor] = tentative_g_score 

                fscore[neighbor] = tentative_g_score + heuristic(neighbor, goal) 

                heappush(oheap, (fscore[neighbor], neighbor)) 

                path = heappush(oheap, (fscore[neighbor], neighbor)) 

 

    return False 

 

# End of A* algorithm  

 

 

# Bearing Algorithm 

def gb(x, y, center_x, center_y): 

    global angle 

    angle = degrees(atan2(y - center_y, x - center_x)) 

    bearing1 = (angle + 360) % 360 

    bearing2 = (90 - angle) % 360  

    #print "gb: x=%2d y=%2d angle=%6.1f bearing1=%5.1f bearing2=%5.1f" %  

    (x, y, angle, bearing1, bearing2) 

    #print angle 

    return angle  

 

def moveToPoint(): 

    checkpoint = [] 
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    point_list = [] 

    way_point = [] 

    angle_point = [] 

    coordinates = [] 

    cm = 0.07 

    for i in range(len(data)-1): 

        gb(data[i][0],data[i][1],data[i+1][0],data[i+1][1]) 

        first_point = (data[i][0],data[i][1]) 

        second_point = (data[i+1][0],data[i+1][1]) 

        lst = (angle, first_point, second_point) 

        point_list.append(lst) 

 

    way_point.append(point_list[0][1]) 

 

    for i in range(len(point_list)-1): 

        if point_list[i][0] != point_list[i+1][0]: 

            way_point.append(point_list[i+1][1]) 

 

    way_point.append(point_list[len(point_list)-1][1]) 

    way_point = way_point[::-1] 

 

    print point_list 

    print way_point 

 

    for i in range(len(way_point)-1): 

        gb(way_point[i][0],way_point[i][1],way_point[i+1][0], 

        way_point[i+1][1]) 

        first_point = (way_point[i][0],way_point[i][1]) 

        second_point = (way_point[i+1][0],way_point[i+1][1]) 

        lst = (angle,second_point) 

        if i == 0: 
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            angle_point.append(data[-1]) 

        angle_point.append(lst) 

        if i == 0: 

            coordinates.append(tuple(numpy.subtract(angle_point[0], 

            angle_point[1][1]))) 

        if i > 0: 

            coordinates.append(tuple(numpy.subtract(angle_point[i][1], 

            angle_point[i+1][1]))) 

    print coordinates 

 

    motion = ALProxy("ALMotion", "192.168.10.13", 9559) 

    tts = ALProxy("ALTextToSpeech", "192.168.10.13", 9559) 

    postureProxy = ALProxy("ALRobotPosture", "192.168.10.13", 9559) 

    motion.moveInit() 

    motion.setStiffnesses("Body", 1.0) 

    motion.setMoveArmsEnabled(True, True) 

    motion.setMotionConfig([["ENABLE_FOOT_CONTACT_PROTECTION", False]]) 

        motion.setExternalCollisionProtectionEnabled( "All", False ) 

        print "Protection Off" 

        tts.say("Hummm, it seams easy!") 

 

    for i in range(len(coordinates)): 

        print "Walking" 

        print coordinates[i][0]*cm, coordinates[i][1]*cm 

        if coordinates[i][0] > 0 and coordinates[i][1] < 0: 

            motion.moveTo(0, 0, -0.785398, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1  

            motion.waitUntilMoveIsFinished() 

            motion.moveTo(coordinates[i][0] * cm, 0, 0, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 
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                   ["TorsoWy", 0.1] ])         # torso bend 0.1 rad in front) 

            motion.waitUntilMoveIsFinished() 

            motion.moveTo(0, 0, 0.785398, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1  

            motion.waitUntilMoveIsFinished() 

 

        elif coordinates[i][0] > 0 and coordinates[i][1] == 0: 

            motion.moveTo(coordinates[i][0] * cm, 0, 0, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1 rad in front)) 

            motion.waitUntilMoveIsFinished() 

 

        elif coordinates[i][0] > 0 and coordinates[i][1] > 0: 

            motion.moveTo(0, 0, 0.785398, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1 

            motion.waitUntilMoveIsFinished() 

            motion.moveTo(coordinates[i][0] * cm, 0, 0, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1 rad in front)) 

            motion.waitUntilMoveIsFinished() 

            motion.moveTo(0, 0, -0.785398, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1  

            motion.waitUntilMoveIsFinished() 

 

        elif coordinates[i][0] == 0 and coordinates[i][1] < 0: 

            motion.moveTo(0, 0, -1.5708, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1 
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            motion.waitUntilMoveIsFinished() 

            motion.moveTo(abs(coordinates[i][1]) * cm, 0, 0, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1 rad in front)) 

            motion.waitUntilMoveIsFinished() 

            motion.moveTo(0, 0, 1.5708, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1  

            motion.waitUntilMoveIsFinished() 

 

        elif coordinates[i][0] < 0 and coordinates[i][1] == 0: 

            motion.moveTo(0, 0, 1.5708, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1 

            motion.waitUntilMoveIsFinished() 

            motion.moveTo(abs(coordinates[i][0]) * cm, 0, 0, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1 rad in front)) 

            motion.waitUntilMoveIsFinished() 

            motion.moveTo(0, 0, -1.5708, 

                 [ ["MaxStepFrequency", 0.5],  # low frequency 

                   ["TorsoWy", 0.1] ])         # torso bend 0.1  

            motion.waitUntilMoveIsFinished() 

    motion.moveTo(0.6,0,0, 

    [ ["MaxStepFrequency", 0.5],  # low frequency 

      ["TorsoWy", 0.1] ])         # torso bend 0.1 ) 

    postureProxy.goToPosture("Sit", 1.0) 

    tts.say("Finish") 

    print "Finish" 
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video.py 

import sys 

 

from PyQt4.QtGui import QWidget, QImage, QApplication, QPainter 

from ​NAO​qi import ALProxy 

 

# To get the constants relative to the video. 

import vision_definitions 

 

 

class ImageWidget(QWidget): 

    """ 

    Tiny widget to display camera images from ​NAO​qi. 

    """ 

    def __init__(self, IP, PORT, CameraID, parent=None): 

        """ 

        Initialization. 

        """ 

        QWidget.__init__(self, parent) 

        self._image = QImage() 

        self.setWindowTitle(​’NAO’​) 

 

        self._imgWidth = 640 

        self._imgHeight = 480 

        self._cameraID = CameraID 

        self.resize(self._imgWidth, self._imgHeight) 

 

        # Proxy to ALVideoDevice. 

        self._videoProxy = None 
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        # Our video module name. 

        self._imgClient = "" 

 

        # This will contain this alImage we get from ​NAO​. 

        self._alImage = None 

 

        self._registerImageClient(IP, PORT) 

 

        # Trigget ​’​timerEvent​’​ every 100 ms. 

        self.startTimer(100) 

 

 

    def _registerImageClient(self, IP, PORT): 

        """ 

        Register our video module to the robot. 

        """ 

        self._videoProxy = ALProxy("ALVideoDevice", IP, PORT) 

        resolution = vision_definitions.kQVGA  # 320 * 240 

        colorSpace = vision_definitions.kRGBColorSpace 

        self._imgClient = self._videoProxy.subscribe("_client", 

        resolution, colorSpace, 5) 

 

        # Select camera. 

        self._videoProxy.setParam(vision_definitions.kCameraSelectID, 

                                  self._cameraID) 

 

 

    def _unregisterImageClient(self): 

        """ 

        Unregister our ​NAO​qi video module. 
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        """ 

        if self._imgClient != "": 

            self._videoProxy.unsubscribe(self._imgClient) 

 

 

    def paintEvent(self, event): 

        """ 

        Draw the QImage on screen. 

        """ 

        painter = QPainter(self) 

        painter.drawImage(painter.viewport(), self._image) 

 

 

    def _updateImage(self): 

        """ 

        Retrieve a new image from ​NAO​. 

        """ 

        self._alImage = self._videoProxy.getImageRemote(self._imgClient) 

        self._image = QImage(self._alImage[6],           # Pixel array. 

                             self._alImage[0],           # Width. 

                             self._alImage[1],           # Height. 

                             QImage.Format_RGB888) 

 

 

    def timerEvent(self, event): 

        """ 

        Called periodically. Retrieve a ​NAO​ image, and update the widget. 

        """ 

        self._updateImage() 

        self.update() 
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    def __del__(self): 

        """ 

        When the widget is deleted, we unregister our ​NAO​qi video module. 

        """ 

        self._unregisterImageClient() 

 

 

 

if __name__ == ​’​__main__​’​: 

    IP = "192.168.10.13"  # Replace here with your ​NAO​Qi​’​s IP address. 

    PORT = 9559 

    CameraID = 0 

 

    # Read IP address from first argument if any. 

    if len(sys.argv) > 1: 

        IP = sys.argv[1] 

 

    # Read CameraID from second argument if any. 

    if len(sys.argv) > 2: 

        CameraID = int(sys.argv[2]) 

 

 

    app = QApplication(sys.argv) 

    myWidget = ImageWidget(IP, PORT, CameraID) 

    myWidget.show() 

    sys.exit(app.exec_()) 
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