

GENETIC ALGORITHM AND PARTICLE SWARM
OPTIMIZATION TECHNIQUES IN MULTIMODAL

FUNCTIONS OPTIMIZATION

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES

OF
NEAR EAST UNIVERSITY

By
SAYED RAZI ABBAS

In Partial Fulfillment of the Requirements for
the Degree of Master of Science

in
Computer Engineering

NICOSIA 2017

Sayed Razi ABBAS: GENETIC ALGORITHM AND PARTICLE SWARM
OPTIMIZATION TECHNIQUES IN MULTIMODAL FUNCTIONS

OPTIMIZATION

Approval of director of Graduate school of
Applied Sciences

Prof. Dr. Nadire ÇAVUŞ

 We certify this thesis is satisfactory for the award of the degree of Master of Science
in Computer Engineering

Examining Committee in Charge:

Prof.Dr. Rahib Abiyev Committee Chairman, Department of
 Computer Engineering, NEU

Prof. Dr. Adil Amirjanov Supervisor, Department of Computer
 Engineering, NEU

Assist. Prof. Dr. Ali Danandeh Mehr Department of Civil Engineering,
 NEU

I hereby state that all material in this document has been gained and conferred in accordance with

academic rules and moral conduct. I also announce that, as required by these rules and conduct, I

have fully cited and referenced all data and results that are not genuine to this work.

Name, Last name: SAYED RAZI ABBAS

Signature:

Date:

i

ACKNOWLEDGMENTS

 Firstly, I would like to indicate my sincere gratitude to my advisor Prof. Dr. Adil

Amirjanov, for the continuous support of my Master study and research, for his patience,

motivation, ambition, and massive knowledge. His guidance helped me in all the time of

research and writing of this thesis. I could not have visualized having a better advisor and

mentor for my Master study.

Besides my advisor, I would like to thank the rest of faculty staff and jury members, for

their encouragement.

Finally, I take this opportunity to express the profound gratitude from my deep heart to my

beloved parents and brothers for their love and continuous support.

ii

ABSTRACT

Evolutionary algorithms (EA's) are well-known mechanisms for optimization problems

that involve frequently conflicting objectives. From the year of 1985, there have been some

evolutionary attempts which succeeded in solving multimodal optimization problems.

There are two techniques that are already up to the task of optimization - a sequential niche

genetic algorithm (SNGA) and a novel adaptive sequential niche technique with particle

swarm optimization (ASNPSO) for multimodal function optimization.

SNGA technique is using a simple genetic algorithm (GA) and obtains information in one

iteration. It is succeeded by applying a fitness derating function to the raw fitness function,

which leads to the fitness values being depressed in the regions of the problem space where

solutions have already been found. The effectiveness of the algorithm is tested by some

multimodal test functions. The method is at least as fast as fitness sharing methods.

On the other hand, ASNPSO also is used for same purpose of multimodal function

optimization. It is using a particle swarm optimization instead of simple GA that is

detecting optimal solutions sequentially. In the ASNPSO method, the hilly-valley function

is used to determine how to change a fitness of a particle in a sub-swarm run. The

algorithm’s search ability is strong and adaptive.

The purpose of both algorithms is to optimize multimodal problems with different

approaches and I subjected both of them to test with different functions and compared both

techniques to obtain knowledge of which one gives more accurate optimal solutions.

Keywords: Genetic algorithm; niche technique; fitness sharing; fitness derating function;

multimodal optimization

iii

ÖZET

Evrimsel algoritmalar (EA'lar) sıklıkla çelişen amaçlarla ilgili olan optimizasyon

problemleri için bilinen mekanizmalardır. 1985 yılından itibaren, multimodal optimizasyon

problemlerini çözmeyi başaran bazı evrimsel girişimler olmuştur.

Optimizasyon görevini yerine getiren iki teknik vardır: ardışık niş genetik algoritması

(SNGA) ve çok modlu fonksiyon optimizasyonu için parçacık sürüsü optimizasyonuna

(ASNPSO) sahip yeni bir uyarlanabilir sıralı niş tekniği.

SNGA tekniği, basit bir genetik algoritma (GA) kullanmaktadır ve bir yinelemede bilgi

almaktadır. Bunun sonucunda, çiğ uygunluk fonksiyonuna bir zindelik düşürme

fonksiyonu uygulanır ve sonuç olarak, zihniyet değerlerinin çözümlerin daha önce

bulunduğu problem alanının bölgelerinde baskılanmasına yol açar. Algoritmanın etkinliği,

bazı çok modlu test fonksiyonları tarafından test edilmiştir. Yöntem en az fitness paylaşım

yöntemleri kadar hızlıdır.

Öte yandan, ASNPSO da aynı amaçla multimodal fonksiyon optimizasyonu için kullanılır.

Ardışık optimal çözümleri saptayan basit GA yerine parçacık sürüsü optimizasyonunu

kullanıyor. ASNPSO yönteminde tepelik-vadiye fonksiyonu, bir alt sürü koşusunda bir

parçacık şeklinin nasıl değiştirileceğini belirlemek için kullanılır. Algoritmanın arama

becerisi güçlü ve uyarlanabilir.

Her iki algoritmanın amacı, multimodal problemleri farklı yaklaşımlarla optimize etmektir

ve her ikisini de farklı fonksiyonlarla test etmeye tabi tuttum ve her iki tekniği

karşılaştırarak hangisinin daha doğru en iyi çözümleri sunduğunu öğrentim.

Anahtar Kelimeler: Genetik algoritma; Niş tekniği; Fitness paylaşımı; Fitness indirgeme

fonksiyonu; Çok modlu optimizasyon

iv

 TABLE OF CONTENTS

ACKNOWLEDGMENTS .. i

ABSTRACT ... ii

ÖZET ... iii

1. TABLE OF CONTENTS ... iv

1. LIST OF FIGURE ... vii

1. LIST OF TABLE .. viii

CHAPTER 1: INTRODUCTION

1.1 What is Optimization? ... 1

1.2 Thesis Overview .. 2

CHAPTER 2: INTRODUCTION TO GENETIC ALGORITHM

2.1 Binary Representation .. 5

2.2 Selection ... 7

2.2.1 Roulette Wheel Selection ... 8

2.2.2 Tournament Selection ... 8

2.3 Crossover ... 10

2.4 Mutation ... 12

2.5 Population Replacement .. 12

2.6 Search Termination .. 12

CHAPTER 3: THE METHODS IN GA FOR MULTIMODAL FUNCTION
OPTIMIZATION

3.1 Method of Iteration .. 14

3.2 Parallel Sub-population .. 14

v

3.3 Fitness Sharing .. 14

3.4 The Sequential Niche Genetic Algorithm Technique (SNGA) 16

3.4.1 Basic principles .. 17

3.4.2 Explanation of algorithm ... 17

3.4.3 Derating function ... 18

3.4.4 Termination conditions .. 21

CHAPTER 4: METHOD OF PARTICLE SWARM OPTIMIZATION

4.1. Algorithm .. 22

4.2 PSO Parameter Control .. 26

4.3 The ASNPSO Algorithm ... 26

4.3.1 The basic principle .. 28

4.3.2 Termination conditions for sub-swarm ... 28

4.3.3 Hill valley algorithm ... 30

CHAPTER 5: EXPERIMENTAL RESULTS

5.1 Equal Maxima (F1) .. 32

5.2 Decreasing Maxima (F2) ... 32

5.3 Uneven Maxima (F3)... 33

5.4 Uneven Decreasing Maxima (F4).. 34

5.5 Himmelblau's Function (F5) .. 35

5.6 Shubert Function (F6) .. 36

5.7 Scekel's Foxhole Function (F7) ... 37

5.8 F8 Shubert Function (two dimensional) (F8) .. 37

vi

CHAPTER 6: ANALYSIS & COMPARISONS BETWEEN ASNPSO & SNGA

6.1. Results of Functions .. 39

6.1.1 F1 Equal maxima .. 40

6.1.2 F2 Decreasing maxima ... 41

6.1.3 F3 Uneven maxima ... 41

6.1.4 F4 Uneven decreasing maxima .. 42

6.1.5 F5 Himmelblau's function .. 43

6.1.6 F6 One dimensional Shubert function .. 44

6.1.7 F7 Shekel foxhole De Jong two dimensional function: 45

6.1.8 F8 Two dimensional Shubert function ... 48

CHAPTER 7: DISCUSSION & CONCLUSION

7.1 Discussion .. 50

7.2 Conclusion ... 51

REFERENCES .. 52

APPENDICES

Appendix 1: SNGA Algorithms CPP Source Code ... 56

Appendix 2: ASNPSO Algorithms CPP Source Code ... 77

vii

LIST OF FIGURES

Figure 1: Genetic Algorithms Flowchart ... 4

Figure 2: Roulette Wheel Selection Algorithms .. 9

Figure 3: Linear ranking selection pseudo code ... 10

Figure 4: tournament selection pseudo codes ... 8

Figure 5: Single crossover pseudo code (Goldberg, 1989). ... 11

Figure 6: Pseudo code of ASNPSO algorithm. .. 29

Figure 7: Hill valley function pseudo ... 31

Figure 8: Equal maxima (F1). .. 32

Figure 9: Decrease maxima (F2). ... 33

Figure 10: Uneven maxima (F3). ... 34

Figure 11: Uneven Decreasing maxima (F4). .. 35

Figure 12: Himmelblau's function (F5). ... 36

Figure 13: Shubert one dimensional function (F6). .. 36

Figure 14: Scekel's Foxhole function where 25 sub=swarm were run sequentially (F7). 37

Figure 15: Shubert function where 23 Sub-swarms were run sequentially (F8). 38

viii

LIST OF TABLES

Table1: Result values of F1 obtained by SNGA algorithm. ... 40

Table 2: Result values of F1 obtained by ASNPSO algorithm. 40

Table 3: Result values of F2 obtained by SNGA algorithm. ... 41

Table 4: Result values of F2 obtained by ASNPSO algorithm. 41

Table 5: Result values of F3 obtained by SNGA algorithm. .. 42

Table 6: Result values of F3 obtained by ASNPSO algorithm. 42

Table 7: Result values of F4 obtained by SNGA algorithm. .. 43

Table 8: Result values of F4 obtained by ASNPSO algorithm. 43

Table 9: Result values of F5 obtained by SNGA algorithm. .. 44

Table 10: Result values of F5 obtained by ASNPSO algorithm. 44

Table 11: Result values of F6 obtained by SNGA algorithm. .. 45

Table 12: Result values of F6 obtained by ASNPSO algorithm. 45

Table 13: Result values of F7 obtained by SNGA algorithm. .. 46

Table 14: Result values of F7 obtained by ASNPSO algorithm. 47

Table 15: Result values of F8 obtained by SNGA algorithm. .. 48

Table 16: Result values of F8 obtained by ASNPSO algorithm. 49

1

CHAPTER 1

INTRODUCTION

1.1 What is Optimization?

Our life is filled with problems, these problems are the driving force for our inventions and

environmental enhancement strategies. In computer science optimization is a computer

process based process used to find solution to complex problems. For example, if we want

to find the maximum peak for any function, then we need to formulize the precepts for a

solution to be recognized as an optimum corresponding to our aim of finding either global

optima, or local optima. Nevertheless, we may use constraint to push the algorithms to a

feasible peak by suit of constraints, and if we want to make things more difficult we will

use mixed constraint types, such as equality and inequality constraints. Finally,

optimization can be defined as optimization is to find an algorithm which solves a given

class of problem.

In mathematics we can use derivatives or differentiation to find an optima, but not all

function are continuous and differentiable. In general, the non-linear programming is to

find x
r

 so as to optimize , n

nxxxx),,,(21 L
r

, where SFx
r

. The objective

function)(xf
r

 is defined in search space , the set SF define the feasible region,

usually is defined in dimensional space from the global space . Every vector

has domain boundaries, where niiuxil i 1),()(, and the feasible region is defined

by a set of constraints.

 Inequality constraints, 0)(xg i , and equality constraints 0)(xh j . Those inequality

constraints could be equal to zero then they are called active; however, the equality

constraints are always active and equal to zero in the entire of search space. Some

researchers were focused in local optima, where the point is local optima there exist

ε such that. For all in the ε neighborhood of in ,)()(0xfxf
rr

 . Finally,

evolutionary algorithms are contrasting the mathematical derivatives to be a global

optimizer method with complex objective functions when mathematics fails to give a

)(xf
r

S

S n n x
r

x
r

0x
r

0x
r

F

2

sensible solution because of the complexity of the hyperspace or function discontinuity

elsewhere (Michalewicz & Schoenauery, 1996).

Evolutionary computing is often used to solve such complicated problems, where the

boundaries of the feasible region are so strict; whereas, genetic algorithms are an expert

optimization method. Its chromosomal representation can be continuous or discreet.

Genetic algorithms can be used for complex optimization problem; since, they are not

attracted by the shape or the complexity of the objective function. By adding the

constraints functions for the infeasible chromosome it can enforce those individuals to be

feasible, or it may give them cost to be feasible. On the other hand, the feasible

chromosomes have no addition or subtraction from their objective function value. This

criterion will enhance the feasible solution and penalize infeasible no matter the shape of

the function. Discontinuity is the second problem genetic algorithms can avoid; since, the

value of constraints will avoid it.

The field of EA is encircle of genetic algorithms (GAs) and many other methods, here I

will describe two methods which is already proposed in my abstract. Before to go in detail

of SNGA and ASNPSO I need to explain genetic algorithm and Particle swarm

optimization methods.

1.2. Thesis Overview

This thesis is organized in incremental method. Starting with simple and moving to more

complicate declaration depending on the issues.

Chapter 2: Discusses Genetic Algorithms framework, structure, and it basic operation.

Chapter 3: Description of different methods in GA and detail of SNGA.

Chapter 4: Discusses particle swarm optimization and it basic operation and ASNPSO.

Chapter 5: Experimental results of 8 functions which are used in SNGA and ASNPSO.

Chapter 6: Analysis and comparison of SNGA and ASNPSO with statistical data.

Chapter 7: Discussion defend on the analysis and comparison.

Chapter 8: Conclusion.

3

CHAPTER 2

 INTRODUCTION TO GENETIC ALGORITHM

Study of mathematical optimization a genetic algorithm is a best and generally used global

search method that duplicate the process of natural election. It generates practical solutions

to optimization. Genetic algorithms are the large part of evolutionary algorithms (EA), that

produce solution to optimization issues using method achieved by natural evolution.

(Goldberg, 1989), Genetic algorithm is finding algorithm depend on the logistics of natural

election and natural ancestral. They together survival of the fittest among string structures

with a structured up to now randomized facts conversion to form a search algorithm with

some of the original talent of human search. In every generation, it created new strings.

The new string is used for good measure and used for new generation. Genetic algorithm

have been developed by (Holland, 1975), the research have been twofold (1) to

hypothetical and carefully show the adaptive operation of natural structures, and (2) to

create artificial structure software that absorb the important mechanisms of natural and

artificial structures science. The research on genetic algorithm has been well made for

survival in many different environment. The implications of well made for artificial

systems are manifold. If artificial structure can be made better, costly modernize can be

decreased or eliminated. If best result found then the actual structures can perform their

function longer and batter. Features for self-repair, self-direction, and breeding are the rule

in biological system, where they exist in the most knowledgeable artificial systems

(Sivanandam & Deepa, 2008). It is also the most popular stochastic optimization

methodology used now a day. The basic of GA is Charles Darwin theory of “survival of

the fittest”, where types must adapt to their territory to survive. Elements with fittest

natural traits will have a best capacity and chance to persist. They will also have more

preference for reproduction and changing their phenotype and genotype to next

generations. GA basic are the genes that carry a set of genes, where in phenotype represent

element a single gene. Element have upper and lower bounds that show the minimum and

maximum adaptive fitness in phenotype for applicant. Genes can provide solutions or near

result for the global problem. Simultaneously, gene length makes scale of participate

specific factor set; for example, if gene length is equal to n , then it can represent 12 n

4

binary strings (Sivanandam & Deepa, 2008), those can be encoded for (length) 12
n

(Reeves & Rowe, 2002). On the other side, every gene has one or more genes, those genes

will be stored in a single attitude. The set of all genes will represent a single element.

(Holland, 1975) explained genetic algorithm for finding nonlinear problems. GA is

problem determined by as there are many limitation for individual representation i.e.

binary representation because our aim is to guarantee that GA exactly and absolutely

represents all feasible alleles for every point of the search space. These values for genes

will represent the genotype that makes direct image for phenotype where we will compute

the result as stated to their fitness. In general if can tack values by a decision variable

between a ,b , and ab , and if it’s designed to binary string of length L , then the accuracy

will be computed in the next equation (Reeves & Rowe, 2002), where is best gene

width.

Another technique was placed for binary representation of elements, such as gray coding,

where the hamming cliff is decrease to one rather than standard binary representation. The

chance that at least one gene is presented at each part can be defined in the next equation

(Sharda & Voß, 2002).

GA basic runs are initialization, selection, crossover, mutation, termination, population

replacement, and fitness evaluation. Figure 1 showed GA flowchart.

Figure 1: Genetic Algorithms Flowchart

x

5

 2.1 Binary Representation

The GA process was essentially initiate by (Holland, 1975) was in binary, since as it was

the natural chromosomes gene reproduction and its accessibility of applying the GA basic

process. For example, to appoint a variable in decimal equal to 15 for a given problem, we

start from 0 and start to give discrete values in limit by increment by one. Then we

compute to appoint a number from 0 binary)0000(to 15 binary)1111(we need 4 bits. With this

method the solution was awful. Basically three issues were highlighted.

A. Number of bit required: that every variable had its own domain iD , which has

lower and upper bound; e.g. problem 5G let us staple sample of two variables

12000 1 x , here we have a problem of planning variable domain in binary level,

circulate to flat binary bit matching to every variable. To show 1x , in trivial method

we need 11 bit binary string to show it. In another word, 55.055.0 3 x how

could be appointed to it in trivial technique. This planning issue has occur a

problem which is defined as Big bound. We need to compute all variables into

binary string that store them within boundaries. Sometimes there will be off bits

inside, at the time how can we control the domain idea? For example, to represent

decimal200 in binary binary11001000)(as it shows, we have many unoccupied alleles,

which can in total shift the search space for impractical solution. If we have several

solid reconnection operations, either maximization or minimization issues all of

them will be 0’s or 1’s after a particular number of iterations. And if we need to

represent 200 in fewer numbers of bits determine by only full (on) bits, we will

have a value less than 200, which is a loss of useful data points in search space.

Either way will be inefficient for an accurate solution, within this bad status of

binary reproduction and domain content; still, we can produce a temporary solution.

For incase, uniform crossover, where crossover chance is taken separately for every

bit substitute of chromosome in some way it’s exchange for mutation. Moreover we

suggest a methodology for building and retrieving values of variable with less

difficulty and more exact results.

6

Assume we are going to maximize or minimize function, such that RR i , each

variable ix , can staple value from domain],[iii baD , where ii ba . If we need to

optimize)(xf with clarity, every one estate should be constructed by n

ii ba 10)(,

where n is the decimal precisions desired. Let us indicate im as the smallest threshold

integer then 1210)(imn

ii ab . For example, 30 vD , then]0,3[vD .

Assume we need accuracy with degree 2; then 1210)03(2 im , to represent

100300 we need 9bits which indicate the distinction will be as stated to Equation (1).

Finally; in order to represent forecast with variable boundaries elsewhere (Goldberg,

1989).

12
)(

n

ii

i

ab
ngbinarystridecimalav (1)

B. To figure a more tricky framework where we have a variable with a big number and

another variable with a mini domain. e.g. the same issue 5G (see page Error!

Bookmark not defined.) Where 55.055.0 3 x , the query is how to represent

variable domain that has negative range? Let us forecast scheme, if we use chance

to be positive; or negative for exactly set of bit in chromosome, then that will be

interest. Still, whenever we design a control matrix for variable negative and

positive value that will be begun from the initializing by building variables in

domain limit and checkup they token. By inherently of fixed variable rage i.e.

stable token contrary of search process running, and forecast it will be the same

token), both of them are awful in operation and mathematical evidence. Another

issue to study is does all variables within the value of bits, want to be moved? The

is answered Yes, I should do, because making proportional number of bits will

build the process more tricky mistakes. Another question is how to recover an

objective function value from the chromosome? Here we need more than one

quality process for recovering variable values and of course we need more tricky

designing of bits to ratio or real values. In last, variables are discreet and mainly the

same for entire runs and search processes.

7

C. Re-construct binary string: following retrieving variables values and computing

objective function, we want to apply GA process and penalty. Here one question is

how to recover certain variable value from penalty function? Which methodology

will use to construct binary string from its matching variables value? We have

sketched more than one solution, but all inappropriate. Mainly the left most binary

string values about zeroes; in contrast, mathematic optimization method debated

before position is to deal only with positive binary strings. So then we can find the

inverse of the given penalty function. And we already trying it in simple method

that is maximized]31,0[x . The made objective function loses too many points

out of the native function. The result is to adapt the value of penalized element,

matching to the same Equation (1).

2.2 Selection

From population to be choosing a two parent chromosomes for crossing is called in GA a

selection method. How many individuals will be selected? The set of questions needed to

be acknowledged. Will they make a better quality! In case will be a better solution or not

after a crossing point. From random population to be choose that called basic selection

fully random method, exchanged, where separate objective functions are to be the chance

of selection, this method is the soul of roulette wheel selection. Basically it's easy method

but some more problem to be answered, e.g. the two parents from populations mating pool,

how many new copies these two selected elements will copy themselves for the next

population. This is the basic problem with selection method. There is a lot of solutions, that

can easily solves these problems. Such as elements rank, fitness pressure balancing and

scaling of fitness be based on nature of the issue. Such as, rank selection and steady-state

selection many other methods were created to solve these problems. Selection and other

assign of selection algorithm are diverting the basic part of convergence of the algorithm.

There are two main types of selection, proportional selection, where fitness part is ratio

apprehend from comprehensive population part, such as, selection of roulette wheel. The

other type of selection is ordinal based selection, where fitness based on ranking (position)

of part in population, and the first place taken for the worst individual. We have used

binary tournament selection, since as its regularity and ability to give chance for worst

8

individuals to take a part in selection method where their preference is very low. On the

way, for limitation of optimization we can assess stochastic ranking as a selection process.

Although it can’t be identify as a complete one, because of its shortness to select part from

the crossing pool. Another appreciative technique require that can make the agreement of

selection.

2.2.1 Tournament Selection

Tournament selection works as follows, choose some number t of individuals randomly

from the population and copy the best individual from this group into the intermediate

population and repeat N times Often tournaments are held only between two individuals

(binary tournament) but a generalization is possible to an arbitrary group size t called

tournament size. Figure 4 shows the basic tournament selection pseudo code (Blickle &

Thiele, 1997).

 Figure 2: Tournament selection pseudo codes (Blickle & Thiele, 1997)

2.2.2 Roulette Wheel Selection

Roulette Wheel is the most familiar selection method used in GA. It starts by selecting

elements linearly from the mating pool. However, cumulative element objective function is

summed, and the average of fitness is calculated. By using the sum of fitness, individual’s

fitness is divided sequentially with the total probability of one. Individuals are captured in

Algorithm: Tournament Selection

Input: the population)(P the tournament size Nt ,,2,1 LL

Output: population after Selection

Tournament),,,(1 NJJt LL

for 1i to N do

 '
jJ best individual out of τ randomly picked individuals

from

od

Return ''
1 ,, NJJ LL

9

the roulette space proportional to their fitness. Meanwhile, the number of times individual

can be selected is proportional to the average of fitness. When comparing with other

method this method has disadvantage. It’s hardly dependent on individual objective

function, which allows the best individuals to manipulate the mating pool. On the other

hand, it will encourage the algorithm for less exploration for infeasible search space from

the beginning. However, those individuals may have a solution. Finally, scaling of fitness

and other techniques are used to make less impact of fittest individuals for the search

process. Figure 2.3.1.1 declares RWS algorithm pseudo code (Goldberg, 1989).

Figure 3: Roulette Wheel Selection Algorithms

In contrast with proportion selection, linear ranking selection is based in position, where

individual are sorted with respect to problem in hand. Meanwhile the first position will be

reserved for the worst element. The positions of the population will have constant

probability to be selected with respect to the Equation (2) (Blickle & Thiele, 1997), where

linear function will be constructed. The probability of worst individual to be selected will

be
N

 (Blickle & Thiele, 1997), and the best will be

N

 (Blickle & Thiele, 1997). The

value of must be in between [0,1]; on the other hand, the value of will be calculated

Algorithm: roulette wheel selection

Input: the population P

Output: population after selection
*P

X= random]0,1[

while do

If i<m & x <
),(

),(

1
tbf

tbf
n

i i

i

 then

tbselect i ,

fi

od

Return
*P

1i
ni

1 ii

10

by 2 (Blickle & Thiele, 1997), where value will determine the probability of

worst individual to participate in selection process and N is population size and i is the

index of element. Figure 2.3.2.1 is illustrates the pseudo code for linear ranking selection

algorithm (Blickle & Thiele, 1997).

1

11

N

i

N
pi (2)

Figure 4: Linear ranking selection pseudo code (Blickle & Thiele, 1997)

2.3 Crossover

Crossover is the production method that uses exploitation to shift the search process for

better region of the search space. It can positively make new elements that are improved

their parents by posting their quality into new baby's. It can only reconstruction ancestor’s

attribute externally any construction of new attribute. For every element GA are flowing to

allow incidental for crossover, lean on every element, those individual will be post into the

crossing pool. The typical chance of crossover cP will be even for the whole of the method

Input: the population P (τ) and the production rate of worst individual [1,0[
Output: the population after selection 'P

Linear ranking),,,(1 nJJ LL

J ← sorted popula'on according to fitness with worst individual at

the first position

00 S

For 1i to N do

iii PSS 1 ,where iP value is calculated in equation(2)

od

For 1i to N do

],0[nSrandomr

 JJ i

'
, such that ss

ii

r
1

Od

Return ''
1 ,, NJJ LL

11

and = to (0.5-1.0) (Goldberg, 1989), where a homogeneous random generator will carry

producing random values; at all, for selected new element selected the value will be

correlated with cP , in order to post element into the crossing pool. Many nature of

crossover happen, such as multipoint crossover, homogeneous crossover, single point

crossover, and three parent crossovers. In this thesis we used single point crossover, where

two parent’s capacity are crossing giving to random choose point. One disadvantage is in

single point crossover that the first number of parents posts same as in parents, where they

are disconnected but they may enclose solution for the issue.

 In comparison, one homogeneous random generated crossover points less used than

multiple points’ crossover, where they can separate the parent and move their values into

new baby. This shares priority over single point crossover. Homogeneous crossover uses a

single point chance for every non-identical gene, which make a higher chance for condition

values to be changed. For example, for binary representation, if condition value is 1 the

first element capacity are post to second, and vice versa if zero is found. Figure 5 shows

the single crossover pseudo code (Goldberg, 1989).

Figure 2: Single crossover pseudo code (Goldberg, 1989)

Algorithm: Single Point Crossover

Input: two individuals randomly picked from mating pool

Output: new explored offspring’s

Position= random

For 1i to position do

Child 1[i] = parent 1[i]

Child 2[i] = parent 2[i]

end

For 1 positioni to N do

Child 1[i] = parent 2[i]

Child 2[i] = parent 1[i] end

 N,,1L

12

2.4 Mutation

Mutation is frame work of GA. Mutation avoid algorithms from nature stuck with local

minimum, because it scout the complete search space. Such as; if we want to maximize

function in constrained interval [0, 7]. Then the starting population might not be

the top. By mutating condition we may shift some genes into value close to binary)111(, by

iteration. Chance of mutation is tried for every gene, which is dispute crossover; so, it

infrequently occur because of its small value. There are several kind of mutation which

straightly based on description. For example, if we use actual record or integer then

mutation criteria will be separate with binary representation. If record are discreet and

elements are represented in binary base, then mutation will be a bitwise by exchanging 0 to

1, and vice versa. Finally, chance of mutation,
n

Pm

1
 (Sharda & Voß, 2002), where is

chromosome length. Irregularly, mP may be fixed, but the representative mP (0.05-0.5)

(Goldberg, 1989), in our structure we use the identical values.

2.5 Population Replacement

There are many options for population replacement, I am going to describe two of

them:

1. Succeeding a GA primary process choose only the top elements with some previous

methods, the whole parents and baby's are sharing the same chance to be chooses.

2. Choose only from the new generated baby's and kill the whole parents, especially

substitution method, where baby's assume their parent.

2.6 Search Termination

There are many criteria which have been constructed for search termination. Because of the

stochastic nature of GA it can run for infinity, but it needs to be stopped at any given time

because evaluation of the solution is needed. We can classify stopping condition into three

types, time dependent, iteration dependent and fitness dependent.

xxf)(

n

13

1. Maximum number of generations: We need to stop the algorithm, if we pass the

maximum number of iteration. Occasionally we need to forecast the certain number

of needed determined by iterations on the difficulty of the issues. e.g. our maximum

function evaluation scheme (FES) is equal to 500000. The initial stopping condition

will be a number of iterations is the relevant and generally used part.

2. Elapse time: sometime starting time to end time can be adoption as a secondary

stopping scheme. Issues are heterogeneous in complexity; occasionally, we can

forecast interval for stopping algorithm runs. Concurrently it must stop, if the

maximum generation number is reached.

3. Minimal diversity: Compute difference between attribute and fitness inside is a

critical running. Since as attributes are maintained, and the process will continue its

value even after reconnection process. Algorithms need to be stopped.

Occasionally, this standard process more priority over number of iterations.

4. Best Individuals: Whenever the minimum of fitness in the population collapse

under the intersect value. This will lead the search process to faster accomplishment

that assurance at least one good solution (Sivanandam & Deepa, 2008).

5. Worst Individuals: minimum fitness value for the worst individual perhaps less than

intersect scale. In this case intersect value may not be achieved (Sivanandam &

Deepa, 2008).

6. Sum of Fitness: the observant treated to have contentment intersected when the sum

of fitness in the whole data is less than or equal to the intersect value on the

population data. This assurance that logically all elements are in the same area

(Sivanandam & Deepa, 2008)

14

CHAPTER 3

THE METHODS IN GA FOR MULTIMODAL FUNCTION

OPTIMIZATION

3.1 Method of Iteration

Iteration is the easiest method which can be used with any optimization method to create

multiple solutions. If the optimization method absorb stochastic conduct, then there is a

chance that successive runs will come up with different solutions. But this is rather a slow

proceed towards. However many times the algorithm is iterated, there is no guarantee that

it will locate all maxima of interest.

Applying iteration to any single solution method, the very best we can hope for is that if

there are p maxima, we will have to iterate p times. Using blind iteration, to remunerate for

the duplicate solutions which are likely to arise, we can expect to have to increase the

number of iterations by a factor, which we shall call the redundancy factor, R If all maxima

have an equal likelihood of being found, it can be shown that R has a value given by:

R = ∑ 1/m��	
 (3)

This can be approximated (Jolley, 1961) for p>3, by:

R ≈ r+ log p

where r ≈0.577(Euler's constant).

This value is relatively small even for p =1000, R is only 7.5. If all maxima are not

probably to be found, the value of R will be much higher.

3.2 Parallel Sub-population

Another method which can produce multiple solutions is a GA. Where the population is

divided into multiple sub-populations which evolve in parallel. If there is no transmission

between sub-populations, this is directly equivalent to iterating a single smaller population

many times. Likewise there is no guarantee that different sub-populations will converge on

15

different maxima. Most execution exploit some degree of communication between the sub-

populations, to allow good genes to spread. However, the effect of this is to reduce the

diversity of solutions, and the whole population will finally converge on a single solution

(Grosso, 1985). Local mating schemas experience similar problem (Davidor, 1991).

3.3 Fitness Sharing

(Goldberg and Richardson, 1987) described the design of fitness sharing in a GA as a way

of assist solid sub-populations, or species. The aim of sharing comes from an analogy with

nature. In natural, there are many different ways in which animals may survive (feed,

hunting, on the ground, in trees etc) and different species develop to fill each character.

Each character is referred to as an ecological niche. For each niche the physical resources

are limited and must be shared among the population of that niche. This provides a

obstacle for all creatures to populate a single niche. Alternative creatures evolve to form

sub-populations in different niches. The size of each sub-population will send back the

availability of resources in the niche. The analogy in function optimization is that the

location of each maximum represents a niche, and by acceptably sharing the fitness related

with each niche. we can encourage the formation of stable sub-populations at each

maximum. Sharing is carried out on the basis that the fitness "payout" within each niche is

finite, and must be shared between all individuals in that niche. Therefore, the fitness

awarded to an individual will be inversely proportional to the number of other individuals

in the same niche. The total payout for a niche is set equal to the height of the maximum so

larger maxima can support proportionally larger sub-populations. However, a fundamental

problem is where are the niches. How do we decide if two individuals are in the same

niche, and should therefore have their fitness values shared. To do this accurately, we need

to know where each niche is, and how big it is. Clearly we cannot know where the niches

are in advance, otherwise we would not have a problem to solve! (Goldberg and

Richardson, 1987) approach this by assuming that if two individuals are close together,

within a distance known as the niche radius, then their fitness values must be shared

Closeness, in this instance, is measured by the distance in a single dimension decoded

parameter space. A method for choosing the niche radius is presented in (Deb & Goldberg,

16

1989) and this is discussed later. Although their technique is successful, its disadvantages

have been pointed out by Smith, (Forrest and Perelson, 1992). To compute accurately the

fitness of an individual involves calculating its distance from every other member of the

population. The total time complexity will depend on the time taken for the basic GA, plus

the additional time taken to perform the fitness sharing calculations. This additional

complexity is O(��) where N is the population size. This is a disadvantage if N is large,

and N must be large if we hope to find many optima. (Goldberg, 1989) recommends that

for a multimodal GA expected to find p different solutions, we need a population p times

larger than is necessary for a unimodal GA. This is because a certain number of individuals

are necessary to accurately locate and explore each maximum. If a GA is to support stable

sub-populations at many maxima, the total population size must be proportional to the

number of such maxima. The above argument assumes that the population is spread

equally among all maxima of interest. However, this may not be the case for two reasons

Firstly, under the standard fitness sharing scheme, high fitness peaks will contain

proportionally more individuals than low peaks. Secondly, there may be peaks in the

fitness function which we are not interested in, but which capture a proportion of the

population. This was a significant problem for (Goldberg, Deb and Horn, 1992). This

uneven distribution requires that N is increased, to ensure that even the smallest peak of

interest contains a sufficiently large sub-population. The factor by which N must be

increased we call the peak ratio Ø. If p is the proportion of peaks which are of interest, and

�
� is the fitness of the smallest peak of interest, then Ø is determined as

 Ø = ���� ������� �� ��� �����
���� (4)

So the population size required is N= npØ where n is the population size needed to find

one solution. Oei, Goldberg and Chang(1991) suggest several improvements to the

original fitness sharing algorithm. They say that the time complexity of the fitness sharing

calculations may be reduced from O�� to O(N p) if we sample the population, instead of

computing the distance to every other member. They also describe how, in conjunction

with tournament selection, a niche size threshold parameter, may be used to limit the

17

maximum number of individuals in each niche. This should prevent highly-fit maxima

from gaining significantly more individuals than less-fit maxima. So the effective value of

will be between 1 if the uninteresting peaks have low fitness relative to �
� and if the

uninteresting peaks have fitnesses close to �
�. Assuming that these suggestions are

viable, we can compute the time complexity as follows :

The time taken for the basic GA to find a single peak is proportional to the number of

function evaluations performed before convergence this is approximately (a N gc) where α

is the time for one function evaluation, performed before convergence; the additional time

for the fitness sharing is approximately (βANpgc), where β is the time to compute the

distance from one individual to another, and A is the number of individuals we must

sample in each niche. Using A=5(Oei et al, 1991), and setting N=nØp, the time

complexity, Cshair, is

 Cshair e=O(nØpgc(α+5βp)) (5)

3.4 The Sequential Niche Genetic Algorithm Technique (SNGA)

3.4.1 Basic principles

(Ackley, 1987) compared a number of function optimization techniques, including GAs

and hill climbers. When an optimization technique found a sub-optimum peak, he iterated

the technique until the (known) global maximum had been found. He examine that to

solve difficult problems, (with local maxima), we must search till that we find one of the

maxima, and then try again. But blind iteration does not learn lessons. When we iterate a

conventional GA, everything learned in the previous run is forgotten. The sequential niche

technique reported here is defined on the idea of bringing over knowledge learned in one

run to each subsequent run.

Once one maximum has been found, there is no need to search for it again. So our

approach is to eliminate that peak from the fitness function, using a method akin to sharing.

As mentioned above, sharing is complicated to perform if the locations of the niches are

unknown. But after one run of the GA, the location of one of the niches is known. On the

second run of the GA, we assume that this niche is conceptually already filled, and few

18

further rewards are available to any individuals which might stray into the area. Instead,

individuals are forced to converge on an unoccupied niche, which is in turn also

conceptually assumed filled in the third run. This process can continue until we decide

(using some criterion, such as the number of maxima we expect in the function) that all

maxima have been located.

This algorithm is similar to sharing in its approach. The sharing algorithm essentially

works by dynamically modifying the fitness landscape according to the location, in each

generation, of individuals in the population. This is done in such a way as to encourage the

dispersion of individuals throughout the landscape, which, hopefully, leads to better

exploration of the search space, and the identification of all maxima. Conversely, our

sequential niche algorithm works by modifying the fitness landscape according to the

location of solutions found in previous iterations (unlike the sharing algorithm, the fitness

landscape remains static during each run). This is done in such a way as to discourage

individuals from re-exploring areas where solutions have been found, thereby encouraging

them to locate a maximum elsewhere.

 In the sharing algorithm, once the population begins to converge on multiple peaks, cross

breeding between different peaks is likely to be unproductive. (Deb, 1989) showed that a

mating restriction scheme was able to improve the sharing algorithm for this reason. If

mating between individuals on different peak is to be prohibited, performance would be

improved by instead running a number of separate, smaller population GAs, one exploring

each peak. It might be possible to achieve this with a parallel GA, where the sub-

populations on each processor evolve separately after an initial period in which they evolve

together, using some algorithm which ensures that no two sub-populations are converging

on the same peak. However, we do not adopt this approach because it appears

unnecessarily complicated.

3.4.2 Derating functions

The single-peak derating function, G, are possible; two were tested: power law, Eqn. (6),

and exponential, Eqn. (7). Here, r is the niche radius (see below), !" is the distance

19

between x and s, as determined by the distance metric. In Eqn. (6), α is the power factor,

which determines how concave (α > 1) or convex (α < 1) the derating curve is, with α = 1

giving a linear function. When dxs = 0, Gp(x; s) = 0. In Eqn. (7), m is the derating

minimum value, which defines G when !" = 0 (such that G(x; s) = m). m must be greater

than 0, since log(0) = -∞. m also determines the concavity of the derating curve, with

smaller values of m producing more concavity. For both forms, when !" ≥ r, we set G(x;

s) = 1.

#�$%, '(=) $!" /*(+ if !" . / 1 01ℎ3*45'3 (6)

#6$%, '(=) 3%7$809: ∗ $* − !" (/*(if !" . / 1 01ℎ3*45'3 (7)

The sharing function described by Goldberg and Richardson (1987), Deb (1989) and Deb

and Goldberg

(1989) performs the task of reducing the fitness of an individual depending on its distance

from each other individual in the population. In a similar way, our fitness derating function

performs the task of reducing the fitness of an individual depending on its distance from

each best individual found in previous runs.

To determine the value of niche radius, r, we use the same method as Deb (1989), which is

as follows. If we imagine that each of the p maxima in the function are surrounded by a

hyper sphere of radius r, and that these hyper spheres do not overlap, and that they

completely fill the k-dimensional problem space, then if the parameter range for each

dimension is normalized to be 0 to 1, r is given by:

r =√>/2 ∗ @7A (8)

Deb's technique is simple, but requires that we know (or estimate) the number of maxima

in the function, and assumes that all maxima are equally spread throughout the search

space. Clearly, there will be functions where these restrictions are not satisfied. For our

present experimental investigations, we adopt the simple approach to niche radius given

above.

20

3.4.3 Explanation of algorithm

Any problem to be solved by a GA needs a fitness function. For the sequential niche

algorithm we also need a distance metric. This is simply a function which, given two

chromosomes, returns a value related to how "close" they are to each other. The most

trivial measure of distance is the Hamming distance, although as (Deb and Goldberg, 1989)

showed, sharing works better if we use a distance measure based on the decoded parameter

space. One reason for this is that for binary-coded chromosomes at least large differences

between chromosomes may correspond to small different in parameter space at a Hmming

cliff, for example. By using the parameter space to determine the distance between two

chromosomes, we avoid any topological distortion introduced by the coding scheme.

Typically, a chromosome (the genotype) represents a number of parameters (the

phenotype), and they are mapped to a fitness value. If there are k parameters, then each

individual can be thought of as occupying a point in k-dimensional space. The distance

between two individuals can be taken as the Euclidian distance between them. (As

suggested by (Deb, 1989), if the parameter is different dimensions are widely different, it

may be desirable to normalize each parameter to cover the range 0 to 1 before the

Euclidian distance is determined.) There are other ways to define a distance metric, but we

shall use the Euclidian distance. Our algorithm does not rely on any particular distance

metric.

Having defined a fitness function and distance metric, the algorithm works as follows

(terms in italics are explained below):

1. Initialize: equate the modified fitness function with the raw fitness function.

 2. Run the GA (or other search technique), using the modified fitness function, keeping a

record of the best individual found in the run.

3. Update the modified fitness function to give a depression in the region near the best

individual, producing a new modified fitness function.

 4. If the raw fitness of the best individual exceeds the solution threshold, display this as a

solution.

21

5. If not all solutions have been found, return to step (2).

A single application of this overall algorithm we refer to as a sequence, since it consists of

a sequence of several GA runs. Knowledge of niche locations (maxima) is propagated to

subsequent runs in the same sequence.

A solution is a set of k parameters which define the position of a maximum of interest.

The solution threshold represents the lower fitness limit for maxima of interest. (It is

assumed that there are a known number, p, of \interesting" maxima, all with fitness greater

than the solution threshold.) Its value is set individually for each problem. If no

information is available about the likely fitness values of the maxima of interest, the

solution threshold may be set to zero. In this case, the algorithm is terminated after the first

p peaks have been found

The modified fitness function, M(x), for an individual, x, is computed from the raw fitness

function, F (x), multiplied by a number of single-peak de-rating functions . Initially we set

M0(x) = F (x). At the end of each run, the best individual, '�, found in that run is used to

determine a single-peak de-rating function, G(x; '�). The modified fitness function is then

updated according to:

 B�+1(x) =B�(x)* G(x; '�) (9)

3.4.4 Termination conditions

Deciding when to halt a GA run and start the next iteration is not a trivial task. Towards the

end of a run of any traditional GA, the search efficiency falls off since the population

becomes more uniform, causing exploration to rely increasingly on mutation (Goldberg,

1989b). For our algorithm, we need to decide at what point in the run we are unlikely to

improve on the best individual found so far, and then terminate the run. The technique we

adopt is to record the population average fitness over a halting window of h generations,

and terminate the run if the fitness of any generation is not greater than that of the

population h generations earlier. Values of h between 5 and 20 gave good results with the

test functions we tried. More complex functions with longer convergence times might need

larger values. A run is also terminated if an individual is found with a known maximum

fitness target, or a maximum number of generations has been reached.

22

CHAPTER 4

METHOD OF PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) is basically a stochastic optimization technique

developed by (Eberhart and Kennedy, 1995), provoked by social behavior of bird flocking

or fish schooling.

Genetic Algorithms(GA) and PSO has many similarities with evolutionary computation

techniques. The system is determined with a population of random solutions and examine

for optima by updating generations. However, unlike PSO,GA has no evolution operators

such as crossover and mutation. In PSO, the potential solutions, called particles, fly

through the problem space by tracing the current optimum particles.

Each particle follows its coordinates in the problem space which are associated with the

best solution (fitness) it has gain so far. This value is called pbest. Another "best" value

that is chased after by the particle swarm optimizer is the best value, obtained so far by any

particle in the neighbors of the particle. This location is called lbest. when a particle

considers all the population as its topological neighbors, the best value is a global best and

is called gbest.

The particle swarm optimization concept contains of, at each time step, accelerating each

particle toward its pbest and lbest locations (local version of PSO). Acceleration is

measured by a random term, with separate random numbers being generated for

acceleration toward pbest and lbest locations.

In past several years, PSO has been applied as a powerful tool in many researches and

application areas. It is found that PSO gets better results in a faster, cheaper way compared

with other methods.

Another reason that PSO is successful is that there are few parameters to adjust. One

version, with slight changes, works well in a wide range of applications. Particle swarm

optimization has been applied for approaches that can be used across a wide range of

applications, as well as for specific focused applications.

23

The focus of this demonstration is on the second topic. Actually, there are a lots of

computational techniques provoked by biological systems, such as artificial neural network

is a simplified model of human brain; genetic algorithm is inspired by the human

evolution.

Now we discuss another type of biological system - social system, more specifically, the

collective behaviors of simple individuals, interaction between their environment and each

other. Someone of it is known as swarm intelligence. All of the simulations take advantage

of local processes, such as those modeled by cellular automata, and might underlie the

unpredictable group dynamics of social behavior.

Some famous examples are floys and boids. Both of the simulations were created to

elucidate the movement of organisms in a bird flock or fish school. These simulations are

frequently used in computer animation or computer aided design.

There are two famous swarm inspired methods in computational intelligence areas: particle

swarm optimization (PSO) and Ant colony optimization (ACO). ACO was inspired by the

behaviors of ants and has been successfully applied in discrete optimization problems.

The concept of particle swarm is originated as a simulation of simplified social system.

The original purpose was to graphically simulate the choreography of bird of a bird block

or fish school. However, it was discovered that particle swarm model can be used as an

optimizer.

4.1. Algorithm

As discussed before, PSO simulates the behaviors of bird flocking. Let's consider the

following scenario: a group of birds are randomly searching food in an area. There is only

one piece of food in the searching area. All the birds do not know where can they find the

food. But they have idea how far the food is in each iteration. So what's the best plan to

find the food? The best one is to follow the bird which is nearest to the food.

PSO educate from the scenario and used it to solve the optimization problems. In PSO,

each single solution is a "bird" in the searching area. We consider it "particle". All of

24

particles have fitness values which are measured by the fitness function to be optimized,

and have velocities which direct the flying of the particles. The particles fly through the

problem space by tracing the current optimum particles.

PSO is determined with a group of random particles (solutions) and then searches for

optima by updating generations. In each and every iteration, each particle is updated by

following two "best" values. The first one is the best solution (fitness) it has gained so far.

(The fitness value is also stored.) This value is called pbest. Another "best" value that is

followed by the particle swarm optimizer is the best value, obtained so far by any particle

in the population. This best value is a global best and is called gbest. When a particle

participates of the population as its topological neighbors, the best value is a local best and

is called I-best.

After finding the two best values, the particle updates its velocity and positions with

following equation (a) and (b).

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * ([] - present[]) (a)

present[] = persent[] + v[] (b)

v[] is the particle velocity, persent[] is the current particle (solution). pbest[] and gbest[]

are defined as discused before. rand () is a random number between (0,1). c1, c2 are

learning factors. usually c1 = c2 = 2.

The pseudo code of the procedure is as follows

For each particle

 Initialize particle

END

Do

25

 For each particle

 Calculate fitness value

 If the fitness value is better than the best fitness value (pBest) in history

 set current value as the new pBest

 End

 Choose the particle with the best fitness value of all the particles as the gBest

 For each particle

 Calculate particle velocity according equation (a)

 Update particle position according equation (b)

 End

While maximum iterations or minimum error criteria is not achieved

Particles' velocities on each dimension are hoid to a maximum velocity Vmax. If the sum

of accelerations would cause the velocity on that dimension to pass Vmax, which is a

parameter specified by the user. Then the velocity on that dimension is bound to Vmax.

Comparisons between Genetic Algorithm and PSO

Most of evolutionary techniques have the following steps:

1. Random generation of an initial population

2. Reckoning of a fitness value for each subject. It will directly depend on the distance to

the optimum.

3. Reproduction of the population based on fitness values.

4. If requirements are met, then stop. Otherwise go back to 2.

26

From the procedure, we can result that PSO shares many common points with GA. Both

algorithms start with a group of a randomly generated population, both have fitness values

to appraise the population. By random techniques both update the population and search

for the optimium. Both systems do not assure success.

However, PSO does not have genetic operators (crossover and mutation). Particles modify

themselves with the internal velocity. They also have memory, which is significant to the

algorithm.

 The information sharing mechanism in PSO is significantly different as compared to

genetic algorithms (GAs). In GAs, chromosomes share information among themselves. So

the whole population behaves like one group towards an optimal area. In PSO, only gBest

(or lBest) gives out the information to others. It is a single-way information sharing

mechanism. The evolution only cares for the best solution. Compared with GA, all the

particles incline to converge to the best solution quickly even in the local version in most

cases.

4.2 PSO Parameter Control

From the above case, we can learn that there are two key steps when applying PSO to

optimization problems: the representation of the solution and the fitness function. One of

the advantages of PSO is that PSO take real numbers as particles. It is not like GA, which

needs to change to binary encoding, or special genetic operators have to be used. For

example, we try to find the solution for f(x) = x1^2 + x2^2+x3^2, the particle can be set as

(x1, x2, x3), and fitness function is f(x). Then we can use the standard procedure to find the

optimum. The searching is a repeat process, and the stop criteria are that the maximum

iteration number is reached or the minimum error condition is satisfied.

There are not many parameter need to be tuned in PSO. Here is a list of the parameters and

their typical values.

27

The number of particles: the typical range is 20 - 40. Actually for most of the problems 10

particles is large enough to get good results. For some difficult or special problems, one

can try 100 or 200 particles as well.

Dimension of particles: It is determined by the problem to be optimized,

Range of particles: It is also determined by the problem to be optimized, you can specify

different ranges for different dimension of particles.

Vmax: it determines the maximum change one particle can take during one iteration.

Usually we set the range of the particle as the Vmax for example, the particle (x1, x2, x3)

X1 belongs [-10, 10], then Vmax = 20

Learning factors: c1 and c2 usually equal to 2. However, other settings were also used in

different papers. But usually c1 equals to c2 and ranges from [0, 4]

The stop condition: the maximum number of iterations the PSO execute and the minimum

error requirement. We can set the minimum error requirement is one mis-classified pattern.

the maximum number of iterations is set to 2000. this stop condition depends on the

problem to be optimized.

Global version vs. local version: we introduced two versions of PSO. global and local

version. global version is faster but might converge to local optimum for some problems.

local version is a little bit slower but not easy to be trapped into local optimum. One can

use global version to get quick result and use local version to refine the search.

Another factor is inertia weight, which is introduced by (Shi and Eberhart). If you are

interested in it, please refer to their paper in 1998. (Title: A modified particle swarm

optimizer).

28

4.3 The ASNPSO Algorithm

4.3.1 The basic principle

The adaptive sequential niche technique is essentially an add-on technique, which can be

used together with any stochastic search algorithm. Hereby, we choose the PSO algorithm

to implement it. ASNPSO consists of several sub-swarms. Each sub-swarm can detect one

optimal solution. Because of the algorithm using multi-sub-swarms to detect different

solutions sequentially, in order to avoid all sub-swarms converging to one or several

certain optimal solutions, the algorithm must be able to modify the fitness function of the

particles of the sub-swarm run later. Hereby we introduce the penalty function by means

of a constrained optimization problem. Assume that a simple death penalty function is used

in our algorithm. Then it can make the particle of the moving sub-swarm locate in the same

hill of the optimal solutions found before losing influence. In this paper, the modified

fitness function of the sub-swarm currently running is to satisfy the following equation:

(3CD8E%�
 F = G E%�
 F 5 ℎ588HIJJKE%�
 , %>F = 1,
E%�
 F − 7E%�
 F 01ℎ3*45'3. (10)

where %�
 is the ith particle of the nth sub-swarm; n is the number of sub-swarm run

presently; f(xi n) is a raw fitness function, xk is the top point found by the sub-swarm

begun before, k can be selected from 1 to n1; p(xi n) can be a very large value for real

world problem and makes the corrected fitness very small than all local optima.

4.3.2 Termination conditions for sub-swarm

The termination condition for each sub-swarm is an important task for sequential niche

technique. In practical applications, if the termination condition is satisfied, we must halt

the running PSO and switch to run a new sub-swarm. In this paper (Beasley’s, 1993) halt

29

window technique is adopted as a termination condition. The technique is to record the

population average fitness over a halting window of h generations, and terminate the run if

the fitness of any generation is not greater than that of the population h generations earlier.

In our experiments, assume that the halt window is set to 20.

Figure 3: Pseudo code of ASNPSO algorithm.

This algorithm checking escorted by a hill valley function to match the region of a iterating

particle and the top intersect region of the swarm floated before belong to one hill or not.

The number of sub-swarms used for the algorithm based on the number of optimal results

what we need.

Repeat

Run a new sub-swarm

N=N+1;

If hill_vally (%
 , %M(==0

Change the fitness of xi

Else

Keep the original fitness

End

Next

train the sub-swarm until the halt window of sub-swarm is larger than a

given value

Until N is greater than a given value or reach as a maximum iteration

number

30

4.3.3 Hill valley algorithm

The determination of the niche radius is generally a hard work existing in most niche

methods. However, if we have a method that can determine whether or not two points of

search space belong to a peak of the multimodal function, then the niche radius is not

needed in this situation. Ursem’s hill valley function is the first method, where ip and iq

are any two points in search space. In fact, it can be easily extended to the case including

arbitrary dimensions.

Generally speaking, the function returns 0 if the fitness of all the interior points is greater

than the minimal fitness of ip and iq, otherwise it returns 1. With this function, the

algorithm is able to determine whether ip and iq belong to one hill or not. The sample array

is generally used to calculate the interior points where the hill valley function computes the

fitness of these samples. The points i interior can be calculated as

i interior = ip + (iq + ip) samples j,

where j is jth entry in the array. The upper boundary of j is the length of the samples, which

is very important for the hill valley function. We refer to the length as sample rate (SR).

PSO is a population-based stochastic search algorithm.

V id = W Vid + C1 rand1(*)(Pid - Xid)

+ C2 rand2(*)(Pgd -Xid),

Xid = Xid + Vid ,

where i = 1,2,y, N, and W is called as inertia weight. C1 and C2 are positive constants,

referred to as cognitive and social parameters, and rand1 (*) and rand2 (*) are random

numbers, respectively, uniformly distributed in [0..1]. The ith particle of the swarm can be

represented by the D dimensional vector Xid, and the best particle in the swarm denoted by

the index g, the best previous position of the ith particle is recorded and represented as Pid

and the velocity of the ith particle is as Vid.

31

Figure 4: Hill valley function Pseudo code

Hill_valley (5�, 5N , 'D:783')

minfit=min (fitness(5�(, fitness(5N))

 for j=1 to samples, length

Calcuate point 5
�O6/
P/ on the line between the point 5� and 5N

 if (minfit > finess(5
�O6/
P/))

 return 1

 end if

end for

return 0

32

CHAPTER 5

EXPERIMENTAL RESULTS

In this section, there are eight functions to test in sequential niche genetic algorithm

(SNGA) and adaptive sequential niche with particle swam optimization (ASNPSO) which

are graphically represented.

5.1 Equal Maxima (F1):

This function has 5 equally area maxima equal height according NSGA:

F1(x) = '5Q6(5πx)

The results of our algorithm total maximum values are (0.500199, 0.69949, 0.299329,

0.899088, and 0.098102).

Figure 5: F1 equal maxima.

5.2 Decreasing Maxima (F2):

The second function is same as F1, However the maxima decrease in height exponentially:

F2(x) = expR−2 log$2(∗ $!S0.1
0.8 T*'5Q6(5πx)

33

The maxima are at the same x values as for F1, but the peak height vary from 1.0 to0.25,

(0.098102, 0.299329, 0.498301, 0.6978, and 0.897504)

Figure 6: F2 Decrease maxima.

5.3 Uneven Maxima (F3):

The third function is same as F1, However the maxima are unevenly spaced:

F3(X) = exp X−2 log$2(∗ R% − \.]
\.^T_ ∗ '5Q6(5π (%-0.05))

The maxima are at x values of approximately (0.933302, 0.680825, 0.245847, 0.449539,

0.0775531) all with a height of 1.0.

34

Figure 7: F3 Uneven maxima.

5.4 Uneven Decreasing Maxima (F4):

The fourth function is same as F3, However the maxima decrease in height exponentially.

F4(x) = expR−2 log$2(∗ $!S0.8
0.854

T*'5Q6(5π (%3/4-0.05))

The maxima are at the same x value as F3, (0.0775531, 0.245847, 0.449539, 0.679078,

0.929407), with the same height as F2

35

Figure 8: F4 Uneven Decreasing maxima.

5.5 Himmelblau's Function (F5):

This is a function of two variable, (x,y), that Deb's modified to be a maximization issue

given by:

F5(x ,y)=200-(%2+y-11(2-x+`2-7(2

This has four maxima (2.96486, 1.97121), (-2.75633, 3.09146), (3.51842, -1.71378), (-

3.63167, -3.27702)

36

Figure 9: F5 modified Himmelblau's function.

5.6 Shubert Function (F6):

f1(X)=a i cos $5

	0
i+1)x+1

This function has total 19 maxima, 3 global maxima and 16 local maxima, to get all 19

results of function in our experiment the number of sub-swarms run sequentially is set to

19.

F6 Coordinates values :(-4.58947, 6.2832, -6.28347, -5.10824, 1.17474, 5.10864, -

7.45792, 7.45791, -1.17473, 4.1208, -2.16239, -4.12083, 8.44555, 2.16217, -8.44549,

9.42481, -3.1414, -9.42479, and 3.14151).

Figure 10: F6 Shubert one dimensional function.

37

5.7 Scekel's Foxhole Function (F7):

Its two dimensional function with 25 peaks of different heights. Let a(i)=16[(i mod5)-2]

and b(i)=16([i/5]-2), the function can be defined as

f2(x,y)=500-
1

0.002b∑ 1/$1b
bE!SI$
(FbKSc
((6(24�d0

Where -65.536≤x,y≤65.536.

F7 Coordinates values : : (-32.0038, -31.9927), (-16.003, -32.0083), (-31.9602, -

15.9648),(0.0231036, -31.9693), (31.9827, -31.9348),(-16.0087, -15.9782),(16.1685, -

31.9159), (-0.0909802, -15.9271),(15.9787, -15.9971),(-31.9427, 0.000643744),(-

16.0182, 0.0661799),(-31.9291, 15.9688),(-0.278472, -0.10173), -(-15.7687, 15.9084),

(31.9419, -16.0447),(15.9651, -0.0250031),(31.9208, -0.0149629),(0.00604302, 16.052),

(16.0172, 15.9236), (-31.9564, 31.9717),(31.9201, 16.018),(-15.9495, 31.9225),(-

0.0203267, 31.9487), (15.9776, 31.9405),(31.971, 31.9202).

Figure 11: F7 Scekel's Foxhole function where 25 sub=swarm were run sequentially.

5.8 Shubert Function (two dimensional) (F8):

The function is defined as

38

f3 ((x1, x2) =∏ ∑ f cos [$f + 1(%5 + f]5j	1
2
	1

where -10≤xi≤10 for i=1,2. it has 760 local minima, 18 of which are global minima with

function value of -186.73.In this experiments we converted the minima to maxima through

multiplying by a negative sign the raw fitness function.

F8 Coordinates values: (-0.801366, 4.8633), (-0.804395, -1.423),(5.47962, 5.50401),(-

7.69397, -0.799232), (-7.70792, -0.791834),(-1.4232, -7.08),(-1.42678, 5.48026),(-1.43239, -

7.08545),(4.86021, -1.42291),(-7.08281, -7.70829),(-7.08522,(-7.71024, -0.799115),(5.48296,

4.85725),(-0.193166, -0.803246),(4.85887, 5.48242),(-7.08209, -7.70786),(-0.79735, 4.85732),(

6.08714, -0.799545),(-7.7067, 5.48759),(5.48399, -0.195406),(4.85672, -7.08356),(-0.1943, -

7.08131),(-0.196127, 5.48154),(-6.4779, 5.48367), (-6.47834, -7.08442),(-6.48081, -0.799172),(-

0.795585, 6.08839),(6.08789, -7.08364),(-7.08227, -0.194554),(-0.801204,-0.1944).

Graphical result of above ASPANO three functions:

Figure 12: F8 Shubert function where 23 Sub-swarms were run sequentially.

39

CHAPTER 6

ANALYSIS AND COMPARISON BETWEEN ASNPSO AND SNGA

Both ASNPSO and SNGA are used for multi-modal function optimization. Presently, most

niche methods need some more parameter, where the major important parameter is niche

radius, which is used in SNGA. Niche radius, improper radius will make a niche algorithm

showing worse. The resolution of the niche radius depends less or more on some

knowledge from a particular issue. So one problem in Beasley (SNGA) technique is niche

radius. In ASNPSO technique most extra parameter included niche radius are not needed.

PSO implement in ASNPSO and GA implement in SNGA. In GA each of the three main

classes of operation (selection, crossover, and mutation) can be executed in a number of

ways. PSO does not label its operations in the same way as GA, but analogies do. Effects

of GA (crossover) which normally vary remarkably during in iterate. In the beginning of

GA the population member are usually randomly generating. So the crossover can have

significant effects moving a chromosome relatively large distance in problem space.

Crossover operation is not exist in PSO, in PSO the idea of crossover is shown in such a

way that each particle is stochastically accelerated toward its own previous top position, as

well as around the global top position.

For further comparison I tried to compare the functions results. The program was written

by using C++ programming language.

6.1. Results of Functions:

I did 30 runs of both algorithm SNGA and ASNPSO, and collected the result of 8 functions

which are 5 already used by (Beasley, 1993) and 3 of them used by (Zhang et al, 2006).

We took the average of coordinates and f(x) values and compared with actual values of

functions. (STD) mean is simple standard deviation calculated for both algorithms. The

standard deviation of an entire population is known as σ (sigma) and is calculated using:

 (11)

40

Where x represents each value in the population, μ is the mean value of the population

and N is the number of values in the population. S-rate is success rate for each of

coordinates, to calculate the s-rate divide the goal by the actual value.

6.1.1 F1 equal maxima:

If you see the result values in Table 1 and Table 2 which is for equal maxima function, the

result shown that both of the algorithms is quite good in success rate, the SNGA average

success rate is 99.92 % and ASNPSO is 100% achieved. The difference in the results, 100

- 99.94 = 0.06 which is not so big. Both of them perform well, but this is the result of only

one function, I want to check for further results of functions in following tables.

 Table 1: Result values of F1 obtained by SNGA algorithm.

 Optimal Coordinates F(x) Values

F(x)
values

Coordinates Average STD Average STD %S-rate

1 0.1 0.098102 4.235E-17 0.9973366 0 99.73%
1 0.3 0.299329 1.129E-16 0.9996668 3.388E-16 99.97%
1 0.5 0.500199 2.258E-16 0.9999707 4.517E-16 100.00%
1 0.7 0.69949 5.646E-16 0.9998075 0 99.98%
1 0.9 0.899088 2.258E-16 0.9993845 5.646E-16 99.94%

Average of success rate
99.92%

Table 2: Result values of F1 obtained by ASNPSO algorithm.

 Optimal Coordinates F(x) Values

F(x)
values

Coordinate
s

Average STD Average STD %S-
rate

1 0.1 0.099996327 9.161E-06 0.99999993 1.3053E-07 100.00%
1 0.3 0.2999983 2.374E-05 0.99999959 1.1103E-06 100.00%
1 0.5 0.500001433 9.246E-06 0.99999994 1.0921E-07 100.00%
1 0.7 0.7000034 1.903E-05 0.99999973 7.3999E-07 100.00%
1 0.9 0.879999033 0.1095477 0.99999993 1.6973E-07 100.00%

Average of success rate
100.00%

41

6.1.2 F2 Decreasing maxima:

In Table 3 and table 4 the results of decreasing maxima function, both algorithm achieved

the 100% success rate, 0% difference in success rate so both algorithm perform good for

this function.

Table 3: Result values of F2 obtained by SNGA algorithm.

 Optimal Coordinates F(x) Values

F(x)
values

Coordinat
es

Average STD Average STD %S-rate

1 0.1 0.098102 4.235E-17 0.9973288 0 99.73%
0.917 0.3 0.299329 1.129E-16 0.9172307 0 100.00%
0.70711 0.5 0.498301 2.258E-16 0.7076733 3.388E-16 100.00%
0.4585 0.7 0.6978 5.646E-16 0.4594772 1.694E-16 100.00%
0.25 0.9 0.897504 4.517E-16 0.2510081 1.129E-16 100.00%

Average of success rate
99.946%

Table 4: Result values of F2 obtained by ASNPSO algorithm.

 Optimal Coordinates F(x) Values

F(x)
values

Coordina
tes

Average STD Average STD %S-
rate

1 0.1 0.099999807 6.899E-06 0.99999997 6.0405E-08 100.00%
0.917 0.3 0.299415033 1.026E-05 0.91723582 1.7481E-07 100.00%
0.70711 0.5 0.4988368 1.047E-05 0.70782207 1.2301E-07 100.00%
0.4585 0.7 0.6982493 8.078E-06 0.45954625 4.8687E-08 100.00%
0.25 0.9 0.897669233 9.054E-06 0.25101301 3.2499E-08 100.00%

Average of success rate
100.00%

6.1.3 F3 Uneven maxima:

Table 5 and Table 6 are the results of Uneven maxima function, both algorithm found all

five optimal, SNGA found all optima with 99% success rate and ASNPSO found the result

with 100% rate, the overall results of all optima for SNGA is 99.85% and ASNPSO with

42

100%, the difference between them 99.85-100=0.15% which is not so high. So both the

algorithm working good for uneven maxima function.

Table 5: Result values of F3 obtained by SNGA algorithm.

 Optimal Coordinates F(x) Values

F(x)
values

Coordinates Average STD Average STD %S-
rate

0.99987 0.08 0.0775531 0 0.9931803 4.517E-16 99.33%
0.99964 0.246 0.245847 1.129E-16 0.9994517 4.517E-16 99.98%
0.99976 0.45 0.449539 2.258E-16 0.999266 4.517E-16 99.95%
0.99991 0.681 0.680825 0 0.9998213 4.517E-16 99.99%
1 0.934 0.933302 4.517E-16 0.9998484 0 99.99%

Average of success rate
99.85%

Table 6: Result values of F3 obtained by ASNPSO algorithm.

 Optimal Coordinates F(x) Values

F(x)
values

Coordina
tes

Average STD Average STD %S-
rate

0.99987 0.08 0.07969848 0.0330261 0.99999979 3.9467E-07 100.00%
0.99964 0.246 0.2466502 1.839E-05 0.9999997 1.0486E-06 100.00%
0.99976 0.45 0.4506288 1.108E-05 0.99999992 1.2245E-07 100.00%
0.99991 0.681 0.6814189 2.021E-05 0.9999998 7.1026E-07 100.00%
1 0.934 0.933894 1.879E-05 0.99999985 4.8475E-07 100.00%

Average of success rate
100.00%

6.1.4 F4 Uneven decreasing maxima:

The Table 7 and Table 8 represent the result of Uneven decreasing maxima function, both

algorithms achieved with 100% success rate for all five optimal only for two coordinates

the SNGA success rate 99% which is not quite big difference but if we see the overall

results for above all four functions ASNPSO received 100 % success rate, which means the

43

ASNPSO is batter for all above four functions. With these four functions we can't conclude

that which one is batter, for further result I need to check some more functions. I tested

four more functions to achieve the conclusions, for further test we check the given tables.

Table 7: Result values of F4 obtained by SNGA algorithm.

 Optimal Coordinates F(x) Values

F(x)
values

Coordinates Average STD Average STD %S-rate

0.99987 0.08 0.0775531 0 0.993169 5.646E-16 99.33%
0.94863 0.246 0.245847 1.129E-16 0.9485405 4.517E-16 99.99%
0.77069 0.45 0.449539 2.258E-16 0.7708143 1.129E-16 100.00%
0.50325 0.681 0.679078 2.258E-16 0.5041095 4.517E-16 100.00%
0.25 0.934 0.929407 4.517E-16 0.2515492 1.129E-16 100.00%

Average of success rate
99.864%

Table 8: Result values of F4 obtained by ASNPSO algorithm.

 Optimal Coordinates F(x) Values

F(x)
values

Coordinate
s

Average STD Average STD %S-
rate

0.99987 0.08 0.079700157 1.163E-05 0.99999964 4.5527E-07 100.00%
0.94863 0.246 0.246276267 1.419E-05 0.94868915 2.7058E-07 100.00%
0.77069 0.45 0.4494941 7.73E-06 0.77081521 4.0855E-08 100.00%
0.50325 0.681 0.679165767 1.024E-05 0.50411148 4.2843E-08 100.00%
0.25 0.934 0.930150367 9.981E-06 0.25161007 1.2405E-08 100.00%

Average of success rate
100.00%

6.1.5 F5 Himmelblau's function:

The Table 9 and 10 are the results of Himmelblau's function which is two dimensional

function, this has four maxima with equal height (200), and parameter range is set for both

algorithm -6 ≤ x, y ≤ 6. Both algorithm achieved 99% success rate for all maxima, resulted

values is good enough for both algorithms.

44

Table 9: Result values of F5 obtained by SNGA algorithm.

 Optimal Coordinates F(x) Values
F(x, y)
values

Coordinates Average Average %S-
rate

STD

 X Y X Y F(x, y)

199.997 3.58 -1.86 3.51842 -1.71378 199.59159 99.80% 5.78152E-14
200 3 2 2.96486 1.97121 199.92083 99.96% 5.78152E-14

199.995
-
2.815

3.12
5 -2.75633 3.09146 199.86348 99.93% 1.44538E-13

199.999 -3.78 -3.28 -3.63167 -3.27702 198.80478 99.40% 0
199.997 3.58 -1.86 3.51842 -1.71378 199.59159 99.80% 5.78152E-14

Average of success rate
99.77%

Table 10: Result values of F5 obtained by ASNPSO algorithm.

 Optimal Coordinates F(x) Values
F(x, y)
values

Coordinates Average Average STD %S-rate

 X Y X Y F(x, y)

199.997 3.58 -1.86 3.5849053 -1.848966 199.999627 0.00033659 100.00%
200 3 2 3.5849053 2.033505 199.131572 4.75501049 99.57%

199.995
-
2.815 3.125 -2.80565 3.1305933 199.999206 0.00141548 100.00%

199.999 -3.78 -3.28 -3.7791243 -3.315798 199.16361 3.18058422 99.58%
199.997 3.58 -1.86 3.5849053 -1.848966 199.999627 0.00033659 100.00%

Average of success rate
 99.79%

6.1.6 F6 One dimensional Shubert function:

The results in Table 11 and Table 12 are for Shubert function, the Shubert function is very

popular in a lot of research paper, one dimensional Shubert function is calculated by

ASNPSO but check with SNGA. In our thesis research we calculated with both algorithms

for test result. In table 6 I just shown the result of global maxima, according of ASNPSO

and previous more researches said that this function has total 19 maxima, in which three of

them is global and 16 local maxima. I run the program for both algorithm 30 times and

estimate the results that the ASNPSO achieved all solutions, but the SNGA can't perform

very well. ASNPSO found all 19 solutions but the SNGA just found the global maxima. If

45

I conclude on the basis of global maxima then still ASNPSO found all three solution with

100% success rate which is better than SNGA.

Table 11: Result values of F6 obtained by SNGA algorithm.

 Optimal Coordinates F(x) Values
F(x, y)
values

Coordinates Average STD Average
F(x, y)

STD %S-
rate

14.508 -7.0835 -7.08309 9.034E-16 14.507978 7.227E-15 100.00%
14.508 -0.8003 -0.801064 1.129E-16 14.507913 7.227E-15 100.00%
14.508 5.4828 5.48886 9.034E-16 14.501842 9.034E-15 99.96%

Average of success rate
99.99%

Table 12: Result values of F6 obtained by ASNPSO algorithm.

 Optimal Coordinates F(x) Values

F(x)

values

Coordinates Average STD Average

F(x)

STD %S-

rate

14.508 -7.0835 -7.08354 0 14.5080077 1.084E-14 100.00%

14.508 -0.8003 -0.800276 1.129E-16 14.5080076 5.4202E-15 100.00%

14.508 5.4828 5.48364 9.034E-16 14.5079046 1.084E-14 100.00%

Average of success rate
100.00%

6.1.7 F7 Shekel foxhole De Jong two dimensional function:

The Table 13 and Table 14 are shekel foxhole function results. This is very complicated

function. This function has total 25 peaks with different heights, where the range -65 ≤ x,

y ≤ 65. I achieved 25 peaks with both algorithms with different heights, the result is shown

in table7 and 7.1, but in the above function I convert the local minima to global maximum

which is our requirement. The coordinate of both algorithms is quite different but we

compared with mathematic value, then the ASNPSO is better than SNGA.

46

Table 13: Result values of F7 obtained by SNGA algorithm.

 Optimal Coordinates
F(x, y)

values

Coordin

ates

 Average Average STD

 X Y X Y F(x, y)

499.002 -32 -32 -31.43694 -32.003383 498.97026 2.31261E-13

0.03557 -16 -32 -15.5212 -31.4076 0.0372633 0

3.61705 0 -32 0.0356936 -31.8486 4.1704076 0

0.02814 16 -32 16.1594 -31.8962 0.0280066 0

0.05816 32 -32 31.693 -31.7388 0.0657182 0

0.05167 -32 -16 -31.8128 -16.2359 0.0527487 0

158.173 -16 -16 -15.839 -15.8974 179.86747 8.67228E-14

0.35879 0 -16 -0.126055 -16.1233 0.3844009 0

0.35275 16 -16 15.7276 -15.8988 0.3738079 0

158.362 32 -16 31.2606 -16.2416 212.66884 1.44538E-13

489.237 -32 0 -31.8348 0.376185 489.23409 2.89076E-13

495.063 -16 0 -16.592 -0.51292 474.11157 1.73446E-13

3.67699 0 0 0.164065 -0.197827 3.0782173 0

4.92253 16 0 16.3273 0.0260224 4.8627562 0

0.09381 32 0 31.8704 0.0713644 0.0971547 0

438.597 -32 16 -32.0864 16.3063 380.81915 1.73446E-13

157.205 -16 16 -15.9381 16.5443 288.09775 1.1563E-13

32.5357 0 16 0.225295 15.9617 31.015352 0

1.09315 16 16 15.8599 16.0134 1.0892633 0

157.447 32 16 31.279 16.1681 126.70272 8.67228E-14

479.847 -32 32 -31.8983 32.0083 479.84656 0

485.45 -16 32 -17.4608 33.1681 479.18692 0

3.77473 0 32 -0.126055 32.2368 4.6701335 0

4.94948 16 32 16.4404 31.9418 5.09374 1.73446E-13

12.4168 32 32 31.4031 31.7357 16.79233 0

47

Table 14: Result values of F7 obtained by ASNPSO algorithm.

 Optimal Coordinates F(x) Values

F(x, y)

values

Coordin

ates

 Average Average STD

 X Y X Y F(x, y)

499.002 -32 -32 -31.43694 -32.003383 498.987563 0.07888835

0.03557 -16 -32 -15.947677 -32.017747 0.03562384 0.0003839

3.61705 0 -32 0.0076073 -32.023123 3.56154429 0.35764016

0.02814 16 -32 16.004147 -31.97726 0.02817954 0.00016419

0.05816 32 -32 32.02483 -32.006013 0.05813502 0.00343264

0.05167 -32 -16 -31.94972 -16.003823 0.05205151 0.00140092

158.173 -16 -16 -15.96251 -15.9858 163.062002 31.4551882

0.35879 0 -16 -0.0083122 -16.018917 0.36365907 0.02510766

0.35275 16 -16 16.01629 -16.012507 0.35169366 0.02536448

158.362 32 -16 31.966223 -16.0099 161.097546 18.6676248

489.237 -32 0 -31.956637 0.00655067 489.236821 6.4311E-07

495.063 -16 0 -15.988367 -0.0658067 493.396191 3.92909649

3.67699 0 0 0.0005743 0.00754252 3.71221601 0.26220069

4.92253 16 0 15.965523 0.02998102 4.87271173 0.16818463

0.09381 32 0 31.959147 0.00257594 0.09435996 0.00152292

438.597 -32 16 -31.95868 15.99566 438.80943 8.35346889

157.205 -16 16 -16.035597 16.02421 163.359341 27.557715

32.5357 0 16 0.0033588 16.00237 33.0043473 5.88211416

1.09315 16 16 15.971423 15.9838533 1.0988495 0.01647798

157.447 32 16 31.931333 16.00745 156.324058 11.5258447

479.847 -32 32 -31.955567 31.9707433 479.846561 1.6975E-06

485.45 -16 32 -15.979133 31.9360333 484.285377 1.1244379

3.77473 0 32 0.0087883 31.9391633 3.58582514 0.18792157

4.94948 16 32 15.997653 31.9373933 5.10929324 0.10856763

12.4168 32 32 31.937523 31.95986 13.0182758 0.82066718

48

6.1.8 F8 Two dimensional Shubert function:

The two dimensional Shubert function range is -10 ≤ x, y ≤ 10 and f(x, y)= -186.73. This

function has total 18 global minima and 760 local minima for successfully finding in all

global optimal, I set the termination condition in my both algorithm to 30 optimal. But the

ASNPSO average successful rate is 100% instead of SNGA, once again ASNPSO proved

that the ASNPSO is better than SNGA.

Table 15: Result values of F8 obtained by SNGA algorithm.

 Optimal Coordinates

F(x, y)
values

Coordina
tes

 Average Average STD %S-
rate

 X Y X Y F(x, y)

-185.97 -7.7 -7.1 -7.73352 -7.02997 -179.07018 5.78152E-14 96.29%
-186.57 -7.7 -0.8 -7.68006 -0.780445 -183.99712 0

98.62%
-185.92 -7.7 5.5 -7.70312 5.54254 -178.93391 8.67228E-14

96.24%
-184.61 -1.4 5.5 -1.39241 5.52945 -179.54219 8.67228E-14

97.26%
-185.25 -1.4 -0.8 -1.42127 -0.739953 -178.78281 2.89076E-14

96.51%
-184.65 -1.4 -7.1 -1.4251 -7.02254 -178.6605 2.89076E-14

96.75%
-181.96 4.9 5.5 4.85735 5.48363 -186.72845 8.67228E-14

100.00%
-182.6 4.9 -0.8 4.84014 -0.740897 -178.34555 5.78152E-14

97.67%
-182.01 4.9 -7.1 4.85735 -7.02254 -178.65938 8.67228E-14

98.16%
-185.97 -7.1 -7.7 -7.03782 -7.68106 -180.47156 1.1563E-13

97.04%
-184.65 -7.1 -1.4 -7.08908 -1.40407 -185.62357 5.78152E-14

100.00%
-182.01 -7.1 4.9 -7.06658 4.84448 -185.67353 0

100.00%
-182.6 -0.8 4.9 -0.788925 4.85927 -186.44105 8.67228E-14

100.00%
-185.25 -0.8 -1.4 -0.788925 -1.42366 -186.43945 8.67228E-14

100.00%
-186.57 -0.8 -7.7 -0.788925 -7.70889 -186.4437 0

99.93%
-181.96 5.5 4.9 5.48153 4.8497 -186.56465 8.67228E-14

100.00%
-184.61 5.5 -1.4 5.47314 -1.42069 -186.47578 8.67228E-14

100.00%
-185.92 5.5 -7.7 5.48561 -7.70201 -186.62148 0

100.00%

Average of success rate
 98.58%

49

Table 16: Result values of F8 obtained by ASNPSO algorithm.

 Optimal Coordinates F(x) Values

F(x, y)

values

Coordina

tes

 Average Average STD %S-

rate

 X Y X Y F(x, y)

-185.97 -7.7 -7.1 -7.7071997 -7.0832807 -184.85728 8.8493591 99.40%

-186.57 -7.7 -0.8 -7.7081637 -0.7477401 -178.86445 42.8056665 95.87%

-185.92 -7.7 5.5 -7.7080363 5.48209833 -186.6583 0.11363563 100.00%

-184.61 -1.4 5.5 -1.4246577 5.48383433 -186.56395 0.51774658 100.00%

-185.25 -1.4 -0.8 -1.4293163 -0.7985891 -185.23196 7.53362049 99.99%

-184.65 -1.4 -7.1 -1.424194 -7.08392 -186.68385 0.04575921 100.00%

-181.96 4.9 5.5 4.8597923 5.48438633 -186.62007 0.16554527 100.00%

-182.6 4.9 -0.8 4.8577923 -0.7985317 -186.62301 0.20361186 100.00%

-182.01 4.9 -7.1 4.8583357 -7.0807557 -186.62925 0.21391411 100.00%

-185.97 -7.1 -7.7 -7.0837853 -7.7132237 -186.65218 0.13194428 100.00%

-184.65 -7.1 -1.4 -7.083398 -1.4243343 -186.64977 0.12726198 100.00%

-182.01 -7.1 4.9 -7.0845227 4.85810433 -186.67806 0.13856716 100.00%

-182.6 -0.8 4.9 -0.7994361 4.858109 -186.65223 0.10343117 100.00%

-185.25 -0.8 -1.4 -0.802723 -1.426539 -186.53414 0.33489331 100.00%

-186.57 -0.8 -7.7 -0.7999102 -7.7087883 -186.68834 0.06392505 100.00%

-181.96 5.5 4.9 5.4831913 4.858068 -186.67012 0.10549358 100.00%

-184.61 5.5 -1.4 5.483517 -1.4253313 -186.66531 0.08766721 100.00%

-185.92 5.5 -7.7 5.483855 -7.7070773 -186.65642 0.10396365 100.00%

Average of success rate
 99.74%

50

CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Discussion

After a function-statistics analysis of the features of SNGA and ASNPSO, the results of my

research have shown that the success ratio of ASNPSO is higher than SNGA in many

functions. In the one-dimensional Shubert function, the SNGA method couldn’t find the

local optimal, and to find it with SNGA, it is used a method where we even changed the

parameter values and resulted with the same. The Shubert function has a total of 19

optimal, of which 3 are global, and 16 are local, whose result is 14.50 mathematically are

global and less than 14.50 are local optimal. Using different termination conditions in

SNGA to find the local optimal solution for the one-dimensional Shubert function, setting

the function to 19 solutions to terminate the program and show the result values. Although

it worked, but the values were same to global maxima, and only the coordinates were

changed in some digits. This function has already been proved with different methods,

even with math which have local optimals. However, SNGA failed.

In the previous discussion, I have come to the conclusion that the GA uses fitness sharing

method and the PSO uses a different sharing method than GA, somewhat like birds in

groups like a metaphor. In that case, the particles are unsystematically computed and

openly move across the dimensional search space where all of them during their movement

update their own velocity and location depending on the capital observation of their own

and of the whole group. The reforming strategy runs the particle swarm to act against the

area with the highest objective function value, and at the end, the total particles will collect

around the point with the highest objective value, which is the moment when we are able to

say that this is a sharing method.

As noticeable, SNGA uses a niche radius which prevents the algorithm of doing well,

unlike ASNPSO, which for its niche radius uses the hill-valley method and avoids the

niche radius which is discussed in the sections above.

Also, SNGA used distance matrix to find how the given two chromosomes return values

that are closer to each other, on the other hand, in ASNPSO the death penalty function is

51

used which makes the particle of the active sub-swarm to detect in the same hill of the

superlative solution which is discovered before losing impact.

7.2 Conclusion

After the thorough differential of ASNPSO and SNGA for their multi-modal function

optimization involving statistical data analysis, the result is that ASNPSO achieved

superior success rate than SNGA.

Methods used in SNGA and ASNPSO like PSO and GA are motivated by EA and showed

themselves to be successful in optimization problems. If these approaches achieved their

required purposes it means that there are clearly robustness, in the meta-heuristics, there

are control parameters involved and suitable setting, the parameters are key points in

achieving the best solution. Basically, some form of examination and probation is needed

for each specific example of the advanced problem.

The problem with the SNGA method is the niche radius while the ASNPSO method

doesn’t need. However, the ASNPSO method uses hill-valley function to regulate if the

location of a moving particle and the best concentrating position of the group set afloat

before belonging to one hill or not.

The ASNPSO method has had its search focus to optimal solutions by directing particles

while the SNGA is a population-based method, and its search focus is done by moving

population on average to the optimal solution. To avoid the problem with niche radius in

SNGA, the hill-valley technique needs to be implemented in GA, which will be done in

next research.

52

REFERENCES

Ackley, D. H. (1987). An empirical study of bit vector function optimization. Genetic

Algorithms and Simulated Annealing, 170-204.

Ackley, D. H., & Jgretensetette, J. (1985). A connectionist algorithm for genetic

search. Grefenstette, 876, 121-135.

Beasley, D., Bull, D. R., & Martin, R. R. (1993). A sequential niche technique for

multimodal function optimization. Evolutionary Computation, 1(2), 101-125.

Davidor, Y. (1991, July). A Naturally Occurring Niche and Species Phenomenon: The

Model and First Results. In ICGA (pp. 257-263).

De Jong, K. A. (1975). Analysis of the behavior of a class of genetic adaptive systems.

Deb, K. (1989). Genetic Algorithms in Multimodal Function Optimization. Clearinghouse

for Genetic Algorithms, Department of Engineering Mechanics, University of

Alabama.

Deb, K., & Goldberg, D. E. (1989, June). An investigation of niche and species formation

in genetic function optimization. In Proceedings of the 3rd International Conference

on Genetic Algorithms (pp. 42-50). Morgan Kaufmann Publishers Inc..

Eberhart, R. C., & Hu, X. (1999). Human tremor analysis using particle swarm

optimization. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999

Congress on (Vol. 3, pp. 1927-1930). IEEE.

Eberhart, R. C., & Shi, Y. (2000). Comparing inertia weights and constriction factors in

particle swarm optimization. In Evolutionary Computation, 2000. Proceedings of the

2000 Congress on (Vol. 1, pp. 84-88). IEEE.

Guo, L., Huang, D. S., & Zhao, W. (2003). Combining genetic optimisation with hybrid

learning algorithm for radial basis function neural networks. Electronics

Letters, 39(22), 1600-1601.

53

Kennedy, J., & Eberhart, R. (1942). Particle swarm optimization Proceedings of the

International Conference on Neural Networks. Australia IEEE, 1948.

Larrañaga, P., & Lozano, J. A. (Eds.). (2001). Estimation of Distribution Algorithms: A

new tool for Evolutionary Computation (Vol. 2). Springer Science & Business Media.

Mahfoud, S. W. (1995). A comparison of parallel and sequential niching methods.

In Conference on Genetic Algorithms (Vol. 136, p. 143).

Mahfoud, S. W. (1995). A comparison of parallel and sequential niching methods.

In Conference on Genetic Algorithms (Vol. 136, p. 143).

Michalewicz, Z., Dasgupta, D., Le Riche, R. G., & Schoenauer, M. (1996). Evolutionary

algorithms for constrained engineering problems. Computers & Industrial

Engineering, 30(4), 851-870.

Price, K. V. (1996, June). Differential evolution: a fast and simple numerical optimizer.

In Fuzzy Information Processing Society, 1996. NAFIPS., 1996 Biennial Conference

of the North American (pp. 524-527). IEEE.

Shi, Y., & Eberhart, R. (1998, May). A modified particle swarm optimizer.

In Evolutionary Computation Proceedings, 1998. IEEE World Congress on

Computational Intelligence., The 1998 IEEE International Conference on (pp. 69-73).

IEEE.

Tan, K. C., Lee, T. H., & Khor, E. F. (2001). Evolutionary algorithms with dynamic

population size and local exploration for multiobjective optimization. IEEE

Transactions on Evolutionary Computation, 5(6), 565-588.

Yeniay, Ö. (2005). Penalty function methods for constrained optimization with genetic

algorithms. Mathematical and Computational Applications, 10(1), 45-56.

Zaharie, D. (2004, September). Extensions of differential evolution algorithms for

multimodal optimization. In Proceedings of SYNASC (Vol. 4, pp. 523-534).

54

Zhang, J., Huang, D. S., Lok, T. M., & Lyu, M. R. (2006). A novel adaptive sequential

niche technique for multimodal function optimization. Neurocomputing, 69(16), 2396-

2401.

55

APPENDICES

56

APPENDIX 1

 SNGA Algorithms CPP Source Code

//# include "stdafx.h"
include <cstdlib>
include <iostream>
include <iomanip>
include <fstream>
include <iomanip>
include <cmath>
include <ctime>
include <cstring>
include "ModifiedFitnessFunction.h"

using namespace std;
//
// Change any of these parameters to match your needs
//
#define PI 3.14159265
define POPSIZE 50
define MAXGENS 100
define NVARS 1
define PXOVER 0.25
define PMUTATION 0.1
//
struct genotype
{
 double gene[NVARS];
 double fitness;
 double upper[NVARS];
 double lower[NVARS];
 double rfitness;
 double cfitness;
};

struct genotype population[POPSIZE + 1];
struct genotype newpopulation[POPSIZE + 1];

void crossover(int &seed);
void elitist();

//evaluate takes in parameter now the function to be optimized
template <class FunctionClass>
void evaluate(const FunctionClass & func);

int i4_uniform_ab(int a, int b, int &seed);
void initialize(string filename, int &seed);
void keep_the_best();
void mutate(int &seed);
double r8_uniform_ab(double a, double b, int &seed);
void report(int generation, ofstream & log_file);

57

void selector(int &seed);
void timestamp();
void Xover(int one, int two, int &seed);

struct BaseTestFunction {
 virtual const char * name()const = 0;
 virtual double operator()(double param)const = 0;
};

struct F1 : public BaseTestFunction {
 const char * name()const {
 return "pow(sin(5 * PI*param), 6)";
 }

 double operator()(double param)const {
 return pow(sin(5 * PI*param), 6);
 }
};

//new variables related to the paper
int nb_maxima = 5;

//ModifiedFitnessFunction<TestFunction> mff(tf,);

//***
*********80

int main()

//***
*********80

{
 ofstream log_file;
 log_file.open("log_f1.txt");
 string filename = "simple_ga_input.txt";

 double lbound, ubound;
 {
 ifstream input;
 input.open(filename.c_str());

 if (!input)
 {
 cerr << "\n";
 cerr << "INITIALIZE - Fatal error!\n";
 cerr << " Cannot open the input file!\n";
 char rr;
 std::cin >> rr;
 exit(1);
 }
 //
 // Initialize variables within the bounds

58

 //
 input >> lbound >> ubound;
 }

 //ModifiedFitnessFunction<TestFunction>
mff(tf,lbound,ubound,nb_maxima);
 //mff.addPeak();

 int generation;
 int i;
 int seed;

 timestamp();
 cout << "\n";
 cout << "SIMPLE_GA:\n";
 cout << " C++ version\n";
 cout << " Beasley sequential niche genetic algorithm.\n";

 if (NVARS < 2)
 {
 cout << "\n";
 cout << " The crossover modification will not be
available,\n";
 cout << " since it requires 2 <= NVARS.\n";
 }

 ///init the four functions in an array

 F1 ff1;

 BaseModifiedFitnessFunction * mff = new
ModifiedFitnessFunction<F1>(ff1, lbound, ubound, nb_maxima);
//GetModifiedFitnessFunction(*(test_functions[i_function]));

 for (int i_max = 0; i_max < nb_maxima; ++i_max) {

 seed = 123456789;

 initialize(filename, seed);

 //ModifiedFitnessFunction<TestFunction> mff(tf, lbound,
ubound, nb_maxima);
 evaluate(*mff);

 keep_the_best();

 for (generation = 0; generation < MAXGENS; generation++)
 {
 selector(seed);
 crossover(seed);
 mutate(seed);
 report(generation, log_file);
 evaluate(*mff);
 elitist();

59

 }

 cout << "\n";
 cout << " Best member after " << MAXGENS << "
generations:\n";
 cout << "\n";

 for (i = 0; i < NVARS; i++)
 {
 cout << " var(" << i << ") = " <<
population[POPSIZE].gene[i] << "\n";
 log_file << " var(" << i << ") = " <<
population[POPSIZE].gene[i] << "\n";
 }

 mff->addPeak(population[POPSIZE].gene[0]);

 cout << "\n";
 cout << " Best fitness = " << population[POPSIZE].fitness
<< "\n";
 log_file << "\n";
 log_file << " Best fitness = " <<
population[POPSIZE].fitness << "\n";

 timestamp();
 }
 log_file.close();
 //
 // Terminate.
 //
 cout << "\n";
 cout << "SIMPLE_GA:\n";
 cout << " Normal end of execution.\n";
 cout << "\n";

 delete mff;

 char iputchar;
 std::cout << "Enter a char to quit" << std::endl;
 std::cin >> iputchar;

 return 0;
}
//***
*********80

void crossover(int &seed)

//***
*********80

{
 const double a = 0.0;
 const double b = 1.0;

60

 int mem;
 int one;
 int first = 0;
 double x;

 for (mem = 0; mem < POPSIZE; ++mem)
 {
 x = r8_uniform_ab(a, b, seed);

 if (x < PXOVER)
 {
 ++first;

 if (first % 2 == 0)
 {
 Xover(one, mem, seed);
 }
 else
 {
 one = mem;
 }

 }
 }
 return;
}
//***
*********80

void elitist()

//***
*********80

{
 int i;
 double best;
 int best_mem;
 double worst;
 int worst_mem;

 best = population[0].fitness;
 worst = population[0].fitness;

 for (i = 0; i < POPSIZE - 1; ++i)
 {
 if (population[i + 1].fitness < population[i].fitness)
 {

 if (best <= population[i].fitness)
 {
 best = population[i].fitness;
 best_mem = i;
 }

61

 if (population[i + 1].fitness <= worst)
 {
 worst = population[i + 1].fitness;
 worst_mem = i + 1;
 }

 }
 else
 {

 if (population[i].fitness <= worst)
 {
 worst = population[i].fitness;
 worst_mem = i;
 }

 if (best <= population[i + 1].fitness)
 {
 best = population[i + 1].fitness;
 best_mem = i + 1;
 }

 }

 }
 //
 if (population[POPSIZE].fitness <= best)
 {
 for (i = 0; i < NVARS; i++)
 {
 population[POPSIZE].gene[i] =
population[best_mem].gene[i];
 }
 population[POPSIZE].fitness =
population[best_mem].fitness;
 }
 else
 {
 for (i = 0; i < NVARS; i++)
 {
 population[worst_mem].gene[i] =
population[POPSIZE].gene[i];
 }
 population[worst_mem].fitness =
population[POPSIZE].fitness;
 }

 return;
}
//***
*********80

template <class FunctionClass>
void evaluate(const FunctionClass & func)

62

//***
*********80

{
 int member;
 int i;
 double x[NVARS + 1];

 for (member = 0; member < POPSIZE; member++)
 {
 for (i = 0; i < NVARS; i++)
 {
 x[i + 1] = population[member].gene[i];
 }

 population[member].fitness = func(x[1]);//pow(sin(5 *
PI*x[1]), 6);

 }
 return;
}
//***
*********80

int i4_uniform_ab(int a, int b, int &seed)

//***
*********80

{
 int c;
 const int i4_huge = 2147483647;
 int k;
 float r;
 int value;

 if (seed == 0)
 {
 cerr << "\n";
 cerr << "I4_UNIFORM_AB - Fatal error!\n";
 cerr << " Input value of SEED = 0.\n";
 exit(1);
 }
 //
 // Guarantee A <= B.
 //
 if (b < a)
 {
 c = a;
 a = b;
 b = c;
 }

 k = seed / 127773;

63

 seed = 16807 * (seed - k * 127773) - k * 2836;

 if (seed < 0)
 {
 seed = seed + i4_huge;
 }

 r = (float)(seed) * 4.656612875E-10;
 //
 // Scale R to lie between A-0.5 and B+0.5.
 //
 r = (1.0 - r) * ((float)a - 0.5)
 + r * ((float)b + 0.5);
 //
 // Use rounding to convert R to an integer between A and B.
 //
 value = round(r);
 //
 // Guarantee A <= VALUE <= B.
 //
 if (value < a)
 {
 value = a;
 }
 if (b < value)
 {
 value = b;
 }

 return value;
}
//***
*********80

void initialize(string filename, int &seed)

//***
*********80

{
 int i;
 ifstream input;
 int j;
 double lbound;
 double ubound;

 input.open(filename.c_str());

 if (!input)
 {
 cerr << "\n";
 cerr << "INITIALIZE - Fatal error!\n";
 cerr << " Cannot open the input file!\n";
 char rr;

64

 std::cin >> rr;
 exit(1);
 }
 //
 // Initialize variables within the bounds
 //
 for (i = 0; i < NVARS; i++)
 {
 input >> lbound >> ubound;

 for (j = 0; j < POPSIZE + 1; j++)
 {
 population[j].fitness = 0;
 population[j].rfitness = 0;
 population[j].cfitness = 0;
 population[j].lower[i] = lbound;
 population[j].upper[i] = ubound;
 population[j].gene[i] = r8_uniform_ab(lbound,
ubound, seed);
 }
 }

 input.close();

 return;
}
//***
*********80

void keep_the_best()

//***
*********80

{
 int cur_best;
 int mem;
 int i;

 cur_best = 0;

 for (mem = 0; mem < POPSIZE; mem++)
 {
 if (population[POPSIZE].fitness < population[mem].fitness)
 {
 cur_best = mem;
 population[POPSIZE].fitness =
population[mem].fitness;
 }
 }
 //
 // Once the best member in the population is found, copy the
genes.
 //
 for (i = 0; i < NVARS; i++)

65

 {
 population[POPSIZE].gene[i] =
population[cur_best].gene[i];
 }

 return;
}
//***
*********80

void mutate(int &seed)

//***
*********80

{
 const double a = 0.0;
 const double b = 1.0;
 int i;
 int j;
 double lbound;
 double ubound;
 double x;

 for (i = 0; i < POPSIZE; i++)
 {
 for (j = 0; j < NVARS; j++)
 {
 x = r8_uniform_ab(a, b, seed);
 if (x < PMUTATION)
 {
 lbound = population[i].lower[j];
 ubound = population[i].upper[j];
 population[i].gene[j] = r8_uniform_ab(lbound,
ubound, seed);
 }
 }
 }

 return;
}
//***
*********80

double r8_uniform_ab(double a, double b, int &seed)

//***
*********80

{
 int i4_huge = 2147483647;
 int k;
 double value;

 if (seed == 0)

66

 {
 cerr << "\n";
 cerr << "R8_UNIFORM_AB - Fatal error!\n";
 cerr << " Input value of SEED = 0.\n";
 exit(1);
 }

 k = seed / 127773;

 seed = 16807 * (seed - k * 127773) - k * 2836;

 if (seed < 0)
 {
 seed = seed + i4_huge;
 }

 value = (double)(seed) * 4.656612875E-10;

 value = a + (b - a) * value;

 return value;
}
//***
*********80

void report(int generation, ofstream & log_file)

//***
*********80

{
 double avg;
 double best_val;
 int i;
 double square_sum;
 double stddev;
 double sum;
 double sum_square;

 if (generation == 0)
 {
 cout << "\n";
 cout << " Generation Best Average
Standard \n";
 cout << " number value fitness
deviation \n";
 cout << "\n";
 log_file << "\n";
 log_file << " Generation Best Average
Standard \n";
 log_file << " number value fitness
deviation \n";
 log_file << "\n";
 }

67

 sum = 0.0;
 sum_square = 0.0;

 for (i = 0; i < POPSIZE; i++)
 {
 sum = sum + population[i].fitness;
 sum_square = sum_square + population[i].fitness *
population[i].fitness;
 }

 avg = sum / (double)POPSIZE;
 square_sum = avg * avg * POPSIZE;
 stddev = sqrt((sum_square - square_sum) / (POPSIZE - 1));
 best_val = population[POPSIZE].fitness;

 cout << " " << setw(8) << generation
 << " " << setw(14) << best_val
 << " " << setw(14) << avg
 << " " << setw(14) << stddev << "\n";

 log_file << " " << setw(8) << generation
 << " " << setw(14) << best_val
 << " " << setw(14) << avg
 << " " << setw(14) << stddev << "\n";

 return;
}
//***
*********80

void selector(int &seed)

//***
*********80

{
 const double a = 0.0;
 const double b = 1.0;
 int i;
 int j;
 int mem;
 double p;
 double sum;
 //
 // Find the total fitness of the population.
 //
 sum = 0.0;
 for (mem = 0; mem < POPSIZE; mem++)
 {
 sum = sum + population[mem].fitness;
 }
 //
 // Calculate the relative fitness of each member.
 //
 for (mem = 0; mem < POPSIZE; mem++)

68

 {
 population[mem].rfitness = population[mem].fitness / sum;
 }
 //
 // Calculate the cumulative fitness.
 //
 population[0].cfitness = population[0].rfitness;
 for (mem = 1; mem < POPSIZE; mem++)
 {
 population[mem].cfitness = population[mem - 1].cfitness +
 population[mem].rfitness;
 }
 //
 // Select survivors using cumulative fitness.
 //
 for (i = 0; i < POPSIZE; i++)
 {
 p = r8_uniform_ab(a, b, seed);
 if (p < population[0].cfitness)
 {
 newpopulation[i] = population[0];
 }
 else
 {
 for (j = 0; j < POPSIZE; j++)
 {
 if (population[j].cfitness <= p && p <
population[j + 1].cfitness)
 {
 newpopulation[i] = population[j + 1];
 }
 }
 }
 }
 //
 // Overwrite the old population with the new one.
 //
 for (i = 0; i < POPSIZE; i++)
 {
 population[i] = newpopulation[i];
 }

 return;
}
//***
*********80

void timestamp()

//***
*********80

{
define TIME_SIZE 40

69

 static char time_buffer[TIME_SIZE];
 const struct tm *tm;
 size_t len;
 time_t now;

 now = time(NULL);
 tm = localtime(&now);

 len = strftime(time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p",
tm);

 cout << time_buffer << "\n";

 return;
undef TIME_SIZE
}

// void timestamp()

//
//***
*********80

// {
// # define TIME_SIZE 40

// static char time_buffer[TIME_SIZE];
// struct tm tm_v;
// size_t len;
// time_t now;

// now = time(NULL);
// localtime(&tm_v,&now);

// len = strftime(time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p",
&tm_v);

// cout << time_buffer << "\n";

// return;
// # undef TIME_SIZE
// }
//***
*********80

void Xover(int one, int two, int &seed)

//***
*********80
//

{
 int i;
 int point;
 double t;

70

 //
 // Select the crossover point.
 //
 point = i4_uniform_ab(0, NVARS - 1, seed);
 //
 // Swap genes in positions 0 through POINT-1.
 //
 for (i = 0; i < point; i++)
 {
 t = population[one].gene[i];
 population[one].gene[i] = population[two].gene[i];
 population[two].gene[i] = t;
 }

 return;
}

For all functions the program is same just only change the function

statement.

F 2:
struct F2 : public BaseTestFunction {
 const char * name()const {
 return "exp(-2*log(2)*(pow((x - 0.1)/0.8,2))) * pow(sin(5
* PI*x), 6)";
 }

 double operator()(double x)const {
 return exp(-2 * log(2)*(pow((x - 0.1) / 0.8, 2))) *
pow(sin(5 * PI*x), 6);
 }
};

F 3:
struct F3 : public BaseTestFunction {
 const char * name()const {
 return "pow(sin(5 * PI*(pow(x,0.75) - 0.05)), 6)";
 }
 double operator()(double x)const {
 return pow(sin(5 * PI*(pow(x, 0.75) - 0.05)), 6);
 }
};

F 4:
struct F4 : public BaseTestFunction {
 const char * name()const {
 return "exp(-2 * log(2)*(pow((x - 0.08) / 0.854, 2))) *
pow(sin(5 * PI*(pow(x, 0.75) - 0.05)), 6)";
 }

 double operator()(double x)const {
 return exp(-2 * log(2)*(pow((x - 0.08) / 0.854, 2))) *
pow(sin(5 * PI*(pow(x, 0.75) - 0.05)), 6);
 }

71

};

F 5:
struct F5 {
 const char * name()const {
 return "200.0 - pow(x*x + y - 11.0,2.0) - pow(x + y*y -
7.0,2.0)";
 }

 double operator()(double x,double y)const {
 return 200.0 - pow(x*x + y - 11.0,2.0) - pow(x + y*y -
7.0,2.0);
 }
};

F 6:
struct F6 : public BaseTestFunction {
 const char * name()const {
 return "sum(i * cos((i + 1.0) * x + 1)";
 }

 double operator()(double x)const {
 double ret = 0;
 for (double i = 1; i <= 5; ++i) {
 ret += i * cos((i + 1.0) * x + i);
 }
 return ret;
 }
};

F 7:
struct F7 {
 double operator()(double x,double y)const {
 double sum = 0;
 for (double i = 0; i <= 24; ++i) {
 sum += 1.0 / (1.0 + i + pow(x - function_a(i), 6) +
pow(y - function_b(i), 6));
 }

 return 500-1 / (0.002 + sum);
 }
};

F 8:
struct F8 {
 double operator()(double x,double y)const {
 double product = 1.0;
 double sum;

 double params[2];
 params[0] = x;
 params[1] = y;

 for (double i = 1; i <= 2; ++i) {
 sum = 0;
 for (double j = 1; j <= 5; ++j) {

72

 sum += j * cos((j + 1.0) * params[(int)(i)-1]
+ j);
 }

 product *= sum;
 }

 return -product;
 }
};

ModifiedFitnessFunction code:

#include <vector>
#include <cmath>

class BaseModifiedFitnessFunction {
public:
 virtual void addPeak(double peak) = 0;

 virtual double operator()(double val)const = 0;
};

template <class Function>
class ModifiedFitnessFunction : public BaseModifiedFitnessFunction{
public:
 typedef Function FunctionType;

 ModifiedFitnessFunction(const Function & f,double
low_bound,double up_bound,int nb_maxima) :

 m_function(f),m_nbMaxima(nb_maxima),m_low_bound(low_bound),m_up_
bound(up_bound){
 m_radius = 1.0 / (2.0 * m_nbMaxima);
 }

 void addPeak(double peak);

 double operator()(double val)const;

 static double alpha;
private:
 double m_low_bound;
 double m_up_bound;
 double m_nbMaxima;
 double m_radius;
 Function m_function;
 std::vector<double> m_peaks;
};

template <class Function>
double ModifiedFitnessFunction<Function>::alpha = 2.0;

73

template <class Function>
void ModifiedFitnessFunction<Function>::addPeak(double peak) {
 m_peaks.push_back(peak);
}

template <class Function>
double ModifiedFitnessFunction<Function>::operator()(double val)
const{
 double raw_val = m_function(val);
 val = (val - m_low_bound)/(m_up_bound -
m_low_bound);//normalization

 double dist;
 for (int i = 0; i < m_peaks.size(); ++i){
 dist = fabs(val - m_peaks[i]);
 if(dist < m_radius){
 raw_val *= std::pow(dist/m_radius,alpha);//Gp in the
paper (first one)
 }
 }

 return raw_val;
}

//template <class Function>
//ModifiedFitnessFunction<Function> GetModifiedFitnessFunction(const
Function & function) {
// ModifiedFitnessFunction<Function> mff;
// return mff;
//}

//template <class TModifiedFitnessFunction>
//struct GetGet {
// typedef
//
//};

ModifiedFitnessFunction2D code:

#pragma once

#include <vector>
#include <cmath>

template <class Function>
class ModifiedFitnessFunction2D {
public:
 struct Param {
 Param(double x_, double y_) : x(x_), y(y_) {}

 double dist(const Param & other)const {
 return sqrt(pow(x - other.x, 2) + pow(y - other.y,
2));

74

 }

 double x;
 double y;
 };

 typedef Function FunctionType;

 ModifiedFitnessFunction2D(const Function & f, double low_bound,
double up_bound, int nb_maxima) :
 m_function(f), m_nbMaxima(nb_maxima),
m_low_bound(low_bound), m_up_bound(up_bound) {
 m_radius = 1.0 / (2.0 * m_nbMaxima);
 }

 void addPeak(double peak_x,double peak_y);

 void addPeak(const Param & param_);

 double operator()(double val_x, double val_y)const;

 void normalize(Param & param_)const;

 static double alpha;
private:
 double m_low_bound;
 double m_up_bound;
 double m_nbMaxima;
 double m_radius;
 Function m_function;
 std::vector<Param> m_peaks;
};

template <class Function>
double ModifiedFitnessFunction2D<Function>::alpha = 2.0;

template <class Function>
void ModifiedFitnessFunction2D<Function>::normalize(Param &
param_)const {
 param_.x = (param_.x - m_low_bound) / (m_up_bound -
m_low_bound);
 param_.y = (param_.y - m_low_bound) / (m_up_bound -
m_low_bound);
}

template <class Function>
void ModifiedFitnessFunction2D<Function>::addPeak(double peak_x,
double peak_y) {
 Param p(peak_x, peak_y);
 normalize(p);
 m_peaks.push_back(p);
}

template <class Function>

75

void ModifiedFitnessFunction2D<Function>::addPeak(const Param &
param_) {
 Param p(param_);
 normalize(p);

 m_peaks.push_back(p);
}

template <class Function>
double ModifiedFitnessFunction2D<Function>::operator()(double val_x,
double val_y) const {
 double raw_val = m_function(val_x,val_y);
 //val_x = (val_x - m_low_bound) / (m_up_bound -
m_low_bound);//normalization
 //val_y = (val_y - m_low_bound) / (m_up_bound -
m_low_bound);//normalization

 Param val_peak(val_x, val_y);
 normalize(val_peak);

 double dist;
 for (int i = 0; i < m_peaks.size(); ++i) {
 //dist = fabs(val - m_peaks[i]);
 dist = val_peak.dist(m_peaks[i]);
 if (dist < m_radius) {
 raw_val *= std::pow(dist / m_radius, alpha);//Gp in
the paper (first one)
 }
 }

 return raw_val;
}

//template <class Function>
//ModifiedFitnessFunction2D<Function>
GetModifiedFitnessFunction(const Function & function) {
// ModifiedFitnessFunction2D<Function> mff;
// return mff;
//}

//template <class TModifiedFitnessFunction>
//struct GetGet {
// typedef
//
//};

76

APPENDIX 2

ASNPSO Algorithm Source Code

#include "Sworm.h"
#include "FitnessFunction.h"
#include <cmath>
#include "ASNPSO.h"
#include "FitnessFunction.h"
#include <fstream>

struct F1 {
 double operator()(const double * x)const {
 double ret = 0;
 for (double i = 1; i <= 5; ++i){
 ret += i * cos((i + 1.0) * (*x) + i);
 }
 return ret;
 }
};

int main()
{
 std::ofstream log_file;
 log_file.open("log_f1.txt");

 int nb_maxima = 19;
 const int dim = 1;
 int SR = 10;
 int maxItertion = 10000;

 double W = 0.729;
 double C1 = 1.149445;
 double C2 = 1.149445;

 //double W = 0.01;
 //double C1 = 0.5;
 //double C2 = 0.5;

 double pos_lbound[1];
 (*pos_lbound) = -10;
 double pos_ubound[1];
 (*pos_ubound) = 10;

 double vel_lbound[1];
 (*vel_lbound) = -0.005;
 double vel_ubound[1];
 (*vel_ubound) = 0.005;

77

 FitnessFunction<dim, F1> ff(SR, 15, pos_lbound, pos_ubound);

 int population = 100;

 ASNPSO<dim, FitnessFunction<dim, F1> > asnpso(W, C1, C2,
pos_lbound, pos_ubound, vel_lbound, vel_ubound, population,
nb_maxima,ff);

 asnpso.run(maxItertion);

 //for (int i = 0; i < 100; ++i){
 // Agent<dim> best_agent = little_sworm.getBestAgent();
 // std::cout << "average fitness " <<
little_sworm.getAverageFitness() << " "
 // << "best position at " <<
best_agent.getPosition()[0] << " "
 // << "with fitness " << best_agent.getFitness() <<
std::endl;
 // little_sworm.iterate();
 //}

 //std::cout << "Best position " <<
(*little_sworm.getBestAgent().getPosition()) << std::endl;

 asnpso.writeLog(std::cout);
 asnpso.writeLog(log_file);

 log_file.close();

 char inp;
 std::cin >> inp;

 return 0;
}

For all functions same as above in GA just change the
function place.

Libraries of ASNPSO algorithm :

Agent.h

#pragma once

#include "RandomTool.h"
#include <algorithm>

template <int dim>
class Agent {
public:
 Agent<dim>(){}

78

 template <class FitnessFunction>
 void init(double * pos_lbound, double * pos_ubound, double *
vel_lbound, double * vel_ubound, const FitnessFunction & func);

 template <class FitnessFunction>
 void iterate(double W, double C1, double C2, const double *
bestAgentPos, const FitnessFunction & ff);

 Agent<dim> & operator=(const Agent<dim> & other);

 Agent(const Agent<dim> & other){ (*this) = other; }

 inline const double * getPosition()const { return _position; }

 inline const double * getBestPosition()const { return
_best_position; }

 inline double getFitness()const { return _fit; }

 inline double getBestFitness()const { return _best_fit; }
protected:
 double _fit;
 double _best_fit;
 double _position[dim];
 double _best_position[dim];
 double _velocity[dim];
};

template <int dim>
template <class FitnessFunction>
void Agent<dim>::init(double * pos_lbound, double * pos_ubound,
double * vel_lbound, double * vel_ubound, const FitnessFunction &
func) {
 for (int i = 0; i < dim; ++i) {
 _position[i] = random(pos_lbound[i], pos_ubound[i]);
 _velocity[i] = random(vel_lbound[i], vel_ubound[i]);

 _best_position[i] = _position[i];
 }

 _fit = func(*this);
 _best_fit = _fit;
}

template <int dim>
template <class FitnessFunction>
void Agent<dim>::iterate(double W, double C1, double C2, const double
* bestAgentPos, const FitnessFunction & ff) {
 for (int i = 0; i < dim; ++i) {
 _velocity[i] = W * _velocity[i] + C1 * random(0, 1) *
(_best_position[i] - _position[i]) + C2 * random(0, 1) *
(bestAgentPos[i] - _position[i]);
 _position[i] += _velocity[i];
 }

79

 _fit = ff(*this);
 if (_fit > _best_fit) {
 for (int i = 0; i < dim; ++i)
 _best_position[i] = _position[i];

 _best_fit = _fit;
 }
}

template <int dim>
Agent<dim> & Agent<dim>::operator=(const Agent<dim> & other) {
 _fit = other._fit;
 _best_fit = other._best_fit;

 for (int i = 0; i < dim; ++i) {
 _velocity[i] = other._velocity[i];
 _position[i] = other._position[i];
 _best_position[i] = other._best_position[i];
 }

 return (*this);
}

ASNPSO.cpp

#include "Sworm.h"
#include "FitnessFunction.h"
#include <cmath>
#include "ASNPSO.h"

struct Sinus {
 double operator()(const double * x)const {
 return std::sin(*x);
 }
};

int main()
{
 const int dim = 1;
 double W = 0.01;
 double C1 = 0.5;
 double C2 = 0.5;
 double pos_lbound[1];
 (*pos_lbound) = 0;
 double pos_ubound[1];
 (*pos_ubound) = 2 * 3.141;

 double vel_lbound[1];
 (*vel_lbound) = 0;
 double vel_ubound[1];
 (*vel_ubound) = 0.05;

 int population = 100;

80

 ASNPSO<1, RawFitnessFunction<1,Sinus> > little_sworm(W, C1, C2,
pos_lbound, pos_ubound, vel_lbound, vel_ubound, population);

 for (int i = 0; i < 100; ++i){
 Agent<dim> best_agent = little_sworm.getBestAgent();
 std::cout << "average fitness " <<
little_sworm.getAverageFitness() << " "
 << "best position at " <<
best_agent.getPosition()[0] << " "
 << "with fitness " << best_agent.getFitness() <<
std::endl;
 little_sworm.iterate();
 }

 std::cout << "Best position " <<
(*little_sworm.getBestAgent().getPosition()) << std::endl;

 char inp;
 std::cin >> inp;

 return 0;
}

ASNPSO.h

#include "Sworm.h"
#include "time.h"
#include <cassert>
#include <iomanip>

template <int dim, class FitnessFunction>
class ASNPSO : public Sworm<dim,FitnessFunction>{
public:
 ASNPSO(double W, double C1, double C2, double * pos_lbound, double
* pos_ubound, double * vel_lbound, double * vel_ubound, int
population,int nbMaxima = 1, FitnessFunction ff = FitnessFunction()) :
 Sworm<dim,FitnessFunction>(W, C1, C2, pos_lbound, pos_ubound,
vel_lbound, vel_ubound, population, ff), _nb_maxima(nbMaxima){
 _do_log = true;
 _window_size = 20;
 _log.str("");
 }

 void reinit();

 void run(int maxIteration);

 template <class stream>
 inline void writeLog(stream & s)const{
 s << _log.str();
 }
private:
 int _rand_seed;

81

 void runOneIterationLog()const;

 void runBeginLog()const;

 void runEndIterationLog()const;

 bool _do_log;
 mutable std::ostringstream _log;

 int _nb_maxima;
 int _window_size;
 bool end()const;

 mutable std::vector<double> _average_fitness;
};

template <int dim, class FitnessFunction>
void ASNPSO<dim, FitnessFunction>::run(int maxIteration){
 double average_fitness;
 bool do_reinit;

 //runBeginLog();

 for (int k = 0; k < _nb_maxima; ++k){
 do_reinit = false;

 runBeginLog();
 runOneIterationLog();

 for (int i = 0; i < maxIteration; ++i){
 Sworm<dim,FitnessFunction>::iterate();
 runOneIterationLog();

 if (end()){
 do_reinit = true;
 break;
 }

 average_fitness = Sworm<dim,
FitnessFunction>::getAverageFitness();
 if (_average_fitness.size() >= _window_size){
 assert(_average_fitness.size() == _window_size);
 _average_fitness.erase(_average_fitness.begin());
 }

 _average_fitness.push_back(average_fitness);
 }

 this->_ff.addBestAgent(this->getBestAgent());
 //std::cout << "best agent raw value " <<
_ff.getRawFunction()(getBestAgent().getBestPosition()) << std::endl;
 if (_do_log)
 _log << std::endl;

 runEndIterationLog();

82

 if (_do_log)
 _log << std::endl <<std::endl;

 _average_fitness.resize(0);

 //if (do_reinit)
 reinit();
 }
}

template <int dim, class FitnessFunction>
bool ASNPSO<dim, FitnessFunction>::end()const{
 if (_average_fitness.size() < _window_size)
 return false;

 double average_fitness = Sworm<dim,
FitnessFunction>::getAverageFitness();

 for (int i = 0; i < _average_fitness.size(); ++i)
 if (average_fitness < _average_fitness[i])
 return false;

 return true;
}

template <int dim, class FitnessFunction>
void ASNPSO<dim, FitnessFunction>::reinit(){
 for (int i = 0; i < this->_agents.size(); ++i) {
 this->_agents[i].init(this->_pos_lbound, this->_pos_ubound,
this->_vel_lbound, this->_vel_ubound, this->_ff);
 }

 this->_best_agent = this->findBestAgent();
}

template <int dim, class FitnessFunction>
void ASNPSO<dim, FitnessFunction>::runOneIterationLog()const{
 if (!_do_log)
 return;

 const Agent<dim> & ag = this->getBestAgent();
 //_log << std::string("aoerij");
 _log << std::setw(16) << this->getAverageFitness() << std::setw(20)
<< ag.getBestPosition()[0];

 if (dim == 2)
 _log << ", " << ag.getBestPosition()[1];

 _log << std::setw(27) << ag.getBestFitness() << std::endl;
}

template <int dim, class FitnessFunction>
void ASNPSO<dim, FitnessFunction>::runBeginLog()const{
 if (!_do_log)
 return;

83

 _log << "average fitness | best agent position | best
agent fitness" << std::endl << std::endl;
}

template <int dim, class FitnessFunction>
void ASNPSO<dim, FitnessFunction>::runEndIterationLog()const{
 if (!_do_log)
 return;

 _log <<
"==
"<<std::endl;
 _log << "=== maximum info : best agent position | best fitness |
function value : ";
 const Agent<dim> & ag = this->getBestAgent();
 _log << ag.getBestPosition()[0];

 if (dim == 2)
 _log << ", " << ag.getBestPosition()[1];

 _log << " | " << ag.getBestFitness() << " | " << this-
>_ff.getRawFunction()(ag.getBestPosition()) << std::endl;
 _log <<
"==
";

}

FitnessFunction.h

#pragma once

#include "Agent.h"
#include <vector>
#include <algorithm>

template <int dim,class Function>
class FitnessFunction {
public:
 bool hillValley(const Agent<dim> & agent0,const Agent<dim> &
agent1) const;

 FitnessFunction(int SR, double penalty,const double *
lbound,const double * ubound) : _SR(SR), _penalty(penalty) {
 for (int i = 0; i < dim; ++i){
 _ubound[i] = ubound[i];
 _lbound[i] = lbound[i];
 }
 }

 double operator()(Agent<dim> & agent)const;

 inline void addBestAgent(const Agent<dim> & a){
_best_agents.push_back(a); }

84

 double bestRawValue(const Agent<dim> & agent)const{ return
_raw_function(agent.getBestPosition()); }

 const std::vector<Agent<dim> > & getBestAgents()const{ return
_best_agents; }

 const Function & getRawFunction()const{ return _raw_function; }
private:
 double _ubound[dim];
 double _lbound[dim];
 double _penalty;
 int _SR;
 Function _raw_function;
 std::vector<Agent<dim> > _best_agents;
};

template <int dim, class Function>
bool FitnessFunction<dim, Function>::hillValley(const Agent<dim> &
agent0, const Agent<dim> & agent1) const{
 double step[dim];
 double position[dim];
 double minfit =
std::min<double>(_raw_function(agent0.getPosition()),
_raw_function(agent1.getBestPosition()));

 for (int i = 0; i < dim; ++i){
 step[i] = (agent1.getBestPosition()[i] -
agent0.getPosition()[i]) / ((double)(_SR + 1));
 position[i] = agent0.getPosition()[i];
 }

 for (int i = 0; i < _SR; ++i){
 for (int j = 0; j < dim; ++j){
 position[j] += step[j];
 }

 if (_raw_function(position) < minfit)
 return true;
 }

 return false;
}

template <int dim, class Function>
double FitnessFunction<dim, Function>::operator()(Agent<dim> &
agent)const{
 for (int i = 0; i < dim; ++i){
 if ((agent.getPosition()[i] < _lbound[i]) ||
(agent.getPosition()[i] > _ubound[i])){
 return _raw_function(agent.getPosition()) -
_penalty;
 }
 }

 double fit = _raw_function(agent.getPosition());

85

 for (int i = 0; i < _best_agents.size(); ++i){
 if (!hillValley(agent, _best_agents[i])){
 fit -= _penalty;
 }
 }

 return fit;
}

template <int dim,class Function>
class RawFitnessFunction {
public:
 double operator()(const Agent<dim> & a)const {
 return _raw_function(a.getPosition());
 }
private:
 Function _raw_function;
};

RandomTool.cpp

#include "RandomTool.h"

double random(double lbound, double ubound) {
 return ((double)(rand())) / ((double)(RAND_MAX)) * (ubound -
lbound) + lbound;
}

RandomTool.h

#pragma once

#include <stdlib.h>

double random(double lbound, double ubound);

