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ABSTRACT 

Evolutionary algorithms (EA's) are well-known mechanisms for optimization problems 

that involve frequently conflicting objectives. From the year of 1985, there have been some 

evolutionary attempts which succeeded in solving multimodal optimization problems. 

There are two techniques that are already up to the task of optimization - a sequential niche 

genetic algorithm (SNGA) and a novel adaptive sequential niche technique with particle 

swarm optimization (ASNPSO) for multimodal function optimization. 

SNGA technique is using a simple genetic algorithm (GA) and obtains information in one 

iteration. It is succeeded by applying a fitness derating function to the raw fitness function, 

which leads to the fitness values being depressed in the regions of the problem space where 

solutions have already been found. The effectiveness of the algorithm is tested by some 

multimodal test functions. The method is at least as fast as fitness sharing methods. 

On the other hand, ASNPSO also is used for same purpose of multimodal function 

optimization. It is using a particle swarm optimization instead of simple GA that is 

detecting optimal solutions sequentially. In the ASNPSO method, the hilly-valley function 

is used to determine how to change a fitness of a particle in a sub-swarm run. The 

algorithm’s search ability is strong and adaptive. 

The purpose of both algorithms is to optimize multimodal problems with different 

approaches and I subjected both of them to test with different functions and compared both 

techniques to obtain knowledge of which one gives more accurate optimal solutions. 

 

Keywords: Genetic algorithm; niche technique; fitness sharing; fitness derating function; 

multimodal optimization 
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ÖZET 

Evrimsel algoritmalar (EA'lar) sıklıkla çelişen amaçlarla ilgili olan optimizasyon 

problemleri için bilinen mekanizmalardır. 1985 yılından itibaren, multimodal optimizasyon 

problemlerini çözmeyi başaran bazı evrimsel girişimler olmuştur. 

Optimizasyon görevini yerine getiren iki teknik vardır: ardışık niş genetik algoritması 

(SNGA) ve çok modlu fonksiyon optimizasyonu için parçacık sürüsü optimizasyonuna 

(ASNPSO) sahip yeni bir uyarlanabilir sıralı niş tekniği. 

SNGA tekniği, basit bir genetik algoritma (GA) kullanmaktadır ve bir yinelemede bilgi 

almaktadır. Bunun sonucunda, çiğ uygunluk fonksiyonuna bir zindelik düşürme 

fonksiyonu uygulanır ve sonuç olarak, zihniyet değerlerinin çözümlerin daha önce 

bulunduğu problem alanının bölgelerinde baskılanmasına yol açar. Algoritmanın etkinliği, 

bazı çok modlu test fonksiyonları tarafından test edilmiştir. Yöntem en az fitness paylaşım 

yöntemleri kadar hızlıdır. 

Öte yandan, ASNPSO da aynı amaçla multimodal fonksiyon optimizasyonu için kullanılır. 

Ardışık optimal çözümleri saptayan basit GA yerine parçacık sürüsü optimizasyonunu 

kullanıyor. ASNPSO yönteminde tepelik-vadiye fonksiyonu, bir alt sürü koşusunda bir 

parçacık şeklinin nasıl değiştirileceğini belirlemek için kullanılır. Algoritmanın arama 

becerisi güçlü ve uyarlanabilir. 

Her iki algoritmanın amacı, multimodal problemleri farklı yaklaşımlarla optimize etmektir 

ve her ikisini de farklı fonksiyonlarla test etmeye tabi tuttum ve her iki tekniği 

karşılaştırarak hangisinin daha doğru en iyi çözümleri sunduğunu öğrentim. 

 

Anahtar Kelimeler: Genetik algoritma; Niş tekniği; Fitness paylaşımı; Fitness indirgeme 

fonksiyonu; Çok modlu optimizasyon 
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CHAPTER 1  

INTRODUCTION 

1.1 What is Optimization? 

 

Our life is filled with problems, these problems are the driving force for our inventions and 

environmental enhancement strategies. In computer science optimization is a computer 

process based process used to find solution to complex problems. For example, if we want 

to find the maximum peak for any function, then we need to formulize the precepts for a 

solution to be recognized as an optimum corresponding to our aim of finding either global 

optima, or local optima. Nevertheless, we may use constraint to push the algorithms to a 

feasible peak by suit of constraints, and if we want to make things more difficult we will 

use mixed constraint types, such as equality and inequality constraints. Finally, 

optimization can be defined as optimization is to find an algorithm which solves a given 

class of problem.  

In mathematics we can use derivatives or differentiation to find an optima, but not all 

function are continuous and differentiable.  In general, the non-linear programming is to 

find x
r

 so as to optimize , n

nxxxx  ),,,( 21 L
r

, where SFx 
r

. The objective 

function )(xf
r

 is defined in search space , the set SF  define the feasible region, 

usually is defined in  dimensional space from the global space . Every vector  

has domain boundaries, where niiuxil i  1),()( , and the feasible region is defined 

by a set of constraints. 

 Inequality constraints, 0)( xg i , and equality constraints 0)( xh j . Those inequality 

constraints could be equal to zero then they are called active; however, the equality 

constraints are always active and equal to zero in the entire of search space. Some 

researchers were focused in local optima, where the point  is local optima  there exist 

ε such that. For all in the ε neighborhood of in , )()( 0xfxf
rr

 . Finally, 

evolutionary algorithms are contrasting the mathematical derivatives to be a global 

optimizer method with complex objective functions when mathematics fails to give a 

)(xf
r

S

S n n x
r

x
r



0x
r

0x
r
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sensible solution because of the complexity of the hyperspace or function discontinuity 

elsewhere  (Michalewicz & Schoenauery, 1996). 

Evolutionary computing is often used to solve such complicated problems, where the 

boundaries of the feasible region are so strict; whereas, genetic algorithms are an expert 

optimization method. Its chromosomal representation can be continuous or discreet. 

Genetic algorithms can be used for complex optimization problem; since, they are not 

attracted by the shape or the complexity of the objective function. By adding the 

constraints functions for the infeasible chromosome it can enforce those individuals to be 

feasible, or it may give them cost to be feasible. On the other hand, the feasible 

chromosomes have no addition or subtraction from their objective function value. This 

criterion will enhance the feasible solution and penalize infeasible no matter the shape of 

the function. Discontinuity is the second problem genetic algorithms can avoid; since, the 

value of constraints will avoid it. 

The field of EA is  encircle of genetic algorithms (GAs) and many other methods, here I 

will  describe two methods which is already proposed in my abstract. Before to go in detail 

of SNGA and ASNPSO I need to explain genetic algorithm and Particle swarm 

optimization methods. 

1.2. Thesis Overview  

This thesis is organized in incremental method. Starting with simple and moving to more 

complicate declaration depending on the issues. 

Chapter 2: Discusses Genetic Algorithms framework, structure, and it basic operation. 

Chapter 3: Description of different methods in GA and detail of SNGA. 

Chapter 4: Discusses particle swarm optimization and it basic operation and ASNPSO. 

Chapter 5: Experimental results of 8 functions which are used in SNGA and ASNPSO.  

Chapter 6: Analysis and comparison of SNGA and ASNPSO with statistical data.  

Chapter 7: Discussion defend on the analysis and comparison. 

Chapter 8: Conclusion. 
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CHAPTER 2 

 INTRODUCTION TO GENETIC ALGORITHM 

Study of mathematical optimization a genetic algorithm is a best and generally used global 

search method that duplicate the process of natural election. It generates practical solutions 

to optimization. Genetic algorithms are the large part of evolutionary algorithms (EA), that 

produce solution to optimization issues using method achieved by natural evolution. 

(Goldberg, 1989), Genetic algorithm is finding algorithm depend on the logistics of natural 

election and natural ancestral. They together survival of the fittest among string structures 

with a structured up to now randomized facts conversion to form a search algorithm with 

some of the original talent of human search. In every generation, it created new strings. 

The new string is used for good measure and used for new generation. Genetic algorithm 

have been developed by (Holland, 1975), the research have been twofold (1) to 

hypothetical and carefully show the adaptive operation of natural structures, and (2) to 

create artificial structure software that absorb the important mechanisms of natural and 

artificial structures science. The research on genetic algorithm has been well made for 

survival in many different environment. The implications of well made for artificial 

systems are manifold. If artificial structure can be made better, costly modernize can be 

decreased or eliminated. If best result found then the actual structures can perform their 

function longer and batter. Features for self-repair, self-direction, and breeding are the rule 

in biological system, where they exist in the most knowledgeable artificial systems 

(Sivanandam & Deepa,  2008). It is also the most popular stochastic optimization 

methodology used now a day. The basic of GA is Charles Darwin theory of “survival of 

the fittest”, where types must adapt to their territory to survive. Elements with fittest 

natural traits will have a best capacity and chance to persist. They will also have more 

preference for reproduction and changing their phenotype and genotype to next 

generations. GA basic are the genes that carry a set of genes, where in phenotype represent 

element a single gene. Element have upper and lower bounds that show the minimum and 

maximum adaptive fitness in phenotype for applicant. Genes can provide solutions or near 

result for the global problem. Simultaneously, gene length makes scale of participate 

specific factor set; for example, if gene length is equal to n , then it can represent 12 n  
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binary strings ( Sivanandam & Deepa,  2008),  those can be encoded for (length) 12
n

  

(Reeves & Rowe,  2002). On the other side, every gene has one or more genes, those genes 

will be stored in a single attitude. The set of all genes will represent a single element. 

(Holland, 1975) explained genetic algorithm for finding nonlinear problems. GA is 

problem determined by as there are many limitation for individual representation i.e. 

binary representation because our aim is to guarantee that GA exactly and absolutely 

represents all feasible alleles for every point of the search space. These values for genes 

will represent the genotype that makes direct image for phenotype where we will compute 

the result as stated to their fitness. In general if can tack values by a decision variable 

between a ,b , and ab  , and if it’s designed to binary string of length L , then the accuracy 

will be computed in the next equation (Reeves & Rowe, 2002), where is best gene 

width.  

Another technique was placed for binary representation of elements, such as gray coding, 

where the hamming cliff is decrease to one rather than standard binary representation. The 

chance that at least one gene is presented at each part can be defined in the next equation 

(Sharda & Voß, 2002). 

GA basic runs are initialization, selection, crossover, mutation, termination, population 

replacement, and fitness evaluation. Figure 1 showed GA flowchart.  

 

Figure 1: Genetic Algorithms Flowchart 

x
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 2.1 Binary Representation 

The GA process was essentially initiate by (Holland, 1975) was in binary, since as it was 

the natural chromosomes gene reproduction and its accessibility of applying the GA basic 

process.  For example, to appoint a variable in decimal equal to 15 for a given problem, we 

start from 0 and start to give discrete values in limit by increment by one. Then we 

compute to appoint a number from 0 binary)0000( to 15 binary)1111( we need 4 bits. With this 

method the solution was awful. Basically three issues were highlighted. 

A. Number of bit required: that every variable had its own domain iD  , which has 

lower and upper bound; e.g. problem 5G let us staple sample of two variables

12000 1  x , here we have a problem of planning variable domain in binary level, 

circulate to flat binary bit matching to every variable. To show 1x , in trivial method 

we need 11 bit binary string to show it. In another word,  55.055.0 3  x  how 

could be appointed to it in trivial technique. This planning issue has occur a 

problem which is defined as Big bound. We need to compute all variables into 

binary string that store them within boundaries. Sometimes there will be off bits 

inside, at the time how can we control the domain idea? For example, to represent 

decimal200  in binary binary11001000)(  as it shows, we have many unoccupied alleles, 

which can in total shift the search space for impractical solution. If we have several 

solid reconnection operations, either maximization or minimization issues all of 

them will be 0’s or 1’s after a particular number of iterations. And if we need to 

represent 200 in fewer numbers of bits determine by only full (on) bits, we will 

have a value less than 200, which is a loss of useful data points in search space. 

Either way will be inefficient for an accurate solution, within this bad status of 

binary reproduction and domain content; still, we can produce a temporary solution. 

For incase, uniform crossover, where crossover chance is taken separately for every 

bit substitute of chromosome in some way it’s exchange for mutation. Moreover we 

suggest a methodology for building and retrieving values of variable with less 

difficulty and more exact results. 
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Assume we are going to maximize or minimize function, such that RR i  , each 

variable ix  , can staple value from domain ],[ iii baD  , where ii ba   . If we need to 

optimize )(xf  with clarity, every one estate should be constructed by n

ii ba 10)(   , 

where n  is the decimal precisions desired. Let us indicate im  as the smallest threshold 

integer then 1210)(  imn

ii ab  . For example, 30  vD , then ]0,3[vD . 

Assume we need accuracy with degree 2; then 1210)03( 2  im   , to represent 

100300 we need 9bits which indicate the distinction will be as stated to Equation (1). 

Finally; in order to represent forecast with variable boundaries elsewhere (Goldberg, 

1989). 

12
)(






n

ii

i

ab
ngbinarystridecimalav                                     (1) 

B. To figure a more tricky framework where we have a variable with a big number and 

another variable with a mini domain. e.g.  the same issue 5G (see page Error! 

Bookmark not defined.) Where 55.055.0 3  x , the query is how to represent 

variable domain that has negative range? Let us forecast scheme, if we use chance 

to be positive; or negative for exactly set of bit in chromosome, then that will be 

interest. Still, whenever we design a control matrix for variable negative and 

positive value that will be begun from the initializing by building variables in 

domain limit and checkup they token. By inherently of fixed variable rage i.e. 

stable token contrary of search process running, and forecast it will be the same 

token), both of them are awful in operation and mathematical evidence.  Another 

issue to study is does all variables within the value of bits, want to be moved? The 

is answered Yes, I should do, because making proportional number of bits will 

build the process more tricky mistakes. Another question is how to recover an 

objective function value from the chromosome?  Here we need more than one 

quality process for recovering variable values and of course we need more tricky 

designing of bits to ratio or real values. In last, variables are discreet and mainly the 

same for entire runs and search processes. 
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C. Re-construct binary string: following retrieving variables values and computing 

objective function, we want to apply GA process and penalty. Here one  question is 

how to recover certain variable value from penalty function? Which methodology 

will use to construct binary string from its matching variables value? We have 

sketched more than one solution, but all inappropriate. Mainly the left most binary 

string values about zeroes; in contrast, mathematic optimization method debated 

before position is to deal only with positive binary strings. So then we can find the 

inverse of the given penalty function. And we already trying it in simple method 

that is maximized ]31,0[x  . The made objective function loses too many points 

out of the native function. The result is to adapt the value of penalized element, 

matching to the same Equation (1). 

2.2 Selection 

From population to be choosing a two parent chromosomes for crossing is called in GA a 

selection method. How many individuals will be selected? The set of questions needed to 

be acknowledged. Will they make a better quality! In case will be a better solution or not 

after a crossing point. From random population to be choose that called basic selection 

fully random method, exchanged, where separate objective functions are to be the chance 

of selection, this method is the soul of roulette wheel selection. Basically it's easy method 

but some more problem to be answered, e.g. the two parents from populations mating pool, 

how many new copies these two selected elements will copy themselves for the next 

population. This is the basic problem with selection method. There is a lot of solutions, that 

can easily solves these problems. Such as elements rank, fitness pressure balancing and 

scaling of fitness be based on nature of the issue. Such as, rank selection and steady-state 

selection many other methods were created to solve these problems. Selection and other 

assign of selection algorithm are diverting the basic part of convergence of the algorithm. 

There are two main types of selection, proportional selection, where fitness part is ratio 

apprehend from comprehensive population part, such as, selection of roulette wheel. The 

other type of selection is ordinal based selection, where fitness based on ranking (position) 

of part in population, and the first place taken for the worst individual. We have used 

binary tournament selection, since as its regularity and ability to give chance for worst 
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individuals to take a part in selection method where their preference is very low. On the 

way, for limitation of optimization we can assess stochastic ranking as a selection process. 

Although it can’t be identify as a complete one, because of its shortness to select part from 

the crossing pool. Another appreciative technique require that can make the agreement of 

selection. 

2.2.1 Tournament Selection  

Tournament selection works as follows, choose some number t of individuals randomly 

from the population and copy the best individual from this group into the intermediate 

population and repeat N times Often tournaments are held only between two individuals 

(binary tournament) but a generalization is possible to an arbitrary group size t called 

tournament size. Figure 4 shows the basic tournament selection pseudo code  (Blickle & 

Thiele, 1997).  

 

 

 

 

 

  

 

 

 

 Figure 2: Tournament selection pseudo codes (Blickle & Thiele, 1997) 
 

2.2.2 Roulette Wheel Selection 

Roulette Wheel is the most familiar selection method used in GA. It starts by selecting 

elements linearly from the mating pool. However, cumulative element objective function is 

summed, and the average of fitness is calculated. By using the sum of fitness, individual’s 

fitness is divided sequentially with the total probability of one. Individuals are captured in 

Algorithm: Tournament Selection 

Input: the population )(P  the tournament size  Nt ,,2,1 LL  

Output: population after Selection  

Tournament ),,,( 1 NJJt LL  

for 1i  to N do 

  '
jJ  best individual out of τ randomly picked individuals 

from  

od 

Return  ''
1 ,, NJJ LL  
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the roulette space proportional to their fitness. Meanwhile, the number of times individual 

can be selected is proportional to the average of fitness. When comparing with other 

method this method has disadvantage. It’s hardly dependent on individual objective 

function, which allows the best individuals to manipulate the mating pool. On the other 

hand, it will encourage the algorithm for less exploration for infeasible search space from 

the beginning. However, those individuals may have a solution. Finally, scaling of fitness 

and other techniques are used to make less impact of fittest individuals for the search 

process. Figure 2.3.1.1 declares RWS algorithm pseudo code (Goldberg, 1989). 

  

 

 

 

 

 

 

 

 

 
Figure 3: Roulette Wheel Selection Algorithms 

In contrast with proportion selection, linear ranking selection is based in position, where 

individual are sorted with respect to problem in hand. Meanwhile the first position will be 

reserved for the worst element. The positions of the population will have constant 

probability to be selected with respect to the Equation (2)  (Blickle & Thiele, 1997), where 

linear function will be constructed. The probability of worst individual to be selected will 

be 
N


 (Blickle & Thiele, 1997), and the best will be 

N


  (Blickle & Thiele, 1997). The 

value of   must be in between [0,1]; on the other hand, the value of   will be calculated 

Algorithm: roulette wheel selection 

Input: the population P  

Output: population after selection 
*P  

X= random ]0,1[ 

while  do 

If i<m & x < 
),(

),(

1
tbf

tbf
n

i i

i

 

 then 

 

tbselect i ,  

fi 

od 

Return 
*P  

 

1i
ni 

1 ii
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by    2  (Blickle & Thiele, 1997), where   value will determine the probability of 

worst individual to participate in selection process and  N  is population size and i is the 

index of element. Figure 2.3.2.1 is illustrates the pseudo code for linear ranking selection 

algorithm (Blickle & Thiele, 1997). 

  










 

1

11

N

i

N
pi                                                             (2) 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Linear ranking selection pseudo code (Blickle & Thiele, 1997) 

2.3 Crossover 

Crossover is the production method that uses exploitation to shift the search process for 

better region of the search space. It can positively make new elements that are improved 

their parents by posting their quality into new baby's. It can only reconstruction ancestor’s 

attribute externally any construction of new attribute. For every element GA are flowing to 

allow incidental for crossover, lean on every element, those individual will be post into the 

crossing pool. The typical chance of crossover cP will be even for the whole of the method 

Input: the population P (τ) and the production rate of worst individual   [1,0[
Output: the population after selection  'P  
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and = to (0.5-1.0)  (Goldberg, 1989), where a homogeneous random generator will carry 

producing random values; at all, for selected new element selected the value will be 

correlated with cP , in order to post element into the crossing pool. Many nature of 

crossover happen, such as multipoint crossover, homogeneous crossover, single point 

crossover, and three parent crossovers. In this thesis we used single point crossover, where 

two parent’s capacity are crossing giving to random choose point. One disadvantage is in 

single point crossover that the first number of parents posts same as in parents, where they 

are disconnected but they may enclose solution for the issue. 

 In comparison, one homogeneous random generated crossover points less used than 

multiple points’ crossover, where they can separate the parent and move their values into 

new baby. This shares priority over single point crossover. Homogeneous crossover uses a 

single point chance for every non-identical gene, which make a higher chance for condition 

values to be changed. For example, for binary representation, if condition value is 1 the 

first element capacity are post to second, and vice versa if zero is found. Figure 5 shows 

the single crossover pseudo code (Goldberg, 1989). 

 

 

 

 

 

 

 

 
Figure 2: Single crossover pseudo code (Goldberg, 1989) 

Algorithm: Single Point Crossover 

Input: two individuals randomly picked from mating pool 

Output: new explored offspring’s 

Position= random  

For 1i to position do  

Child 1[i] = parent 1[i] 

Child 2[i] = parent 2[i] 

end 

For 1 positioni  to N do 

Child 1[i] = parent 2[i] 

Child 2[i] = parent 1[i]          end 

 N,,1L
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2.4 Mutation 

Mutation is frame work of GA. Mutation avoid algorithms from nature stuck with local 

minimum, because it scout the complete search space. Such as; if we want to maximize 

function  in constrained interval [0, 7]. Then the starting population might not be 

the top. By mutating condition we may shift some genes into value close to binary)111( , by 

iteration. Chance of mutation is tried for every gene, which is dispute crossover; so, it 

infrequently occur because of its small value. There are several kind of mutation which 

straightly based on description. For example, if we use actual record or integer then 

mutation criteria will be separate with binary representation. If record are discreet and 

elements are represented in binary base, then mutation will be a bitwise by exchanging 0 to 

1, and vice versa. Finally, chance of mutation, 
n

Pm

1
  (Sharda & Voß, 2002), where  is 

chromosome length. Irregularly, mP   may be fixed, but the representative mP   (0.05-0.5)  

(Goldberg, 1989), in our structure we use the identical values. 

 

2.5 Population Replacement 

There are many options for population replacement, I am going to describe two of 

them: 

1. Succeeding a GA primary process choose only the top elements with some previous 

methods, the whole parents and baby's are sharing the same chance to be chooses. 

2. Choose only from the new generated baby's and kill the whole parents, especially 

substitution method, where baby's assume their parent. 

2.6 Search Termination 

There are many criteria which have been constructed for search termination. Because of the 

stochastic nature of GA it can run for infinity, but it needs to be stopped at any given time 

because evaluation of the solution is needed. We can classify stopping condition into three 

types, time dependent, iteration dependent and fitness dependent.  

xxf )(

n
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1. Maximum number of generations: We need to stop the algorithm, if we pass the 

maximum number of iteration. Occasionally we need to forecast the certain number 

of needed determined by iterations on the difficulty of the issues. e.g. our maximum 

function evaluation scheme (FES) is equal to 500000. The initial stopping condition 

will be a number of iterations is the relevant and generally used part.  

2. Elapse time: sometime starting time to end time can be adoption as a secondary 

stopping scheme. Issues are heterogeneous in complexity; occasionally, we can 

forecast interval for stopping algorithm runs. Concurrently it must stop, if the 

maximum generation number is reached. 

3. Minimal diversity: Compute difference between attribute and fitness inside is a 

critical running. Since as attributes are maintained, and the process will continue its 

value even after reconnection process. Algorithms need to be stopped. 

Occasionally, this standard process more priority over number of iterations. 

4. Best Individuals: Whenever the minimum of fitness in the population collapse 

under the intersect value. This will lead the search process to faster accomplishment 

that assurance at least one good solution (Sivanandam & Deepa, 2008). 

5. Worst Individuals: minimum fitness value for the worst individual perhaps less than 

intersect scale. In this case intersect value may not be achieved (Sivanandam & 

Deepa, 2008). 

6. Sum of Fitness: the observant treated to have contentment intersected when the sum 

of fitness in the whole data is less than or equal to the intersect value on the 

population data. This assurance that logically all elements are in the same area 

(Sivanandam & Deepa, 2008) 
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CHAPTER 3 

THE METHODS IN GA FOR MULTIMODAL FUNCTION  

OPTIMIZATION 

3.1 Method of Iteration 

Iteration is the easiest method which can be used with any optimization method to create 

multiple solutions. If the optimization method absorb stochastic conduct, then there is a 

chance that successive runs will come up with different solutions. But this is rather a slow 

proceed towards. However many times the algorithm is iterated, there is no guarantee that 

it will locate all maxima of interest.  

Applying iteration to any single solution method, the very best we can hope for is that if 

there are p maxima, we will have to iterate p times. Using blind iteration, to remunerate for 

the duplicate solutions which are likely to arise, we can expect to have to increase the 

number of iterations by a factor, which we shall call the redundancy factor, R If all maxima 

have an equal likelihood of being found, it can be shown that R has a value given by: 

R = ∑ 1/m��	
                                                      (3) 

This can be approximated (Jolley, 1961) for p>3, by: 

R ≈ r+ log p 

where r ≈0.577(Euler's constant). 

This value is relatively small even for p =1000, R is only 7.5. If all maxima are not 

probably to be found, the value of R will be much higher. 

 

3.2 Parallel Sub-population 

Another method which can produce multiple solutions is a GA. Where the population is 

divided into multiple sub-populations which evolve in parallel. If there is no transmission 

between sub-populations, this is directly equivalent to iterating a single smaller population 

many times. Likewise there is no guarantee that different sub-populations will converge on 
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different maxima. Most execution exploit some degree of communication between the sub-

populations, to allow good genes to spread. However, the effect of this is to reduce the 

diversity of solutions,  and the whole population will finally converge on a single solution 

(Grosso, 1985). Local mating schemas experience similar problem (Davidor, 1991). 

 

3.3 Fitness Sharing 

(Goldberg and Richardson, 1987) described the design of fitness sharing in a GA as a way 

of assist solid sub-populations,  or species. The aim of sharing comes from an analogy with 

nature. In natural, there are many different ways in which animals may survive (feed, 

hunting, on the ground, in trees etc) and different species develop to fill each character. 

Each character is referred to as an ecological niche. For each niche the physical resources 

are limited and must be shared among the population of that niche. This provides a 

obstacle for all creatures to populate a single niche. Alternative creatures evolve to form 

sub-populations in different niches. The size of each sub-population will send back the 

availability of resources in the niche. The analogy in function optimization is that the 

location of each maximum represents a niche, and by acceptably sharing the fitness related 

with each niche. we can encourage the formation of stable sub-populations at each 

maximum. Sharing is carried out on the basis that the fitness "payout" within each niche is 

finite, and must be shared between all individuals in that niche. Therefore, the fitness 

awarded to an individual will be inversely proportional to the number of other individuals 

in the same niche. The total payout for a niche is set equal to the height of the maximum so 

larger maxima can support proportionally larger sub-populations. However, a fundamental 

problem is where are the niches. How do we decide if two individuals are in the same 

niche, and should therefore have their fitness values shared. To do this accurately, we need 

to know where each niche is, and how big it is. Clearly we cannot know where the niches 

are in advance, otherwise we would not have a problem to solve! (Goldberg and 

Richardson, 1987) approach this by assuming that if two individuals are close together, 

within a distance known as the niche radius, then their fitness values must be shared 

Closeness, in this instance, is measured by the distance in a single dimension decoded 

parameter space. A method for choosing the niche radius is presented in (Deb & Goldberg, 
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1989) and this is discussed later. Although their technique is successful, its disadvantages 

have been pointed out by Smith, (Forrest and Perelson, 1992). To compute accurately the 

fitness of an individual involves calculating its distance from every other member of the 

population. The total time complexity will depend on the time taken for the basic GA, plus 

the additional time taken to perform the fitness sharing calculations. This additional 

complexity is O(��) where N is the population size. This is a disadvantage if N is large, 

and N must be large if we hope to find many optima. ( Goldberg, 1989)  recommends that 

for a multimodal GA expected to find p different solutions, we need a population p times 

larger than is necessary for a unimodal GA. This is because a certain number of individuals 

are necessary to accurately locate and explore each maximum. If a GA is to support stable 

sub-populations at many maxima, the total population size must be proportional to the 

number of such maxima. The above argument assumes that the population is spread 

equally among all maxima of interest. However, this may not be the case for two reasons 

Firstly, under the standard fitness sharing scheme, high fitness peaks will contain 

proportionally more individuals than low peaks. Secondly, there may be peaks in the 

fitness function which we are not interested in, but which capture a proportion of the 

population. This was a significant problem for (Goldberg, Deb and Horn, 1992). This 

uneven distribution requires that N is increased, to ensure that even the smallest peak of 

interest contains a sufficiently large sub-population. The factor by which N must be 

increased we call the peak ratio Ø. If p  is the proportion of peaks which are of interest, and 

�
� is the fitness of the smallest peak of interest, then Ø is determined as  

 

 Ø = ���� ������� �� ��� �����
����                  (4) 

So the population size required is N= npØ where n is the population size needed to find 

one solution. Oei, Goldberg and Chang(1991)  suggest several improvements to the 

original fitness sharing algorithm. They say that the time complexity of the fitness sharing 

calculations may be reduced from O�� to O(N p) if we sample the population, instead of 

computing the distance to every other member. They also describe how, in conjunction 

with tournament selection, a niche size threshold parameter, may be used to limit the 
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maximum number of individuals in each niche. This should prevent highly-fit maxima 

from gaining significantly more individuals than less-fit maxima. So the effective value of 

will be between 1 if the uninteresting peaks have low fitness relative to �
� and if the 

uninteresting peaks have fitnesses close to �
�. Assuming that these suggestions are 

viable, we can compute the time complexity as follows : 

The time taken for the basic GA to find a single peak is proportional to the number of 

function evaluations performed before convergence this is approximately (a N gc) where α 

is the time for one function evaluation, performed before convergence; the additional time 

for the fitness sharing is approximately (βANpgc), where β is the time to compute the 

distance from one individual to another, and A is the number of individuals we must 

sample in each niche. Using A=5(Oei et al, 1991), and setting N=nØp, the time 

complexity, Cshair, is 

                                                     Cshair e=O(nØpgc(α+5βp))                                          (5) 

3.4 The Sequential Niche Genetic Algorithm Technique (SNGA) 

3.4.1 Basic principles 

(Ackley, 1987) compared a number of function optimization techniques, including GAs 

and hill climbers. When an optimization technique found a sub-optimum peak, he iterated 

the technique until the (known) global maximum had been found. He examine  that to 

solve difficult problems, (with local maxima), we must search till that we find one of the 

maxima, and then try again. But blind iteration does not learn lessons. When we iterate a 

conventional GA, everything learned in the previous run is forgotten. The sequential niche 

technique reported here is defined on the idea of bringing over knowledge learned in one 

run to each subsequent run.  

Once one maximum has been found, there is no need to search for it again. So our 

approach is to eliminate that peak from the fitness function, using a method akin to sharing. 

As mentioned above, sharing is complicated to perform if the locations of the niches are 

unknown. But after one run of the GA, the location of one of the niches is known. On the 

second run of the GA, we assume that this niche is conceptually already filled, and few 
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further rewards are available to any individuals which might stray into the area. Instead, 

individuals are forced to converge on an unoccupied niche, which is in turn also 

conceptually assumed filled in the third run. This process can continue until we decide 

(using some criterion, such as the number of maxima we expect in the function) that all 

maxima have been located. 

This algorithm is similar to sharing in its approach. The sharing algorithm essentially 

works by dynamically modifying the fitness landscape according to the location, in each 

generation, of individuals in the population. This is done in such a way as to encourage the 

dispersion of individuals throughout the landscape, which, hopefully, leads to better 

exploration of the search space, and the identification of all maxima. Conversely, our 

sequential niche algorithm works by modifying the fitness landscape according to the 

location of solutions found in previous iterations (unlike the sharing algorithm, the fitness 

landscape remains static during each run). This is done in such a way as to discourage 

individuals from re-exploring areas where solutions have been found, thereby encouraging 

them to locate a maximum elsewhere. 

 In the sharing algorithm, once the population begins to converge on multiple peaks, cross 

breeding between different peaks is likely to be unproductive. (Deb, 1989) showed that a 

mating restriction scheme was able to improve the sharing algorithm for this reason. If 

mating between individuals on different peak is to be prohibited, performance would be 

improved by instead running a number of separate, smaller population GAs, one exploring 

each peak. It might be possible to achieve this with a parallel GA, where the sub-

populations on each processor evolve separately after an initial period in which they evolve 

together, using some algorithm which ensures that no two sub-populations are converging 

on the same peak. However, we do not adopt this approach because it appears 

unnecessarily complicated. 

 

3.4.2 Derating functions 

The single-peak derating function, G, are possible; two were tested: power law, Eqn. (6), 

and exponential, Eqn. (7). Here, r is the niche radius (see below),  !" is the distance 
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between x and s, as determined by the distance metric. In Eqn. (6), α is the power factor, 

which determines how concave (α > 1) or convex (α  < 1) the derating curve is, with α = 1 

giving a linear function. When dxs = 0, Gp(x; s) = 0. In Eqn. (7), m is the derating 

minimum value, which defines G when  !" = 0 (such that G(x; s) = m). m must be greater 

than 0, since log(0) = -∞. m also determines the concavity of the derating curve, with 

smaller values of m producing more concavity. For both forms, when  !" ≥  r, we set G(x; 

s) = 1. 

#�$%, '( = ) $ !" /*(+  if  !" .  /    1 01ℎ3*45'3                                                                           (6) 

#6$%, '( = ) 3%7$809: ∗ $* −  !" (/*(         if  !" .  /    1                                      01ℎ3*45'3                                          (7)                       

The sharing function described by Goldberg and Richardson (1987), Deb (1989) and Deb 

and Goldberg 

(1989) performs the task of reducing the fitness of an individual depending on its distance 

from each other individual in the population. In a similar way, our fitness derating function 

performs the task of reducing the fitness of an individual depending on its distance from 

each best individual found in previous runs.  

To determine the value of niche radius, r, we use the same method as Deb (1989), which is 

as follows. If we imagine that each of the p maxima in the function are surrounded by a 

hyper sphere of radius r, and that these hyper spheres do not overlap, and that they 

completely  fill the k-dimensional problem space, then if the parameter range for each 

dimension is normalized to be 0 to 1, r is given by: 

r =√>/2 ∗ @7A                                                                                               (8) 

Deb's technique is simple, but requires that we know (or estimate) the number of maxima 

in the function, and assumes that all maxima are equally spread throughout the search 

space. Clearly, there will be functions where these restrictions are not satisfied. For our 

present experimental investigations, we adopt the simple approach to niche radius given 

above. 
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3.4.3 Explanation of algorithm 

Any problem to be solved by a GA needs a fitness function. For the sequential niche 

algorithm we also need a distance metric. This is simply a function which, given two 

chromosomes, returns a value related to how "close" they are to each other. The most 

trivial measure of distance is the Hamming distance, although as (Deb and Goldberg, 1989) 

showed, sharing works better if we use a distance measure based on the decoded parameter 

space. One reason for this is that for binary-coded chromosomes at least large differences 

between chromosomes may correspond to small different in parameter space at a Hmming 

cliff, for example. By using the parameter space to determine the distance between two 

chromosomes, we avoid any topological distortion introduced by the coding scheme. 

Typically, a chromosome (the genotype) represents a number of parameters (the 

phenotype), and they are mapped to a fitness value. If there are k parameters, then each 

individual can be thought of as occupying a point in k-dimensional space. The distance 

between two individuals can be taken as the Euclidian distance between them. (As 

suggested by (Deb, 1989), if the parameter is different dimensions are widely different, it 

may be desirable to normalize each parameter to cover the range 0 to 1 before the 

Euclidian distance is determined.) There are other ways to define a distance metric, but we 

shall use the Euclidian distance. Our algorithm does not rely on any particular distance 

metric.  

Having defined a fitness function and distance metric, the algorithm works as follows 

(terms in italics are explained below): 

1. Initialize: equate the modified fitness function with the raw fitness function. 

 2. Run the GA (or other search technique), using the modified fitness function, keeping a 

record of the best individual found in the run.  

3. Update the modified fitness function to give a depression in the region near the best 

individual, producing a new modified fitness function. 

 4. If the raw fitness of the best individual exceeds the solution threshold, display this as a 

solution.  
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5. If not all solutions have been found, return to step (2). 

A single application of this overall algorithm we refer to as a sequence, since it consists of 

a sequence of several GA runs. Knowledge of niche locations (maxima) is propagated to 

subsequent runs in the same sequence. 

A solution is a set of k parameters which define the position of a maximum of interest.                                                               

The solution threshold represents the lower fitness limit for maxima of interest. (It is 

assumed that there are a known number, p, of \interesting" maxima, all with fitness greater 

than the solution threshold.) Its value is set individually for each problem. If no 

information is available about the likely fitness values of the maxima of interest, the 

solution threshold may be set to zero. In this case, the algorithm is terminated after the first 

p peaks have been found 

The modified fitness function, M(x), for an individual, x, is computed from the raw fitness 

function, F (x), multiplied by a number of single-peak de-rating functions . Initially we set 

M0(x) = F (x). At the end of each run, the best individual, '�, found in that run is used to 

determine a single-peak de-rating function, G(x; '�). The modified fitness function is then 

updated according to: 

                              B�+1(x) =B�(x)* G(x; '�)     (9) 

3.4.4 Termination conditions   

Deciding when to halt a GA run and start the next iteration is not a trivial task. Towards the 

end of a run of any traditional GA, the search efficiency falls off since the population 

becomes more uniform, causing exploration to rely increasingly on mutation (Goldberg, 

1989b). For our algorithm, we need to decide at what point in the run we are unlikely to 

improve on the best individual found so far, and then terminate the run. The technique we 

adopt is to record the population average fitness over a halting window of h generations, 

and terminate the run if the fitness of any generation is not greater than that of the 

population h generations earlier. Values of h between 5 and 20 gave good results with the 

test functions we tried. More complex functions with longer convergence times might need 

larger values. A run is also terminated if an individual is found with a known maximum 

fitness target, or a maximum number of generations has been reached. 
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CHAPTER 4 

METHOD OF PARTICLE SWARM OPTIMIZATION 

Particle swarm optimization (PSO) is basically a stochastic optimization technique 

developed by (Eberhart and Kennedy,  1995), provoked by social behavior of bird flocking 

or fish schooling. 

Genetic Algorithms(GA) and PSO has many similarities with evolutionary computation 

techniques. The system is determined with a population of random solutions and examine 

for optima by updating generations. However, unlike PSO,GA has no evolution operators 

such as crossover and mutation. In PSO, the potential solutions, called particles, fly 

through the problem space by tracing the current optimum particles.  

Each particle follows its coordinates in the problem space which are associated with the 

best solution (fitness) it has gain so far. This value is called pbest. Another "best" value 

that is chased after by the particle swarm optimizer is the best value, obtained so far by any 

particle in the neighbors of the particle. This location is called lbest. when a particle 

considers all the population as its topological neighbors, the best value is a global best and 

is called gbest. 

The particle swarm optimization concept contains of, at each time step, accelerating each 

particle toward its pbest and lbest locations (local version of PSO). Acceleration is 

measured by a random term, with separate random numbers being generated for 

acceleration toward pbest and lbest locations. 

In past several years, PSO has been applied as a powerful tool in many researches and 

application areas. It is found that PSO gets better results in a faster, cheaper way compared 

with other methods.  

Another reason that PSO is successful is that there are few parameters to adjust. One 

version, with slight changes, works well in a wide range of applications. Particle swarm 

optimization has been applied for approaches that can be used across a wide range of 

applications, as well as for specific focused applications. 
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The focus of this demonstration is on the second topic. Actually, there are a lots of 

computational techniques provoked by biological systems, such as artificial neural network 

is a simplified model of human brain; genetic algorithm is inspired by the human 

evolution.  

 

Now we discuss another type of biological system - social system, more specifically, the 

collective behaviors of simple individuals, interaction between their environment and each 

other. Someone of it is known as swarm intelligence. All of the simulations take advantage 

of local processes, such as those modeled by cellular automata, and might underlie the 

unpredictable group dynamics of social behavior.  

Some famous examples are floys and boids. Both of the simulations were created to 

elucidate the movement of organisms in a bird flock or fish school. These simulations are 

frequently used in computer animation or computer aided design. 

There are two famous swarm inspired methods in computational intelligence areas: particle 

swarm optimization (PSO) and Ant colony optimization (ACO). ACO was inspired by the 

behaviors of ants and has been successfully applied in discrete optimization problems.  

The concept of particle swarm is originated as a simulation of simplified social system. 

The original purpose was to graphically simulate the choreography of bird of a bird block 

or fish school. However, it was discovered that particle swarm model can be used as an 

optimizer.  

 

4.1. Algorithm 

As discussed before, PSO simulates the behaviors of bird flocking. Let's consider the 

following scenario: a group of birds are randomly searching food in an area. There is only 

one piece of food in the searching area. All the birds do not know where can they find the 

food. But they have idea how far the food is in each iteration. So what's the best plan to 

find the food? The best one is to follow the bird which is nearest to the food.  

PSO educate from the scenario and used it to solve the optimization problems. In PSO, 

each single solution is a "bird" in the searching area. We consider it "particle". All of 
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particles have fitness values which are measured by the fitness function to be optimized, 

and have velocities which direct the flying of the particles. The particles fly through the 

problem space by tracing the current optimum particles. 

PSO is determined with a group of random particles (solutions) and then searches for 

optima by updating generations. In each and every iteration, each particle is updated by 

following two "best" values. The first one is the best solution (fitness) it has gained so far. 

(The fitness value is also stored.) This value is called pbest. Another "best" value that is 

followed by the particle swarm optimizer is the best value, obtained so far by any particle 

in the population. This best value is a global best and is called gbest. When a particle 

participates of the population as its topological neighbors, the best value is a local best and 

is called I-best. 

After finding the two best values, the particle updates its velocity and positions with 

following equation (a) and (b). 

 

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * ([] - present[]) (a) 

present[] = persent[] + v[] (b) 

 

v[] is the particle velocity, persent[] is the current particle (solution). pbest[] and gbest[] 

are defined as discused before. rand () is a random number between (0,1). c1, c2 are 

learning factors. usually c1 = c2 = 2.  

The pseudo code of the procedure is as follows 

For each particle  

    Initialize particle 

END 

Do 
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    For each particle  

        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in history 

            set current value as the new pBest 

    End 

    Choose the particle with the best fitness value of all the particles as the gBest 

    For each particle  

        Calculate particle velocity according equation (a) 

        Update particle position according equation (b) 

    End  

While maximum iterations or minimum error criteria is not achieved 

Particles' velocities on each dimension are hoid to a maximum velocity Vmax. If the sum 

of accelerations would cause the velocity on that dimension to pass Vmax, which is a 

parameter specified by the user. Then the velocity on that dimension is bound to Vmax. 

Comparisons between Genetic Algorithm and PSO 

Most of evolutionary techniques have the following steps: 

1. Random generation of an initial population 

2. Reckoning of a fitness value for each subject. It will directly depend on the distance to 

the optimum.  

3. Reproduction of the population based on fitness values.  

4. If requirements are met, then stop. Otherwise go back to 2. 
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From the procedure, we can result that PSO shares many common points with GA. Both 

algorithms start with a group of a randomly generated population, both have fitness values 

to appraise the population. By random techniques both update the population and search 

for the optimium. Both systems do not assure success.  

However, PSO does not have genetic operators (crossover and mutation). Particles modify 

themselves with the internal velocity. They also have memory, which is significant to the 

algorithm.  

 The information sharing mechanism in PSO is significantly different as compared to 

genetic algorithms (GAs). In GAs, chromosomes share information among themselves. So 

the whole population behaves like one group towards an optimal area. In PSO, only gBest 

(or lBest) gives out the information to others. It is a single-way information sharing 

mechanism. The evolution only cares for the best solution. Compared with GA, all the 

particles incline to converge to the best solution quickly even in the local version in most 

cases. 

 

4.2 PSO Parameter Control 

From the above case, we can learn that there are two key steps when applying PSO to 

optimization problems: the representation of the solution and the fitness function. One of 

the advantages of PSO is that PSO take real numbers as particles. It is not like GA, which 

needs to change to binary encoding, or special genetic operators have to be used. For 

example, we try to find the solution for f(x) = x1^2 + x2^2+x3^2, the particle can be set as 

(x1, x2, x3), and fitness function is f(x). Then we can use the standard procedure to find the 

optimum. The searching is a repeat process, and the stop criteria are that the maximum 

iteration number is reached or the minimum error condition is satisfied.  

There are not many parameter need to be tuned in PSO. Here is a list of the parameters and 

their typical values. 
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The number of particles: the typical range is 20 - 40. Actually for most of the problems 10 

particles is large enough to get good results. For some difficult or special problems, one 

can try 100 or 200 particles as well. 

Dimension of particles: It is determined by the problem to be optimized,  

Range of particles: It is also determined by the problem to be optimized, you can specify 

different ranges for different dimension of particles. 

Vmax: it determines the maximum change one particle can take during one iteration. 

Usually we set the range of the particle as the Vmax for example, the particle (x1, x2, x3) 

X1 belongs [-10, 10], then Vmax = 20 

Learning factors: c1 and c2 usually equal to 2. However, other settings were also used in 

different papers. But usually c1 equals to c2 and ranges from [0, 4] 

The stop condition: the maximum number of iterations the PSO execute and the minimum 

error requirement. We can set the minimum error requirement is one mis-classified pattern. 

the maximum number of iterations is set to 2000. this stop condition depends on the 

problem to be optimized. 

Global version vs. local version: we introduced two versions of PSO. global and local 

version. global version is faster but might converge to local optimum for some problems. 

local version is a little bit slower but not easy to be trapped into local optimum. One can 

use global version to get quick result and use local version to refine the search.  

Another factor is inertia weight, which is introduced by (Shi and Eberhart). If you are 

interested in it, please refer to their paper in 1998. (Title: A modified particle swarm 

optimizer). 
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4.3 The ASNPSO Algorithm 

4.3.1 The basic principle 

The adaptive sequential niche technique is essentially an add-on technique, which can be 

used together with any stochastic search algorithm. Hereby, we choose the PSO algorithm 

to implement it. ASNPSO consists of several sub-swarms. Each sub-swarm can detect one 

optimal solution. Because of the algorithm using multi-sub-swarms to detect different 

solutions sequentially, in order to avoid all sub-swarms converging to one or several 

certain optimal solutions, the algorithm must be able to modify the fitness function of the 

particles of the sub-swarm run later. Hereby we introduce the penalty function  by means 

of a constrained optimization problem. Assume that a simple death penalty function is used 

in our algorithm. Then it can make the particle of the moving sub-swarm locate in the same 

hill of the optimal solutions found before losing influence. In this paper, the modified 

fitness function of the sub-swarm currently running is to satisfy the following equation: 

 

 

(3CD8E%�
 F = G E%�
 F   5 ℎ588HIJJKE%�
 , %>F = 1,
E%�
 F − 7E%�
 F   01ℎ3*45'3.                           (10) 

 

where %�
  is the ith particle of the nth sub-swarm; n is the number of sub-swarm run 

presently; f(xi n) is a raw fitness function, xk is the top point found by the sub-swarm 

begun before, k can be selected from 1 to n1; p(xi n) can be a very large value for real 

world problem and makes the corrected fitness very small than all local optima. 

 

4.3.2 Termination conditions  for sub-swarm  

The termination condition for each sub-swarm is an important task for sequential niche 

technique. In practical applications, if the termination condition is satisfied, we must halt 

the running PSO and switch to run a new sub-swarm. In this paper (Beasley’s, 1993) halt 
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window technique is adopted as a termination condition. The technique is to record the 

population average fitness over a halting window of h generations, and terminate the run if 

the fitness of any generation is not greater than that of the population h generations earlier. 

In our experiments, assume that the halt window is set to 20. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Pseudo code of ASNPSO algorithm. 

 

This algorithm checking escorted by a hill valley function to match the region of a iterating 

particle and the top intersect region of the swarm floated before belong to one hill or not. 

The number of sub-swarms used for the algorithm based on the number of optimal results 

what we need. 

 

Repeat 

Run a new sub-swarm 

N=N+1; 

If hill_vally (%
 , %M(==0 

Change the fitness of xi 

Else 

Keep the original fitness 

End 

Next 

train the sub-swarm until the halt window of sub-swarm is larger than a 

given value 

Until N is greater than a given value or reach as a maximum iteration 

number    
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4.3.3 Hill valley algorithm 

The determination of the niche radius is generally a hard work existing in most niche 

methods. However, if we have a method that can determine whether or not two points of 

search space belong to a peak of the multimodal function, then the niche radius is not 

needed in this situation. Ursem’s hill valley function is the first method, where ip and iq 

are any two points in search space. In fact, it can be easily extended to the case including 

arbitrary dimensions. 

Generally speaking, the function returns 0 if the fitness of all the interior points is greater 

than the minimal fitness of ip and iq, otherwise it returns 1. With this function, the 

algorithm is able to determine whether ip and iq belong to one hill or not. The sample array 

is generally used to calculate the interior points where the hill valley function computes the 

fitness of these samples. The points i interior can be calculated as  

i interior = ip + (iq + ip)  samples j, 

where j is jth entry in the array. The upper boundary of j is the length of the samples, which 

is very important for the hill valley function. We refer to the length as sample rate (SR). 

PSO is a population-based stochastic search algorithm.  

 

V id = W Vid  +  C1 rand1(*)(Pid -  Xid ) 

+ C2 rand2(*)(Pgd  -Xid ), 

Xid =  Xid + Vid , 

 

where i = 1,2,y, N, and W is called as inertia weight. C1 and C2 are positive constants, 

referred to as cognitive and social parameters, and rand1 (*) and rand2 (*) are random 

numbers, respectively, uniformly distributed in [0..1]. The ith particle of the swarm can be 

represented by the D dimensional vector Xid, and the best particle in the swarm denoted by 

the index g, the best previous position of the ith particle is recorded and represented as Pid 

and the velocity of the ith particle is as Vid. 
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Figure 4: Hill valley function Pseudo code   

 

 

 

 

 

 

 

 

 

 

 

 

 

Hill_valley ( 5�, 5N , 'D:783' ) 

minfit=min (fitness(5�(, fitness(5N)) 

 for j=1 to samples, length 

Calcuate point 5
�O6/
P/ on the line between the point 5� and 5N 

 if (minfit > finess(5
�O6/
P/)) 

  return 1 

 end if  

end for 

return 0 
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CHAPTER 5 

EXPERIMENTAL RESULTS 

In this section, there are eight functions to test in sequential niche genetic algorithm 

(SNGA) and adaptive sequential niche with particle swam optimization (ASNPSO) which 

are graphically represented.  

5.1 Equal Maxima (F1): 

This function has 5 equally area maxima equal height according NSGA: 

F1(x) = '5Q6(5πx) 

The results of our algorithm total maximum values are (0.500199, 0.69949, 0.299329, 

0.899088, and 0.098102). 

 

Figure 5: F1 equal maxima. 

5.2 Decreasing Maxima (F2): 

The second function is same as F1, However the maxima decrease in height exponentially: 

F2(x) = expR−2 log$2( ∗ $!S0.1
0.8 T*'5Q6(5πx) 
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The maxima are at the same x values as for F1, but the peak height vary from 1.0 to0.25, 

(0.098102, 0.299329, 0.498301, 0.6978, and 0.897504) 

 

Figure 6: F2 Decrease maxima. 

5.3 Uneven Maxima (F3): 

The third function is same as F1, However the maxima are unevenly spaced: 

F3(X) =   exp X−2 log$2( ∗ R% − \.]
\.^T_ ∗ '5Q6(5π (%-0.05)) 

The maxima are at x values of approximately   (0.933302, 0.680825, 0.245847, 0.449539, 

0.0775531) all with a height of 1.0. 
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Figure 7: F3 Uneven maxima. 

5.4 Uneven Decreasing Maxima (F4): 

The fourth function is same as F3, However the maxima decrease in height exponentially. 

F4(x) = expR−2 log$2( ∗ $!S0.8
0.854

T*'5Q6(5π (%3/4-0.05)) 

The maxima are at the same x value as F3, (0.0775531, 0.245847, 0.449539, 0.679078, 

0.929407), with the same height as F2 
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Figure 8: F4 Uneven Decreasing maxima. 

5.5 Himmelblau's Function (F5): 

This is a function of two variable, (x,y), that Deb's modified to be a maximization issue 

given by: 

F5(x ,y)=200-(%2+y-11(2-x+`2-7(2 

This has four maxima (2.96486, 1.97121), (-2.75633, 3.09146), (3.51842, -1.71378), (-

3.63167, -3.27702) 
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Figure 9: F5 modified Himmelblau's function. 

5.6 Shubert Function (F6): 

f1(X)=a i cos $5


	0
i+1)x+1 

This function has total 19 maxima, 3 global maxima and 16 local maxima, to get all 19 

results of function in our experiment the number of sub-swarms run sequentially is set to 

19. 

F6 Coordinates values :( -4.58947, 6.2832, -6.28347, -5.10824, 1.17474, 5.10864, -

7.45792, 7.45791, -1.17473, 4.1208, -2.16239, -4.12083, 8.44555, 2.16217, -8.44549, 

9.42481, -3.1414, -9.42479, and 3.14151). 

 

Figure 10: F6 Shubert one dimensional function. 



37 

 

5.7 Scekel's Foxhole Function (F7): 

Its two dimensional function with 25 peaks of different heights. Let a(i)=16[(i mod5)-2] 

and b(i)=16([i/5]-2), the function can be defined as 

f2(x,y)=500-
1

0.002b∑ 1/$1b
bE!SI$
(Fb$KSc$
((6(24�d0

 

Where -65.536≤x,y≤65.536. 

F7 Coordinates values : : (-32.0038, -31.9927), (-16.003, -32.0083), (-31.9602, -

15.9648),( 0.0231036, -31.9693), (31.9827, -31.9348),( -16.0087, -15.9782),( 16.1685, -

31.9159), (-0.0909802, -15.9271),( 15.9787, -15.9971),( -31.9427, 0.000643744),( -

16.0182, 0.0661799),( -31.9291, 15.9688),( -0.278472, -0.10173), -(-15.7687, 15.9084), 

(31.9419, -16.0447),( 15.9651, -0.0250031),( 31.9208, -0.0149629),( 0.00604302, 16.052), 

(16.0172, 15.9236), (-31.9564, 31.9717),( 31.9201, 16.018),( -15.9495, 31.9225),( -

0.0203267, 31.9487), (15.9776, 31.9405),( 31.971, 31.9202). 

 

Figure 11: F7 Scekel's Foxhole function where 25 sub=swarm were run sequentially. 

 

5.8 Shubert Function (two dimensional) (F8): 

The function is defined as  
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f3 ((x1, x2) =∏ ∑ f cos [$f + 1(%5 + f]5j	1
2
	1  

where -10≤xi≤10 for i=1,2. it has 760 local minima, 18 of which are global minima with 

function value of -186.73.In this experiments we converted the minima to maxima through 

multiplying by a negative sign the raw fitness function. 

F8 Coordinates values: (-0.801366, 4.8633), (-0.804395, -1.423),( 5.47962, 5.50401),( -

7.69397, -0.799232), (-7.70792, -0.791834),( -1.4232, -7.08),( -1.42678, 5.48026),( -1.43239, -

7.08545),( 4.86021, -1.42291),( -7.08281, -7.70829),(-7.08522,(-7.71024, -0.799115),( 5.48296, 

4.85725),( -0.193166, -0.803246),( 4.85887, 5.48242),( -7.08209, -7.70786),( -0.79735, 4.85732),( 

6.08714, -0.799545),( -7.7067, 5.48759),( 5.48399, -0.195406),( 4.85672, -7.08356),( -0.1943, -

7.08131),( -0.196127, 5.48154),( -6.4779, 5.48367), (-6.47834, -7.08442),(-6.48081, -0.799172),(-

0.795585, 6.08839),(6.08789, -7.08364),(-7.08227, -0.194554),(-0.801204,-0.1944). 

Graphical result of above ASPANO three functions: 

 

 

Figure 12: F8 Shubert function where 23 Sub-swarms were run sequentially. 
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CHAPTER 6 

ANALYSIS AND COMPARISON  BETWEEN ASNPSO AND SNGA 

Both ASNPSO and SNGA are used for multi-modal function optimization. Presently, most 

niche methods need some more parameter, where the major important parameter is niche 

radius, which is used in SNGA. Niche radius, improper radius will make a niche algorithm 

showing worse. The resolution of the niche radius depends less or more on some 

knowledge from a particular issue. So one problem in Beasley (SNGA) technique is niche 

radius. In ASNPSO technique  most extra parameter included niche radius are not needed. 

PSO implement in ASNPSO and GA implement in SNGA. In GA each of the three main 

classes of operation (selection, crossover, and mutation) can be executed in a number of 

ways. PSO does not label its operations in the same way as GA, but analogies do. Effects 

of GA (crossover) which normally vary remarkably during in iterate. In the beginning of 

GA the population member are usually randomly generating. So the crossover can have 

significant effects moving a chromosome relatively large distance in problem space. 

Crossover operation is not exist in PSO, in PSO the idea of crossover is shown in such a 

way that each particle is stochastically accelerated toward its own previous top position, as 

well as around the global top position. 

For further comparison I tried to compare the functions results. The program was written 

by using C++ programming language.  

6.1. Results of Functions:  

I did 30 runs of both algorithm SNGA and ASNPSO, and collected the result of 8 functions 

which are 5 already used by (Beasley, 1993) and 3 of them used by (Zhang et al, 2006). 

We took the average of coordinates and f(x) values and compared with actual values of 

functions. (STD) mean is simple standard deviation calculated for both algorithms. The 

standard deviation of an entire population is known as σ (sigma) and is calculated using: 

                                             (11) 
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Where x represents each value in the population, μ is the mean value of the population  

and N is the number of values in the population. S-rate is success rate for each of 

coordinates, to calculate the s-rate  divide the goal by the actual value. 

6.1.1 F1 equal maxima: 

If you see the result values in Table 1 and Table 2 which is for equal maxima function, the 

result shown that  both of the algorithms is quite good in success rate, the SNGA average 

success rate is 99.92 %  and ASNPSO is 100%  achieved. The difference in the results, 100 

- 99.94 = 0.06 which is not so big.  Both of them perform well, but this is the result of only 

one function, I want to check for further results of functions in following tables.  

     

 Table 1: Result values of F1 obtained by SNGA algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x) 
values 

Coordinates Average STD Average STD %S-rate 

1 0.1 0.098102 4.235E-17 0.9973366 0 99.73% 
1 0.3 0.299329 1.129E-16 0.9996668 3.388E-16 99.97% 
1 0.5 0.500199 2.258E-16 0.9999707 4.517E-16 100.00% 
1 0.7 0.69949 5.646E-16 0.9998075 0 99.98% 
1 0.9 0.899088 2.258E-16 0.9993845 5.646E-16 99.94% 

Average of success rate 
99.92% 

 

Table 2: Result values of F1 obtained by ASNPSO algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x) 
values 

Coordinate
s 

Average STD Average STD %S-
rate 

1 0.1 0.099996327 9.161E-06 0.99999993 1.3053E-07 100.00% 
1 0.3 0.2999983 2.374E-05 0.99999959 1.1103E-06 100.00% 
1 0.5 0.500001433 9.246E-06 0.99999994 1.0921E-07 100.00% 
1 0.7 0.7000034 1.903E-05 0.99999973 7.3999E-07 100.00% 
1 0.9 0.879999033 0.1095477 0.99999993 1.6973E-07 100.00% 

Average of success rate 
100.00% 
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6.1.2 F2 Decreasing maxima: 

In Table 3 and table 4 the results of decreasing maxima function, both algorithm achieved 

the 100% success rate, 0% difference in success rate so both algorithm perform good for 

this function.       

Table 3: Result values of F2 obtained by SNGA  algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x) 
values 

Coordinat
es 

Average STD Average STD %S-rate 

1 0.1 0.098102 4.235E-17 0.9973288 0 99.73% 
0.917 0.3 0.299329 1.129E-16 0.9172307 0 100.00% 
0.70711 0.5 0.498301 2.258E-16 0.7076733 3.388E-16 100.00% 
0.4585 0.7 0.6978 5.646E-16 0.4594772 1.694E-16 100.00% 
0.25 0.9 0.897504 4.517E-16 0.2510081 1.129E-16 100.00% 

Average of success rate 
99.946% 

 

Table 4: Result values of F2 obtained by ASNPSO algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x) 
values 

Coordina
tes 

Average STD Average STD %S-
rate 

1 0.1 0.099999807 6.899E-06 0.99999997 6.0405E-08 100.00% 
0.917 0.3 0.299415033 1.026E-05 0.91723582 1.7481E-07 100.00% 
0.70711 0.5 0.4988368 1.047E-05 0.70782207 1.2301E-07 100.00% 
0.4585 0.7 0.6982493 8.078E-06 0.45954625 4.8687E-08 100.00% 
0.25 0.9 0.897669233 9.054E-06 0.25101301 3.2499E-08 100.00% 

Average of success rate 
100.00% 

 

6.1.3 F3 Uneven maxima: 

Table 5 and Table 6 are the results of Uneven maxima function, both algorithm found all 

five optimal, SNGA found all optima with 99% success rate and ASNPSO found the result 

with 100% rate, the overall results of all optima for SNGA is 99.85% and ASNPSO with 
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100%, the difference between them 99.85-100=0.15% which is not so high. So both the 

algorithm working good for uneven maxima function.   

 

Table 5: Result values of F3 obtained by SNGA algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x) 
values 

Coordinates Average STD Average STD %S-
rate 

0.99987 0.08 0.0775531 0 0.9931803 4.517E-16 99.33% 
0.99964 0.246 0.245847 1.129E-16 0.9994517 4.517E-16 99.98% 
0.99976 0.45 0.449539 2.258E-16 0.999266 4.517E-16 99.95% 
0.99991 0.681 0.680825 0 0.9998213 4.517E-16 99.99% 
1 0.934 0.933302 4.517E-16 0.9998484 0 99.99% 

Average of success rate 
99.85% 

 

Table 6: Result values of F3 obtained by ASNPSO algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x) 
values 

Coordina
tes 

Average STD Average STD %S-
rate 

0.99987 0.08 0.07969848 0.0330261 0.99999979 3.9467E-07 100.00% 
0.99964 0.246 0.2466502 1.839E-05 0.9999997 1.0486E-06 100.00% 
0.99976 0.45 0.4506288 1.108E-05 0.99999992 1.2245E-07 100.00% 
0.99991 0.681 0.6814189 2.021E-05 0.9999998 7.1026E-07 100.00% 
1 0.934 0.933894 1.879E-05 0.99999985 4.8475E-07 100.00% 

Average of success rate 
100.00% 

 

6.1.4 F4 Uneven decreasing maxima: 

The Table 7 and Table 8 represent the result of Uneven decreasing maxima function, both 

algorithms achieved with 100% success rate for all five optimal only for two coordinates 

the SNGA success rate 99% which is not quite big difference but if we see the overall 

results for above all four functions ASNPSO received 100 % success rate, which means the 
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ASNPSO is batter for all above four functions. With these four functions we can't conclude 

that which one is batter, for further result I need to check some more functions. I tested 

four more functions to achieve the conclusions, for further test we check the given tables. 

 

Table 7: Result values of F4 obtained by SNGA algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x) 
values 

Coordinates Average STD Average STD %S-rate 

0.99987 0.08 0.0775531 0 0.993169 5.646E-16 99.33% 
0.94863 0.246 0.245847 1.129E-16 0.9485405 4.517E-16 99.99% 
0.77069 0.45 0.449539 2.258E-16 0.7708143 1.129E-16 100.00% 
0.50325 0.681 0.679078 2.258E-16 0.5041095 4.517E-16 100.00% 
0.25 0.934 0.929407 4.517E-16 0.2515492 1.129E-16 100.00% 

Average of success rate 
99.864% 

 

Table 8: Result values of F4 obtained by ASNPSO algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x) 
values 

Coordinate
s 

Average STD Average STD %S-
rate 

0.99987 0.08 0.079700157 1.163E-05 0.99999964 4.5527E-07 100.00% 
0.94863 0.246 0.246276267 1.419E-05 0.94868915 2.7058E-07 100.00% 
0.77069 0.45 0.4494941 7.73E-06 0.77081521 4.0855E-08 100.00% 
0.50325 0.681 0.679165767 1.024E-05 0.50411148 4.2843E-08 100.00% 
0.25 0.934 0.930150367 9.981E-06 0.25161007 1.2405E-08 100.00% 

Average of success rate 
100.00% 

       

6.1.5 F5 Himmelblau's function: 

The Table 9 and 10 are the results of Himmelblau's function which is two dimensional 

function, this has four maxima with equal height (200), and parameter range is set for both 

algorithm -6 ≤ x, y ≤ 6. Both algorithm achieved  99% success rate for all maxima, resulted 

values is good enough for both algorithms.   
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Table 9: Result values of F5 obtained by SNGA algorithm. 

          Optimal                      Coordinates         F(x)  Values  
F(x, y) 
values 

Coordinates        Average Average %S-
rate 

STD 

 X Y X Y F(x, y)   

199.997 3.58 -1.86 3.51842 -1.71378 199.59159 99.80% 5.78152E-14 
200 3 2 2.96486 1.97121 199.92083 99.96% 5.78152E-14 

199.995 
-
2.815 

3.12
5 -2.75633 3.09146 199.86348 99.93% 1.44538E-13 

199.999 -3.78 -3.28 -3.63167 -3.27702 198.80478 99.40% 0 
199.997 3.58 -1.86 3.51842 -1.71378 199.59159 99.80% 5.78152E-14 

Average of success rate 
99.77% 

 
 

Table 10: Result values of F5 obtained by ASNPSO algorithm. 

          Optimal                      Coordinates         F(x)  Values  
F(x, y) 
values 

Coordinates        Average Average STD %S-rate 

 X Y X Y F(x, y)   

199.997 3.58 -1.86 3.5849053 -1.848966 199.999627 0.00033659 100.00% 
200 3 2 3.5849053 2.033505 199.131572 4.75501049 99.57% 

199.995 
-
2.815 3.125 -2.80565 3.1305933 199.999206 0.00141548 100.00% 

199.999 -3.78 -3.28 -3.7791243 -3.315798 199.16361 3.18058422 99.58% 
199.997 3.58 -1.86 3.5849053 -1.848966 199.999627 0.00033659 100.00% 

Average of success rate 
 99.79% 

 

6.1.6 F6  One dimensional  Shubert function: 

The results in Table 11 and Table 12 are for Shubert function, the Shubert function is very 

popular in a lot of research paper, one dimensional Shubert function is calculated by 

ASNPSO but check with SNGA. In our thesis research we calculated with both algorithms 

for test result. In table 6 I just shown the result of global maxima, according of ASNPSO 

and previous more researches said that this function has total 19 maxima, in which three of 

them is global and 16 local maxima. I run the program for both algorithm 30 times and 

estimate the results that the ASNPSO achieved all solutions, but the SNGA can't perform 

very well. ASNPSO found all 19 solutions but the SNGA just found the global maxima. If 
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I conclude on the basis of global maxima then still ASNPSO found all three solution with 

100% success rate which is better than SNGA. 

Table 11: Result values of F6 obtained by SNGA algorithm. 

          Optimal                      Coordinates         F(x)  Values  
F(x, y) 
values 

Coordinates Average STD Average  
F(x, y) 

STD %S-
rate 

14.508 -7.0835 -7.08309 9.034E-16 14.507978 7.227E-15 100.00% 
14.508 -0.8003 -0.801064 1.129E-16 14.507913 7.227E-15 100.00% 
14.508 5.4828 5.48886 9.034E-16 14.501842 9.034E-15 99.96% 

Average of success rate 
99.99% 

 

Table 12: Result values of F6 obtained by ASNPSO algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x) 

values 

Coordinates Average STD Average  

F(x) 

STD %S-

rate 

14.508 -7.0835 -7.08354 0 14.5080077 1.084E-14 100.00% 

14.508 -0.8003 -0.800276 1.129E-16 14.5080076 5.4202E-15 100.00% 

14.508 5.4828 5.48364 9.034E-16 14.5079046 1.084E-14 100.00% 

Average of success rate 
100.00% 

 

6.1.7 F7 Shekel foxhole De Jong two dimensional function: 

The Table 13 and Table 14 are shekel foxhole function results. This is very complicated 

function. This function has total 25 peaks with different heights, where the range -65 ≤  x, 

y ≤ 65. I achieved 25 peaks with both algorithms with different heights, the result is shown 

in table7 and 7.1, but in the above function I convert the local minima to global maximum 

which is our requirement. The coordinate of both algorithms is quite different but we 

compared with mathematic value, then the ASNPSO is better than SNGA.  
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Table 13: Result values of F7 obtained by SNGA algorithm. 

          Optimal                      Coordinates  
F(x, y) 

values 

Coordin

ates 

       Average Average STD 

 X Y X Y F(x, y)  

499.002 -32 -32 -31.43694 -32.003383 498.97026 2.31261E-13 

0.03557 -16 -32 -15.5212 -31.4076 0.0372633 0 

3.61705 0 -32 0.0356936 -31.8486 4.1704076 0 

0.02814 16 -32 16.1594 -31.8962 0.0280066 0 

0.05816 32 -32 31.693 -31.7388 0.0657182 0 

0.05167 -32 -16 -31.8128 -16.2359 0.0527487 0 

158.173 -16 -16 -15.839 -15.8974 179.86747 8.67228E-14 

0.35879 0 -16 -0.126055 -16.1233 0.3844009 0 

0.35275 16 -16 15.7276 -15.8988 0.3738079 0 

158.362 32 -16 31.2606 -16.2416 212.66884 1.44538E-13 

489.237 -32 0 -31.8348 0.376185 489.23409 2.89076E-13 

495.063 -16 0 -16.592 -0.51292 474.11157 1.73446E-13 

3.67699 0 0 0.164065 -0.197827 3.0782173 0 

4.92253 16 0 16.3273 0.0260224 4.8627562 0 

0.09381 32 0 31.8704 0.0713644 0.0971547 0 

438.597 -32 16 -32.0864 16.3063 380.81915 1.73446E-13 

157.205 -16 16 -15.9381 16.5443 288.09775 1.1563E-13 

32.5357 0 16 0.225295 15.9617 31.015352 0 

1.09315 16 16 15.8599 16.0134 1.0892633 0 

157.447 32 16 31.279 16.1681 126.70272 8.67228E-14 

479.847 -32 32 -31.8983 32.0083 479.84656 0 

485.45 -16 32 -17.4608 33.1681 479.18692 0 

3.77473 0 32 -0.126055 32.2368 4.6701335 0 

4.94948 16 32 16.4404 31.9418 5.09374 1.73446E-13 

12.4168 32 32 31.4031 31.7357 16.79233 0 
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Table 14: Result values of F7 obtained by ASNPSO algorithm. 

          Optimal                     Coordinates         F(x)  Values 

F(x, y) 

values 

Coordin

ates 

       Average Average STD 

 X Y X Y F(x, y)  

499.002 -32 -32 -31.43694 -32.003383 498.987563 0.07888835 

0.03557 -16 -32 -15.947677 -32.017747 0.03562384 0.0003839 

3.61705 0 -32 0.0076073 -32.023123 3.56154429 0.35764016 

0.02814 16 -32 16.004147 -31.97726 0.02817954 0.00016419 

0.05816 32 -32 32.02483 -32.006013 0.05813502 0.00343264 

0.05167 -32 -16 -31.94972 -16.003823 0.05205151 0.00140092 

158.173 -16 -16 -15.96251 -15.9858 163.062002 31.4551882 

0.35879 0 -16 -0.0083122 -16.018917 0.36365907 0.02510766 

0.35275 16 -16 16.01629 -16.012507 0.35169366 0.02536448 

158.362 32 -16 31.966223 -16.0099 161.097546 18.6676248 

489.237 -32 0 -31.956637 0.00655067 489.236821 6.4311E-07 

495.063 -16 0 -15.988367 -0.0658067 493.396191 3.92909649 

3.67699 0 0 0.0005743 0.00754252 3.71221601 0.26220069 

4.92253 16 0 15.965523 0.02998102 4.87271173 0.16818463 

0.09381 32 0 31.959147 0.00257594 0.09435996 0.00152292 

438.597 -32 16 -31.95868 15.99566 438.80943 8.35346889 

157.205 -16 16 -16.035597 16.02421 163.359341 27.557715 

32.5357 0 16 0.0033588 16.00237 33.0043473 5.88211416 

1.09315 16 16 15.971423 15.9838533 1.0988495 0.01647798 

157.447 32 16 31.931333 16.00745 156.324058 11.5258447 

479.847 -32 32 -31.955567 31.9707433 479.846561 1.6975E-06 

485.45 -16 32 -15.979133 31.9360333 484.285377 1.1244379 

3.77473 0 32 0.0087883 31.9391633 3.58582514 0.18792157 

4.94948 16 32 15.997653 31.9373933 5.10929324 0.10856763 

12.4168 32 32 31.937523 31.95986 13.0182758 0.82066718 
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6.1.8 F8 Two dimensional Shubert function: 

The two dimensional Shubert function range is -10 ≤ x, y ≤ 10 and f(x, y)= -186.73. This 

function has total 18 global minima and 760 local minima for successfully finding in all 

global optimal, I set the termination condition in my both algorithm to 30 optimal. But the 

ASNPSO average successful rate is 100% instead of SNGA, once again ASNPSO proved 

that the ASNPSO is better than SNGA. 

Table 15: Result values of F8 obtained by SNGA algorithm. 

          Optimal                      Coordinates   

F(x, y) 
values 

Coordina
tes 

       Average Average STD %S-
rate 

 X Y X Y F(x, y)   

-185.97 -7.7 -7.1 -7.73352 -7.02997 -179.07018 5.78152E-14 96.29% 
-186.57 -7.7 -0.8 -7.68006 -0.780445 -183.99712 0 

98.62% 
-185.92 -7.7 5.5 -7.70312 5.54254 -178.93391 8.67228E-14 

96.24% 
-184.61 -1.4 5.5 -1.39241 5.52945 -179.54219 8.67228E-14 

97.26% 
-185.25 -1.4 -0.8 -1.42127 -0.739953 -178.78281 2.89076E-14 

96.51% 
-184.65 -1.4 -7.1 -1.4251 -7.02254 -178.6605 2.89076E-14 

96.75% 
-181.96 4.9 5.5 4.85735 5.48363 -186.72845 8.67228E-14 

100.00% 
-182.6 4.9 -0.8 4.84014 -0.740897 -178.34555 5.78152E-14 

97.67% 
-182.01 4.9 -7.1 4.85735 -7.02254 -178.65938 8.67228E-14 

98.16% 
-185.97 -7.1 -7.7 -7.03782 -7.68106 -180.47156 1.1563E-13 

97.04% 
-184.65 -7.1 -1.4 -7.08908 -1.40407 -185.62357 5.78152E-14 

100.00% 
-182.01 -7.1 4.9 -7.06658 4.84448 -185.67353 0 

100.00% 
-182.6 -0.8 4.9 -0.788925 4.85927 -186.44105 8.67228E-14 

100.00% 
-185.25 -0.8 -1.4 -0.788925 -1.42366 -186.43945 8.67228E-14 

100.00% 
-186.57 -0.8 -7.7 -0.788925 -7.70889 -186.4437 0 

99.93% 
-181.96 5.5 4.9 5.48153 4.8497 -186.56465 8.67228E-14 

100.00% 
-184.61 5.5 -1.4 5.47314 -1.42069 -186.47578 8.67228E-14 

100.00% 
-185.92 5.5 -7.7 5.48561 -7.70201 -186.62148 0 

100.00% 

Average of success rate 
 98.58% 
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Table 16: Result values of F8 obtained by ASNPSO algorithm. 

          Optimal                      Coordinates         F(x)  Values  

F(x, y) 

values 

Coordina

tes 

       Average Average STD %S-

rate 

 X Y X Y F(x, y)   

-185.97 -7.7 -7.1 -7.7071997 -7.0832807 -184.85728 8.8493591 99.40% 

-186.57 -7.7 -0.8 -7.7081637 -0.7477401 -178.86445 42.8056665 95.87% 

-185.92 -7.7 5.5 -7.7080363 5.48209833 -186.6583 0.11363563 100.00% 

-184.61 -1.4 5.5 -1.4246577 5.48383433 -186.56395 0.51774658 100.00% 

-185.25 -1.4 -0.8 -1.4293163 -0.7985891 -185.23196 7.53362049 99.99% 

-184.65 -1.4 -7.1 -1.424194 -7.08392 -186.68385 0.04575921 100.00% 

-181.96 4.9 5.5 4.8597923 5.48438633 -186.62007 0.16554527 100.00% 

-182.6 4.9 -0.8 4.8577923 -0.7985317 -186.62301 0.20361186 100.00% 

-182.01 4.9 -7.1 4.8583357 -7.0807557 -186.62925 0.21391411 100.00% 

-185.97 -7.1 -7.7 -7.0837853 -7.7132237 -186.65218 0.13194428 100.00% 

-184.65 -7.1 -1.4 -7.083398 -1.4243343 -186.64977 0.12726198 100.00% 

-182.01 -7.1 4.9 -7.0845227 4.85810433 -186.67806 0.13856716 100.00% 

-182.6 -0.8 4.9 -0.7994361 4.858109 -186.65223 0.10343117 100.00% 

-185.25 -0.8 -1.4 -0.802723 -1.426539 -186.53414 0.33489331 100.00% 

-186.57 -0.8 -7.7 -0.7999102 -7.7087883 -186.68834 0.06392505 100.00% 

-181.96 5.5 4.9 5.4831913 4.858068 -186.67012 0.10549358 100.00% 

-184.61 5.5 -1.4 5.483517 -1.4253313 -186.66531 0.08766721 100.00% 

-185.92 5.5 -7.7 5.483855 -7.7070773 -186.65642 0.10396365 100.00% 

Average of success rate 
 99.74% 
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CHAPTER 7 

DISCUSSION AND CONCLUSION 

7.1 Discussion 

After a function-statistics analysis of the features of SNGA and ASNPSO, the results of my 

research have shown that the success ratio of ASNPSO is higher than SNGA in many 

functions. In the one-dimensional Shubert function, the SNGA method couldn’t find the 

local optimal, and to find it with SNGA, it is used a method where we even changed the 

parameter values and resulted with the same. The Shubert function has a total of 19 

optimal, of which 3 are global, and 16 are local, whose result is 14.50 mathematically are 

global and less than 14.50 are local optimal. Using different termination conditions in 

SNGA to find the local optimal solution for the one-dimensional Shubert function, setting 

the function to 19 solutions to terminate the program and show the result values. Although 

it worked, but the values were same to global maxima, and only the coordinates were 

changed in some digits. This function has already been proved with different methods, 

even with math which have local optimals. However, SNGA failed. 

In the previous discussion, I have come to the conclusion that the GA uses fitness sharing 

method and the PSO uses a different sharing method than GA, somewhat like birds in 

groups like a metaphor. In that case, the particles are unsystematically computed and 

openly move across the dimensional search space where all of them during their movement 

update their own velocity and location depending on the capital observation of their own 

and of the whole group. The reforming strategy runs the particle swarm to act against the 

area with the highest objective function value, and at the end, the total particles will collect 

around the point with the highest objective value, which is the moment when we are able to 

say that this is a sharing method.  

As noticeable, SNGA uses a niche radius which prevents the algorithm of doing well, 

unlike ASNPSO, which for its niche radius uses the hill-valley method and avoids the 

niche radius which is discussed in the sections above.  

Also, SNGA used distance matrix to find how the given two chromosomes return values 

that are closer to each other, on the other hand, in ASNPSO the death penalty function is 
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used which makes the particle of the active sub-swarm to detect in the same hill of the 

superlative solution which is discovered before losing impact.                          

7.2 Conclusion 

After the thorough differential of ASNPSO and SNGA for their multi-modal function 

optimization involving statistical data analysis, the result is that ASNPSO achieved 

superior success rate than SNGA.  

Methods used in SNGA and ASNPSO like PSO and GA are motivated by EA and showed 

themselves to be successful in optimization problems. If these approaches achieved their 

required purposes it means that there are clearly robustness, in the meta-heuristics, there 

are control parameters involved and suitable setting, the parameters are key points in 

achieving the best solution. Basically, some form of examination and probation is needed 

for each specific example of the advanced problem. 

The problem with the SNGA method is the niche radius while the ASNPSO method 

doesn’t need. However, the ASNPSO method uses hill-valley function to regulate if the 

location of a moving particle and the best concentrating position of the group set afloat 

before belonging to one hill or not.  

The ASNPSO method has had its search focus to optimal solutions by directing particles 

while the SNGA is a population-based method, and its search focus is done by moving 

population on average to the optimal solution. To avoid the problem with niche radius in 

SNGA, the hill-valley technique needs to be implemented in GA, which will be done in 

next research.  
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APPENDIX 1 

 SNGA Algorithms CPP Source Code 

//# include "stdafx.h" 
# include <cstdlib> 
# include <iostream> 
# include <iomanip> 
# include <fstream> 
# include <iomanip> 
# include <cmath> 
# include <ctime> 
# include <cstring> 
# include "ModifiedFitnessFunction.h" 
 
 
using namespace std; 
// 
//  Change any of these parameters to match your needs 
// 
#define PI 3.14159265 
# define POPSIZE 50 
# define MAXGENS 100 
# define NVARS 1 
# define PXOVER 0.25 
# define PMUTATION 0.1 
// 
struct genotype 
{ 
 double gene[NVARS]; 
 double fitness; 
 double upper[NVARS]; 
 double lower[NVARS]; 
 double rfitness; 
 double cfitness; 
}; 
 
struct genotype population[POPSIZE + 1]; 
struct genotype newpopulation[POPSIZE + 1]; 
 
void crossover(int &seed); 
void elitist(); 
 
//evaluate takes in parameter now the function to be optimized 
template <class FunctionClass> 
void evaluate(const FunctionClass & func); 
 
int i4_uniform_ab(int a, int b, int &seed); 
void initialize(string filename, int &seed); 
void keep_the_best(); 
void mutate(int &seed); 
double r8_uniform_ab(double a, double b, int &seed); 
void report(int generation, ofstream & log_file); 
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void selector(int &seed); 
void timestamp(); 
void Xover(int one, int two, int &seed); 
 
struct BaseTestFunction { 
 virtual const char * name()const = 0; 
 virtual double operator()(double param)const = 0; 
}; 
 
struct F1 : public BaseTestFunction { 
 const char * name()const { 
  return "pow(sin(5 * PI*param), 6)"; 
 } 
 
 double operator()(double param)const { 
  return pow(sin(5 * PI*param), 6); 
 } 
}; 
 
//new variables related to the paper 
int nb_maxima = 5; 
 
 
//ModifiedFitnessFunction<TestFunction> mff(tf,); 
 
//*******************************************************************
*********80 
 
int main() 
 
//*******************************************************************
*********80 
 
{ 
 ofstream log_file; 
 log_file.open("log_f1.txt"); 
 string filename = "simple_ga_input.txt"; 
  
 
 double lbound, ubound; 
 { 
  ifstream input; 
  input.open(filename.c_str()); 
 
  if (!input) 
  { 
   cerr << "\n"; 
   cerr << "INITIALIZE - Fatal error!\n"; 
   cerr << "  Cannot open the input file!\n"; 
   char rr; 
   std::cin >> rr; 
   exit(1); 
  } 
  // 
  //  Initialize variables within the bounds 



58 

 

  // 
  input >> lbound >> ubound; 
 } 
 
 //ModifiedFitnessFunction<TestFunction> 
mff(tf,lbound,ubound,nb_maxima); 
 //mff.addPeak(); 
 
 
 int generation; 
 int i; 
 int seed; 
 
 timestamp(); 
 cout << "\n"; 
 cout << "SIMPLE_GA:\n"; 
 cout << "  C++ version\n"; 
 cout << "  Beasley sequential niche genetic algorithm.\n"; 
 
 if (NVARS < 2) 
 { 
  cout << "\n"; 
  cout << "  The crossover modification will not be 
available,\n"; 
  cout << "  since it requires 2 <= NVARS.\n"; 
 } 
 
 ///init the four functions in an array 
 
 F1 ff1; 
 
 BaseModifiedFitnessFunction * mff = new 
ModifiedFitnessFunction<F1>(ff1, lbound, ubound, nb_maxima); 
//GetModifiedFitnessFunction(*(test_functions[i_function])); 
 
 for (int i_max = 0; i_max < nb_maxima; ++i_max) { 
 
  seed = 123456789; 
 
  initialize(filename, seed); 
 
  //ModifiedFitnessFunction<TestFunction> mff(tf, lbound, 
ubound, nb_maxima); 
  evaluate(*mff); 
 
  keep_the_best(); 
 
  for (generation = 0; generation < MAXGENS; generation++) 
  { 
   selector(seed); 
   crossover(seed); 
   mutate(seed); 
   report(generation, log_file); 
   evaluate(*mff); 
   elitist(); 
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  } 
 
  cout << "\n"; 
  cout << "  Best member after " << MAXGENS << " 
generations:\n"; 
  cout << "\n"; 
 
  for (i = 0; i < NVARS; i++) 
  { 
   cout << "  var(" << i << ") = " << 
population[POPSIZE].gene[i] << "\n"; 
   log_file << "  var(" << i << ") = " << 
population[POPSIZE].gene[i] << "\n"; 
  } 
 
  mff->addPeak(population[POPSIZE].gene[0]); 
 
  cout << "\n"; 
  cout << "  Best fitness = " << population[POPSIZE].fitness 
<< "\n"; 
  log_file << "\n"; 
  log_file << "  Best fitness = " << 
population[POPSIZE].fitness << "\n"; 
 
 
  timestamp(); 
 } 
 log_file.close(); 
 // 
 //  Terminate. 
 // 
 cout << "\n"; 
 cout << "SIMPLE_GA:\n"; 
 cout << "  Normal end of execution.\n"; 
 cout << "\n"; 
 
 delete mff; 
  
 char iputchar; 
 std::cout << "Enter a char to quit" << std::endl; 
 std::cin >> iputchar; 
 
 return 0; 
} 
//*******************************************************************
*********80 
 
void crossover(int &seed) 
 
//*******************************************************************
*********80 
 
{ 
 const double a = 0.0; 
 const double b = 1.0; 
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 int mem; 
 int one; 
 int first = 0; 
 double x; 
 
 for (mem = 0; mem < POPSIZE; ++mem) 
 { 
  x = r8_uniform_ab(a, b, seed); 
 
  if (x < PXOVER) 
  { 
   ++first; 
 
   if (first % 2 == 0) 
   { 
    Xover(one, mem, seed); 
   } 
   else 
   { 
    one = mem; 
   } 
 
  } 
 } 
 return; 
} 
//*******************************************************************
*********80 
 
void elitist() 
 
//*******************************************************************
*********80 
 
{ 
 int i; 
 double best; 
 int best_mem; 
 double worst; 
 int worst_mem; 
 
 best = population[0].fitness; 
 worst = population[0].fitness; 
 
 for (i = 0; i < POPSIZE - 1; ++i) 
 { 
  if (population[i + 1].fitness < population[i].fitness) 
  { 
 
   if (best <= population[i].fitness) 
   { 
    best = population[i].fitness; 
    best_mem = i; 
   } 
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   if (population[i + 1].fitness <= worst) 
   { 
    worst = population[i + 1].fitness; 
    worst_mem = i + 1; 
   } 
 
  } 
  else 
  { 
 
   if (population[i].fitness <= worst) 
   { 
    worst = population[i].fitness; 
    worst_mem = i; 
   } 
 
   if (best <= population[i + 1].fitness) 
   { 
    best = population[i + 1].fitness; 
    best_mem = i + 1; 
   } 
 
  } 
 
 } 
 // 
 if (population[POPSIZE].fitness <= best) 
 { 
  for (i = 0; i < NVARS; i++) 
  { 
   population[POPSIZE].gene[i] = 
population[best_mem].gene[i]; 
  } 
  population[POPSIZE].fitness = 
population[best_mem].fitness; 
 } 
 else 
 { 
  for (i = 0; i < NVARS; i++) 
  { 
   population[worst_mem].gene[i] = 
population[POPSIZE].gene[i]; 
  } 
  population[worst_mem].fitness = 
population[POPSIZE].fitness; 
 } 
 
 return; 
} 
//*******************************************************************
*********80 
 
template <class FunctionClass> 
void evaluate(const FunctionClass & func) 
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//*******************************************************************
*********80 
 
 
{ 
 int member; 
 int i; 
 double x[NVARS + 1]; 
 
 for (member = 0; member < POPSIZE; member++) 
 { 
  for (i = 0; i < NVARS; i++) 
  { 
   x[i + 1] = population[member].gene[i]; 
  } 
 
  population[member].fitness = func(x[1]);//pow(sin(5 * 
PI*x[1]), 6); 
 
 } 
 return; 
} 
//*******************************************************************
*********80 
 
int i4_uniform_ab(int a, int b, int &seed) 
 
//*******************************************************************
*********80 
 
{ 
 int c; 
 const int i4_huge = 2147483647; 
 int k; 
 float r; 
 int value; 
 
 if (seed == 0) 
 { 
  cerr << "\n"; 
  cerr << "I4_UNIFORM_AB - Fatal error!\n"; 
  cerr << "  Input value of SEED = 0.\n"; 
  exit(1); 
 } 
 // 
 //  Guarantee A <= B. 
 // 
 if (b < a) 
 { 
  c = a; 
  a = b; 
  b = c; 
 } 
 
 k = seed / 127773; 



63 

 

 
 seed = 16807 * (seed - k * 127773) - k * 2836; 
 
 if (seed < 0) 
 { 
  seed = seed + i4_huge; 
 } 
 
 r = (float)(seed) * 4.656612875E-10; 
 // 
 //  Scale R to lie between A-0.5 and B+0.5. 
 // 
 r = (1.0 - r) * ((float)a - 0.5) 
  + r   * ((float)b + 0.5); 
 // 
 //  Use rounding to convert R to an integer between A and B. 
 // 
 value = round(r); 
 // 
 //  Guarantee A <= VALUE <= B. 
 // 
 if (value < a) 
 { 
  value = a; 
 } 
 if (b < value) 
 { 
  value = b; 
 } 
 
 return value; 
} 
//*******************************************************************
*********80 
 
void initialize(string filename, int &seed) 
 
//*******************************************************************
*********80 
 
{ 
 int i; 
 ifstream input; 
 int j; 
 double lbound; 
 double ubound; 
 
 input.open(filename.c_str()); 
 
 if (!input) 
 { 
  cerr << "\n"; 
  cerr << "INITIALIZE - Fatal error!\n"; 
  cerr << "  Cannot open the input file!\n"; 
  char rr; 
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  std::cin >> rr; 
  exit(1); 
 } 
 // 
 //  Initialize variables within the bounds 
 // 
 for (i = 0; i < NVARS; i++) 
 { 
  input >> lbound >> ubound; 
 
  for (j = 0; j < POPSIZE + 1; j++) 
  { 
   population[j].fitness = 0; 
   population[j].rfitness = 0; 
   population[j].cfitness = 0; 
   population[j].lower[i] = lbound; 
   population[j].upper[i] = ubound; 
   population[j].gene[i] = r8_uniform_ab(lbound, 
ubound, seed); 
  } 
 } 
 
 input.close(); 
 
 return; 
} 
//*******************************************************************
*********80 
 
void keep_the_best() 
 
//*******************************************************************
*********80 
 
{ 
 int cur_best; 
 int mem; 
 int i; 
 
 cur_best = 0; 
 
 for (mem = 0; mem < POPSIZE; mem++) 
 { 
  if (population[POPSIZE].fitness < population[mem].fitness) 
  { 
   cur_best = mem; 
   population[POPSIZE].fitness = 
population[mem].fitness; 
  } 
 } 
 // 
 //  Once the best member in the population is found, copy the 
genes. 
 // 
 for (i = 0; i < NVARS; i++) 
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 { 
  population[POPSIZE].gene[i] = 
population[cur_best].gene[i]; 
 } 
 
 return; 
} 
//*******************************************************************
*********80 
 
void mutate(int &seed) 
 
//*******************************************************************
*********80 
 
{ 
 const double a = 0.0; 
 const double b = 1.0; 
 int i; 
 int j; 
 double lbound; 
 double ubound; 
 double x; 
 
 for (i = 0; i < POPSIZE; i++) 
 { 
  for (j = 0; j < NVARS; j++) 
  { 
   x = r8_uniform_ab(a, b, seed); 
   if (x < PMUTATION) 
   { 
    lbound = population[i].lower[j]; 
    ubound = population[i].upper[j]; 
    population[i].gene[j] = r8_uniform_ab(lbound, 
ubound, seed); 
   } 
  } 
 } 
 
 return; 
} 
//*******************************************************************
*********80 
 
double r8_uniform_ab(double a, double b, int &seed) 
 
//*******************************************************************
*********80 
 
{ 
 int i4_huge = 2147483647; 
 int k; 
 double value; 
 
 if (seed == 0) 
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 { 
  cerr << "\n"; 
  cerr << "R8_UNIFORM_AB - Fatal error!\n"; 
  cerr << "  Input value of SEED = 0.\n"; 
  exit(1); 
 } 
 
 k = seed / 127773; 
 
 seed = 16807 * (seed - k * 127773) - k * 2836; 
 
 if (seed < 0) 
 { 
  seed = seed + i4_huge; 
 } 
 
 value = (double)(seed) * 4.656612875E-10; 
 
 value = a + (b - a) * value; 
 
 return value; 
} 
//*******************************************************************
*********80 
 
void report(int generation, ofstream & log_file) 
 
//*******************************************************************
*********80 
 
{ 
 double avg; 
 double best_val; 
 int i; 
 double square_sum; 
 double stddev; 
 double sum; 
 double sum_square; 
 
 if (generation == 0) 
 { 
  cout << "\n"; 
  cout << "  Generation       Best            Average       
Standard \n"; 
  cout << "  number           value           fitness       
deviation \n"; 
  cout << "\n"; 
  log_file << "\n"; 
  log_file << "  Generation       Best            Average       
Standard \n"; 
  log_file << "  number           value           fitness       
deviation \n"; 
  log_file << "\n"; 
 } 
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 sum = 0.0; 
 sum_square = 0.0; 
 
 for (i = 0; i < POPSIZE; i++) 
 { 
  sum = sum + population[i].fitness; 
  sum_square = sum_square + population[i].fitness * 
population[i].fitness; 
 } 
 
 avg = sum / (double)POPSIZE; 
 square_sum = avg * avg * POPSIZE; 
 stddev = sqrt((sum_square - square_sum) / (POPSIZE - 1)); 
 best_val = population[POPSIZE].fitness; 
 
 cout << "  " << setw(8) << generation 
  << "  " << setw(14) << best_val 
  << "  " << setw(14) << avg 
  << "  " << setw(14) << stddev << "\n"; 
 
 log_file << "  " << setw(8) << generation 
  << "  " << setw(14) << best_val 
  << "  " << setw(14) << avg 
  << "  " << setw(14) << stddev << "\n"; 
 
 return; 
} 
//*******************************************************************
*********80 
 
void selector(int &seed) 
 
//*******************************************************************
*********80 
 
{ 
 const double a = 0.0; 
 const double b = 1.0; 
 int i; 
 int j; 
 int mem; 
 double p; 
 double sum; 
 // 
 //  Find the total fitness of the population. 
 // 
 sum = 0.0; 
 for (mem = 0; mem < POPSIZE; mem++) 
 { 
  sum = sum + population[mem].fitness; 
 } 
 // 
 //  Calculate the relative fitness of each member. 
 // 
 for (mem = 0; mem < POPSIZE; mem++) 
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 { 
  population[mem].rfitness = population[mem].fitness / sum; 
 } 
 // 
 //  Calculate the cumulative fitness. 
 // 
 population[0].cfitness = population[0].rfitness; 
 for (mem = 1; mem < POPSIZE; mem++) 
 { 
  population[mem].cfitness = population[mem - 1].cfitness + 
   population[mem].rfitness; 
 } 
 // 
 //  Select survivors using cumulative fitness. 
 // 
 for (i = 0; i < POPSIZE; i++) 
 { 
  p = r8_uniform_ab(a, b, seed); 
  if (p < population[0].cfitness) 
  { 
   newpopulation[i] = population[0]; 
  } 
  else 
  { 
   for (j = 0; j < POPSIZE; j++) 
   { 
    if (population[j].cfitness <= p && p < 
population[j + 1].cfitness) 
    { 
     newpopulation[i] = population[j + 1]; 
    } 
   } 
  } 
 } 
 // 
 //  Overwrite the old population with the new one. 
 // 
 for (i = 0; i < POPSIZE; i++) 
 { 
  population[i] = newpopulation[i]; 
 } 
 
 return; 
} 
//*******************************************************************
*********80 
 
void timestamp() 
 
//*******************************************************************
*********80 
 
{ 
# define TIME_SIZE 40 
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 static char time_buffer[TIME_SIZE]; 
 const struct tm *tm; 
 size_t len; 
 time_t now; 
 
 now = time(NULL); 
 tm = localtime(&now); 
 
 len = strftime(time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", 
tm); 
 
 cout << time_buffer << "\n"; 
 
 return; 
# undef TIME_SIZE 
} 
 
// void timestamp() 
 
// 
//*******************************************************************
*********80 
 
// { 
// # define TIME_SIZE 40 
 
//  static char time_buffer[TIME_SIZE]; 
//  struct tm tm_v; 
//  size_t len; 
//  time_t now; 
 
//  now = time(NULL); 
//  localtime(&tm_v,&now); 
 
//  len = strftime(time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", 
&tm_v); 
 
//  cout << time_buffer << "\n"; 
 
//  return; 
// # undef TIME_SIZE 
// } 
//*******************************************************************
*********80 
 
void Xover(int one, int two, int &seed) 
 
//*******************************************************************
*********80 
// 
 
{ 
 int i; 
 int point; 
 double t; 
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 // 
 //  Select the crossover point. 
 // 
 point = i4_uniform_ab(0, NVARS - 1, seed); 
 // 
 //  Swap genes in positions 0 through POINT-1. 
 // 
 for (i = 0; i < point; i++) 
 { 
  t = population[one].gene[i]; 
  population[one].gene[i] = population[two].gene[i]; 
  population[two].gene[i] = t; 
 } 
 
 return; 
} 
 

For all functions the program is same just only change the function 

statement.  
 

F 2: 
struct F2 : public BaseTestFunction { 
 const char * name()const { 
  return "exp(-2*log(2)*(pow((x - 0.1)/0.8,2))) * pow(sin(5 
* PI*x), 6)"; 
 } 
 
 double operator()(double x)const { 
  return exp(-2 * log(2)*(pow((x - 0.1) / 0.8, 2))) * 
pow(sin(5 * PI*x), 6); 
 } 
}; 
 

F 3: 
struct F3 : public BaseTestFunction { 
 const char * name()const { 
  return "pow(sin(5 * PI*(pow(x,0.75) - 0.05)), 6)"; 
 } 
 double operator()(double x)const { 
  return pow(sin(5 * PI*(pow(x, 0.75) - 0.05)), 6); 
 } 
}; 
 

F 4: 
struct F4 : public BaseTestFunction { 
 const char * name()const { 
  return "exp(-2 * log(2)*(pow((x - 0.08) / 0.854, 2))) * 
pow(sin(5 * PI*(pow(x, 0.75) - 0.05)), 6)"; 
 } 
 
 double operator()(double x)const { 
  return exp(-2 * log(2)*(pow((x - 0.08) / 0.854, 2))) * 
pow(sin(5 * PI*(pow(x, 0.75) - 0.05)), 6); 
 } 
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}; 

F 5: 
struct F5 { 
 const char * name()const { 
  return "200.0 - pow(x*x + y - 11.0,2.0) - pow(x + y*y -
7.0,2.0)"; 
 } 
 
 double operator()(double x,double y)const { 
  return 200.0 - pow(x*x + y - 11.0,2.0) - pow(x + y*y -
7.0,2.0); 
 } 
}; 

F 6: 
struct F6 : public BaseTestFunction { 
 const char * name()const { 
  return "sum(i * cos((i + 1.0) * x + 1)"; 
 } 
 
 double operator()(double x)const { 
  double ret = 0; 
  for (double i = 1; i <= 5; ++i) { 
   ret += i * cos((i + 1.0) * x + i); 
  } 
  return ret; 
 } 
}; 
 

F 7: 
struct F7 { 
 double operator()(double x,double y)const { 
  double sum = 0; 
  for (double i = 0; i <= 24; ++i) { 
   sum += 1.0 / (1.0 + i + pow(x - function_a(i), 6) + 
pow(y - function_b(i), 6)); 
  } 
 
  return 500-1 / (0.002 + sum); 
 } 
}; 
 

F 8: 
struct F8 { 
 double operator()(double x,double y)const { 
  double product = 1.0; 
  double sum; 
 
  double params[2]; 
  params[0] = x; 
  params[1] = y; 
 
  for (double i = 1; i <= 2; ++i) { 
   sum = 0; 
   for (double j = 1; j <= 5; ++j) { 
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    sum += j * cos((j + 1.0) * params[(int)(i)-1] 
+ j); 
   } 
 
   product *= sum; 
  } 
 
  return -product; 
 } 
}; 
 
 
 
ModifiedFitnessFunction code: 

 
 
#include <vector> 
#include <cmath> 
 
class BaseModifiedFitnessFunction { 
public: 
 virtual void addPeak(double peak) = 0; 
 
 virtual double operator()(double val)const = 0; 
}; 
 
template <class Function> 
class ModifiedFitnessFunction : public BaseModifiedFitnessFunction{ 
public: 
 typedef Function FunctionType; 
 
 ModifiedFitnessFunction(const Function & f,double 
low_bound,double up_bound,int nb_maxima) :  
 
 m_function(f),m_nbMaxima(nb_maxima),m_low_bound(low_bound),m_up_
bound(up_bound){ 
        m_radius = 1.0 / (2.0 * m_nbMaxima); 
 } 
 
 void addPeak(double peak); 
 
 double operator()(double val)const; 
 
 static double alpha; 
private: 
 double m_low_bound; 
 double m_up_bound; 
 double m_nbMaxima; 
 double m_radius; 
 Function m_function; 
 std::vector<double> m_peaks; 
}; 
 
template <class Function> 
double ModifiedFitnessFunction<Function>::alpha = 2.0; 
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template <class Function> 
void ModifiedFitnessFunction<Function>::addPeak(double peak) { 
 m_peaks.push_back(peak); 
} 
 
template <class Function> 
double ModifiedFitnessFunction<Function>::operator()(double val) 
const{ 
 double raw_val = m_function(val); 
 val = (val - m_low_bound)/(m_up_bound - 
m_low_bound);//normalization 
 
 double dist; 
    for (int i = 0; i < m_peaks.size(); ++i){ 
        dist = fabs(val - m_peaks[i]); 
        if(dist < m_radius){ 
   raw_val *= std::pow(dist/m_radius,alpha);//Gp in the 
paper (first one) 
        } 
    } 
 
 return raw_val; 
} 
 
//template <class Function> 
//ModifiedFitnessFunction<Function> GetModifiedFitnessFunction(const 
Function & function) { 
// ModifiedFitnessFunction<Function> mff; 
// return mff; 
//} 
 
//template <class TModifiedFitnessFunction> 
//struct GetGet { 
// typedef  
// 
//}; 
 

 

ModifiedFitnessFunction2D code: 

 

#pragma once 
 
#include <vector> 
#include <cmath> 
 
template <class Function> 
class ModifiedFitnessFunction2D { 
public: 
 struct Param { 
  Param(double x_, double y_) : x(x_), y(y_) {} 
 
  double dist(const Param & other)const { 
   return sqrt(pow(x - other.x, 2) + pow(y - other.y, 
2)); 
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  } 
 
  double x; 
  double y; 
 }; 
 
 typedef Function FunctionType; 
 
 ModifiedFitnessFunction2D(const Function & f, double low_bound, 
double up_bound, int nb_maxima) : 
  m_function(f), m_nbMaxima(nb_maxima), 
m_low_bound(low_bound), m_up_bound(up_bound) { 
  m_radius = 1.0 / (2.0 * m_nbMaxima); 
 } 
 
 void addPeak(double peak_x,double peak_y); 
 
 void addPeak(const Param & param_); 
 
 double operator()(double val_x, double val_y)const; 
 
 void normalize(Param & param_)const; 
 
 static double alpha; 
private: 
 double m_low_bound; 
 double m_up_bound; 
 double m_nbMaxima; 
 double m_radius; 
 Function m_function; 
 std::vector<Param> m_peaks; 
}; 
 
template <class Function> 
double ModifiedFitnessFunction2D<Function>::alpha = 2.0; 
 
template <class Function> 
void ModifiedFitnessFunction2D<Function>::normalize(Param & 
param_)const { 
 param_.x = (param_.x - m_low_bound) / (m_up_bound - 
m_low_bound); 
 param_.y = (param_.y - m_low_bound) / (m_up_bound - 
m_low_bound); 
} 
 
template <class Function> 
void ModifiedFitnessFunction2D<Function>::addPeak(double peak_x, 
double peak_y) { 
 Param p(peak_x, peak_y); 
 normalize(p); 
 m_peaks.push_back(p); 
} 
 
template <class Function> 
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void ModifiedFitnessFunction2D<Function>::addPeak(const Param & 
param_) { 
 Param p(param_); 
 normalize(p); 
 
 m_peaks.push_back(p); 
} 
 
template <class Function> 
double ModifiedFitnessFunction2D<Function>::operator()(double val_x, 
double val_y) const { 
 double raw_val = m_function(val_x,val_y); 
 //val_x = (val_x - m_low_bound) / (m_up_bound - 
m_low_bound);//normalization 
 //val_y = (val_y - m_low_bound) / (m_up_bound - 
m_low_bound);//normalization 
 
 Param val_peak(val_x, val_y); 
 normalize(val_peak); 
 
 double dist; 
 for (int i = 0; i < m_peaks.size(); ++i) { 
  //dist = fabs(val - m_peaks[i]); 
  dist = val_peak.dist(m_peaks[i]); 
  if (dist < m_radius) { 
   raw_val *= std::pow(dist / m_radius, alpha);//Gp in 
the paper (first one) 
  } 
 } 
 
 return raw_val; 
} 
 
//template <class Function> 
//ModifiedFitnessFunction2D<Function> 
GetModifiedFitnessFunction(const Function & function) { 
// ModifiedFitnessFunction2D<Function> mff; 
// return mff; 
//} 
 
//template <class TModifiedFitnessFunction> 
//struct GetGet { 
// typedef  
// 
//}; 
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APPENDIX 2 

ASNPSO Algorithm Source Code 

 
#include "Sworm.h" 
#include "FitnessFunction.h" 
#include <cmath> 
#include "ASNPSO.h" 
#include "FitnessFunction.h" 
#include <fstream> 
 
struct F1 { 
 double operator()(const double * x)const { 
  double ret = 0; 
  for (double i = 1; i <= 5; ++i){ 
   ret += i * cos((i + 1.0) * (*x) + i); 
  } 
  return ret; 
 } 
}; 
 
int main() 
{ 
 std::ofstream log_file; 
 log_file.open("log_f1.txt"); 
 
 int nb_maxima = 19; 
 const int dim = 1; 
 int SR = 10; 
 int maxItertion = 10000; 
 
 double W = 0.729; 
 double C1 = 1.149445; 
 double C2 = 1.149445; 
 
 //double W = 0.01; 
 //double C1 = 0.5; 
 //double C2 = 0.5; 
 
 double pos_lbound[1]; 
 (*pos_lbound) = -10; 
 double pos_ubound[1]; 
 (*pos_ubound) = 10; 
 
 double vel_lbound[1]; 
 (*vel_lbound) = -0.005; 
 double vel_ubound[1]; 
 (*vel_ubound) = 0.005; 
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 FitnessFunction<dim, F1> ff(SR, 15, pos_lbound, pos_ubound); 
 
 int population = 100; 
 
 ASNPSO<dim, FitnessFunction<dim, F1> > asnpso(W, C1, C2, 
pos_lbound, pos_ubound, vel_lbound, vel_ubound, population, 
nb_maxima,ff); 
 
 asnpso.run(maxItertion); 
 
 
 //for (int i = 0; i < 100; ++i){ 
 // Agent<dim> best_agent = little_sworm.getBestAgent(); 
 // std::cout << "average fitness " << 
little_sworm.getAverageFitness() << " " 
 //  << "best position at " << 
best_agent.getPosition()[0] << " " 
 //  << "with fitness " << best_agent.getFitness() << 
std::endl; 
 // little_sworm.iterate(); 
 //} 
 
 //std::cout << "Best position " << 
(*little_sworm.getBestAgent().getPosition()) << std::endl; 
 
 asnpso.writeLog(std::cout); 
 asnpso.writeLog(log_file); 
 
 log_file.close(); 
 
 
 char inp; 
 std::cin >> inp; 
 
 return 0; 
} 
 

For all functions same as above in GA just change the 
function place. 
 
Libraries of ASNPSO algorithm : 
 
Agent.h 

 
#pragma once 
 
#include "RandomTool.h" 
#include <algorithm> 
 
template <int dim> 
class Agent { 
public: 
 Agent<dim>(){} 
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 template <class FitnessFunction> 
 void init(double * pos_lbound, double * pos_ubound, double * 
vel_lbound, double * vel_ubound, const FitnessFunction & func); 
 
 template <class FitnessFunction> 
 void iterate(double W, double C1, double C2, const double * 
bestAgentPos, const FitnessFunction & ff); 
 
 Agent<dim> & operator=(const Agent<dim> & other); 
 
 Agent(const Agent<dim> & other){ (*this) = other; } 
 
 inline const double * getPosition()const { return _position; } 
 
 inline const double * getBestPosition()const { return 
_best_position; } 
 
 inline double getFitness()const { return _fit; } 
 
 inline double getBestFitness()const { return _best_fit; } 
protected: 
 double _fit; 
 double _best_fit; 
 double _position[dim]; 
 double _best_position[dim]; 
 double _velocity[dim]; 
}; 
 
template <int dim> 
template <class FitnessFunction> 
void Agent<dim>::init(double * pos_lbound, double * pos_ubound, 
double * vel_lbound, double * vel_ubound, const FitnessFunction & 
func) { 
 for (int i = 0; i < dim; ++i) { 
  _position[i] = random(pos_lbound[i], pos_ubound[i]); 
  _velocity[i] = random(vel_lbound[i], vel_ubound[i]); 
 
  _best_position[i] = _position[i]; 
 } 
 
 _fit = func(*this); 
 _best_fit = _fit; 
} 
 
template <int dim> 
template <class FitnessFunction> 
void Agent<dim>::iterate(double W, double C1, double C2, const double 
* bestAgentPos, const FitnessFunction & ff) { 
 for (int i = 0; i < dim; ++i) { 
  _velocity[i] = W * _velocity[i] + C1 * random(0, 1) * 
(_best_position[i] - _position[i]) + C2 * random(0, 1) * 
(bestAgentPos[i] - _position[i]); 
  _position[i] += _velocity[i]; 
 } 
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 _fit = ff(*this); 
 if (_fit > _best_fit) { 
  for (int i = 0; i < dim; ++i) 
   _best_position[i] = _position[i]; 
 
  _best_fit = _fit; 
 } 
} 
 
template <int dim> 
Agent<dim> & Agent<dim>::operator=(const Agent<dim> & other) { 
 _fit = other._fit; 
 _best_fit = other._best_fit; 
 
 for (int i = 0; i < dim; ++i) { 
  _velocity[i] = other._velocity[i]; 
  _position[i] = other._position[i]; 
  _best_position[i] = other._best_position[i]; 
 } 
 
 return (*this); 
} 
 

ASNPSO.cpp 

 
#include "Sworm.h" 
#include "FitnessFunction.h" 
#include <cmath> 
#include "ASNPSO.h" 
 
struct Sinus { 
 double operator()(const double * x)const { 
  return std::sin(*x); 
 } 
}; 
 
int main() 
{ 
 const int dim = 1; 
 double W = 0.01; 
 double C1 = 0.5; 
 double C2 = 0.5; 
 double pos_lbound[1]; 
 (*pos_lbound) = 0; 
 double pos_ubound[1]; 
 (*pos_ubound) = 2 * 3.141; 
 
 double vel_lbound[1]; 
 (*vel_lbound) = 0; 
 double vel_ubound[1]; 
 (*vel_ubound) = 0.05; 
 
 int population = 100; 
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 ASNPSO<1, RawFitnessFunction<1,Sinus> > little_sworm(W, C1, C2, 
pos_lbound, pos_ubound, vel_lbound, vel_ubound, population); 
 
 
 for (int i = 0; i < 100; ++i){ 
  Agent<dim> best_agent = little_sworm.getBestAgent(); 
  std::cout << "average fitness " << 
little_sworm.getAverageFitness() << " " 
   << "best position at " << 
best_agent.getPosition()[0] << " " 
   << "with fitness " << best_agent.getFitness() << 
std::endl; 
  little_sworm.iterate(); 
 } 
 
 std::cout << "Best position " << 
(*little_sworm.getBestAgent().getPosition()) << std::endl; 
 
 
 char inp; 
 std::cin >> inp; 
 
    return 0; 
} 
 

 

ASNPSO.h 

 
#include "Sworm.h" 
#include "time.h" 
#include <cassert> 
#include <iomanip> 
 
template <int dim, class FitnessFunction> 
class ASNPSO : public Sworm<dim,FitnessFunction>{ 
public: 
 ASNPSO(double W, double C1, double C2, double * pos_lbound, double 
* pos_ubound, double * vel_lbound, double * vel_ubound, int 
population,int nbMaxima = 1, FitnessFunction ff = FitnessFunction()) : 
  Sworm<dim,FitnessFunction>(W, C1, C2, pos_lbound, pos_ubound, 
vel_lbound, vel_ubound, population, ff), _nb_maxima(nbMaxima){ 
  _do_log = true; 
  _window_size = 20; 
  _log.str(""); 
 } 
 
 void reinit(); 
 
 void run(int maxIteration); 
 
 template <class stream> 
 inline void writeLog(stream & s)const{ 
  s << _log.str(); 
 } 
private: 
 int _rand_seed; 
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 void runOneIterationLog()const; 
 
 void runBeginLog()const; 
 
 void runEndIterationLog()const; 
 
 
 bool _do_log; 
 mutable std::ostringstream _log; 
 
 int _nb_maxima; 
 int _window_size; 
 bool end()const; 
 
 mutable std::vector<double> _average_fitness; 
}; 
 
 
template <int dim, class FitnessFunction> 
void ASNPSO<dim, FitnessFunction>::run(int maxIteration){ 
 double average_fitness; 
 bool do_reinit; 
 
 //runBeginLog(); 
 
 for (int k = 0; k < _nb_maxima; ++k){ 
  do_reinit = false; 
 
  runBeginLog(); 
  runOneIterationLog(); 
 
  for (int i = 0; i < maxIteration; ++i){ 
   Sworm<dim,FitnessFunction>::iterate(); 
   runOneIterationLog(); 
 
   if (end()){ 
    do_reinit = true; 
    break; 
   } 
 
   average_fitness = Sworm<dim, 
FitnessFunction>::getAverageFitness(); 
   if (_average_fitness.size() >= _window_size){ 
    assert(_average_fitness.size() == _window_size); 
    _average_fitness.erase(_average_fitness.begin()); 
   } 
 
   _average_fitness.push_back(average_fitness); 
  } 
 
  this->_ff.addBestAgent(this->getBestAgent()); 
  //std::cout << "best agent raw value " << 
_ff.getRawFunction()(getBestAgent().getBestPosition()) << std::endl; 
  if (_do_log) 
   _log << std::endl; 
 
  runEndIterationLog(); 
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  if (_do_log) 
   _log << std::endl <<std::endl; 
 
  _average_fitness.resize(0); 
 
  //if (do_reinit) 
  reinit(); 
 } 
} 
 
template <int dim, class FitnessFunction> 
bool ASNPSO<dim, FitnessFunction>::end()const{ 
 if (_average_fitness.size() < _window_size) 
  return false; 
 
 double average_fitness = Sworm<dim, 
FitnessFunction>::getAverageFitness(); 
 
 for (int i = 0; i < _average_fitness.size(); ++i) 
  if (average_fitness < _average_fitness[i]) 
   return false; 
 
 return true; 
} 
 
template <int dim, class FitnessFunction> 
void ASNPSO<dim, FitnessFunction>::reinit(){ 
 for (int i = 0; i < this->_agents.size(); ++i) { 
  this->_agents[i].init(this->_pos_lbound, this->_pos_ubound, 
this->_vel_lbound, this->_vel_ubound, this->_ff); 
 } 
 
 this->_best_agent = this->findBestAgent(); 
} 
 
template <int dim, class FitnessFunction> 
void ASNPSO<dim, FitnessFunction>::runOneIterationLog()const{ 
 if (!_do_log) 
  return; 
 
 const Agent<dim> & ag = this->getBestAgent(); 
 //_log << std::string("aoerij"); 
 _log << std::setw(16) << this->getAverageFitness() << std::setw(20) 
<< ag.getBestPosition()[0]; 
 
 if (dim == 2) 
  _log << ", " << ag.getBestPosition()[1]; 
 
 
 _log << std::setw(27) << ag.getBestFitness() << std::endl; 
} 
 
template <int dim, class FitnessFunction> 
void ASNPSO<dim, FitnessFunction>::runBeginLog()const{ 
 if (!_do_log) 
  return; 
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 _log << "average fitness |       best agent position       | best 
agent fitness" << std::endl << std::endl; 
} 
 
template <int dim, class FitnessFunction> 
void ASNPSO<dim, FitnessFunction>::runEndIterationLog()const{ 
 if (!_do_log) 
  return; 
 
 _log << 
"========================================================================
"<<std::endl; 
 _log << "=== maximum info : best agent position | best fitness | 
function value : "; 
 const Agent<dim> & ag = this->getBestAgent(); 
 _log << ag.getBestPosition()[0]; 
 
 if (dim == 2) 
  _log << ", " << ag.getBestPosition()[1]; 
 
 
 _log << " | " << ag.getBestFitness() << " | " << this-
>_ff.getRawFunction()(ag.getBestPosition()) << std::endl; 
 _log << 
"========================================================================
"; 
 

}  

 

FitnessFunction.h 

 
#pragma once 
 
#include "Agent.h" 
#include <vector> 
#include <algorithm> 
 
template <int dim,class Function> 
class FitnessFunction { 
public: 
 bool hillValley(const Agent<dim> & agent0,const Agent<dim> & 
agent1) const; 
 
 FitnessFunction(int SR, double penalty,const double * 
lbound,const double * ubound) : _SR(SR), _penalty(penalty) { 
  for (int i = 0; i < dim; ++i){ 
   _ubound[i] = ubound[i]; 
   _lbound[i] = lbound[i]; 
  } 
 } 
 
 double operator()(Agent<dim> & agent)const; 
 
 inline void addBestAgent(const Agent<dim> & a){ 
_best_agents.push_back(a); } 
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 double bestRawValue(const Agent<dim> & agent)const{ return 
_raw_function(agent.getBestPosition()); } 
 
 const std::vector<Agent<dim> > & getBestAgents()const{ return 
_best_agents; } 
 
 const Function & getRawFunction()const{ return _raw_function; } 
private: 
 double _ubound[dim]; 
 double _lbound[dim]; 
 double _penalty; 
 int _SR; 
 Function _raw_function; 
 std::vector<Agent<dim> > _best_agents; 
}; 
 
template <int dim, class Function> 
bool FitnessFunction<dim, Function>::hillValley(const Agent<dim> & 
agent0, const Agent<dim> & agent1) const{ 
 double step[dim]; 
 double position[dim]; 
 double minfit = 
std::min<double>(_raw_function(agent0.getPosition()), 
_raw_function(agent1.getBestPosition())); 
 
 for (int i = 0; i < dim; ++i){ 
  step[i] = (agent1.getBestPosition()[i] - 
agent0.getPosition()[i]) / ((double)(_SR + 1)); 
  position[i] = agent0.getPosition()[i]; 
 } 
 
 for (int i = 0; i < _SR; ++i){ 
  for (int j = 0; j < dim; ++j){ 
   position[j] += step[j]; 
  } 
 
  if (_raw_function(position) < minfit) 
   return true; 
 } 
 
 return false; 
} 
 
template <int dim, class Function> 
double FitnessFunction<dim, Function>::operator()(Agent<dim> & 
agent)const{ 
 for (int i = 0; i < dim; ++i){ 
  if ((agent.getPosition()[i] < _lbound[i]) || 
(agent.getPosition()[i] > _ubound[i])){ 
   return _raw_function(agent.getPosition()) - 
_penalty; 
  } 
 } 
 
 double fit = _raw_function(agent.getPosition()); 
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 for (int i = 0; i < _best_agents.size(); ++i){ 
  if (!hillValley(agent, _best_agents[i])){ 
   fit -= _penalty; 
  } 
 } 
 
 return fit; 
} 
 
 
template <int dim,class Function> 
class RawFitnessFunction { 
public: 
 double operator()(const Agent<dim> & a)const { 
  return _raw_function(a.getPosition()); 
 } 
private: 
 Function _raw_function; 
}; 

 

 

RandomTool.cpp 

 
#include "RandomTool.h" 
 
double random(double lbound, double ubound) { 
 return ((double)(rand())) / ((double)(RAND_MAX)) * (ubound - 
lbound) + lbound; 
} 

 
RandomTool.h 

 
#pragma once 
 
#include <stdlib.h> 
 
double random(double lbound, double ubound); 

 
 

 


