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ABSTRACT 

 

In this thesis we studied three deterministic epidemic models consisting of multiple strains 

with different types of incidence rates.   

The first model consists of two strains with bilinear incidence rate in one strain and non – 

monotonic incidence rate in the other. We found four equilibrium points; disease free 

equilibrium, endemic with respect to strain 1, endemic with respect to strain 2, and endemic 

with respect to both strains.  The global stability analysis of the equilibrium points were 

carried out through the use of Lyapunov functions. Two basic reproduction ratios   
  and   

  

are found, and we have shown that, if both are less than one, the disease dies out, and if both 

are greater than one epidemic occurs. Furthermore, epidemics occur with respect to any strain 

with basic reproduction ratio greater than one and disease dies out with respect to any strain 

with basic reproduction ratio less than one. It was also shown that, any strain with highest 

basic reproduction ratio will automatically outperform the other strain, thereby eliminating it. 

Numerical simulations were carried out to support the analytic result and to show the effect of 

parameter k in the non – monotonic incidence rate, which describes the psychological effect of 

general public towards the infective. 

In the second model we studied two strain flu model in which one strain (resistance) is the 

mutation of the other (non – resistance) strain. We attributed different types of incidence rates 

to these strains; bilinear and saturated. The bilinear incidence rate is attributed to non - 

resistant strain, while the saturated incidence rate is attributed to resistant strain. The global 

stability analysis of the proposed model is carried out through the use of Lyapunov functions. 

Two basic reproduction ratios    and    are found, and we show that, if both are less than 

one, the disease dies out and the disease free equilibrium is globally asymptotically stable. If 

both are greater than one, epidemic occurs and the endemic equilibrium is globally 

asymptotically stable. More over epidemic occurs with respect to the strain with the largest 

basic reproduction ratio and their respective global asymptotic stability was shown. We also 

presented some numerical simulations to support the analytic results. 

In the third model we considered three strains of influenza (I1, I2, and I3) where we have 

vaccine for strain1 (V1) only, and population has enough awareness of strain 2. There is 

neither vaccine nor awareness for strain 3. Our main aim is to mathematically analyze the 

effect of the vaccine for strain 1 and awareness of strain 2 on the dynamics of strain 3. It is 

also in our aim to study the coexistence of these three strains. Six equilibrium points were 

obtained and their global stability using Lyapunov functions was shown to depend on the 

magnitude of a threshold quantity, called basic reproduction ratio. It was shown that the 
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coexistence of strain 1 and strain 2 is not possible and the coexistence of the three strains was 

shown numerically. It can be observed from the numerical simulations that, although vaccine 

curtail the spread of strain 1, awareness curtail the spread of strain 2, but they both have 

negative effect on strain 3. This tells the relevant authorities whenever there is influenza 

epidemic to investigate thoroughly the possibilities of the existence of multiple strains, so as to 

provide vaccines and enough awareness on all the strains present. 

 

Keywords: Epidemic model; influenza; basic reproduction ratio; incidence rate; multiple 

strains; vaccine; global stability 
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ÖZET 

 

Bu tezde farklı insidans hızlarına sahip çok sayıda türlerden oluşan üç deterministik salgın 

modeli incelendi.  

Birinci model, ikilidoğrusal insidans hızı ve  monoton olmayan insidans oranı olmak üzere iki 

türden oluşur. Dört denge noktası bulduk; bu denge noktaları,  hastalığın olmadığı denge 

noktası, 1’inci ve 2’inci türe göre salgın ve her iki tür için salgın noktalarıdır. Denge 

noktalarının küresel kararlılık analizi, Lyapunov fonksiyonlarının kullanımı ile 

gerçekleştirildi. İki tekrar çoğalma oranı    
  ve   

  bulundu ve bu oranların her ikisi de birden 

küçük ise hastalığın yok olduğunu ve her ikisin de birden  büyük olması durumunda salgının 

gerçekleştiği gösterilmiştir. Bundan başka, tekrar çoğalma oranı birden büyük olan herhangi 

bir türle ilgili olarak salgınlar ortaya çıkar ve temel üreme oranı birden küçük olan herhangi 

bir tür için ise hastalık yok olur. Aynı zamanda, en yüksek tekrar çoğalma oranına sahip 

herhangibir türün otomatik olarak diğer türden daha iyi performans göstereceği ve böylece 

diğer türü ortadan kaldırıldığı gösterildi. Analitik sonucu desteklemek ve k 

parametresinin(toplumun psikolojik etki katsayısı) monotik olmayan insidans hızına etkisini  

göstermek için  sayısal simülasyonlar kullanıldı. İkinci modelde, iki farklı tür grip inceledik. 

Bu iki türden biri dirençli diğeri ise mutasyon geçiren dirençsiz türdür.Bu türlere iki farklı 

insidans oranları varolduğunu kabul ettik; bu oranlar ikilidoğrusal ve doymuş. İkili doğrusal 

insidans oranı dirençsiz tür, doymuş insidans oranı ise dirençli tür  diye isimlendirildi. 

Önerilen modelin küresel kararlılık analizi, Lyapunov fonksiyonlarının kullanımı ile 

gerçekleştirildi. RR ve RN olarak iki tekrar çoğalma oranı hesaplanmıştır ve her ikisinin de 

birden küçük olması durumunda, hastalığın yok olduğunu ve hasta olmayan küresel denge 

noktasının asimptotik kararlı olduğu gösterdik. Her ikisi birden büyük ise salgın olur ve 

yaygınlık denge noktası küresel asimptotik kararlılığı sağlar. Salgın üzerine daha fazla yorum 

yapmak gerekirse, salgın en büyük tekrar üreme oranı birden büyük olan türdede ortaya 

çıkmakta ve genel asimtotik kararlılık gösterilmektedir. Analitik sonuçları desteklemek için 

bazı sayısal simülasyonlar da kullanıldı.  

Üçüncü modelde, üç tip terapi türü (I1, I2 ve I3) düşünündük ve yalnızca 1’inci tür (V1)’in 

terapisi olduğu kabul edildi ve 2’inci türün ise yeterince farkındalığı olduğu kabul edildi. 

3’üncü tür için de ne terapisi ne de farkındalık vardır. Temel amacımız terapilerin 1’inci  türün  

3’üncü tür üzerindeki dinamik etkisini ve 2’inci türün ise yine 3’üncü tür üzerindeki 

farkındalığını analiz etmektir. Bir diğer  amacımız ise bu üç türün birlikteliğini incelemektir. 

Altı denge noktası Lyapunov fonksiyonları kullanarak elde edildi. Tekrar üreme oranı olarak 

adlandırılan bir eşik miktarı hesaplandı ve bunun büyüklüğe bağlı olduğu gösterildi. 1’inci tür 
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ile 2’inci türün bir arada bulunmasının mümkün olmadığını fakat üç türün bir arada var 

olabileceği  sayısal olarak  gösterdi. Sayısal simülasyonlar terapilerin varlığı 1’inci türün 

yayılmasını azalttı. Farkındalık ise  2’inci türün yayılmasını azalttı ama hem terapinin olması 

ve hem de farkındalık 3’üncü tür üzerine negatif bir etki yaptı. Bu sonuçlara gore eğer grip 

salgını varsa ilgili yetkililer hem yeterli terapi şekli olmalı ve hem de farkındalık sağlamak 

zorundadırlar ayrıca grip ile mücadelede çoklu türlerin etkilerinin de varolabileceğini 

düşünerek hareket etmelidir.. 

 

Keywords: Salgın modeli; grip; tekrar üreme oranı; hasta oranı; çoklu tür; terapi; küresel 

kararlılık 
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CHAPTER 1 

INTRODUCTION 

 

Influenza is termed as a serious cytopathogenic, infectious, drastic respiratory disease that is 

caused by influenza virus (Mohler et al., 2005). The virus is categorized into three main types; 

A, B, and C. This categorization is based on the differences that exist between matrix protein 

(M) and nucleoprotein (NP) (Tamura et al., 2005). 

Type A can infect both humans, pigs, whales, birds and especially wild animals. It is the most 

acute of all the types. It is further subdivided into based on hemagglutinin (HA) and 

neuraminidase (NA) proteins found on the surface of the virus. There are 16 types of 

hemagglutinin (H1 – H16) and 9 types of neuraminidase (N1 – N9). Influenza virus  subtypes 

are named according to the combination of these HA and NA present in them. For example 

H1N1 virus means, Influenza A that has an HA1 protein and NA1 protein. In humans only 

three of these combinations are most common; H1N1, H1N2, and H3N2. Type B can also 

infect humans and birds, and can cause epidemics. The last type (C) affects only humans and it 

can hardly be differentiated from common cold as it causes no epidemics (Webster et al., 

2006). 

Moreover influenza A and influenza B virus subtypes can be characterized into strains. There 

are two main ways in which a new strain of influenza appear; antigenic drift and antigenic 

shift (Michael et al., 1992). Antigenic drift occurs through gradual changes in the virus which 

happens over time. New strains arises which may then be new to the host antibodies. On the 

other hand antigenic shift is a sudden change in influenza A virus that results in a new strain 

that has never been seen before. Influenza A undergoes both changes, while B undergoes 

antigenic drift only (Michael et al., 1992). 
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1.1 History of Influenza Virus 

The pandemics of influenza have been occurring for a quite long period of time (Major, 1995). 

Although records described some disease epidemics with clinical presentation similar to 

influenza, but one can’t be certain that these epidemics were indeed as a result of influenza 

viruses. Nowadays avian reservoir is confirmed as the origin of the virus (Scholtissek, 1994). 

Before 1500, Hypocratus in the “Book of Epidemics” described a disease with symptoms 

similar to influenza seen in Northern Greece (410 B.C). Monks also reported a similar 

epidemic 664AD which was caused by clerics travelling from a Syned in England (Creighton, 

1965). In the year 1173 – 1174, England, France, and Italy suffered from a pandemic caused 

by a similar virus. This virus is termed a “Plague”. Later in 1357 another similar epidemic 

took place in Italy from which for the first time the disease is termed as influenza (Major, 

1945). Both in 1414 and 1427 two epidemics termed as “tac” or “horizon” and “ dando” or 

“conqueluche” took place in France respectively (Creighton, 1965).  

After 1500, the epidemic of influenza is well studied. During the summer of 1580, an 

epidemic started from Asia, spread to Africa, spread to Europe, and finally to Americas. A lot 

of people died in this influenza epidemic (Neustadt and Fineburg, 1983). European countries 

encountered series of influenza epidemics in the years 1658, 1679, 1708, and 1729 (Patterson, 

1986). Bachaumont ( a French doctor ) reported another epidemic in London in the year 1775. 

It is reported that amidst this epidemic upto 12 deaths were recorded in Paris in a single day 

(De Lacey, 1993). In 1781 and then 1789 – 1790 another pandemic occurred which started 

from China and then across the entire Europe. This global pandemic resulted in the death of 

many young people. It infected more than half of the population of Rome and upto 30,000 

incidences were recorded in one day in Saint Petersburg (Patterson, 1986). In 1889, another 

epidemic surfaced from Russia which resulted in approximately 40% of the world population 

been infected (Enserink, 2006). A mild pandemic was observed again in 1900 (Enserink, 

2006). 

Spanish flu (H1N1) which occurred in 1918 infected 30 – 50 % of the worlds’ population 

(about 500 million – 1 billion) people (Niall et al., 2002). Origin of Spanish flu pandemic was 
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not clearly known but two places were suspected. The first place was China and then spread to 

United States due to immigration and later to the rest of the world (Lezzoni, 1999; Reid and 

Taubenberger, 2003). The second was United States from military camp in Furston and then in 

a prison in South Carolina (Soper, 1918). 

Forty years after Spanish flu, another pandemic termed Asian flu (H2N2) took place in the 

year 1957. This pandemic also originated from a province called Kweichow in China (Bull, 

1959). It started in February of 1957, it then spread to Yunan province and then the entire 

China, which resulted in morethan 500,000 infection. In March to April Mongolia, Hongkong 

and Singapore were hit, and all Asia were subsequently infected before mid – May (Bull, 

1959). This virus was spread from Asia by ships and planes, and within 9 months only, this 

virus covered all other continents. The approximate number of deaths was estimated to be 

about two million (Cox and Subbaro, 2000). 

Hong Kong flu (H3N2) was among the influenza pandemic that took place in history. It 

originated from Hong Kong in July 1968, and then spread to all parts of Asia, then Russia, 

then Europe, then Americas and subsequently to all parts of the world (Bull, 1969). 

Mechanism of appearance of this strain (H3N2) is similar to that of H2N2. It was also as a 

result of a genetic mix between avian and human virus (Scholtissek, 1994). 

In 1977, a lot of young children were infected with H1N1 virus in a region in Russia. The 

virus only affected those that were not infected with the virus in 1957, and it was proved to be 

identical with H1N1 of 1954 (Kilbourne, 2006). Traces of these cases which was as a result of 

the virus coming from animals have been observed. In 1976, a soldier was infected with H1N1 

virus in New Jersey USA, with the instant death of a soldier and the release of vaccines by US 

authorities no additional cases was recorded (Neustadt and Fineburg, 1983). A boy died of the 

virus in Hong Kong in the year 1997, and the virus was identified as H5N1 originated form 

domestic birds (Class et al., 1998). In 2003, eighty five cases of H7N7 were recorded in 

humans infected from domestic birds (Fouchier et al., 2004). H5N1 reemerged in 2003 (Li et 

al., 2004).  H1N1 resurfaced again in 21
st
 century as a result of recommendation of the two 

preexisting viruses (Garten et al., 2009; Morens et al., 2009). It was first detected in march 
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2009 in Mexico and later in the United States. It then spread worldwide with millions 

incidences and about 16, 813 deaths (WHO, 2009). 

 

1.2 Epidemiology 

This is the study of incidence, distribution, determinants as well as possible control measures 

of health – related occurrence in a specific population. The diseases causing epidemics can 

largely be divided into micro and macro parasites. Micro follows human to human transfer 

pattern examples are influenza, tuberculosis, gonorrhea etc. Macro follows humans to carrier 

to humans transfer pattern examples are malaria, black plague etc. It is also of significant 

importance to differentiate between these three important elements of epidemiology; endemic 

epidemic, and pandemic. Endemic refers to continual occurrence of a disease in a population. 

Epidemic refers to an unexpected upsurge of a disease in a population. Pandemic refers to a 

global epidemic affecting inflated number of populations. 

There are ample means in which epidemic disease spread. These means include but are not 

limited to population explosion, missing sanitation in underdeveloped countries, and modern 

transportation which enables international boarders cross. Another important means by which 

disease spread is due to loss of natural immunity, this is due to pills we take which contain 

synthesis vitamins instead of the vitamins we get from natural resources. There are many more 

means by which diseases spread which are not easy to be listed and studied in a single 

research.  

 

1.2.1 History of mathematical epidemiology 

Mathematical epidemiology can be traced to over three hundred years back. John Graunt was 

the first to publish a book in 1662 with a title “ Natural and political observations made upon 

the bills of mortality” in 1662. It was problems concerning demography problems in Britain 

mainly in the seventeenth century. He calculated the risk of death of some certain diseases 



5 
 

using the records of the death they caused. This analysis was the first to provide a systematic 

method of estimating the risk of death due to plague. This serves as the genesis of the theory 

of competing risks. Almost hundred years later that is in 1760 Daniel Bernoulli published a 

paper with the first epidemiological model. The aim of the model was to demonstrate the 

effect of inoculating patients with smallpox in reducing the progression. One year later, that is 

in 1761 D’Alembert developed another method of handling competing risks of death.  

Hamer in the year 1906 was believed to be the inventor of modern mathematical biology. He 

applied mass action principle on deterministic epidemic model. Rose in 1911 proposed 

another simple epidemic model for malaria and in 1927 Kermack and Mckendrick proposed a 

generalized epidemic model (Ross, 1911). Nowadays these models are being modified by 

taking into account various epidemic units like chemotherapy, vaccination, migration, 

immunity, quarantine, resistance, non – monotonicity of incidence rates etc. Another 

important modification was that by Anderson and May in 1982 (Anderson and May, 1982). In 

their model they considered non - homogeneous mixing in the population. This leads to 

another discovery by Liu et al. in 1987 in which he considered non – linear incidence rate 

instead of the usual bilinear incidence rates as in the previous models. Many models were 

formed and analyzed over the years for diseases such as influenza, AIDS, SARS, malaria, 

cholera, measles, smallpox, rubella, diphtheria, gonorrhea etc. 

 

1.2.2 Stochastic and deterministic models 

The most important models useful in the study of epidemiology are the stochastic and 

deterministic models. 

Stochastic models are used especially in small or isolated populations when known 

heterogeneities are important. They consider minute population especially when every 

individual is significant in the model as such stochastic models are termed as individual level 

– models. These types of models can be arduous to make, sometimes need a lot of simulations 

to make predictions, and contribute very little in explaining disease dynamics. 
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Deterministic models sometimes referred to as compartmental models describe the dynamics 

of the disease at the population level. They categorize individuals into compartments or 

groups. For example SIR model has three compartments; susceptible, Infectious, and 

recovered. There are mathematical parameters between each compartment that describes the 

transition rate of individuals from one compartment to another. Deterministic models are easy 

to set up, and require less data, hence they are the most widely used epidemiological models. 

Nowadays complex deterministic models exist in literature which can integrate stochastic 

elements such as demographic etc. 

 

1.2.3 SIR epidemic model 

The most basic model that describes whether or not an epidemic will occur and how it occurs 

in a population is the SIR epidemic model. It was first developed by Kermack and Mckendrick 

in 1927 (Britton, 2003; Murray, 2004; Ellner and Guckenheimer, 2006). Modification of this 

model exist in literature, examples of this can be found in a book by Hethcote (Hethcote, 

2000), Dieckmann and Heesterbeek (Dieckmann and Heesterbeek, 2000), Anderson and May 

(Anderson and May, 1992), and Murray (Murray, 2004).  

SIR model consists of three compartments; S, I, and R. S is the compartment of susceptibles, I 

is the compartment of infectives, and R is the recovered compartment. Figure 1, gives the 

description of the model and Table 1 provides the meaning of all the parameter as presented in 

equation (1.1). 

                                               S               β                          I            Ɣ                 R 

Figure 1.1: Description of model 1 
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Table 1: Parameters of model 1.1 

List of Parameter             Meaning of the parameters 

S                                         Susceptibles 

 I                                         Infectives 

 R                                        Recovered 

 β                                         Rate at which susceptibles become infected 

 Ɣ                                        Rate at which infected become recovered 

 

The following system of equations represents the model 

  

  
       

 
  

  
                                                             (1.1) 

  

  
     

 

1.2.4 The Basic reproduction number (  ) 

   is termed as the number of new infected individuals in a population that are infected as a 

result  of one individual when everyone is susceptible and during the entire infection period. In 

simple models    has the form given as  

   (                            )(                                     ) 

(                   ) 

In epidemiology,    is considered as a threshold quantity, since      implies epidemics and 

     implies no epidemics. For many models      implies transcritical bifurcation. 
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For complicated models that includes seasonality methods or heterogeneity the next 

generation matrix (NGM)  method is used in computing the   . The NGM method was 

developed in 1990 by Diekmann et al. it was later after 12 years i.e in 2002 standardized by 

Van den Driessche and Watmough (Diekmann et al., 1900; Van Den Driessche and 

Watmough, 2002). It converts a system of ODE or PDE of an infectious disease model to an 

operator. The basic reproduction ratio here is defined to be the dominant eigenvalue (spectral 

radius) of this operator. 

Consider the following deterministic model 

   ( )

  
   ( )                    ( )    

 ̅̅ ̅̅                               

Where   ( ) stands for the number of individuals in compartment i at a given time t. Also let 

 ( )    
 ̅̅ ̅̅ , where   

 ̅̅ ̅̅   is the nonnegative orthant of   . Let 

   2    
 ̅̅ ̅̅              3 where      

 : A set containing disease – free states. 

Then  

   ( )

  
   ( )   ( )  

where    ( ): Infection introduced into i compartment  

  ( )    
 ( )   

 ( )  

  
 ( ): Transfer into i compartment by other means. 

  
 ( ): Transfer out of i compartment by other means. 

The following assumptions hold true for these functions 

i – The rate of movements are nonnegative, i.e if  
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 ̅̅ ̅̅ , then   ( )      

 ( )      
 ( )    where        

ii – If a compartment is empty, then movement out of that compartment is not possible i.e if  

     then   
 ( )     

iii – Movement of infection into non-infective class is not possible i.e  

  ( )             . 

iv – Disease free subspace is invariant, i.e when 

           ( )          
 ( )                    

v – In the absence of new infection the disease free equilibrium is locally asymptotically stable 

i,e when  ( )    all eigenvalues of the matrix at disease free equilibrium must  be negative. 

For disease free equilibrium of (1.1), we let square matrices  ̅ and  ̅̅̅̅ to be  

   ̅̅ ̅̅  
   
   

                       

   
̅̅ ̅̅̅  

   
   

                    

Then  ̅ ̅   is defined as NGM and     ( ̅ ̅
  
) is the dominant eigenvalue (spectral 

radius) of the NGM. 

 

1.3 Well – posedeness  

A mathematical model is said to be well – posed if it satisfies the following three conditions 

i – The model has a solution (existence of solution). 

ii – The solution is unique (uniqueness of solution). 

iii – The solution is stable (stability of solution). 
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If one of the above conditions failed, then the model is ill – posed. 

 

1.3.1 Existence and uniqueness of solutions 

Consider the initial value problem (IVP) defined as  

 ̇   (   ),      

  (  )                                                                                                                    (1.2) 

Here f is continuous and       ( )                     , and (    ) is constant. 

Fundamental theorem of calculus implies that equation (1.2) is the same as 

  ( )    ∫  (   ( ))     
 

  
                                                                                        (1.3) 

Now, our goal is to show that x(t) has a solution. We can do that by using either Picard 

iteration or Tonelli sequence. 

For Picard iteration, an initial value is chosen for x and substituted in (1.3) and then the result 

is used to evaluate a new x. Setting   ( )   then     ( ) is defined in terms of   ( ) where 

k >1 using equation  

               ( )    ∫  (   ( ))            
 

  
    ( ) is given. 

If the absolute error     ( ) and   ( ) is less than the given tolerance value, take   ( ) as the result 

of the given problem. 

For Tonelli sequence let   ( ) where     and for      be defined by 

  ( )  {
          0      

 

 
1  

  ∫  (    ( ))   
  

 

 
  

       0   
 

 
  /  

                                                (1.4) 
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for        ( ) is defined in the same manner. Here Tonelli sequence will be used to prove 

the existence theorem and Picard iterates to prove the uniqueness theorem. See Theorem 1.1 

and 1.2. 

Theorem 1.1 (Cauchy – Peano). let   ,         -   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅      be a continuous and 

bounded function, then the solution exists on the interval [         ], for   

   {  
 
 ⁄ } and     is the upper bound for f. 

Proof. (Murray and Miller, 1976). 

Theorem 1.2  (Picard – Lindelof uniqueness theorem). Let M be the upper bound of the 

continuous function   ,         -   (   )̅̅ ̅̅ ̅̅ ̅̅ ̅̅    . Moreover, let L be a Lipschitz 

constant for all   ,         - of a Lipschitz continuous function  (   )  then (1.2) has a 

unique solution on ,         -, and       *  
 

 
+. 

Proof. (Coddington and Levinson, 1955). 

 

1.3.2 Stability of solutions 

If for all     and       there exists   depending on          such that if  ̂( )     x(t) are 

two solutions of (1.2) then 

| ( )   ̂( )|             | (  )  ̂(  )|             

then  ̂( ) is a stable solution of (1.2). 

If  ̂( ) is stable and           (  )    such that for another solution say  ( ) 

| (  )   ̂(  )|      then  ( )   ̂( ) as    , then  ̂( ) is asymptotically stable.  

Since in this research we are more concerned with Lyapunov stability then what follow is a 

theorem and its proof on Lyapunov stability. 
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Theorem 1.3 (Lyapunov stability).  Let D be a neighbourhood of  ( ) and V be a continuously 

differentiable positive definite function        , whose orbital derivative  ̇ is negative 

semi – definite, then x(t) is a Lyapunov stable solution of (1.2). 

Proof. (Parks, 1992). 

Theorem 1.4 (Asymptotic stability).  Let D be the neighbourhood of  ( ) a solution of (1.2) 

and         be a positive definite function whose orbital derivative  ̇ is negative 

definite. Furthermore, let  ̂     such that  (   )   ̂( )   (   )     , then x(t) is an 

asymptotically stable solution of (1.2). 

Proof. (Parks, 1992). 

Theorem 1.5 (LaSalle’s invariance principle). Let D be a neighbourhood of x(t) and let 

      be a continuously differentiable positive definite function whose orbital derivative is 

negative semi definite. Let I be the union of complete orbits contained in {   | ̇( )   }. 

Then there is U, a neighbourhood of  ( ) such that        (  )   . 

Proof. (Parks, 1992). 

 

1.4 Mathematical Modeling of Influenza 

In literature many models were used to shade more light on the understanding of influenza 

mathematically, especially in the following areas 

1. Provide insight into spatial – temporal transmission dynamics of the disease. 

2. Make health policies in predicting the effect of public health.  

3. Predict public health interventions effect in overcoming subsequent epidemics. 

Most of influenza models were of the SIR form. Many extensions of the SIR model for 

influenza includes incorporating seasonality (Dushoff et al., 2004; Stone et al., 2007), as a 

spatial – temporal  model (Rvachev, 1968),  to show the effect of air travel on its pandemic 
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(Baroyan et al., 1971; Rvachev and Longini, 1985), and to show the importance of air travel 

on geographic spread (Flahault et al., 1994; Caley, 2007).  

Mathematical models also provided insight into severity of past influenza epidemics (Chowell 

et al., 2007; Bootsma and Ferguson, 2007; Chowell et al., 2006; Mills et al., 2004; Vynnycky 

and Edmunds, 2008). Some models were used to investigate the three most devastating 

pandemics of influenza in history; Spanish flu (H1N1) 1918 – 1919, Asian flu (H2N2) 1957 – 

1958, and Hong – Kong flu (H3N2) 1968 (Bootsma and Ferguson, 2007; Chowell et al., 2006; 

Mills et al., 2004; Vynnycky and Edmunds, 2008; Longini et al., 1986; Sattenspiel and 

Herring, 2003). It was shown using mathematical modeling the effect that interventions may 

have had in curtailing the H1N1 pandemics of 1918 – 1919 (Bootsma and Ferguson, 2007; 

Chowell et al., 2006; Mills et al., 2004; Vynnycky and Edmunds, 2008; Longini et al., 1986; 

Sattenspiel and Herring, 2003). The behavioral effects such as quarantine, imposing travel 

sanctions on the infected individuals, closing schools were also modeled (Cauchemez et al., 

2008; Epstein et al. 2007). The effectiveness of biomedical interventions such as vaccines, 

therapeutic treatment, and prophylactic treatment were also shown using mathematical models 

(Arino et al., 2008; Longini et al., 2004). 

Many models were also used to appraise the problem of anti – viral resistance (Lipsitch et al., 

2007; Ferguson et al., 2003), to measure the relative efficacy of prophylaxis versus treatment 

plans (Longini et al., 2004), to describe the best plans for allocating vaccines (Riley et al., 

2007). Some models went ahead to evaluate the effectiveness of combining behavioral and 

biomedical interventions (Longini et al., 2005; Ferguson et al., 2006). Varvadas et al. in 2007 

and Galvani et al. also in 2007 studied the possible effect of human attitude in determining 

coverage of vaccine (Varvadas et al., 2007; Galvani et al, 2007). There studies illustrate how 

mathematical models can help in identifying the interventions strengths that are compulsory in 

epidemic controlling, but these goals may not necessarily be attained. 

The parameter that measures transmission rate of a disease is termed as incidence rate. This 

parameter can be defined as the rate of emergence of new case of a disease in a unit time. 

Incidence rate is sometimes measured by categorizing a population under study using some 
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factors. These factors include; psychological inhibition, age, and social status. Strong 

relationship exists between annual risk of a disease, incidence rate and prevalence (Rvachev, 

1968). Many models in literature have bilinear incidence rate (CDC Report). But there are also 

some other nonlinear incidence rates in the literature which include non-monotone, saturated, 

and fractional incidence rates.  

Influenza, Dengue fever, Tuberculosis, and many other transmissible diseases can be caused 

by multiple pathogen strains. Many researchers studied epidemics caused by these types of 

diseases (Baroyan et al., 1971; Rvachev et al., 1985; Flahault et al, 1994). Basic reproduction 

ratio plays very significant role here, since it was also shown that, any strain with the largest 

basic reproduction ratio will outperform the other/others (Caley et al., 2007). Mostly 

mechanisms like exponential growth of the host population, co – infection, super - infection, 

vaccination, and mutation avail the strains coexistence (Choell et al., 2007; Bootsma and 

Ferguson, 2007; Chowell et al., 2006; Mills et al., 2004). 

It is evident that most of the models with multiple strains in literature constitutes of bilinear 

incidence rates. This is not realistic, since the emergence of new strain will always have effect 

on the incidence rate of the old as well as the new strain itself. Our thesis studies this type of 

models, where one strain have a different incidence rate from the other. 

 

1.5 Outline of the Thesis 

This thesis is the compilation of three articles. These articles are self – contained and the 

corresponding chapters can be read separately. The central study subject in the thesis is 

modeling multiple strain influenza with nonlinear incidence rates. 

Chapter 2: Global stability analysis of two strain epidemic model with bilinear and non – 

monotone incidence rates, I.A. Baba, E. Hincal, European Physical Journal Plus 132:208 

(2017). 
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In this chapter a two strain epidemic model was formulated, with two different incidence rates, 

viz.: bilinear  ( ) and non - monotone  ( )  

   ( )       

   ( )  
   

     
   

Chapter 3: Resistance and non – resistance strains of influenza: A mathematical model, I.A. 

Baba, E. Hincal, I. under review in A Mathematical Population Studies 

In this chapter we give the first application of our study by studying a two strain model, with 

bilinear incidence rate  ( ) as a resistance strain and saturated incidence rate  ( ) as a non-

resistance strain  

   ( )       

   ( )  
   

     
  

 

Chapter 4: A model for influenza with vaccination and awareness, I.A. Baba, E. Hincal, 

Chaos, Solitons, and Fractals. 49:55 (2018). 

In this chapter, we give the second application of our study by studying three strains of 

influenza in which there is vaccine for strain 1, and awareness for strain 2 (nonlinear incidence 

rate). Our goal is to study the effect of the vaccine for strain 1, awareness for strain 2 on the 

propagation dynamics of strain 3.  

In chapter 5, we give summary and conclusion of the study. 

 

. 
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CHAPTER 2 

GLOBAL STABILITY ANALYSIS OF TWO STRAIN EPIDEMIC MODEL WITH 

BILINEAR AND NON – MONOTONE INCIDENCE RATES 

 

In this chapter we studied an epidemic model consisting of two strains with different types of 

incidence rates; bilinear and non – monotone.  The model consist of four equilibrium points; 

disease free equilibrium, endemic with respect to strain1, endemic with respect to strain2, and 

endemic with respect to both strains.   

The global stability analysis of the equilibrium points were carried out through the use of 

Lyapunov functions. Two basic reproduction ratios   
  and   

  are found, and we have shown 

that, if both are less than one, the disease dies out, and if both are greater than one epidemic 

occurs. Furthermore, epidemics occur with respect to any strain with basic reproduction ratio 

greater than one and disease dies out with respect to any strain with basic reproduction ratio 

less than one. It was also shown that, any strain with highest basic reproduction ratio will 

automatically outperform the other strain, thereby eliminating it. 

Numerical simulations were carried out to support the analytic result and to show the effect of 

parameter k in the non – monotonic incidence rate, which describes the psychological effect of 

general public towards the infective. 

 

2.1 Introduction 

Let  ( ),  ( ), and  ( ) be the population of susceptible, infective, and removed individuals at 

time t, respectively. Most models of the SIR type have incidence rate that is of the bilinear 

form (Brauer and Castillo – Chaves, 2011). Many nonlinear incidence rates exist in the 

literature; some of which are the non-monotone incidence rate (Xiao and Ruan, 2007), 
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saturated incidence rate (Capasso V and Serio, 1978), and fractional incidence rate (Windarto 

and Anggriani, 2015). 

Incidence rate measures the rate of transmission of diseases. It is defined as the rate of 

appearance of new cases of disease per unit time. Measurement of incidence rate is sometimes 

based on categorizing the population by a number of factors, which include social status, age, 

and psychological inhibition. Prevalence, incidence rate and the annual risk of a disease in any 

population are related (Styblo, 1985). 

A common phenomenon in disease spreading is pathogen mutation. An example of this is the 

H1N1 influenza virus that emerged in Mexico and the United States in the year 2009, which is 

the mutation of the seasonal influenza. Many diseases such as Tuberculosis, HIV, Dengue 

fever, and some other sexually transmitted diseases are caused by more than one strain of 

pathogen. The dynamical analysis of the pathogen–host interactions with multiple strains has 

been considered by many researchers (Lin et al., 2003; Feng et al., 2002; Feng and Velasco-

Hernandes, 1997). It is also shown that, any strain with the largest basic reproduction ratio will 

automatically outperform the other strains, thereby eliminating them (Bremermann and 

Thieme, 1989). Mechanisms like co – infection, super - infection, mutation, exponential 

growth of the host population, and vaccination promote coexistence among the strains 

(Martcheva and Pilyugin, 2006; Nowak and May 1994; Li et al., 2004; Lipsitch and Nowak, 

1995; Martcheva et al., 2008). 

The significance of studying multiple strain models is to identify the condition that enables the 

coexistence of the different strains. Many mechanisms related to this were studied in the 

literature; they include super infection (Castillo – Chavez  et al., 1996; Ianneli et al., 2005; Wu  

et al., 2013), co – infection (Martcheva and Pilyugin, 2006; May and Norwak, 1995), mutation 

(Martcheva et al., 2007), and the effect of age (Martcheva, 2007). 

Most of the related research in literature concentrate on models with homogeneous mixing; the 

assumption that each individual within a susceptible population has the same contact rate with 

an infective. This assumption is not always true in reality, thus there is need for incorporating 



18 
 

heterogeneous mixing in models. Some researchers considered heterogeneous mixing in there 

models (nonlinear incidence rates), but most of these researches are on single strain models 

(Fu et al., 2008; Li, 2005; Lou and Ruggeri, 2010; Moreno et al., 2002). Few researches on 

multiple strains with heterogeneous mixing exist in literature, but these researches considered 

heterogeneous mixing on all the strains (Wu et al., 2011; Wu et al., 2013). This is not always 

the case in reality; the type of mixing depends on the awareness of the population towards the 

disease in question. If strain1 is the mutation of strain 2, it is expected that the population is 

aware of strain 2 (heterogeneous mixing) but not strain 1 (homogeneous mixing).   

The purpose of this section is to consider the global stability analysis of a two – strain model 

which incorporates both homogeneous and heterogeneous mixing, that is bilinear incidence 

rate in one strain  ( ) and non – monotone incidence rate  ( )  in the other  

 ( )       

 ( )  
   

     
   

In this section we are mainly concerned with a two – strain SIR model with a competing 

mechanism and bilinear incidence rate in the first strain and non – monotone incidence rate in 

the second strain. Each of these strains follow SIR model, and basic reproduction ratio for 

each strain is obtained. The stability of the disease free and endemic equilibria is examined by 

Lyapunov method. We also propose some conditions for the coexistence of the two strains. 

We will also show numerically the effect of the parameter k which describes the psychological 

effect of general public towards the infective in the case of non – monotone strain.  

This section is organized as follows; Section 2.1 is the introduction. In section 2.2, we 

formulate the two strain model, with bilinear incidence rate in strain1 and non - monotone 

incidence rate in strain2. Section 2.3 is the existence of equilibria and the computation of basic 

reproduction numbers. Stability analysis of the equilibria follows in section 2.4, and section 

2.5 is discussion of the results with numerical simulations to support the analytic results. 
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2.2 The Model 

Two strain epidemics model consisting of system of four ordinary differential equations is 

considered. The compartments are S(t),   (t),   (t), and  ( ) which denotes the population of 

susceptible, infective with respect to strain1, infective with respect to strain2, and removed 

individuals at time t, respectively.  Table 1 describes the variables and parameters of the 

model, and Figure 1 is the transfer diagram of the model. 

 

Table 2.1: Description of variables and parameters of model (2.1) 

Parameter                                           Description 

   

                                                      Recruitment rate 

  

 

 
                                                     Average life expectancy of the population 

 α                                                     Infection rate of the resistant strain 

β                                                      Infection rate of the non – resistant strain 

 

 
                                                      Average infection period of resistant strain 

  

 

 
                                                     Average infection period of non - resistant strain 

k                                         Parameter that measures the psychological or                                                 

i                                                        inhibitory  effect of the population   ,   - 

 

 



20 
 

 

 

                                                              d   

 

 

                                                           (t)                                                                    

                                           

b             S(t)                                                                     R(t)                            dR 

                                   
    

     
                                          

                                                                (t)                   

                                                  

    

                                                                  d   

Figure 2.1:  Transfer diagram of model (1) 

 

2.2.1 Assumptions 

The following assumptions are made in constructing the model 

i) There is constant recruitment into susceptible class through birth or immigration. 

ii) Once recovered from either of the strains, an individual remains in the recovery class. 

iii) There is homogeneous and heterogeneous mixing with regard to strain 1 and strain 2  

     respectively. 
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Hence, we have the following system of ordinary differential equations representing the 

disease dynamics: 

 

  

  
           

    

     
   

  
   

  
      (   )    

 
   

  
 

    

     
  (   )                                                                                            (2.1) 

  
  

  
             

             

 

2.3 Mathematical Analysis 

We first present the following lemma; 

Lemma 2.1: The plane           
 

 
 is an invariant manifold of system (2.1), which is 

attracting in the first octant. 

Proof: Summing the above equations in (2.1), we have 

  

  
           

    

     
       (   )   

    

     
  (   )      

         

  

  
       

This implies, ( )  
 

 
 .  
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For any   (  )   , the general solution is 

 ( )  
 

 
        

at     , 

 (  )  
 

 
    

  ( )  
 

 
 ( (  )  

 

 
)       

Thus         ( )  
 

 
 . 

Since             , we can then focus on the following reduced system, 

 

  

  
           

    

     
   

  
   

  
      (   )    

  
   

  
 

    

     
  (   )    

 

2.3.1 Existence of equilibria 

The four possible equilibrium points for the system (2.1) are  

i) Disease free equilibrium 

   (            )  (
 

 
    )  

Since              are both greater than or equals to zero, the equilibrium exist. 
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ii) Strain1 endemic equilibrium 

   (            )  (
   

 
 
    (   )

   
  )  

 

For the equilibrium to exists (biologically meaningful equilibrium),      must be greater than 

or equals to zero, that is when                           

which implies     
  

 (   )
    

iii) Strain2 endemic equilibrium 

   (            )  

where,  

   
(   )(       

 )

 
                

  (   ) √  (   )     (   ),     (   )-

   (   )
   

For the equilibrium to exists (biologically meaningful),      must be greater than or equals to 

zero, that is when                (   )  √  (   )     (   ),     (   )-     

This implies     
  

 (   )
    

iv) Endemic equilibrium 

   (            )  

 

where 

   
   

 
      

    (   )

 (   )
 

     

 (       
 )

      √
 (   )

  (   )
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For the equilibrium to exists (biologically meaningful equilibrium),       and      must be 

greater than or equals to zero, that is when 

    (   )

 (   )
 

     

 (       
 )

    

This implies  

  

 (   )
 

     

 (       
 )

    

and    

√
 (   )

  (   )
 
 

 
    

This implies  

  

 (   )
 

  

 (   )
  

 

2.3.2 Basic reproduction ratio 

This can be defined as the number of secondary infections caused by an infective individual in 

a completely susceptible population. Here we used the next generation matrix method to 

evaluate it. 

Let  

 

  [

    
    

     
 

]                     [
(   )  
(   )  

]  
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     [

   

 
  

     
  

      
 

(     
 ) 

]                        [
    
    

]  

 (  )  [
 
 

 
 

  
 

 

]  

     [

  

 (   )
 

 
  

 (   )

]. 

The basic reproduction number is the spectrum radius of the matrix     , 

    (    )  

This implies        
  

  

 (   )
                       

  
  

 (   )
  

 

2.4 Global Stability Analysis 

Here, we used the method of Lyapunov function to carry out the global stability analysis of the 

equilibria. 

Theorem 2.2. The disease free equilibrium,    is globally asymptotically stable if 

   *  
     

 +   . 

 

Proof. Consider the following Lyapunov function 

  (       )           

where                 
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 ̇  (  
  
 
)  ̇    ̇    ̇ 

 .  
  

 
/ .          

    

     
 /  (     (   )  )  .

    

     
  (   )  /  

        
   

 

 
       ,    (   )-    6

   

     
  (   )7 

    [  
 

  
 
  
 
]    (   ) [  

  

 (   )
]    (   ) [  

  

 (   )
] 

    [  
 

  
 
  
 
]    (   ),    

 -    (   ),    
 - 

This implies  ̇   , by the relation between geometric and arithmetic means and if 

   *  
     

 +   .  

Theorem 2.3. The strain1 endemic equilibrium,    is globally asymptotically stable if 

  
     *     

 +  

Proof. Consider the following Lyapunov function 

  (       )  (           )        

where      [                         ]   

 ̇  (  
  
 
)  ̇  (  

    
  
)   ̇    ̇ 

 .  
  

 
/ .          

    

     
 /  .  

    

  
/ (     (   )  )  

.
    

     
  (   )  /       

         
   

 

 
   (    (   ))      (    (   ))    .

   

     
  (  

 )/   
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    .  
 

  
 

  

 
/   ( 

(   )

 
 (   ))     (   (   ))    6(   )  

 
(   )

 

     
 7  

    .  
 

  
 

  

 
/   ,   (   )- 0

  

 (   )
  1  

  

 
, (   )   (   )-  

    (  
 

  
 
  
 
)   ,   (   )-,  

   -  
  
 
, (   )   (   )-  

 

Then  ̇    by the relation between geometric and arithmetic means, if    
   , and if 

 (   )

 (   )
    

That is     
    

  . 

Theorem 2.4. The strain2 endemic equilibrium,    is globally asymptotically stable if 

  
     *     

 +  

Proof. Consider the following Lyapunov function 

  (       )  (           )        

where     [                         ]  

 ̇  (  
  
 
)  ̇  (  

    
  
)   ̇    ̇ 

 .  
  

 
/ .          

    

     
 /  .  

    

  
/ .

    

     
  (   )  /       

(   )    
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   (    (   ))    4

   

     
  (   )5      4(   )  

  

     
 5  

    0  
 

  
 

  

 
1    ,(   )     -    ,(   )     -  0

  

     
  

(   )1        

 

This implies  ̇    by the relation between geometric and arithmetic means and if  

                                                                                                                            (   )  

                                                                                                                            (   )  

        

                                                                                                                                     (   )      

from (2.2), it implies 

    
 (   )(       

 )

 
  

This implies 

  
    

   

from (2.3), it implies 

    
 (   )(       

 )

 
  

This implies          , which has no biological meaning. 

From (2.4), it implies 
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This implies  

  
     

Theorem 2.5. The endemic equilibria    is globally asymptotically stable if   
    

   . 

Proof. Consider the following Lyapunov function 

  (       )  (           )  (           )     

where    [                                         ]  

 ̇  (  
  
 
)  ̇  (  

    
  
)   ̇  (  

    
  
)   ̇ 

 (  
  
 
)4          

    

     
 5  (  

    
  
) (     (   )  )

 (  
    
  
) 4

    

     
  (   )  5 

         
   

 

 
   ,(   )     -      ,   (   )-

   ,(   )     -      6
  

     
  (   )7  

               

     [  
 

  
 
  
 
]    6(   )   

(   )

 
7  ,   (   )-    

 6
  

     
  (   )    7  

 ̇    by the relation between geometric and arithmetic means and if  

 
 (   )

 
 (   )                                                                                                        (   )   
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                                                                                                                                      (   )   
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2.5 Discussions and Numerical Simulations 

In this section we studied an epidemic model consisting of two strains with different type of 

incidence rates; bilinear and non – monotone incidence. Unlike in the research of Feng Z. et al 

in 2002 (Feng et al., 2002) and Li C. H. in 2005 (Li, 2005), where they respectively studied 
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multiple strain with bilinear incidence rates only and non – monotone incidence rates only, 

here we studied the combination of the two. In the former, they considered homogeneous 

mixing, while in the latter they considered heterogeneous mixing in the population 

respectively. This is not always the case in reality; the type of mixing depends on the 

awareness of the population towards the disease in question, and since here strain1 is mutation 

of strain2, we assumed that the population is aware of strain2 (heterogeneous mixing) but not 

strain1 (homogeneous mixing).   

Four equilibrium points are found; the disease free equilibrium, strain specific endemic, and 

endemic with respect to both strains. The method of Lyapunov was used to carry out the 

global stability analysis of all the equilibria. This is an improvement of the research by 

Junyuan Y. and Chun – Hsein L. in 2016 (Junyuan and Chun – Hsein, 2016), where they 

couldn’t show the global stability of the endemic equilibrium analytically.  

The global analysis depends on the threshold quantities; basic reproduction ratios denoted by 

  
  and   

 . If    *  
    

  +    the disease dies out, and if   
    

    the epidemic occurs 

with respect to both strains. Furthermore, if    
     *     

 +, strain1 persists and strain2 

dies out, and if    
      *     

 + strain2 persists and strain1 dies out. These results also 

agree with similar studies on HIV/AIDS dynamics by Qianqian L et al in 2012 (Qianqian et 

al., 2012), and Tuberculosis model by Moghadas SM and Gumel AB in 2002 (Moghadas and 

Gumel, 2002). It was also shown that, any strain with highest basic reproduction ratio will 

automatically outperform the other strain, thereby eliminating it. This is in agreement with the 

findings by Bremermann HJ and Thieme HR in 1989 (Bremermann and Thieme, 1989). 

Numerical simulations were also carried out to support the analytic results. In Fig 2.2 both 

strains (I1 and I2) die out, this is because the basic reproduction ratios for the strains are both 

less than one (  
             

      ). In Fig 2.3 strain2 (I2) dies out and strain1 (I1) 

persists (  
            

      ), and in Fig 2.4 strain1 (I1) dies out and strain2 (I2) persists 

(  
             

     ). Lastly in Fig 2.5 both the two strains (I1 and I2) persist, this is 

because the basic reproduction ratios are equal and greater than one (   
    

     ). 
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It can also be observed from Figure 2.2 and Figure 2.5 that strain2 dies out faster, and the 

persistence of strain1 is higher than that of strain2. This is due to the effect of the parameter k, 

which describes the psychological effect of general public towards the infective. Although the 

effect of the parameter k is not shown by   
  but it has been shown clearly using the above 

simulations. 

 

Figure 2.2: Both strains die out. Parameter values;                           
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Figure 2.3: Persistence of strain1 only. Parameter values;                   
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Figure 2.4: Persistence of strain2 only. Parameter values;                    
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Figure 2.5: Both strains persist. Parameter values;                         
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CHAPTER 3 

RESISTANCE AND NON – RESISTANCE STRAINS OF INFLUENZA: A 

MATHEMATICAL MODEL 

 

In this chapter we studied two strain flu model in which one strain (resistance) is the mutation 

of the other (non – resistance) strain. We attributed to each of the strains, a distinct incidence 

rate viz.; bilinear and saturated. Bilinear incidence rate is attributed to non - resistant strain, 

while the saturated incidence rate is attributed to resistant strain. Lyapunov functions were 

used to prove the global stability of the proposed model.    and     are the two basic 

reproduction ratios  found. Analysis of the model shows that, if the maximum of the two ratios 

is less than one, an epidemic is controlled. If the minimum of the two ratios is greater than 

one, epidemic occurs. More over strain with higher magnitude of the basic reproduction ratio 

persists and dominate the other. Numerical simulations were presented, and their results were 

shown to support the analytic results. 

 

3.1 Introduction 

Caused by influenza virus, influenza is a serious cytopathogenic, infectious and drastic 

respiratory disease (Mohler et al., 2005). In general it has three forms: A, B, and C. They are 

identified based on their differences in terms of matrix protein (M) and nucleoprotein (NP) 

(Tamura et al., 2005). 

Type A can infect both humans and animals especially wild animals. It is the most acute of all 

the types. It is further subdivided based on hemagglutinin (HA) and neuraminidase (NA) 

proteins found on the surface of the virus. There are 16 types of hemagglutinin (H1 – H16) 

and 9 types of neuraminidase (N1 – N9). Subtypes of influenza virus are named based on 

combination of their HA and NA. For example H1N1 virus means; influenza A that has an 

HA1 protein and NA1 protein. In humans only three of these combinations are most common: 
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H1N1, H1N2, and H3N2. Type B can also infect humans and birds, and its spread can be 

epidemics. The last type, type C, affects only humans and it can hardly be differentiated from 

common cold as its spread is not usually epidemic (Webster et al., 2016). 

The subtypes of influenza A and B can further be characterized into strains. There are two 

main ways in which a new strain of influenza appear: antigenic drift and antigenic shift 

(Martcheva et al., 2007). Antigenic drift occurs through gradual changes in the virus which 

happens over time. It produces new strains which may then not be recognized by the host 

antibodies. On the other hand antigenic shift is a sudden change in influenza A virus that 

results in a new strain that has never been seen before. Influenza A undergoes both changes, 

while B undergoes antigenic drift only (Ward et al., 2005). 

Although vaccination can prevent influenza infection, it is not useful against emerging 

subtypes of influenza. This is evident from the pandemic nature of the H1N1 influenza in 

2009. Hence, to prevent the spread of an emerging influenza epidemic, there is a need for 

antiviral to inhibit the replication of the virus. The antiviral plays a vital role in the protection 

of seasonal influenza (Ward et al., 2005; Schünemann et al., 2007; Fiore et al., 2011).  

Nowadays, resistance cases of this virus are observed.  Aminoadamantanes resistance in the 

case of H3N2 virus and Oseltamivir resistance in the case of H1N1 virus are some of these 

resistance cases observed (Carr et al., 2002; Monto et al., 2006; Baranovich et al., 2009). This 

situation is deadly and can lead to much influenza pandemic in the future, hence the need for 

the establishment of worldwide surveillance that can monitor the condition (Monto et al., 

2006). 

In general, risk of transmission of new influenza strain is believed to be minimal compared to 

that of original strain. This can be attributed to the fact that mutation reduces viral strength 

(Herlocher et al., 2002; Carr et al., 2002; Ives et al., 2002; Herlocher et al., 2004; Abed et al., 

2004; Bouvier et al., 2008).  

Whenever there is an epidemic, two important questions that need to be addressed are: what is 

the possible cause of the epidemic, and the most effective intervention measures to protect the 
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general public against the epidemic? Mathematical modeling helps in providing answers to 

these questions (Bornemann et al., 2009; Lipsitch et al., 2009; Kaymakamzade et al., 2016; 

Baba et al., 2017). In order to study the condition under which both resistant and the non-

resistant strains can coexist; as well as the differences between the mode of spread of the two 

strains, we develop a mathematical model. We used numerical simulations to show how one of 

the strains can displace the other. 

Incidence rate can be termed as the rate of emergence of a disease in a unit time. It is a very 

important unit of epidemiology. Our aim in this paper is to study the coexistence between two 

strains of flu in which one strain (resistant strain) is the mutation of the other (non-resistant 

strain). Since the risk of the resistant strain (mutated strain) is assumed to be minimal 

compared the non – resistant strain, we considered different incidence rates for the duo; 

saturated for the resistant strain and bilinear for the non-resistant strain. The choice of 

saturated incidence rate for the resistant strain is due to the fact that it is more logical than the 

bilinear incidence rate, since it grasps the negotiating alteration and swarming impact of the 

infected people and hinders the unboundedness of the interconnection rate by fitting 

parameters, which was reused in several epidemic issues (Liu et al., 2005; Gomes et al., 2005; 

Kar and Jana, 2013).  

Each of these strains follow basic SIR model. We obtained two basic reproduction ratios -  one  

for each strain. Global stability for each equilibrium point is shown using Lyapunov function. 

Analysis for the coexistence of the two strains was also carried out.  

This chapter is organized along these lines: section 3.1 introduces the concept. Section 3.2 

explains the formulation of the model. In section 3.3 we give the detail mathematical analysis 

of the model. In section 3.4, we carry out numerical simulations and, finally, we discuss the 

results in section 3.5. 
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3.2 Model Formulation 

Two strain epidemic model with four compartments is considered. These compartments are 

leveled as S(t),   (t),   (t), and  ( ) standing respectively for susceptible, infective resistant, 

infective non – resistant, as well as removed individuals.  In Table 3.1, the description of 

variables and parameters as used in the model are given and Figure 3.1 is the diagrammatical 

representation of the model. 

Table 3.1: Parameters and variables of model (2) 

Parameter           Description 

b                         Recruitment rate 

 

 
                         Life expectancy  

β                         Infection rate of the resistant strain 

α                         Infection rate of the non – resistant strain 

 

 
                         Average infection period of resistant strain 

 

 
                         Average infection period of non - resistant strain 

k                         Parameter that measures the psychological or inhibitory effect 
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                                                              d   

 

 

 

                                                           (t)                                                                    

                                           

b             S(t)                                                                      R(t)                            dR 

                                   
    

     
                                         

                                                                (t)                   

                                                  

    

                                                                  d   

Figure 3.1:  Diagrammatical representation of model (2) 

 

The following assumptions are made 

i) Recruitment into susceptible class is constant. 

ii) There is no double infection. 

iii) Once recovered from either resistant or non -  resistant virus, an individual remains in the    

      recovery class. 

Hence the system of ordinary differential equations given by (3.1) describes the following 

model: 
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      (   )    

  
   

  
 

    

     
 (   )                                                                                          (3.1) 

   
  

  
             

             

 

3.3 Analysis of the Model 

Here the mathematical analysis of the model is given. The following lemma is given at first. 

Lemma 3.1. The plane           
 

 
 is an invariant manifold of system (3.1), which is 

attracting. 

Proof. Summing all four equations in (3.1);  

  

  
           

    
     

      (   )   
    
     

 (   )      

         

  

  
       

Considering   (  )   , then  

 ( )  
 

 
        

Taking      , we get 
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 (  )  
 

 
    

Therefore, 

 ( )  
 

 
 ( (  )  

 

 
)       

Hence                ( )  
 

 
 

Since              system (3.1) can be reduced to  

  

  
           

    
     

  

              
   

  
      (   )    

 
   

  
 

    

     
 (   )    

 

3.3.1 Existence of equilibria 

The system has four possible equilibria 

i) Disease free, which always exist 

   (
 

 
    )  

ii) Non – resistant  equilibrium 

   4
   

 
 
        

 (   )
  5  

which exists when              
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This implies     
  

 (   )
    

 

 

iii) Resistant equilibrium 

   4
      

    
   

        

             
5  

which only exists if           . 

This implies 
  

 (   )
    

iv) Endemic equilibrium 

   4
   

 
 
 (                       )

(   )  
 
           

(   )  
5  

 

which only exists if 

                                                                                      (   ) 

                                                                                                            (   ) 

From (*) it follows 

,  (   )     -  , (   )   (   )-     

This implies        
  

 (   )
                   

  

 (   )
 

  

 (   )
  

From (**) it follows 

 (   )   (   )  
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This implies 
  

 (   )
 

  

 (   )
  

From (*) and (**), endemic equilibrium    exists only if   

  

 (   )
 

  

 (   )
    

 

3.3.2 Basic reproduction ratio (  ) 

   is defined as the number of new cases a single infected individual produced in a population 

of susceptible individuals. Here next generation matrix (NGM) method is used to obtain it. 

If  

  [

   

 
  

     
 

     
(     ) 

]                     [
    
    

]  

 (  )  [
 
 

 
 

  
 

 

]  

     

[
 
 
 
 

  

 (   )
 

 
  

 (   )]
 
 
 
 

  

   is the maximum eigenvalue of the matrix     , 

    (    )  

This implies         
  

 (   )
                       

  

 (   )
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3.3.3 Global stability analysis 

Lyapunov function technique is used to prove the global nature of the equilibrium solutions. 

Theorem 3.2.    (disease free equilibrium) is globally asymptotically stable when *     + 

  .  

Proof. The following Lyapunov function is constructed 

  (       )           

where                 

 ̇  (  
  
 
)  ̇    ̇    ̇ 

 .  
  

 
/ .          

    

     
/  (   (   )  )  .

    

     
 (   )  /  

        
   

 

 
 (   )  (

   
   

  )  (   )  (
   

(   )(     )
  ) 

    (  
 

  
 
  
 
)  (   )  (    )  (   )  (    ) 

If     ,      and by the geometric and arithmetic means inequality, it can be concluded 

 ̇   . 

Theorem 3.3. Non – resistant virus equilibrium    is globally asymptotically stable when 

     and        

 

Proof. The following Lyapunov function is constructed 

  (       )  (          )        

here                             
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Taking the derivative, we get 

 ̇  (  
  
 
)  ̇  (  

   
  
)   ̇    ̇ 
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/  .  
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(   )5  

    .  
 

  
 

  

 
/  (   (   )) .

         

 (   )
/    (

 (   )

 
 (   ))   

 y the geometric and arithmetic means inequality , we get  

                   
 

  
 

  

 
  . 

Therefore,  ̇     if  

                 and   
 (   )

 
 (   )    

This implies       and       . 

Theorem 3.4. The resistant virus equilibrium    is globally asymptotically stable when 

     and    
 (    )

 (      )
 ,    

 (    )

 (      )
. 

Proof. The following Lyapunov function is considered 
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  (       )  (          )        

where                             

Taking the derivative, we get 
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Therefore,  ̇     if  

      

    
 
   

 
                     

      

    
 
   

 
  

This implies    
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. 

and                 which implies       
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Theorem 3.5. The endemic equilibria    is globally asymptotically stable when        . 

Proof. The following Lyapunov function is considered 

  (       )  (          )  (          )     

Where                                         

 ̇  (  
  
 
)  ̇  (  
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 ̇    by the geometric and arithmetic means inequality and if  
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 (   )                                                                                                           (   )   
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From (   ), it follows that 
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(  (   )     )  ( (   )   (   ))         

This yields                    

From (   ) it follows that 

 (   )   (   )                 

This yields         

From (   ) it follows that 

 (   )   (   )             

This yields         

From (   ) (   )   (   ) it follows that 

         

 

3.4 Numerical Simulations 

In this section, some numerical simulations were carried out. In Fig 3.2 the strains (IR and IN) 

die out, since the basic reproduction ratios for the each strain is less than one (    

                ). Fig 3.3 shows resistant strain (IR) dies out and non – resistant strain 

(IN) persists (                   ), and in Fig 3.4 non – resistant strain (IN) dies out and 

resistant strain (IR) persists (                   ). Finally in Fig 3.5 the strains (IN and 

IR) persist (          ). 
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Figure 3.2: Disease - free equilibrium. Parameter values;                                
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Figure 3.3: Resistant endemic equilibrium. Parameter values;             
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Figure 3.4: Non - Resistant endemic equilibrium. Parameter values;             
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Figure 3.5: Endemic equilibrium. Parameter values;                         

                                                          

 

3.5 Discussions 

In this section we studied two strain flu model in which one strain (resistance) is the mutation 

of the other (non – resistance) strain. We attributed distinct incidence rates to these strains 

viz.; bilinear and saturated. Bilinear incidence rate is attributed to non - resistant strain, while 
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the saturated incidence rate is attributed to resistant strain. Lyapunov function was used to 

conduct the Stability analysis of the model.    and    are the basic reproduction ratios  found. 

It was shown that, if the maximum of the two parameters is less than unity, the disease dies 

out and then the disease free equilibrium is globally stable, and if the minimum is greater than 

or equal to unity, epidemic occurs and the endemic equilibrium is globally stable. More over 

any strain with highest basic reproduction ratio is globally stable and will automatically 

outperform the other strain.  

The numerical results obtained are similar to the analytic results. It can be observed from 

Figure 3.2 and Figure 3.5 that resistant strain dies out faster than non – resistant strain, and the 

number of Infectives are higher with respect to non - resistant strain. The reason can be 

attributed to the fact that mutations reduced viral fitness, and hence the effect of the mutation 

parameter k.  

In conclusion coexistence conditions for two strains is given, and it was also have shown by 

numerical means that the rate of transmission of resistant virus which has saturated incidence 

rate is lower than that of the non – resistant virus which has bilinear incidence rate.  
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CHAPTER 4 

A MODEL FOR INFLUENZA WITH VACCINATION AND AWARENESS 

 

In this chapter we considered three strains of influenza (I1, I2, and I3) where we have vaccine 

for strain1 (V1) only, and population has enough awareness of strain 2. There is neither 

vaccine nor awareness for strain 3. Our main aim is to mathematically analyze the effect of the 

vaccine for strain 1 and awareness of strain 2 on the dynamics of strain 3. It is also in our aim 

to study the coexistence of these three strains. Six equilibrium points were obtained and their 

global stability using Lyapunov functions was shown to depend on the magnitude of a 

threshold quantity, called basic reproduction ratio. It was shown that the coexistence of strain 

1 and strain 2 is not possible and the coexistence of the three strains was shown numerically. It 

can be observed from the numerical simulations that, although vaccine curtail the spread of 

strain 1, awareness curtail the spread of strain 2, but they both have negative effect on strain 3. 

This tells the relevant authorities whenever there is influenza epidemic to investigate 

thoroughly the possibilities of the existence of multiple strains, so as to provide vaccines and 

enough awareness on all the strains present. 

Keywords: Three strain, global stability analysis, basic reproduction ratios, influenza 

 

4.1 Introduction 

Influenza is termed as a serious cytopathogenic, infectious, drastic respiratory disease that is 

caused by influenza virus (Mohler et al., 2005). Influenza is categorized into 3 main types; A, 

B, and C. This categorization is based on the differences that exist between matrix protein (M) 

and nucleoprotein (NP) (Tamura et al., 2005). 

Type A can infect both humans, pigs, whales, birds and especially wild animals. It is the most 

acute of all the types. It is further subdivided into based on hemagglutinin (HA) and 
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neuraminidase (NA) proteins found on the surface of the virus. Hemagglutinin is divided into 

sixteen subtypes of (H1 – H16) and neuraminidase into nine subtypes (N1 – N9). Influenza 

virus subtypes are named based on their combination of HA and NA. For example H1N1 virus 

means, Influenza A that has an HA1 protein and NA1 protein. In humans three of these 

combinations are most common; H1N1, H1N2, and H3N2. Type B can also infect humans and 

birds, and can cause epidemics. The last type (C) affects only humans and it can hardly be 

differentiated from common cold as it causes no epidemics (Webster et al., 2016). 

Most influenza models are of the SIR form. Many extensions of the SIR model for influenza 

includes incorporating seasonality (Dushoff et al., 2004; Stone et al., 2007), as a spatial – 

temporal model (Rvachev, 1968),  to show the effect of air travel on its pandemic (Mohler et 

al., 2005; Baroyan, 1971), and to show the importance of air travel on geographic spread 

(Flahault et al., 1994; Caley, 2007). 

Mathematical models also provided insight into severity of past influenza epidemics (Chowell 

et al., 2007; Bootsma and Ferguson, 2007). Some models were used to investigate the three 

most devastating epidemics of influenza viz.; Spanish flu (H1N1) 1918 – 1919, Asian flu 

(H2N2) 1957 – 1958, and Hong – Kong flu (H3N2) 1968 (Chowell et al., 2006; Mills et al., 

2004; Chauchemez et al., 2008). It was shown using mathematical modeling the effect that 

interventions may have had in curtailing the H1N1 pandemics of 1918 – 1919 (Chowell et al., 

2006). The behavioral effects such as quarantine, imposing travel sanctions on the infected 

individuals, closing schools were also modeled (Epstein et al., 2007; Arino et al., 2008). The 

effectiveness of biomedical interventions such as vaccines, therapeutic treatment, and 

prophylactic treatment were also shown using mathematical models (Longini et al., 2004; 

Riley et al., 2007; Lipsitch et al., 2007). 

Many models were also used to determine the anti – viral resistance dilemma (Ferguson et al., 

2006), to compare policies related to efficacy of prophylaxis and treatment (Riley et al., 2007), 

and to establish the best policies for budgeting vaccines (Lipsitch et al., 2007). Some models 

went ahead to evaluate the effectiveness of combining behavioral and biomedical 
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interventions for example Varvadas et al. considered the effect of human practice towards 

establishing vaccine broadcasting (Vardavas et al., 2007).   

 Influenza, Dengue fever, Tuberculosis, and many other transmissible diseases can be caused 

by multiple pathogen strains. Many researchers studied epidemics caused by these types of 

diseases (Baroyan et al., 1971; Rvachev et al., 1985; Flahault et al, 1994). Basic reproduction 

ratio plays very significant role here, since it was also shown that, any strain with the largest 

basic reproduction ratio will outperform the other/others (Caley et al., 2007). Mostly 

mechanisms like exponential growth of the host population, co – infection, super - infection, 

vaccination, and mutation avail the strains coexistence (Chowell et al., 2007; Bootsman and 

Ferguso, 2007; Chowell et al., 2006; Mills et al., 2004; Chauchemez et al., 2008; 

Kaymakamzade et al., 2016; Baba et al., 2017; Zhen et al., 2016; Han-Xin and  Bing-Hong, 

2016; Han-Xin and Zhen, 2016). Since new strains are still evolving, there is need for more 

studies on the coexistence of multiple strains. 

In this section we considered three strains of influenza (I1, I2, and I3) where we have vaccine 

for strain1 (V1) only, and population has enough awareness of strain 2. There is neither 

vaccine nor awareness for strain 3. Our main aim is to mathematically analyze the effect of the 

vaccine for strain 1 and awareness of strain 2 on the dynamics of strain 3. It is also in our aim 

to study the coexistence of these three strains.  

This section is formulated in such away; Section 4.1 introduces the problem. Formulation of 

the model follows in section 4.2. Calculation of basic reproduction number and study of 

existence of equilibria is conducted in section 4.3. Section 4.4 is the stability analysis of the 

equilibria, and finally in section 4.5 discussions numerical simulations results were given. 

 

4.2 Model Formulation 

Three strain influenza model with vaccination that consists of system of six first order ODE is 

constructed. The population of susceptible, infective with respect to strain 1, vaccine of strain 
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1, infective with respect to strain2, infective with respect to strain 3 and removed individuals 

at time t are represented by S(t),   (t),   (t),   (t),   (t) and  ( ) respectively.   

 

Table 4.1: Definition of parameters and variables of the following model (4.1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter                   Description 

  

                                  Recruitment rate 

 

 
                                  Average life expectancy of the population 

β1                                           Infection rate of strain 1 

β2                                Infection rate of strain 2 

β3                                Infection rate of strain 3 

 

  
                                Average infection period of strain 1 

 

  
                        Average infection period of strain 2 

 
 

  
                                Average infection period of strain 3 

α                                 Parameter that measures the psychological effect  

                                  Rate of vaccination with strain1 

                                 Infection induced death rate of strain 1 

k                                Transmission coefficient of vaccinated individuals  
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       β1I1S     µ+v1           Ɣ1 

        Ɣ2 

 Λ     β2I2S/1+αS 

      Β3I3S        µ 

           r1                    Ɣ3 

     µ    kv1I3 

            

              µ 

          µ 

           µ               

Figure 4.1: Transfer diagram of model (3) 

 

Recruitment into suspectible class is assumed to be constant, and the possibility of double 

infection is ignored. The variables and parameters are positive and their meanings are given in 

Table 1, Figure 1 also gives the trasfer diagram of the model. With these assumptions the 

following model is considered: 

 

 

I1 

I2 

I3 

V1 

R S 
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 (       )         

  

  
                    

where, 

                                       

and  

                   

 

4.3 Equilibria, Boundedness, and Basic Reproduction Ratio  

4.3.1 Existence of equilibrium solutions 

Setting the system (4.1) to zero and solving the simultaneously we obtain the following 

equilibrium solutions 

   {  
 

  
    

   
   

                  }  



61 
 

The equilibrium solution exists, since all the parameters in this equilibrium are at least equal to 

zero. 

   {  
  
  
    

    
   

     
         

    
            }  

This equilibrium solution exists only when     , that is when 
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here, 
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4.3.2 Boundedness 

The system trajectories are confined within a compact set. Consider 
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4.3.3 Basic reproduction ratio (R0) 

R0 is the number of new infections that are caused by a single infectious individual in a 

population where everyone is susceptible. Next generation matrix method is used here to 

obtain it 
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4.4 Stability Analysis  

Global properties of the equilibria are studied in this section.  Lyapunov function was used for 

the analysis. 

Theorem 4.1. if    *         +    and 
   

   
   , then the disease free equilibrium    is 

globally asymptotically stable   

Proof. Lyapunov function of the following form is constructed 
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By the relation between arithmetic and geometric means   
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   then    is globally asymptotically 
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Theorem 4.3. If           *      +    and 
   

   
   then    is globally asymptotically 

stable   

Proof. The Lyapunov function of the following form is considered 
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Theorem 4.4. If           *      +    and 
   

   
   then    is globally asymptotically 

stable   

Proof. The following Lyapunov function is considered  
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Theorem 4.5. If    *      +         and 
   

   
   then     is globally asymptotically 

stable   
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Proof. The following Lyapunov function is considered 
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Theorem 4.6. If    *      +         and 
   

   
   then    is globally asymptotically 

stable   

Proof. The following Lyapunov function is considered 
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where  ( )         . Since     , It can easily be seen that,  (             )   . 

Now, we need to show  ̇   . Really, 

 ̇  (  
  
 
)  ̇  (  

    
  
)  ̇  (  

    
  
)   ̇    ̇  (  

    
  
)   ̇ 

       
    

 

 
     (       )   (

    
    

   )   

 (           )      (  
    
  
)  (       ) 

     (           )      (   
    
    

)  

Since              , and 
    

    
     , we have that 

 ̇      (  
  
 
 
 

  
)      (    )        (    )        (    )

  (       ) (  
   

   
)  

By the relation between arithmetic and geometric means   
  

 
 

 

  
    

4.5 Discussion, Conclusion, and Numerical Simulations 

In this section, dynamics of three strains influenza model is studied. We obtained the 

following six equilibrium points;  

E1: disease free equilibrium, I1, I2, and I3 are both zero. 

E2: endemic equilibrium for I1 only, I2 and I3 are both zero. 

E3: endemic equilibrium for I2 only, I1 and I3 are both zero. 

E4: endemic equilibrium for I3 only, I1 and I2 are both zero. 

E5: coexistence of I1 and  I3, I2 is zero. 
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E6: coexistence of I2 and  I3, I1 is zero. 

It can be observed that, coexistence of I1 and I2 is not possible. This is because as soon as any 

strain has basic reproduction ratio greater than 1, it will surpass the other, thereby eradicating 

it. Though, the coexistence of the three strains can’t be shown analytically but we show and 

analyze it numerically. 

We also used next generation matrix method to obtain three threshold quantities       , and  

   called the basic reproduction ratios for strain 1, 2, and 3 respectively. It was shown that the 

stability of each of the equilibrium solution depends on the magnitude of these threshold 

quantities. Lyapunov function was used to show the global stability of the equilibria. When 

    *        +    the disease free equilibrium   is globally asymptotically stable and the 

disease dies out. It was also shown that the disease equilibriums are globally asymptotically 

stable when the respective strains have a basic reproduction ratio greater than unity. 

Numerical analysis were conducted to investigate coexistence of the three strains, and to 

analyze the effect of vaccine for strain 1 and awareness of strain 2 on the dynamics of strain 3. 

The results are as follows; 

Figure 4.2. There is vaccine for strain 1 and awareness of strain 2. Strain 1 and 2 die out and 

the population of people with strain 3 disease is about 4000. 

Figure 4.3. Vaccine for strain 1 is available, so it dies out. Strain 2 and 3 persist and the 

population of people with strain 3 diseases is about 2500. 

Figure 4.4. There is awareness for strain 2 only. Strain 2 dies out, strain 1 and 3 persist and the 

population of people with strain 3 diseases is about 3000. 

Figure 4.5. There is neither vaccine for strain 1 nor awareness of strain 2. Both strains persist 

and the population of people with strain 3 diseases is around 2000. 
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Figure 4.2: Vaccine for strain1 and awareness of strain2 are present: Parameter values; 
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Figure 4.3: Presence of vaccine for strain1 only: Parameter values;          
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Figure 4.4: Awareness for strain2 only is present: Parameter values;          

                                                                                 

                                                                   

 

Figure 4.5: No effect of vaccine or awareness: Parameter values;          
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M. E. Alexander constructed and studied a model with vaccination for influenza transmission 

dynamics (Alexander et al., 2004). They show that if combining vaccine effectiveness and 

vaccination rate reaches a certain threshold then the disease will automatically be controlled.. 

S.M. Ashrafur Rahman and Xingfu Zou (Ashrafur Rahman and  Xingfu, 2010) proposed a two 

strain model that investigated the effect of vaccine for strain one on the dynamics of second 

strain.  

In our case we studied three strains in which there is vaccine for strain 1, awareness for strain 

2, and neither vaccine nor awareness for strain 3. It can be observed that although vaccine 

curtail the spread of strain 1, awareness curtail the spread of strain 2, but they both have 

negative effect on strain 3. The population of people living with strain 3, increases from 2000 

when there is neither vaccine for strain 1 nor awareness of strain 2, to 2500 when there is only 

awareness of strain 2, to 3000 when there is only vaccine for strain 1 and to 4000 when there 

is both vaccine for strain 1 and awareness of strain 2. This result is in agreement with the 

result obtained by T. Cohen et al. (Coheren et al., 2008), M. Martcheva et al. (Martcheva et al., 

2007), and P.P. Ewan et al. (Ewan et al., 2017). 

This tells the relevant authorities whenever there is influenza epidemic to investigate 

thoroughly the possibilities of the existence of multiple strains, so as to provide vaccines and 

enough awareness on all the strains present. There is also need for more studies on this issue 

possibly related to the complication of spatial epidemics. This will help in providing useful 

understanding into disease determent and control. 
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CHAPTER 5 

CONCLUSION 

 

In conclusion, in this thesis we studied three models about influenza. Both models considered 

multiple strains of influenza in which one strain have incidence rate different from the other. 

The first model has two strains in which one has bilinear incidence rate and the other non – 

monotone incidence rate. The second model is the first application of the first model where we 

considered the problem of resistance. In the second model we also considered two strains 

where one strain is the resistance strain attributed with bilinear incidence rate and the other is 

non – resistance strain attributed with saturated incidence rate. The third model is the second 

application of the first model where we considered three strains of influenza (I1, I2, and I3). 

Here, we have vaccine for strain1 (V1) only, and population has enough awareness of strain 2. 

There is neither vaccine nor awareness for strain 3. Our main aim is to mathematically analyze 

the effect of the vaccine for strain 1 and awareness of strain 2 on the dynamics of strain 3. 
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