ABSTRACT

Cloud computing is a modern form of computing technology that provides services in many areas, particularly in mobile environments. Due to the expansion in volume, capacity and quantity of data stored and transferred today, mobile cloud computing has assumed a pivotal vital role, since many challenges still exists that need to be addressed related to public trust in cloud services. Many studies have been proposed in this regard. The aim of this study is to conduct systematic mapping of recent literature on quality of service approaches in cloud computing based on mobile environments in order to identify deficiencies and future research possibilities. A systematic mapping study was conducted to determine the related literature, and consequently 16 articles published between 2010 and 2017 were selected as primary studies that were classified in relation to the focus, research type and contribution type. The majority of these articles follow the conceptual proposal research type (37%), Evaluation research (19%) and Validation research (19%), as well as Validation research (19%) and Solution proposals (25%). However, there were no Opinion articles or Experience articles (0%).. Cloud services providers (44), followed by cloud services consumers (19%) and Software as Service (19%), Infrastructure as a Service (12%), and Platform as a service (6%). The majority of contributions concerned models (50%), Metric (25%), Method (19%), Process (6%) and Tool(0%). The conclusion of this review confirms that QoS approaches in mobile cloud computing have developed into vital subject in the mobile cloud computing field in recent years and there are still existing challenges and deficiencies that require future research investigation and gaps which require future research exploration. In particular, research into the instruments, processes and tools and opinion articles and evaluation research are required with a specific end goal to provide valuable and reliable mobile cloud computing that conveys suitable QoS. Also a little bit of studies focused on IaaS and PaaS,

Keywords: Cloud computing; mobile cloud; mobile environments; QoS; systematic mapping

ÖZET

Bulut bilgiislemesi, özellikle mobil ortamlarda birçok alanda hizmet sunan modern bir bilgi işlem teknolojisi şeklidir. Bulut hizmetlerine olan kamu güveni ile ilgili olarak ele alınması gereken pek çok zorluk mevcut olduğundan mobil cloud computing, bugün depolanan ve aktarılan verilerin hacmi, kapasitesi ve miktarının genişlemesi nedeniyle çok önemli bir rol üstlenmiştir. Bu konuda birçok çalışma önerilmiştir. Bu çalışmanın amacı, eksiklikleri ve gelecekteki araştırma olanaklarını belirlemek için mobil ortamlara dayalı bulut bilgi işleminde hizmet kalitesi yaklaşımları üzerine son literatürün sistematik haritalandırılmasını yapmaktır. İlgili literatürü belirlemek amacıyla sistematik bir haritalama çalışması yapılmış ve 2010-2017 yılları arasında yayınlanan 16 makale, odak, araştırma türü ve katkı türüne göre sınıflandırılan birincil çalışmalar olarak seçilmiştir. Bu makalelerin çoğunluğu kavramsal öneri araştırma türünü (% 37), Değerlendirme araştırması (% 19) ve Doğrulama araştırması (% 19) ile Doğrulama araştırması (% 19) ve Cözüm önerilerini (% 25) takip etmektedir. Bulut hizmetleri sağlayıcıları (% 44), bulut hizmetleri tüketicileri (% 19) ve Yazılım olarak Hizmet (% 19), Hizmet Olarak Altyapı (% 12), ardından Hizmet ve bir hizmet olarak Platform (% 6). Katkıların çoğunluğu modeller (% 50), Metrik (% 25), Yöntem (% 19), Süreç (% 6) ve Takım (% 0) ile ilgilidir. Bu incelemenin sonucunda, mobil bulut bilgi işleminde QoS yaklaşımlarının son yıllarda mobil bulut bilgiişimi alanında hayati bir konu haline geldiği ve ileride yapılacak araştırma soruşturması gerektiren eksiklikler ve gelecekteki araştırma araştırmaları gerektiren eksiklikler olduğu kanaatine varılmıştır. Özellikle, uygun QoS'yi ifade eden değerli ve güvenilir mobil cloud computing sağlamak için araçlar, süreçler ve araçlar ile fikir makaleleri ve değerlendirme araştırması için belirli bir amaç aranır. Ayrıca, IaaS ve PaaS üzerinde yoğunlaşan bazı çalışmalar yapıldı,

Anahtar Kelimeler: Bulut bilgi işlem; mobil bulut; mobil ortamlar; QoS;

QUALITY OF SERVICE APPROACHES IN CLOUD COMPUTING BASED MOBILE ENVIRONMENTS: A SYSTEMATIC MAPPING STUDY

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

ANWER MOHAMMAD NEYAZ AWWAD

In Partial Fulfilment of the Requirements for

the Degree of Master of Science

in

Computer Information Systems

NICOSIA, 2017

2017

NEU

QUALITY OF SERVICE APPROACHES IN CLOUD COMPUTING BASED MOBILE ENVIRONMENTS:

A SYSTEMATIC MAPPING STUDY

A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

ANWER MOHAMMAD NEYAZ AWWAD

In Partial Fulfilment of the Requirements for

the Degree of Master of Science

in

Computer Information Systems

NICOSIA, 2017

ACKNOWLEGMENTS

In the beginning, I would like to express my sincere gratitude to my supervisor Assist. Prof. Dr. Seren Başaran for assisting me in my research and providing advice and guidance throughout.

I would like to give special thanks to the Chairperson of the Computer Information Systems Department Prof. Dr. Nadire Çavuş for providing the appropriate support and guidance at the beginning of the research through the seminar course.

Furthermore, I would like to acknowledge Prof. Dr. Doğan İbrahim Akay, Dr.Doğuş Sarica and Doğuş Ertaç who provided me with valuable information and knowledge that helped me in my research.

To the hope that gives me strength and patience in this life, I give my father, mother and all my family all my love and thanks.

ABSTRACT

Cloud computing is a modern form of computing technology that provides services in many areas, particularly in mobile environments. Due to the expansion in volume, capacity and quantity of data stored and transferred today, mobile cloud computing has assumed a pivotal vital role, since many challenges still exists that need to be addressed related to public trust in cloud services. Many studies have been proposed in this regard. The aim of this study is to conduct systematic mapping of recent literature on quality of service approaches in cloud computing based on mobile environments in order to identify deficiencies and future research possibilities. A systematic mapping study was conducted to determine the related literature, and consequently 16 articles published between 2010 and 2017 were selected as primary studies that were classified in relation to the focus, research type and contribution type. The majority of these articles follow the conceptual proposal research type (37%), Evaluation research (19%) and Validation research (19%), as well as Validation research (19%) and Solution proposals (25%). However, there were no Opinion articles or Experience articles (0%).. Cloud services providers (44), followed by cloud services consumers (19%) and Software as Service (19%), Infrastructure as a Service (12%), and Platform as a service (6%). The majority of contributions concerned models (50%), Metric (25%), Method (19%), Process (6%) and Tool(0%). The conclusion of this review confirms that QoS approaches in mobile cloud computing have developed into vital subject in the mobile cloud computing field in recent years and there are still existing challenges and deficiencies that require future research investigation and gaps which require future research exploration. In particular, research into the instruments, processes and tools and opinion articles and evaluation research are required with a specific end goal to provide valuable and reliable mobile cloud computing that conveys suitable QoS. Also a little bit of studies focused on IaaS and PaaS,

Keywords: Cloud computing; mobile cloud; mobile environments; QoS; systematic mapping

ÖZET

Bulut bilgiislemesi, özellikle mobil ortamlarda birçok alanda hizmet sunan modern bir bilgi işlem teknolojisi şeklidir. Bulut hizmetlerine olan kamu güveni ile ilgili olarak ele alınması gereken pek çok zorluk mevcut olduğundan mobil cloud computing, bugün depolanan ve aktarılan verilerin hacmi, kapasitesi ve miktarının genislemesi nedeniyle çok önemli bir rol üstlenmiştir. Bu konuda birçok çalışma önerilmiştir. Bu çalışmanın amacı, eksiklikleri ve gelecekteki araştırma olanaklarını belirlemek için mobil ortamlara dayalı bulut bilgi işleminde hizmet kalitesi yaklaşımları üzerine son literatürün sistematik haritalandırılmasını yapmaktır. İlgili literatürü belirlemek amacıyla sistematik bir haritalama çalışması yapılmış ve 2010-2017 yılları arasında yayınlanan 16 makale, odak, araştırma türü ve katkı türüne göre sınıflandırılan birincil çalışmalar olarak seçilmiştir. Bu makalelerin çoğunluğu kavramsal öneri araştırma türünü (% 37), Değerlendirme araştırması (% 19) ve Doğrulama araştırması (% 19) ile Doğrulama araştırması (% 19) ve Çözüm önerilerini (% 25) takip etmektedir. Bulut hizmetleri sağlayıcıları (% 44), bulut hizmetleri tüketicileri (% 19) ve Yazılım olarak Hizmet (% 19), Hizmet Olarak Altyapı (% 12), ardından Hizmet ve bir hizmet olarak Platform (% 6). Katkıların çoğunluğu modeller (% 50), Metrik (% 25), Yöntem (% 19), Süreç (% 6) ve Takım (% 0) ile ilgilidir. Bu incelemenin sonucunda, mobil bulut bilgi işleminde QoS yaklaşımlarının son yıllarda mobil bulut bilgiişimi alanında hayati bir konu haline geldiği ve ileride yapılacak araştırma soruşturması gerektiren eksiklikler ve gelecekteki araştırma araştırmaları gerektiren eksiklikler olduğu kanaatine varılmıştır. Özellikle, uygun QoS'yi ifade eden değerli ve güvenilir mobil cloud computing sağlamak için araçlar, süreçler ve araçlar ile fikir makaleleri ve değerlendirme araştırması için belirli bir amaç aranır. Ayrıca, IaaS ve PaaS üzerinde yoğunlaşan bazı çalışmalar yapıldı,

Anahtar Kelimeler: Bulut bilgi işlem; mobil bulut; mobil ortamlar; QoS;

TABLE OF CONTENTS

ACKNOWLEGMENTS i
ABSTRACTii
ÖZETiii
TABLE OF CONTENTS iv
LIST OF TABLES vii
LIST OF FIGURES
LIST OF ABBREVIATIONS ix
CHAPTER 1: INTRODUCTION 1
1.1 Introduction1
1.1 The Problem
1.2 Aim of the Study4
1.2.1 Research Questions
1.3 Significance of the Study4
1.4 The Limitations of the Study5
CHAPTER 2: LITERATURE REVIEW 6
2.1 Overview of Mobile Cloud Computing
2.2 Architectures of Mobile Cloud Computing9
2.3 Quality of service in mobile cloud computing11
2.4 Systematic Mapping is a Methodology14
2.4.1 The Systematic Mapping Process 14
2.4.2 Definition of Research Questions (Research Scope)14
2.4.3 Conduct Search for Primary Studies (All Papers)

2.4.4 Screening of Papers for Inclusion and Exclusion (Relevant Papers)	15
2.4.5 Keywording of Abstracts (Classification Scheme)	16
2.4.6 Data Extraction and Mapping of Studies (Systematic Map)	17
2.5 Systematic Reviews and Systematic Mapping	18
CHAPTER 4: METHODOLOGY	
4.1 Research methodology	20
4.2 Data sources and search strategy	21
4.3 Study Selection	22
4.4 Primary Studies	28
4.5 Research focus area and distribution	29
4.6 Contribution Type and Distribution	34
4.7 Research Type and Distribution	40
CHAPTER 5: RESULT AND DISCUSSION	45
5.1 Major Topics	45
5.2 Types of Research	46
5.3 Types of Research published	47
5.4 Discussion	49
5.4.1 Challenges of SaaS area	49
5.4.2 Challenges of CSP and PaaS areas	50
5.4.3 Challenges of resources management and performance monitoring	50
5.4.4 Challenges of QoS application requirements	51
5.4.5 Application performance and monitoring management	51
5.4.6 Future direction of Mobile cloud services regard to service providers	and51
5.4.7 Summary of Findings	52
CHAPTER 6: CONCLUSIN	53

6.1 Conclusin	53
6.2 Recommendation	54
REFERENCES	55
APPENDICES	68
APPENDIX A : All studies found after search	68
APPENDIX B : Studies remaining after the first stage	
APPENDIX C : Studies remaining after the second stage	

LIST OF TABLES

Table 4.1: The sources of database	. 21
Table 4.2: Studies remaining after the second stage	. 25
Table 4.3: Studies remaining after third stage	. 28
Table 4.4: Distribution of Primary studies by distribution sort	. 28
Table 4.5 : Distribution kind of Primary studies	. 30
Table 4.6 : Distribution of primary studies by research focus area.	. 31
Table 4.7: Studies with focus area	. 34
Table 4.8: Distribution of primary studies by contribution sort	. 35
Table 4.9: Primary Studies by contribution type	. 41
Table 4.10:Primary Studies by Research type	. 42
Table A.1: All studies found after search	. 68
Table B.1: Studies remaining after the first stage	. 87
Table C.1: Studies remaining after the second stage	. 99

LIST OF FIGURES

Figure 2.1: Cloud computing services	
Figure 2.2: Mobile cloud computing architecture	9
Figure 2.3: Service-oriented cloud computing architecture	
Figure 2.4: ColneCloud concept	
Figure 2.5: Cloudlet concept	
Figure 2.6: The Systematic mapping process	
Figure 2.7: Building the classification scheme	
Figure 2.8: Visualization of a systematic map in the form of a bubble plot	16
Figure4.1: Selection proces	
Figure 5.3: Distribution of primary studies by research type	
Figure 5.4: Bubble plot by contribution type and research type	

LIST OF ABBREVIATIONS

CC: **Cloud Computing** CSC: Cloud Service Consumer CSP: Cloud Service Provider IaaS : Infrastructure as a Service **MC :** Mobile Computing Mobile Cloud Computing MCC: MS: Mobile service Platform as a Service PaaS: QoS: Quality of Service Software as a Service SaaS : **SM** : Systematic Mapping VM: Virtual Machine

CHAPTER 1

INTRODUCTION

1.1 Introduction

In the recent years of innovation development, people's lives have become highly dependent on mobile devices and this technology has become associated many aspects of daily life; the use of specialized devices and tools has removed obstacles imposed by restrictions of time and place. Additionally, users from different fields and specialisations who use mobile devices can utilise tools and programs that are stored on remote servers through wireless networks (Dinh, 2011). Mobile devices have become the necessities of life for many people; it is evident that the majority of people use such devices every day. For example, students use mobile technology in schools or at university to access the education system from any location and can realise numerous processes, such as verifying their grades, adding courses, checking a transportation schedule, or communicating with lecturers. Furthermore, businessmen use mobile devices in all aspects of their work, from reading emails and following the stock market to using banking services through financial applications. In fact, this technology still retains its importance for communications and making telephone calls, which means that people today cannot dispense of mobile devices (Rahimi, 2013).

Cloud computing is a revolution in the world of technology, as it is now possible to manage vast amounts of data and to conduct complex processes with this data. It uses resources that have very high specifications within a short timeframe and using minimal effort. To access cloud computing services and avail of the processes and resources, users are only required to have Internet access and a computer, mobile or tablet with appropriate access rights (Javied, 2017).

Due to the significant developments in technology and the increased speed of data transfer, quality has become particularly important to users. Quality of service (QoS) is the description or measurement of the overall performance of a service. For example,

billions of users on the YouTube website watch video clips and some of these videos offer quality that could be as high as (1080p); therefore, this level of quality needs resources and processors with large capacity and high speed Internet in order to preserve the quality of service (Lai, 2013). Also, people in modern society regular make video calls and this has become an important aspect of life; resultantly, this service requires the appropriate resources and high speed Internet to maintain the quality of contact. This mean that the vendors of this services should have effective QoS approaches in order to maximize the utilization of resources and provide effective service to customers (Misra, 2014.

Mobile cloud computing (MCC) consists of two main components: mobile computing (MC), which includes mobile phones and all other mobile devices, and cloud computing, which incorporates specialized services and tools. Mobile computing has become an important element in improving the utilization of information technology used in business and industry. Additionally, cloud computing has provided many specialized services and tools to users that are accessible from different wireless networks (e.g., servers, systems, and stockpiles), stages (e.g., middleware benefits and working frameworks), and programming (e.g., application programs) that are provided specifically by cloud suppliers (e.g., Google, Amazon, and Salesforce) that require little or no effort (Dinh, 2011). In this environment, online consumers can choose the best possible cloud benefit from significant specialist providers that can offer administrations using QoS. Consequently, cloud computing has become indispensable for consumers as it enables them to satisfy their purchasing desires in various business areas (Abdelmaboud, 2015).

Through multiple intelligent administrations, cloud computing provides multimedia information based on a planned and effectively implemented approach to quality of service, where the information preparing process and capacity are moved from the mobile phone to intense and combined processing stages that are situated in the cloud. Through wireless connections and networks and via the use user of a web browser or using a mobile device, users can access these services and applications (Dinh, 2011). Furthermore, it considers the general network environment and alters the interactive transmission frequency and the dynamic multimedia transcoding, to prevent the inefficient usage of bandwidth and terminal power (Lai, 2013). The benefits of prolonged battery life, adequate discharge, and reduced data storage and handling issues have led to the increased importance of mobile cloud computing (MCC). Furthermore, the approach coordinated through layers is fundamental to understanding the mobile cloud computing ideas, which are the basic principles that are necessary to understand the remarkable advantages that are available when utilising the versatile cloud (Rahimi, 2013).

Through base stations, mobile cloud computing can connect mobile systems and services with mobile phones. Mobile clients' data solicitations (e.g., ID and area) are transmitted to the focal processors that are associated with servers, which affords versatile system administration to mobile clients. The clients' solicitations are conveyed to the cloud through the Internet (Lee, 2010). In the cloud, cloud controllers administer solicitations to furnish versatile clients with cloud computing services. These computing services are produced with the ideas of utility processing, virtualization, and computing-situated engineering (e.g., web, application, and database servers) (Dinh, 2011).

Systematic mapping display provides structure of the kind of research reports that have been distributed by sorting them and presenting them in a visible summary. It commonly requires less exertion while giving a more coarse-grained outline (Petersen, 2008). In this study research, Petersen used systematic mapping with 16 articles related to QoS approach in MCC. This methodology has not been widely used by researchers because it is a relatively new approach and has not sufficiently matured and there are a limited number of previous studies that can be accessed by researchers.

1.1 The Problem

To identify potential gaps that suggest areas for future research on QoS in mobile-based cloud computing.

There has been no research to date that has aimed to locate QoS in mobile cloud computing.

1.2 Aim of the Study

- (1) Identification of the primary studies and their distribution sources.
- (2) Systematic mapping of the current QoS approaches in cloud computing based mobile environments.
- (3) To determine the issues, difficulties and future patterns of the QoS approaches in cloud computing based mobile environments.

1.2.1 Research Questions

RQ 1: What are the major topics in the QoS approaches for mobile based cloud computing?

RQ 2: What are the types of the research, the field and contribution to the field?

RQ 2: What are the types of research published in QoS for mobile based cloud computing studies?

1.3 Significance of the Study

This study will help mobile cloud computing providers to learn about the problems of cloud computing quality and what are the correct approaches that must be used to maintain the quality of services in mobile cloud computing. This study also will provide researchers with a comprehensive knowledge of previse studies, what topics have been highlighted, and what type contributions, and what gaps remain to be considered. Most previous studies focused on Qos in cloud computing in general, But this study is of great importance for two reasons, the first reason this study uses systematic mapping methodology, and the second reason it focuses on mobile cloud computing.

1.4 The Limitations of the Study

During this thesis, the researcher expected to face the following challenges and difficulties:

This thesis was characterized by research and only focussed on research on mobile cloud computing.

The study is limited to the mentioned databases only, between the years 2010-2017.

CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Mobile Cloud Computing

In many areas, cloud computing has become the most powerful innovation and invention that facilitates all aspects of life and endeavours and increases business agility. To reduce the tools and resources required to run applications on mobile phones, mobile cloud computing has been linked to mobile networks (Narain, 2009). One of the most significant benefits of mobile cloud computing is that it helps to reduce the capacity of mobile devices can also reduce battery power consumption and eliminate the issue of redundancy. In order to achieve a superior push innovation, the MCC is utilized, because it allows simple access to the CC specialized interface (Tao, 2009). There are several meanings of a CC, for example it is a rich mobile computing innovation that uses combined flexible assets and system advancements to provide unlimited usefulness, storage, and portability.

Cloud computing has many important components and departments that enable it to perform operations properly and to deliver high-quality services, as can be seen in Figure 2.1.

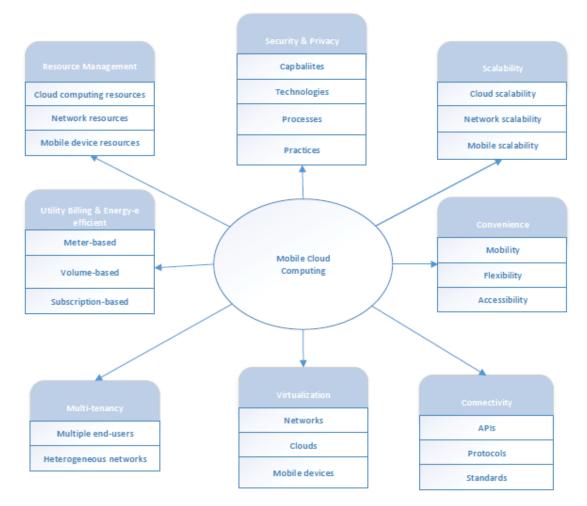


Figure 2.1: Cloud computing services (Sanaei , 2010)

Cloud computing is different from other services due to its distinct characteristics, which has provided it with significant importance in many different fields. These include:

• Scalability.

This property is divided into three different sections, which are the cloud, mobile devices and network

• Connectivity.

Reliable communication system is among the various system benefits

• Privacy and Security.

An important and necessary feature to ensure that access to clouds, mobile phones and information systems is secure.

• Virtualization

This characteristic is additionally separated into mobile, cloud, and system virtualization.

Management of resources

CC can support the administration of PCs, device, or networks assets.

• Convenience :

Ensuring simple access to cloud computing applications and services from any location and at any time.

- Utility Billing and Energy-efficient.
 This feature underpins several cloud administrations.
- Multi-tenancy

This characteristic enables multiple clients to utilize the system cloud

applications.

2.2 Architectures of Mobile Cloud Computing

To demonstrate the concept of mobile cloud computing, the general design of the technology is shown in Figure 2.2. In Figure 2.2, it can be observed that mobile devices are linked with the mobile networks by means of base stations (e.g., base handset station, access to point, or satellite) that establish and control the connections (air links) and functional interfaces between the networks and portable devices. Services are provided by cloud administrators to mobile users when they request, and the cellular user information is stored in a secure environment. Mobile users must have authorization (e.g., ID and location) on the mobile network and cloud in order to access the services (Rudenko, 1998).

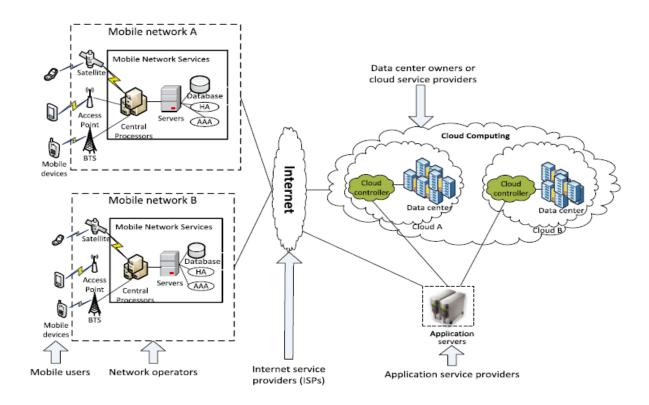


Figure 2.2: Mobile cloud computing architecture (Rudenko, 1998)

Primarily, a CC is an extensive scale network system executed through different servers in data centres. Cloud services operate based on the concept of different layers (Figure 2.3). In the upper layers of this system, Infrastructure as a Service (IaaS), Platform as a Service (PaaS) and Software as a Service (SaaS) are stacked.

- Data centre layer. Customers are managed through fast and different systems and servers. The data centre contains information that the cloud requires and this is where user data is saved. The data centre is protected from disasters and accidents (Berkin, 2012).
- IaaS. Infrastructure as a Service is situated at the top of the data centre layer. IaaS enables the arrangement of capacity, gear, servers, and networking parts. The client conventionally pays only when usage commences. Thus, this is cost effective for clients as they are only required to pay for the resources that they actually use. Foundation can be augmented or contracted logically as required. Examples of IaaS are Amazon Flexible Cloud Computing and Simple Storage Service (S3).
- PaaS. This offers an advanced composed condition for building, testing, and access to custom applications. Some examples of PaaS are Google Application Engine, Amazon and Microsoft Azure.
- Software as a Service (SaaS). Without direct contact and through an Internet connection, users pay to access services and information from the cloud. Salesforce is the first major company to provide this service paradigm. Microsoft Live also allows files to be accessed across multiple devices together and sharing of folders.

Figure 2.3 shows the order of the four layers of the cloud. Although these layers appear to be isolated, this does not prevent customers from using more than one layer on cloud computing, so that parts of the layers can be shared at the same time. For example, the

data centre can be used in the IaaS layer and this feature provides flexibility and effectiveness to cloud computing (Yang, 2010).

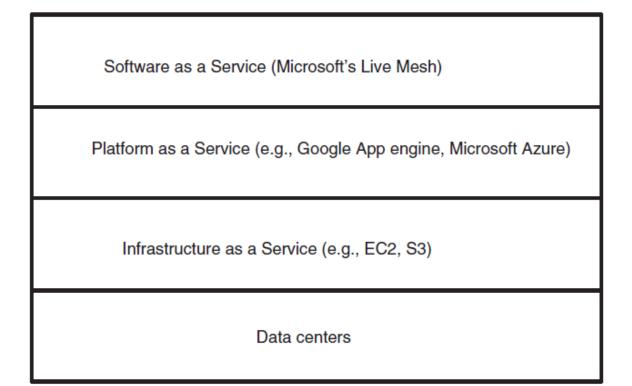


Figure 2.3: Service-oriented cloud computing architecture (Yang, 2010)

2.3 Quality of service in mobile cloud computing

When mobile users request any service from the cloud, they are required to comply with various operations such as verification of their user ID in order for access permission to be granted. QoS means achieving congruence and compatibility with customer requirements and can also be defined as measuring the extent to which the level of service reaching the customer is consistent with its expectations, and delivery of a good service means meeting the expectations set by the customer (Kakerow, 2003). Numerous problems could occur in the cloud when a mobile user submits a requests due to congestion because of the deficiencies in remote data transfer capacities, network disconnections, and signal reduction caused by the mobile client changing location and increasing the distance from an Internet access point. The quality of service provided in

the cloud can be reduced in the event of a delay in the customer connecting with cloud, and there are many approaches to resolving this problem. Two solutions that have been developed in this area are CloneCloud and Cloudlets, which have contributed to overcoming this problem (Hoang, 2011).

CloneCloud (Figure 2.4): This system brings the ability of Cloud Computing to the mobile device. CloneCloud uses nearby computers or data centres to augment the speed of operating mobile device applications. The CloneCloud concept places data and information and an application copy on the cloud and performs some operations on this copy, re-incorporating results that are sent to the mobile device. CloneCloud is constrained to a certain extent by its powerlessness to move native state and to export distinctive native resources remotely. Restrictions of CloneCloud are that it does not include copies of the cloud services when searching for the nearest computer or data centre from the user requesting the service from the cloud. (Hoang, 2011).

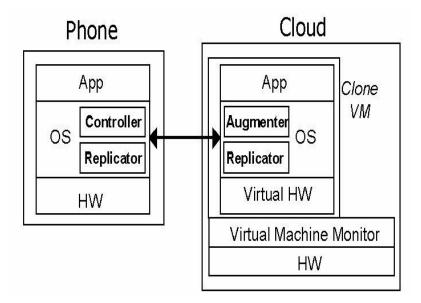


Figure 2.4: ColneCloud concept (Hoang, 2011)

Cloudlets (Figure 2.5): A cloudlet offers reliability, using a nearby computer group (cluster) connected together to the Internet. In the circumstance that mobile devices are unable to connect to the cloud (perhaps due to cost or delay), they can detect and utilize a cloudlet that is close by. In this way, mobile users can satisfy their need for consistent interactivity by one-hop, low-latency, high-bandwidth wireless access to the cloudlet. When a nearby cloudlet is unavailable, mobile devices will return to default mode, search for another cloudlet and send requests to the first available cloudlet that is found; in the worst case scenario, it will use its own resources (Hoang, 2011). Previous studies have designed architecture using VM developments to quickly instantiate modified service software on a cloudlet in the vicinity and subsequently used that software over a wireless LAN. However, further investigation and research should be conducted before this concept can be completely integrated into a real system.

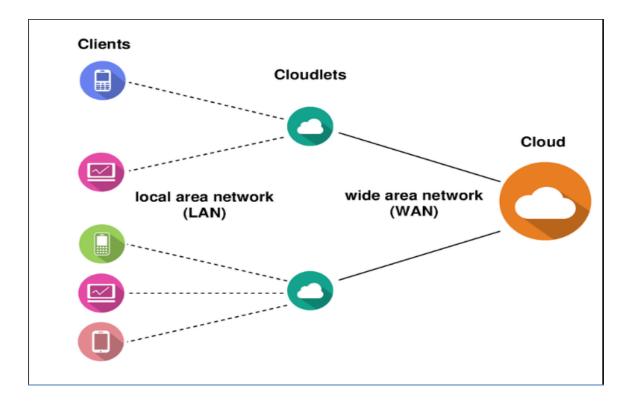


Figure 2.5: Cloudlet concept (Hoang, 2011).

2.4 Systematic Mapping is a Methodology

A systematic mapping display provides a structure of the kind of research reports and results that have been distributed by sorting them and presenting them in a visible summary. It commonly requires less exertion while generating more coarse-grained outline (Petersen, 2015).

2.4.1 The Systematic Mapping Process

Systematic mapping methodology involves five successive stages, as described in (Figure 2.6). Each stage has an outcome, with the final result of the operation being the systematic map.

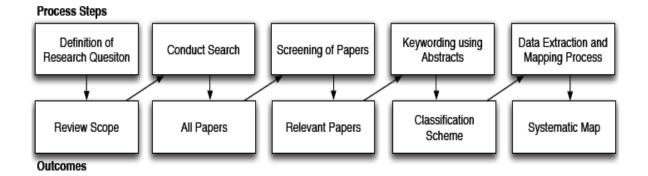


Figure 2.6: The Systematic Mapping Process (Petersen, 2008).

2.4.2 Definition of Research Questions (Research Scope)

The fundamental objective of systematic mapping studies is present a diagram of a research area, as well as to distinguish the amount and sort of research and the results that

are accessible. Normally, it is necessary to delineate the frequencies of publication after some time in order to observe patterns. An optional objective can be to distinguish the discussions by analysing the previously published research (Abdelzahir, 2015). These objectives are reflected in both research questions (RQs), which are comparative.

2.4.3 Conduct Search for Primary Studies (All Papers)

Researchers can use search strings on a database in order to identify the primary studies or, on the other hand, they can peruse manually through related conference or journal publications. An effective approach when formulating the search strings is to structure them in terms of populace, intercession, examination, and result (Kitchenham & Charters, 2007). Keywords should be the principal words in the study that are used for search purposes.

2.4.4 Screening of Papers for Inclusion and Exclusion (Relevant Papers)

Incorporation and avoidance criteria are utilized to eliminate articles that are not applicable to answering the research questions. At the same time, the reviewer distinguishes the context of the research. Once this is completed, the arrangement of keywords from various papers are combined to construct an understanding about the nature and commitment of the research (Clodoaldo, 2013).

2.4.5 Keywording of Abstracts (Classification Scheme)

The procedure of how the classification scheme followed a systematic process that was planned in advance. For the review, the researcher followed a methodical procedure, as described in (Figure 2.7). Keywording is an approach used to reduce the time required to construct the classification and guarantees that the plan considers the current reviews. Keywording is performed in two stages. In the first step, the reviewers read abstracts and search for keywords and ideas that mirror the objective of the paper. At the same time, the reviewers recognised the type of the research. This helps the reviewers to formulate an arrangement of classes that is illustrative of the basic populace. Whenever abstracts are of excessively low quality, rendering it impossible to enable significant keywords to be selected, reviewers can additionally consider the presentation or conclusion segments of the paper. When a final arrangement of keywords has been determined, they can be grouped and used to shape the classifications for the mapping (Carlo, 2013).

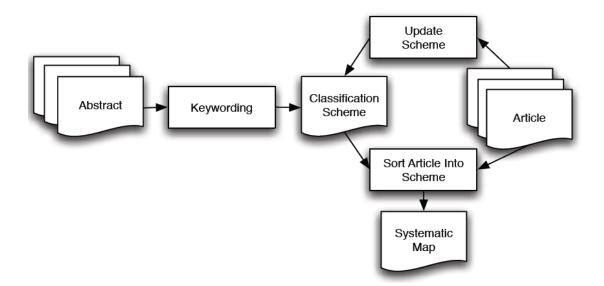


Figure 2.7: Building the Classification Scheme (Carlo, 2013).

2.4.6 Data Extraction and Mapping of Studies (Systematic Map)

When the arrangement classification scheme has been determined, the applicable articles are sorted into that scheme, i.e., the actual information extraction can be conducted. As demonstrated in (Figure 2.7), the classification scheme develops while the information extraction is implemented, such as the inclusion of new classifications or consolidating parts of existing classes. In this process, the researcher utilized a Microsoft Excel table to archive the information extraction operation, as displayed in Figure 2.8. Essentially, this involves two x-y scatterplots with bubbles in the class intersections. The size of a bubble is proportional to the number of articles that are in the pair of classes corresponding to the bubble coordinates.

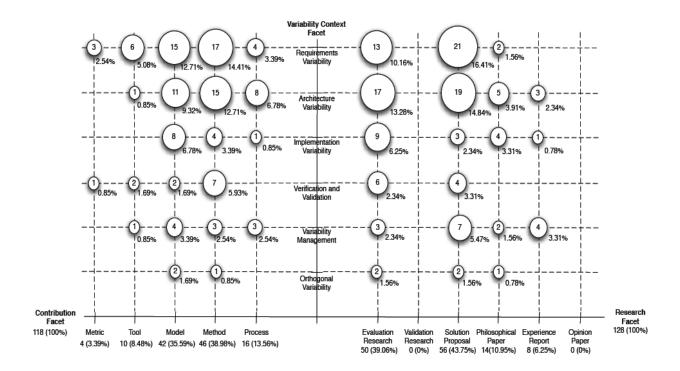


Figure 2.8: Visualization of a systematic map in the form of a bubble plot (Petersen, 2008)

2.5 Systematic Reviews and Systematic Mapping

Systematic reviews are a form of literature review in which various research studies or papers are gathered and fundamentally analysed, utilizing techniques that are chosen before. At least one of the research questions is detailed, and subsequently finding and dissecting ideas that identify with and answer those inquiries in an organized methodology. They are intended to give an entire, comprehensive outline of writing that is applicable to an investigative question. Methodical studies of randomized controlled experiments are used in evidence-based medicine, for example, and an review of existing research is generally quicker and less expensive than conducting another form of study. An understanding of previous studies and research, and how to implement the findings in practise, is recommended for experts in the field of medicine. A systematic mapping display gives a structure of the kind of research reports and comes about that have been distributed by sorting them and frequently gives a visible summary, the guide, of its outcomes. It regularly requires less exertion while giving a more coarse-grained diagram (Petersen, 2015). A comparison of systematic maps and reviews was presented already in (Kitchenham, 2007), focusing mainly on differences in breadth and depth. Researcher extends on that based the overview of systematic reviews and on experience from conducting systematic maps.

Difference in Goals: The systematic reviews focus on identifying best practices based on empirical evidence .This is not a goal for systematic maps, and cannot be since they do not study articles in enough detail. Instead, the main focus here is on classification, conducting thematic analysis and identifying publication fora. Both study types share the aim of identifying research gaps. The systematic reviews shows where particular evidence is missing or is insufficiently reported in existing studies. This is not possible in systematic map.

Difference in Process : Researcher see two main differences in the process. In maps, the articles are not evaluated regarding their quality as the main goal is not to establish the state of evidence. Secondly, data extraction methods differ. For the systematic mapping study, thematic analysis is an interesting analysis method, as it helps to see which

categories are well covered in terms of number of publications. In systematic reviews, the method of Meta analysis requires another level of data extraction in order to continue working with the quantitative data collected in primary studies (Kitchenham, 2007).

Difference in Breadth and Depth: In a systematic mapping study, more articles can be considered as they don't have to be evaluated in such detail. Therefore, a larger field can be structured. (Kitchenham , 2007) state the outcome and quality assessment of the articles as a major focus, which increases the depth and thus the effort required. This could require a more specific focus of the study and thus fewer studies being included. This difference was also recognized in (Kitchenham , 2007).

A systematic map can be conducted first, to get an overview of the topic area. Then the state of evidence in specific topics can be investigated using a systematic review.

CHAPTER 4

METHODOLOGY

4.1 Research methodology

Systematic mapping is the methodology utilized in this study, in which the researcher examined articles and research related with systematic mapping in order to understand the points and steps in this methodology to apply to the present study. The researcher found seven important articles that explained systematic mapping methodology.

The followings are some clarifications about the seven studies that have been adopted in this study:

"A systematic mapping study was performed to find the related literature ,and 67 articles were selected as primary studies that are classified in relation to the focus, research type an contribution type" (Abdelmaboud, 2015). " The Systematic mapping is conducted using the guidelines proposed by Petersen et al. authors posed three sets of research questions. That define selection and exclusion criteria. From the initial pool of 230 articles, published in years 1991–2011, theirs final pool consisted of 136 articles. Authors systematically develop a classification scheme and map the selected articles to this scheme" (Banerjee, 2013). "The good practices of systematic mapping study methodology were adopted in order to reach those objectives. Al though Cloud Computing is based on a business model with over 50 years of existence, evidences found in this study indicate that Cloud Computing still presents limitations that prevent the full use of the proposal on demand" (Carvalho, 2013). "We performed a systematic mapping study to categorize and to structure the research evidence that has been published in the area of mobile application testing techniques and challenges that they have reported. Seventy nine (79) empirical studies are mapped to a classification schema" (Zein, 2016). "We have conducted an informal review of a number of mapping studies in software engineering, describing their main characteristics and the forms of analysis used" (Budgen, 2008). "The databases like IEEE Xplore, ACM digital library, Inspec, Springer and Google scholar were used to search for the relevant studies for our systematic mapping study. We followed basic inclusion criteria along with detailed inclusion/exclusion criteria for selecting the appropriate article" (Konda, 2010). "We have defined a systematic mapping process and applied it to complete a systematic mapping study. Furthermore, we compare systematic maps with systematic reviews by systematically analysing existing systematic reviews" (Petersen, 2008).

4.2 Data sources and search strategy

The researcher used primary sources to search for previous research that was related with the chosen study subject and these six primary search sources are shown in (Table 4.1). Furthermore, the researcher determined the search period to be 2010 to 2017, and this specific period was chosen because studies on the quality of service in CC based on MCC began to be published around 2010.

Source	URL
IEEE Xplore	http://ieeexplore.ieee.org
ACM	http://portal.acm.org
Springer	http://www.springerlink.com
ScienceDirect	http://www.sciencedirect.com
Ethos	http://www.http://ethos.bl.uk
Google Scholar	http://scholar.google.com.

 Table 4.1: The sources of database

The keywords used in the operations search were (QoS, quality of services, cloud computing, mobile). The search was conducted using the following method: ("QoS" OR "quality of services") AND "cloud computing" AND "mobile" AND LIMIT-TO (years, "2010,2011,2012,2013,2014,2015,2016,2017").

4.3 Study Selection

With to the specific objective of choosing the most pertinent and critical articles, inclusion and exclusion criteria were created. Based on these criteria, the studies were chosen by examining the titles, concepts and full text of the articles to ensure that the results were connected to the research area. At the end of this study, criteria for inclusion and exclusion were identified and were relevant to this study.

Inclusion criteria:

- The study must report on the quality of service in MCC computing from programming and data framework perspectives.
- The study must address the computing QoS, foundation or stage given in cloud computing.
- The study must delineate the nature of cloud computing from the perspective of customers

Exclusion criteria:

• The focus of the article is on security and reliability

The primary studies selected using the aforementioned four steps are shown in Figure 4.1.

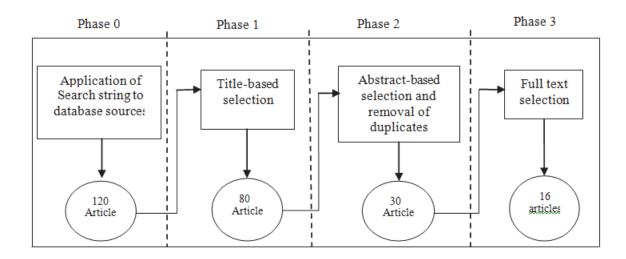


Figure 4.1: Selection process

Step 0: Application of search strings to database sources.

In total, 120 studies were retrieved from all sources (IEEE Xplore, ACM, Springer, Science Direct, Ethos, and Google Scholar) that were related with the researcher's study.

Step 1: Title-based Selection.

In this stage, the researcher read the articles of titles in order to determine the articles that were related with the objective or including or excluding the relevant articles. As a result of this process, a total of 80 articles were included and were moved to the subsequent stage.

Step 2: Abstract-based selection and removal of duplicates.

In this step, researcher analysed keywords and abstracts of previous studies to determine which studies were related with the present study, and ensured that there were no duplicates among these articles. As a result of this analysis, a total of 30 articles remained after this step, which was then transferred to the subsequent stage.

Step 3: Full text selection.

In this stage of the process, the researcher read of the entire text of the studies to determine which articles contained the principal keywords QoS, cloud computing and mobile. This process resulted in a total of 16 articles that contained these keywords. Table 4.2 lists the studies that remained after elimination during the third stage.

Study	Title	Source	Year
S18	(A Survey of Interactive Remote	ACM	2015
S77	Rendering Systems) (A Framework for	IEEE	2013
	Cooperative Resource		
	Management in Mobile Cloud		
	Computing)		
S78	(A Framework for QoS and	IEEE	2010
	Power Management in a		
	Service Cloud Environment		
	with Mobile Devices)		
S 79	(A Network and Device	IEEE	2013
	Aware QoS Approach for		
	Cloud-Based Mobile		
	Streaming)		
S 80	(a qos-aware system for	IEEE	2011
	mobile cloud computing)		

 Table 4.2: Studies remaining after third stage

_

Study	Title	Source	Year	
S81	(A survey of mobile cloud	IEEE	2013	
	computing: architecture,			
	applications, and approaches)			
S82	(On the Investigation of	IEEE	2013	
	Cloud-Based Mobile Media			
	Environments With Service-			
	Populating and QoS-Aware			
	Mechanisms)			
S83	(QoS-Aware Dynamic	IEEE	2014	
	Resource Management in			
	Heterogeneous Mobile Cloud			
	Computing Networks)			
S 84	(QoS-Guaranteed Bandwidth	IEEE	2014	
	Shifting and Redistribution in			
	Mobile Cloud)			
S112	(A novel cloud scheduling	Springer	2017	
	algorithm optimization for			
	energy consumption of data			
	centers based on user QoS			
	priori knowledge under the			
	background of WSN and			
	mobile communication)			

Study	Title	Source	Year	
S113	(Fault tolerance and QoS scheduling using CAN in mobile social cloud	Springer	2014	
	computing)			
S114	(Integrated Multi-service Handoff Mechanism with QoS-Support Strategy in Mobile Cloud Computing)	Springer	2016	
S115	(Storage and computing resource enabled joint virtual resource allocation with QoS guarantee in mobile networks)	Springer	2017	
S118	(Application Partitioning and Offloading in Mobile Cloud Computing)	Ethos	2017	
S119	(Exploring Traffic and QoS Management Mechanisms to Support Mobile Cloud Computing using Service Localization in Heterogeneous Environment)	Ethos	2015	
S120	(Volar Mobile Context-aware Adaptation for the Cloud)	Ethos	2014	

Table 4.2 (continued): Studies rem	naining after third stage
------------------------------------	---------------------------

_

_

4.4 Primary Studies

After following the aforementioned three steps, the researcher selected 16 studies as the primary studies as shown Table 4.3.

Publication type	2010	2011	2012	2013	2014	2015	2016	2017	Total	%
Conference proceedings		1							1	6
Journal article	1	1		4	2	1	1	2	12	75
thesis					2			1	3	19
Total	1	2		4	4	1	1	3	16	100

Table 4.3: Distribution of primary studies by publication type

Table 4.4 shows the publication type of the primary studies.

Source		Number	
Journal on Selected Areas in Communications		1	
International Symposium on Oriented System Engineering		1	
Transactions on Multimedia		2	
Cluster Comput		2	
Cloud Computing and Intelli	gence Systems	1	
ACM Computing Surveys		1	
Wireless communications an computing	d mobile	1	
Thesis	(Continued)	3	

Source	Number	
Wireless Personal Communications	1	
China Communications	1	
Transactions on Cloud Computing	1	
Science China Information Sciences	1	
Total	16	

Table 4.4 : Distribution of the type of the primary studies

4.5 Research focus area and distribution

The compilation of the primary studies in terms of focus area depended on the separation of the exploration themes into five noteworthy research areas. The researcher identified the following five research focus areas: "Software as a Service (SaaS), Infrastructure as a Service (IaaS), Platform as a Service (PaaS), Cloud Service Provider (CSP), and Cloud Service Consumer (CSC). Table 4.5 presents an outline of the distribution of the primary reviews by research area. Each of these research areas is defined as follows:

- a) The SaaS research area is concerned with the delivery of applications and systems in the form of services to users via the Internet
- b) The PaaS research area concentrates on the supply of resources for development platforms for services and applications via the Internet
- c) The IaaS research area is centred around the delivery of data centres and resources for the purposes of virtualisation to businesses or organisations through the process of leasing these resources to the relevant service providers.
- d) The CSP research is concerned with the service providers themselves who furnish cloud services to Internet users, including infrastructure services, software or platforms.

e) The CSC research area is focused on the companies or individual users who are the end-users of cloud computing services that are delivered by service providers

Focus area	2010	2011	2012	2013	2014	2015	2016	2017	Total	%
SaaS				1	1			1	3	19
IaaS		1				1			2	12
PaaS								1	1	6
CSP	1	1		2	1	1		1	7	44
CSC				1	1		1		3	19
Total									16	100

Table 4.5: Distribution of primary studies by research focus area.

Table 4.6 lists the focus areas of the studies

Study	Title	Focus area
S18	(A Survey of Interactive Remote	CSC
	Rendering Systems)	
S77	(A Framework for Cooperative	CSC
	Resource Management in Mobile	
	Cloud Computing)	
S78	(A Framework for QoS and Power	CSC
	Management in a Service Cloud	
	Environment with Mobile Devices)	
S79	(A Network and Device Aware QoS	CSP
	Approach for Cloud-Based Mobile	
	Streaming)	
S 80	(a qos-aware system for mobile	CSP
	cloud computing)	
S 81	(A survey of mobile cloud	CSP
	computing: architecture,	
	applications, and approaches)	
S82	(On the Investigation of Cloud-	CSP
	Based Mobile Media Environments	
	With Service-Populating and QoS-	
	Aware Mechanisms)	

Table 4.6: Studies with focus area

Study	Title	Focus area
S83	(QoS-Aware Dynamic Resource	CSP
	Management in Heterogeneous	
	Mobile Cloud Computing Networks)	
S84	(QoS-Guaranteed Bandwidth	CSP
	Shifting and Redistribution in	
	Mobile Cloud)	
S112	(A novel cloud scheduling algorithm	CSP
	optimization for energy consumption	
	of data centers based on user QoS	
	priori knowledge under the	
	background of WSN and mobile	
	communication)	
S113	(Fault tolerance and QoS scheduling	Iaas
	using CAN in mobile social	
	cloud computing)	
S114	(Integrated Multi-service Handoff	Iaas
	Mechanism with QoS-Support	
	Strategy in Mobile Cloud	
	Computing)	
S115	(Storage and computing resource	Paas
	enabled joint virtual resource	
	allocation with QoS guarantee in	
	mobile networks)	

Table 4.6 (continued): Primary Studies with focus area

Study	Title		
S118	(Application Partitioning and	C	
5110	Offloading in Mobile Cloud	Saas	
	Computing)		
S119	(Exploring Traffic and QoS	Saas	
	Management Mechanisms to		
	Support Mobile Cloud Computing		
	using Service Localization in		
	Heterogeneous Environment)		
S120	(Volare Mobile Context-aware	Saas	
	Adaptation for the Cloud)		

 Table 4.6 (continued): Primary Studies with focus area

4.6 Contribution Type and Distribution

With the objective of making meaningful progress on the QoS in CC, the research in this study was divided into five categories in terms of contribution (methods, tools, processes, metrics and models). Table 4.7 shows the distribution of these contributions to the studies, as follows:

- a) The contribution of tools is related to previous studies that have proposed software tools that reinforce certain facets of the QoS approaches in the field of cloud computing
- b) The method contribution type is related to studies that have proposed a model, algorithm or approach that delineate the QoS rule in cloud computing as well has how these rules can actually be applied
- c) The processes contribution type is related to studies that delineate the actions or exercises of QoS approaches as well as their related workflows
- d) The model contribution type is related to studies that focus on ideas, generate comparisons, investigate relations, determine obstacles or create classifications
- e) The measurement contribution type to studies that suggest metrics or measurement standards for QoS approaches in the field of cloud computing

Contribution	2010	2011	2012	2013	2014	2015	2016	2017	Total	%
type										
Tool									0	0
Method				1	1	1			3	19
Process		1							1	6
Model	1			2	2	1	1	1	8	50
Metric		1		1				2	4	25
Total									16	100

Table 4.7 : Distribution of primary reviews by contribution type

Table 4.8 shows the studies by contribution type

Study	Title	Contribution type	Explain
S18	(A Survey of Interactive	Metric	study realized a prototype t
	Remote Rendering Systems)		validate the feasibility
S77	(A Framework for	Model	Author develop an analytic
	Cooperative Resource		model for the improved
	Management in Mobile Cloud		multi-service handoff
	Computing)		Mechanism
S78	(A Framework for QoS and	Model	author proposed design the
	Power Management in a		network as the integration
	Service Cloud Environment		of the mobile access part
	with Mobile Devices)		and the cloud computing
			part, utilizing the inherent
			heterogeneity to meet the
			diverse quality of service
			(QoS) requirements of
			tenants.
S79	(A Network and Device	Model	propose a framework for
	Aware QoS Approach		resource allocation to the
	for Cloud-Based Mobile		mobile applications, and
	Streaming)		revenue management and
			cooperation formation
		• • •	among service providers
	(cont	inued)	

Table 4.8: Primary Studies by contribution type

Study	Title	Contributio type	on Explain
S80	(a qos-aware system for mobile cloud computing)	Model	propose a QPM framework that tries to minimize the power consumption on the mobile device while satisfying the QoS requirements
S81	(A survey of mobile cloud computing: architecture, applications, and approaches)	Metric	Study gives a survey of MCC, which helps general readers have an overview of the MCC including the definition, architecture, an applications
S82	(On the Investigation of Cloud-Based Mobile Media Environments With Service- Populating and QoS-Aware Mechanisms)	Method	Study proposed dynamic resource provisioning algorithm with respect to the execution time, good p and bandwidth usage and compare the performance of the proposed scheduler against the exiting approaches.

Study	Title	Contribut type	tion Explain
S83	(QoS-Aware Dynamic	Model	Study propose fault
	Resource Management in		tolerance and QoS (Quality
	Heterogeneous Mobile Cloud		of Services) scheduling
	Computing Networks)		using CAN (Content
			Addressable
			Network) in Mobile Social
			Cloud Computing (MSCC)
S84	(QoS-Guaranteed Bandwidth	Method	Study proposed scheme,
	Shifting and Redistribution in		named as AQUM, each
	Mobile Cloud)		gateway aggregates the
			demands of all the
			connecting mobile nodes
			and makes a bid for the
			required amount of
			bandwidth
S112	(A novel cloud scheduling	Metric	Study purposed the
	algorithm optimization for		effective capacity as the
	energy consumption of data		metric to include the
	centers based on user QoS		influence of service latency
	priori knowledge under the		
	background of WSN and		
	mobile communication)		

Table 4.8(continued): Primary Studies by contribution type

Study	Title	Contribu type	tion Explain
S113	(Fault tolerance and QoS scheduling using CAN in mobile social cloud computing)	Process	Study purposed a QoS management model based on Fuzzy Cognitive Map (FCM)
S114	(Integrated Multi-service Handoff Mechanism with QoS-Support Strategy in Mobile Cloud Computing)	Model	study proposed a new service delivery framework, centered on the convergence of Mobile Cloud Computing and 5G networks for the purpose of optimizing service delivery in a mobile environment
S115	(Storage and computing resource enabled joint virtual resource allocation with QoS guarantee in mobile networks)	Model	Author proposed model " end-to-end communication framework".
S118	(Application Partitioning and Offloading in Mobile Cloud Computing)	Metric	author has broken down observationally the execution of the proposed calculation utilizing the CloudSim test system Random resource use

Table 4.8(continued): Primary Studies by contribution type

Study	Title	Contribution type	n Explain
S119	(Exploring Traffic and QoS	Method	Using an analytical
	Management Mechanisms to		framework, this paper
	Support Mobile Cloud		argues that as the demand
	Computing using Service		for specific
	Localization in		services increases in a
	Heterogeneous Environment)		location, it might be more
			efficient to move those
			services closer to that
			location.
S120	(Volare Mobile Context-	Model	the study introduce an
	aware Adaptation for the		adaptive mobile middlewar
	Cloud)		solution that performs
			context-aware QoS
			parameter adaptation. When
			service discovery is
			initiated, the middleware
			calculates the optimal
			service requests QoS levels
			under the current context,
			policy requirements and
			goals and adapts the service
			request accordingly

Table 4.8(continued): Primary Studies by contribution type

4.7 Research Type and Distribution

The distribution of the primary studies by research type is shown in Table 4.9. These categories are incorporated into the researcher's methodical mapping study and the primary studies are organized into six research types, as follows (RQ 2):

- a) Solution proposal: research resolves a problem using an innovative solution or, provides a significant extension to a existent method
- b) Validation research: a system for researching something that has not previously been achieved or actualised in reality. It researches a suggested solution or process for mathematical investigation or presents experiments, simulations or innovative prototypes.
- c) Evaluation research: the research explores whether a proposed solution can be actualised in practise. It examines the outcomes utilizing actual case studies or contextual analysis
- d) Conceptual proposal: this research type aims to observe things that already exist from alternative perspectives in order to find solutions to problems using methods such as theoretical frameworks or classifications
- e) Experience article: This type of article will provide a report on the researcher's own experience of actual projects they have conducted. The report will delineate how the project was implemented and what was achieved
- f) Opinion article: This form of research article will describe the researcher's views on a particular method or tool as well as the development process.

Research	2010	2011	2012	2013	2014	2015	20	2017	Total	%
type							16			
Solution proposal				1	1		1	1	4	25
Validation research				1	1			1	3	19
Evaluation research		1				1		1	3	19
Conceptual proposal	1	1		2	1	1			6	37
Experience article									0	0
Opinion article									0	0
Total									16	100

Table 4.9 : Distribution of primary studies by research type

Table 4.10 shows the Primary studies by research type.

Study	Title	Research type
S18	(A Survey of Interactive Remote	Validation research
	Rendering Systems)	
S77	(A Framework for Cooperative	Solution proposal
	Resource Management in	
	Mobile Cloud Computing)	
S78	(A Framework for QoS and	Conceptual proposal
	Power Management in a Service	
	Cloud Environment with	
	Mobile Devices)	
S79	(A Network and Device Aware	Conceptual proposal
	QoS Approach for Cloud-Based	
	Mobile Streaming)	
S 80	(a qos-aware system for mobile	Conceptual proposal
	cloud computing)	
S82	(On the Investigation of Cloud-	Evaluation research
	Based Mobile Media	
	Environments With Service-	
	Populating and QoS-Aware	
	Mechanisms)	

 Table 4.10: Primary Studies by Research type

Study	Title	Research type
S 83	(QoS-Aware Dynamic Resource	Conceptual proposal
	Management in Heterogeneous	
	Mobile Cloud Computing	
	Networks)	
S84	(QoS-Guaranteed Bandwidth	Solution proposal
	Shifting and Redistribution in	
	Mobile Cloud)	
S112	(A novel cloud scheduling	Evaluation research
	algorithm optimization for	
	energy consumption of data	
	centers based on user QoS	
	priori knowledge under the	
	background of WSN and mobile	
	communication)	
S113	(Fault tolerance and QoS	Conceptual proposal
	scheduling using CAN in	
	mobile social cloud computing)	
S114	(Integrated Multi-service	Conceptual proposal
	Handoff Mechanism with	
	QoS-Support Strategy in	
	Mobile Cloud Computing)	

Study	Title	Research type
S115	(Storage and computing	Validation research
	resource enabled joint virtual	
	resource allocation with QoS	
	guarantee in mobile networks)	
S118	(Application Partitioning and	Solution proposal
	Offloading in Mobile Cloud	
	Computing)	
S119	(Exploring traffic and QoS	Solution proposal
	management mechanisms to	
	support mobile cloud	
	computing using service	
	localization in heterogeneous	
	environments)	
S120	(Volare	Validation research
	Mobile Context-aware	
	Adaptation	
	for the Cloud)	

CHAPTER 5

RESULT AND DISSCUSTION

5.1 Major Topics

Figure 5.1 represents the results of research focus area; in this study, the focus area was distributed between five classifications (SaaS, PaaS, IaaS, CSC, and CSP). The most studied research focus areas was CSP with seven articles (44%), and some examples are (Rakbong, 2013) and (Yengi, 2010). Three research studies focused on SaaS (19%), including (Zhenjun, 2017) and (Fragkisko, 2013).Three articles also focused on the CSC category (19%) with (Chin, 2013) and (Jianxin, 2016) as examples. Only two articles (12%) focused on the IaaS category, which were (Peng, 2011) and (Sardis, 2015). Finally, only one of the research studies (Janko, 2017) used PaaS as the research focus

area, which represented (6%)of the total.

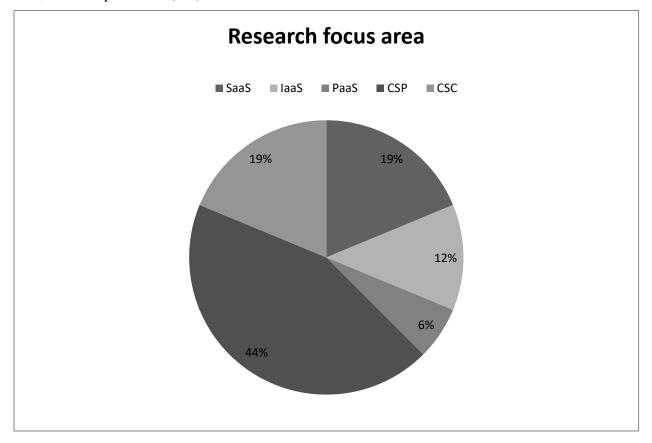


Figure 5.1: Distribution of primary studies by research focus area

5.2 Types of Research

In Figure 5.2, the researcher explains the distribution of the primary studies by contribution type, which are distributed between five categories (Tool, Method, Process, Model, Metric). It can be observed that models where found in the largest percentage of studies, with a total of eight (50%) including the study by (Jianxin, 2016). Furthermore, three research studies (19%) contributed methods including (Mohammad, 2015), and none of the articles (0%) contributed tools. Four of researches (25%) contributed metrics, for example (Hoang, 2011) and (Xiaodong, 2017). The lowest percentage (6%) of articles contributed process, with only one study.

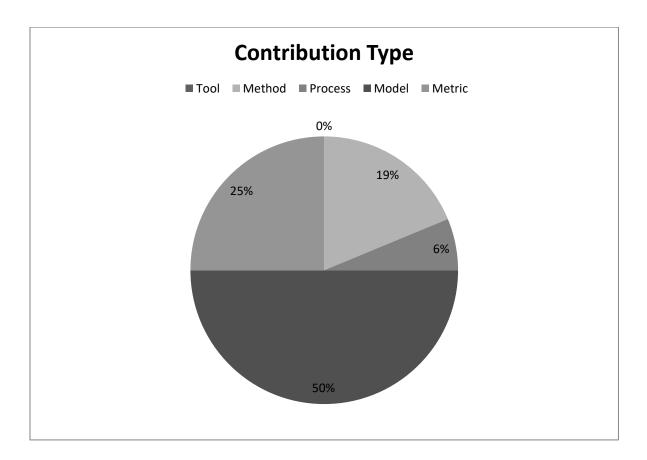


Figure 5.2: Distribution of primary studies by contribution Type

5.3 Types of Research published

The distribution of primary articles by research type is shown in Figure 5.3, in which the majority of the research studies were Conceptual proposals (37%), Evaluation research (19%), Validation research (19%), as well as Validation research (19%) and Solution proposals (25%). However, there were no Opinion articles or Experience articles (0%).

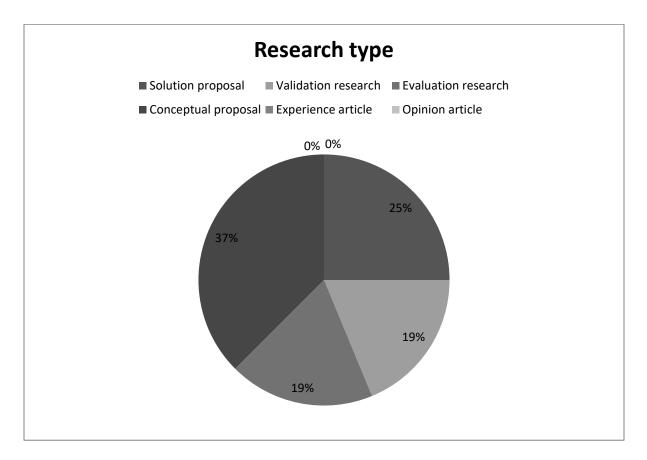


Figure 5.3: Distribution of primary studies by research type

Potential research gaps can be determined by the outline resulting from the mapping of the current studies. In order to quickly review the quality of service in cloud computing, the researcher used three aspects (the number of research studies relative to the bubble size) to plot a bubble chart. Moreover, a bubble plot is capable of displaying data more effective than recurrence analysis, which displays data through a table. In two dimensions, the bubble plot represents the result of the mapping conducted by the researcher (Figure 5.4). The concentration areas by contribution type (RQ1) are represented by the principal dimension, and the concentration areas by research type are represented by the second dimension.

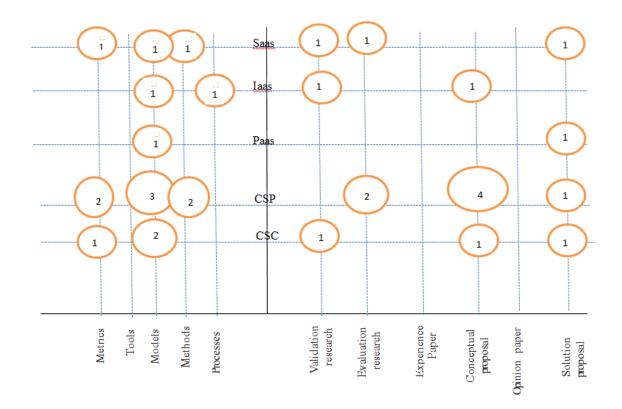


Figure 5.4: Bubble plot by contribution type and research type

5.4 Discussion

The outcomes of this Systematic Mapping underline that quality of service approaches in MCC are a fundamental issue and a vital target in MCC development, with growing attentiveness from various sectors, including industry and academia. Although mobile cloud computing is still not at as mature a stage as mapping, there is an increasing number of research studies in this area because of the developing interest in the benefits of cloud computing by organizations and customers. Furthermore, mobile cloud computing helps in decreasing the operating expenses for data intensive applications that can take a long time and consume vast amounts of energy when implemented on devices that offer limited resources. CC can efficiently reinforce different assignments for information warehousing, overseeing and synchronizing various records on the Internet (Dinh, 2011).

The devices that fill this gap and are at the forefront of mobile computing are advanced mobile phones and tablet PCs. With a design that is dissimilar to portable workstations and desktop PCs, smartphones are constructed with an extended battery life, small size and weight, a straightforward UI and can run essential computing tasks utilizing a minimal amount of resources, for example, memory, and so on. However, in general, they do not have the necessary capability to important to perform serious undertakings (Fragkiskos, 2013).

5.4.1 Challenges of SaaS area

The organization of numerous QoS approaches in cloud computing services can be extremely challenging as a result of the different cloud environments, which offer dynamic services via construct various workflows, as well as the existence of many service providers who incorporate diverse methods and procedures to oversee these services. Hence, satisfying QoS prerequisites requires simple methods that can enable the dynamic allocation of resources to each element or service. Furthermore, fulfilling and coordinating the QoS needs of diverse workloads necessitates cognisance and evaluation,

estimation methods and measurements, as well as the streamlining of resource allocation (Fragkiskos, 2013).

5.4.2 Challenges of CSP and PaaS areas

A minimal number of approaches have been found on PaaS in terms of the quality of service in MCC. In general, PaaS has confront many difficulties in the market and may not be the perfect solution. For instance, the comprehension of PaaS innovation is limited and the application must be extremely versatile with a specific objective to be facilitated and exclusive methodologies or languages can influence the development procedure. A certain number of methodologies have been suggested in relation to the subject of CSP, although there are still restricted SLA methodologies to coordinate the resources and service elasticity of QoS in MCC. Moreover, a standard method is required for the management of elasticity and complex SLA to allow the implementation of application flexibility (SookKyong, 2013).

5.4.3 Challenges of resources management and performance monitoring

Several was to deal with resource management and performance monitoring of QoS in MCC have been debated, yet designating and discharging resources to customers when they require it with superior quality and at minimal costs is still a challenging endeavor (Zhang, 2010). (Foster , 2008) identified the issues with guaranteeing that the QoS is capable of managing and observing resources in an appropriate manner Additional evaluation is required to coordinate resource and performance to prevent an negative impacts on the QoS (Javied, 2017).

5.4.4 Challenges of QoS application requirements

Many methodologies are associated to the application specifications, application performance and monitoring/adaptability of QoS. Nonetheless, only a limited number of these methodologies actually consider the QoS application prerequisites. The vast majority of these methodologies concentrate on demonstrating and portraying application workflows with QoS prerequisites. Likewise, there is a deficiency in the number of tools and measurements for the purpose of creating and deploying applications in regard to the QoS specifications (Papakos, 2014).

5.4.5 Application performance and monitoring management

The majority of the methodologies proposed in the literature are focused on application execution and observation. Nevertheless, there is no consensus over the solution to the difficulties related with administering and checking applications with QoS.

5.4.6 Future direction of Mobile cloud services regard to service providers and Consumer

In 2013, the International Data Corporation (IDC) cloud research reported that future direction in cloud service costs of IaaS, SaaS and PaaS services would include increment by 25% in 2014 (over US\$ 100 billion). In fact, the IDC expected that the number of cloud data center players (cloud infrastructure providers) would grow to meet the global demand. Subsequently, similar extension will be seen in infrastructure services with numerous workloads, leading to difficulties in differentiating service providers. Therefore, intense competition will arise between developers to improve cloud applications and solutions to appease the market's needs and growth. The IDC also expected that 80% of new cloud based applications will be deployed on PaaS platforms. Furthermore, the IDC predicted a shift from IaaS to PaaS because PaaS enables

consumers to minimize their service costs. Perhaps soon there will be a significant change in the marketing strategies of some of the companies that are famous for providing Mobile cloud services such as Amazon and Google will provide prices for the exclusive use of the platform services (PaaS). Certainly will increase the complexity of cloud services as the growth and technological development and thus increase the level of competition between the providers of Mobile cloud computing services. Therefore, QoS approaches in Mobile cloud computing services will perform an more and more important role in differentiating service providers as well as providing consumers with optimal service solutions such as the efficient use of resources and services and cost saving.

5.4.7 Summary of Findings

Overall, the classifications of this mapping study indicate that the majority of the QoS approaches in MCC are implemented in academic rather than industrial environments. Nonetheless, these methodologies provide inspiration to experts and intriguing challenges for analysts to conduct investigations based on implementation of the technology in actual cloud scenarios.. A limitation of this study is that researcher has not attempted to examine the reported methods/models, although many of the primary studies reported some form of empirical validation of their proposals. Such an evaluation is considered to be outside the scope of a mapping study. However, it is advisable that any researcher intending to perform evaluation studies should assess the results of any validation exercises before attempting to complete the field evaluations.

CHAPTER 6

CONCLUISON

6.1 Conclusion

The objective of conducting this SM research was to implement a review on the cutting edge of quality of service methodologies in MCC. To this end, 16 research studies published between 2010 and 2017 were determined as the primary articles. The majority of these studies were distributed in journals. As a consequence, this MS and writing study has determined many difficulties and gaps and asserts that there remain possibilities for further study into the quality of service approaches in MCC. In general, a mapping of the primary reviews uncovered the absence of proof, tools and metrics for CS regarding quality of service. This presents opportunities for future studies, particularly in connection to the subjects of SaaS and IaaS. The areas of PaaS, CSP and CSC require additional investigation. Specifically, there is a requirement for programming conditions, devices and measurements to create and send applications, and also application administration and verification with QoS. In this study, the researcher divided the studies into five basic classifications (RQ1) which were categorised as follows: CSP (44%), SaaS (19%), CSC (19%), IaaS (12%), and PaaS (6%). The MS revealed that there are numerous difficulties which should be classified. Additional assessment research is required to give practical investigation using robust and unbiased information on QoS methodologies in MCC and more intensive studies are necessary into the subjects of cloud computing service providers, platforms that provide a service as well as customers who use close services. In regard to RQ2, Conceptual proposals was the most frequently used research type by the primary studies (37%), while Solution proposals were used by (25%) Validation research was used by (19%), and Evaluation research (19%); however, there were no studies that took the form of Experience article or Opinion articles were (0%). Furthermore, the results demonstrated that the majority of the primary studies were published in journals (75%), Conference proceedings (6%), theses (19%), and none were published as Workshop proceedings (0%) (RQ3).

After this study, the gap is still open for further studies and research to try to better understand the quality of services approaches in mobile cloud computing. Few researchers focused on their research topics on (PaaS) and (IaaS), also a few researchers contributed by their studies in Opinion articles and Evaluation research. Also a few researchers contributed by their studies in Tools and in Process.

In summary the QoS approach assumes an imperative role in improving cloud computing to ensure customers can trust cloud services. Since late, there has been a growing enthusiasm for the QoS approach in mobile cloud computing between modern experts. The researcher urges the researchers to try to carry out applicable tests to emphasize the conflicting methodologies and to encourage the researcher to exchange experiences and learn to build a strong institution to enhance the QoS approach in the MCC. This study provides guidelines to help researchers plan for future work by discovering areas of research that need more attention.

6.2 Recommendation

- As a result of this study, the researcher recommends that further research and studies should be conducted on the approach of the quality of service in mobile cloud computing because there is insufficient research in this particularly area, even though mobile cloud computing has become a necessity for daily life.
- Another recommendation is researchers undertake further research efforts in relation to themes (PaaS) and (IaaS), because there are still deficiencies in these areas due to the lack of research on these topics.
- The researcher recommends researchers further research that contributes through Opinion articles and Evaluation research by research type.
- The researcher recommends researchers further research that contributes through Tools and Process by contribution type.

REFERENCES

- Abdelmaboud, A., Jawawi, D. N., Ghani, I., Elsafi, A., & Kitchenham, B. (2015). Quality of service approaches in cloud computing: A systematic mapping study. *Journal* of Systems and Software, 101, 159-179.
- Alizadeh, M., Abolfazli, S., Zamani, M., Baharun, S., & Sakurai, K. (2016). Authentication in mobile cloud computing: A survey. *Journal of Network and Computer Applications*, 61, 59-80.
- Akinola, A. T., Adigun, M. O., & Akingbesote, A. O. (2015). QoS-aware single service selection mechanism for ad-hoc mobile cloud computing. *In Computing, Communication and Security (ICCCS), 2015 International Conference on* (pp. 1-6). IEEE.
- Akter, M., Zohra, F. T., & Das, A. K. (2017). Q-MAC: QoS and mobility aware optimal resource allocation for dynamic application offloading in mobile cloud computing. In *Electrical, Computer and Communication Engineering (ECCE), International Conference on* (pp. 803-808). IEEE.
- Awano, Y., & Kuribayashi, S. I. (2013). A joint multiple resource allocation method for cloud computing environments with different QoS to users at multiple locations.
 In *Communications, Computers and Signal Processing (PACRIM), 2013 IEEE Pacific Rim Conference on* (pp. 1-5). IEEE.
- Banerjee, S., Adhikari, M., Kar, S., & Biswas, U. (2015). Development and Analysis of a New Cloudlet Allocation Strategy for QoS Improvement in Cloud. Arabian Journal for Science & Engineering (Springer Science & Business Media BV), 40(5).
- Berking, P., Haag, J., Archibald, T., & Birtwhistle, M. (2012). Mobile learning: Not just another delivery method. In Proceedings of the 2012 Interservice/Industry Training, Simulation, and Education Conference.

- Bheda, H. A., & Lakhani, J. (2012, December). QoS and performance optimization with VM provisioning approach in Cloud computing environment. In *Engineering* (*NUiCONE*), 2012 Nirma University International Conference on (pp. 1-5). IEEE.
- Benkhelifa, E., Welsh, T., Tawalbeh, L., Jararweh, Y., & Al-Ayyoub, M. (2016). Leveraging software-defined-networking for energy optimisation in mobilecloud-computing. *Procedia Computer Science*, 94, 479-484.
- Bousselmi, K., Brahmi, Z., & Gammoudi, M. M. (2016, March). QoS-aware scheduling of workflows in cloud computing environments. In Advanced Information Networking and Applications (AINA), 2016 IEEE 30th International Conference on (pp. 737-745). IEEE.
- Bruneo, D. (2014). A stochastic model to investigate data center performance and QoS in IaaS cloud computing systems. *IEEE Transactions on Parallel and Distributed Systems*, 25(3), 560-569.
- Calheiros, R. N., Ranjan, R., & Buyya, R. (2011, September). Virtual machine provisioning based on analytical performance and QoS in cloud computing environments. In *Parallel processing (ICPP), 2011 international conference on* (pp. 295-304). IEEE.
- Casalicchio, E., Cardellini, V., Interino, G., & Palmirani, M. (2016). Research challenges in legal-rule and QoS-aware cloud service brokerage. *Future Generation Computer Systems*.
- Choi, S., Chung, K., & Yu, H. (2014). Fault tolerance and QoS scheduling using CAN in mobile social cloud computing. *Cluster computing*, 17(3), 911-926.
- Chunlin, L., & LaYuan, L. (2015). Cost and energy aware service provisioning for mobile client in cloud computing environment. *Journal of Supercomputing*, 71(4).

- Chunlin, L., Xin, Y., Yang, Z., & Youlong, L. (2017). Multiple context based service scheduling for balancing cost and benefits of mobile users and cloud datacenter supplier in mobile cloud. *Computer Networks*, 122, 138-152.
- Cui, Y., & Lee, H. (2011, May). Method of Device Matching for QoS Based UPnP Framework in Cloud Computing Service. In Computers, Networks, Systems and Industrial Engineering (CNSI), 2011 First ACIS/JNU International Conference on (pp. 222-227). IEEE.
- Dai, Y., Lou, Y., & Lu, X. (2015, August). A task scheduling algorithm based on genetic algorithm and ant colony optimization algorithm with multi-QoS constraints in cloud computing. In *Intelligent Human-Machine Systems and Cybernetics* (*IHMSC*), 2015 7th International Conference on (Vol. 2, pp. 428-431). IEEE.
- De Carvalho, O. A., Bruschi, S. M., Santana, R. H., & Santana, M. J. (2014, September).
 Greenmacc: An architecture to green metascheduling with quality of service in private clouds. In *Computing Conference (CLEI), 2014 XL Latin American* (pp. 1-9). IEEE.
- Dehouche, N. (2015, April). A Bi-criteria Algorithm for Low-Carbon and QoS-Aware Routing in Cloud Computing Infrastructures. In Cloud Computing (ICCC), 2015 International Conference on (pp. 1-5). IEEE.
- Dinh, H. T., Lee, C., Niyato, D., & Wang, P. (2013). A survey of mobile cloud computing: architecture, applications, and approaches. *Wireless communications and mobile computing*, 13(18), 1587-1611.
- Das, A. K., Adhikary, T., Razzaque, M. A., & Hong, C. S. (2013, January). An intelligent approach for virtual machine and QoS provisioning in cloud computing. *In Information Networking (ICOIN), 2013 International Conference on* (pp. 462-467). IEEE.
- D. Narain,(2009). ABI Research: Mobile Cloud Computing, the Next Big Thing. Javied,
 A. (2017). Application partitioning and offloading in mobile cloud computing (Doctoral dissertation, University of Surrey).

- Dou, W., Xu, X., Meng, S., & Yu, S. (2015, October). An Energy-Aware QoS Enhanced Method for Service Computing across Clouds and Data Centers. In Advanced Cloud and Big Data, 2015 Third International Conference on (pp. 80-87). IEEE.
- Dong, W. E., Nan, W., & Xu, L. (2013, June). QoS-Oriented Monitoring Model of Cloud Computing Resources Availability. *Computational and Information Sciences* (ICCIS). In 2013 Fifth International Conference on (pp. 21-23).
- Eswaran, S., & Rajakannu, M. (2017). Multiservice Load Balancing with Hybrid Particle Swarm Optimization in Cloud-Based Multimedia Storage System with QoS Provision. *Mobile Networks and Applications*, 1-11.
- Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A survey. *Future generation computer systems*, 29(1), 84-106.
- Gani, A., Nayeem, G. M., Shiraz, M., Sookhak, M., Whaiduzzaman, M., & Khan, S. (2014). A review on interworking and mobility techniques for seamless connectivity in mobile cloud computing. *Journal of Network and Computer Applications*, 43, 84-102.
- Ghahramani, M. H., Zhou, M., & Hon, C. T. (2017). Toward cloud computing QoS architecture: Analysis of cloud systems and cloud services. *IEEE/CAA Journal of Automatica Sinica*, 4(1), 6-18.
- Hassan, M. M., Song, B., Hossain, M. S., & Alamri, A. (2014, March). QoS-aware resource provisioning for big data processing in cloud computing environment. In *Computational Science and Computational Intelligence (CSCI)*, 2014 *International Conference on* (Vol. 2, pp. 107-112). IEEE.
- Han, H., Deyui, Q., Zheng, W., & Bin, F. (2013, September). A Qos Guided task Scheduling Model in cloud computing environment. In *Emerging Intelligent Data* and Web Technologies (EIDWT), 2013 Fourth International Conference on (pp. 72-76). IEEE.

- Huang, X. L., Wu, J., & Hu, F. (2017). Knowledge-Enhanced Mobile Video Broadcasting Framework With Cloud Support. *IEEE Transactions on Circuits* and Systems for Video Technology, 27(1), 6-18.
- Huang, Q. Y., & Huang, T. L. (2010, October). An optimistic job scheduling strategy based on QoS for Cloud Computing. In *Intelligent Computing and Integrated Systems (ICISS), 2010 International Conference on* (pp. 673-675). IEEE.
- Hong, B., Tang, R., Zhai, Y., & Feng, Y. (2013, May). A resources allocation algorithm based on media task qos in cloud computing. In *Software Engineering and Service Science (ICSESS), 2013 4th IEEE International Conference on* (pp. 841-844). IEEE.
- Hongzhen, X., Limin, L., Dehua, X., & Yanqin, L. (2016, May). Evolution of service composition based on QoS under the cloud computing environment. In Online Analysis and Computing Science (ICOACS), IEEE International Conference of (pp. 66-69). IEEE.
- Huerta-Canepa, G., & Lee, D. (2010, June). A virtual cloud computing provider for mobile devices. In Proceedings of the 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks and Beyond (p. 6). ACM.
- Javied, A. (2017). *Application partitioning and offloading in mobile cloud computing* (Doctoral dissertation, University of Surrey).
- Jha, R. K., & Dalal, U. D. (2011, December). On demand cloud computing performance analysis with low cost for QoS application. In *Multimedia, Signal Processing and Communication Technologies (IMPACT), 2011 International Conference on* (pp. 268-271). IEEE.
- Jin, Z., Xu, G., Li, Y., & Liu, P. (2017). A novel cloud scheduling algorithm optimization for energy consumption of data centers based on user QoS priori knowledge under the background of WSN and mobile communication. *Cluster Computing*, 1-11.

- Jiang, D., Shi, L., Zhang, P., & Ge, X. (2016). QoS constraints-based energy-efficient model in cloud computing networks for multimedia clinical issues. *Multimedia Tools and Applications*, 75(22), 14307-14328.
- Jung, I. Y., Jo, I., Yu, Y., Eom, H., & Yeom, H. Y. (2011, December). Enhancing qos and energy efficiency of realtime network application on smartphone using cloud computing. In *Services Computing Conference (APSCC), 2011 IEEE Asia-Pacific* (pp. 203-207). IEEE.
- Jung, S. M., Kim, N. U., & Chung, T. M. (2013, June). Applying scheduling algorithms with QoS in the cloud computing. *In Information Science and Applications* (ICISA), 2013 International Conference on (pp. 1-2). IEEE.
- Kaewpuang, R., Niyato, D., Wang, P., & Hossain, E. (2013). A framework for cooperative resource management in mobile cloud computing. *IEEE Journal on Selected Areas in Communications*, 31(12), 2685-2700.
- Karim, R., Ding, C., & Miri, A. (2013, June). An end-to-end QoS mapping approach for cloud service selection. In Services (SERVICES), 203 IEEE Ninth World Congress on (pp. 341-348). IEEE.
- Khaledi, M., & Kasera, S. K. (2016). Profitable task allocation in mobile cloud computing. *arXiv preprint arXiv:1608.08521*.
- Kumar, S., Pandey, M. K., Nath, A., & Subbiah, K. (2015, December). Missing QoSvalues predictions using neural networks for cloud computing environments. In *Computing and Network Communications (CoCoNet), 2015 International Conference on* (pp. 414-419). IEEE.
- Lai, C. F., Wang, H., Chao, H. C., & Nan, G. (2013). A network and device aware QoS approach for cloud-based mobile streaming. *IEEE transactions on multimedia*, 15(4), 747-757.

- Lee, S. Y., Tang, D., Chen, T., & Chu, W. C. C. (2012, July). A QoS Assurance middleware model for enterprise cloud computing. In *Computer Software and Applications Conference Workshops (COMPSACW)*, 2012 IEEE 36th Annual (pp. 322-327). IEEE.
- Liao, B., Yu, J., Sun, H., & Nian, M. (2012, November). A QoS-aware dynamic data replica deletion strategy for distributed storage systems under cloud computing environments. In *Cloud and Green Computing (CGC), 2012 Second International Conference on* (pp. 219-225). IEEE.
- Liao, L., Leung, V. C., & Nasiopoulos, P. (2014, November). DFVisor: Scalable network virtualization for QoS management in cloud computing. In *Network and Service Management (CNSM), 2014 10th International Conference on* (pp. 328-331). IEEE.
- Lin, J. W., Chen, C. H., & Chang, J. M. (2013). QoS-aware data replication for dataintensive applications in cloud computing systems. *IEEE Transactions on Cloud Computing*, 1(1), 101-115.
- Liu, H., Xu, D., & Miao, H. K. (2011, December). Ant colony optimization based service flow scheduling with various QoS requirements in cloud computing. In *Software* and Network Engineering (SSNE), 2011 First ACIS International Symposium on (pp. 53-58). IEEE.
- Liu, S., Wei, Y., Tang, K., Qin, A. K., & Yao, X. (2015, May). QoS-aware long-term based service composition in cloud computing. In *Evolutionary Computation* (CEC), 2015 IEEE Congress on (pp. 3362-3369). IEEE.
- Luo, H., Egbert, A., & Stahlhut, T. (2012). QoS architecture for cloud-based media computing. In Software Engineering and Service Science (ICSESS), 2012 IEEE 3rd International Conference on (pp. 769-772). IEEE.
- Luo, M., Zhang, L. J., & Lei, F. (2010). An insuanrance model for guranteeing service assurance, integrity and qos in cloud computing. In *Web Services (ICWS)*, 2010 *IEEE International Conference on* (pp. 584-591). IEEE.

- Marotta, M. A., Faganello, L. R., Schimuneck, M. A. K., Granville, L. Z., Rochol, J., & Both, C. B. (2015). Managing mobile cloud computing considering objective and subjective perspectives. *Computer Networks*, 93, 531-542.
- Misra, S., Das, S., Khatua, M., & Obaidat, M. S. (2014). QoS-guaranteed bandwidth shifting and redistribution in mobile cloud environment. *IEEE Transactions on Cloud Computing*, 2(2), 181-193.
- Miluzzo, E., Cáceres, R., & Chen, Y. F. (2012, June). Vision: mClouds-computing on clouds of mobile devices. In *Proceedings of the third ACM workshop on Mobile cloud computing and services* (pp. 9-14). ACM.
- Mollah, M. B., Azad, M. A. K., & Vasilakos, A. (2017). Security and privacy challenges in mobile cloud computing: Survey and way ahead. *Journal of Network and Computer Applications*.
- Nadanam, P., & Rajmohan, R. (2012, July). QoS evaluation for web services in cloud computing. In *Computing Communication & Networking Technologies* (ICCCNT), 2012 Third International Conference on (pp. 1-8). IEEE.
- Nawrocki, P., & Reszelewski, W. (2017). Resource usage optimization in Mobile Cloud Computing. *Computer Communications*, 99, 1-12.
- Ning, W., Yang, Y., Kun, M., Yu, C., & Hao, D. (2013). A task scheduling algorithm based on qos and complexity-aware optimization in cloud computing.
- Noor, F., & Alhaisoni, M. (2013, December). Fingerprint verification through Cloud Computing. In Proceedings of International Conference on Advances in Mobile Computing & Multimedia (p. 301). ACM.
- Pedersen, J. M., Riaz, M. T., Junior, J. C., Dubalski, B., Ledzinski, D., & Patel, A. (2011, December). Assessing measurements of QoS for global cloud computing services.
 In Dependable, Autonomic and Secure Computing (DASC), 2011 IEEE Ninth International Conference on (pp. 682-689). IEEE.

- Papakos, P. (2014). Volare Mobile Context-aware Adaptation for the Cloud (Doctoral dissertation, UCL (University College London)).
- Patel, S., Bhujade, R. K., Khan, A. U., & Kathrotia, S. (2013, August). Deadline based virtual machine provisioning to improve qos in cloud computing. In Advances in Computing, Communications and Informatics (ICACCI), 2013 International Conference on (pp. 219-224). IEEE.
- Peixoto, M. L., Santana, M. J., Estrella, J. C., Tavares, T. C., Kuehne, B. T., & Santana, R. H. (2010, April). A metascheduler architecture to provide QoS on the cloud computing. In *Telecommunications (ICT)*, 2010 IEEE 17th International Conference on (pp. 650-657). IEEE.
- Pengbo, S. I., Qian, Z., Yu, F. R., & Yanhua, Z. (2014). QoS-aware dynamic resource management in heterogeneous mobile cloud computing networks. *China Communications*, 11(5), 144-159.
- Petersen, K., Vakkalanka, S., & Kuzniarz, L. (2015). Guidelines for conducting systematic mapping studies in software engineering: An update. *Information and Software Technology*, 64, 1-18.
- Qi, Q., Liao, J., Wang, J., Wang, J., Li, Q., & Cao, Y. (2016). Integrated Multi-service Handoff Mechanism with QoS-Support Strategy in Mobile Cloud Computing. *Wireless Personal Communications*, 87(2), 593-614.
- Rahimi, M. R., Ren, J., Liu, C. H., Vasilakos, A. V., & Venkatasubramanian, N. (2014). Mobile cloud computing: A survey, state of art and future directions. *Mobile Networks and Applications*, 19(2), 133-143
- Rudenko, A., Reiher, P., Popek, G. J., & Kuenning, G. H. (1998). Saving portable computer battery power through remote process execution. ACM SIGMOBILE Mobile Computing and Communications Review, 2(1), 19-26.
- Salama, M., Shawish, A., Zeid, A., & Kouta, M. (2012, July). Integrated QoS utilitybased model for cloud computing service provider selection. In *Computer*

Software and Applications Conference Workshops (COMPSACW), 2012 IEEE 36th Annual (pp. 45-50). IEEE.

- Sardis, F. (2015). Exploring traffic and QoS management mechanisms to support mobile cloud computing using service localisation in heterogeneous environments (Doctoral dissertation, Middlesex University).
- Sardis, F., Mapp, G., Loo, J., Aiash, M., & Vinel, A. (2013). On the investigation of cloud-based mobile media environments with service-populating and QoS-aware mechanisms. *IEEE transactions on multimedia*, 15(4), 769-777.
- Sanaei, Z., Abolfazli, S., Gani, A., & Shiraz, M. (2012, August). SAMI: Service-based arbitrated multi-tier infrastructure for Mobile Cloud Computing. In *Communications in China Workshops (ICCC), 2012 1st IEEE International Conference on* (pp. 14-19). IEEE.
- Sandhu, R., & Sood, S. K. (2015). Scheduling of big data applications on distributed cloud based on QoS parameters. *Cluster Computing*, *18*(2), 817-828
- Sheng, X., & Li, Q. (2016, August). Template-Based Genetic Algorithm for QoS-Aware Task Scheduling in Cloud Computing. In Advanced Cloud and Big Data (CBD), 2016 International Conference on (pp. 25-30). IEEE.
- Shiny, J. J., & Vignesh, S. (2017, January). A comprehensive review on QoS measures for resource allocation in cloud environment. In Advanced Computing (ICoAC), 2016 Eighth International Conference on (pp. 157-164). IEEE.
- Shi, S., & Hsu, C. H. (2015). A survey of interactive remote rendering systems. ACM Computing Surveys (CSUR), 47(4), 57.
- Singh, S., Chana, I., & Singh, M. (2017). The Journey of QoS-Aware Autonomic Cloud Computing. *IT Professional*, 19(2), 42-49.
- Sookhak, M., Yu, F. R., Khan, M. K., Xiang, Y., & Buyya, R. (2017). Attribute-based data access control in mobile cloud computing: Taxonomy and open issues. *Future Generation Computer Systems*, 72, 273-287.

- Stergiou, C., Psannis, K. E., Kim, B. G., & Gupta, B. (2016). Secure integration of IoT and cloud computing. *Future Generation Computer Systems*.
- Shorfuzzaman, M. (2014, December). Access-efficient QoS-aware data replication to maximize user satisfaction in cloud computing environments. In *Parallel and Distributed Computing, Applications and Technologies (PDCAT), 2014 15th International Conference on* (pp. 13-20). IEEE.
- Xiao, Y., Lin, C., Jiang, Y., Chu, X., & Shen, X. (2010, May). Reputation-based QoS provisioning in cloud computing via dirichlet multinomial model. In *Communications (ICC), 2010 IEEE International Conference on* (pp. 1-5). IEEE.
- Xiao-tao, X., Chen, Y., Guang-hua, D., & Hua-long, M. (2017, April). Information service quality evaluation study of cloud computing environment based on big data. In *Cloud Computing and Big Data Analysis (ICCCBDA), 2017 IEEE 2nd International Conference on* (pp. 236-240). IEEE.
- Wakrime, A. A., & Jabbour, S. (2015, December). Minimum Unsatisfiability based QoS
 Web Service Composition over the Cloud Computing. In *Intelligent Systems* Design and Applications (ISDA), 2015 15th International Conference on (pp. 540-545). IEEE.
- Wang, Y., Zheng, Z., & Lyu, M. R. (2015, October). Entropy-Based Service Selection with Uncertain QoS for Mobile Cloud Computing. In *Collaboration and Internet Computing (CIC), 2015 IEEE Conference on* (pp. 252-259). IEEE.
- Wei, X., Fan, J., Wang, T., & Wang, Q. (2016). Efficient application scheduling in mobile cloud computing based on max-min ant system. *Soft Computing*, 7(20), 2611-2625.
- Xu, X., Liu, J., Chen, W., Hou, Y., & Tao, X. (2017). Storage and computing resource enabled joint virtual resource allocation with QoS guarantee in mobile networks. *Science China Information Sciences*, 60(4), 040304.

- Yang, X., Huang, X., & Liu, J. K. (2016). Efficient handover authentication with user anonymity and untraceability for mobile cloud computing. *Future Generation Computer Systems*, 62, 190-195.
- Yen, T. C., & Su, C. S. (2014, April). An SDN-based cloud computing architecture and its mathematical model. *In Information Science, Electronics and Electrical Engineering (ISEEE), 2014 International Conference on* (Vol. 3, pp. 1728-1731). IEEE.
- Ye, Y., Jain, N., Xia, L., Joshi, S., Yen, I. L., Bastani, F. B., & Bowler, M. K. (2010, June). A framework for QoS and power management in a service cloud environment with mobile devices. In Service Oriented System Engineering (SOSE), 2010 Fifth *IEEE International Symposium* on (pp. 236-243). IEEE.
- Yildirim, A. S., & Girici, T. (2014, August). Cloud Technology and Performance Improvement with Intserv over Diffserv for Cloud Computing. *In Future Internet* of Things and Cloud (FiCloud), 2014 International Conference on (pp. 222-229). IEEE.
- Yuchao, Z., Bo, D., & Fuyang, P. (2012, December). An adaptive Qos-aware cloud. In Cloud Computing Technologies, Applications and Management (ICCCTAM), 2012 International Conference on (pp. 160-163). IEEE.
- Yu, R., Yang, X., Huang, J., Duan, Q., Ma, Y., & Tanaka, Y. (2012, September). QoSaware service selection in virtualization-based Cloud computing. In Network Operations and Management Symposium (APNOMS), 2012 14th Asia-Pacific (pp. 1-8). IEEE.
- Verbelen, T., Simoens, P., De Turck, F., & Dhoedt, B. (2012, June). Cloudlets: Bringing the cloud to the mobile user. In *Proceedings of the third ACM workshop on Mobile cloud computing and services* (pp. 29-36). ACM.
- Wang, Y., Chen, I. R., & Wang, D. C. (2015). A Survey of Mobile Cloud Computing Applications: Perspectives and Challenges. Wireless Personal Communications, 80(4), 1607-1623.

- Zarei, M. H., Shirsavar, M. A., & Yazdani, N. (2016, April). A QoS-aware task allocation model for mobile cloud computing. In Web Research (ICWR), 2016 Second International Conference on (pp. 43-47). IEEE.
- Zhang, P., & Yan, Z. (2011, September). A QoS-aware system for mobile cloud computing. In *Cloud Computing and Intelligence Systems (CCIS)*, 2011 IEEE International Conference on (pp. 518-522). IEEE.
- Zhang, W., Zhang, H., Chen, H., Zhang, Q., & Cheng, A. M. (2012, May). Improving the qos of web applications across multiple virtual machines in cloud computing environment. In *Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW)*, 2012 IEEE 26th International (pp. 2247-2253). IEEE.

APPENDICES

APPENDIX A

ALL STUDIES FOUND AFTER SEARCH

Appendix A provides a list of the studies found after the search.

Study	Title	Source	Year
S1	(Mobile Code Offloading: Should it	ACM	2013
	be a Local Decision or Global		
	Inference?)		
S2	(Analytical Models for QoS-driven	ACM	2016
	VNF Placement and Provisioning in		
	Wireless Carrier Cloud)		
S 3	(A Framework of Knowledge	ACM	2015
	Management as a Service over Cloud		
	Computing Platform)		
S 4	(Mobile Cloud Computing:	ACM	2014
	Advantage, Disadvantage and Open		
	Challenge)		
S5	(How the Cloud Computing	ACM	2011
	Paradigm Could Shape the Future of		
	Enterprise Information Processing)		

 Table A.1:All studies found after search

Title	Source	Year
(A QoS aware Routing Protocol in	ACM	2016
Wireless Sensor Networks with		
Mobile Base Stations)		
(Enabling Component-based Mobile	ACM	2014
Cloud Computing with the AIOLOS		
Middleware)		
(Authentication in the Clouds: A	ACM	2010
Framework and its Application to		
Mobile Users)		
(Mobile Cloud Applications:	ACM	2013
Opportunities, Challenges and		
Directions)		
(ACM Workshop on Mobile Cloud Media Computing)	ACM	2013
(Profitable Task Allocation in Mobile	ACM	2010
Cloud Computing)		
(Methods to Utilizing Cloud	ACM	2016
Computing in Developing Mobile		
Internet Device (MID) Applications)		
(Impact of routing protocols on the	ACM	2016
quality of transmission for video		
stramming		
	 (A QoS aware Routing Protocol in Wireless Sensor Networks with Mobile Base Stations) (Enabling Component-based Mobile Cloud Computing with the AIOLOS Middleware) (Authentication in the Clouds: A Framework and its Application to Mobile Users) (Mobile Cloud Applications: Opportunities, Challenges and Directions) (ACM Workshop on Mobile Cloud Media Computing) (Profitable Task Allocation in Mobile Cloud Computing) (Methods to Utilizing Cloud Computing in Developing Mobile Internet Device (MID) Applications) (Impact of routing protocols on the quality of transmission for video 	(A QoS aware Routing Protocol in Wireless Sensor Networks with Mobile Base Stations)ACM(Enabling Component-based Mobile Cloud Computing with the AIOLOS Middleware)ACM(Authentication in the Clouds: A Framework and its Application to Mobile Users)ACM(Mobile Cloud Applications: Opportunities, Challenges and Directions)ACM(ACM Workshop on Mobile Cloud Media Computing)ACM(Methods to Utilizing Cloud Cloud Computing)ACM(Methods to Utilizing Cloud Internet Device (MID) Applications)ACM(Impact of routing protocols on the quality of transmission for videoACM

Table A.1 (continued): All studies found after search

Study	Table A.1 (continued): All studies for Title	Source	Year
S14	(Vision: mClouds – Computing on Clouds of Mobile Devices)	ACM	2012
S15	(Fingerprint Verification through Cloud Computing)	ACM	2013
S16	(QRSF: QoS-aware resource scheduling framework in cloud computing)	ACM	2012
S17	(Cloudlets: Bringing the Cloud to the Mobile User)	ACM	2015
S18	(A Survey of Interactive Remote Rendering Systems)	ACM	2015
S19	(A task scheduling algorithm based on qos and complexity-aware optimization in cloud computing)	IEEE	2013
S20	(QoS-aware Service Selection in Virtualization-based Cloud Computing)	IEEE	2012

Table A.1 (continued): All studies found after
--

Study	Title	Source	Year
S21	(Green MACC: An Architecture	IEEE	2014
	to Green Met scheduling with		
	Quality of Service in Private		
	Clouds)		
S22	(Information Service Quality	IEEE	2017
	Evaluation Study of Cloud		
	Computing Environment		
	Based on Big Data)		
S23	(An Adaptive Qos-Aware Cloud)	IEEE	2012
S24	(A Comprehensive review on QoS	IEEE	2017
	measures for		
	Resource Allocation in Cloud		
	Environment)		
S25	(QoS Architecture for Cloud-	IEEE	2012
	based Media		
	Computing)		
S26	(A Resources Allocation	IEEE	2013
	Algorithm based on		
	Media Task QoS in Cloud		
	Computing)		
S27	(On Demand Cloud Computing	IEEE	2011
	Performance Analysis With Low		
	Cost For QoS Application)		

Table A.1 (continued)	: All studies found after search
-----------------------	----------------------------------

	Table A.1 (continued): All studies found after search			
- Study	Title	Source	Year	
S28	(QoS-Aware Data Replication for Data Intensive Applications in	IEEE	2013	
	Cloud Computing Systems)			
S29	(QoS-Aware Single Service Selection Mechanism for Ad-Hoc Mobile Cloud Computing)	IEEE	2015	
S30	(Q-MAC: QoS and Mobility Aware Optimal Resource Allocation for Dynamic Application Offloading in Mobile	IEEE	2017	
	Cloud Computing)			
S31	(A joint multiple resource allocation method for cloud computing environments with different QoS to users at multiple locations)	IEEE	2014	
S32	(QoS and Performance Optimization with VM Provisioning Approach in Cloud Computing Environment)	IEEE	2012	

Table A.1 (conti	nued): All	studies fo	und after search
------------------	------------	------------	------------------

Study	Title	Source	Year
S 33	(OoS awara ashaduling of	IEEE	2016
222	(QoS-aware scheduling of	IEEE	2010
	Workflows in Cloud Computing		
	environments)		
S 34	(A Stochastic Model to	IEEE	2014
	Investigate Data Center		
	Performance and QoS in		
	IaaS Cloud Computing Systems)		
S35	(Virtual Machine Provisioning	IEEE	2011
	Based on Analytical		
	Performance and QoS in Cloud		
	Computing		
	Environments)		
S 36	(Method of Device Matching for	IEEE	2011
	QoS based UPnP Framework		
	in Cloud Computing Service)		
S 37	(A Task Scheduling Algorithm	IEEE	2015
	Based on Genetic Algorithm and		
	Ant Colony Optimization		
	Algorithm with Multi-QoS		
	Constraints in Cloud Computing)		
S 38	(An Intelligent Approach for	IEEE	2013
	Virtual Machine and QoS		
	Provisioning in Cloud		
	Computing)		
	(continued)		

Table A.1 (continued): All studies found after search Study Title			
Study	Title	Source	Year
S 39	(A Bi-criteria Algorithm for Low-	IEEE	2015
	Carbon and QoS-Aware Routing		
	in Cloud Computing		
	Infrastructures)		
S40	(QoS-oriented Monitoring Model	IEEE	2013
	of Cloud Computing Resources		
	Availability)		
S41	(An Energy-Aware QoS	IEEE	2015
	Enhanced Method for Service		
	Computing Across Clouds		
	and Data Centers)		
S42	(Toward Cloud Computing QoS	IEEE	2017
	Architecture: Analysis of Cloud		
	Systems and Cloud Services)		
S43	(A Qos Guided task Scheduling	IEEE	2013
	Model in cloud computing		
	environment)		
S44	(QoS-aware Resource	IEEE	2014
	Provisioning for Big Data		
	Processing in Cloud Computing		
	Environment)		

Table A.1 (continued): All studies found after search			
Study	Title	Source	Year
S45	(Evolution of service composition	IEEE	2016
	based on QoS under the cloud		
	computing environment)		
S46	(An Optimistic Job Scheduling	IEEE	2010
	Strategy based on QoS for Cloud		
	Computing)		
S47	(Knowledge-Enhanced Mobile	IEEE	2017
	Video Broadcasting		
	(KMV-Cast) Framework with		
	Cloud Support)		
S48	(Enhancing QoS and Energy	IEEE	2011
	Efficiency of Real time Network		
	Application on Smartphone using		
	Cloud Computing)		
S49	(Applying Scheduling Algorithms	IEEE	2013
	with QoS in the Cloud		
	Computing)		
S50	(An End-To-End QoS Mapping	IEEE	2013
	Approach for Cloud Service		
	Selection)		
S51	(Profitable Task Allocation in	IEEE	2016
	Mobile Cloud Computing		
	(continued)		

Study	Title	Source	Year
S52	(Missing QoS-Values Predictions	IEEE	2015
	using Neural Networks for Cloud		
	Computing Environments)		
S53	(A QoS Assurance Middleware	IEEE	2012
	Model for Enterprise Cloud		
	Computing)		
S54	(A QoS-aware Dynamic Data	IEEE	2012
	Replica Deletion Strategy for		
	Distributed Storage Systems		
	under Cloud Computing		
	Environments)		
S55	(DFVisor: Scalable Network	IEEE	2014
	Virtualization for QoS		
	Management in Cloud		
	Computing)		
S56	(Ant Colony Optimization Based	IEEE	201
	Service flow Scheduling with		
	Various QoS Requirements in		
	Cloud Computing)		
S57	(QoS-aware I/O schedule for	IEEE	201
	virtual machines in cloud		
	computing environment)		

Title (QoS-aware long-term based	Source	Year
(QoS-aware long-term based	IDDD	
service composition in cloud	IEEE	2010
computing		
(An Insurance Model for	IEEE	2012
Guaranteeing Service Assurance,		
Integrity and QoS in Cloud		
Computing)		
(QoS Evaluation for Web	IEEE	2013
Services		
In Cloud computing)		
(Deadline Based Virtual Machine	IEEE	2011
Provisioning		
to Improve QoS in Cloud		
Computing)		
A meta scheduler architecture to	IEEE	2010
provide QoS on the cloud		
computing)		
(Assessing Measurements of QoS	IEEE	2012
for global Cloud Computing		
Services)		
	computing (An Insurance Model for Guaranteeing Service Assurance, Integrity and QoS in Cloud Computing) (QoS Evaluation for Web Services In Cloud computing) (Deadline Based Virtual Machine Provisioning to Improve QoS in Cloud Computing) A meta scheduler architecture to provide QoS on the cloud computing) (Assessing Measurements of QoS for global Cloud Computing	computing(An Insurance Model for Guaranteeing Service Assurance, Integrity and QoS in Cloud Computing)IEEE(QoS Evaluation for Web Services In Cloud computing)IEEE(Deadline Based Virtual Machine Provisioning to Improve QoS in Cloud Computing)IEEEA meta scheduler architecture to provide QoS on the cloud computing)IEEE(Assessing Measurements of QoS for global Cloud ComputingIEEE

Table A.1	(continued)): All	studies	found	after	search
-----------	-------------	--------	---------	-------	-------	--------

Study	Title	Source	Year	
S64	(A Metascheduler Architecture to	IEEE	2016	
	provide QoS on the Cloud			
	Computing)			
S65	(Integrated QoS Utility-Based	IEEE	2014	
	Model for Cloud Computing			
	Service Provider Selection)			
S66	(Template-based Genetic	IEEE	2014	
	Algorithm for QoS-aware			
	Task Scheduling in Cloud			
	Computing)			
S67	(Access-efficient QoS-aware data	IEEE	2017	
	replication to maximize user			
	satisfaction in cloud computing			
	environments)			
S68	(QoS-Aware Dynamic Resource	IEEE	2015	
	Management in Heterogeneous			
	Mobile Cloud Computing			
	Networks)			
S69	(The Journey of QoS-Aware	IEEE	2017	
	Autonomic Cloud Computing)			

	Table A.1 (continued): All studies found after search					
Study	Title	Source	Year			
S70	(A QoS Evaluation Model for Test-Bed in the Cloud Computing Environment)	IEEE	2012			
S 71	(Minimum Unsatisfiability Based QoS Web Service Composition over the Cloud Computing)	IEEE	2015			
S72	(Entropy-based Service Selection with Uncertain QoS for Mobile Cloud Computing)	IEEE	2015			
S73	(Reputation-based QoS Provisioning in Cloud Computing via Dirichlet Multinomial Model)	IEEE	2010			
S74	(An SDN-based cloud computing architecture and its mathematical model)	IEEE	2011			
S75	(Cloud Technology and Performance improvement with intserv over differs for Cloud Computing)	IEEE	2014			
S76	(A QoS-aware Task Allocation Model for Mobile Cloud Computing)	IEEE	2016			
	(continued)					

Study	Title	Source	Year
S77	(A Framework for Cooperative	IEEE	2013
	Resource Management in Mobile		
	Cloud Computing)		
S78	(A Framework for QoS and	IEEE	2010
	Power Management in a Service		
	Cloud Environment with Mobile		
	Devices)		
S79	(A Network and Device Aware	IEEE	2013
	QoS Approach for Cloud-Based		
	Mobile Streaming)		
S 80	(a qos-aware system for mobile	IEEE	201
	cloud computing)		
S 81	(A survey of mobile cloud	IEEE	2013
	computing: architecture,		
	applications, and approaches)		
S82	(On the Investigation of Cloud-	IEEE	2013
	Based Mobile Media		
	Environments With Service-		
	Populating and QoS-Aware		
	Mechanisms)		

Table A.1 (continued): All studies found after search

Table A.1 (continued): All studies found after search				
Study	Title	Source	Year	
S83	(QoS-Aware Dynamic Resource	IEEE	2014	
	Management in Heterogeneous			
	Mobile Cloud Computing			
	Networks)			
S84	(QoS-Guaranteed Bandwidth	IEEE	2014	
	Shifting and Redistribution in			
	Mobile Cloud Environment)			
S85	(Authentication in mobile cloud	ScienceDirect	2016	
	computing: A survey)			
S86	(Leveraging Software-Defined-	ScienceDirect	2016	
	Networking for Energy			
	Optimizations in Mobile-Cloud-			
	Computing)			
S 87	(Research challenges in legal-rule	ScienceDirect	2016	
	and QoS-aware cloud service			
	brokerage)			
S88	(Mobile cloud computing: A	ScienceDirect	2013	
	survey)			
S89	(A review on inter working and	ScienceDirect	2014	
	mobility techniques for seamless			
	connectivity in mobile cloud			
	computing)			
	(continued)			

Table A.1 (continued): All studies found after
--

Study	Title	Source	Year
S90	(Managing Mobile Cloud Computing Considering Objective and Subjective Perspectives)	ScienceDirect	2015
S91	(Security and Privacy Challenges in Mobile Cloud Computing: Survey and Way Ahead)	ScienceDirect	2017
S92	(Resource usage optimization in Mobile Cloud Computing)	ScienceDirect	2017
S93	(Resource usage optimization in Mobile Cloud Computing)	ScienceDirect	2017
S94	(Attribute-based data access control in mobile cloud computing: Taxonomy and open issues)	ScienceDirect	2017
S95	(Secure integration of IoT and Cloud Computing)	ScienceDirect	2016
S96	(Efficient handover authentication with user anonymity and traceability for Mobile Cloud Computing)	ScienceDirect	2016

Table A.1 (continued): All studies found after search

	Table A.1 (continued): All studies found after search					
Study	Title	Source	Year			
S97	(Energy-efficient service-oriented architecture for mobile cloud handover)	Springer	2017			
S98	(Development and Analysis of a New Cloudlet Allocation Strategy for QoS Improvement in Cloud)	Springer	2015			
S99	(Cost and energy aware service provisioning for mobile client in cloud computing environment)	Springer	2015			
S100	(Multiple Context Based Service Scheduling for Balancing Cost and Benefits of Mobile Users and Cloud Datacenter Supplier in Mobile Cloud)	Springer	2017			
S101	(An SLA-based Broker for Cloud Infrastructures)	Springer	2013			
S102	(QoS Assessment of Mobile Crowdsensing Services)	Springer	2015			

 Table A.1 (continued): All studies found after search

Study	Title	Source	Year
S103	(Multiservice Load Balancing	Springer	2017
5105	with Hybrid Particle Swarm	Springer	2017
	Optimization in Cloud-Based		
	Multimedia Storage System		
	with QoS Provision)		
S104	(Optimal collaboration of thin-	Springer	2014
	thick clients and resource		
	allocation in cloud computing)		
S105	(QoS constraints-based energy-	Springer	2016
	efficient model in cloud		
	computing networks for		
	multimedia clinical issues)		
S106	(Efficient Computation	Springer	2016
	Offloading Decision in Mobile		
	Cloud Computing over 5G		
	Network)		
S107	(Scheduling of big data	Springer	2015
	applications on distributed cloud		
	based on QoS parameters)		
S108	(A study on virtual machine	Springer	2016
	deployment for application		
	outsourcing in mobile cloud		
	computing)		
	(continued)		

Table A.1 (continued):	All	studies	found	after search
----------------------	----	-----	---------	-------	--------------

	Table A.1 (continued): All studies found after search					
Study	Title	Source	Year			
S109	(Cloud resource provisioning: survey, status and future research directions)	Springer	2016			
S110	(Resource provisioning and scheduling in clouds: QoS perspective)	Springer	2015			
S111	(A Survey of Mobile Cloud Computing Applications: Perspectives and Challenges)	Springer	2016			
S112	(A novel cloud scheduling algorithm optimization for energy consumption of data centers based on user QoS priori knowledge under the background of WSN and mobile communication)	Springer	2017			
S113	(Fault tolerance and QoS scheduling using CAN in mobile social cloud computing)	Springer	2014			
S114	(Integrated Multi-service Handoff Mechanism with QoS-Support Strategy in Mobile Cloud Computing)	Springer	2016			

	Table A.1 (continued): All studies	found after search	
Study	Title	Source	Year
S115	(Storage and computing resource	Springer	2017
	enabled joint virtual resource		
	allocation with QoS guarantee		
	in mobile networks)		
S116	(A survey of mobile cloud	Google	2013
	computing: architecture,	Scholar	
	applications, and approaches)		
S117	(Mobile cloud computing: A	GoogleScholar	2013
	survey)		
S118	(Application Partitioning and	Ethos	2017
	Offloading in Mobile Cloud		
	Computing)		
S119	(Exploring Traffic and QoS	Ethos	2015
	Management Mechanisms to		
	Support Mobile Cloud Computing		
	using Service Localizations in		
	Heterogeneous Environment)		
S120	(Volare Mobile Context-aware	Ethos	2014
	Adaptation for the Cloud)		

APPENDIX B

STUDIES REMAINING AFTER THE FIRSET STAGE

Study	Title	Source	Year
S2	(Analytical Models for QoS-driven	ACM	2016
	VNF Placement and		
	Provisioning in Wireless Carrier		
	Cloud)		
S 3	(A Framework of Knowledge	ACM	2015
	Management as a Service over Cloud		
	Computing Platform)		
S5	(How the Cloud Computing	ACM	2011
	Paradigm Could Shape the		
	Future of Enterprise Information		
	Processing)		
S6	(A QoS aware Routing Protocol in	ACM	2016
50	Wireless Sensor	110111	2010
	Networks with Mobile Base Stations)		

Study	Title	Source	Year
S8	(Authentication in the Clouds: A	ACM	2010
	Framework and its Application to		
	Mobile Users)		
S9	(Mobile Cloud Applications:	ACM	2013
	Opportunities, Challenges and		
	Directions)		
S10	(ACM Workshop on Mobile Cloud	ACM	2013
	Media Computing)		
S 11	(Profitable Task Allocation in Mobile	ACM	2010
	Cloud Computing)		
S15	(Fingerprint Verification through	ACM	2013
	Cloud Computing)		
S17	(Cloudlets: Bringing the Cloud to the	ACM	2015
	Mobile User)		
S18	(A Survey of Interactive Remote	ACM	2015
~ * 0	Rendering Systems)		

Table B.1 ((continued)	: Studies	remaining	after	the fi	rst stage

Study	Cable B.1 (continued): Studies remaining after the studies remaining after studies remaining after the studies remaining after the studies	Source	Year
S19	(A task scheduling algorithm based	IEEE	2013
	on qos and complexity-aware		
	optimization in cloud computing)		
S20	(QoS-aware Service Selection in	IEEE	2012
	Virtualization-based Cloud		
	Computing)		
S21	(Green MACC: An Architecture	IEEE	2014
	to Green Meta scheduling with		
	Quality of Service in Private		
	Clouds)		
S22	(Information Service Quality	IEEE	2017
	Evaluation Study of Cloud		
	Computing Environment Based		
	on Big Data)		
S24	(A Comprehensive review on	IEEE	2017
	QoS measures for		
	Resource Allocation in Cloud		
	Environment)		
S28	(QoS-Aware Data Replication for	IEEE	2013
	Data Intensive Applications in		
	Cloud Computing Systems)		

Table B.1 (continued): Studies remaining after the	e first stage
--	---------------

Study	Title	Source	Year
S29	(QoS-Aware Single Service	IEEE	2015
	Selection Mechanism for Ad-Hoc		
	Mobile Cloud Computing)		
S 30	(Q-MAC: QoS and Mobility	IEEE	2017
	Aware Optimal Resource		
	Allocation for Dynamic		
	Application Offloading in Mobile		
	Cloud Computing)		
S34	(A Stochastic Model to	IEEE	2014
	Investigate Data Center		
	Performance and QoS in		
	IaaS Cloud Computing Systems)		
S38	(An Intelligent Approach for	IEEE	2013
	Virtual Machine and QoS		
	Provisioning in Cloud		
	Computing)		
S40	(QoS-oriented Monitoring Model	IEEE	2013
	of Cloud Computing Resources		
	Availability)		
S41	(An Energy-Aware QoS	IEEE	2015
	Enhanced Method for Service		
	Computing Across Clouds and		
	Data Centers)		

Table B.1 (continued): Studies remaining after the first st

Study	Title	Source	Year
S44	(QoS-aware Resource	IEEE	2014
	Provisioning for Big Data		
	Processing in Cloud Computing		
	Environments)		
S45	(Evolution of service composition	IEEE	2016
	based on QoS under the cloud		
	computing environment)		
S46	((An Optimistic Job Scheduling	IEEE	2010
	Strategy based on QoS for Cloud		
	Computing)		
852	Missing O.S. Walana Day listing	IFFF	2015
S52	(Missing QoS-Values Predictions	IEEE	2015
	using Neural Networks for Cloud		
	Computing Environments)		
S53	(A QoS Assurance Middleware	IEEE	2012
	Model for Enterprise Cloud		
	Computing)		
S54	(A QoS-aware Dynamic Data	IEEE	2012
	Replica Deletion Strategy for		2012
	Distributed Storage Systems		
	under Cloud Computing		
	Environments)		

 Table B.1 (continued): Studies remaining after the first stage

Study	Title	Source	Year
S55	(DFVisor: Scalable Network	IEEE	2014
	Virtualization for QoS		
	Management in Cloud		
	Computing)		
S56	(Ant Colony Optimization Based	IEEE	2015
	Service flow Scheduling with		
	Various QoS Requirements in		
	Cloud Computing)		
S62	(A meta scheduler architecture to	IEEE	2010
	provide QoS on the cloud		
	computing)		
9.62			2012
S63	(Assessing Measurements of QoS	IEEE	2012
	for global Cloud Computing		
	Services)		
S64	(A Meta scheduler Architecture to	IEEE	2016
	provide QoS on the Cloud		
	Computing)		
S65	(Integrated QoS Utility-Based	IEEE	2014
505	Model for Cloud Computing	ILLL	2014
	Service Provider Selection)		
S 71	(Minimum Unsatisfiability Based	IEEE	2014
	QoS Web Service Composition		
	over the Cloud Computing)		

Study	Title	Source	Year
S72	(Entropy-based Service Selection	IEEE	2014
	with Uncertain QoS for Mobile		
	Cloud Computing)		
S 74	(An SDN-based cloud computing	IEEE	2011
	architecture and its mathematical		
	model)		
S75	(Cloud Technology and	IEEE	2012
	Performance improvement with		
	intserv over differs for Cloud		
	Computing)		
S76	(A QoS-aware Task Allocation	IEEE	2013
	Model for Mobile Cloud		
	Computing)		
S77	(A Framework for Cooperative	IEEE	2013
	Resource Management in Mobile		
	Cloud Computing)		
S 78	(A Framework for QoS and	IEEE	210
	Power Management in a Service		
	Cloud Environment with Mobile		
	Devices)		
S 79	(A Network and Device Aware	IEEE	2013
	QoS Approach for Cloud-Based		
	Mobile Streaming)		

Table B.1 (continued): Studies remaining after the first state
--

Study	Title	Source	Year
S80	(a qos-aware system for mobile cloud computing)	IEEE	2011
S81	(A survey of mobile cloud computing: architecture, applications, and approaches)	IEEE	2013
S82	(On the Investigation of Cloud- Based Mobile Media Environments With Service- Populating and QoS-Aware Mechanisms)	IEEE	2013
S83	(QoS-Aware Dynamic Resource Management in Heterogeneous Mobile Cloud Computing Networks)	IEEE	2014
S84	(QoS-Guaranteed Bandwidth Shifting and Redistribution in Mobile Cloud)	IEEE	2014
S85	(Authentication in mobile cloud computing: A survey)	ScienceDirect	2016
S87	(Research challenges in legal-rule and QoS-aware cloud service brokerage)	ScienceDirect	2016

Table B.1	(continued):	Studies	remaining	after the	first stage
	(

Study	able B.1 (continued): Studies remaining a Title	Source	Year
S 90	(Managing Mobile Cloud	ScienceDirect	2015
	Computing Considering		
	Objective and Subjective		
	Perspectives)		
S 91	(Security and Privacy Challenges	ScienceDirect	2017
	in Mobile Cloud Computing:		
	Survey and Way Ahead)		
S92	(Resource usage optimization in	ScienceDirect	2017
	Mobile Cloud Computing)		
S95	(Secure integration of IoT and	ScienceDirect	2016
	Cloud Computing)		
S96	(Efficient handover authentication	ScienceDirect	2016
	with user anonymity and Un		
	traceability for Mobile Cloud		
	Computing)		
S97	(Energy-efficient service-oriented	Springer	2017
	architecture for mobile cloud	~8	
	handover)		
S98	(Development and Analysis of a	Springer	2015
	New Cloudlet Allocation Strategy		
	for QoS Improvement in Cloud)		

 Table B.1 (continued): Studies remaining after the first stage

Study	Title	Source	Year
S99	(Cost and energy aware service	Springer	2013
	provisioning for mobile client in		
	cloud computing environment)		
S100	(Multiple Context Based Service	Springer	2017
	Scheduling for Balancing Cost		
	and Benefits of Mobile Users and		
	Cloud Datacenter Supplier in		
	Mobile Cloud)		
S101	(An SLA-based Broker for Cloud	Springer	2013
	Infrastructures)		
S107	(Scheduling of big data	Springer	201:
	applications on distributed cloud		
	based on QoS parameters)		
S108	(A study on virtual machine	Springer	2010
	deployment for application		
	outsourcing in mobile cloud		
	computing)		
S109	(Cloud resource provisioning:	Springer	2010
	survey, status and future research		
	directions)		
S110	(Resource provisioning and	Springer	201
	scheduling in clouds: QoS		
	perspective)		

Table B.1 (continued): Studies remaining after the first stage	;
TAVIC D.1	continued). Studies femanning after the first stage	

Study	Title	Source	Year
S 111	(A Survey of Mobile Cloud	Springer	2016
	Computing Applications:		
	Perspectives and Challenges)		
S112	(A novel cloud scheduling	Springer	2017
	algorithm optimization for energy		
	consumption of data centers based		
	on user QoS priori knowledge		
	under the background of WSN		
	and mobile)		
S113	(Fault tolerance and QoS	Springer	2014
	scheduling using CAN in mobile		
	social cloud computing)		
S114	(Integrated Multi-service Handoff	Springer	2016
	Mechanism with		
	QoS-Support Strategy in Mobile		
	Cloud Computing)		
S115	(Storage and computing resource	Springer	2017
	enabled joint virtual resource		
	allocation with QoS guarantee in		
	mobile networks)		
S116	(A survey of mobile cloud	Google Scholar	2013
	computing: architecture,		
	applications, and approaches)		

Table B.1	(continued):	Studies	remaining	after the	first stage
I UNIC DII	(commucu).	Druares	romanning	unter the	inst stage

Study	Title	Source	Year
			1 041
S117	(Mobile cloud computing: A	Google Scholar	2013
	survey)		
0110		E.I.	2017
S118	(Application Partitioning and	Ethos	2017
	Offloading in Mobile Cloud		
	Computing)		
S 119	(Exploring Traffic and QoS	Ethos	2015
5117	Management Mechanisms to		2010
	Support Mobile Cloud Computing		
	using Service Localizations in		
	-		
	Heterogeneous Environment)		
S120	(Volar Mobile Context-aware	Ethos	2014
	Adaptation for the Cloud)		

Table D.1 (continued). Studies femaning after the first stage	Table B.1	(continued): Studies remaining after the first stage
---	-----------	--

APPENDIX C

STUDIES REMAINING AFTER THE SECOND STAGE

Study	Title	Source	Year
S18	(A Survey of Interactive Remote	ACM	2015
	Rendering Systems)		
S38	(An Intelligent Approach for	IEEE	2013
	Virtual Machine and QoS		
	Provisioning in Cloud		
	Computing)		
S46	(An Optimistic Job Scheduling	IEEE	2010
	Strategy based on QoS for		
	Cloud Computing)		
S52	(Missing QoS-Values	IEEE	2015
	Predictions using Neural		
	Networks for Cloud		
	Computing Environments)		

Table C.1 (continued): Studies remaining after the second stage					
Study	Title	Source	Year		
S64	(A Meta scheduler	IEEE	2016		
	Architecture to provide QoS				
	on the Cloud Computing)				
S76	(A QoS-aware Task	IEEE	2013		
	Allocation Model for Mobile				
	Cloud Computing)				
S77	(A Framework for	IEEE	2013		
	Cooperative Resource				
	Management in Mobile Cloud				
	Computing)				
S78	(A Framework for QoS and	IEEE	2010		
	Power Management in a				
	Service Cloud Environment				
	with Mobile Devices)				
S79	(A Network and Device	IEEE	2013		
	Aware QoS Approach for				
	Cloud-Based Mobile				
	Streaming)				
S 80	(a qos-aware system for	IEEE	2011		
	mobile cloud computing)				
S81	(A survey of mobile cloud	IEEE	2013		
	computing: architecture,				
	applications, and approaches)				

Table C.1 (continued): Studies remaining after the second stage

	C.1 (continued): Studies remaining a		-
Study	Title	Source	Year
S82	(On the Investigation of	IEEE	2013
	Cloud-Based Mobile Media		
	Environments With Service-		
	Populating and QoS-Aware		
	Mechanisms)		
S83	(QoS-Aware Dynamic	IEEE	2014
	Resource Management in		
	Heterogeneous Mobile Cloud		
	Computing Networks)		
S 84	(QoS-Guaranteed Bandwidth	IEEE	2014
504		ILLE	2014
	Shifting and Redistribution in		
	Mobile Cloud)		
S85	(Authentication in mobile cloud	ScienceDirect	2016
	computing: A survey)		
S96	(Efficient handover	ScienceDirect	2016
570	authentication with user	ScienceDirect	2010
	anonymity and Un traceability		
	for Mobile Cloud Computing		
S97	(Energy-efficient service-	Springer	2017
	oriented architecture for		
	mobile cloud handover)		

Table C.1 (continu	ed):	Studies	remaining	after	the	second stage
--------------------	------	---------	-----------	-------	-----	--------------

•

_

Study	Title	Source	Year
S 98	(Development and Analysis of	Springer	2015
	a New Cloudlet Allocation		
	Strategy for QoS Improvement		
	in Cloud)		
S99	(Cost and energy aware	Springer	2015
	service provisioning for		
	mobile client in cloud		
	computing environment)		
S108	(A study on virtual machine	Springer	2016
	deployment for application		
	outsourcing in mobile cloud		
	computing)		
S109	(Cloud resource provisioning:	Springer	2016
	survey, status and future		
	research directions)		
S112	(A novel cloud scheduling	Springer	2017
	algorithm optimization for		
	energy consumption of data		
	centers based on user QoS		
	priori knowledge under the		
	background of WSN and		
	mobile communication)		

Table C.1 (continued): Studies remaining after the second stage

Study	Title	Source	Year
S113	((Fault tolerance and QoS	Springer	2014
5115		Springer	2014
	scheduling using CAN in mobile social cloud		
	computing)		
S114	(Integrated Multi-service	Springer	2016
	Handoff Mechanism with		
	QoS-Support Strategy in		
	Mobile Cloud Computing)		
S115	(Storage and computing	Springer	2017
	resource enabled joint virtual		
	resource allocation with QoS		
	guarantee in mobile networks)		
S116	(A survey of mobile cloud	Google	2013
	computing: architecture,	Scholar	
	applications, and approaches)		
S117	(Mobile cloud computing: A	Google	2013
	survey)	Scholar	
S118	(Application Partitioning and	Ethos	2017
	Offloading in Mobile Cloud		
	Computing)		

Study	Title	Source	Year	
S119	(Exploring Traffic and QoS	Ethos	2015	
	Management Mechanisms to			
	Support Mobile Cloud			
	Computing using Service			
	Localizations in			
	Heterogeneous Environment)			
S120	(Volar Mobile Context-aware	Ethos	2014	
	Adaptation for the Cloud)			

Table C.1 ((continued)	: Studies	remaining	after the	second stage