
ABSTRACT 

 

This thesis consists a compartmental epidemiologic SIR model which is one of the useful 

method to understand the dynamics of the disease.  

 

Firstly, two single models with an without vaccine are constructed. For each model two 

equilibrium point which are disease free and endemic are found. Basic reproduction numbers 

are found and using Lyapunov function stability analysis carried out. Numerical simulations 

give the importance of the vaccine. These two models show that vaccine has an important role 

for the disease.  

 

In particular, we construct epidemic model with two strains and two vaccine. In this model we 

assume each strain has vaccine. Our aim in this model to see the effect of vaccine for strain one 

to the strain two and the vaccine to strain two to the strain one. The model consists of three 

equilibrium points; disease free equilibrium, endemic with respect to strain 1, endemic with 

respect to strain 2. Also, stability analysis carried out and two basic reproduction ratio 𝑅1and 

𝑅2 are found. It is shown that there is no coexistence. However from the numerical simulations 

coexistences of both strain are shown. Also it is shown that the vaccine for strain one has for 

strain two and vaccine for strain two has negative effect for strain one.  

 

In addition, a delayed epidemic model consisting of two strains with vaccine for each strain is 

formulated. The model consists of three equilibrium points; disease free equilibrium, endemic 

with respect to strain 1, endemic with respect to strain 2. Global stability analysis of the 

equilibrium points was carried out through the use of Lyapunov functions. Two basic 

reproduction ratios 𝑅1and 𝑅2 are found, and we have shown that, if both are less than one, the 

disease dies out, if one of the ratios is less than one, epidemic occurs with respect to the other. 

It was also shown that, any strain with highest basic reproduction ratio will automatically 

outperform the other strain, thereby eliminating it. Condition for the existence of endemic 

equilibria was also given. Numerical simulations were carried out to support the analytic results 

and to show the effect of vaccine for strain 1 against strain 2 and the vaccine for strain 2 against 

strain 1. It is found that the population for infectives to strain 2 increases when vaccine for strain 

1 is absent and vice versa. And one of aim in this model to see the effect of the latent period. 

The latent periods 𝜏1 and  𝜏2 have positive effect on the infection of strain 1 and strain 2. For 



sufficiently large latent periods 𝜏1 and 𝜏2, 𝑅1 and 𝑅2 becomes less than 1 respectively for the 

model which is given in last model.  
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ÖZET 

Bu tez, hastalığın dinamiğini anlamak için en çok kullanılan gruplandırlmış SIR epdiemik 

modeller içermektedir.  

 

İlk olarak, aşının etkisini iyi anlayabilmek için  aşılı ve aşısız olmak üzere iki model geliştirildi. 

Her bir model için salgının olmadığı ve salgının olduğu iki denge noktası ve her iki model için 

temel bulaşma oranları 𝑅0,1ve 𝑅0,2 bulundu. Lyapunov fonksiyonu kullanılarak Kararlılık 

analizleri gösterildi. 𝑅0,1 < 1 iken salgın olmadığı ve salgın olmayan denge noktası için 

asimptotik kararlılık gözlemlendi. 𝑅0,1 > 1 iken toplumda salgının olduğu ve salgın olan denge 

noktası için asimtotik kararlılık verildi. Analitik metodları desteklemek için sayısal 

similasyonlar kullanıldı. Bu iki modelde aşının salgını azaltmak için önemli bir etken olduğu 

gözlemlenmiştir. 

 

Özel olarak, temel iki tür salgın bölüme sahip SVIR model geliştirilmiştir. Her bir türün 

aşılarının var olduğu kabul edilmiştir. Bu modeldeki temel amaç, 1. tür salgın için olan aşının 

2. Türe etkisi ve tam tersi olarak 2. tür için olan aşının 1. türe olan etkilerini gözlemlemektir. 

Model için üç tane denge noktası bulundu ve Lyapunov fonksiyonu ile kararlılık analizleri 

verildi. 𝑅1ve 𝑅2 olmak üzere iki tane temel üreme oranı bulundu. Bunlara ek olarak sayısal 

similasyon kullanılarak analitik sonuçlar desteklendi. Burada aşının yanlış kullanımının ters 

etkide bulunabileceği gözlemlendi. 

 

Bir önceki modele ek olarak gecikme periodu eklenerek model genişletildi. Salgının olmadığı, 

1. tür için salgının var olduğu 2. tür için olmadığı ve 2. tür için salgının var olduğu 1. tür için 

olmadığı denge noktaları olmak üzere üç tane denge noktası bulundu. 𝑅1ve 𝑅2 olmak üzere iki 

tane temel üreme oranı bulundu. Her bir denge noktası için kararlılık analizleri Lyapunov 

fonksiyonu kullanılarak verildi. Her iki temel üreme oranı birden küçükken iki türün de yok 

olduğu ve salgının olmadığı denge noktasının asimptotik kararlı olduğu gösterildi. En büyük 

temel üreme oranı birden büyük olan türde hastalığın çıktığı ve bu denge noktasının asimptotik 

kararlı olduğu gösterildi. Analitik sonuçları desteklemek için sayısal simülasyonlar verildi. 

Sayısal sonuçlara göre toplumda salgın varsa bireylere farklı salgın tipi için aşı verilir, bu aşı 

toplumda bulunan salgını artıracaktır. Modele gecikme süresi eklendiğinde salgın sayısının 



düşmesi dolayısı ile bireylere bulaşma süresini uzatılmasının salgını azaltmak için bir etken 

olması da bu tezde verilebilecek ikinci bir sonuçtur. 

 

 

Anahtar Kelimeler: Kararlılık Analizi; iki tip; delay; aşı; temel bulaşma oranı; Lyapunov 

fonksiyon 
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ABSTRACT 

 

This thesis consists a compartmental epidemiologic SIR model which is one of the useful 

method to understand the dynamics of the disease.  

 

Firstly, two single models with an without vaccine are constructed. For each model two 

equilibrium point which are disease free and endemic are found. Basic reproduction numbers 

are found and using Lyapunov function stability analysis carried out. Numerical simulations 

give the importance of the vaccine. These two models show that vaccine has an important role 

for the disease.  

 

In particular, we construct epidemic model with two strains and two vaccine. In this model we 

assume each strain has vaccine. Our aim in this model to see the effect of vaccine for strain 

one to the strain two and the vaccine to strain two to the strain one. The model consists of 

three equilibrium points; disease free equilibrium, endemic with respect to strain 1, endemic 

with respect to strain 2. Also, stability analysis carried out and two basic reproduction ratio 

𝑅1and 𝑅2 are found. It is shown that there is no coexistence. However from the numerical 

simulations coexistences of both strain are shown. Also it is shown that the vaccine for strain 

one has for strain two and vaccine for strain two has negative effect for strain one.  

 

In addition, a delayed epidemic model consisting of two strains with vaccine for each strain is 

formulated. The model consists of three equilibrium points; disease free equilibrium, endemic 

with respect to strain 1, endemic with respect to strain 2. Global stability analysis of the 

equilibrium points was carried out through the use of Lyapunov functions. Two basic 

reproduction ratios 𝑅1and 𝑅2 are found, and we have shown that, if both are less than one, the 

disease dies out, if one of the ratios is less than one, epidemic occurs with respect to the other. 

It was also shown that, any strain with highest basic reproduction ratio will automatically 

outperform the other strain, thereby eliminating it. Condition for the existence of endemic 

equilibria was also given. Numerical simulations were carried out to support the analytic 

results and to show the effect of vaccine for strain 1 against strain 2 and the vaccine for strain 

2 against strain 1. It is found that the population for infectives to strain 2 increases when 
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vaccine for strain 1 is absent and vice versa. And one of aim in this model to see the effect of 

the latent period. The latent periods 𝜏1 and  𝜏2 have positive effect on the infection of strain 1 

and strain 2. For sufficiently large latent periods 𝜏1 and 𝜏2, 𝑅1 and 𝑅2 becomes less than 1 

respectively for the model which is given in last model.  
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ÖZET 

Bu tez, hastalığın dinamiğini anlamak için en çok kullanılan gruplandırlmış SIR epdiemik 

modeller içermektedir.  

 

İlk olarak, aşının etkisini iyi anlayabilmek için  aşılı ve aşısız olmak üzere iki model 

geliştirildi. Her bir model için salgının olmadığı ve salgının olduğu iki denge noktası ve her 

iki model için temel bulaşma oranları 𝑅0,1ve 𝑅0,2 bulundu. Lyapunov fonksiyonu kullanılarak 

Kararlılık analizleri gösterildi. 𝑅0,1 < 1 iken salgın olmadığı ve salgın olmayan denge noktası 

için asimptotik kararlılık gözlemlendi. 𝑅0,1 > 1 iken toplumda salgının olduğu ve salgın olan 

denge noktası için asimtotik kararlılık verildi. Analitik metodları desteklemek için sayısal 

similasyonlar kullanıldı. Bu iki modelde aşının salgını azaltmak için önemli bir etken olduğu 

gözlemlenmiştir. 

 

Özel olarak, temel iki tür salgın bölüme sahip SVIR model geliştirilmiştir. Her bir türün 

aşılarının var olduğu kabul edilmiştir. Bu modeldeki temel amaç, 1. tür salgın için olan aşının 

2. Türe etkisi ve tam tersi olarak 2. tür için olan aşının 1. türe olan etkilerini gözlemlemektir. 

Model için üç tane denge noktası bulundu ve Lyapunov fonksiyonu ile kararlılık analizleri 

verildi. 𝑅1ve 𝑅2 olmak üzere iki tane temel üreme oranı bulundu. Bunlara ek olarak sayısal 

similasyon kullanılarak analitik sonuçlar desteklendi. Burada aşının yanlış kullanımının ters 

etkide bulunabileceği gözlemlendi. 

 

Bir önceki modele ek olarak gecikme periodu eklenerek model genişletildi. Salgının olmadığı, 

1. tür için salgının var olduğu 2. tür için olmadığı ve 2. tür için salgının var olduğu 1. tür için 

olmadığı denge noktaları olmak üzere üç tane denge noktası bulundu. 𝑅1ve 𝑅2 olmak üzere 

iki tane temel üreme oranı bulundu. Her bir denge noktası için kararlılık analizleri Lyapunov 

fonksiyonu kullanılarak verildi. Her iki temel üreme oranı birden küçükken iki türün de yok 

olduğu ve salgının olmadığı denge noktasının asimptotik kararlı olduğu gösterildi. En büyük 

temel üreme oranı birden büyük olan türde hastalığın çıktığı ve bu denge noktasının 

asimptotik kararlı olduğu gösterildi. Analitik sonuçları desteklemek için sayısal simülasyonlar 

verildi. Sayısal sonuçlara göre toplumda salgın varsa bireylere farklı salgın tipi için aşı verilir, 
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bu aşı toplumda bulunan salgını artıracaktır. Modele gecikme süresi eklendiğinde salgın 

sayısının düşmesi dolayısı ile bireylere bulaşma süresini uzatılmasının salgını azaltmak için 

bir etken olması da bu tezde verilebilecek ikinci bir sonuçtur. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 History of Pandemic 

Infectious disease has been known since 165-180 AD. These diseases were known as a 

pandemic disease such as smallpax or measels. During this time for example in Mexico 

more than 30 million people has been effected from smallpox (Brauer and Castillo-Chavez, 

2011). 

 

In history we have seen more serious cases than ever the infectious disease spread between 

1346-1350 more than 10000 people died in Europe. Between 1665 and 1666 Black Death  

(bubonic plague) affected one-sixth of the population in London. The spread of infectious 

disease has never been controled by the human being. In 2006 according to World Health 

Organization approximately 1.5 million people affected from Tubercloses. In the same 

year an other infectious disease namely Maleria approximately affected 40% of the whole 

world population. AIDS is any other disease which could Goverments should consider 

seriously according the UNTIL statistics 25 million people effected from AIDS (Ma and 

Li, 2009). 

 

In the 20th century influenza pandemics were recorded. The ‘Spanish Flu’ (H1N1) is the 

one of the most serious pandemic which spread in the world in a short time and affected 

500 million people and caused over 30 million death in 1918-1919 (Shim et al., 2017). In 

1957 and 1968 Asian Flu (H2N2) and Hong Kong Flu (H3N2) were recorded respectively. 

The morality for these pandamics was estimated 69800 and 33800 respectively (Noble, 

1982). Medical people can observe the vaccine response for endemic in many people by 

the late  1957. Even though they were not devastating, they killed millions of people. After 

these pandemics, an interesting development finding that the natural host of all influenza A 

viruses are waterfowl. And there was a great mutation of viruses in birds than in human. 

 



 

 

2 

 

In 1977, epidemic of influenza spread out of  North-Eastern China and the former Soviet 

Union and it is called “Red Flu”. It was found that the effect of virus of  Red Flu is nearly 

identical to the H1N1 virus which gives that influenza A virus mutated rapidly as they 

multiplied. And also it is detected that disease limited to people under the age of 25, it is 

explained that older individuals had antibodies from the identical virus in 1958 (Cox and 

Subbarao, 2000). 

 

In 2009 next pandemic was arise from Mexico or the south- western USA, and it was again 

a type of H1N1 viruses which was come directly from intensively farmed pigs so called 

“swine Flu”. The virus had spread worldwide and in most countries there were infected 

people. Although the symptoms of infection was similar to seasonal influenza, the swin Flu 

was not as serious as had been feared. In 2009 vaccine introduced for the Swine flu but 

there was not enough vaccine strain of the virus. (Rybicki and Russell , 2015). 

 

Influenza viruses are segmented, negative- sense, enveloped RNA viruses of the 

Orthomyxoviridae family (Zambon, 1999), and it is  also called the “flu”, is a viral disease 

that affects humans and many animals. Influenza is a disease caused by a virus that affects 

mainly the nose, throat, bronchi and sometimes lungs.  Through air by coughs, sneezes or 

from infected surfaces, and by the direct contact to infected persons casued the virus 

spread from person to person (Khanh, 2016).  

 

There are three groups of influenza viruses, called type A, B, or C. Influenza A is the main 

group which affect both human and animals and it has antigenic variability which allows to 

escape neutralization from anti- bodies (Dawood, et al., 2012). Influenza B affect only 

human and it also exhibits antigenic variability property, but less than that of A. However 

this property is not common in influenza C, type C influenza causes weak infections (Bao 

et al., 2016), hence influenza A is more serious than B, and then C (Ju, et.al., 2016). 

 

Influenza A virus is divided into Hemagglutinin (HA) and Neuraminidase (NA) based on 

the two proteins on the surface of the virus. Hemagglutinin are divided into 12 (H1– H12) 

and neuraminidase into nine subtypes 9 (N1–N9) (WHO, 1980). It can also be divided into 
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different strains, most popular strains found in people are H1N1 and H3N2 viruses (Qiu 

and Feng, 2010).  

 

Antiviral treatment, Quarantine and vaccination are three important control measures for 

the spread of influenza. For many years anti- influenza drugs that target influenza 

neuraminidise have been used to prevent and treat influenza virus infectious. For example 

for the H1N1 influenza virus Oseltamivir drug is the most known antiviral treatment also 

known as Tamiflu (Ju et al., 2016). Because of the amino acid changing in neurominidase 

give the drug resistant strain (Shim et al., 2017). Ju et al. proposed nalidixic acid and 

dorzolamide which are use of drugs that are structurally similar to Oseltamivir as anti-

Oseltamivir resistant influenza drugs.  

 

Because of the high risk of the influenza pandemic and large number of death associated 

with influenza, understanding of spread of the influenza disease dynamics is important. 

The important theoric approach is Epidemic Dynamics in order to investigate the 

transmission dynamics of the disease.  

 

 

1.2 Mathematical Model 

Mathematical models play an important role to understand the dynamics of the disease. 

Also it gives best strategy to control the disease for a long time (Murray J. D., 2002).  

 

The first study of mathematical models is given for smallpox which was constructed by 

Bernoulli in 1760 (Bernoulli, 1760). Subsequently, in 1906 Hamer formulated discrete 

time model for the spread of measles. In 1911, with using ordinary differential equation, 

the transmission of maleria betwen human and mosquitoes was given by Ross. Kermack 

and McKendrick are the poineer of the compartmental models. They pointed first SIR 

epidemic model in 1927 and they used a compartmental model with divided population 

into tree compartments S, I and R where S denotes the number of individuals who are 

Suspectible to the disease, I denotes the number of infected individuals, in this 

compartment individuals assumed infectious and able to spread the disease by contact with 
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suspectible and R denotes the number of individuals who had been infected and were 

removed. In their model they assumed that; There is no emigration nor imigration  and 

neither birth nor death in the population, the number of suspectibles who are infected by an 

infected individual per unit of time, at a time t, is proportional to the total number of 

suspectibles with the proportional coefficient (transmission rate) β, so that the total number 

of newly infectives, at time t, is βS(t)I(t); the number removed (recoverd) individuals 

from the infected compartment per unit time is γI(t) at time t, where γ is the recovery rate 

coefficient, and recovered individuals gain permanent immunity (Kermack and 

McKendrick, 1927). Figure 1.1 shows the transfer diagram of  the Kermack and 

McKendrick model. 

 

 

Figure 1.1: Kermack and McKendrick model. 

 

The  model is given by ordinary differential equations as follows  

 

dS

dt
= −βSI,  

dI

dt
= βSI − γI,              (1.1) 

dR

dt
= γI.  

 

The structure of the Kermack and McKandrick model has recovery after disease. It means 

any individiual after recover from the disease never become suspectible. After this model 

different kinds of compartmental epidemic model are introduced, depending on the 

disease. For example, influenza, measles, and chicken pox, usually confer immunity 

against reinfection therefore these kind of diseases has SIR type models (Tan et al., 2013; 

Coburn et al., 2009; Yang and Hsu, 2012). HIV or AIDS have no recovery after infectious 

than the structure of the model is SI type (Kaymakamzade, et al., 2017; Sayanet et al., 

2017; Nelson and Perelson, 2002) and some diseases such as  tuberculosis have no 
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immunity or have temporary immunity after recovery, which means individuals come back 

to the suspectible classes after recovery from the disease. The structures of the models of 

this kind of disease are SIS, SIRS, etc. (Bowong, 2010; Li et al., 1999; Zhanget et al., 

2013). In addition to the above models, some diseases have expose period therefore can be 

added exposed compartment in the model which means all of the individuals have been 

infected but have not yet infectious can also be added. Then the structure of the models 

modified as SEI, SEIS, SEIRS, etc. (Korobeinikov and Maini, 2004; Li et al., 2006; Cheng 

and Yang, 2012; Yuan and Yang, 2007).  

 

Some diseases are in the form of two (or more general, multi) strain SIR models type 

(Bichara et al., 2014; Muroya et al., 2016). Maleria and West Nile viruses are example for 

the two strain models which are transmited vector (mosquitoes, insects, etc.) to human or 

human to vector (Ullah, et al., 2016; Lord et al., 1996; Tchuenche et al., 2007). In addition 

some disease have mutation and so model consist multi strain (Kaymakamzade et al., 

2016; Bianco et al., 2009). Since influenza viruses are of many forms, some researchs are 

on multiple strain influenza virus (Zhao et al., 2013; Gao and Zhao, 2016). 

  

There are some methods like quarantine, treatment and vaccination to control the spread of 

disease. The first model with quarantine was given by Feng and Theime in 1995 and after 

that Wu and Feng in 2000 and Nuno et al. in 2005. The compartment Q introduced and 

assumed that all the infectives individuals go to the quarantine compartment before going 

to the recovery compartment R or suspectible compartment S. In 2002 Hethcote et al. 

considered a more realistic model where the part of infective individual are quarantined 

where the others not, eithetr enter recovery compartment or go back to the suspectible 

compartment. These models are given by SIQR, SIQS,SEIQR, etc. (Nuño et al., 1970). 

Vaidya et al. study with the H1N1 quarantine model (Vaidya et al., 2014). Nuño et al. 

study two- strain influenza with isolation and partial cross- immunity (Nuño et al., 2006). 

In 2016 Kaymakamzade et al. study with Oseltamivir resistance and non-resistance two 

strain model which is the one of most important influenza drug (Kaymakamzade et al., 

2016). More effective to control the disease is vaccine. Any individual who takes vaccine 

can gain (temporary) immunity and directly can go to the recovery compartment. These 

kind of models assumed that vaccines have full effect but for the reality, vaccines have not 
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always full effect. These sort of models constructed as SIV, SVIR, SVEIR, SI etc. 

(McLean et al., 2006; Reynolds et al., 2014; Zaman et al., 2008). 

Many researches exist for influenza virus with vaccine and immunization for influenza 

model  (Zhao, et al., 2014; Yang and Wang, 2016; Towers and Feng, 2009). 

 

 

1.3 Epidemic models with time delay  

Some diseases may not be infectious until some time after becoming infected (Huang, 

Takeuchi, Ma, & Wei, 2010). Time delay is one of the important method can be used in 

epidemiology.  More realistic approach includes some of the past history of the system in 

the models. The best way to model such processes is by incorporating time delays into the 

models. That is, system should be modeled by ordinary differential equation with time 

delay (Kuang, 1993). 

 

Time delay can be divided into two types as discrete delay (fixed delay) and continuous 

(distributed) delay. In the fixed delay model the dynamic behaviour of the model at time t 

depends also on state at time t − τ , where τ is constant. Time delay can be used to 

describe; 

 

 Latent or incubation period: for some diseases, the number of infectives at time t also 

depends on the number of infectives at a time t − τ, where τ represents the latent period. 

Some SIR models with latent or incubation periods were studied in recent years (Takeuchi 

et al., 2000; Enatsu et al., 2012; Liu, 2015; Ma et al., 2004; Wang et al., 2013). SVEIR 

model with using delay for latent period which the vaccined class can be infected (Jiang et 

al., 2009; Zhang et al., 2014; Wang et al., 2011).  

 

Immunity period: After recovery from any disease has short or long immunity against re- 

infectious naturally arise. This time τ represents the immunity period and after τ time later 

individual lose the immuinty (Xu et al., 2010; Rihan and Anwar, 2012).  
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Mutation Period: Some disease chance its structure in a time. And gain immunity with 

respect to treatement or vaccine. For these kinds of stuation  delay can be represent the 

mutation time (Fan et al., 2010).  

 

Above delay periods can be mixed in a model, such as two delay for latency and temproary 

immunity respectively (Cooke and Driessche, 1995).  

 

 

1.4 Guide to the Thesis 

In Chapter 2 some mathematical informations about existence and uniqueness of the 

system for ordinary and delay differential equations, stability criteria and next generation 

matrix methods  are given.  

 

In Chapter 3, two delayed modelled with and without vaccine are constructed. In 

subsections of Chapter 3, equilibrium points for both two models are given. Then to 

control the disease basic reproduction ratios for each models are found. By using 

Lyapunov method global stability analysis are made. Finally, the models compared 

numerically. 

 

In Chapter 4, the effect of vaccine for strain 1 to the strain 2 and the effect of vaccine for 

strain 2 to the strain 1 are discussed. We assume that any individual which has been 

recovered from the infections gains immunity. That means recovered people never become 

susceptible. Population divided in six compartment S, V1, V2, I1, I2 and R. Stability 

analysis and numerical simulations have been performed for the introduced model. 

 

Chapter 5 is concerned with delay SIR model with two strains. The model in the previous 

chapter is modified by adding time delay. Time delays represent the latent period for both 

strain. For this model, four equilibria are found and basic repruduction ratios are given. 

Global stabilities are studied and some simulations are given for delay model. 

 

Chapter 6, gives the conclusion of the study.  
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CHAPTER 2 

MATHEMATICAL PRELIMINARIES 

 

In this chapter, some definitions and theorems are given for ordinary and delay differential 

equations. It is given existence and uniqueness of solution for both ordinary and delay 

differential equations. For the stability analysis the Lyapunov function is defined and 

Lyapunov stability theorem is given. Finally, for the treshold conditions of the systems 

next generation matrix method is given. 

 

 

2.1 Ordinary Differential Equations 

Consider the general ordinary differential equation (ODE) 

 

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡))             (2.1)

        

with initial condition, 𝑥(𝑡0) = 𝑥0 in the domain |𝑡 − 𝑡0| < 𝛼. Here 𝛼 > 0 defines the size 

of the region where it will be shown that a solution exist. Defining a closed rectangle 

 

𝑅 = {(𝑡, 𝑥(𝑡)): |𝑥 − 𝑥0| ≤ 𝑏, |𝑡 − 𝑡0| ≤ 𝑎},  

 

centred upon the initial point (𝑡0, 𝑥0). Integrating both sides of (2.1) with respect to t, gives 

that 

 

∫ �̇�(𝑠)𝑑𝑠
𝑡

𝑡0
= ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠

𝑡

𝑡0
  

 

or 

 

𝑥(𝑡) − 𝑥(𝑡0) = ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡

𝑡0
.  
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Hence 

 

𝑥(𝑡) = 𝑥(𝑡0) + ∫ 𝑓(𝑠, 𝑥(𝑠))𝑑𝑠
𝑡

𝑡0
.                       (2.2) 

 

Using the initial value and the successive approximations of the solution can be obtained as 

 

𝑥𝑘+1(𝑡) = 𝑥0 + ∫ 𝑓(𝑥𝑘(𝑠), 𝑠)
𝑡

𝑡0
𝑑𝑠,  𝑘 = 0,1,2,3. . .,        (2.3) 

 

with the given 𝑥0 of 𝑡. 
 

 

2.1.1 Existence and uniqueness 

Definition 2.1. (Murray and Miller, 2007).  (Lipschitz Condition) 

A function 𝑓(𝑡, 𝑥) is a real valued function then f is said to be satisfy a Lipschitz  condition 

if there exists a constant K such that for any pair of  point (𝑡, 𝑥1) and (𝑡, 𝑥2) in R, 

 

|𝑓(𝑡, 𝑥2) −  𝑓(𝑡, 𝑥1)| ≤ 𝐾|𝑥2 − 𝑥1|, ∀ 𝑡.                      (2.4) 

 

Lemma 2.1. Suppose that 𝑓(𝑡, 𝑥) is continuously differentiable function with respect to 𝑥 

on a closed region R. Then there exists a positive number 𝐾 such that  

 

|𝑓(𝑡, 𝑥2) −  𝑓(𝑡, 𝑥1)| ≤ 𝐾|𝑥2 − 𝑥1|                      (2.5) 

 

for all (𝑡, 𝑥2), (𝑡, 𝑥1) ∈ 𝑅. 

 

Lemma 2.2. (King et al., 2003). If 𝛼 = min (𝑎,
𝑏

𝑀
) then the succesive approximations, 

 

𝑥0(𝑡) = 𝑥0, 𝑥𝑘+1(𝑡) = 𝑥0 + ∫ 𝑓(𝑠, 𝑥𝑘(𝑠))
𝑡

𝑡0
𝑑𝑠 

 

are well defined in the interval 𝐼 = {𝑡: |𝑡 − 𝑡0| < 𝛼} and on this interval  

 

|𝑥𝑘(𝑡) − 𝑥0| < 𝑀|𝑡 − 𝑡0| < 𝑏,  
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where |𝑓| < 𝑀. 

 

Theorem 2.1. (Perko, 2000 ). (Existence) 

If 𝑓 and 
𝜕𝑓

𝜕𝑥
 ∈ 𝐶(𝑅), then the succesive approximations 𝑥𝑘(𝑡) converge on 𝐼 to a solution of 

the differential equation �̇� = 𝑓(𝑡, 𝑥) that satisfies the initial conditions 𝑥(𝑡0) = 𝑥0. 

 

Lemma 2.3. (Cain and Reynolds, 2010). (Gronwall’s Inequality) 

If 𝑓(𝑡) and 𝑔(𝑡) are nonnegative continuous functions on the interval 𝛼 ≤ 𝑡 ≤ 𝛽, 𝐿 is 

nonnegative constant and  

 

𝑓(𝑡) ≤ 𝐿 + ∫ 𝑓(𝑠)𝑔(𝑠)𝑑𝑠
𝑡

𝛼
 𝑓𝑜𝑟 𝑡 ∈ [𝛼, 𝛽],   

 

then 

 

𝑓(𝑡) ≤ 𝐿 exp {∫ 𝑔(𝑠)𝑑𝑠
𝑡

𝛼
}  𝑓𝑜𝑟 𝑡 ∈ [𝛼, 𝛽].                    (2.10)

         

Theorem 2.2 (King et al.,  2003). (Uniqueness) 

If f and 
𝜕𝑓

𝜕𝑥
 are continuously differentiable function on 𝑅, then the solution of the initial 

value problem �̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡)) subject to 𝑥(𝑡0) = 𝑥0 is unique on |𝑡 − 𝑡0| < 𝛼. 

 

 

2.2 Delay Differential Equation 

ℝ𝑛 is a 𝑛 dimensional real Euclidean space with norm |. |, and when 𝑛 = 1, it is denoted as 

ℝ. For 𝑎 < 𝑏, we denote 𝐶([𝑎, 𝑏], ℝ𝑛) the Banach space of continuous vector functions 𝑓 

defined on [𝑎, 𝑏] with values ℝ𝑛. For 𝑓 ∈ 𝐶([𝑎, 𝑏], ℝ𝑛), the norm of 𝑓 is defined as  

 

‖𝑓‖ = sup
𝑎≤𝑡≤𝑏

|𝑓(𝑡)|,  
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where |. | is a norm in ℝ𝑛. When [𝑎, 𝑏] = [−𝑟, 0] where r is positive constant, generally 

𝐶([−𝑟, 0], ℝ𝑛) denoted by 𝐶. For 𝜎 ∈ ℝ, 𝜆 > 0, 𝑥 ∈ 𝐶([𝜎 − 𝑟, 𝜎 + 𝜆], ℝ𝑛) and 𝑡 ∈

[𝜎, 𝜎 + 𝜆], we define 𝑥𝑡 ∈ 𝐶 as 𝑥𝑡(𝜃) = 𝑥(𝑡 + 𝜃), 𝜃 ∈ [−𝑟, 0].  

Assume 𝛺 is a subset of ℝ × 𝐶, 𝑓: 𝛺 → ℝ𝑛 is a given function, then delay differential 

equation (DDE) 

{
�̇� = 𝑓(𝑡, 𝑥𝑡)             𝑡 > 𝜎 ,        

𝑥(𝑡) = 𝜑(𝑡)         − 𝑟 ≤ 𝑡 ≤ 0
           (2.12) 

can be defined.  

 

 

2.2.1 Existence and uniqueness 

For each delay there exists unique solution. The existence and uniqueness theorems for 

constant delay are given with following theorems. 

 

Theorem 2.3. (Kuang, 1993). (Existence) 

In (2.12), suppose 𝛺 is an open subset in ℝ × 𝐶 and 𝑓 is continuous on 𝛺. If  (𝜎, 𝜑) ∈ 𝛺, 

then there is a solution of (2.12) passing through (𝜎, 𝜑). 

 

Theorem 2.4 (Arino et al., 2002). (Uniqueness) 

Suppose 𝛺 is an open subset in ℝ× 𝐶, 𝑓: 𝛺 → ℝ𝑛 is continuous, and 𝑓(𝑡, 𝜑) is 

Lipschitzian with respect to φ in each compact set in 𝛺. If (𝜎, 𝜑) ∈ 𝛺, then there is a 

unique solution of equation (2.12) through (𝜎, 𝜑). 

 

 

2.3  Stability Analysis 

Definition 2.2. (Verhulst , 1985 ). An equilibrium point 𝑥∗ of system (2.1) is said 

to be; 

1. stable if, for all 휀 >  0 there exists 𝛿 >  0 such that, for each 𝑥 with ‖𝑥0  −  𝑥
∗‖ <  𝛿 

we have ‖𝑥(𝑡)  − 𝑥∗‖ <  ε  for every 𝑡 ≥  0.  
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2. 𝑥∗ is asymptotically stable if it is stable and ‖𝑥(𝑡)  − 𝑥∗‖ → 0 as 𝑡 → ∞. 

3. We say that the equilibrium 𝑥∗ is unstable if it is not stable.  

 

Theorem 2.5. (Wiggins, 2003). (Liapunov Function) 

Let 𝐸 be an open subset of ℝ𝑛 containing equilibrium point (𝑥∗). Suppose 𝑉 is a function 

such tat  𝑓 ∈ 𝐶1(𝐸) satisfying 𝑉(𝑥∗) = 0 and 𝑉(𝑥) > 0 when 𝑥 ≠ 𝑥∗. Then, 

1.   If �̇� ≤ 0 for all 𝑥 ∈ 𝐸 − {𝑥∗}, 𝑥∗ is stable. 

2.   If �̇� < 0 for all 𝑥 ∈ 𝐸 − {𝑥∗}, 𝑥∗ is asymptotically stable. 

 

In other words, an equilibrium is stable if all solutions close to it at the initial moment will 

not depart too far from it later on. If, additionally, all solutions initially close the 

equilibrium will tend to it, then we have a stronger property, called asymptotic.  

 

 

2.4 Basic Reproduction Number 

The basic reproduction number 𝑅0 is the most important quantity in infectious disease 

epidemiology (Diekmann et al., 2009). It is the avarage number of secondary cases 

generated by a single infected individual during its entire period of infectiousness when 

introduced in to a completely suspectible population.  

Alternative technique for the finding basic reproduction number is next generation matrix 

method which is given by Diekmann and Hesterbeek in 1990.  

 

 

2.4.1 Next Genaration Matrix  

To calculate 𝑅0 to the equations of the ODE system Diekmann and Hetereebek consider 

the Next generating matrix method (Diekmann et al., 2009). Because of next genaration 

matrix method is sometimes easier then the traditional approach, it is a useful alternating 

method to find the basic reproduction number.  

 

Any non-linear system of ordinary differential equation can be described as a 
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𝑥𝑖(𝑥) = 𝑓𝑖(𝑥) = ℱ𝑖(𝑥) − 𝒱𝑖(𝑥)          (2.17) 

 

and 𝒱𝑖 can be written 

 

𝒱𝑖 = 𝒱𝑖
− − 𝒱𝑖

+,  

 

where ℱ𝑖 is represents the rate of appearence of new infections in to compartment 𝑖, 𝒱𝑖
− 

represent the rate of transfer output of the 𝑖𝑡ℎ compartment and 𝒱𝑖
+ represent the rate of 

transfer input of the 𝑖𝑡ℎ compartment. It is assumed that all functions are continuously  

differentiable at least twice. Defined 𝒙𝒔 be the set of all disease free states such that 

 

𝒙𝒔 = {𝑥 ≥ 0: 𝑥𝑖 = 0, 𝑖 = 1,2, … ,𝑚}  

 

assuming that first m compartments correspond to infected individuals. 

 

With the above assumption following conditions hold; 

 

1. If 𝑥 ≥ 0, then all ℱ𝑖, 𝒱𝑖
+, 𝒱𝑖

− are non-negative for all 𝑖. 

2.   𝒱𝑖
− =0, when 𝑥𝑖 = 0, which means that there is no any transfer of individuals of out of  

      the compartment when the number of individuals in each compartment is equal to zero.  

      In Particular, 𝒱𝑖
− =0 when 𝑥𝑖 ∈ 𝒙𝒔, for 𝑖 = 1,2, … ,𝑚. 

3.   ℱ𝑖 = 0, when 𝑖 > 𝑚 

4.   If 𝑥𝑖 ∈ 𝒙𝒔. Then ℱ𝑖 = 0 and 𝒱𝑖
+ =0,  for 𝑖 = 1,2, … ,𝑚. 

      This condition provided that the disease free subspace is invariant.   

5. Let 𝑥0 be a locally asymptotically stable disease free equilibbrium point in 𝒙𝒔, and  

𝐷𝑓(𝑥0) is defind as the derivative 
𝜕𝑓𝑖

𝜕𝑥𝑖
 evaluated at the disease free equilibrium, 𝑥0 (i.e., 

Jacobian matrix).  The linearized equations for the disease free compartments x are 

decoupled from the remaining equations and can be written as 

�̇� = 𝐷𝑓(𝑥0)(𝑥 − 𝑥0).  

 

Therefore, if ℱ𝑖(𝑥) is set to zero, then all eigenvalues of 𝐷𝑓(𝑥0) have negative real parts. 
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Under the above conditions, the following lemma can be given. 

 

Lemma 2.4 (Driessche & Watmough, 2002): If 𝑥0 is a disease free equilibrium of (2.17) 

and 𝑓𝑖(𝑥) satisfies the above conditions 1-5, then the derivatives 𝐷ℱ(𝑥0) and 𝐷𝒱(𝑥0) are 

partitioned as 

 

𝐷ℱ(𝑥0) = (
𝐹 0
0 0

) , 𝐷𝒱(𝑥0) = (
𝑉 0
𝐽3 𝐽4

).  

 

Here 𝐹 and 𝑉 are the 𝑚×𝑚 matrices defined by 

 

𝐹 = [
𝜕ℱ𝑖

𝜕𝑥𝑗
(𝑥0)] and  𝑉 = [

𝜕𝒱𝑖

𝜕𝑥𝑗
(𝑥0)],  1 ≤ 𝑖, 𝑗 ≤ 𝑚. 

 

The derivation of the basic reproduction number is based on the linearization of the ODE 

model about a disease-free equilibrium. 

 

The number of secondary infections produced by a single infected individual in a 

population at a disease free. It can be expressed as the product of the expected duration of 

the infectious period and the rate at which secondary infections occur. Let 𝜑𝑖(0) be the 

initial number of infected individual in each compartment i and 𝜑(𝑡) be the solution of the 

system 

 

�̇�𝑖 = [𝐹𝑖 − 𝑉𝑖]𝑥𝑖.            (2.18) 

 

Then the expected time spends in each compartment is given by the integral 

 

∫ 𝜑(𝑡)𝑑𝑡
∞

0
.  

 

With 𝐹𝑖(𝑥) = 0 and initial condition 𝜑𝑖(0) implies  

 

�̇�𝑖 = −𝑉𝑖 𝑥𝑖, 𝑥𝑖(0) = 𝜑𝑖(0).        (2.19) 
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The solution of (2.19) is 

 

𝑥𝑖(𝑡) = 𝑒
−𝑉𝑖𝑡𝜑𝑖(0). 

 

Thus the expected value of new infections produced by the initially infected individuals is 

given by 

 

∫ 𝐹𝑒−𝑉𝑡𝜑𝑖(0)
∞

0
= 𝐹𝑉−1𝜑𝑖(0),  

 

where (i,j) entry of F is the rate at which infected individuals in compartment j produce 

new infections in compartment i. Diekmann and Heesterbeek (2000), called K= 𝐹𝑉−1 is 

the next generation matrix. The (i, j) entry of K is the number of secondary infections in 

compartment i produced by individuals initially in compartment j. In other words, the 

elements 𝐹𝑉−1 represent the generational output of compartment i by compartment j 

(Hurford, Cownden, & Day, 2009). Therefore the basic reproduction ratio is given by  

 

𝑅0 = 𝜌(𝐹𝑉
−1), 

 

where 𝜌(𝐾) is denoted by spectral radius of a matrix K, which is the maximum of the 

modulus of  the eigenvalues of K. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

16 

 

CHAPTER 3 

 

SIR MODEL WITH AND WITHOUT VACCINE 

 

In this chapter we define and constract a single strain delay model with and without 

vaccine to see the effect of the vaccine for the disease. The models which are constructed 

in this chapter modified by Chauhan models with adding delay for incubation period. 

Chauhan et al. studied with two model with and without vaccine models and they showed 

the effect of the vaccine (Chauhan et al., 2014).  

 

In Section 3.1 the SIR model with delay is constructed, then equilibrium points, basic 

reproduction number and stability analysis are given for this model. In Section 3.2 the SIR 

model is constructed with delay and vaccine. Similarly with the previous section, 

equilibrium points, basic reproduction number and stability analysis are also given. In 

Section 3.3, numerical simulations are given for both model.  

 

 

3.1 Construction of the Delay SIR Model without Vaccine 

The assumptions for the model are  

i.   The population is fixed. 

ii.   The natural birth and death rates are included in the model. 

iii.   All birth are into suspectible class only. 

The population 𝑁(𝑡) is divided tree compartment 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) which are 

susceptible, infected and recovery compartments respectively. The model which is 

constructed in this section assumed that individuals infected at time 𝑡 − 𝜏 become 

infectious 𝜏 time later. To be a more realsitic it can be assumed that not all those infected 

will survive after τ times later, because of this reason survival term 𝑒𝜇𝜏 is introduced. The 

transfer diagram of the model is given in the following Table. 
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Figure 3.1: Transfer diagram of the model. 

 

The variables and parameters are positive and their meanings are also given in 

Table 3.1. 

 

   Table 3.1: Variables and parameter 

 

       Parameter  Description 

       Ʌ              Recruitment of individulas 

       
1

μ
     Avarage time of life expectance 

      β    Transmission coefficient of susceptible individuals to  

the infected compartment 

      
1

𝛄
    Avarage infection period 

      d    Death rate from the disease 

      𝜏     Incubation period  

     𝑒−μ𝜏   Probability that an individual in the incubation period  

has survived 

 

 

Under the above assumptions the model is given by a system of ordinary differential 

equations 
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𝑑𝑆(𝑡)

𝑑𝑡
= Ʌ − (𝛽𝐼(𝑡) + 𝜇)𝑆(𝑡),  

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − (𝛾 + 𝜇 + 𝑑)𝐼,          (3.1) 

 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡),  

 

with the initial conditions 

 

𝑠(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0 . 

 

Note that, using 

 

𝑁(𝑡) = 𝑆(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)  

 

we can obtain R(t) by N(t) − S(t) − I(t). Therefore, we will study with the 

following system 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Ʌ − (𝛽𝐼(𝑡) + 𝜇)𝑆(𝑡),  

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − (𝛾 + 𝜇 + 𝑑)𝐼(𝑡).         (3.2) 

 

The following theorem establishes the feasible region of the system (3.2). 

 

Theorem 3.1. The solution 𝜑 ∈ 𝐶2 of the system (3.2) is unique, nonnegative and 

bounded and the positive invariant region is 

 

𝛺 = {(𝑆(𝑡), 𝐼(𝑡)) ∈ 𝐶+
2: 𝐻 = 𝑆(𝑡) + 𝑒𝜇𝜏𝐼(𝑡 + 𝜏) ≤

Ʌ

𝜇
}.        (3.3)  
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Proof. For nonnegativity of solution of the system (3.2), it is needed to show solution of  

each equation of the system is nonnegative. 

  

First, taking the first equation of the system (3.2), we get 

 

𝑑𝑆

𝑑𝑡
= Ʌ − (𝛽𝐼(𝑡) + 𝜇)𝑆(𝑡) ≥ −(𝛽𝐼(𝑡) + 𝜇)𝑆(𝑡)  

 

or 

𝑑𝑆

𝑑𝑡
+ (𝛽𝐼(𝑡) + 𝜇)𝑆(𝑡) ≥ 0.                        (3.4) 

 

The integrating factor 𝑝(𝑡) of the equation (3.4) 

 

𝑝(𝑡) = 𝑒∫ (𝛽𝐼(𝑢)+𝜇)
𝑡
0  𝑑𝑢.  

 

Therefore from (3.4), it follows 

 

𝑒∫ (𝛽𝐼(𝑢)+𝜇)
𝑡
0  𝑑𝑢 𝑑𝑆

𝑑𝑡
+ 𝑒∫ (𝛽𝐼(𝑢)+𝜇)

𝑡
0  𝑑𝑢(𝛽𝐼(𝑡) + 𝜇)𝑆(𝑡) ≥ 0  

 

or 

 

𝑑

𝑑𝑡
[𝑆(𝑡)𝑒∫ (𝛽𝐼(𝑢)+𝜇)

𝑡
0

 𝑑𝑢] ≥ 0.  

 

Taking integral with respect to 𝑠 from 0 to 𝑡, we get 

 

∫
d

dt
[𝑆(𝑠)𝑒∫ (βI(u)+μ)

𝑠
0

 𝑑𝑢]
𝑡

0
𝑑𝑡 ≥ 0  

 

or 

 

𝑆(𝑡)𝑒∫ (βI(u)+μ)
𝑡
0  𝑑𝑢|

0

𝑡

≥ 0  
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or 

 

𝑆(𝑡)𝑒∫ (βI(u)+μ)
𝑡
0  𝑑𝑢 − 𝑆(0) ≥ 0  

   

 

or 

 

𝑆(𝑡) ≥ 𝑆(0)𝑒−∫ (βI(u)+μ)
𝑡
0

 𝑑𝑢 ≥ 0.  

 

From the second equation of the system (3.2), it follows that 

 

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − (𝛾 + 𝜇 + 𝑑)𝐼 ≥ −(𝛾 + 𝜇 + 𝑑)𝐼(𝑡)  

(3.5) 

 

or 

 

𝑑𝐼(𝑡)

𝑑𝑡
+ (𝛾 + 𝜇 + 𝑑)𝐼(𝑡) ≥ 0 .            (3.6) 

 

The integrating factor 𝑝(𝑡) of  (3.6) is 

 

𝑝(𝑡) = 𝑒∫ (𝛾+𝜇+𝑑)
𝑡
0

 𝑑𝑢 = 𝑒(𝛾+𝜇+𝑑)𝑡 .  

 

Therefore from (3.6) it follows 

 

𝑒(𝛾+𝜇+𝑑)𝑡 
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝑒(𝛾+𝜇+𝑑)𝑡 (𝛾 + 𝜇 + 𝑑)𝐼(𝑡) ≥ 0.   

 

or  
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𝑑

𝑑𝑡
[𝑒(𝛾+𝜇+𝑑)𝑡 𝐼(𝑡)] ≥ 0.  

 

Taking the integral with respect ot 𝑠 from 0 to 𝑡, we get 

 

𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝛾+𝜇+𝑑)𝑡 ≥ 0.  

 

 Hence the solution of the system (3.2) is nonnegative. 

 

For the proof of boundedness of the system (3.2), let us define a function 

 

𝐻 = 𝑆(𝑡) + 𝑒𝜇𝜏𝐼(𝑡 + 𝜏).  

 

Therefore 

 

�̇� = �̇�(𝑡) + 𝑒𝜇𝜏𝐼(̇𝑡 + 𝜏)  

 

= Ʌ − (βI(t) + μ)S(t) + 𝑒𝜇𝜏[e−μτβS(t)I(t) − (γ + μ + d)𝐼(𝑡 + 𝜏)]  

 

= Ʌ − μS(t) − 𝑒𝜇𝜏(γ + μ + d)𝐼(𝑡 + 𝜏)  

 

≤ Ʌ − μS(t) − 𝑒𝜇𝜏μ𝐼(𝑡 + 𝜏)  

 

= Ʌ − μH(t).  

 

So we have 

 

�̇� ≤ Ʌ − μH(t).         

 

Since 0 ≤ �̇�, we get 

 

0 ≤ �̇� ≤ Ʌ − μH(t)             
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or 

 

0 ≤ Ʌ − μH(t).                    (3.7) 

 

Therefore, from (3.7) and for large enough t, it follows 

𝐻(𝑡) ≤
Ʌ

𝜇
 . 

 

Hence, the positive invariant region is obtained that 

 

𝛺 = {(𝑆(𝑡), 𝐼(𝑡)) ∈ 𝐶+
2: 𝑁 = 𝑆(𝑡) + 𝑒𝜇𝜏𝐼(𝑡 + 𝜏) ≤

Ʌ

𝜇
}.    

 

Finally, we will show the uniqueness solution of the system (3.2), we define a vector 

function 𝑓 as follows 

 

𝑓(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) = (
𝑓1(𝜑(𝑡))

𝑓2(𝜑(𝑡), 𝜑(𝑡 − 𝜏))
) ,   𝜑(𝑡) = (

𝜑1(𝑡)

𝜑2(𝑡)
),  

 

where 𝑓1(𝜑(𝑡)) = Ʌ − (𝛽𝜑2(𝑡) + 𝜇)𝜑1(𝑡) and 𝑓2(𝜑(𝑡)) = 𝑒
−𝜇𝜏𝛽𝜑1(𝑡 − 𝜏)𝜑2(𝑡 − 𝜏) −

−(𝛾 + 𝜇 + 𝑑)𝜑2(𝑡) are continuous. In order to say the system (3.2) has a unique solution 

it is sufficient to show that the Lipschitz condition for 𝑓(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) with respect to 

𝜑(𝑡) holds. 

For 𝜑 = (𝜑1, 𝜑2) and 𝜓 = (𝜓1, 𝜓2), and assuming that  

 

‖𝜓 − 𝜑‖ = |𝜓2 − 𝜑2| + |𝜓1 − 𝜑1|.          (3.8)  

 

We have that 

  

‖𝑓1(𝜑(𝑡)) − 𝑓1(𝜓(𝑡))‖ = |(Ʌ − (𝛽𝜑2(𝑡) + 𝜇)𝜑1(𝑡)) − (Ʌ −

−(𝛽𝜓2(𝑡) + 𝜇)𝜓1(𝑡))|  

 

≤ 𝛽|𝜓1(𝑡)𝜓2(𝑡) − 𝜑1(𝑡)𝜑2(𝑡)| + 𝜇|𝜓1(𝑡) − 𝜑1(𝑡)|   
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= 𝛽|𝜓1(𝑡)𝜓2(𝑡) − 𝜓1(𝑡)𝜑2(𝑡) + 𝜓1(𝑡)𝜑2(𝑡) − 𝜑1(𝑡)𝜑2(𝑡)| +

+𝜇|𝜓1(𝑡) − 𝜑1(𝑡)|  

 

≤ 𝛽|𝜓1(𝑡)||𝜓2(𝑡) − 𝜑2(𝑡)| + 𝛽|𝜑2(𝑡)||𝜓1(𝑡) − 𝜑1(𝑡)| + 𝜇|𝜓1(𝑡) −

−𝜑1(𝑡)|  

 

≤ 𝐾1(|𝜓1(𝑡) − 𝜑1(𝑡)| + |𝜓2(𝑡) − 𝜑2(𝑡)|) = 𝐾1|𝜓(𝑡) − 𝜑(𝑡)|,        (3.9) 

where 

 

𝐾1 = max{𝜇 + 𝛽|𝜑2|, 𝛽|𝜓1|}  

 

from the invariant set , 𝜑1 ≤
Ʌ

𝜇
, 𝜑2 ≤

Ʌ

𝜇
 , it follows 

 

𝐾1 = 𝜇 + 𝛽
Ʌ

𝜇
 . 

  

Furthermore, one can derive that 

 

‖𝑓2(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) − 𝑓2(𝜓(𝑡), 𝜓(𝑡 − 𝜏))‖ = |𝑒
−𝜇𝜏𝛽𝜑1(𝑡 − 𝜏)𝜑2(𝑡 −

−𝜏) − (𝛾 + 𝜇 + 𝑑)𝜑2(𝑡) − (𝑒
−𝜇𝜏𝛽𝜓1(𝑡 − 𝜏)𝜓2(𝑡 − 𝜏) − (𝛾 + 𝜇 +

+𝑑)𝜓2(𝑡))|  

 

≤ (𝛾 + 𝜇 + 𝑑)|𝜓2(𝑡) − 𝜑2(𝑡)|  

       

≤ 𝐾2|𝜓(𝑡) − 𝜑(𝑡)|,             (3.10) 

              

where 

 

𝐾2 = 𝛾 + 𝜇 + 𝑑.  

 

Applying (3.9) and (3.10), we get 
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‖𝑓(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) − 𝑓(𝜓(𝑡), 𝜓(𝑡 − 𝜏))‖ = ‖𝑓1(𝜑(𝑡)) − 𝑓1(𝜓(𝑡))‖ +

+‖𝑓2(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) − 𝑓2(𝜓(𝑡), 𝜓(𝑡 − 𝜏))‖ ≤ (𝐾1 + 𝐾2)|𝜓 − 𝜑|,  

 

where  

 

 𝐾1 + 𝐾2 = 𝛾 + 𝑑 + 2𝜇 + 𝛽
Ʌ

𝜇
. 

 

3.1.1 Equilibria points and Basic Reproduction Number 

In this section, it will be found the equilibrium points of the system and it will be found the 

basic reproduction number which is the treshold condition for the system. 

 

Theorem 3.2.  

i.   The system (3.2) has always disease free equilibrium 𝐸0 = (𝑆0, 𝐼0), where 

 

𝑆0 =
Ʌ

𝜇
 and  𝐼0 = 0. 

 

ii.  If  
𝑒−𝜇𝜏Ʌ𝛽

(𝜇+𝑑+𝛾)𝜇
≥ 1 then system (3.2) has the endemic equilibrium 𝐸1 = (𝑆

∗, 𝐼∗), where  

 

𝑆∗ =
𝑒𝜇𝜏(𝜇+𝑑+𝛾)

𝛽
 and 𝐼∗ =

𝑒−𝜇𝜏Ʌ

(𝜇+𝑑+𝛾)
−
𝜇

𝛽
. 

 

Proof. Equailizing the each equation of the system (3.2) to the zero, it is obtained that 

 

Ʌ − (𝛽𝐼(𝑡) + 𝜇)𝑆(𝑡) = 0, 

  

𝑒−𝜇𝜏𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − (𝛾 + 𝜇 + 𝑑)𝐼(𝑡) = 0.        (3.11) 

 

Assume that 𝐼(𝑡) = 0, then the disease free equilibrium is obtained in the first equation of 

(3.11) as 

 𝑆(𝑡) =
Ʌ

𝜇
 ,               
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then the disease free equilibrium is 

 

𝐸0 = (
Ʌ

𝜇
, 0).            (3.12) 

 

Now assume that,  𝐼(𝑡) ≠ 0, from the first equation of the system (3.11), it 

follows 

 

𝑆(𝑡) =
Ʌ

𝛽𝐼(𝑡)+𝜇
.            (3.13) 

 

 Putting 𝑆(𝑡) in the second equation of the system (3.11), we get 

 

𝑒−𝜇𝜏𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − (𝛾 + 𝜇 + 𝑑)𝐼(𝑡)  

 

= 𝑒−𝜇𝜏𝛽
Ʌ

𝛽𝐼(𝑡)−𝜇
𝐼(𝑡 − 𝜏) − (𝛾 + 𝜇 + 𝑑)𝐼(𝑡) = 0.  

 

Since 𝐼(𝑡) ≠ 0, then 

 

𝑒−𝜇𝜏𝛽
Ʌ

𝛽𝐼(𝑡)−𝜇
− (𝛾 + 𝜇 + 𝑑) = 0  

 

or 

 

𝑒−𝜇𝜏𝛽Ʌ − (𝛾 + 𝜇 + 𝑑)𝛽𝐼(𝑡) − (𝛾 + 𝜇 + 𝑑)𝜇 = 0,  

 

then 

 

𝐼(𝑡) =
𝑒−𝜇𝜏Ʌ

𝛾+𝜇+𝑑
−
𝜇

𝛽
.           (3.14) 

 

Under (3.11) and (3.14), we get 
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𝑆(𝑡) =
Ʌ

𝛽(
𝑒−𝜇𝜏Ʌ

𝛾+𝜇+𝑑
−
𝜇

𝛽
)+𝜇

=
Ʌ(𝛾+𝜇+𝑑)

𝛽𝑒−𝜇𝜏Ʌ−𝜇(𝛾+𝜇+𝑑)+𝜇(𝛾+𝜇+𝑑)
=
(𝛾+𝜇+𝑑)𝑒𝜇𝜏

𝛽
.  

 

Hence the endemic equilibrium is 

 

𝐸1 = (
𝑒𝜇𝜏(𝜇+𝑑+𝛾)

𝛽
,
𝑒−𝜇𝜏Ʌ

(𝜇+𝑑+𝛾)
−
𝜇

𝛽
).  

 

Since 𝑆∗ =
𝑒𝜇𝜏(𝜇+𝑑+𝛾)

𝛽
≥ 0, then 𝐸1  is biologically meaningfull, when 

 

 𝐼∗ =
𝑒−𝜇𝜏Ʌ

(𝜇+𝑑+𝛾)
−
𝜇

𝛽
≥ 0. 

 

or 

 
𝑒−𝜇𝜏Ʌ𝛽

(𝜇+𝑑+𝛾)𝜇
≥ 1. 

 

Basic reproduction number 𝑅0 is the number of secondary infections caused by one 

infectious individual in a whole susceptible population. With using the second equation of 

the system (3.1) the basic reproduction number is given by, 

 

𝑒−𝜇𝜏𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − (𝛾 + 𝜇 + 𝑑)𝐼(𝑡) < 0  

 

or  

 

 
𝑒−𝜇𝜏𝛽𝑆(𝑡−𝜏)

(𝛾+𝜇+𝑑)
< 1. 

 

The basic reproduction ratio is given at the disease free equilibrium point,  

 

𝑅0,1 =
𝑒−𝜇𝜏𝛽𝑆0

(𝛾+𝜇+𝑑)
=

𝑒−𝜇𝜏Ʌ𝛽

𝜇(𝛾+𝜇+𝑑)
 . 
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3.1.2 Stability analysis 

In this section the stability analysis for both disease free and endemic equilibria are given 

with the method of Lyapunov function. 

 

Theorem 3.3.  The disease free equilibrium 𝐸0 is globally asymptotically stable when 

𝑅0,1 < 1. 

 

Proof. The Lyapunov function is constructed as 

 

𝒱(𝑡) = 𝑒𝜇𝜏𝐼(𝑡) + ∫ 𝛽𝑆(𝑢)𝐼(𝑢)𝑑𝑢
𝑡

𝑡−𝜏
.  

 

Since 𝒱 is nonnegative, to show that disease free equilibrium point 𝐸0 is globally 

asymptotically stable, we only need to show that �̇� negative definite. Actually, 

 

�̇�(𝑡) = 𝑒𝜇𝜏𝐼(̇𝑡) + 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏)     

 

= 𝑒𝜇𝜏[e−μτβS(t − τ)I(t − τ) − (γ + μ + d)𝐼(𝑡)] + 𝛽𝑆(𝑡)𝐼(𝑡)  

−𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏)  

 

= 𝛽𝑆(𝑡)𝐼(𝑡) − (γ + μ + d)𝑒𝜇𝜏𝐼(𝑡).          (3.15) 

 

According form (3.3), we have 𝑆(𝑡) ≤
Ʌ

μ
, replacing this in (3.15), it is obtained 

 

�̇�(𝑡) = 𝛽𝑆(𝑡)𝐼(𝑡) − (𝛾 + 𝜇 + 𝑑)𝑒𝜇𝜏𝐼(𝑡)  

 

≤ 𝛽
Ʌ

𝜇
𝐼(𝑡) − (𝛾 + 𝜇 + 𝑑)𝑒𝜇𝜏𝐼(𝑡).  

 

Therefore, �̇�(𝑡) < 0, when 

 

𝛽
Ʌ

𝜇
𝐼(𝑡) − (𝛾 + 𝜇 + 𝑑)𝑒𝜇𝜏𝐼(𝑡) < 0.  
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Since 𝐼(𝑡) > 0, then 

 

 
𝛽Ʌ 𝑒−𝜇𝜏

𝜇(𝛾+𝜇+𝑑)
< 1.                      (3.16) 

 

The left hand side of  (3.16) is the basic reproduction ratio. Hence, 𝐸0 is globally 

asymptotically stable when 𝑅0,1 < 1. 

 

Theorem 3.4. The endemic equilibrium 𝐸1 is globaly asymptotically stable when 𝑅0,1 > 1 

. 

 

Proof. The Lyapunov function is constructed as 

 

𝒱(𝑡) = 𝑆∗𝑔 (
𝑆(𝑡)

𝑠∗
) + 𝑒𝜇𝜏𝐼∗𝑔 (

𝐼(𝑡)

𝐼∗
) + 𝛽𝑆∗𝐼∗ ∫ 𝑔 (

𝑆(𝑢)𝐼(𝑢)

𝑆∗𝐼∗
)𝑑𝑢

𝑡

𝑡−𝜏
,   

 

where 𝑔(𝑥) defined as 

 

𝑔(𝑥) = 𝑥 − 1 − ln 𝑥. 

 

Since 𝑔(𝑥) is nonnegative function, and 𝐼∗ > 0 when 
𝛽Ʌ 𝑒−𝜇𝜏

𝜇(𝛾+𝜇+𝑑)
> 1, then 𝒱(𝑡) is 

nonnegative, to show that disease free equilibrium point 𝐸1 is globally asymptotically 

stable, we only need to show that �̇� negative definite. Actually, 

 

�̇�(𝑡) = 𝑆∗ (
�̇�(𝑡)

𝑆∗
−
�̇�(𝑡)

𝑆(𝑡)
) + 𝑒𝜇𝜏𝐼∗ (

𝐼̇(𝑡)

𝐼∗
−
𝐼̇(𝑡)

𝐼(𝑡)
) + 𝛽𝑆∗𝐼∗ [

𝑆(𝑡)𝐼(𝑡)

𝑆∗𝐼∗
− 1 −

− ln (
𝑆(𝑡)𝐼(𝑡)

𝑆∗𝐼∗
) −

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝑆∗𝐼∗
+ 1 + ln (

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝑆∗𝐼∗
)]     

  

= (1 −
𝑆∗

𝑠(𝑡)
) (Ʌ − (βI(t) + μ)S(t)) + 𝑒𝜇𝜏 (1 −

𝐼∗

𝐼(𝑡)
) (e−μτβS(t − τ)I(t  

−τ) − (γ + μ + d)𝐼(𝑡)) + 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏)  

−𝛽𝑆∗𝐼∗ (ln (
𝑆(𝑡)𝐼(𝑡)

𝑆∗𝐼∗
) − ln (

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝑆∗𝐼∗
))  



 

 

29 

 

= Ʌ(1 −
𝑆∗

𝑠(𝑡)
) − βI(t)S(t) − μS(t) + βI(t)𝑆∗ + μ𝑆∗ + βS(t − τ)I(t  

− τ) − 𝑒𝜇𝜏(γ + μ + d)𝐼(𝑡) −
βS(t−τ)I(t−τ)

𝐼(𝑡)
𝐼∗ + 𝑒𝜇𝜏(γ + μ + d)𝐼∗  

+𝛽𝑆(𝑡)𝐼(𝑡) − 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − 𝛽𝑆∗𝐼∗ ln (
𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
)  

 

= Ʌ(1 −
𝑆∗

𝑠(𝑡)
) − μS(t) + 𝑆∗μ + (β𝑆∗ − 𝑒𝜇𝜏(γ + μ + d))𝐼(𝑡)   

−𝐼∗ [
βS(t−τ)I(t−τ)

𝐼(𝑡)
− 𝑒𝜇𝜏(γ + μ + d) + 𝛽𝑆∗𝐼∗ ln (

𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
)].     (3.17) 

 

From the second equation of  (3.11), we have 

 

 (β𝑆∗ − 𝑒𝜇𝜏(γ + μ + d))𝐼∗ = 0      

 

since 𝐼∗ ≠ 0, then 

 

 β𝑆∗ − 𝑒𝜇𝜏(γ + μ + d) = 0                       (3.18) 

 

which implies that 

 

𝑒𝜇𝜏(γ + μ + d) =  β𝑆∗.           (3.19) 

 

From the endemic equilibrium is (
𝑒𝜇𝜏(𝜇+𝑑+𝛾)

𝛽
,
𝑒−𝜇𝜏Ʌ

(𝜇+𝑑+𝛾)
−
𝜇

𝛽
), we get 

 

𝐼∗ =
𝑒−𝜇𝜏Ʌ

(𝜇+𝑑+𝛾)
−
𝜇

𝛽
   

 

then 

 

Ʌ = 𝐼∗𝑒𝜇𝜏(𝜇 + 𝑑 + 𝛾) +
𝜇𝑒𝜇𝜏(𝜇+𝑑+𝛾)

𝛽
   

 

so 
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Ʌ = 𝐼∗𝑒𝜇𝜏(𝜇 + 𝑑 + 𝛾) + 𝜇𝑆∗          (3.20) 

 

replacing (3.19) in to (3.20), we get 

 

Ʌ =  β𝑆∗𝐼∗ + 𝜇𝑆∗             (3.21) 

 

using the (3.18), (3.19) and (3.21), system (3.17) can be regarded as 

 

�̇�(𝑡) = (β𝑆∗𝐼∗ + 𝜇𝑆∗) (1 −
𝑆∗

𝑠(𝑡)
) + 𝑆∗μ (1 −

𝑆(𝑡)

𝑆∗
) + (β𝑆∗ −

−𝑒𝜇𝜏(γ + μ + d))𝐼(𝑡) − 𝐼∗ [
βS(t−τ)I(t−τ)

𝐼(𝑡)
− β𝑆∗ + 𝛽𝑆∗𝐼∗ ln (

𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
)]   

 

= 𝐼∗β𝑆∗ − β𝑆∗
𝑆∗

𝑠(𝑡)
𝐼∗ + 𝜇𝑆∗ (2 −

𝑆∗

𝑠(𝑡)
−
𝑆(𝑡)

𝑆∗
) −𝛽𝐼∗𝑆∗ [−1 +

S(t−τ)I(t−τ)

𝐼(𝑡)𝑆∗
+

+ ln (
𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
)]  

 

=  𝜇𝑆∗ (2 −
𝑆∗

𝑠(𝑡)
−
𝑆(𝑡)

𝑆∗
) + 𝛽𝐼∗𝑆∗ [2 −

𝑆∗

𝑠(𝑡)
−
S(t−τ)I(t−τ)

𝐼(𝑡)𝑆∗
− ln

𝑆(𝑡)𝐼(𝑡)

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)
].

             (3.22)

   

Since 

 

𝑔 (
𝑆∗

𝑠(𝑡)
) + 𝑔 (

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑆∗
) =

𝑆∗

𝑠(𝑡)
− 1 − ln

𝑆∗

𝑠(𝑡)
+
𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑆∗
− 1  

− ln
𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑆∗
  

 

= −2 +
𝑆∗

𝑠(𝑡)
+
𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑆∗
+ ln

𝑆(𝑡)

𝑆∗
𝐼(𝑡)𝑆∗

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)
  

 

= −2 +
𝑆∗

𝑠(𝑡)
+
𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑆∗
+ ln

𝑆(𝑡)𝐼(𝑡)

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)
≥ 0        (3.23) 

 

 

and 



 

 

31 

 

2 −
𝑆∗

𝑠(𝑡)
−
𝑆(𝑡)

𝑆∗
= −(𝑆∗ − 𝑆(𝑡))

2
≤ 0.         (3.24) 

 

Hence,  because of the fact that (3.23) and (3.24), the equation (3.22) yields  

 

�̇�(𝑡) = 𝜇𝑆∗ (2 −
𝑆∗

𝑠(𝑡)
−
𝑆(𝑡)

𝑆∗
) − 𝛽𝐼∗𝑆∗ (−2 +

𝑆∗

𝑠(𝑡)
+
S(t−τ)I(t−τ)

𝐼(𝑡)𝑆∗
+

+ ln
𝑆(𝑡)𝐼(𝑡)

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)
) ≤ 0   

 

which completes the proof. 

 

 

3.2 Construction of the Delay SIR Model With Vaccine 

In this section delay SIR model is constructed with a vaccine. Addition to the previous 

model vaccine compartment 𝑉(𝑡) is added and the population 𝑁(𝑡) is divided to four 

compartment. The variables and parameters are positive and their meanings are also given 

in Table 3.2. 

 

Under these assumptions the model is given by a system of ordinary differential equations 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Ʌ − (𝛽𝐼(𝑡) + 𝑟 + 𝜇)𝑆(𝑡), 

  

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑟𝑆(𝑡) − 𝑘𝑉(𝑡)𝐼(𝑡) − (𝜇 + 1 − 𝑘)𝑉(𝑡), 

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏[𝛽𝑆(𝑡 − 𝜏) + 𝑘𝑉(𝑡 − 𝜏)]𝐼(𝑡 − 𝜏) − (𝛾 + 𝜇 + 𝑑)𝐼(𝑡),  (3.25) 

 

𝑑𝑅(𝑡)

𝑑𝑡
= (1 − 𝑘)𝑉(𝑡) + 𝛾𝐼(𝑡) − 𝜇𝑅(𝑡),  

 

with the initial conditions 

𝑆(0) ≥ 0, 𝑉(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅(0) ≥ 0 .  
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    Table 3.2: Variables and parameters 

 

       Parameter  Description  

        Ʌ   Recruitment of individulas 

       
1

μ
    Avarage time of life expectance 

       β   Transmission coefficient of susceptible individuals  

to the Infected compartment 

         
1

𝛄
   Avarage infection period 

        d   Infection induced death rate 

         𝜏    Incubation period  

        𝑒−μ𝜏  Probability that an individual in the incubation period  

has survived 

        r   Rate of vaccination  

        k   Transmission coefficient of vaccinated individuals V to I 

 

 

Using 

 

𝑁(𝑡) = 𝑆(𝑡) + 𝑉(𝑡) + 𝐼(𝑡) + 𝑅(𝑡)   

 

we can obtain 𝑅(𝑡) by  

 

 𝑁(𝑡) − 𝑆(𝑡) − 𝑉(𝑡) − 𝐼(𝑡).   

 

Therefore, it is sufficient to study with the following system 

 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Ʌ − (𝛽𝐼(𝑡) + 𝜆)𝑆(𝑡),  
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𝑑𝑉(𝑡)

𝑑𝑡
= 𝑟𝑆(𝑡) + 𝑘𝑉(𝑡)𝐼(𝑡) − (𝜇 + 1 − 𝑘)𝑉(𝑡),       (3.26) 

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏[𝛽𝑆(𝑡 − 𝜏) + 𝑘𝑉(𝑡 − 𝜏)]𝐼(𝑡 − 𝜏) − 𝛼𝐼(𝑡),         

 

where 𝜆 = 𝑟 + 𝜇 and 𝛼 = 𝛾 + 𝜇 + 𝑑. Similary with the previous section, following 

theorem establishes the feasible region of the system (3.26). 

 

Theorem 3.5. The solution of the system (3.26) exists, unique, nonnegative and bounded 

with the feasible region  

 

𝛺 = {(𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡)) ∈ 𝐶+
3: 𝐻 = 𝑆(𝑡) + 𝑉(𝑡) + 𝑒𝜇𝜏𝐼(𝑡 + 𝜏) ≤

Ʌ

𝜇
}  

 

Proof. For nonnegativity of solution of the system (3.26), it is needed to show that the 

solution of  each equation of the system is nonnegative. 

  

First, taking the first equation of the system (3.2), we get 

 

𝑑𝑆

𝑑𝑡
= Ʌ − (𝛽𝐼(𝑡) + 𝜆)𝑆(𝑡) ≥ −(𝛽𝐼(𝑡) + 𝜆)𝑆(𝑡)  

 

or 

 

𝑑𝑆

𝑑𝑡
+ (𝛽𝐼(𝑡) + 𝜆)𝑆(𝑡) ≥ 0.                      (3.27) 

 

The integrating factor 𝑝(𝑡) of the equation (3.27) 

 

𝑝(𝑡) = 𝑒∫ (𝛽𝐼(𝑢)+𝜆)
𝑡
0  𝑑𝑢.  

 

Therefore, from (3.27) it follows 
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𝑒∫ (𝛽𝐼(𝑢)+𝜆)
𝑡
0  𝑑𝑢 𝑑𝑆

𝑑𝑡
+ 𝑒∫ (𝛽𝐼(𝑢)+𝜆)

𝑡
0  𝑑𝑢(𝛽𝐼(𝑡) + 𝜆)𝑆(𝑡) ≥ 0  

 

or 

 

𝑑

𝑑𝑡
[𝑆(𝑡)𝑒∫ (𝛽𝐼(𝑢)+𝜆)

𝑡
0  𝑑𝑢] ≥ 0.  

 

Taking the integral with respect to s from 0 to 𝑡, we get 

 

𝑆(𝑡)𝑒∫ (𝛽𝐼(𝑢)+𝜆)
𝑡
0  𝑑𝑢]0

𝑡 ≥ 0  

 

or 

 

𝑆(𝑡)𝑒∫ (𝛽𝐼(𝑢)+𝜆)
𝑡
0  𝑑𝑢 − 𝑆(0) ≥ 0  

 

or 

𝑆(𝑡) ≥ 𝑆(0)𝑒−∫ (𝛽𝐼(𝑢)+𝜆)
𝑡
0  𝑑𝑢.  

 

From the second equation of the system (3.26), it follows that 

 

𝑑𝑉(𝑡)

𝑑𝑡
= 𝑟𝑆(𝑡) + 𝑘𝑉(𝑡)𝐼(𝑡) − (𝜇 + 1 − 𝑘)𝑉(𝑡) ≥ −(𝜇 + 1 − 𝑘)𝑉(𝑡)  

 

or 

 

𝑑𝑉(𝑡)

𝑑𝑡
≥ −(𝜇 + 1 − 𝑘)𝑉(𝑡)  

 

or   

 

𝑑𝑉(𝑡)

𝑑𝑡
+ (𝜇 + 1 − 𝑘)𝑉(𝑡) ≥ 0.         (3.28) 
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The integrating factor 𝑝(𝑡) of  (3.28) is 

 

𝑝(𝑡) = 𝑒∫ (𝜇+1−𝑘)
𝑡
0  𝑑𝑢 = 𝑒(𝜇+1−𝑘)𝑡 .         

 

Therefore, from (3.28) it follows 

 

𝑒(𝜇+1−𝑘)𝑡 
𝑑𝑉(𝑡)

𝑑𝑡
+ 𝑒(𝜇+1−𝑘)𝑡 (𝛾 + 𝜇 + 𝑑)𝑉(𝑡) ≥ 0.   

 

or  

 

𝑑

𝑑𝑡
[𝑒(𝜇+1−𝑘)𝑡 𝑉(𝑡)] ≥ 0.   

 

Taking the integral with respect to s from 0 to 𝑡, we get 

 

𝑒(𝜇+1−𝑘)𝑠 𝑉(𝑡)]0
𝑡 ≥ 0  

 

or 

𝑉(𝑡) ≥ 𝑉(0)𝑒−(𝜇+1−𝑘)𝑡 .  

 

Finally, from the third equation of the system (3.26), we get 

 

𝑑𝐼(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏[𝛽𝑆(𝑡 − 𝜏) + 𝑘𝑉(𝑡 − 𝜏)]𝐼(𝑡 − 𝜏) − 𝛼𝐼(𝑡) ≥ −𝛼𝐼(𝑡)  

or       

𝑑𝐼(𝑡)

𝑑𝑡
≥ −𝛼𝐼(𝑡)                       (3.29) 

 

or 

 

𝑑𝐼(𝑡)

𝑑𝑡
+ 𝛼𝐼(𝑡) ≥ 0 .                  (3.30) 
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The integrating factor 𝑝(𝑡) of  (3.30) is 

 

𝑝(𝑡) = 𝑒∫ 𝛼
𝑡
0  𝑑𝑢 = 𝑒𝛼𝑡 .  

  

Therefore from (3.30) it follows 

 

𝑒𝛼𝑡 
𝑑𝐼(𝑡)

𝑑𝑡
+ 𝑒𝛼𝑡 𝛼𝐼(𝑡) ≥ 0.   

 

or  

 

𝑑

𝑑𝑡
[𝑒𝛼𝑡 𝐼(𝑡)] ≥ 0.  

 

Taking integral with respect to s from 0 to 𝑡, we get 

 

𝐼(𝑡) ≥ 𝐼(0)𝑒−𝛼𝑡   

 

which is nonnegative. Hence the solution of the system (3.26) is nonnegative. 

 

For the proof of boundedness of the system (3.26), let us define a function  

 

𝐻 = 𝑆(𝑡) + 𝑉(𝑡) + 𝑒𝜇𝜏𝐼(𝑡 + 𝜏).  

 

Therefore 

 

�̇� = �̇�(𝑡) + �̇�(𝑡) + 𝑒𝜇𝜏𝐼(̇𝑡 + 𝜏)  

 

= Ʌ − (𝛽𝐼(𝑡) + 𝜆)𝑆(𝑡) + 𝑟𝑆(𝑡) + 𝑘𝑉(𝑡)𝐼(𝑡) − (𝜇 + 1 − 𝑘)𝑉(𝑡) +

+𝑒𝜇𝜏[𝑒−𝜇𝜏[𝛽𝑆(𝑡) + 𝑘𝑉(𝑡)]𝐼(𝑡) − 𝛼𝐼(𝑡 + 𝜏)]  

= Ʌ − 𝜇𝑆(𝑡) − (𝜇 + 1 − 𝑘)𝑉(𝑡) − 𝑒𝜇𝜏𝛼𝐼(𝑡 + 𝜏)  

 



 

 

37 

 

≤ Ʌ − 𝜇𝑆(𝑡) − 𝜇𝑉(𝑡) − 𝑒𝜇𝜏𝜇𝐼(𝑡 + 𝜏)  

 

= Ʌ − 𝜇𝐻(𝑡).  

 

Hence, the solution of the system, is obtained from 

 

�̇� ≤ Ʌ − 𝜇𝐻(𝑡).            (3.31) 

 

The integrating factor 𝑝(𝑡) of (3.31) is  

 

𝑝(𝑡) = 𝑒𝜇𝑡.  

 

Therefore, from (3.31) it follows 

 

𝑒𝜇𝑡�̇�(𝑡) + 𝑒𝜇𝑡𝜇𝐻(𝑡) ≤ 𝑒𝜇𝑡Ʌ  

 

or 

 

𝑑

𝑑𝑡
[𝑒𝜇𝑡𝐻(𝑡)] ≤ 𝑒𝜇𝑡Ʌ.  

 

Taking the integral with respect to 𝑠 from 0 to 𝑡, we get 

 

𝑒𝜇𝑠𝐻(𝑡)|0
𝑡 ≥

Ʌ

𝜇
𝑒𝜇𝑠|

0

𝑡

  

 

or 

𝑒𝜇𝑡𝐻(𝑡) − 𝐻(0) ≤
Ʌ

𝜇
𝑒𝜇𝑡 −

Ʌ

𝜇
  

 

or 

𝐻(𝑡) ≤ 𝑒−𝜇𝑡𝐻(0) +
Ʌ

𝜇
(1 − 𝑒−𝜇𝑡) ≤ 𝐻(0)𝑒−𝜇𝑡 +

Ʌ

𝜇
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or 

 

 𝐻(𝑡) ≤
Ʌ

𝜇
+ 𝐻(0)𝑒−𝜇𝑡.  

 

Then 

 

lim
𝑡→∞

𝐻(𝑡) ≤ lim
𝑡→∞

 (
Ʌ

𝜇
+ 𝐻(0)𝑒−𝜇𝑡) =

Ʌ

𝜇
. 

  

The positive invariant region is obtained that 

 

𝛺 = {(𝑆(𝑡), 𝑉(𝑡), 𝐼(𝑡)) ∈ 𝐶+
2: 𝐻 = 𝑆(𝑡) + 𝑉(𝑡) + 𝑒𝜇𝜏𝐼(𝑡 + 𝜏) ≤

Ʌ

𝜇
}.    

 

Finally, we will show the uniqueness solution of the system (3.26), we define a vector 

function 𝑓 as follows 

 

𝑓(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) = (

𝑓1(𝜑(𝑡))

𝑓2(𝜑(𝑡))

𝑓2(𝜑(𝑡), 𝜑(𝑡 − 𝜏))

) ,   𝜑(𝑡) = (

𝜑1(𝑡)

𝜑2(𝑡)

𝜑2(𝑡)
),   

 

where 𝑓1(𝜑(𝑡)) = Ʌ − (β𝜑3(t) + λ)𝜑1(t), 𝑓2(𝜑(𝑡)) = r𝜑1(t) + k𝜑2(t)𝜑3(t) − ( μ +

+1 − k)𝜑2(t) and 𝑓3(𝜑(𝑡)) = e
−μτ[β𝜑1(𝑡 − 𝜏) + 𝑘𝜑2(𝑡 − 𝜏)]𝜑3(𝑡 − 𝜏) − α𝜑3(𝑡) are 

continuous. In order to say the system (3.26) has a unique solution it is sufficient to show 

that the Lipschitz condition for 𝑓(𝜑(𝑡), 𝜑(𝑡 − 𝜏)), with respect to 𝜑(𝑡). 

 

For 𝜑 = (𝜑1, 𝜑2, 𝜑3) and 𝜓 = (𝜓1, 𝜓2, 𝜓3), and assuming that  

 

‖𝜓 − 𝜑‖ = |𝜓3 − 𝜑3| + |𝜓2 − 𝜑2| + |𝜓1 − 𝜑1|.       (3.32)  

 

We have that 
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‖𝑓1(𝜑(𝑡)) − 𝑓1(𝜓(𝑡))‖ = |(Ʌ − (𝛽𝜑3(𝑡) + λ)𝜑1(𝑡)) − (Ʌ −

(−𝛽𝜓3(𝑡) + λ)𝜓1(𝑡))|  

 

≤ 𝛽|𝜓1(𝑡)𝜓3(𝑡) − 𝜑1(𝑡)𝜑3(𝑡)| + λ|𝜓1(𝑡) − 𝜑1(𝑡)|   

 

= 𝛽|𝜓1(𝑡)𝜓3(𝑡) − 𝜓1(𝑡)𝜑3(𝑡) + 𝜓1(𝑡)𝜑3(𝑡) − 𝜑1(𝑡)𝜑3(𝑡)| +

+λ|𝜓1(𝑡) − 𝜑1(𝑡)|  

 

≤ 𝛽|𝜓1(𝑡)||𝜓3(𝑡) − 𝜑3(𝑡)| + 𝛽|𝜑3(𝑡)||𝜓1(𝑡) − 𝜑1(𝑡)| + λ|𝜓1(𝑡) −

−𝜑1(𝑡)|  

 

≤ 𝐾1(|𝜓1(𝑡) − 𝜑1(𝑡)| + |𝜓3(𝑡) − 𝜑3(𝑡)|) ≤ 𝐾1|𝜓(𝑡) − 𝜑(𝑡)|,        

 

where 

 

𝐾1 = 𝑚𝑎𝑥{λ + 𝛽|𝜑3|, 𝛽|𝜓1(𝑡)|}.  

 

From the invariant set  𝜑1 ≤
Ʌ

𝜇
, 𝜑3 ≤

Ʌ

𝜇
  it follows 

 

𝐾1 = λ + 𝛽
Ʌ

𝜇
 .       (3.33) 

  

Furthermore, one can derive that 

 

‖𝑓2(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) − 𝑓2(𝜓(𝑡), 𝜓(𝑡 − 𝜏))‖ = |r𝜑1(t) + k𝜑2(t)𝜑3(t) −

−(μ + 1 − k)𝜑2(t) − r𝜓1(t) − k𝜓2(t)𝜓3(t) + (μ + 1 − k)𝜓2(t)|  

 

≤ r|𝜑1(𝑡) − 𝜓1(𝑡)| + 𝑘|𝜑2(𝑡)𝜑3(𝑡) − 𝜓2(𝑡)𝜓3(𝑡)| + (μ + 1 −

−k)|𝜓2(𝑡) − 𝜑2(𝑡)|     
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≤ r|𝜑1(𝑡) − 𝜓1(𝑡)| + 𝑘|𝜑2(𝑡)𝜑3(𝑡) − 𝜑2(𝑡)𝜓3(𝑡) + 𝜑2(𝑡)𝜓3(𝑡) −

−𝜓2(𝑡)𝜓3(𝑡)| + (μ + 1 − k)|𝜓2(𝑡) − 𝜑2(𝑡)|   

 

≤ r|𝜑1(𝑡) − 𝜓1(𝑡)| + 𝑘|𝜑2(𝑡)||𝜑3(𝑡) − 𝜓3(𝑡)| + 𝑘|𝜓3(𝑡)||𝜑2(𝑡) −

−𝜓2(𝑡)| + (μ + 1 − k)|𝜓2(𝑡) − 𝜑2(𝑡)| ≤ 𝐾2|𝜓(𝑡) − 𝜑(𝑡)|,   

 

where 

 

𝐾2 = 𝑚𝑎𝑥{r, 𝑘|𝜓3(𝑡)| + (μ + 1 − k), 𝑘|𝜑2(𝑡)|}.  

 

From the invariant set  𝜑2 ≤
Ʌ

𝜇
, 𝜑3 ≤

Ʌ

𝜇
  it follows 

 

𝐾2 = 𝑘
Ʌ

𝜇
+ (μ + 1 − k) .          (3.34) 

 

Finally, using the third equation of the system (3.26), we get 

 

‖𝑓3(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) − 𝑓2(𝜓(𝑡), 𝜓(𝑡 − 𝜏))‖ = |𝑒
−𝜇𝜏(𝛽𝜑1(𝑡 − 𝜏)𝜑3(𝑡 −

−𝜏) + 𝑘𝜑2(𝑡 − 𝜏)𝜑3(𝑡 − −𝜏)) − 𝛼𝜑3(𝑡) − (𝑒
−𝜇𝜏(𝛽𝜓1(𝑡 − 𝜏)𝜓3(𝑡 −

−𝜏) + 𝑘𝜓2(𝑡 − 𝜏)𝜓3(𝑡 − −𝜏)) − 𝛼𝜓3(𝑡))|  

 

≤ 𝛼|𝜓3(𝑡) − 𝜑3(𝑡)| ≤ 𝐾3|𝜓(𝑡) − 𝜑(𝑡)|,           (3.35) 

              

where 

 

𝐾3 = 𝛼.  

 

Applying (3.33), (3.34) and (3.35), we get 

 

‖𝑓(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) − 𝑓(𝜓(𝑡), 𝜓(𝑡 − 𝜏))‖ = ‖𝑓1(𝜑(𝑡)) − 𝑓1(𝜓(𝑡))‖ +

+‖𝑓2(𝜑(𝑡)) − 𝑓2(𝜓(𝑡))‖ + ‖𝑓3(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) − 𝑓3(𝜓(𝑡), 𝜓(𝑡 − 𝜏))‖  
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≤ (𝐾1 + 𝐾2 + 𝐾3)|𝜓 − 𝜑|,  

 

where 

 

 𝐾1 + 𝐾2 + 𝐾3 = (𝑘 + 𝛽)
Ʌ

𝜇
+ μ + 1 − k + λ +  𝛼  

 

which completes the proof of Theorem 3.5.   

 

 

3.2.1 Equilibrium points and basic reproduction ratio 

With equalizing the each equation of the system (3.26) to the zero, then system 

(3.6) is recomposed as  

 

Ʌ − (βI(t) + λ)S(t) = 0,  

 

rS(t) + kV(t)I(t) − (μ + 1 − k)V(t) = 0,        (3.36) 

 

e−μτ[βS(t − τ) + 𝑘𝑉(t − τ)]I(t − τ) − 𝛼𝐼 = 0.   

 

The equilibrium points are given with the following theorem. 

 

Theorem 3.6.  

i. The system (3.26) has always disease free equilibrium 𝐸0 = (𝑆0, 𝑉0, 𝐼0), where 

 

𝐸0 = (
Ʌ

𝜇
,

𝑟Ʌ

λ(𝜇+1−𝑘)
, 0).  

 

ii. When 
𝑒−𝜇𝜏Ʌ

𝛼𝜆
(𝛽 +

𝑘𝑟

𝜇+1−𝑘
) ≥ 1 the system (3.26) has endemic equilibrium                         

𝐸1 = (𝑆
∗, 𝑉∗, 𝐼∗), where 
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 𝐸1 = (
Ʌ

𝛽𝐼∗+λ
,

Ʌ𝑟

[𝑘𝐼∗+(𝜇+1−𝑘)](𝛽𝐼∗+λ)
, 𝐼∗).  

  

𝐼∗ is the solution of the following equation 

 

𝐴𝐼∗
2
+ 𝐵𝐼∗ + 𝐶 = 0,  

 

when 

 

𝐴 = 𝛼𝑘𝛽𝑒𝜇𝜏 , 𝐵 = 𝛼𝑒𝜇𝜏[𝑘λ + 𝛽(𝜇 + 1 − 𝑘)] − 𝛽Ʌ𝑘, 𝐶 =  λ(𝜇 + 1 −

−𝑘)𝛼eμτ −𝑘𝑟Ʌ − Ʌ𝛽(𝜇 + 𝑘 − 1).  

 

Proof. For the disease free equilibrium, 𝐼0 = 0, then the system (3.36) can be regarded as 

 

Ʌ − λS(t) = 0,  

 

rS(t) − (μ + 1 − k)V(t) = 0.         (3.37) 

 

From the first equation of the system (3.36), 𝑆0 is obtained as 

 

S0 =
Ʌ

λ
.             (3.38) 

 

Replacing (3.38) into the second equation of the system (3.37), we get 

 

r
Ʌ

λ
 − (μ + 1 − k)V(t) = 0   

 

or  

 

V0 =
rɅ

λ(μ+1−k)
 .            (3.39) 
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In conclusion, from (3.38) and (3.39), the disease free equilibrium of the system (3.26) is 

obtained as 

(
Ʌ

λ
,

rɅ

λ(μ+1−k)
, 0).  

 

Now, assuming that 𝐼 ≠ 0, from the first and second equation of the system (3.36), it is 

easy to obtained that 

 

𝑆∗ =
Ʌ

𝛽𝐼∗+λ
 and 𝑉∗ =

Ʌ𝑟

[𝑘𝐼∗+(𝜇+1−𝑘)](𝛽𝐼∗+λ)
.  

 

Using 𝑆∗and 𝑉∗ and the third equation of the system (3.36), we get 

 

e−μτ [β
Ʌ

𝛽𝐼∗+λ
+

𝑘Ʌ𝑟

[𝑘𝐼∗+(𝜇+1−𝑘)](𝛽𝐼∗+λ)
 ] − 𝛼 = 0  

 

or 

 

βɅ[𝑘𝐼∗ + (𝜇 + 1 − 𝑘)] + Ʌ𝑘𝑟 − 𝛼eμτ[𝑘𝐼∗ + (𝜇 + 1 − 𝑘)](𝛽𝐼∗  

       +λ) = 0  

 

or 

 

 

𝛼𝛽𝑘eμτ𝐼∗2 + [𝛼eμτ(𝛽(𝜇 + 1 − 𝑘) + λk) − 𝛽Ʌ𝑘]𝐼∗  

    +λ(𝜇 + 1 − 𝑘)𝛼eμτ − Ʌ𝑘𝑟 − Ʌ 𝛽(𝜇 + 1 − 𝑘) = 0.    

 

Let 

 

𝐴 = 𝛼𝛽𝑘eμτ, 𝐵 = 𝛼𝑒𝜇𝜏[λk + 𝛽(𝜇 + 1 − 𝑘)] − Ʌ𝛽𝑘,  

 

𝐶 =  λ(𝜇 + 1 − 𝑘)𝛼eμτ − 𝑘𝑟Ʌ − Ʌ𝛽(𝜇 + 𝑘 − 1).  
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Then, 𝐼∗is the solution of 

 

 𝐴𝐼∗
2
+ 𝐵𝐼∗ + 𝐶 = 0.          (3.40) 

 

Finally, we need to show that (3. 40) has a unique positive  solution. First assume that  

𝐶 ≥ 0, then  

 

𝛼𝜆(𝜇 + 1 − 𝑘)𝑒𝜇𝜏 − 𝑘𝑟Ʌ − Ʌ𝛽(𝜇 + 𝑘 − 1) ≥ 0  

 

or 

 

𝛼𝜆(𝜇 + 1 − 𝑘)𝑒𝜇𝜏 ≥ 𝑘𝑟Ʌ + Ʌ𝛽(𝜇 + 𝑘 − 1)  

 

or  

 

𝛼 ≥
𝑘𝑟Ʌ+Ʌ𝛽(𝜇+𝑘−1)

𝜆(𝜇+1−𝑘)
𝑒−𝜇𝜏.                                 (3.41) 

 

When 𝐶 ≥ 0, the equation (3.40) has positive solution if 𝐵 < 0. Otherwise (if 𝐵 ≥ 0) the 

equation (3.49) has no positive root. But when 𝐵 ≤ 0, we get 

 

𝛼𝑒𝜇𝜏[𝜆𝑘 + 𝛽(𝜇 + 1 − 𝑘)] − Ʌ𝛽𝑘 ≤ 0  

 

or 

 

𝛼𝑒𝜇𝜏[𝜆𝑘 + 𝛽(𝜇 + 1 − 𝑘)] ≤ 𝑘𝛽Ʌ  

 

or 

 

𝛼 ≤
𝑘𝛽Ʌ𝑒−𝜇𝜏

[𝜆𝑘+𝛽(𝜇+1−𝑘)]
 .                         (3.42) 
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From (3.41) and (3.42), it follows that 

𝑘𝛽Ʌ𝑒−𝜇𝜏

[𝜆𝑘+𝛽(𝜇+1−𝑘)]
≥ 𝛼 ≥

𝑘𝑟Ʌ+Ʌ𝛽(𝜇+𝑘−1)

𝜆(𝜇+1−𝑘)
𝑒−𝜇𝜏  

 

or 

 

𝑘𝛽Ʌ𝜆(𝜇 + 1 − 𝑘) ≥ [𝑘𝑟Ʌ + Ʌ𝛽(𝜇 + 𝑘 − 1)][𝜆𝑘 + 𝛽(𝜇 + 1 − 𝑘)]  

 

or 

 

𝑘𝛽Ʌ𝜆(𝜇 + 1 − 𝑘) ≥ 𝑘2𝑟Ʌ𝜆 + 𝑘𝑟Ʌ𝛽(𝜇 + 𝑘 − 1) + Ʌ𝛽𝜆𝑘(𝜇 + 𝑘  

−1) + Ʌ𝛽2(𝜇 + 𝑘 − 1)2  

 

or 

 

𝑘2𝑟Ʌ𝜆 + 𝑘𝑟Ʌ𝛽(𝜇 + 𝑘 − 1) + Ʌ𝛽2(𝜇 + 𝑘 − 1)2 ≤ 0.  

 

Since the 𝜇 + 𝑘 − 1 > 0, therefore the left side of the above inequality always positive 

which is a contradiction. Hence, when 𝐶 > 0 the equation (3.40) has no positive solution. 

Therefore 𝐶 must be less than zero. Then we get 

 

𝛼𝜆(𝜇 + 1 − 𝑘)𝑒𝜇𝜏 − 𝑘𝑟Ʌ − Ʌ𝛽(𝜇 + 𝑘 − 1) < 0  

 

which means that   

 

𝛼𝜆(𝜇+1−𝑘)𝑒𝜇𝜏

𝑘𝑟Ʌ+Ʌ𝛽(𝜇+𝑘−1)
< 1.  

 

Hence, if 
𝛼𝜆(𝜇+1−𝑘)𝑒𝜇𝜏

𝑘𝑟Ʌ+Ʌ𝛽(𝜇+𝑘−1)
< 1 is satisfied, then the system (3.26) has unique endemic 

equilibrium   

 

𝐸1 = (
Ʌ

𝛽𝐼∗+λ
,

Ʌ𝑟

[𝑘𝐼∗+(𝜇+1−𝑘)](𝛽𝐼∗+λ)
, 𝐼∗).  
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Here 𝐼∗ is the solution of the following equation 

 

𝐴𝐼∗
2
+ 𝐵𝐼∗ + 𝐶 = 0,  

 

where 

 

𝐴 = 𝛼𝑘𝛽𝑒𝜇𝜏 , 𝐵 = 𝛼𝑒𝜇𝜏[𝑘𝜆 + 𝛽(𝜇 + 1 − 𝑘)] − 𝛽Ʌ𝑘,   

 

 𝐶 =  𝜆(𝜇 + 1 − 𝑘)𝛼𝑒𝜇𝜏 − 𝑘𝑟Ʌ − Ʌ𝛽(𝜇 + 𝑘 − 1).   

 

 

We define the basic reproduction ratio when 𝐼 < 0 at the disease free equilibrium. 

For 𝐼 < 0, we have that 

 

𝑒−𝜇𝜏[𝛽𝑆(𝑡 − 𝜏) + 𝑘𝑉(𝑡 − 𝜏)]𝐼(𝑡 − 𝜏) − 𝛼𝐼 < 0  

 

or 

     
𝑒−𝜇𝜏Ʌ[𝛽𝑆(𝑡−𝜏)+𝑘𝑉(𝑡−𝜏)]

(𝛾+𝜇+𝑑)
< 0.       (3.43)  

    

Substituting the disease free equilibrium into (3.43), the basic reproduction is 

obtained as 

 

𝑅0,2 =
e−μτɅ

αλ
[β +

𝑘𝑟

𝜇+1−𝑘
].  

 

 

3.2.2 Global stability analysis 

In this section, we study the global properties of the equilibria.  We  use Lyapunov 

function to show the global stabilities. 
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Theorem 3.7.  The Disease free equilibrium E0 is globally asymptotically stable if  R0,2 ≪

< 1. 

Proof. Consider the Lyapunov function 

𝒱 = 𝑆0𝑔 (
𝑠(𝑡)

𝑆0
) + 𝑉0𝑔 (

𝑉(𝑡)

𝑉0
) + 𝑒𝜇𝜏 𝐼1(𝑡) + ∫ [𝛽𝐼(𝑢)𝑆(𝑢)

𝑡

𝑡−𝜏
  

+𝑘𝐼(𝑢)𝑉(𝑢)]𝑑𝑢.  

 

Here, 𝑔(𝑥) = 𝑥 − 1 − ln 𝑥. Since 𝑔(𝑥) is positive function on ℝ+. Taking the 

derivative of 𝒱, we get 

  

�̇� = (1 −
𝑆0

S(t)
) �̇� + (1 −

𝑉0

V(𝑡)
) V̇ + 𝑒𝜇𝜏𝐼(̇𝑡) + (kV(𝑡) + βS(𝑡))I(𝑡)  

−(kV(𝑡 − 𝜏) + βS(𝑡 − 𝜏))I(𝑡 − 𝜏)  

 

= (1 −
𝑆0

S(t)
) (Ʌ − (βI(t) + λ)S(t) ) + (1 −

𝑉0

V(𝑡)
) (rS(t) − kV(t)I(t) 

−(μ + 1 − k)V(t)) + 𝑒𝜇𝜏(e−μτ[βS(t − τ) + 𝑘𝑉(t − τ)]I(t − τ)  

−α𝐼(𝑡)) + (kV(𝑡) + βS(𝑡))I(𝑡) − (kV(𝑡 − 𝜏) + βS(𝑡 − 𝜏))I(𝑡 − 𝜏)   

  

= Ʌ − Ʌ
𝑆0

S(t)
− (βI(t) + λ)S(t) + (βI(t) + λ)𝑆0 +  rS(t) − kV(t)I(t)  

−(μ + 1 − k)V(t) − rS(t)
𝑉0

V(𝑡)
+ (kI(t) + (μ + 1 − k))𝑉0  

+[βS(t − τ) + 𝑘𝑉(t − τ)]I(t − τ) − α𝐼(𝑡)𝑒𝜇𝜏 + (kV(𝑡) + βS(𝑡))I(𝑡)   

−(kV(𝑡 − 𝜏) + βS(𝑡 − 𝜏))I(𝑡 − 𝜏)   

 

= Ʌ(1 −
𝑆0

S(t)
) − λS(t) + (βI(t) + λ)𝑆0 +  rS(t) − (μ + 1 − k)V(t)  

−rS(t)
𝑉0

V(𝑡)
+ (kI(t) + (μ + 1 − k))𝑉0 +−α𝐼(𝑡)𝑒𝜇𝜏.       (3.44) 

 

Since  λ = r + μ and from the disease free equilibrium point, we have 

 

𝑆0 =
Ʌ

λ
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or 

 

Ʌ = (r + μ)𝑆0                       (3.45) 

 

and 

 

𝑉0 =
rɅ

λ(μ+1−k)
  

 

or 

 

(μ + 1 − k) =
rɅ

λ𝑉0
.               (3.46) 

 

Replacing (3.45) in to (3.46), we get 

 

(μ + 1 − k) =
r

𝑉0
𝑆0.                (3.47) 

 

Using the (3.44) and (3.45), (3.47) can be regarded as 

 

�̇� = (r + μ)𝑆0 (1 −
𝑆0

S(t)
) − (r + μ)S(t) + (βI(t) + (r + μ))𝑆0  

+ rS(t) −
r

𝑉0
𝑆0V(t) − rS(t)

𝑉0

V(𝑡)
+ (kI(t) +

r

𝑉0
𝑆0) 𝑉

0 − α𝐼(𝑡)𝑒𝜇𝜏  

 

= μ𝑆0 (1 −
𝑆0

S(t)
) + 𝑟𝑆0 (1 −

𝑆0

S(t)
) − rS(t) − μS(t) + r𝑆0 + μ𝑆0  

 +βI(t)𝑆0 +  rS(t) −
r

𝑉0
𝑆0V(t) − rS(t)

𝑉0

V(𝑡)
+ kI(t)𝑉0 +

r

𝑉0
𝑆0𝑉

0 

−α𝐼(𝑡)𝑒𝜇𝜏  
 

= μ𝑆0 (2 −
𝑆0

S(t)
−
S(t)

𝑆0
) + 𝑟𝑆0 (3 −

𝑆0

S(t)
−
V(t)

𝑉0
−
S(t)

𝑆0

𝑉0

V(𝑡)
) + 𝐼(𝑡)(k𝑉0  

+β𝑆0 − α𝑒
𝜇𝜏).                (3.48) 

 

 

Since we have that 
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 2 −
𝑆0

S(t)
−
S(t)

𝑆0
= −

(𝑆0−S(t))
2

𝑆0S(t)
< 0.                    (3.49) 

 

We will prove that 

 

 

 3 −
𝑆0

S(t)
−
V(t)

𝑉0
−
S(t)

𝑆0

𝑉0

V(𝑡)
< 0.         (3.50) 

 

      

We assume 
𝑆0

S(t)
= 𝑥, 

V(t)

𝑉0
= 𝑦, then 

S(t)

𝑆0

𝑉0

V(𝑡)
=
1

𝑥

1

𝑦
 , from the arithmetic and geometric 

meaning of 𝑥, 𝑦 and 
1

𝑥

1

𝑦
, we have 

 

𝑥+𝑦+
1

𝑥
 
1

𝑦

3
> √𝑥𝑦

1

𝑥

1

𝑦

3
⇒ 𝑥 + 𝑦 +

1

𝑥

1

𝑦
> 3.  

  

From that it follows (3.50). 

 

 3 −
𝑆0

S(t)
−
V(t)

𝑉0
−

𝑉0

V(𝑡)
< 0.           

 

From the fact that (3.49) and (3.50), to satisfied �̇� < 0, we need to satisfied  

 

 

  K𝑉0 + β𝑆0 − α𝑒
𝜇𝜏 < 0 

 

or 

  
k𝑉0+β𝑆0

α
𝑒−𝜇𝜏 = 𝑅0 < 1  

 

 

Hence 𝐸0 is globally asymptotically stable iff  𝑅0 < 1. 
 

 

Theorem 3.8. The endemic equilibrium 𝐸1 is globaly asymptotically stable when 𝑅0,2 > 1. 

 

Proof. The Lyapunov function is constructed as 
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𝒱(𝑡) = 𝑆∗𝑔 (
𝑆(𝑡)

𝑠∗
) + 𝑉∗𝑔 (

𝑉(𝑡)

𝑉∗
) + 𝑒𝜇𝜏𝐼∗𝑔 (

𝐼(𝑡)

𝐼∗
)  

+∫ (𝛽𝑆∗𝐼∗𝑔 (
𝑆(𝑢)𝐼(𝑢)

𝑆∗𝐼∗
) + 𝑘𝑉∗𝐼∗𝑔 (

𝑉(𝑢)𝐼(𝑢)

𝑉∗𝐼∗
)) 𝑑𝑢

𝑡

𝑡−𝜏
,  

 

where 𝑔(𝑥) defined as 

 

𝑔(𝑥) = 𝑥 − 1 − ln 𝑥. 

 

Since, 𝑔(𝑥) is nonnegative function,  𝒱(𝑡) is nonnegative, to show that disease 

free equilibrium point 𝐸1 is globally asymptotically stable, we only need to show 

that �̇� negative definite. Actually, 

 

�̇�(𝑡) = 𝑆∗ (
�̇�(𝑡)

𝑆∗
−
�̇�(𝑡)

𝑆(𝑡)
) + 𝑉∗ (

�̇�(𝑡)

𝑉∗
−
�̇�(𝑡)

𝑉(𝑡)
) + 𝑒𝜇𝜏𝐼∗ (

𝐼̇(𝑡)

𝐼∗
−
𝐼̇(𝑡)

𝐼(𝑡)
)  

+𝛽𝑆∗𝐼∗ [
𝑆(𝑡)𝐼(𝑡)

𝑆∗𝐼∗
− 1 − ln (

𝑆(𝑡)𝐼(𝑡)

𝑆∗𝐼∗
) −

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝑆∗𝐼∗
+ 1 + ln (

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝑆∗𝐼∗
)] 

+ 𝑘𝑉∗𝐼∗ [
𝑉(𝑡)𝐼(𝑡)

𝑉∗𝐼∗
− 1 − ln (

𝑉(𝑡)𝐼(𝑡)

𝑉∗𝐼∗
) −

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)

𝑉∗𝐼∗
+ 1 + ln (

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)

𝑉∗𝐼∗
)]    

  

= (1 −
𝑆∗

𝑠(𝑡)
) (Ʌ − (βI(t) + λ)S(t) ) + (1 −

𝑉∗

𝑉(𝑡)
) (rS(t) − kV(t)I(t)  

−(μ + 1 − k)V(t)) + 𝑒𝜇𝜏 (1 −
𝐼∗

𝐼(𝑡)
) (e−μτ[βS(t − τ) + 𝑘𝑉(t − τ)]I(t  

−τ) − α𝐼(𝑡) ) + 𝛽𝑆(𝑡)𝐼(𝑡) − 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) + 𝑘𝑉(𝑡)𝐼(𝑡)  

−𝑘𝑉(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − 𝛽𝑆∗𝐼∗ (ln (
𝑆(𝑡)𝐼(𝑡)

𝑆∗𝐼∗
) − ln (

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)

𝑆∗𝐼∗
))  

−𝑘𝑉∗𝐼∗ (ln (
𝑉(𝑡)𝐼(𝑡)

𝑉∗𝐼∗
) − ln (

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)

𝑉∗𝐼∗
))  

 

= Ʌ(1 −
𝑆∗

𝑠(𝑡)
) − βI(t)S(t) − λS(t) + βI(t)𝑆∗ + λ𝑆∗ + rS(t) (1 −

𝑉∗

𝑉(𝑡)
)  

−kV(t)I(t) − (μ + 1 − k)V(t) + kI(t)𝑉∗ − (μ + 1 − k)𝑉∗  

+βS(t − τ)I(t − τ) + 𝑘𝑉(t − τ)I(t − τ) − 𝑒𝜇𝜏α𝐼(𝑡) −
βS(t−τ)I(t−τ)

𝐼(𝑡)
𝐼∗  

−
kV(t−τ)I(t−τ)

𝐼(𝑡)
𝐼∗ + 𝑒𝜇𝜏α𝐼∗ + 𝛽𝑆(𝑡)𝐼(𝑡) + 𝑘𝑉(𝑡)𝐼(𝑡) − 𝛽𝑆(𝑡 − 𝜏)𝐼(𝑡  
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−𝜏) − 𝑘𝑉(𝑡 − 𝜏)𝐼(𝑡 − 𝜏) − 𝛽𝑆∗𝐼∗ ln (
𝑆(𝑡)𝐼(𝑡)

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)
) 

−𝑘𝑉∗𝐼∗ ln (
𝑉(𝑡)𝐼(𝑡)

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)
)  

  

= Ʌ(1 −
𝑆∗

𝑠(𝑡)
) − λS(t) + λS∗(t) + 𝑟𝑆(𝑡) − (μ + 1 − k)V(t)  

−rS(t)
𝑉∗

𝑉(𝑡)
+ (μ + 1 − k)𝑉∗ + (β𝑆∗ + kV∗ − α𝑒𝜇𝜏)𝐼(𝑡)  

−𝐼∗ [
βS(t−τ)I(t−τ)

𝐼(𝑡)
+
kV(t−τ)I(t−τ)

𝐼(𝑡)
− α𝑒𝜇𝜏 + 𝛽𝑆∗𝐼∗ ln (

𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
) +

+𝛽𝑆∗𝐼∗ ln (
𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
)].           (3.51) 

 

From the second equation of  (3.30) it follows 

 

e−μτ[βS∗ + k𝑉∗]I∗ − 𝛼𝐼∗ = 0.      

 

Since 𝐼∗ ≠ 0, then 

 

βS∗ + k𝑉∗ − eμτ𝛼 = 0                  (3.52) 

 

which implies that 

 

eμτ𝛼 = βS∗ + k𝑉∗.               (3.53) 

 

From the endemic equilibrium we have (
Ʌ

𝛽𝐼∗+λ
,

Ʌ𝑟

[𝑘𝐼∗+(𝜇+1−𝑘)](𝛽𝐼∗+λ)
, 𝐼∗), and from  

λ = r + μ it follows 

 

𝑆∗ =
Ʌ

𝛽𝐼∗+λ
⇒ Ʌ = 𝑆∗(𝛽𝐼∗ + λ) ⇒ Ʌ = 𝑆∗(𝛽𝐼∗ + r + μ)       (3.54) 

 

and 

 

𝑉∗ =
Ʌ𝑟

[𝑘𝐼∗+(𝜇+1−𝑘)](𝛽𝐼∗+λ)
⇒ 𝜇 + 1 − 𝑘 =

𝑟𝑆∗

𝑉∗
− 𝑘𝐼∗        (3.55) 
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According  (3.54) and (3.55), formula (3.51) can be regarded as 

 

�̇�(𝑡) = 𝑆∗(𝛽𝐼∗ + r + μ) (1 −
𝑆∗

𝑠(𝑡)
) + (r + μ)𝑆∗ (1 −

𝑆(𝑡)

𝑆∗
) + 𝑟𝑆(𝑡)  

−rS(t)
𝑉∗

𝑉(𝑡)
− (μ + 1 − k)V(t) + (μ + 1 − k)𝑉∗ ++(β𝑆∗ + kV∗  

−α𝑒𝜇𝜏)𝐼(𝑡) − 𝐼∗ [
βS(t−τ)I(t−τ)

𝐼(𝑡)
+
kV(t−τ)I(t−τ)

𝐼(𝑡)
− (βS∗ + k𝑉∗) +

+𝛽𝑆∗𝐼∗ ln (
𝑆(𝑡)𝐼(𝑡)

𝑆(𝑡−𝜏)𝐼(𝑡−𝜏)
) + 𝛽𝑆∗𝐼∗ ln (

𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
)]  

  

= 𝐼∗β𝑆∗ − β𝑆∗
𝑆∗

𝑠(𝑡)
𝐼∗ + 𝜇𝑆∗ (2 −

𝑆∗

𝑠(𝑡)
−
𝑆(𝑡)

𝑆∗
) + r𝑆∗ (2 −

𝑆∗

𝑠(𝑡)
−

−
S(t)

𝑆∗
𝑉∗

𝑉(𝑡)
) + (

𝑟𝑆∗

𝑉∗
− 𝑘𝐼∗) 𝑉∗ (1 −

V(t)

𝑉∗
) − 𝛽𝐼∗𝑆∗ [−1 +

S(t−τ)I(t−τ)

𝐼(𝑡)𝑆∗
+

+ ln (
𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
)] − 𝑘𝐼∗𝑉∗ [−1 +

V(t−τ)I(t−τ)

𝐼(𝑡)𝑉∗
+ ln (

𝑉(𝑡)𝐼(𝑡)

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)
)]       

               

= 𝜇𝑆∗ (2 −
𝑆∗

𝑠(𝑡)
−
𝑆(𝑡)

𝑆∗
) + r𝑆∗ (3 −

𝑆∗

𝑠(𝑡)
−
V(t)

𝑉∗
−
S(t)

𝑆∗
𝑉∗

𝑉(𝑡)
)     

−𝛽𝐼∗𝑆∗ [−2 +
𝑆∗

𝑆(𝑡)
+
S(t−τ)I(t−τ)

𝐼(𝑡)𝑆∗
+ ln (

𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
)]  

−𝑘𝐼∗𝑉∗ [−2 +
𝑉∗

𝑉(𝑡)
+
V(t−τ)I(t−τ)

𝐼(𝑡)𝑉∗
+ ln (

𝑉(𝑡)𝐼(𝑡)

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)
)].      (3.56)  

           

From, (3.20) and (3.21) it follows  

 

2 −
𝑆∗

𝑠(𝑡)
−
𝑆(𝑡)

𝑆∗
≤ 0.  

 

We will study 

−2 +
𝑆∗

𝑆(𝑡)
+
S(t−τ)I(t−τ)

𝐼(𝑡)𝑆∗
+ ln (

𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
) > 0.  

 

It can be written as 

 

𝑔 (
𝑉∗

𝑉(𝑡)
) + 𝑔 (

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑉∗
) =

𝑉∗

𝑉(𝑡)
− 1 − ln

𝑉∗

𝑉(𝑡)
+
𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑉∗
− 1  
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− ln
𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑉∗
= −2 +

𝑉∗

𝑉(𝑡)
+
𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑉∗
+ ln

𝑉(𝑡)

𝑉∗
𝐼(𝑡)𝑉∗

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)
  

= −2 +
𝑉∗

𝑉(𝑡)
+
𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)

𝐼(𝑡)𝑉∗
+ ln

𝑉(𝑡)𝐼(𝑡)

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)
≥ 0.        (3.57) 

  - 

Hence,  because of the fact that (3.20) and (3.21), and (3.57) the equation (3.56) yields  

 

�̇�(𝑡) = 𝜇𝑆∗ (2 −
𝑆∗

𝑠(𝑡)
−
𝑆(𝑡)

𝑆∗
) + r𝑆∗ (3 −

𝑆∗

𝑠(𝑡)
−
V(t)

𝑉∗
−
S(t)

𝑆∗
𝑉∗

𝑉(𝑡)
)  

−𝛽𝐼∗𝑆∗ [−2 +
𝑆∗

𝑆(𝑡)
+
S(t−τ)I(t−τ)

𝐼(𝑡)𝑆∗
+ ln (

𝑆(𝑡)𝐼(𝑡)

(𝑡−𝜏)𝐼(𝑡−𝜏)
)]  

−𝑘𝐼∗𝑉∗ [−2 +
𝑉∗

𝑉(𝑡)
+
V(t−τ)I(t−τ)

𝐼(𝑡)𝑉∗
+ ln (

𝑉(𝑡)𝐼(𝑡)

𝑉(𝑡−𝜏)𝐼(𝑡−𝜏)
)]  ≤ 0.  

 

Therefore, the endemic equilibrium 𝐸1 is globaly asymptotically stable. 

 

 

3.3 Numerical Simulations 

 

In this section, the results of both models are discussed with numerically. The parameters 

of the model was evaluated by (Kaymakamzade and Hınçal, 2017) and some of the 

parameters are estimated. Figure 3.2 and Figure 3.3 are given for the first model which has 

no vaccine. Figure 3.2 shows the disease free equilibrium with the parameters  Ʌ =

200, 𝛽 = 0.00003, 𝛾 = 0.07, 𝜇 = 0.02, 𝑑 = 0.2, and 𝜏 = 4 then 𝑅0,1 = 0.01909896. 

Figure 3.3 shows the endemic equilibrium  with the parameters  Ʌ = 200, 𝛽 = 0.00003, 

𝛾 = 0.07, 𝜇 = 0.02, 𝑑 = 0.2, and 𝜏 = 4  then the basic reproduction number is 𝑅0,1 =

9.5494794 which shows that endemic occure. In addition to these parameters it is assume 

that 𝑟 = 0.1 and 𝑘 = 0.0001 for Figure 3.4, and 𝑟 = 0.4 and 𝑘 = 0.0001 for Figure 3.5. 

which are for the second model then the basic reproduction ratios are found 𝑅0,2 =

1.6435974 and 𝑅0,2 = 0.5141857 respectively.  
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Figure 3.2: Disease free equilibrium for the model without vaccine, the parameters are, 

Ʌ = 200, 𝛽 = 0.00003, 𝛾 = 0.07, 𝜇 = 0.02, 𝑑 = 0.2, 𝑅0,1 = 0.01909896 

 

 

Figure 3.3: Model without vaccine, the parameters are, Ʌ = 200, 𝛽 = 0.0003, 

       𝛾 = 0.07, 𝜇 = 0.02, 𝑑 = 0.2, 𝑅0,1 = 9.5494794  
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Figure 3.4: Model with vaccine, the parameters are, Ʌ = 200, 𝛽 = 0.0003,  

        𝛾1 = 0.07, 𝜇 = 0.02, 𝑑 = 0.2, 𝑘 = 0.0001, 𝑟 = 0.1,𝑅0,2 = 1.6435974. 

 

 

Figure 3.5: Model with vaccine, the parameters are, Ʌ = 200, 𝛽 = 0.0003, 

 𝛾1 = 0.07, 𝜇 = 0.02, 𝑑 = 0.2, 𝑘 = 0.0001, 𝑟 = 0.4, 𝑅0,2 = 0.5141857 . 
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3.4 Conclusion 

In this chapter, two models with and without vaccine are constucted.Two equilibria which 

are disease free and endemic equilibriums are found and with using Lyapunov function it is 

shown that the global stabilities of each equilibria for both model. For the first model it is 

found that disease free equilibrium 𝐸0 is globally asymptotically stable when 𝑅0,1 < 1 and 

endemic equilibrium 𝐸1 is always asymptotically stable. With using similar method it is 

shown that 𝐸0 is asymptotically stable when 𝑅0,2 < 1 and 𝐸1 is always global 

asymptotically stable for model 2. In last section numerical simulations are given for both 

models. The transmission rate taken the same for both models to see the effect of the 

vaccine and from the Figure 3.2 and Figure 3.4 it can be seen that when individuals take 

vaccine enough the infected population decrease. Therefore vaccine play an important role 

for control the disease.  
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CHAPTER 4 

 

TWO- STRAIN EPIDEMIC MODEL WITH TWO VACCINES 

 

In this chapter, we consider  two strain influenza model with two vaccination in which 

strain 2 is the mutation of strain 1. A mutation is the sudden change in the genetic makeup 

that occurs either due to mistakes when DNA is copied or as a result of environmental 

factors. Here strain 2 was assumed to be as a result of changes in the proteins  that made up 

strain 1. Proper vaccine administration is a critical component of a successful influenza 

control program. It is a key part of ensuring that vaccination is as safe and effective as 

possible. Unfortunately, it is easy to make vaccine administration error. Although some 

improperly administered vaccines may be valid, sometimes such errors open the possibility 

of patients being unprotected against the disease. In this paper we want to study the effects 

of administering vaccine for strain 1 (𝑉1) against strain 2, and administering vaccine for 

strain 2 (𝑉2) against strain 1. 

 

This chapter is organized as follows: In Section 4.1 we formulate the two strain influenza 

model with vaccination compartments with respect to strain1 and strain 2. In Section 4.2, 

all possible equilibria, basic reproduction ratios and the global stabilities for the 

equilibrium points are determined. In Section 4.3, Numerical Simulations are given to 

support the analytic results. Finally, in Section 4.4, conclusions and discussions are given. 

 

 

4.1. Structure of the Model   

The population 𝑁 is divided into six compartments by modifying the model of (Rahman 

and Zou, 2011). The compartments are 𝑆, 𝑉1, 𝑉2, 𝐼1, 𝐼2 and 𝑅, which denotes the sizes of 

suspectible, immunized with the vaccination for strain 1, immunized with the vaccination 

for strain 2, infected with strain 1, infected with strain 2 and recovered compartments 

respectively. 
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        Table 4.1: Variables and Parameters  

 

             Parameter  Description 

  Ʌ   Recruitment of individulas 

             
1

𝜇
    Avarage time of life expectance  

             𝑟1    Rate of vaccination with strain 1 

             𝑟2   Rate of vaccination with strain 1 

             𝑘1   Transmission coefficient of vaccinated individuals 

V1 to strain 2 

             𝑘2   Transmission coefficient of vaccinated individuals  

V2 to strain 1 

             𝛽1   Transmission coefficient of susceptible individuals  

to strain 1 

             𝛽2   Transmission coefficient of susceptible individuals  

to strain 2 

             
1

𝛾1
   Average infection period for strain 1 

              
1

𝛾2
   Average infection period for strain 2 

             𝜈1   Infection induced death rate of strain 1 

             𝜈2   Infection induced death rate of strain 

 

 

In the model it is assumed that there is a constant recruitment into susceptible class through 

birth and immigration, and it is assumed that there is no double infection. The variables 

and parameters are positive and their meanings are given in Table 4.1, also the transfer 

diagram of the model is given in Figure 4.1. 
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Figure 4.1: Transfer diagram of model (4.1). 

 

With these assumptions the model is given by a system of ordinary differential equations 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Ʌ − (𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡) + 𝜆)𝑆(𝑡), 

  

𝑑𝑉1(𝑡)

𝑑𝑡
= 𝑟1𝑆(𝑡) − (𝑘1𝐼2(𝑡) + 𝜇)𝑉1(𝑡),  

 

𝑑𝑉2(𝑡)

𝑑𝑡
= 𝑟2𝑆(𝑡) − (𝑘2𝐼1(𝑡) + 𝜇)𝑉2(𝑡),                (4.1) 

 

𝑑𝐼1(𝑡)

𝑑𝑡
= (𝑘2𝑉2(𝑡) + 𝛽1𝑆(𝑡))𝐼1(𝑡) − 𝛼1𝐼1(𝑡),  

 

𝑑𝐼2(𝑡)

𝑑𝑡
= (𝑘1𝑉1(𝑡) + 𝛽2𝑆(𝑡))𝐼2(𝑡) − 𝛼2𝐼2(𝑡),  

 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾1𝐼1(𝑡) + 𝛾2𝐼2(𝑡) − 𝜇𝑅(𝑡),  

 

where 𝜆 = 𝑟1 + 𝑟2 + 𝜇 , 𝛼1 = 𝜇 + 𝜈1 + 𝛾1 and 𝛼2 = 𝜇 + 𝜈2 + 𝛾2, With the initial values  

𝑆(0) = ɸ1,  𝑉1(0) = ɸ2, 𝑉2(0) = ɸ3, 𝐼1(0) = ɸ4,  𝐼2(0) = ɸ5 and 𝑅(0) = ɸ6. 
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Since   𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝑅(𝑡) = 𝑁(𝑡), the system (4.1) can be 

rewritten as 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Ʌ − (𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡) + 𝜆)𝑆(𝑡), 

 

𝑑𝑉1(𝑡)

𝑑𝑡
= 𝑟1𝑆(𝑡) − (𝑘1𝐼2(𝑡) + 𝜇)𝑉1(𝑡),  

 

𝑑𝑉2(𝑡)

𝑑𝑡
= 𝑟2𝑆(𝑡) − (𝑘2𝐼1(𝑡) + 𝜇)𝑉2(𝑡),                 (4.2) 

 

𝑑𝐼1(𝑡)

𝑑𝑡
= (𝑘2𝑉2(𝑡) + 𝛽1𝑆(𝑡))𝐼1(𝑡) − 𝛼1𝐼1(𝑡),  

 

𝑑𝐼2(𝑡)

𝑑𝑡
= (𝑘1𝑉1(𝑡) + 𝛽2𝑆(𝑡))𝐼2(𝑡) − 𝛼2𝐼2(𝑡).  

 

 

4.2  Disease Dynamics  

Theorem 4.1. The solution (S(t), 𝑉1(𝑡), 𝑉2(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), 𝑅(𝑡)) of the system is 

nonnegative and bounded and the feasible region of the system (4.1) is 

 

𝛺 = {(𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝑅(𝑡)): 𝑆(𝑡) > 0, 𝑉1(𝑡) ≫

> 0, 𝐼1(𝑡) > 0, 𝐼2(𝑡) > 0, 𝑅(𝑡) > 0, 𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝐼1(𝑡) +

𝐼2(𝑡) + 𝑅(𝑡)  ≤
Ʌ

𝜇
}.  

 

Proof. First, it is shown that the the solution of the system nonnegative, from the first 

equation of the system (4.1), we have 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Ʌ − (𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡) + 𝜆)𝑆(𝑡) ≥ −(𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡) +

+𝜆)𝑆(𝑡)  
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or 

 

𝑑𝑆(𝑡)

𝑑𝑡
+ (𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡) + 𝜆)𝑆(𝑡) ≥ 0.           (4.3) 

 

The integrating factor 𝑝(𝑡) of the equation (4.3) 

 

 𝑝(𝑡) = 𝑒∫ (𝛽1𝐼1(𝑢)+𝛽2𝐼2(𝑢)+𝜆)
𝑡
0

 𝑑𝑢. 

 

Therefore, from (4.3) it follows 

 

𝑒∫ (𝛽1𝐼1(𝑢)+𝛽2𝐼2(𝑢)+𝜆)
𝑡
0  𝑑𝑢 𝑑𝑆(𝑡)

𝑑𝑡
+ 𝑒∫ (𝛽1𝐼1(𝑢)+𝛽2𝐼2(𝑢)+𝜆)

𝑡
0  𝑑𝑢(𝛽1𝐼1(𝑡) +

+𝛽2𝐼2(𝑡) + 𝜆)𝑆(𝑡) ≥ 0   

 

or 

 

𝑑

𝑑𝑡
[𝑒∫ (𝛽1𝐼1(𝑢)+𝛽2𝐼2(𝑢)+𝜆)

𝑡
0  𝑑𝑢𝑆(𝑡)] ≥ 0.  

 

Taking the integral with respect to s from 0 to t, we get 

 

𝑒∫ (𝛽1𝐼1(𝑢)+𝛽2𝐼2(𝑢)+𝜆)
𝑡
0

 𝑑𝑢𝑆(𝑠)|
0

𝑡

≥ 0  

 

or 

 

𝑒∫ (𝛽1𝐼1(𝑢)+𝛽2𝐼2(𝑢)+𝜆)
𝑡
0

 𝑑𝑢𝑆(𝑡) − 𝑆(0) ≥ 0.  

 

 Therefore the solution of (4.3) is obtain as 

 

𝑆(𝑡) ≥ ɸ1𝑒
−∫ (𝛽1𝐼1(𝑢)+𝛽2𝐼2(𝑢)+𝜆)

𝑡
0  𝑑𝑢 ≥ 0.  
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Form the second equation of the system, we get 

 

𝑑𝑉1(𝑡)

𝑑𝑡
= 𝑟1𝑆(𝑡) − (𝑘1𝐼2(𝑡) + 𝜇)𝑉1(𝑡) ≥ −(𝑘1𝐼2(𝑡) + 𝜇)𝑉1(𝑡)  

 

or 

 

𝑑𝑉1(𝑡)

𝑑𝑡
+ (𝑘1𝐼2(𝑡) + 𝜇)𝑉1(𝑡) ≥ 0            (4.4) 

 

The integrating factor 𝑝(𝑡) of the equation (4.4) 

 

𝑒∫ (𝑘1𝐼2(𝑢)+𝜇)𝑑𝑢
𝑡
0 .  

 

Therefore, from (4.4) it follows 

 

𝑒∫ (𝑘1𝐼2(𝑢)+𝜇)𝑑𝑢
𝑡
0

𝑑𝑉1(𝑡)

𝑑𝑡
+ 𝑒∫ (𝑘1𝐼2(𝑢)+𝜇)𝑑𝑢

𝑡
0 (𝑘1𝐼2(𝑡) + 𝜇)𝑉1(𝑡) ≥ 0  

 

or 

 

𝑑

𝑑𝑡
[𝑒∫ (𝑘1𝐼2(𝑢)+𝜇)𝑑𝑢

𝑡
0 𝑉1(𝑡)] ≥ 0.  

 

Taking the integral with respect to s from 0 to t, we get 

 

𝑒∫ (𝑘1𝐼2(𝑢)+𝜇)𝑑𝑢
𝑡
0 𝑉1(𝑠)|

0

𝑡

≥ 0  

 

or 

𝑒∫ (𝑘1𝐼2(𝑢)+𝜇)𝑑𝑢
𝑡
0 𝑉1(𝑡) − 𝑉1(0) ≥ 0  

 

or 
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𝑉1(𝑡) ≥ ɸ2𝑒
−∫ (𝑘1𝐼2(𝑢)+𝜇)𝑑𝑢

𝑡
0 ≥ 0  

 

 

with using third equation of the system (4.1), similarly with 𝑉1 the solution of 𝑉2 

can be found as 

 

𝑉2(𝑡) ≥ ɸ3𝑒
∫ (𝑘2𝐼1(𝑢)+𝜇)𝑑𝑢
𝑡
0 ≥ 0 .  

 

The forth equation gives that 

 

𝑑𝐼1(𝑡)

𝑑𝑡
= (𝑘2𝑉2(𝑡) + 𝛽1𝑆(𝑡))𝐼1(𝑡) − 𝛼1𝐼1(𝑡) ≥ −𝛼1𝐼1(𝑡)  

 

or 

 

𝑑𝐼1(𝑡)

𝑑𝑡
+ 𝛼1𝐼1(𝑡) ≥ 0   

 

then the solution is obtained as 

 

𝐼1(𝑡) ≥ ɸ4𝑒
−𝛼1𝑡 ≥ 0.   

 

From the fifth and the last equation of the system, the solutions of 𝐼2 and R are obtained, 

𝐼2 ≥ ɸ5𝑒
−𝛼2𝑡 ≥ 0 and 𝑅 ≥ ɸ6𝑒

−𝜇𝑡 ≥ 0 respectively. Hence, all of the solutions of the 

system (4.1) are positive.  

 

Now, it is shown that the system is bounded. Since 

 

 𝑁(𝑡) = 𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝑅(𝑡) 

 

taking derivative of both sides of the system, we get 
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 �̇�(𝑡) = �̇�(𝑡) + �̇�1(𝑡) + �̇�2(𝑡) + 𝐼1̇(𝑡) + 𝐼2̇(𝑡) + �̇�(𝑡). 

 

It follows that 

 

𝑁(𝑡)̇ = Ʌ − μ(S(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝑅(𝑡)) −

−ν1𝐼1(𝑡) − ν2𝐼2(𝑡)   

 

or 

 

�̇�(𝑡) = Ʌ − μN(𝑡) − ν1𝐼1(𝑡) − ν2𝐼2(𝑡).  

 

Since 𝐼1(𝑡) ≥ 0 and 𝐼2(𝑡) ≥ 0, then 

 

�̇�(𝑡) ≤ Ʌ − μN(𝑡).              (4.5) 

 

Since 0 ≤ �̇�(𝑡), we have  

 

0 ≤ Ʌ − μN(𝑡)  

 

or 

 

N(𝑡) ≤
Ʌ

μ
 . 

 

Hence, for sufficient large t, the feasible region is obtain as 

  

𝛺 = 𝑆 {(𝑡), 𝑉1(𝑡), 𝑉2(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), 𝑅(𝑡) ∈ 𝐶+
5: 𝑁 = 𝑆(𝑡) + 𝑉1(𝑡) +

+𝑉2(𝑡) + 𝐼1(𝑡) + 𝐼2(𝑡) + 𝑅(𝑡) ≤
Ʌ

𝜇
}. 
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Theorem 4.2. There exists a unique solution of system (4.2). 

 

Proof.  System (4.2) can be written as 

 

𝑓(𝜑(𝑡)) =

(

 
 

𝑓1(𝜑(𝑡))
𝑓2(𝜑(𝑡))
𝑓3(𝜑(𝑡))
𝑓4(𝜑(𝑡))
𝑓5(𝜑(𝑡)))

 
 

,  𝜑(𝑡) =

(

 
 

𝜑1(𝑡)
𝜑2(𝑡)
𝜑3(𝑡)
𝜑4(𝑡)
𝜑5(𝑡))

 
 

, 

 

where 

 

𝑓1(𝜑(𝑡)) = Ʌ − (𝛽1𝜑4(𝑡) + 𝛽2𝜑5(𝑡) + 𝜆)𝜑1, 𝑓2𝜑(𝑡) = 𝑟1𝜑1(𝑡) −

−(𝑘1𝜑5(𝑡) + 𝜇)𝜑2(𝑡), 𝑓3𝜑(𝑡) = 𝑟2𝜑1(𝑡) − (𝑘2𝐼1(𝑡) +

+𝜇)𝜑3(𝑡), 𝑓4(𝜑(𝑡)) = (𝑘2𝜑3(𝑡) + 𝛽1𝜑1(𝑡))𝜑4(𝑡) −

−𝛼1𝜑4(𝑡), 𝑓5(𝜑(𝑡)) = (𝑘1𝜑2(𝑡) + 𝛽2𝜑1(𝑡))𝜑5(𝑡) − 𝛼2𝜑5(𝑡)  

 

are continuous. In order to say the system (4.2) has a unique solution it is sufficient to 

show that the Lipschitz condition for 𝑓(𝜑(𝑡)) with respect to 𝜑(𝑡) holds. 

 

For 𝜑(𝑡) = (𝜑1(𝑡), 𝜑2(𝑡), 𝜑3(𝑡), 𝜑4(𝑡), 𝜑5(𝑡)) and 𝜓(𝑡) = (𝜓1(𝑡), 𝜓2(𝑡), 𝜓3(𝑡),𝜓4(𝑡), 

𝜓5(𝑡)), and assuming that  

 

|𝜓 − 𝜑| = ∑ |𝜓𝑖 − 𝜑𝑖|
5
𝑖=1 .                      (4.6)  

 

Then 

  

‖f1(𝜑(𝑡)) − f1(𝜓(𝑡))‖ = |Ʌ − (β1𝜑4(𝑡) + β2𝜑5(𝑡) + λ)𝜑1(𝑡) −

−(Ʌ − (β1𝜓4(𝑡) + β2𝜓5(𝑡) + λ)𝜓1(𝑡))|  

 

≤ β1|𝜓4(𝑡)𝜓1(𝑡) − 𝜑4(𝑡)𝜑1(𝑡)| + β2|𝜓5(𝑡)𝜓1(𝑡) − 𝜑5(𝑡)𝜑1(𝑡)| +

+λ|𝜓1(𝑡) − 𝜑1(𝑡)|  



 

 

66 

 

= β1|𝜓4(𝑡)𝜓1(𝑡) − 𝜓1(𝑡)𝜑4(𝑡) + 𝜓1(𝑡)𝜑4(𝑡) − 𝜑4(𝑡)𝜑1(𝑡)| +

+β2|𝜓5(𝑡)𝜓1(𝑡) − 𝜓1(𝑡)𝜑5(𝑡) + 𝜓1(𝑡)𝜑5(𝑡) − 𝜑5(𝑡)𝜑1(𝑡)| +

+λ|𝜓1(𝑡) − 𝜑1(𝑡)|  

 

≤ β1|𝜓1(𝑡)||𝜓4(𝑡) − 𝜑4(𝑡)| + β1|𝜑4(𝑡)||𝜓1(𝑡) − 𝜑1(𝑡)| +

+β2|𝜓1(𝑡)||𝜓5(𝑡) − 𝜑5(𝑡)| + +β2|𝜑5(𝑡)||𝜓1(𝑡) − 𝜑1(𝑡)| +

+λ|𝜓1(𝑡) − 𝜑1(𝑡)|     

           

= (β1|𝜓4(𝑡)| + β2|𝜑5(𝑡)| + λ)|𝜓1(𝑡) − 𝜑1(𝑡)| + β1|𝜓1(𝑡)||𝜓4(𝑡) −

−𝜑4(𝑡)| + β2|𝜓1(𝑡)||∅5(𝑡) − 𝜑5(𝑡)| ≤ 𝐾1|𝜓(𝑡) − 𝜑(𝑡)|,       (4.7) 

 

where 

 

𝐾1 = max{β1|𝜓4(𝑡)| + β2|𝜑5(𝑡)| + λ, β1|𝜓1(𝑡)|, β2|𝜓1(𝑡)|}.  

From the invariant set , 𝜑1(𝑡) ≤
Ʌ

𝜇
, 𝜑4(𝑡) ≤

Ʌ

𝜇
 and 𝜑5(𝑡) ≤

Ʌ

𝜇
 , it follows 

 

𝐾1 = (β1 + β2)
Ʌ

𝜇
+ λ.  

 

Furthermore, one can derive that 

 

‖f2(𝜑(𝑡)) − f2(𝜓(𝑡))‖ = |r1𝜑1(𝑡) − (k1𝜑5(𝑡) + μ)𝜑2(𝑡) −

−(r1𝜓1(𝑡) − (k1𝜓5(𝑡) + μ)𝜓2(𝑡))|   

 

≤ r1|𝜑1(𝑡) − 𝜓1(𝑡)| +  μ|𝜓2(𝑡) − 𝜑2(𝑡)| + k1|𝜓5(𝑡)𝜓2(𝑡) −

−𝜑5(𝑡)𝜑2(𝑡)|  

≤ r1|𝜑1(𝑡) − 𝜓1(𝑡)| +  μ|𝜓2(𝑡) − 𝜑2(𝑡)| + k1|𝜓5(𝑡)||𝜓2(𝑡) −

−𝜑2(𝑡)| + k1|𝜑2(𝑡)||𝜓5(𝑡) − 𝜑5(𝑡)|    

= r1|𝜑1(𝑡) − 𝜓1(𝑡)| + (μ + k1|𝜓5(𝑡)|)|𝜓2(𝑡) − 𝜑2(𝑡)| +

+k1|𝜑2(𝑡)||𝜓5(𝑡) − 𝜑5(𝑡)| ≤ 𝐾2|𝜓(𝑡) − 𝜑(𝑡)|,           (4.8) 
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where 

 

𝐾2 = max{r1, (μ + k1|𝜓5(𝑡)|), k1|𝜑2(𝑡)|}. 

 

From the invariant set , 𝜑1(𝑡) ≤
Ʌ

𝜇
, 𝜑2(𝑡) ≤

Ʌ

𝜇
 and 𝜑5(𝑡) ≤

Ʌ

𝜇
 , it follows 

 

𝐾2 = μ + k1
Ʌ

𝜇
.  

 

For the fourth equation of the system (4.2), we have 

 

‖f3(𝜑(𝑡)) − f3(𝜓(𝑡))‖ = |r2𝜑1(𝑡) − (k2𝜑4(𝑡) + μ)𝜑3(𝑡) −

−(r2𝜓1(𝑡) − (k2𝜓4(𝑡) + μ)𝜓3(𝑡))|  

≤ r2|𝜑1(𝑡) − 𝜓1(𝑡)| +  μ|𝜓3(𝑡) − 𝜑3(𝑡)| + k2|𝜓5(𝑡)𝜓3(𝑡) −

−𝜑4(𝑡)𝜑3(𝑡)|  

 

≤ r2|𝜑1(𝑡) − 𝜓1(𝑡)| +  μ|𝜓3(𝑡) − 𝜑3(𝑡)| + k2|𝜓4(𝑡)||𝜓3(𝑡) −

−𝜑3(𝑡)| + k2|𝜑3(𝑡)||𝜓4(𝑡) − 𝜑4(𝑡)|    

 

= r2|𝜑1(𝑡) − 𝜓1(𝑡)| + (μ + k2|𝜓4(𝑡)|)|𝜓3(𝑡) − 𝜑3(𝑡)| +

+k2|𝜑3(𝑡)||𝜓4(𝑡) − 𝜑4(𝑡)| ≤ 𝐾3|𝜓(𝑡) − 𝜑(𝑡)|,          (4.9) 

 

 

where, 

 

𝐾3 = max{r2, (μ + k2|𝜓4(𝑡)|), k2|𝜑3(𝑡)|}.  

 

From the invariant set , 𝜑1(𝑡) ≤
Ʌ

𝜇
, 𝜑3(𝑡) ≤

Ʌ

𝜇
 and 𝜑4(𝑡) ≤

Ʌ

𝜇
 , it follows 

 

𝐾3 = μ + k2
Ʌ

𝜇
.  
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The forth equation gives that 

 

‖f4(𝜑(𝑡)) − f4(𝜓(𝑡))‖ = |(k2𝜑3(𝑡) + β1𝜑1(𝑡))𝜑4(𝑡) − α1𝜑4(𝑡) −

−((k2𝜓3(𝑡) + β1𝜓1(𝑡))𝜓4(𝑡) − α1𝜓4(𝑡))|  

 

≤ α1|𝜓4(𝑡) − 𝜑4(𝑡)| + β1|𝜑1(𝑡)𝜑4(𝑡) − 𝜓1(𝑡)𝜓4(𝑡)| +

+k2|𝜑3(𝑡)𝜑4(𝑡) − 𝜓3(𝑡)𝜓4(𝑡)|  

 

≤ α1|𝜓4(𝑡) − 𝜑4(𝑡)| + β1|𝜑1(𝑡)||𝜑4(𝑡) − 𝜓4(𝑡)| + β1|𝜓4(𝑡)||𝜑1(𝑡) −

−𝜓1(𝑡)| + k2|𝜑3(𝑡)||𝜑4(𝑡) − 𝜓4(𝑡)| + k2|𝜓4(𝑡)||𝜑3(𝑡) − 𝜓3(𝑡)|  

= β1|𝜓4(𝑡)||𝜑1(𝑡) − 𝜓1(𝑡)| + k2|𝜓4(𝑡)||𝜑3(𝑡) − 𝜓3(𝑡)| +

+(α1 + β1|𝜑1(𝑡)| + k2|𝜑3(𝑡)|)|𝜑4(𝑡) − 𝜓4(𝑡)| ≤ K4|𝜓(𝑡) − 𝜑(𝑡)|,  

  (4.10) 

 

where 

 

K4 = max{β1|𝜓4(𝑡)|, k2|𝜓4(𝑡)|, α1 + β1|𝜑1(𝑡)| + k2|𝜑3(𝑡)|}.  

 

Therefore 

 

K4 = α1 + (β1 + k2)
Ʌ

𝜇
.  

 

Finally, 

 

‖f5(𝜑(𝑡)) − f5(𝜓(𝑡))‖ = |(k1𝜑2(𝑡) + β2𝜑1(𝑡))𝜑5(𝑡) − α2𝜑5(𝑡) −

−((k1𝜓2(𝑡) + β2𝜓1(𝑡))𝜓5(𝑡) − α2𝜓5(𝑡))|  

 

≤ α2|𝜓5(𝑡) − 𝜑5(𝑡)| + β2|𝜑1(𝑡)𝜑5(𝑡) − 𝜓1(𝑡)𝜓5(𝑡)| +

+k2|𝜑2(𝑡)𝜑5(𝑡) − 𝜓2(𝑡)𝜓5(𝑡)|  
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≤ α2|𝜓5(𝑡) − 𝜑5(𝑡)| + β2|𝜑1(𝑡)||𝜑5(𝑡) − 𝜓5(𝑡)| + β2|𝜓5(𝑡)||𝜑1(𝑡) −

−𝜓1(𝑡)| + k1|𝜑2(𝑡)||𝜑5(𝑡) − 𝜓5(𝑡)| + k1|𝜓5(𝑡)||𝜑2(𝑡) − 𝜓2(𝑡)|  

 

= β2|𝜓5(𝑡)||𝜑1(𝑡) − 𝜓1(𝑡)| + k1|𝜓5(𝑡)||𝜑2(𝑡) − 𝜓2(𝑡)| +

(α2 + β2|𝜑1(𝑡)| + k1|𝜑2(𝑡)|)|𝜑5(𝑡) − 𝜓5(𝑡)| ≤ K5|𝜓(𝑡) − 𝜑(𝑡)|,  

    (4.11) 

 

where 

 

K5 = max{β2|𝜓5(𝑡)|, k1|𝜓5(𝑡)|, α2 + β2|𝜑1(𝑡)| + k1|𝜑2(𝑡)|}.  

 

From the invariant set, it follows that  

 

K5 = α2 + (β2 + k1)
Ʌ

𝜇
 . 

 

Applying (4.7), (4.8), (4.9), (4.10) and (4.11), we get 

 

‖f(𝜑(𝑡)) − 𝑓(𝜓(𝑡))‖ = ‖f1(𝜑(𝑡)) − f1(𝜓(𝑡))‖ + ‖f2(𝜑(𝑡)) −

−f2(𝜓(𝑡))‖ + ‖f3(𝜑(𝑡)) − f3(𝜓(𝑡))‖ + ‖f4(𝜑(𝑡)) − f4(𝜓(𝑡))‖ +

+‖f5(𝜑(𝑡)) − f5(𝜓(𝑡))‖ ≤ (K1 + K2 + K3 + K4 + K5) |𝜓(𝑡) − 𝜑(𝑡)|, 

 

where 

 

K1 + K2 + K3 + K4 + K5 = (2β1 + 2β2 + 2k1 + 2k2)
Ʌ

𝜇
+ λ + 2μ +

+α1 + α2.  

 

Hence the system (4.2) has a unique solution. 
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4.3 Equilibrium and Stability Analysis 

 

4.3.1 Equilibria of the system 

Theorem 4.3. 

1.   System (4.2) has a disease free equilibrium 𝐸0 = (
Ʌ

𝜆 
,
𝑟1Ʌ

𝜆𝜇
,
𝑟2Ʌ

𝜆𝜇
, 0,0). 

2.   When (
𝑘2𝑟2

𝛼1𝜇
+
𝛽1

𝛼1
)
Ʌ

𝜆
≥ 1 then the system (4.2) has the single strain (strain 1) infectious 

equilibrium 𝐸1 = (𝑆̅, �̅�1, �̅�2, 𝐼1̅, 0), where  

 

𝑆̅ =
Ʌ

𝛽1𝐼1
1+𝜆
, �̅�1 =

𝑟1Ʌ

𝜇(𝛽1𝐼1+𝜆)
, �̅�2 =

𝑟2Ʌ

(𝛽1𝐼1+𝜆)(𝜇+𝑘2𝐼1)
, 𝐼1̅ = 0.  

 

 3.   When, (
𝑘1𝑟1

𝛼2𝜇
+
𝛽2

𝛼2
)
Ʌ

𝜆
≥ 1, the system (4.2) has the single strain (strain 2) infectious  

equilibrium 𝐸2 = (�̂�, �̂�1, �̂�2, 0,  𝐼2), where  

 

�̂� =
Ʌ

𝛽2𝐼2+𝜆
,  �̂�1 =

𝑟1Ʌ

(𝛽2𝐼2+𝜆)(𝜇+𝑘1𝐼2)
,  �̂�2 =

𝑟2Ʌ

𝜇(𝛽2𝐼2+𝜆)
,  𝐼1 = 0.  

 

4.   System (4.2) has no double strain infection equilibrium.  

 

Proof. Setting the each equation in (4.2) equal to zero, we get  

 

Ʌ − (β1I1 + β2I2 + λ)S = 0,  

 

r1S − (k1I2 + μ)V1 = 0, 

 

r2S − (k2I1 + μ)V2 = 0,             (4.12)       

 

(k2V2 + β1S)I1 − α1I1 = 0,  

  

(𝑘1𝑉1 + 𝛽2𝑆)𝐼2 − 𝛼2𝐼2 = 0.  

 

1.   Since, 𝐼1 = 0 and 𝐼2 = 0, then we obtain 
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Ʌ − λS = 0 , 

 

r1S − μV1 = 0,                       (4.13) 

 

r2S − μV2 = 0.          

    

From the first equation of the system (4.13), it follows that 

 

𝑆 =
λ

Ʌ
. 

 

Using the value of S and second equation of system (4.13), then 𝑉1 is obtained that 

𝑉1 =
r1

μ

λ

Ʌ
.   

 

Finally, using the value of S and the third equation of the sysem (4.13), it is given that 

 

𝑉2 =
r2

μ

λ

Ʌ
.   

 

Therefore, the disease free equilibrium is  

 

𝐸0 = (
𝜆

Ʌ
,
𝑟1

𝜇

𝜆

Ʌ
,
𝑟2

𝜇

𝜆

Ʌ
, 0,0 ).  

 

Since all the coordinates of 𝐸0 are positive, then it is biologically meaningful. 

 

2.   For the Strain 2 disease free equilibrium (strain 1 infection equilibrium) 𝐸1, 𝐼2̅ = 0 and 

𝐼1̅ ≠ 0. Then with using the system (4.9) we have 

 

Ʌ − (β1I1 + λ)S = 0,  

 

r1S − μV1 = 0,  
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r2S − (k2I1 + μ)V2 = 0,                        (4.14)       

 

(k2V2 + β1S) − α1 = 0.  

 

The first three equations of system (4.14), gives that  

 

𝑆 =
Ʌ

𝛽1𝐼1+𝜆
, 𝑉1 =

𝑟1𝑆

𝜇
, and 𝑉2 =

𝑟2𝑆

𝑘2𝐼1+𝜇
 

 

or 

 

𝑆 =
Ʌ

𝛽1𝐼1+𝜆
 , 𝑉1 =

𝑟1

𝜇

Ʌ

𝛽1𝐼1+𝜆
, 𝑉2 =

𝑟2

𝑘2𝐼1+𝜇

Ʌ

𝛽1𝐼1+𝜆
. 

 

Putting S, and V2 in the fourth equation of the system (4.14), we get 

 

(k2
r2

k2I1+μ

Ʌ

β1I1+λ
+ β1

Ʌ

β1I1+λ
) − α1 = 0  

 

or 

 

Ʌk2r2 + Ʌβ1(k2I1 + μ) − α1(k2I1 + μ)(β1I1 + λ) = 0  

 

or 

 

 (α1β1k2)I1
2 + (α1k2λ + α1β1μ − Ʌβ1k2)I1 + (α1λμ − Ʌk2r2 

−Ʌβ1 μ) = 0.                       (4.15) 

 

Choosing, A = 𝛼1𝛽1𝑘2,𝐵 = 𝛼1𝑘2𝜆 + 𝛼1𝛽1𝜇 − Ʌ𝛽1𝑘2, and 𝐶 = 𝛼1𝜆𝜇 − Ʌ𝑘2𝑟2 − Ʌ𝛽1𝜇. 

System (4.12) can be written as 

  

𝐴𝐼1
2 + 𝐵𝐼1 + 𝐶 = 0.                       (4.16) 
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Since 𝑆̅, �̅�1 and �̅�2 are all positive, in order to check the biologically meaningfulness of  𝐸1 

we need to show that the equation (4.16) has only one positive root. To prove it, first we 

assume that, 𝐶 ≥ 0 (in this case 𝐵 < 0) then 

 

𝛼1𝜆𝜇 − 𝑘2𝑟2Ʌ − 𝛽1Ʌ𝜇 ≥ 0  

 

or 

 

𝛼1(𝑟1 + 𝑟2 + 𝜇)𝜇 ≥ 𝑘2𝑟2Ʌ + 𝛽1Ʌ𝜇  

 

or 

𝛼1 ≥
𝑘2𝑟2Ʌ+𝛽1Ʌ𝜇

(𝑟1+𝑟2+𝜇)𝜇
.                     (4.17) 

 

When C ≥ 0, B must be less than zero otherwise (if B ≥ 0) equation (4.16) has no positive 

root. However, when B ≤ 0, we have 

 

𝛼1𝛽1𝜇 − 𝑘2𝛽1Ʌ + 𝛼1𝜆𝑘2 ≤ 0  

or 

 

𝛼1(𝛽1𝜇 + 𝜆𝑘2) ≤ 𝑘2𝛽1Ʌ  

or 

 

1

𝛼1
≥
𝛽1𝜇+(𝑟1+𝑟2+𝜇)𝑘2

𝑘2𝛽1Ʌ
  

 

𝛼1 ≤
𝑘2𝛽1Ʌ

𝛽1𝜇+(𝑟1+𝑟2+𝜇)𝑘2
 .                            (4.18) 

 

From (4.14) and (4.15),  we get, 

 

𝑘2𝑟2Ʌ+𝛽1Ʌ𝜇

(𝑟1+𝑟2+𝜇)𝜇
≤ 𝛼1 ≤

𝑘2𝛽1Ʌ

𝛽1𝜇+(𝑟1+𝑟2+𝜇)𝑘2
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or 

 

𝑘2𝑟2Ʌ+𝛽1Ʌ𝜇

(𝑟1+𝑟2+𝜇)𝜇

𝛽1𝜇+(𝑟1+𝑟2+𝜇)𝑘2

𝑘2𝛽1Ʌ
≤ 1                   (4.19) 

 

or 

 

Ʌ𝛽1𝑘2𝑟2𝜇 + 𝛽1
2Ʌ𝜇2 + 𝑘2

2𝑟2Ʌ(𝑟1 + 𝑟2 + 𝜇) + Ʌ𝛽1𝑘2𝜇(𝑟1 + 𝑟2 + 𝜇)  

 

≤ Ʌ𝛽1𝑘2𝜇(𝑟1 + 𝑟2 + 𝜇)  

or 

(𝑘2𝑟2Ʌ + 𝛽1𝜇Ʌ)𝛽1𝜇 + (𝑟1 + 𝑟2 + 𝜇)𝑘2
2𝑟2Ʌ ≤ 0.           (4.20) 

 

It is a contradiction, since all coefficients in equation (4.20) are positive. Hence when   

𝐶 ≥ 0, 𝐵 must be greater than zero, it means there is no positive solution of equation 

(4.13) and so 𝐸1 is meaningless when 𝐶 ≥ 0.  

 

It can be seen that, when 𝐶 < 0 we have 

 

  𝛼1𝜆𝜇 − 𝑘2𝑟2Ʌ − 𝛽1Ʌ𝜇 < 0     

     

so 

(
𝑘2𝑟2

𝛼1𝜇
+
𝛽1

𝛼1
)
Ʌ

𝜆
≥ 1.  

 

Therefore, the equation has a unique positive solution 𝐼1̅ when 𝐶 < 0. Hence 𝐸1 is 

biologically meaningfull iff 

 

(
𝑘2𝑟2

𝛼1𝜇
+
𝛽1

𝛼1
)
Ʌ

𝜆
≥ 1.  

 

3.   For the Strain 1 disease free equilibrium (strain 2 infection equilibrium) 𝐸2, 𝐼1 = 0 and 

      𝐼2 ≠ 0. Again using the system (4.11) we have 
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Ʌ − (β2I2 + λ)S = 0,  

 

r1S − (k1I2 + μ)V1 = 0,  

 

r2S − μV2 = 0,                          (4.21)       

 

(k1V1 + β2S) − α2 = 0.  

 

From the first three equations of system (4.21), we obtained that 

𝑆 =
Ʌ

𝛽2𝐼2+𝜆
, 𝑉1 =

𝑟1𝑆

𝑘1𝐼2+𝜇
, 𝑉2 =

𝑟2𝑆

𝜇
, 

 

then 

 

𝑆 =
Ʌ

𝛽1𝐼1+𝜆
 , 𝑉1 =

𝑟1

𝑘1𝐼2+𝜇

Ʌ

𝛽2𝐼2+𝜆
, 𝑉2 =

𝑟2

𝜇

Ʌ

𝛽2𝐼2+𝜆
. 

 

Putting S, and 𝑉1 in the fourth equation of the system (4.21), we get 

 

(k1
r1

k1I2+μ

Ʌ

β2I2+λ
+ β2

Ʌ

β1I1+λ
) − α1 = 0  

or 

 

Ʌk1r1 + Ʌβ2(k1I2 + μ) − α2(k1I2 + μ)(β2I2 + λ) = 0  

 

or   

 

 (α2β2k1)I2
2 + (α2k1λ + α2β2μ − Ʌβ2k1)I2 + (α2λμ − Ʌk1r1 −

−Ʌβ2 μ) = 0.            (4.22) 

 

Let, 𝐴 = 𝛼2𝛽2𝑘1, 𝐵 = 𝛼2𝑘1𝜆 + 𝛼2𝛽2𝜇 − Ʌ𝛽2𝑘1, and 𝐶 = 𝛼2𝜆𝜇 − Ʌ𝑘1𝑟1 − Ʌ𝛽2𝜇 , then the 

system (4.19) can be written as 
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𝐴𝐼2
2 + 𝐵𝐼2 + 𝐶 = 0.           (4.23) 

 

Since �̂�, �̂�1 and �̂�2 are all positive, in order to check the biologically meaningfulness of  𝐸2 

we need to show that the equation (4.23) has only one positive root. As in the previous 

case 𝐸2is biologically meaningfull, when 

 

(
𝑘1𝑟1

𝛼2𝜇
+
𝛽2

𝛼2
)
Ʌ

𝜆
≥ 1. 

 

 

4.   From the first three equations of the system (4.11) it can be obtained that 

 

𝑆∗ =
Ʌ

𝛽1𝐼1+𝛽2𝐼2+𝜆
 , 𝑉1

∗ =
𝑟1Ʌ

(𝛽1𝐼1+𝛽2𝐼2+𝜆)(𝜇+𝑘1𝐼2)
 , 𝑉2

∗ =
𝑟2Ʌ

(𝛽1𝐼1+𝛽2𝐼2+𝜆)(𝜇+𝑘2𝐼1)
. 

 

Replacing them into the last two equation of the system (4.11), it will be obtained the 

following system   

 

a1I1
2 + b1I1I2 + c1I1 + d1I2 + e1 = 0, 

a2I2
2 + b2I1I2 + c2I1 + d2I2 + e2 = 0  

 

where, 

 

a1 = −α1β1k2,  b1 = −α1β2k2,  c1 = β1Ʌk2 − α1λk2 − α1β1μ,   

d1 = −α1β2μ, e1 = k2r2Ʌ + β1Ʌμ − α1λμ,  a2 = −α2β1k1,   

b2 = −α2β1k1,  c2 = −α2β1μ, d2 = β2Ʌk1 − α2λk1 − α2β2μ,  

e2 = k1r1Ʌ + β2Ʌμ − α2λμ. 

 

Therefore analytically there is no co-existence of the disease. 
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4.3.2 Basic Reproduction Number 

Basic reproduction ratio (R0) is the number of secondary infections caused by one 

infectious individual in a whole susceptible population. To find the basic reproduction ratio 

we use the next genaration matrix method whics is given in the Chapter 2. 

ℱ = [
(k2V2 + β1S)I1
(k1V1 + β2S)I2

],  and  𝒱 = [
α1I1
α2I2

] 

 

taking the partial derivatives of ℱ and 𝒱 at the equilibrium point, follows that 

 

𝐹(𝐸0) = [
𝛽1𝑆

0 + 𝑘2𝑉2
0 0

0 𝛽2𝑆
0 + 𝑘1𝑉1

0], 𝑉(𝐸0) = [
𝛼1 0
0 𝛼2

]  

 

matrix F is nonnegative and is responsible for new infections, while V is invertible and is 

reffered to as the transmission matrix for the model (4.2). It follows that the inverse matrix 

of 𝑉 is 

 

𝑉−1(𝐸0) = [

1

𝛼1
0

0
1

𝛼2

],  

 

 then the multiplication of F and V−1 is 

 

𝐹𝑉−1 = [

𝛽1𝑆
0+𝑘2𝑉2

0

𝛼1
0

0
𝛽2𝑆

0+𝑘1𝑉1
0

𝛼2

].  

 

The Jacobian matrix of  FV−1 is obtained as 

 

[

𝛽1𝑆
0+𝑘2𝑉2

0

𝛼1
− 𝜆 0

0
𝛽2𝑆

0+𝑘1𝑉1
0

𝛼2
− 𝜆
] = 0  
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it follows that 

 

λ2 − (
β1S

0+k2V2
0

α1
+
β2S

0+k1V1
0

α2
) λ +

β1S
0+k2V2

0

α1

β2S
0+k1V1

0

α2
= 0  

 

λ1 =
β1S

0+k2V2
0

α1
, λ1 =

β2S
0+k1V1

0

α2
  

 

Since the dominant eigenvalue is the basic reproduction ratio, therefore the basic 

reprodiction ratio is  

𝑅0 = 𝑚𝑎𝑥{𝑅1, 𝑅2},  

 

where 

 

𝑅1 =
𝛽1

𝛼1

Ʌ

𝜆
+
𝑘2

𝛼1

𝑟2

𝜇

Ʌ

𝜆
, 𝑅2 = 

𝛽2

𝛼2

Ʌ

𝜆
+
𝑘1

𝛼2

𝑟1

𝜇

Ʌ

𝜆
 . 

 

 

4.3.3 Global stability of equilibria 

In this section,  the global properties of the equilibria are studied. Lyapunov function is 

used to show the global stabilities. 

 

Theorem 4.3. The DFE E0 is globally asymptotically stable if R0 < 1. 

 

Proof. Consider the Lyapunov function 

 

𝑉(𝑆, 𝑉1, 𝑉2, 𝐼1, 𝐼2) = 𝑔 (
𝑆

𝑆0
) + 𝑔 (

𝑉1

𝑉1
0) + 𝑔 (

𝑉2

𝑉2
0) + 𝐼1 + 𝐼2,      (4.24) 

 

where 𝑔(𝑥) = 𝑥 − 1 − 𝑙𝑛 𝑥,  which is positive function in ℝ+.  And since 𝐼1 > 0  and  

𝐼2 > 0, therefore V > 0 and  

 

𝑉(𝑆0, 𝑉1
0, 𝑉2

0, 𝐼1
0, 𝐼2

0) = 𝑔 (
𝑆0

𝑆0
) + 𝑔 (

𝑉1
0

𝑉1
0) + 𝑔 (

𝑉2
0

𝑉2
0) + 𝐼1

0 + 𝐼2
0 = 0. 
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To show that 𝐸0 is globally asymptotically stable,  it is sufficient to show that V̇ is negative 

definite. Taking the derivative of equation (4.24), it is obtained that 

 

�̇� = (�̇� −
�̇�
𝑆

𝑆0

) + (�̇�1 −
�̇�1
𝑉1

𝑉1
0

) + (�̇�2 −
�̇�2
𝑉2

𝑉2
0

) +   𝐼1̇ +   𝐼2̇   

 

or 

 

�̇� = (1 −
𝑆0

𝑆
) �̇� + (1 −

𝑉1
0

𝑉1
)   𝑉1̇ + (1 −

𝑉2
0

𝑉2
)  𝑉2̇ +   𝐼1̇ +   𝐼2̇   

 

= (1 −
𝑆0

𝑆
) (Ʌ − (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆) + (1 −

𝑉1
0

𝑉1
) (𝑟1𝑆 − (𝑘1𝐼2  

+𝜇)𝑉1) + (1 −
𝑉2
0

𝑉2
) (𝑟2𝑆 − (𝑘2𝐼1 + 𝜇)𝑉2) + (𝑘2𝑉2 + 𝛽1𝑆)𝐼1 − 𝛼1𝐼1    

+((𝑘1𝑉1 + 𝛽2𝑆)𝐼2 − 𝛼2𝐼2)  

 

= Ʌ − (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆 − Ʌ
𝑆0

𝑆
+ (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆

0 + 𝑟1𝑆  

−(𝑘1𝐼2 + 𝜇)𝑉1 − 𝑟1𝑆
𝑉1
0

𝑉1
+ (𝑘1𝐼2 + 𝜇)𝑉1

0 + 𝑟2𝑆 − (𝑘2𝐼1 + 𝜇)𝑉2  

−𝑟2𝑆
𝑉2
0

𝑉2
+ (𝑘2𝐼1 + 𝜇)𝑉2

0 + ((𝑘2𝑉2 + 𝛽1𝑆)𝐼1 − 𝛼1𝐼1) + ((𝑘1𝑉1  

+𝛽2𝑆)𝐼2 − 𝛼2𝐼2)+(𝑘2𝑉2 + 𝛽1𝑆)𝐼1 − 𝛼1𝐼1   + ((𝑘1𝑉1 + 𝛽2𝑆)𝐼2 − 𝛼2𝐼2).   

             (4.25) 

 

From the disease free equilibrium, we have 

 

Ʌ = λS0, μ = r1
𝑆0

V1
0  and μ = r2

𝑆0

V2
0 − k2I1

0. 

 

Putting them in (4.25), we get 

 

�̇� = 𝜆𝑆0 (2 −
𝑆0

𝑆
) + 𝐼1(−𝛼1 + 𝑘2𝑉2

0 + 𝛽1𝑆
0) + 𝐼2(−𝛼2 + 𝑘1𝑉1

0  
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+𝛽2𝑆
0) − 𝜇𝑆 + 𝜇(𝑉1

0 − 𝑉1) + 𝜇(𝑉2
0 − 𝑉2) − 𝑟1𝑆

𝑉1
0

𝑉1
− 𝑟2𝑆

𝑉2
0

𝑉2
  

 

= (𝑟1 + 𝑟2 + 𝜇)𝑆
0 (2 −

𝑆0

𝑆
) − 𝜇𝑆 − 𝛼1𝐼1 (1 − (

𝑘2

𝛼1
𝑉2
0 +

𝛽1

𝛼1
𝑆0))  

−𝛼2𝐼2 (1 − (
𝑘1

𝛼2
𝑉1
0 +

𝛽2

𝛼2
𝑆0)) +

𝑟1𝑆
0

𝑉1
0 (𝑉1

0 − 𝑉1) +
𝑟2𝑆

0

𝑉2
0 (𝑉2

0 − 𝑉2)  

 

= 𝜇𝑆0 (2 −
𝑆0

𝑆
−

𝑆

𝑆0
) + 𝑟1𝑆

0 (3 −
𝑆0

𝑆
−

𝑉1

𝑉1
0 −

𝑆

𝑆0
𝑉1
0

𝑉1
)  

+𝑟2𝑆
0 (3 −

𝑆0

𝑆
−

𝑉2

𝑉2
0 −

𝑆

𝑆0
𝑉2
0

𝑉2
) + 𝛼1𝐼1(𝑅1 − 1) + 𝛼2𝐼2(𝑅2 − 1).  

 

The relation between arithmetic and geometric mean gives that 

 

2 −
𝑆0

𝑆
−

𝑆

𝑆0
< 0, 3 −

𝑆0

𝑆
−

𝑉1

𝑉1
0 −

𝑆

𝑆0
𝑉1
0

𝑉1
< 0 and 3 −

𝑆0

𝑆
−

𝑉2

𝑉2
0 −

𝑆

𝑆0
𝑉2
0

𝑉2
< 0.  

 

Therefore �̇� < 0 if 𝑅1 < 1 and 𝑅2 < 1.  Hence E0 is globally asymptotically stable if  

R0 < 1. 

 

 

Theorem 4.4. 𝐸1 is globally asymptotically stable if 𝑅2 < 1. 

 

Proof: Consider the Lyapunov function 

𝑉(𝑆, 𝑉1, 𝑉2, 𝐼1, 𝐼2) = 𝑔 (
𝑆

�̅�
) + 𝑔 (

𝑉1

𝑉1̅̅ ̅
) + 𝑔 (

𝑉2

𝑉2̅̅ ̅
) + 𝑔 (

𝐼1

𝐼1̅
) + 𝐼2  

 

where, 𝑔(𝑥) = 𝑥 − 1 − ln 𝑥, which is positive function. And since 𝐼1 > 0, therefore       

𝑉 ≥ 0. We need to show that �̇� is negative definite.  

 

�̇� = (1 −
�̅�

𝑆
) �̇� + (1 −

�̅�1

𝑉1
)𝑉1̇ + (1 −

�̅�2

𝑉2
)  𝑉2̇ + (1 −

𝐼1̅

𝐼1
)  𝐼1̇ +  𝐼2̇  

= (1 −
�̅�

𝑆
) (Ʌ − (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆) + (1 −

�̅�1

𝑉1
) (𝑟1𝑆 − (𝑘1𝐼2 + 𝜇)𝑉1)  
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+(1 −
�̅�2

𝑉2
) (𝑟2𝑆 − (𝑘2𝐼1 + 𝜇)𝑉2) + (1 −

𝐼1

𝐼1
) ((𝑘2𝑉2 + 𝛽1𝑆)𝐼1 − 𝛼1𝐼1)  

+(𝑘1𝑉1 + 𝛽2𝑆)𝐼2 − 𝛼2𝐼2  

 

= Ʌ − (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆 − Ʌ
�̅�

𝑆
+ (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆̅ + 𝑟1𝑆  

−(𝑘1𝐼2 + 𝜇)𝑉1 − 𝑟1𝑆
�̅�1

𝑉1
+ (𝑘1𝐼2 + 𝜇)�̅�1 + 𝑟2𝑆 − (𝑘2𝐼1 + 𝜇)𝑉2 − 𝑟2𝑆

�̅�2

𝑉2
  

+(𝑘2𝐼1 + 𝜇)�̅�2 + (𝑘2𝑉2 + 𝛽1𝑆)𝐼1 − 𝛼1𝐼1 − (𝑘2𝑉2 + 𝛽1𝑆)𝐼1̅ + 𝛼1𝐼1̅  

+(𝑘1𝑉1 + 𝛽2𝑆)𝐼2 − 𝛼2𝐼2  

= 𝛽1𝑆̅𝐼1̅ (1 −
�̅�

𝑆
−
𝑆

�̅�
) + 𝜆𝑆̅ (2 −

�̅�

𝑆
) + (𝑟1 + 𝑟2)𝑆 − 𝜆𝑆 + 𝜇�̅�1 (1 −

𝑉1

�̅�1
)  

+𝜇�̅�2 (1 −
𝑉2

�̅�2
) − 𝑟1𝑆

�̅�1

𝑉1
− 𝑟2𝑆

�̅�2

𝑉2
− 𝐼1(−𝛼1 + 𝑘2�̅�2 + 𝛽1𝑆̅)  

+𝐼2(−𝛼2 + 𝑘1�̅�1 + 𝛽2𝑆̅) − 𝜇𝑆 + 𝜇(�̅�1 − 𝑉1) + 𝜇(�̅�2 − 𝑉2) − 𝑟1𝑆
�̅�1

𝑉1
  

−𝑟2𝑆
�̅�2

𝑉2
− 𝑘2𝑉2𝐼1̅ − 𝛼1𝐼1̅  

 

= 𝛽1𝑆̅𝐼1̅ (2 −
�̅�

𝑆
−
𝑆

�̅�
) + 𝜇𝑆̅ (2 −

�̅�

𝑆
−
𝑆

�̅�
) + 𝑟1𝑆̅ (3 −

�̅�

𝑆
−
𝑉1

�̅�1
−
𝑆

�̅�

�̅�1

𝑉1
)  

+𝑟2𝑆̅ (3 −
�̅�

𝑆
−
𝑉2

�̅�2
−
𝑆

�̅�

�̅�2

𝑉2
) − 𝐼1̅(−𝑘2�̅�2 − 𝛽1𝑆̅ + 𝛼1) + 𝐼1(−𝛼1 + 𝑘2�̅�2  

+𝛽1𝑆̅) + 𝐼2(−𝛼2 + 𝑘1�̅�2 + 𝛽2𝑆̅).  

 

Since −𝑘2�̅�2 − 𝛽1𝑆̅ + 𝛼1 = 0, then we have 

 

�̇� = 𝛽1𝑆̅𝐼1̅ (2 −
�̅�

𝑆
−
𝑆

�̅�
) + 𝜇𝑆̅ (2 −

�̅�

𝑆
−
𝑆

�̅�
) + 𝑟1𝑆̅ (3 −

�̅�

𝑆
−
𝑉1

�̅�1
−
𝑆

�̅�

�̅�1
̅̅ ̅

𝑉1
)  

+𝑟2𝑆̅ (3 −
�̅�

𝑆
−
𝑉2

�̅�2
−
𝑆

�̅�

�̅�2

𝑉2
) + 𝐼2(𝑅2 − 1).  

 

From the relation between arithmetic and geometric means, it follows 

 

  2 −
�̅�

𝑆
−
𝑆

�̅�
< 0, 2 −

�̅�

𝑆
−
𝑆

�̅�
< 0 and 3 −

�̅�

𝑆
−
𝑉1

�̅�1
−
𝑆

�̅�

�̅�1

𝑉1
< 0. 

 

Therefore V̇ < 0 if R2 < 1.  Hence E1 is globally asymptotically stable if R2 < 1.  
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Theorem 4.5. 𝐸2 is globally asymptotically stable if 𝑅1 < 1. 

Proof. Consider the Lyapunov function 

 

𝑉(𝑆, 𝑉1, 𝑉2, 𝐼1, 𝐼2) = 𝑔 (
𝑆

�̂�
) + 𝑔 (

𝑉1

 𝑉1̂
) + 𝑔 (

𝑉2

 𝑉2̂
) + 𝐼1 + 𝑔 (

𝐼1

 𝐼2̂
),  

 

where, 𝑔(𝑥) = 𝑥 − 1 − ln 𝑥, which is positive function. And since 𝐼1 > 0, therefore      

𝑉 ≥ 0. We need to show that �̇� is negative definite. 

 

�̇� = (1 −
�̂�

𝑆
) �̇� + (1 −

𝑉1

𝑉1
)𝑉1̇ + (1 −

𝑉2

𝑉2
)  𝑉2̇ + + 𝐼1̇ + (1 −

𝐼1

𝐼2
)  𝐼2̇  

= (1 −
�̂�

𝑆
) (Ʌ − (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆) + (1 −

𝑉1

𝑉1
) (𝑟1𝑆 − (𝑘1𝐼2 + 𝜇)𝑉1)  

+(1 −
𝑉2

𝑉2
) (𝑟2𝑆 − (𝑘2𝐼1 + 𝜇)𝑉2) + (𝑘2𝑉2 + 𝛽1𝑆)𝐼1 − 𝛼1𝐼1  

+(1 −
𝐼1

𝐼2
) ((𝑘1𝑉1 + 𝛽2𝑆)𝐼2 − 𝛼2𝐼2)  

 

= Ʌ − (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆 − Ʌ
�̂�

𝑆
+ (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)�̂� + 𝑟1𝑆  

−(𝑘1𝐼2 + 𝜇)𝑉1 − 𝑟1𝑆
𝑉1

𝑉1
+ (𝑘1𝐼2 + 𝜇)�̂�1 + 𝑟2𝑆 − (𝑘2𝐼1 + 𝜇)𝑉2 − 𝑟2𝑆

𝑉2

𝑉2
  

+(𝑘2𝐼1 + 𝜇)�̂�2 + (𝑘2𝑉2 + 𝛽1𝑆)𝐼1 − 𝛼1𝐼1 + (𝑘1𝑉1 + 𝛽2𝑆)𝐼2 − 𝛼2𝐼2  

−(𝑘1𝑉1 + 𝛽2𝑆)𝐼1 + 𝛼2𝐼1  

= 𝛽2�̂�𝐼1 (1 −
�̂�

𝑆
−
𝑆

�̂�
) + 𝜆�̂� (2 −

�̂�

𝑆
) + (𝑟1 + 𝑟2)𝑆 − 𝜆𝑆 + 𝜇�̂�1 (1 −

𝑉1

𝑉1
)  

+𝜇�̂�2 (1 −
𝑉2

𝑉2
) − 𝑟1𝑆

𝑉1

𝑉1
− 𝑟2𝑆

𝑉2

𝑉2
− 𝐼1(−𝛼1 + 𝑘2�̂�2 + 𝛽1�̂�)  

+𝐼2(−𝛼2 + 𝑘1�̂�1 + 𝛽2�̂�) − 𝜇𝑆 + 𝜇(�̂�1 − 𝑉1) + 𝜇(�̂�2 − 𝑉2) − 𝑟1𝑆
𝑉1

𝑉1
  

−𝑟2𝑆
𝑉2

𝑉2
− 𝑘1𝑉1𝐼2 − 𝛼2𝐼2  

 

= 𝛽2�̂�𝐼2 (2 −
�̂�

𝑆
−
𝑆

�̂�
) + 𝜇�̂� (2 −

�̂�

𝑆
−
𝑆

�̂�
) + 𝑟1�̂� (3 −

�̂�

𝑆
−
𝑉1

𝑉1
−
𝑆

�̂�

𝑉1

𝑉1
)  

+𝑟2�̂� (3 −
�̂�

𝑆
−
𝑉2

𝑉2
−
𝑆

�̂�

𝑉2

𝑉2
) + 𝐼1(−𝛼1 + 𝑘2�̂�2 + 𝛽1�̂�) + 𝐼2(−𝛼2 + 𝑘1�̂�1 +

+𝛽2�̂�) − 𝐼2(−𝑘1�̂�1 − 𝛽2�̂� + 𝛼2).  



 

 

83 

 

Since −k1�̂�1 − β2�̂� + α2 = 0, then we have 

 

�̇� = 𝛽1�̂�𝐼2 (2 −
�̂�

𝑆
−
𝑆

�̂�
) + 𝜇�̂� (2 −

�̂�

𝑆
−
𝑆

�̂�
) + 𝑟1�̂� (3 −

�̂�

𝑆
−
𝑉1

𝑉1
−
𝑆

�̂�

𝑉1

𝑉1
)  

+𝑟2�̂� (3 −
�̂�

𝑆
−
𝑉2

𝑉2
−
𝑆

�̂�

𝑉2

𝑉2
) + 𝐼1(𝑅1 − 1) < 0  

 

By the relation between arithmetic and geometric means, we have 

 

  2 −
�̂�

𝑆
−
𝑆

�̂�
< 0, 2 −

�̂�

𝑆
−
𝑆

�̂�
< 0,  3 −

�̂�

𝑆
−
𝑉1

𝑉1
−
𝑆

�̂�

𝑉1

𝑉1
< 0 and 

 3 −
�̂�

𝑆
−
𝑉2

𝑉2
−
𝑆

�̂�

𝑉2

𝑉2
< 0.  

 

Therefore V̇ < 0 if R1 < 1.  Hence E2 is globally asymptotically stable if R1 < 1.  

 

 

4.4.  Numerical Simulations 

This section is carried out of the numerical simulations of the model (4.2) with using ode45 

suite in Matlab which use the Runge-Kutta numerical method to support the analytic 

results. The parameters were calculated by the previous study (Rahman & Zou, 2011) and 

some of the parameter estimated.  

 

In Fig 4.1 both strains (I1 and I2) die out, this is because the basic reproduction ratios for 

the strains are both less than one (R1 = 0.2966 and R2 = 0.2765). In Fig 4.2 strain1 (I1) 

dies out and strain2 (I2) persists (R1 = 0.2966 and R2 = 2.350), and in Fig 4.3 strain2 (I2) 

dies out and strain1 (I1) persists (R1 = 2.5979 and R2 = 0.2765). Lastly in Fig 4.4 both 

the two strains (I1 and I2) persist, this is because the basic reproduction ratios are both 

greater than one (𝑅1 = 2.5979 and 𝑅2 = 2.3501). 
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Figure 4. 2: Disease Free equilibrium: both strain die out. Parameter values are, 

             𝛽1 = 0.00003, 𝛽1 = 0.00003, 𝑘1 = 0.00001, 𝑘2 = 0.00001, 

         𝑟1 = 0.3, 𝑟2 = 0.3, 𝑣1 = 0.1, 𝑣2 = 0.1, 𝛾1 = 0.07, 𝛾2 = 0.09, 

     𝜇 = 0.02, Ʌ = 200, 𝑅1 = 0.2966 and 𝑅2 = 0.2765. 

 

 

Figure 4.3: Endemic for strain 2: Parameter values are 𝛽1 = 0.00003,   

         𝛽2 = 0.00003, 𝑘1 = 0.0001, 𝑘2 = 0.00001, 𝑟1 = 0.3,  

         𝑟2 = 0.3, 𝜈1 = 0.1, 𝜈2 = 0.1, 𝛾1 = 0.07, 𝛾2 = 0.09, 𝜇 = 0.02,  

         Ʌ = 200, 𝑅1 = 0.2966 and 𝑅2 = 2.350. 
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Figure 4.4: Endemic for strain 1: Parameter values are 𝛽1 = 0.00003,   

       𝛽2 = 0.00003, 𝑘1 = 0.00001, 𝑘2 = 0.0001, 𝑟1 = 0.3, 𝑟2 = 0.3,  

        𝜈1 = 0.1, 𝜈2 = 0.1,  𝛾1 = 0.07, 𝛾2 = 0.09, 𝜇 = 0.02,  Ʌ = 200,  

𝑅1 = 2.5979 and 𝑅2 = 0.2765. 

 

Figure 4. 5: both endemic: Parameter values are 𝛽1 = 0.00003, 𝛽2 = 0.00003, 

      𝑘1 = 0.0001, 𝑘2 = 0.0001, 𝑟1 = 0.3, 𝑟2 = 0.3, 𝜈1 = 0.1, 𝜈2 = 0.1, 

      𝛾1 = 0.07, 𝛾2 = 0.09, 𝜇 = 0.02, Ʌ = 200, 𝑅1 = 2.5979 and 

     𝑅2 = 2.3501. 
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To show the effect of vaccine for strain1 against strain 2 and the vaccine for strain 2 

against strain1, we carried out the following numerical simulations as can be seen in Figure 

4.5 and Figure 4.6. 

 

 

 

 

Figure 4.6: both endemic: Parameter values are 𝛽1 = 0.00003, 𝛽2 = 0.00003, 

 𝑘1 = 0.0001, 𝑘2 = 0.0001, 𝑟1 = 0.3, 𝜈1 = 0.1, 𝜈2 = 0.1, 𝛾1 = 0.07, 

      𝛾2 = 0.09, 𝜇 = 0.02 and Ʌ = 200. 

 

 

 

 

Figure 4.7: both endemic: Parameter values are 𝛽1 = 0.00003, 𝛽2 = 0.00003, 

 𝑘1 = 0.0001, 𝑘2 = 0.0001, 𝑟2 = 0.3, 𝜈1 = 0.1, 𝜈2 = 0.1, 𝛾1 = 0.07, 

      𝛾2 = 0.09, 𝜇 = 0.02 and Ʌ = 200. 

𝑟1 = 0.3 

𝑟2 = 0.3 

𝑟1 = 0 

𝑟2 = 0 
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4.5 Conclusion 

In this chapter, we have studied the dynamics of a two strain epidemic model with two 

vaccinations. The associated reproduction ratio for each strain is obtained. Moreover, we 

show that if the reproductions of both strains are less than one, the disease free equilibrium 

is globally asymptotically stable, and so the disease dies out. Otherwise there exist a 

unique strain 1 only or strain 2 only boundary equilibrium. The global stability of each 

boundary equilibrium point is also derived under some threshold conditions.  We also 

stated some conditions that ensure the existence of endemic equilibrium. Several numerical 

simulations were carried out to support the analytic results 

 

The basic reproduction ratios are 𝑅1 and 𝑅2 which are the threshold quantities of the 

population dynamics are determined as 

 

𝑅1 =
𝛽1
𝛼1

Ʌ

𝜆
+
𝑘2
𝛼1

𝑟2
𝜇

Ʌ

𝜆
,      𝑅2 = 

𝛽2
𝛼2

Ʌ

𝜆
+
𝑘1
𝛼2

𝑟1
𝜇

Ʌ

𝜆
 

 

It can be seen that the global stabilities of each equilibrium point depend on their 

magnitude. However, to avoid epidemics it sufficient to reduce the magnitude of the basic 

reproduction ratio below the threshold value (one). This can be achieved simply by 

reducing the incidence or recruitment rate.  

 

Numerical simulations were carried out to support the analytic results and to show the 

effect of vaccine for strain 1 against strain 2 and the vaccine for strain 2 against strain1. 

We have also shown  that the population for infectives to strain 2 increases when vaccine 

for strain 1 is absent and vice versa. 

 

In figure 4.5 it was shown that when vaccine for strain 2 is absent strain 1 dies out, but 

when there is 30% vaccine for strain 2, strain persists. This shows that  vaccine 2 has 

negative effect on strain 1. Similarly in figure 4.6 it was shown that vaccine 1 has negative 

effect on strain 2.  
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Chauhan proposed two models and showed effective of vaccine to the population. In their 

results disease can be controlled with vaccine (Chauhan et al., 2014). In 2010 Rahman and 

Zou constructed two strain model with one vaccine for strain one and they study the 

dynamics of strain two. In our study we add vaccine for strain 2 and we studied with two 

strain and two vaccine. We observed that vaccine for strain 1 has negative effect to vaccine 

2. 
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CHAPTER 5 

 

TWO-STRAIN EPIDEMIC MODEL WITH TWO VACCINATIONS  

AND TWO TIME DELAY 

 

In this chapter, in addition to the previous chapter, it is added incubation time period for 

both strains which makes the model more realistic and constructed two strain influenza 

model with two vaccines in which the strain 2 is the mutation of strain 1.  

 

Time between infection of strain 1 (or 2) produce a new virus. So study with the effect of 

time delay on vaccine-induced immunity is crucial. In this chapter, we present a 

mathematical model to describe the dynamics of a two-strain flu model with two 

delays.We targeted on the effects of vaccine for strain one opposed to strain 2 and the 

vaccine for strain 2 opposed to strain 1. 

 

This chapter organized as follows: In Section 5.1 formulated a two strain influenza model 

with delay and vaccination compartments regarding to strain 1 and strain 2. In Section 5.2 

all possible equilibria and basic reproduction ratios are given, and using Lyapunov 

functional global stabilities are studied for each equilibrium. In Section 5.3, some 

Numerical Simulations are given to reinforcement the theoretical results. Finally, in 

Section 5.4, conclusions and discussions are given. 

 

5.1 Stracture of Model 

The epidemic model which is constructed in this chapter consists of two strains and two 

vaccines with two delays (𝜏1 and 𝜏2). Similarly to the previous chapter the population N(t) 

is divided into suspectible, immunized with the vaccination for strain 1, immunized with 

the vaccination for strain 2, infected with strain 1, infected with strain 2 and recovered 

compartments with 𝑆, 𝑉1, 𝑉2, 𝐼1, 𝐼2and 𝑅, respectively. 

 

Assuming that infected at time 𝑡 − 𝜏1 and 𝑡 − 𝜏2 become infectious 𝜏1 and 𝜏2 times later 

respectively. To be a more realistic it can be assumed that not all of those infected will 
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survive after 𝜏1 (𝜏2) times later, because of this reason survival term 𝑒𝜇𝜏𝑖 (𝑖 = 1,2) is 

introduced.  

Here it is assumed that there is a constant recruitment into susceptible class through birth 

and immigration and there is no double infection. The average life expectancy is 𝜇 and 

𝑑𝑖(𝑖 = 1, 2) are infection death rates of strain1 and 2 respectively.  The avarage time spent 

in class 𝐼1 and 𝐼2 become recovery 
1

𝛾1
 and 

1

𝛾2
 respectively. The suspectible individuals are 

vaccined with constant rate 𝑟1 for strain 1 and  𝑟2 for strain 2. The vaccinated individual 𝑉1 

can also be infected by strain 2 at a rate  𝑘1 and the vaccinated individual 𝑉2 can also be 

infected by strain 1 at a rate 𝑘2. 𝛽1 and 𝛽2 are transmission coefficients of susceptible 

individuals to strain 1 and strain 2 respectively. The variables and parameters are positive. 

With these assumptions the model is given by a system of 6 ordinary differential equations 

 

𝑑𝑆(𝑡)

𝑑𝑡
= Ʌ − (𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡) + 𝜆)𝑆(𝑡),   

 

𝑑𝑉1(𝑡)

𝑑𝑡
= 𝑟1𝑆(𝑡) − (𝑘1𝐼2(𝑡) + 𝜇)𝑉1(𝑡),   

 

𝑑𝑉2(𝑡)

𝑑𝑡
= 𝑟2𝑆(𝑡) − (𝑘2𝐼1(𝑡) + 𝜇)𝑉2(𝑡),               (5.1) 

 

𝑑𝐼1(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏1(𝑘2𝑉2(𝑡 − 𝜏1) + 𝛽1𝑆(𝑡 − 𝜏1))𝐼1(𝑡 − 𝜏1) − 𝛼1𝐼1(𝑡),  

 

𝑑𝐼2(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏2(𝑘1𝑉1(𝑡 − 𝜏2) + 𝛽2𝑆(𝑡 − 𝜏2))𝐼2(𝑡 − 𝜏2) − 𝛼2𝐼2(𝑡),   

 

𝑑𝑅(𝑡)

𝑑𝑡
= 𝛾1𝐼1(𝑡) + 𝛾2𝐼2(𝑡) − 𝜇𝑅(𝑡),   

 

wehere 𝜆 = 𝑟1 + 𝑟2 + 𝜇 , 𝛼1 = 𝜇 + 𝜈1 + 𝛾1 and 𝛼2 = 𝜇 + 𝜈2 + 𝛾2, with the condition 

 S + V1 + V2 + I1 + I2 + R = N. Since R does not appear in the equations for 
𝑑𝑆(𝑡)

𝑑𝑡
,
𝑑𝑉1(𝑡)

𝑑𝑡
, 

𝑑𝑉2(𝑡)

𝑑𝑡
,
𝑑𝐼1(𝑡)

𝑑𝑡
,
𝑑𝐼2(𝑡)

𝑑𝑡
  analizing the behaviour of solutions of the following system is 

sufficient. 
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𝑑𝑆(𝑡)

𝑑𝑡
= Ʌ − (𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡) + 𝜆)𝑆(𝑡),  

 

𝑑𝑉1(𝑡)

𝑑𝑡
= 𝑟1𝑆(𝑡) − (𝑘1𝐼2(𝑡) + 𝜇)𝑉1(𝑡),  

 

𝑑𝑉2(𝑡)

𝑑𝑡
= 𝑟2𝑆(𝑡) − (𝑘2𝐼1(𝑡) + 𝜇)𝑉2(𝑡),          (5.2) 

 

𝑑𝐼1(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏1(𝑘2𝑉2(𝑡 − 𝜏1) + 𝛽1𝑆(𝑡 − 𝜏1))𝐼1(𝑡 − 𝜏1) − 𝛼1𝐼1(𝑡),  

 

𝑑𝐼2(𝑡)

𝑑𝑡
= 𝑒−𝜇𝜏2(𝑘1𝑉1(𝑡 − 𝜏2) + 𝛽2𝑆(𝑡 − 𝜏2))𝐼2(𝑡 − 𝜏2) − 𝛼2𝐼2(𝑡).  

 

The initial conditions of system (2) is given as 

 

𝑆(𝜃) = ɸ1(𝜃), 𝑉1(𝜃) = ɸ2(𝜃) , 𝑉2(𝜃) = ɸ3(𝜃), 𝐼1(𝜃) = ɸ4(𝜃),  

 𝐼2(𝜃) = ɸ5(𝜃) , 𝜃 ∈ [−𝜏, 0], ɸ𝑖(0) > 0,ɸ𝑖(𝜃) ∈ 𝐶+
5([−𝜏, 0], ℝ+

5 ),  

 𝑖 = 1,… ,5, 𝜏 = 𝑚𝑎𝑥{𝜏1, 𝜏2}.  

 

Here 𝐶 = 𝐶([−𝜏, 0]; ℝ) denotes the Banach space with norm  

 

‖ɸ‖ = 𝑠𝑢𝑝−𝜏≤𝜃≤0|ɸ(𝜃)| for ɸ ∈ 𝐶.  

 

The nonnegative cone for 𝐶 is defined by 𝐶+ = 𝐶([−𝜏, 0], ℝ+), where ℝ+ = [0,∞). 

 

Theorem 5.1. The feasible region of the model (5.2) with above  initial conditions is given 

by  

 

𝛺 = {𝑆(𝑡), 𝑉1(𝑡), 𝑉2(𝑡), 𝐼1(𝑡), 𝐼2(𝑡), 𝑅(𝑡) ∈ 𝐶+
5: 𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) +

+𝑒𝜇𝜏1𝐼1(𝑡 + 𝜏1) + 𝑒
𝜇𝜏2𝐼2(𝑡 + 𝜏2) ≤

Ʌ

𝜇
}.   
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Proof. To find the feasible region, define 

 

𝐻 = 𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝑒
−𝜇𝜏1𝐼1(𝑡 + 𝜏1) + 𝑒

−𝜇𝜏2𝐼2(𝑡 + 𝜏2),  

 

then 

 

�̇�(𝑡) = �̇�(𝑡) + �̇�1(𝑡) + �̇�2(𝑡) + 𝑒
−𝜇𝜏1𝐼1̇(𝑡 + 𝜏1) + 𝑒

−𝜇𝜏2𝐼2̇(𝑡 + 𝜏2)  

 

= Ʌ − (𝛽1𝐼1(𝑡) + 𝛽2𝐼2(𝑡) + 𝜆)𝑆(𝑡) + 𝑟1𝑆(𝑡) − (𝑘1𝐼2(𝑡) + 𝜇)𝑉1(𝑡)  

+𝑟2𝑆(𝑡) − (𝑘2𝐼1(𝑡) + 𝜇)𝑉2(𝑡) + (𝑘2𝑉2(𝑡) + 𝛽1𝑆(𝑡))𝐼1(𝑡)  

−𝑒𝜇𝜏1𝛼1𝐼1(𝑡 + 𝜏1) + (𝑘1𝑉1(𝑡) + 𝛽2𝑆(𝑡))𝐼2(𝑡) − 𝑒
−𝜇𝜏2𝛼2𝐼2(𝑡 + 𝜏2)      

 

= Ʌ − 𝜇𝑆(𝑡) − 𝜇𝑉1(𝑡) − 𝜇𝑉2(𝑡) − 𝑒
𝜇𝜏1(𝜇 + 𝛾1 + 𝑑1)𝐼1(𝑡)  

−𝑒−𝜇𝜏2(𝜇 + 𝛾2 + 𝑑2)𝐼2(𝑡)  

 

≤ Ʌ − 𝜇(𝑆(𝑡) + 𝑉1(𝑡) + 𝑉2(𝑡) + 𝐼1(𝑡) + 𝑒
−𝜇𝜏2𝐼2(𝑡)) = Ʌ − 𝜇𝐻  

 

or 

 

0 ≤ �̇� ≤ Ʌ − 𝜇𝐻.  

 

Thus  

 

limsup𝑡→∞ H ≤
Ʌ

μ
.  

 

Hence 𝐻(𝑡) is bounded. Therefore all compartments of 𝑆, 𝑉1, 𝑉2, 𝐼1, 𝐼2 are bounded with  
Ʌ

μ
. 

 

Theorem  5.2. There exists a unique solution of system (5.2). 

 

Proof.  System (5.2) can be written as 
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𝑓(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) =

(

 
 

𝑓1(𝜑(𝑡))
𝑓2(𝜑(𝑡))
𝑓3(𝜑(𝑡))

𝑓4(𝜑(𝑡), 𝜑(𝑡 − 𝜏))
𝑓5(𝜑(𝑡), 𝜑(𝑡 − 𝜏)))

 
 

,  𝜑(𝑡) =

(

 
 

𝜑1(𝑡)
𝜑2(𝑡)
𝜑3(𝑡)
𝜑4(𝑡)
𝜑5(𝑡))

 
 

, 

 

where 

 

𝑓1(𝜑(𝑡)) = Ʌ − (𝛽1𝜑4(𝑡) + 𝛽2𝜑5(𝑡) + 𝜆)𝜑1, 𝑓2𝜑(𝑡) = 𝑟1𝜑1(𝑡) − (𝑘1𝜑5(𝑡) +

+𝜇)𝜑2(𝑡), 𝑓3𝜑(𝑡) = 𝑟2𝜑1(𝑡) − (𝑘2𝐼1(𝑡) + +𝜇)𝜑3(𝑡), 𝑓4(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) ====

= (𝑘2𝜑3(𝑡 − 𝜏) + 𝛽1𝜑1(𝑡 − 𝜏))𝜑4(𝑡 − −𝜏) − 𝛼1𝜑4(𝑡 − 𝜏), 𝑓5(𝜑(𝑡), 𝜑(𝑡 −

−𝜏)) = (𝑘1𝜑2(𝑡 − 𝜏) + 𝛽2𝜑1(𝑡 − −𝜏))𝜑5(𝑡 − 𝜏) − 𝛼2𝜑5(𝑡 − 𝜏) are continuous. 

In order to say the system (4.2) has a unique solution it is sufficient to show that 

the Lipschitz condition for 𝑓(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) with respect to 𝜑(𝑡) holds. 

 

For 𝜑(𝑡) = (𝜑1(𝑡), 𝜑2(𝑡), 𝜑3(𝑡), 𝜑4(𝑡), 𝜑5(𝑡)) and 𝜓(𝑡) = (𝜓1(𝑡), 𝜓2(𝑡), 𝜓3(𝑡),𝜓4(𝑡), 

𝜓5(𝑡)), and assuming that  

 

|𝜓 − 𝜑| = ∑ |𝜓𝑖 − 𝜑𝑖|
5
𝑖=1 .                      (5.3)  

 

Then 

  

‖f1(𝜑(𝑡)) − f1(𝜓(𝑡))‖ = |Ʌ − (β1𝜑4(𝑡) + β2𝜑5(𝑡) + λ)𝜑1(𝑡) −

−(Ʌ − (β1𝜓4(𝑡) + β2𝜓5(𝑡) + λ)𝜓1(𝑡))|  

 

≤ β1|𝜓4(𝑡)𝜓1(𝑡) − 𝜑4(𝑡)𝜑1(𝑡)| + β2|𝜓5(𝑡)𝜓1(𝑡) − 𝜑5(𝑡)𝜑1(𝑡)| +

+λ|𝜓1(𝑡) − 𝜑1(𝑡)|  

 

= β1|𝜓4(𝑡)𝜓1(𝑡) − 𝜓1(𝑡)𝜑4(𝑡) + 𝜓1(𝑡)𝜑4(𝑡) − 𝜑4(𝑡)𝜑1(𝑡)| +

+β2|𝜓5(𝑡)𝜓1(𝑡) − 𝜓1(𝑡)𝜑5(𝑡) + 𝜓1(𝑡)𝜑5(𝑡) − 𝜑5(𝑡)𝜑1(𝑡)| +

+λ|𝜓1(𝑡) − 𝜑1(𝑡)|  
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≤ β1|𝜓1(𝑡)||𝜓4(𝑡) − 𝜑4(𝑡)| + β1|𝜑4(𝑡)||𝜓1(𝑡) − 𝜑1(𝑡)| +

+β2|𝜓1(𝑡)||𝜓5(𝑡) − 𝜑5(𝑡)| + +β2|𝜑5(𝑡)||𝜓1(𝑡) − 𝜑1(𝑡)| +

+λ|𝜓1(𝑡) − 𝜑1(𝑡)|     

           

= (β1|𝜓4(𝑡)| + β2|𝜑5(𝑡)| + λ)|𝜓1(𝑡) − 𝜑1(𝑡)| + β1|𝜓1(𝑡)||𝜓4(𝑡) −

−𝜑4(𝑡)| + β2|𝜓1(𝑡)||∅5(𝑡) − 𝜑5(𝑡)| ≤ 𝐾1|𝜓(𝑡) − 𝜑(𝑡)|,       (5.4) 

 

where 

 

𝐾1 = max{β1|𝜓4(𝑡)| + β2|𝜑5(𝑡)| + λ, β1|𝜓1(𝑡)|, β2|𝜓1(𝑡)|}.  

 

From the invariant set , 𝜑1(𝑡) ≤
Ʌ

𝜇
, 𝜑4(𝑡) ≤

Ʌ

𝜇
 and 𝜑5(𝑡) ≤

Ʌ

𝜇
 , it follows 

 

𝐾1 = (β1 + β2)
Ʌ

𝜇
+ λ.  

 

Furthermore, one can derive that 

 

‖𝑓2(𝜑(𝑡)) − 𝑓2(𝜓(𝑡))‖ = |𝑟1𝜑1(𝑡) − (𝑘1𝜑5(𝑡) + 𝜇)𝜑2(𝑡) −

−(𝑟1𝜓1(𝑡) − (𝑘1𝜓5(𝑡) + 𝜇)𝜓2(𝑡))|   

 

≤ 𝑟1|𝜑1(𝑡) − 𝜓1(𝑡)| +  𝜇|𝜓2(𝑡) − 𝜑2(𝑡)| + 𝑘1|𝜓5(𝑡)𝜓2(𝑡) −

−𝜑5(𝑡)𝜑2(𝑡)|  

≤ 𝑟1|𝜑1(𝑡) − 𝜓1(𝑡)| +  𝜇|𝜓2(𝑡) − 𝜑2(𝑡)| + 𝑘1|𝜓5(𝑡)||𝜓2(𝑡) −

−𝜑2(𝑡)| + 𝑘1|𝜑2(𝑡)||𝜓5(𝑡) − 𝜑5(𝑡)|    

= 𝑟1|𝜑1(𝑡) − 𝜓1(𝑡)| + (𝜇 + 𝑘1|𝜓5(𝑡)|)|𝜓2(𝑡) − 𝜑2(𝑡)| +

+𝑘1|𝜑2(𝑡)||𝜓5(𝑡) − 𝜑5(𝑡)| ≤ 𝐾2|𝜓(𝑡) − 𝜑(𝑡)|,           (5.5) 

 

where 

 

𝐾2 = 𝑚𝑎𝑥{𝑟1, (𝜇 + 𝑘1|𝜓5(𝑡)|), 𝑘1|𝜑2(𝑡)|}. 
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from the invariant set , 𝜑1(𝑡) ≤
Ʌ

𝜇
, 𝜑2(𝑡) ≤

Ʌ

𝜇
 and 𝜑5(𝑡) ≤

Ʌ

𝜇
 , it follows 

 

𝐾2 = 𝜇 + 𝑘1
Ʌ

𝜇
.  

 

For the fourth equation of the system (5.2), we have 

 

‖f3(𝜑(𝑡)) − f3(𝜓(𝑡))‖ = |r2𝜑1(𝑡) − (k2𝜑4(𝑡) + μ)𝜑3(𝑡) −

−(r2𝜓1(𝑡) − (k2𝜓4(𝑡) + μ)𝜓3(𝑡))|  

≤ r2|𝜑1(𝑡) − 𝜓1(𝑡)| +  μ|𝜓3(𝑡) − 𝜑3(𝑡)| + k2|𝜓5(𝑡)𝜓3(𝑡) −

−𝜑4(𝑡)𝜑3(𝑡)|  

≤ r2|𝜑1(𝑡) − 𝜓1(𝑡)| +  μ|𝜓3(𝑡) − 𝜑3(𝑡)| + k2|𝜓4(𝑡)||𝜓3(𝑡) −

−𝜑3(𝑡)| + k2|𝜑3(𝑡)||𝜓4(𝑡) − 𝜑4(𝑡)|    

= r2|𝜑1(𝑡) − 𝜓1(𝑡)| + (μ + k2|𝜓4(𝑡)|)|𝜓3(𝑡) − 𝜑3(𝑡)| +

+k2|𝜑3(𝑡)||𝜓4(𝑡) − 𝜑4(𝑡)| ≤ 𝐾3|𝜓(𝑡) − 𝜑(𝑡)|,          (5.6) 

 

 

where, 

 

𝐾3 = max{r2, (μ + k2|𝜓4(𝑡)|), k2|𝜑3(𝑡)|}.  

 

From the invariant set , 𝜑1(𝑡) ≤
Ʌ

𝜇
, 𝜑3(𝑡) ≤

Ʌ

𝜇
 and 𝜑4(𝑡) ≤

Ʌ

𝜇
 , it follows 

 

𝐾3 = 𝜇 + 𝑘2
Ʌ

𝜇
.  

 

The forth equation gives that 

 

‖𝑓4(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) − 𝑓4(𝜓(𝑡), 𝜓(𝑡 − 𝜏))‖ = |(𝑘2𝜑3(𝑡 − 𝜏) +

+𝛽1𝜑1(𝑡 − 𝜏))𝜑4(𝑡 − 𝜏) − 𝛼1𝜑4(𝑡) − ((𝑘2𝜓3(𝑡 − 𝜏) + 𝛽1𝜓1(𝑡 −

−𝜏))𝜓4(𝑡 − 𝜏) − 𝛼1𝜓4(𝑡))|  
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≤ 𝛼1|𝜓4(𝑡) − 𝜑4(𝑡)| ≤ 𝐾4|𝜓(𝑡) − 𝜑(𝑡)|,        (5.7) 

 

where 

 

𝐾4 = 𝛼1.  

 

Finally, 

 

‖𝑓5(𝜑(𝑡), 𝜑(𝑡 − 𝜏)) − 𝑓5(𝜓(𝑡), 𝜓(𝑡 − 𝜏))‖ = |(𝑘1𝜑2(𝑡 − 𝜏) +

+𝛽2𝜑1(𝑡 − 𝜏))𝜑5(𝑡 − 𝜏) − 𝛼2𝜑5(𝑡) − ((𝑘1𝜓2(𝑡 − 𝜏) + 𝛽2𝜓1(𝑡 −

−𝜏))𝜓5(𝑡 − 𝜏) − 𝛼2𝜓5(𝑡))|  

 

≤ 𝛼2|𝜓5(𝑡) − 𝜑5(𝑡)| ≤ 𝐾5|𝜓(𝑡) − 𝜑(𝑡)|,        (5.8) 

 

where 

 

𝐾5 = 𝛼2.  

 

Applying (5.4), (5.5), (5.6), (5.7) and (5.8), we get 

 

‖𝑓(𝜑(𝑡)) − 𝑓(𝜓(𝑡))‖ = ‖𝑓1(𝜑(𝑡)) − 𝑓1(𝜓(𝑡))‖ + ‖𝑓2(𝜑(𝑡)) −

−𝑓2(𝜓(𝑡))‖ + ‖𝑓3(𝜑(𝑡)) − 𝑓3(𝜓(𝑡))‖ + ‖𝑓4(𝜑(𝑡)) − 𝑓4(𝜓(𝑡))‖ +

+‖𝑓5(𝜑(𝑡)) − 𝑓5(𝜓(𝑡))‖ ≤ (𝐾1 + 𝐾2 + 𝐾3 + 𝐾4 + 𝐾5) |𝜓(𝑡) − 𝜑(𝑡)|, 

 

where 

 

𝐾1 + 𝐾2 + 𝐾3 + 𝐾4 + 𝐾5 = (𝛽1 + 𝛽2 + 𝑘1 + 𝑘2)
Ʌ

𝜇
+ 𝜆 + 2𝜇 + 𝛼1 + 𝛼2.  

 

Hence the system (5.2) has a unique solution. 
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5.2 Equilibrium and Stability Analysis 

5.2.1 Equilibrium points 

Theorem 5.3. 

1.   System (5.2) has a disease free equilibrium 𝐸0 = (
Ʌ

𝜆 
,
𝑟1Ʌ

𝜆𝜇
,
𝑟2Ʌ

𝜆𝜇
, 0,0). 

 

2.  When (
𝑘2𝑟2

𝛼1𝜇
+
𝛽1

𝛼1
)
Ʌ

𝜆
𝑒−𝜇𝜏1 ≥ 1 then the system (5.2) has strain 1 endemic (strain 2 

     disease free) equilibrium 𝐸1 = (𝑆̅, �̅�1, �̅�2, 𝐼1̅, 0), where  

 

𝑆̅ =
Ʌ

𝛽1𝐼1
1+𝜆
, �̅�1 =

𝑟1Ʌ

𝜇(𝛽1𝐼1+𝜆)
, �̅�2 =

𝑟2Ʌ

(𝛽1𝐼1+𝜆)(𝜇+𝑘2𝐼1)
, 𝐼2̅ = 0  

 

and 𝐼1̅ is the root of  

 

𝐴𝐼1
2 + 𝐵𝐼1 + 𝐶 = 0,  

 

where 𝐴 = 𝛼1𝛽1𝑘2 𝑒
𝜇𝜏1, 𝐵 = 𝛼1(𝛽1𝜇 + 𝜆𝑘2)𝑒

𝜇𝜏1 − 𝑘2𝛽1Ʌ, 𝐶 = 𝛼1𝜆𝜇𝑒
𝜇𝜏1 − (𝑘2𝑟2Ʌ +

+𝛽1Ʌ𝜇). 

 

3.   When, (
𝑘1𝑟1

𝛼2𝜇
+
𝛽2

𝛼2
)
Ʌ

𝜆
𝑒−𝜇𝜏2 ≥ 1, the system (5.2) has the single strain 2 endemic (strain 

1 disease free) equilibrium 𝐸2 = (�̂�, �̂�1, �̂�2, 0, 𝐼2), where  

 

�̂� =
Ʌ

𝛽2𝐼2+𝜆
, �̂�1 =

𝑟1Ʌ

(𝛽2𝐼2+𝜆)(𝜇+𝑘1𝐼2)
, �̂�2 =

𝑟2Ʌ

𝜇(𝛽2𝐼2+𝜆)
, 𝐼1 = 0  

and 𝐼2 is the root of  

 

𝐴𝐼2
2 + 𝐵𝐼2 + 𝐶 = 0  

 

where 𝐴 = 𝛼2𝛽2𝑘1 𝑒
𝜇𝜏2, 𝐵 = 𝛼2(𝛽2𝜇 + 𝜆𝑘1)𝑒

𝜇𝜏2 − 𝑘1𝛽2Ʌ, 𝐶 = 𝛼2𝜆𝜇𝑒
𝜇𝜏2  

−(𝑘1𝑟1Ʌ + 𝛽2Ʌ𝜇). 

 

4. System (5.2) has no double strain infection equilibrium.  
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Proof. Setting the each equation in (5.2) equals to zero, it follows 

 

Ʌ − (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆 = 0,  

 

𝑟1𝑆 − (𝑘1𝐼2 + 𝜇)𝑉1 = 0,  

 

𝑟2𝑆 − (𝑘2𝐼1 + 𝜇)𝑉2 = 0,               (5.9)       

 

𝑒−𝜇𝜏1(𝑘2𝑉2 + 𝛽1𝑆)𝐼1 − 𝛼1𝐼1 = 0,  

 

𝑒−𝜇𝜏2(𝑘1𝑉1 + 𝛽2𝑆)𝐼2 − 𝛼2𝐼2 = 0. 

 

1.   Since, 𝐼1 = 0 and 𝐼2 = 0, then from the first three equations of the system (5.9), it is 

obtained that 

 

𝑆 =
λ

Ʌ
, 𝑉1 =

r1

μ

λ

Ʌ
, 𝑉2 =

r2

μ

λ

Ʌ
. 

 

Therefore, the disease free equilibrium is  

 

𝐸0 = (
𝜆

Ʌ
,
𝑟1

𝜇

𝜆

Ʌ
,
𝑟2

𝜇

𝜆

Ʌ
, 0,0 ).  

 

Since all the coordinates of 𝐸0 are positive, then it is biologically meaningful. 

 

2.   For the Strain 2 disease free equilibrium (strain 1 infection equilibrium) 𝐸1, 𝐼2̅ = 0 and 

𝐼1̅ ≠ 0. Then with using the system (5.3) we have 

 

Ʌ − (β1I1 + λ)S = 0,  

 

r1S − μV1 = 0,  
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r2S − (k2I1 + μ)V2 = 0,                        (5.10)       

 

𝑒−𝜇𝜏1(k2V2 + β1S) − α1 = 0.  

 

The first three equations of system (5.10), gives that  

 

𝑆 =
Ʌ

𝛽1𝐼1+𝜆
, 𝑉1 =

𝑟1𝑆

𝜇
,  𝑉2 =

𝑟2𝑆

𝑘2𝐼1+𝜇
. 

 

or 

 

𝑆 =
Ʌ

𝛽1𝐼1+𝜆
 , 𝑉1 =

𝑟1

𝜇

Ʌ

𝛽1𝐼1+𝜆
, 𝑉2 =

𝑟2

𝑘2𝐼1+𝜇

Ʌ

𝛽1𝐼1+𝜆
. 

 

Putting S, and 𝑉2 in the fourth equation of the system (5.10), we get 

 

(𝑘2
𝑟2

𝑘2𝐼1+𝜇

Ʌ

𝛽1𝐼1+𝜆
+ 𝛽1

Ʌ

𝛽1𝐼1+𝜆
) − 𝑒𝜇𝜏1𝛼1 = 0  

 

or  

 

Ʌ𝑘2𝑟2 + Ʌ𝛽1(𝑘2𝐼1 + 𝜇) − 𝛼1(𝑘2𝐼1 + 𝜇)(𝛽1𝐼1 + 𝜆) = 0  

 

or 

 

𝑒𝜇𝜏1(𝛼1𝛽1𝑘2)𝐼1
2 + (𝑒𝜇𝜏1𝛼1𝑘2𝜆 + 𝑒

𝜇𝜏1𝛼1𝛽1𝜇 − Ʌ𝛽1𝑘2)𝐼1  +

+(𝑒𝜇𝜏1𝛼1𝜆𝜇 − Ʌ𝑘2𝑟2 − Ʌ𝛽1 𝜇) = 0.                    (5.11) 

 

Choosing, 𝐴 = 𝑒𝜇𝜏1𝛼1𝛽1𝑘2,𝐵 = 𝑒
𝜇𝜏1(𝛼1𝑘2𝜆 + 𝛼1𝛽1𝜇) − Ʌ𝛽1𝑘2, and 𝐶 = 𝑒𝜇𝜏1𝛼1𝜆𝜇 −

−Ʌ𝑘2𝑟2 − Ʌ𝛽1𝜇, system (5.11) can be rewritten as 

  

𝐴𝐼1
2 + 𝐵𝐼1 + 𝐶 = 0                       (5.12) 
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Since 𝑆̅, �̅�1 and �̅�2 are all positive, in order to check the biologically meaningfulness of  𝐸1 

we need to show that the equation (5.12) has only one positive root. Following with 

equation (4.16), we can see that (5.12) has only one positive root when 

 

Ʌ𝑒−𝜇𝜏1

𝛼−1𝜆
(𝛽1 +

𝑘2𝑟2

𝜇
) ≥ 1.  

 

3.   For the strain 1 disease free equilibrium (strain 2 infection equilibrium) 𝐸2, 𝐼1 = 0 and 

     𝐼2 ≠ 0 Again using the system (5.10), it can be obtained  

 

Ŝ =
Ʌ

β2I2+λ
, �̂�1 =

r1Ʌ

(β2I2+λ)(μ+k1I2)
, �̂�2 =

r2Ʌ

μ(β2I2+λ)
, 𝐼1 = 0  

 

and  

 

𝐴𝐼2
2 + 𝐵𝐼2 + 𝐶 = 0,           (5.13) 

 

where 𝐴 = 𝑒𝜇𝜏2𝛼2𝛽2𝑘1, 𝐵 = 𝑒𝜇𝜏2(𝛼2𝑘1𝜆 + 𝛼2𝛽2𝜇) − Ʌ𝛽2𝑘1 and 𝐶 = 𝑒𝜇𝜏2𝛼2𝜆𝜇 −

−Ʌ𝑘1𝑟1 − Ʌ𝛽2𝜇. (5.13) has a unique positive solution when 

 

Ʌ𝑒−𝜇𝜏2

𝛼2𝜆
(𝛽2 +

𝑘1𝑟1

𝜇
) ≥ 1. 

 

 

4.   From the equations of the system (5.10) it can be obtained 

 

𝑆∗ =
Ʌ

𝛽1𝐼1+𝛽2𝐼2+𝜆
 , 𝑉1

∗ =
𝑟1Ʌ

(𝛽1𝐼1+𝛽2𝐼2+𝜆)(𝜇+𝑘1𝐼2)
 , 𝑉2

∗ =
𝑟2Ʌ

(𝛽1𝐼1+𝛽2𝐼2+𝜆)(𝜇+𝑘2𝐼1)
 ,  

 

when they are replaced into the last two equation of the system (5.10), it will obtained the 

following system 

 

𝑎1𝐼1
2 + 𝑏1𝐼1𝐼2 + 𝑐1𝐼1 + 𝑑1𝐼2 + 𝑒1 = 0,  
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𝑎2𝐼2
2 + 𝑏2𝐼1𝐼2 + 𝑐2𝐼1 + 𝑑2𝐼2 + 𝑒2 = 0,     (5.14) 

 

where 

 

𝑎1 = −𝛼1𝛽1𝑘2,  𝑏1 = −𝛼1𝛽2𝑘2,  𝑐1 = 𝑒
−𝜇𝜏1𝛽1Ʌ𝑘2 − 𝛼1𝜆𝑘2 − 𝛼1𝛽1𝜇,  

𝑑1 = −𝛼1𝛽2𝜇, 𝑒1 = 𝑒
−𝜇𝜏1(𝑘2𝑟2Ʌ + 𝛽1Ʌ𝜇) − 𝛼1𝜆𝜇,  𝑎2 = −𝛼2𝛽1𝑘1,  

𝑏2 = −𝛼2𝛽1𝑘1,  𝑐2 = −𝛼2𝛽1𝜇, 𝑑2 = 𝑒
−𝜇𝜏2𝛽2Ʌ𝑘1 − 𝛼2𝜆𝑘1 − 𝛼2𝛽2𝜇, 

𝑒2 = 𝑒
−𝜇𝜏2(𝑘1𝑟1Ʌ + 𝛽2Ʌ𝜇) − 𝛼2𝜆𝜇. 

 

However, (5.8) has no solution. 

 

 

5.2.2 Basic Reproduction Number 

Basic reproduction ratio (R0) is the number of secondary infections which is caused by one 

infectious individual in a wholly susceptible population. We use the next generation matrix  

 

𝐹 = [
(𝛽1𝑆

0 + 𝑘2𝑉2
0)𝑒−𝜇𝜏1 0

0 (𝛽2𝑆
0 + 𝑘1𝑉1

0)𝑒−𝜇𝜏2
],  𝑉 = [

𝛼1 0
0 𝛼2

],     

 

the matrix F is non-negative and is responsible for new infections, while 𝑉 is invertible and 

is reffered to as the transmission matrix for the model (2), It follows that 

 

𝐹𝑉−1 = [

(𝛽1𝑆
0+𝑘2𝑉2

0)𝑒−𝜇𝜏1

𝛼1
0

0
(𝛽2𝑆

0+𝑘1𝑉1
0)𝑒−𝜇𝜏2

𝛼2

]  

 

then the basic reproduction ratio  

 

𝑅0 = max{𝑅1, 𝑅2},  

 

where 
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𝑅1 =
Ʌ𝑒−𝜇𝜏1

𝛼1𝜆
(𝛽1 +

𝑘2𝑟2

𝜇
) , 𝑅2 = 

Ʌ𝑒−𝜇𝜏2

𝛼2𝜆
(𝛽2 +

𝑘1𝑟1

𝜇
).  

 

 

5.2.3 Global Stability Analysis 

In this section, we study the global properties of the equilibria.  Lyapunov function is used 

to show the global stabilities. 

 

Theorem 5.4. The DFE E0 is globally asymptotically stable if 𝑅0 < 1. 

 

Proof: Consider the Lyapunov function 

 

𝒱 = 𝑆0𝑔 (
𝑠(𝑡)

𝑆0
) +  𝑉1

0𝑔 (
 𝑉1(𝑡)

 𝑉1
0 ) +  𝑉2

0𝑔 (
 𝑉2(𝑡)

 𝑉2
0 ) + 𝑒

𝜇𝜏1  𝐼1(𝑡)  

+∫ [𝛽1 𝐼1(𝑢)𝑆(𝑢) + 𝑘2 𝐼1(𝑢) 𝑉2(𝑢)]𝑑𝑢
𝑡

𝑡−𝜏1
+ 𝑒𝜇𝜏2  𝐼2(𝑡) 

+∫ [𝛽2 𝐼2(𝑢)𝑆(𝑢) + 𝑘1 𝐼2(𝑢) 𝑉1(𝑢)]𝑑𝑢
𝑡

𝑡−𝜏2
   

 

�̇� = (1 −
𝑆0

𝑆(𝑡)
) �̇� + (1 −

 𝑉1
0

𝑉1(𝑡)
)𝑉1̇ + (1 −

 𝑉2
0

𝑉2(𝑡)
)𝑉2̇ + 𝑒

𝜇𝜏1𝐼1̇(𝑡)  

+(𝑘2𝑉2(𝑡) + 𝛽1𝑆(𝑡))𝐼1(𝑡) − (𝑘2𝑉2(𝑡 − 𝜏1) + 𝛽1𝑆(𝑡 − 𝜏2))𝐼1(𝑡 − 𝜏1)  

+𝑒𝜇𝜏2𝐼2̇(𝑡) + (𝑘1𝑉1(𝑡) + 𝛽2𝑆(𝑡))𝐼2(𝑡) − (𝑘1𝑉1(𝑡 − 𝜏2) + 𝛽2𝑆(𝑡 −

−𝜏2))𝐼2(𝑡 − 𝜏2)   

 

= (1 −
𝑆0

𝑆(𝑡)
) (Ʌ − (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆) + (1 −

 𝑉1
0

𝑉1(𝑡)
) (𝑟1𝑆  

−(𝑘1𝐼2 + 𝜇)𝑉1) + (1 −
 𝑉2

0

𝑉2(𝑡)
) (𝑟2𝑆 − (𝑘2𝐼1 + 𝜇)𝑉2)  

+𝑒𝜇𝜏1 (𝑒−𝜇𝜏1(𝑘2𝑉2(𝑡 − 𝜏1) + 𝛽1𝑆(𝑡 − 𝜏1))𝐼1(𝑡 − 𝜏1) − 𝛼1𝐼1(𝑡)) 

+(𝑘2𝑉2(𝑡) + 𝛽1𝑆(𝑡))𝐼1(𝑡) − (𝑘2𝑉2(𝑡 − 𝜏1) + 𝛽1𝑆(𝑡 − 𝜏2))𝐼1(𝑡 − 𝜏1)  

+𝑒𝜇𝜏2[𝑒−𝜇𝜏2(𝑘1𝑉1(𝑡 − 𝜏2) + 𝛽2𝑆(𝑡 − 𝜏2))𝐼2(𝑡 − 𝜏2) − 𝛼2𝐼2(𝑡)]  

+(𝑘1𝑉1(𝑡) + 𝛽2𝑆(𝑡))𝐼2(𝑡) − (𝑘1𝑉1(𝑡 − 𝜏2) + 𝛽2𝑆(𝑡 − 𝜏2))𝐼2(𝑡 − 𝜏2)  
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making some simplification and using 𝜇 = 𝑟1
𝑆0

 𝑉1
0 and 𝜇 = 𝑟2

𝑆0

 𝑉2
0, we have 

 

�̇� =  𝜇𝑆0 (2 −
𝑆0

𝑆(𝑡)
−
𝑆(𝑡)

𝑆0
) + 𝑟1𝑆

0 (3 −
𝑆0

𝑆(𝑡)
−

 𝑉1

 𝑉1
0 −

𝑆(𝑡)

𝑆0
 𝑉1

0

 𝑉1
)  

+𝑟2𝑆
0 (3 −

𝑆0

𝑆(𝑡)
−

 𝑉2

 𝑉2
0 −

𝑆(𝑡)

𝑆0
 𝑉2

0

 𝑉2
)  𝐼1(𝛽1𝑆

0 + 𝑘2 𝑉2
0 − 𝛼1𝑒

𝜇𝜏1)  

+ 𝐼2(𝛽2𝑆
0 + 𝑘1 𝑉1

0 − 𝛼2𝑒
𝜇𝜏2)  

 

then, �̇� < 0 when 𝑅2 < 1.  

 

Theorem 5.5. The First strain endemic equilibrium E1 is globally asymptotically stable if 

R2 < 1. 

 

Proof. Consider the Lyapunov function 

 

𝒱 = 𝑆̅𝑔 (
𝑠(𝑡)

 𝑆 ̅̅ ̅
) + �̅�1𝑔 (

 𝑉1(𝑡)

�̅�1
) + �̅�2𝑔 (

 𝑉2(𝑡)

�̅�2
) + 𝑒𝜇𝜏1𝑔 (

 𝐼1(𝑡)

𝐼1̅
)  

+∫ [𝛽1𝐼1̅𝑆̅𝑔 (
 𝐼1(𝑢)𝑆(𝑢)

𝐼1̅ 𝑆 ̅
) + 𝑘2𝐼1̅ �̅�2𝑔 (

 𝐼1(𝑢) 𝑉2(𝑢)

𝐼1̅ �̅�2
)] 𝑑𝑢

𝑡

𝑡−𝜏1
+ 𝑒𝜇𝜏2  𝐼2(𝑡)   

+∫ [𝛽2 𝐼2(𝑢)𝑆(𝑢) + 𝑘1 𝐼2(𝑢) 𝑉1(𝑢)]𝑑𝑢
𝑡

𝑡−𝜏2
.  

 

Where 𝑔(𝑥) = 𝑥 − 1 − ln 𝑥. Since 𝑔(𝑥) is positive function. And since 𝐼1 > 0 and 𝐼2 > 0, 

therefore 𝒱 ≥ 0. We need to show that �̇� is negative definite. 

 

�̇� = (1 −
𝑆 ̅

𝑆(𝑡)
) (Ʌ − (𝛽1𝐼1 + 𝛽2𝐼2 + 𝜆)𝑆) + (1 −

�̅�1

𝑉1(𝑡)
) (𝑟1𝑆  

−(𝑘1𝐼2 + 𝜇)𝑉1) + (1 −
�̅�2

𝑉2(𝑡)
) (𝑟2𝑆 − (𝑘2𝐼1 + 𝜇)𝑉2)  

+𝑒𝜇𝜏1 (1 −
𝐼1̅

𝐼1(𝑡)
) (𝑒−𝜇𝜏1(𝑘2𝑉2(𝑡 − 𝜏1) + 𝛽1𝑆(𝑡 − 𝜏1))𝐼1(𝑡 − 𝜏1)  

−𝛼1𝐼1(𝑡)) + 𝛽1𝐼1̅𝑆 ̅ [
 𝐼1(𝑡)𝑆(𝑡)

𝐼1̅ 𝑆 ̅
− ln (

 𝐼1(𝑡)𝑆(𝑡)

𝐼1̅ 𝑆 ̅
) −

 𝐼1(𝑡−𝜏1)𝑆(𝑡−𝜏1)

𝐼1̅ 𝑆 ̅
+

+ 𝑙𝑛 (
 𝐼1(𝑡−𝜏1)𝑆(𝑡−𝜏1)

𝐼1̅ 𝑆 ̅
)] + 𝑘2𝐼1̅ �̅�2 [

 𝐼1(𝑡) 𝑉2(𝑡)

𝐼1̅ �̅�2
− 𝑙𝑛 (

 𝐼1(𝑡) 𝑉2

𝐼1̅ �̅�2
) −

−
 𝐼1(𝑡−𝜏1) 𝑉2(𝑡−𝜏1)

𝐼1̅ �̅�2
+ ln (

 𝐼1(𝑡−𝜏1) 𝑉2(𝑡−𝜏1)

𝐼1̅ �̅�2
)] + 𝑒𝜇𝜏2[𝑒−𝜇𝜏2(𝑘1𝑉1(𝑡 − 𝜏2)  
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+𝛽2𝑆(𝑡 − 𝜏2))𝐼2(𝑡 − 𝜏2) − 𝛼2𝐼2(𝑡)] + (𝑘1𝑉1(𝑡) + 𝛽2𝑆(𝑡))𝐼2(𝑡)  

−(𝑘1𝑉1(𝑡 − 𝜏2) + 𝛽2𝑆(𝑡 − 𝜏2))𝐼2(𝑡 − 𝜏2).  

 

After some simplifications we get 

 

�̇� = 𝜇𝑆̅ (2 −
�̅�

S(t)
−
𝑆(𝑡)

𝑆 ̅
) + r1𝑆 ̅ (3 −

�̅�

S(t)
−
 𝑉1

 𝑉1 ̅̅ ̅̅̅
−
𝑆(𝑡)

𝑆 ̅

�̅�1

 𝑉1
) + +r2𝑆̅ (3 −

−
𝑆 ̅

S(t)
−
 𝑉2

 𝑉2 ̅̅ ̅̅̅
−
𝑆(𝑡)

𝑆 ̅

�̅�2

 𝑉2
) + 𝛽1𝐼1̅𝑆̅ (2 −

𝑆 ̅

S(t)
−
 𝐼1(𝑡−𝜏1)𝑆(𝑡−𝜏1)

 𝐼1(𝑡)𝑆 ̅
+

+ ln (
 𝐼1(𝑡−𝜏1)𝑆(𝑡−𝜏1)

 𝐼1(𝑡)𝑆(𝑡)
)) + 𝑘2𝐼1̅�̅�2 (2 −

�̅�2

V2(𝑡)
−
 𝐼1(𝑡−𝜏1) 𝑉2(𝑡−𝜏1)

 𝐼1(𝑡)�̅�2
−

− ln (
 𝐼1(𝑡−𝜏1) 𝑉2(𝑡−𝜏1)

 𝐼1(𝑡) 𝑉2(𝑡)
)) +  𝐼1(𝛽1𝑆̅ + 𝑘2 �̅�2 − α1𝑒

𝜇𝜏1) +  𝐼2(𝛽2𝑆̅ +

+𝑘1 �̅�1 − α2𝑒
𝜇𝜏2)  

 

= 𝜇𝑆̅ (2 −
𝑆 ̅

S(t)
−
𝑆(𝑡)

𝑆 ̅
) + r1𝑆̅ (3 −

𝑆 ̅

S(t)
−
 𝑉1

�̅�1
−
𝑆(𝑡)

𝑆 ̅

�̅�1

 𝑉1
) + r2𝑆̅ (3 −

�̅�

S(t)
−

−
 𝑉2

�̅�2
−
𝑆(𝑡)

𝑆 ̅

�̅�2

 𝑉2
) − 𝛽1𝐼1̅𝑆̅ (g (

𝑆 ̅

S(t)
) + 𝑔 (

 𝐼1(𝑡−𝜏1)𝑆(𝑡−𝜏1)

 𝐼1(𝑡)𝑆 ̅
)) −

−𝑘2𝐼1̅ �̅�2 (g (
�̅�2

V2(𝑡)
) + 𝑔 (

 𝐼1(𝑡−𝜏1) 𝑉2(𝑡−𝜏1)

 𝐼1(𝑡)�̅�2
)) +  𝐼2 (𝛽2

Ʌ

𝛽1𝐼1̅+𝜆
+

+𝑘1  
Ʌ

𝜇(𝛽1𝐼1̅+𝜆)
− α2𝑒

𝜇𝜏2)  

 

≤ 𝜇𝑆 ̅ (2 −
𝑆 ̅

S(t)
−
𝑆(𝑡)

𝑆 ̅
) + r1𝑆̅ (3 −

�̅�

S(t)
−
 𝑉1

�̅�1
−
𝑆(𝑡)

𝑆 ̅

�̅�1

 𝑉1
) + r2𝑆̅ (3 −

𝑆 ̅

S(t)
−

−
 𝑉2

�̅�2
−
𝑆(𝑡)

𝑆 ̅

�̅�2

 𝑉2
) − 𝛽1𝐼1̅𝑆̅ (g (

�̅�

S(t)
) + 𝑔 (

 𝐼1(𝑡−𝜏1)𝑆(𝑡−𝜏1)

 𝐼1(𝑡)𝑆 ̅
)) −

−𝑘2𝐼1̅ �̅�2 (g (
�̅�2

V2(𝑡)
) + 𝑔 (

 𝐼1(𝑡−𝜏1) 𝑉2(𝑡−𝜏1)

 𝐼1(𝑡) 𝑉2 ̅̅ ̅̅̅
)) +  𝐼2α2𝑒

𝜇𝜏2 (
Ʌ𝑒−𝜇𝜏2

α2𝜆
(𝛽2 +

+ 
𝑘1

𝜇
) − 1).  

 

Since 

 



 

 

105 

 

2 −
𝑆 ̅

S(t)
−
𝑆(𝑡)

𝑆 ̅
< 0, 3 −

𝑆 ̅

S(t)
−
 𝑉1

�̅�1
−
𝑆(𝑡)

𝑆 ̅

�̅�1

 𝑉1
< 0, 3 −

𝑆 ̅

S(t)
−
 𝑉2

�̅�2
−
𝑆(𝑡)

𝑆 ̅

�̅�2

 𝑉2
< 0 

and 𝛽1𝑆 ̅ + 𝑘2 �̅�2 − α1𝑒
𝜇𝜏1 = 0.  

 

Therefore, �̇� < 0 when 𝑅2 < 1.  

 

Theorem 5.6. The second strain endemic equilibrium E2 is globally asymptotically stable 

if 𝑅1 < 1. 

 

Proof. Consider the Lyapunov function 

 

𝒱 = �̂�𝑔 (
𝑠(𝑡)

�̂�
) + �̂�1𝑔 (

 𝑉1(𝑡)

𝑉1
) + �̂�2𝑔 (

 𝑉2(𝑡)

𝑉2
) + 𝑒𝜇𝜏1  𝐼1(𝑡) +

+∫ [𝛽1 𝐼1(𝑢)𝑆(𝑢) + 𝑘2 𝐼2(𝑢) 𝑉2(𝑢)]𝑑𝑢
𝑡

𝑡−𝜏1
+ 𝑒𝜇𝜏2𝑔 (

 𝐼2(𝑡)

𝐼2
) +

+∫ [𝛽2𝐼2𝑆̅𝑔 (
 𝐼2(𝑢)𝑆(𝑢)

𝐼2�̂�
) + 𝑘1 𝐼2̅̅ ̅   𝑉1̅̅ ̅̅ 𝑔 (

 𝐼2(𝑢) 𝑉1(𝑢)

𝐼2�̂�1
)] 𝑑𝑢

𝑡

𝑡−𝜏2
,  

 

where 𝑔(𝑥) = 𝑥 − 1 − ln 𝑥. Since 𝑔(𝑥) is positive function. And since I1 > 0 and I2 > 0, 

therefore 𝒱 ≥ 0. We need to show that �̇� is negative definite. Actually, 

 

�̇� = (1 −
�̂�

S(t)
) (Ʌ − (β1I1 + β2I2 + λ)S) + (1 −

 𝑉1̂

V1(𝑡)
) (r1S −

−(k1I2 + μ)V1) + (1 −
 𝑉2

V2(𝑡)
) (r2S − (k2I1 + μ)V2) +

+𝑒𝜇𝜏1[𝑒−𝜇𝜏1(k1V2(𝑡 − 𝜏1) + β1S(𝑡 − 𝜏1))I1(𝑡 − 𝜏1) − α1I1(𝑡)] +

+(k2V2(𝑡) + β1S(𝑡))I1(𝑡) − (k2V2(𝑡 − 𝜏1) + β1S(𝑡 − 𝜏1))I1(𝑡 − 𝜏1) +

+𝑒𝜇𝜏2 (1 −
𝐼2

𝐼2(𝑡)
) (𝑒−𝜇𝜏2(k1V1(t − 𝜏2) + β2S(t − 𝜏2))I2(t − 𝜏2) −

−α2I2(𝑡)) + 𝛽2𝐼2𝑆̅ [
 𝐼2(𝑡)𝑆(𝑡)

𝐼2�̂�
− ln (

 𝐼2(𝑡)𝑆(𝑡)

𝐼2 �̂�
) −

 𝐼2(𝑡−𝜏2)𝑆(𝑡−𝜏2)

𝐼2 �̂�
+

+ ln (
 𝐼2(𝑡−𝜏2)𝑆(𝑡−𝜏2)

𝐼2 �̂�
)] + 𝑘1 𝐼2̅̅ ̅   𝑉1̂ [

 𝐼2(𝑡) 𝑉1(𝑡)

𝐼2 �̂�1
− ln (

 𝐼2(𝑡) 𝑉1

𝐼2  �̂�1
) −

−
 𝐼2(𝑡−𝜏2) 𝑉1(𝑡−𝜏2)

𝐼2 𝑉1
+ ln (

 𝐼2(𝑡−𝜏2) 𝑉1(𝑡−𝜏2)

𝐼2 𝑉1
)].  

 

After some simplifiction we get 
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�̇� = 𝜇�̂� (2 −
�̂�

S(t)
−
𝑆(𝑡)

�̂�
) + r1𝑆 ̅ (3 −

�̂�

S(t)
−
 𝑉1

𝑉1
−
𝑆(𝑡)

�̂�

 �̂�1

 𝑉1
) + r2�̂� (3 −

−
�̂�

S(t)
−
 𝑉2

 𝑉2
−
𝑆(𝑡)

�̂�

 𝑉2

 𝑉2
) + 𝛽2𝐼2�̂� (2 −

�̂�

S(t)
−
 𝐼2(𝑡−𝜏2)𝑆(𝑡−𝜏2)

 𝐼2(𝑡)�̂�
+

+ ln (
 𝐼2(𝑡−𝜏2)𝑆(𝑡−𝜏2)

 𝐼2(𝑡)𝑆(𝑡)
)) + 𝑘1𝐼1 �̂�1 (2 −

  𝑉1

V1(𝑡)
−
 𝐼2(𝑡−𝜏2) 𝑉1(𝑡−𝜏2)

 𝐼2(𝑡) 𝑉1
−

− ln (
 𝐼2(𝑡−𝜏2) 𝑉1(𝑡−𝜏2)

 𝐼2(𝑡) 𝑉1(𝑡)
)) +  𝐼1(𝛽1𝑆 ̅ + 𝑘2  �̂�2 − α1𝑒

𝜇𝜏1) +  𝐼2(𝛽2𝑆 ̅ +

+𝑘1 �̂�1 − α2𝑒
𝜇𝜏2)  

= 𝜇�̂� (2 −
�̂�

S(t)
−
𝑆(𝑡)

�̂�
) + r1𝑆̅ (3 −

 𝑆 ̂

S(t)
−
 𝑉1

𝑉1
−
𝑆(𝑡)

𝑆 ̅

 �̂�1

 𝑉1
) + r2�̂� (3 −

�̂�

S(t)
−

−
 𝑉2

 �̂�2
−
𝑆(𝑡)

�̂�

 𝑉2

 𝑉2
) − 𝛽2 𝐼2�̂� (g (

�̂�

S(t)
) + 𝑔 (

 𝐼2(𝑡−𝜏2)𝑆(𝑡−𝜏2)

 𝐼2(𝑡)�̂�
)) −

−𝑘1𝐼2  �̂�1 (g (
  𝑉1

V1(𝑡)
) + 𝑔 (

 𝐼2(𝑡−𝜏2) 𝑉1(𝑡−𝜏2)

 𝐼2(𝑡)  �̂�1
)) +  𝐼1 (𝛽1

Ʌ

𝜇(𝛽2𝐼2+𝜆)
+

+𝑘2  
Ʌ

(𝛽2𝐼2+𝜆)
− α1𝑒

𝜇𝜏1)  

≤ 𝜇�̂� (2 −
�̂�

S(t)
−
𝑆(𝑡)

�̂�
) + r1 �̂� (3 −

�̂�

S(t)
−
 𝑉1

 𝑉1
−
𝑆(𝑡)

�̂�

 𝑉1

 𝑉1
) + r2�̂� (3 −

�̂�

S(t)
−

−
 𝑉2

𝑉2
−
𝑆(𝑡)

�̂�

 𝑉2

 𝑉2
) − 𝛽1𝐼1�̂� (g (

�̂�

S(t)
) + 𝑔 (

 𝐼1(𝑡−𝜏1)𝑆(𝑡−𝜏1)

 𝐼1(𝑡)�̂�
)) −

−𝑘2𝐼1 �̂�2 (g (
𝑉2

V2(𝑡)
) + 𝑔 (

 𝐼1(𝑡−𝜏1) 𝑉2(𝑡−𝜏1)

 𝐼1(𝑡)𝑉2
)) +  𝐼1α1𝑒

𝜇𝜏1 (
Ʌ𝑒−𝜇𝜏1

α1𝜆
(𝛽1 +

+ 
𝑘2

𝜇
) − 1).  

 

Since, 

 

2 −
�̂�

S(t)
−
𝑆(𝑡)

�̂�
< 0, 3 −

�̂�

S(t)
−
 𝑉1

𝑉1
−
𝑆(𝑡)

�̂� ̅

𝑉1

 𝑉1
< 0, 3 −

�̂�

S(t)
−
 𝑉2

𝑉2
−
𝑆(𝑡)

�̂�

𝑉2

 𝑉2
< 0 and 𝛽2�̂� +

+𝑘1 �̂�1 − α2𝑒
𝜇𝜏2 = 0.  

 

Therefore, �̇� < 0 when 𝑅1 < 1.  
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5.3 Numerical Simulation 

Numerical simulations were carried out to support the analytic results. In Figure 5.1 it is 

shown that if R1 < 1 and R2 < 1, both the two strains die out.  If R2 < 1, strain 1 persists 

and the second dies out (Figure 5.2), whereas if  R1 < 1 , strain 2 persists and the first dies 

out (Fig 5.3). In figure 5.4 it was shown that if R1 > 1 and R2 > 1, then the two strains 

persist. To see the effect of incubation perod we give  

 

 

Figure 5. 1: Disease Free: Parameter values are  𝛽1 = 0.00003, 𝛽2 = 0.00003, 

      𝑘1 = 0.00001, 𝑘2 = 0.00001, 𝑟1 = 0.3, 𝑟2 = 0.3, 𝑑1 = 0.1, 𝑑2 = 0.1, 

      𝛾1 = 0.07, 𝛾2 = 0.09 𝜇 = 0.02, Ʌ = 200, 𝜏1 = 𝜏2 = 4, R1 = 0.2821       

      and R2 = 0.2552. 
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Figure 5.2: First strain endemic: Parameter values are  𝛽1 = 0.00003, 𝛽2 = 0.00003, 

            𝑘1 = 0.00001, 𝑘2 = 0.0001, 𝑟1 = 0.3, 𝑟2 = 0.3, 𝑑1 = 0.1, 𝑑2 = 0.1, 

 𝛾1 = 0.07, 𝛾2 = 0.09 𝜇 = 0.02, Ʌ = 200, 𝜏1 = 𝜏2 = 4, R1 = 2.3979 

 and R2 = 0.2552. 

 

 

Figure 5.3: Second Strain endemic: Parameter values are  𝛽1 = 0.00003, 𝛽2 = 0.00003, 

         𝑘1 = 0.0001, 𝑘2 = 0.00001, 𝑟1 = 0.3, 𝑟2 = 0.3, 𝑑1 = 0.1, 𝑑2 = 0.1, 

     𝛾1 = 0.07, 𝛾2 = 0.09 𝜇 = 0.02, Ʌ = 200, 𝜏1 = 𝜏2 = 4, R1 = 0.2821  

     and R2 =2.1695. 
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Figure 5.4: Both endemic: Parameter values are  𝛽1 = 0.00003, 𝛽2 = 0.00003, 

         𝑘1 = 0.0001, 𝑘2 = 0.0001, 𝑟1 = 0.3, 𝑟2 = 0.3, 𝑑1 = 0.1, 𝑑2 = 0.1, 

     𝛾1 = 0.07, 𝛾2 = 0.09 𝜇 = 0.02, Ʌ = 200, 𝜏1 = 𝜏2 = 4, R1 = 2.3979  

     and R2 = 2.1695. 

To show the effect of vaccine for strain1 against strain 2 and the vaccine for strain 2 

against strain1, we carried out the following numerical simulations as can be seen in Figure 

5.5 and Figure 5.6. 

 

 

Figure 5.5: Both endemic: Parameter values are  𝛽1 = 0.00003, 𝛽2 = 0.00003,  

𝑘1 = 0.0001, 𝑘2 = 0.0001, 𝑟2 = 0.3, 𝑑1 = 0.1, 𝑑2 = 0.1, 𝛾1 = 0.07,  

     𝛾2 = 0.09, 𝜇 = 0.02 and Ʌ = 200, 𝜏1 = 𝜏2 = 4. 
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Figure 5.6: Both endemic: Parameter values are  𝛽1 = 0.00003, 𝛽2 = 0.00003, 

           𝑘1 = 0.0001, 𝑘2 = 0.0001, 𝑟1 = 0.3, 𝑑1 = 0.1, 𝑑2 = 0.1, 𝛾1 = 0.07, 

     𝛾2 = 0.09, 𝜇 = 0.02 and Ʌ = 200, 𝜏1 = 𝜏2 = 4 

 

In Figure 5.7, it is given the effect of the incubation period. We assume the incubation 

period of both strain increase from 4 to 15 and we see that disease decrease. In Figure 5.8 

and 5.9 given the effect of vaccine for both strains seperately. Firstly, incubation period 

increased 15 then 30. 

 

 

Figure 5.7:  Both endemic: Parameter values are 𝛽1 = 0.00003, 𝛽2 = 0.00003,  

  𝑘1 = 0.0001, 𝑘2 = 0.0001, 𝑟1 = 0.3, 𝑟1 = 0.3, 𝑑1 = 0.1, 𝑑2 = 0.1,  

        𝛾1 = 0.07, 𝛾1 = 0.09, 𝜇 = 0.02, Ʌ = 200, 𝜏1 = 𝜏2 = 15. 
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Figure 5.8:  Both endemic: Parameter values are 𝛽1 = 0.00003, 𝛽2 = 0.00003,  

  𝑘1 = 0.0001, 𝑘2 = 0.0001, 𝑟1 = 0.2, 𝑟1 = 0.3, 𝑑1 = 0.1, 𝑑2 = 0.1,  

        𝛾1 = 0.07, 𝛾1 = 0.09, 𝜇 = 0.02, Ʌ = 200, 𝜏1 = 4. 

 

 

 

Figure 5.9:  Both endemic: Parameter values are  𝛽1 = 0.00003, 𝛽2 = 0.00003,  

  𝑘1 = 0.0001, 𝑘2 = 0.0001, 𝑟1 = 0.3, 𝑟1 = 0.2, 𝑑1 = 0.1, 𝑑2 = 0.1,  

        𝛾1 = 0.07, 𝛾1 = 0.09, 𝜇 = 0.02, Ʌ = 200, 𝜏2 = 4. 

 

τ2 = 30 τ2 = 15 

τ1 = 15 
τ1 = 30 
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5.4 Conclusion 

In this chapter, we study an epidemic model with two vaccine and two time delay. We 

have studied equilibrium points and under some threshold conditions the global stability of 

each boundary equilibrium point is derived. The global stability analysis of each equilibria 

are established by constructing Lyapunov functionals and using Lyapunov- Laselle 

invariance principle. We found two basic reproduction ratios 𝑅1 and 𝑅2. When both 𝑅1 <

1 and 𝑅2 < 1 then the disease free equilibrium exists and globally asymptotically stable 

and disease dies out. Moreover when 𝑅1>1  then strain one endemic equilibrium 𝐸1exists 

and under the condition 𝑅2 < 1 it is globally asymptotically stable. Furhermore when 𝑅2 >

1, strain two endemic equilibrium 𝐸2 exists and it is globally asymptotically stable 

provided that 𝑅1 < 1.  

 𝑅1 is a decreasing function on time delay 𝜏1 then the latent period 𝜏1 has positive effect on 

the infection of strain 1 and sufficiently large latent period 𝜏1, 𝑅1 becomes less than one 

(assuming all other parameters are fixed). Similarly, 𝑅2 is a decreasing function on time 

delay 𝜏2 then the latent period 𝜏2 has positive effect on the infection of strain 1 and 

sufficiently large latent period 𝜏2, 𝑅2 becomes less than 1 (assuming all other parameters 

are fixed). The numerical sumulations give the adoption of vaccination 1 does influence 

the disease dynamics of strain 2 and similarly vactination for strain 2 dose influence the 

disease dynamics of strain 1. As we can see figure5.6 and 5.7 the vaccine for strain 1 

caused by endemic for strain  2 and similarly vaccine 2 caused endemic for strain 1. Figure 

5.8 and Figure 5.9 shows the effect of latent (incubation) period. As we can see in Figure 

5.8 when incubation period increse to 15 for strain 2, disease decrease and when it increase 

30 then disease can be diese out. Similary for strain1.  

If, 𝜏1 = 𝜏2 = 0, then this becomes the previous model which is studied in Chapter 4. 

Therefore, all theorems which are given in this chapter consists the theorems which are 

given in Chapter 4. Thus this chapter is generalization of Chapter 4. 
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CHAPTER 6 

CONCLUSION 

This thesis consists single strain and two strain models which the second strain is the  

mutation of the first strain.  First two SIR model with and without vaccintion. Some 

analytical and numerical method used to see the effect of the vaccine. Basic reproduction 

ratios are found for both model. Stability analysis with using Lyapunov’s idea are given for 

disease free and endemic equilibria points for each model. And in the last section some 

numerical results are given to support the analytical part. As it can be seen from the figures 

when the rate of the vaccinated individuals increase then the disease starts to die out. In the 

result of this chapter, the importance of vaccine arrise.   

 

In Chapter 4 and 5 two strain SIR models are constructed, the model which is given in 

Chapter 5 is more realistic and extention of the model in Chapter 4. Three equilibriums are 

found for both models and Stability analysis are studied. Several numerical simulations 

were carried out to support the analytic results. In analytically there is no co-existence 

equilibrium point. However from the numerical simulations we have shown the 

coexistence. In detailed analytic stability remains a challenging problem to us. In 

summary, the two vaccines not only can have effects on the stability of the boundary 

equilibria, but can also allow the existence of the coexistence equilibrium. 

 

Numerical simulations were carried out to support the analytic results and to show the 

effect of vaccine for strain1 against strain 2 and the vaccine for strain 2 against strain1. We 

have also shown  that the population for infectives to strain 2 increases when vaccine for 

strain 1 is absent and vice versa. And it is observed that when there is no incubation for 

disease then infection individual increase therefore if incubation (latent) period can be 

increased then disease can dies out. 
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