
S
H

A
R

IN
G

 S
E

R
V

IC
E

S
 U

S
IN

G
 A

N
D

R
O

ID
 IN

T
E

R
F

A
C

E

D
E

F
IN

IT
IO

N
 L

A
N

G
U

A
G

E
 (A

ID
L

)
G

U
L

A
L

A
 A

L
I H

A
M

A
 A

M
IN

N
E

U
2017

SHARING SERVICES USING ANDROID
INTERFACE DEFINITION LANGUAGE

(AIDL)

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

GULALA ALI HAMA AMIN

In Partial Fulfillment of the Requirements for

the Degree of Master of Science

in

Information Systems Engineering

NICOSIA, 2017

SHARING SERVICES USING ANDROID
INTERFACE DEFINITION LANGUAGE

(AIDL)

A THESIS SUBMITTED TO THE GRADUATE
SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

GULALA ALI HAMA AMIN

In Partial Fulfillment of the Requirements for

the Degree of Master of Science

in

Information Systems Engineering

NICOSIA, 2017

GULALA ALI HAMA AMIN: SHARING SERVICES USING ANDROID
INTERFACE DEFINITION LANGUAGE (AIDL)

Approval of Director of Graduate
School of Applied Sciences

Prof. Dr. Nadire ÇAVUŞ

We certify this thesis is satisfactory for the award of the degree of Masters of
Science in Information Systems Engineering

Examining Committee in Charge:

Assist.Prof.Dr. Yöney Kırsal Ever

Department of Software Engineering,

NEU

Assist.Prof.Dr. Hüseyin Lort Department of Computer and Instructional

Technology Teaching, GAU

Assist.Prof.Dr. Boran Şekeroğlu Department of Information Systems

Engineering, NEU

I hereby declare that all information in this dissertation has been obtained and presented in

accordance with academic rules and ethical conducts. I also declare that, as required by

these rules and conducts, I have fully cited and referenced all material and results that are

not original to this work.

Gulala Hama Amin

Signature:

Date:

i

ACKNOWLEDGEMENTS

I would first like to thank God for giving me the desire and determination to learn and to

love scientific arena.

I would also like to thank my supervisor Assist. Prof. Dr. Boran ŞEKEROĞLU for his

continuous support, his excellent cooperation, whenever I had a question about my

research or writing, he consistently allowed this thesis to be my own work, he steered me

in the right the direction whenever he thought I needed it.

I would also like to thank co-supervisor Dr. Aysar Al-khalidi, IT Director of the University

of Sulaimani UoS as the second reader of this thesis for his continuous support and

encouragement, his valuable guidance. He definitely provided me with the tools that I

needed to choose the right direction and successfully complete my dissertation.

I would also like to acknowledge Dr. Alaa Alhadithy, head of Database Technology

department of the Technical College of Informatics TCI at Sulaimani Polytechnic

University SPU, I am gratefully indebted to his very valuable comments on this thesis.

I must express my very profound gratitude to my family for providing me with unfailing

support and continuous encouragement throughout my years of study and through the

process of researching and writing this thesis. This accomplishment would not have been

possible without them. Thank you.

Finally, I am greatly honored to graduate from NEU.

Gulala Hama Amin

ii

To my family…

iii

ABSTRACT

Smartphone technology has made tremendous strides in the field of electronic devices.

Since they have become an integral part of the individual's life, it has become an

instantaneous necessity in human life; which shorten the distances, helped to access the

information and deliver to the world in a few moments with a reasonable price.

Mobile phones have a specific memory size compared with other devices such as laptops

or desktop computers. So, running multiple applications; at the same time; consume the

memory and negatively affect the mobile performance. Therefore, this feature makes

software developers take into account develop applications that consume a small amount of

memory.

Nowadays, sharing service applications become more and more popular on different

mobile device platform, because it helps to decrease the memory usage. The main idea of

this thesis work is sharing services by designing and implementing a client server

application that can run on the same mobile device. The application has been developed for

Android mobile operating system or any Android tablet using inter-process communication

(IPC) and android interface definition language (AIDL).

Keywords: AIDL; Android client server application; IPC; sharing services; smartphone

application

iv

ÖZET

Akıllı telefon teknolojisi, elektronik cihazlarda muazzam bir sıçrama yapmıştır. Kişisel hayatımızın

vazgeçilmez bir parçaları olmalarının yanı sıra, mesafeleri kısaltan, bilgiye ulaşmamıza yardımcı

olan ve uygun fiyatlarla anlarımızı tüm dünyaya yaymamızı sağlayan bir gereklilik haline

gelmişlerdir.

Hareketli telefonlar, dizüstü ve masaüstü bilgisayarlara oranla daha belirli hafıza boyutlarına

sahiptir. O yüzden, ayni anda çoklu uygulamaları çalıştırmak hafızayı tükettiği gibi performansı da

düşürmektedir. Bu yüzden, yazılım geliştiricileri düşük miktarda hafıza tüketen uygulamalar

geliştirmeye çalışmaktadır.

Günümüzde, farklı cihazlardaki platformlar üzerinde servis uygulamalarını paylaşmak daha da

fazla popüler hale gelmiştir çünkü bu, hafıza kullanımını azaltmaya yardımcı olmaktadır. Bu tezin

başlıca amacı, servislerin paylaşımını, aynı hareketli cihazda çalıştırılabilecek bir istemci sunucu

uygulaması dizaynı ve uygulaması geliştirmektir. Uygulama, Android işletim sistemi ve süreçler-

arası iletişim (IPC) veya Android arayüz tanım dili (AIDL) kullanan herhangi bir Android tablette

kullanılmak üzere geliştirilmiştir.

Anahtar Kelimeler: AIDL; Androind istemci sunucu uygulaması; IPC; Servis paylaşımı; Akıllı

telefon uygulamaları

v

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ... i

ABSTRACT .. iii

ÖZET ... iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... vii

LIST OF FIGURES .. viii

LIST OF ABBREVIATIONS ... x

CHAPTER 1 INTRODUCTION .. 1

1.1 Android Services ... 1

1.2 Sharing Services .. 2

1.3 AIDL Concept ... 2

1.4 Aims of this Thesis .. 2

1.5 The Importance of this Thesis ... 3

1.6 Thesis Structure ... 3

CHAPTER 2 THE ANDROID PLATFORM ... 5

2.1 Android Versions ... 5

2.2 Android Architecture ... 7

2.2.1 Linux kernel layer ... 7

2.2.2 Android runtime and core library layer ... 7

2.2.3 Application framework layer .. 9

2.3 Android Application Components ... 9

2.3.1 Activities ... 10

2.3.2 Android application services ... 11

2.3.3 Broadcast receiver ... 13

2.3.4 Content providers .. 13

2.4 Android API .. 13

2.5 Inter Process Communications .. 15

2.5.1 Intent ... 15

vi

2.5.2 Binder .. 16

2.6 Remote Methods and AIDL ... 16

2.6.1 Creating AIDL interface definition ... 17

2.6.2 Implement the interface ... 17

2.6.3 Expose the interface to clients ... 17

2.7 Android Platform Security .. 18

2.7.1 Android data encryption .. 18

2.7.2 RSA encryption\decryption in android ... 18

2.8 Developing Android Application with Java .. 19

2.8.1 Eclipse ... 19

2.8.2 Android SDK .. 20

2.8.4 Genemotion ... 20

CHAPTER 3 DESIGN AND IMPLEMENTATION ... 22

3.2 The Proposed System Design .. 26

3.2.1 The server system design .. 26

3.2.2 The client system design ... 28

3.2 The System Implementation .. 35

3.2.1 The server side implementation .. 36

3.2.2 The client side implementation ... 37

3.2.2.2 The addition service implementation ... 43

CHAPTER 4 CONCLUSION AND FUTURE WORK ... 60

4.1 Conclusion ... 60

REFERENCES .. 61

vii

LIST OF TABLES

Table 2.1: Android versions and codenames .. 6

Table 2.2: Android runtime and core library layers ... 8

Table 2.3: Android application components ... 10

viii

LIST OF FIGURES

Figure 2.1: Android architecture ... 7

Figure 2.2: Android application component .. 9

Figure2.3: Android application life cycle .. 11

Figure 2.4: Abstraction of IPC in Android .. 15

Figure 3.1: Client server diagram ... 22

Figure 3.2: Proposed system main diagram ... 23

Figure 3.3: Proposed system flowchart .. 25

Figure 3.4: Java class diagram of the server side ... 27

Figure 3.5: Java class diagram of the client side - RSA Service .. 29

Figure 3.6: The client side - Addition Service ... 31

Figure 3.7: Java class diagram of the client side - Multiplication Service 32

Figure 3.8: Java class diagram of the client side - MyEncryption Service 33

Figure 3.9: Java class diagram of the client side - myDecryption Service......................... 34

Figure 3.10: Android emulator samsung galaxy S4 ... 35

Figure 3.11: The client home screen .. 36

Figure 3.12: Running the server application .. 37

Figure 3.13: Clients icons in the home screen .. 38

Figure 3.14: Welcome screen of the RSA Application .. 39

Figure 3.15: Connection of the RSA with the server application....................................... 40

Figure 3.16: Entering a message for encryption ... 41

Figure 3.17: Encryption process result ... 42

Figure3.18: Decryption process result .. 43

Figure 3.19: Welcome screen of the addition ... 44

Figure 3.20: Connection of addition with server .. 45

Figure 3.21: Entering the application data ... 46

Figure 3.22: Client gets result back from server .. 47

Figure 3.23: Welcome screen of multiplication application .. 48

Figure 3.24: Connection of the multiplication with server... 49

Figure 3.25: Entering the application data ... 50

ix

Figure 3.26: Client gets the result back from the server .. 51

Figure 3.27: Welcome screen of the myEncryption application .. 52

Figure 3.28: Connection of the myencryption with server ... 53

Figure 3.29: Entering message for encryption ... 54

Figure 3.30: Client gets the result back from the server .. 55

Figure 3.31: Welcome screen of myDecryption client ... 56

Figure 3.32: Connection of the myDecryption with server .. 57

Figure 3.33: Entering the encrypted message for decryption ... 58

Figure 3.34: Client gets the result back from the server .. 59

x

LIST OF ABBREVIATIONS

GPS Global Positioning System

OS Operating Systems

AIDL Android Interface Definition Language

IPC Inter Process Communication

I/O Input/Output

DVM Dalvik Virtual Machine

UI User Interface

API Application Programming Interface

XML Extensible Markup Language

RPC Remote Procedure Calls

SDK Software Development Kit

IDL Interface Definition Language

URI Uniform Resource Identifier

RSA Rivest Shamir Adleman

IDE Integrated Development Environment

ADT Android Development Tools

JDK Java Development Kit

JDK Java Development Kit

RMI Remote Method Invocation

1

CHAPTER 1

INTRODUCTION

In the last decade, wireless communication manufacturers grown in a very quick way; this

made wireless communication one of the fastest rising technology sections in the world.

Nowadays, using smartphones are increasing very swiftly, the reason behind that is the

importance of their functionality in everyday life, which represents the new boundary to

access the internet and the World Wide Web. Also, people have become more and more

needy on the information accessible on the internet, and they more want to get access to

the internet services, not only from their home and office computers, but also from their

mobile devices (Isakow and Shi, 2008).

Moreover, in the last twenty years, mobile content; multimedia applications seen and used

in mobile phones such as different electronic games, city guides, video downloaders,

images editors, location navigators, and applications that have multitask characteristics;

has become increasingly important worldwide. Smartphone users became able to exchange

messages, pictures, reserve medical checkup appointments, exchange vouchers, get

directions of roads, and check for cheap flight offers and surfing the net. On the other

hand, mobile device market offers several competing mobile hardware and software such

as Windows mobile from Microsoft, iPhone OS from Apple, and Android from Google.

(Schreiber, 2011).

1.1 Android Services

Services could be defined as components which they are run in the background without a

straight contact with the user. Since services have no any interaction with the user this

leads to be some kind of restrictive to the activities’ life cycle of the application. Generally,

a service is useful for processes that are on the running situation and repetitive stretched

type, for instance, downloading multiple resources from internet, checking the incoming

messages in the email inbox, processing data.

Service run and bound with an advanced precedence that are invisible or inactive activities

and thus it is simply terminated by the Android operating system. It is worth mentioning

2

that services can also be formed to be enabled restarted if they ended by the Android

operating system whenever appropriate system resources are available or accessible again.

It is potential to assign services the same priority as foreground activities. In this case it is

essential to have a visible notification active for the associated service. It is often used for

services which play videos or music (Vogel, 2014).

1.2 Sharing Services

A Service is an application element which achieves long-run processes that are invisible in

the background, so it is not necessary to have a user interface. During the processing time,

another application program can start a service, stays running in the background even if the

user shifts or moved to another application service. Also, a component can bind and

reserve a service to interact and communicate with it using inter process communication

IPC mechanism. For instance, a service can handle different network transactions, listen to

music or songs, perform file transfer, or interact with a content provider, all from the

background (Android Developers, 2017).

1.3 AIDL Concept

Android Interface Definition Language or AIDL for short, handles the interface necessities

between a client application and a service application so both can communicate at the same

level through inter process communication or IPC. All the objects in the process breaking

down into primitive data that Android can recognize. This is a very important required

part, simply because a process of a specific application cannot access the memory of the

other applications. It is important to mention that AIDL supports only the following data

types:

String data types, charSequence, Lists, Maps, and all native Java data types like integers,

long integers, characters and Boolean which is used in logical propositions (Guru, 2017).

1.4 Aims of this Thesis

The aim of this thesis is to design and implement server and client objects to interact with

remote services using AIDL.

This thesis studies the Android system’s capabilities in developing applications that

communicate with each other and provide services to other applications. A simple

3

application has been developed using the client and server architecture. The Client

component implements user interface of the application and Server component implements

Services and processes the client’s request. The Inter Process Communication (IPC) is

used for the client and server communication.

This application uses Android Interface Definition Language (AIDL) to implement and use

remote methods. This work also addresses the concept of Binder and Intent in general,

which are different levels of abstraction of IPC mechanisms.

1.5 The Importance of this Thesis

This thesis concerned with developing android mobile application software using android

eclipse and java programming language.

The proposed system in this thesis is to design and implement a client server application

that enables the client to send a request to invoke a specific process which is exist on the

server. The proposed system is implemented through using IPC and AIDL to invoke

remote methods. Through this procedure the system will need less memory space to

accomplish process, since the server will be operated (run in background) whenever

received a request from the client.

1.6 Thesis Structure

This Thesis consists of the following chapters:

Chapter one: Introduction

This chapter covers the importance of smartphones in every individual’s life and sharing

service between applications in these smartphones, also brief concepts of Service, AIDL

and aim of the thesis and the importance of the thesis.

Chapter Two: The Android Platform

This chapter is intended to explain in general term what is Android platform and focus on

the Inter Process Communication (IPC) and the Android Interface Definition Language

(AIDL). Also, this chapter includes the environments, programs, and tools that used to

design and implement the proposed system.

4

Chapter Three: Design and Implementation

This chapter includes the main design and implementation of the proposed system. Also, it

includes the main point for implementing the system.

Chapter Four: Conclusion and Future Work

This chapter will present the powerful points surrounding the Android and sharing the

Android applications using AIDL. Moreover, it includes the main ideas behind the

proposed system are concluded through this thesis.

5

CHAPTER 2

THE ANDROID PLATFORM

Android is one of the most popular mobile operating system in the technology arena.

Developed by Android, Inc. The Google firm decided to buy Android, by 2015 the

decision came into force, and it took over the development staff as well. This giant

company decided to change the policy of its’ new company by making it to be open source

and permitted codes for free. So, under the open source Apache License, an extremely

amount of Android code was released. Making Android open source enable users whom

desire to use Android freely download the complete Android source code for use.

Furthermore, hardware companies can enhance new feature extensions to Android and they

can modify the operating system to produce unique output from other products. This has

reflected its impact on vendors, making them more receptive to this new model. This is

exclusively true for firms under the effect of iPhone’s operating system, such as Sony

Ericsson and Motorola, whom own their developed mobile operating systems for many

years. Among of these companies there are some of them which had to challenge to find

different methods to renovate their products, when the iPhone was launched. In addition,

most of those firms think Android is a solution, and using android operating system makes

them to continue in designing their own hardware and software, which powers it. One of

the main feature of using the Android operating system is that, this system suggests an

integrated method to application development. It's a great achievement for developers to be

able to run their applications on different devices types. One of most significant portions of

the success are applications, in the arena of smartphone industries and new technology

trends. Thus, the smartphone industry firms realized that Android operating system is the

best optimism to challenge the onslaught of the iPhone, the reason is that a large base of

applications commands by iPhone (Lee, 2011).

2.1 Android Versions

Like any other successful companies, Android has many releases and numbers of updates.

The Table 2.1 shows many versions of Android, their released date and name of code (Lee,

2011).

6

Table 2.1: Android versions and codenames (Lee, 2011)

Code Name Version Number Initial Release Date

Not available 1.0 23th of September 2008

Not available 1.1 9th of February 2009

Cupcake 1.5 27th of April 2009

Donut 1.6 15th of September 2009

Éclair 2.0 – 2.1 26th of October 2009

Froyo 2.2 – 2.2.3 20th of May 2010

Ginerbread 2.3 – 2.3.7 6th of December 2010

Honeycomb 3.0 – 3.2.6 22th of February 2011

Ice Cream Sandwich 4.0 – 4.0.4 18th of October 2011

Jelly Bean 4.1 – 4.3.1 9th of July 2012

Kitkat 4.4 – 4.4.4 – 4.4W – 4.4W.2 31th of October 2013

Lollipop 5.0 – 5.1.1 12th of November 2014

Marshmallow 6.0 – 6.0.1 5th of October 2015

7

2.2 Android Architecture

The Android operating system workings in different Layers, in order to understand these

layers as shown in Figure 2.1, these layers are illustrated which make up the Android

operating system (Lee, 2011).

From Figure 2.1, it is clear that the Android stack is divided to four major layers;

Applications, Application framework, Libraries and Linux Kernel, from up to down.

2.2.1 Linux kernel layer

The Android operating system is based on this kernel. The Linux layer makes the interface

between the software layer and the hardware layers. At this layer, the management of

memory, the management of user process, the management of network commutation and

driver management, security management, are handled.

 2.2.2 Android runtime and core library layer

The job of this layer is providing a Dalvik Virtual Machine (DVM) and the core set of

libraries, which is important to run the JAVA applications. The Dalvik VM is responsible

Figure 2.1: Android architecture (Lee, 2011)

8

to execute the .dex (Dalvik executable) files. It is optimized to run the small footprint of

applications at quick and fast speed.

Each of application runs its own process on Linux kernel, and it runs a different instance of

Dalvik VM.

The Android operating system root base contains a set of library packages of C++ and C

programming languages the Android component uses them. These packages can be

accessible by developers using standard application frameworks. In the below Table 2.2,

description of each library can be seen.

Table 2.2: Android runtime and core library layer (Android Developers, 2017)

Library Description

C System Library

(libc)
Improved library for embedded devices

Media libraries
image files, MPEG4, JPG, and PNG, video and

Audio files

Surface Manager arrange displaying subsystem

LibWebCore Web browser engine to manage the web views

SGL 2D graphics engine

3D Libraries OpenGL ES 1.0 3D libraries for high quality 3D

raster graphics

Free Type Bitmap and Vector Font Rendering

SQLLite Lightweight relational database with SQL access

9

2.2.3 Application framework layer

This Layer provides a set of frameworks to and core functions to create and manage the

user interface, run background jobs, set notifications and alarms. The components re-

usability provides a flexible application development with framework layer. The

application architecture allows the application to publish its features to other applications.

The android operating system provides the following set of system services:-

 Set of rich and extensible views used to build the user interfaces for applications.

 Content Providers, which uses to share and access the data between applications.

 Resource Manager, which uses to manage the resources.

 Notification Manager, that uses to display the alerts and notifications on status bar.

 Activity Manager, which uses to manage the lifecycle of application and state

management.

The top layer is the application layer where lot of applications is bundled with platform

and developers can build their own applications (Lee, 2011).

2.3 Android Application Components

This is the vital part of an Android application. The file with .xml extension, called

manifest file of the application, defines the component of the application and the way they

communicate.

These components can be used within an Android applications. As shown in the below

Table 2.3 and Figure 2.2 (Sygida et al., 2016):

Figure 2.2: Android application component (sygida et al., 2016)

10

Table 2.2: Android application components (Android Developers, 2017)

Component Description

Activity
Command the user interface and manage the user communication
to the device screen.

Services Manage processing in background related to an application.

Broadcast
Receivers

Manage interaction between applications and Android OS.

Content
Providers

Database management topics.

2.3.1 Activities

Activities are among the fundamental parts of applications on the Android operating

system. They serve like access point for a users’ interaction with an applications, and they

are also central how a user routes within applications or between applications.

Each Activity contains at least three of the following events:

 onCreate(): during the creation of the activity is called.

 onStart(): for activities that are in visible state to the user, this method is called.

 onResume(): once the user starts communicating with activity this method is

called.

 onPause(): it starts in case of present activity paused by user and prior activity

is resumed.

 onStop(): this starts in case the activity is in hidden state to the user.

 onDestroy(): it is called before the system terminate the activity (the system

may terminate it to protect the memory, or terminated manually) .

 onRestart(): for a stopped activity, this method used to restart it again.

11

In Figure 2.3, the diagram of android life cycle of an activity and different steps, from

the beginning of the activity’s running start to the end or destroy state (Griffiths &

Griffiths, 2015).

Figure2.3: Android application life cycle (Lee, 2011)

2.3.2 Android application services

Services are applications in Android that run in the background without any interaction

with the users. For instance, when the user in the process of using a specific application,

he/she might want to play songs in the background simultaneously. In this situation, the

service doesn’t necessary to communicate with the user. Also, services are perfect for

states; in which there is no need to present a user interface to the user. For instance, an

12

application that repeatedly takes the location of the user. In this case the programmer can

write a service to do that in the background (Lee, 2011).

A service is similar to Broadcast Receiver and Activity. It can be started independently of

its Intent Filters by specifying a Component. Also, services can also be protected by adding

a permission check to its service tag in the Android manifest. The Binder interfaces is able

to check permissions on services caller, which permitting to implement several permissions

at the same time or different permissions on several applications and different time.

Consequently, a service offers many techniques to ensure that the caller is reliable, which

is similar to Activities, BroadcastReceivers and Binder interfaces.

Android services contains of three different types (Darcey, 2012):

2.3.2.1 Scheduled

Services are scheduled when an API such as the JobScheduler, introduced in Android 5.0

(API level 21), launch the service. A user can use the JobScheduler by registering some

jobs and specifying their requirements for network. Then, the system; gracefully; schedules

the jobs for execution at the correct times. (Android Developers, 2017).

2.3.2.2 Started

A Service starts when one of the application component; for example activity; calls the

method startService(). When it is beginning to start, this service indefinitely can run in the

background, even when components which started it had been destroyed. Normally,

startService() method accomplish single process and do not send back the result to the

caller of the service. For instance, a service may upload/download some files from the net,

and the service should stop itself, when the operation is complete (Android Developers,

2017).

2.3.2.3 Bound

By calling the bindService() method for a specific service, this service

becomes bound when an application component binds to it. A bound offers the interface

for the client side and the server side, which permits components to communicate with the

service, send requests, and get results with inter process communication (IPC). Bound

services run only as other applications component are bound to them. At once, multiple

13

components can bind to the service. On the other hand, the service is destroyed, when all

of them unbind (Android Developers, 2017).

2.3.3 Broadcast receiver

It is another android application component; this component is replies to system varied

broadcast announcements. There are many broadcasts patent from the system such as, an

announcing broadcast when the screen has turned off, another announcing is when the

battery is in low charge state. It is worth mentioning that applications also can start their

own broadcasts such as, different applications will be notified that some data has been

downloaded to the device and is now accessible for them to use. Usually broadcast receiver

do not show the user interface, by creating a status bar notification it will alert the user

whenever broadcast events occur or happen (Android Developers, 2017).

2.3.4 Content providers

This manages access to a central source of data. Content providers of an Android

application and regularly provides its user interface to function with the data. Anyway,

content providers are mostly expected that other applications use it which access the

provider using a provider client object. Providers and provider clients offer a consistent,

standard interface to data. Also, it manages inter process communication (IPC) and also

manages the process of accessing data securely.

Normally, content providers in two situations will be used or users deals with them; if they

want to implement code to access a present content provider from another application, or

they might want a new content provider being created in their application to handle sharing

of data and resources among applications. (Android Developers, 2017).

2.4 Android API

It is a number which identifies the framework Application Program Interface (API)

revision offered by a version of the Android platform.

The Android platforms provide a framework API that applications can use to interact with

the underlying Android operating system:

 Classes and core set of packages.

14

 To assert the manifest file of the application, which is a set of XML elements and

features.

 To assert and access all the resources of the application, which is a set of XML

elements and features.

 A number of Intents.

 A number permissions in which the application can request, also permission

implementations involved with the system.

When a new API version will be introduced, it stays compatible with earlier versions of the

API. Since updates to the framework of API are designed, the compatibility will be

possible. So, most changes in the API are introducing new feature and functionality. The

older replaced parts are disapproved but are not deleted, so that existing applications can

still use them. Although such changes are only needed to ensure API robustness and

application or system security, in some cases, parts of the API may be improved or deleted.

The framework Application Program Interface which an Android platform delivers is

specified using an integer identifier called API Level. Each Android platform version is

supporting an API Level (Android Developers, 2017).

When application developers intended to design and develop an application program they

must take into account two things for choosing an API level for the application:

a) Distribution Issue: This means that in case the application was for API level 12, it

is not running on API level 11 and earlier, this results in reducing the number of

devices can run this application. So the number of devices support the developed

application is a very significant point.

b) Functionality Limitation: Choosing an API level of a lower type might support

more devices but is likely to face a problem which is gaining less functionality for

the developed applications. Application developers could work harder to reach

features that they could have simply gained if they chose higher API level (Shah

and Rahman, 2013).

15

2.5 Inter Process Communications

It is a set of techniques to change data among different threads in one or more than one

process. Inter Process Communication method is divided to many types. Some methods

used for passing messages and others for synchronization or shared memory.

The methods of IPC may depend on the latency and bandwidth of communication among

the threads. Also, it may depend on the type of data communication. In addition, some of

the main reasons to provide an environment which allows IPC are information sharing and

security.

So, the most important feature of Android operating system is trying to eliminate the

functions duplications in different multiple applications. Applications functionality must

have few dependencies and must be able to other applications. The following Figure 2.4

shows the IPC mechanism in Android OS platform (Griffiths & Griffiths, 2015; Singapati,

2012).

Figure 2.4: Abstraction of IPC in Android (Singapati, 2012)

2.5.1 Intent

The purpose of the intent is to provide a high-level system of IPC. Also, it is enabling

applications to Service based on users’ actions. In different words, it is not needed for

hardcoded path to any application to use its functions and exchange data with them.

According to O'Reilly Media, Intent is responsible to provide the highest-level abstraction

of IPC in Android platform. Furthermore, it delivers data among applications. Android

application includes three components: activities, services, and broadcast receivers.

16

When the activity is activating, intent start to define the action to perform such as, opening

contacts, or showing images. Activities can be starting to receive results or returns results

in Intent such as when users select a phonebook contacts.

Intents have two forms. The first is the explicit intent addresses to a specific component.

The second is an implicit intent to give the decision to the Android operating system.

Moreover, if components are installed for one purpose, the android operating system will

select the best component to run the intent (Singapati, 2012).

2.5.2 Binder

It is lowest level abstraction of Inter Process Communication in Android platform. Based

on shard memory, it offers high performance.

Originally, it is developed by Be Inc. and later Palm. It is providing a richer high-level

abstraction on the services of modern operating system.

In android system platform, a binder is a modified implementation of OpenBinder, which

uses for everything, happens across processes in the core android platform (Jeong, 2015).

2.6 Remote Methods and AIDL

AIDL is responsible to resemble the remote procedure calls which are offering by another

system. It is used to create rich application interfaces to support object based IPC among

applications which are running using different processes. AIDL is making APIs remotely

accessible. This thesis work is focused on using the AIDL, and it is explained in detail in

the next following sections.

The AIDL is able to generate a Java class from the interface that uses for two purposes.

First it is giving clients access the services by generating a proxy class. Second, it is

generating a stub class which can be used by the service implementation.

The AIDL is generating the source code for clients and remote services in one file; which

must be shared between remote service application and client application developers. On

Android platform, one process normally cannot access and share the memory of other

process. So, it needs to decompose the objects into primitives which will be understandable

by the Android operating system. (Marko, 2017).

17

The AIDL interfaces are built by developers as same as Java RMI to automatically

generate the invocation stubs (Sbîrlea, 2013).

When Android developers are building application which contains the .aidl file,

an IBinder interface is generated by the Android SDK tools created on the .aidl file in the

application project's generated folder in the file directory. When binding to a service occur

by applications; then, call methods from the IBinder to perform Inter Process

Communication (Android Developers, 2017).

Creating and using AIDL includes three steps, which are:

2.6.1 Creating AIDL interface definition

AIDL has an interface which is defined in an (.aidl). It must be saved in both the server and

client application source codes. Each (.aidl) file defines only one interface. AIDL is

supporting different types of data such as: the primitive data types in java programing;

integer, Boolean, float, char etc. Also String and character values, map objects, List objects

classes that implement Parcelable.

2.6.2 Implement the interface

Depending on the (.aidl) file, the SDK tools generate the required interfaces. Each interface

has inner abstract class named (Stub); which responsible to extends Binder. A developer

has to extend the Stub class and implement the required methods.

When a developer builds an application, a (.java) interface is created; which includes a

subclass called (Stub).

2.6.3 Expose the interface to clients

When a developer is implementing the interface for any service, it needs to expose

interface to clients which enables them to bind to it.

When clients connect to a service, the clients should be able to access to the class interface.

So, if the clients and services are located in separated applications, the client's application

must have a copy of the file with .aidl extension in the source folder in the directory file

(Android Developers, 2017).

18

It is worth mentioning that, in addition to java programming, the aidl file can be

constructed using C++ programming language, with some difference which is that, in case

of using C++ programming language, C++ binder interfaces should produce the different

level of similarity to the java codes equivalents written for the same application

(Guanzhong, 2017).

2.7 Android Platform Security

Linux operating system is the kernel of the Android platform. Android platform uses with

a wide range of electronic devices, such as cellphones and tablets. The Android operating

system performance is depending on the processor capabilities. Since, security is an

important issue of any hardware and software; it is a major part of Android devices.

(Veracode, 2016).

2.7.1 Android data encryption

Using encryption algorithm on Android platform devices enables users to keep their

files safe and secure even if their devices get stolen. In general, encryption is converting

files to something different, and a decryption is converting them back to the original state.

So, using the encryption on android platform devices will help to encode all users’ data.

So, even if the mobile devices are stolen, the data will be unreadable (Android Developers,

2017).

2.7.2 RSA encryption\decryption in android

Rivest Shamir Adleman (RSA) is one of the best secure encryption algorithm which is

currently use by many developers. This algorithm includes four steps; which are key

generation, key distribution, encryption, and decryption. Also, it is asymmetric encryption

by using public key and private key for encrypting and decryption confidential data. The

public key is open for all people and it’s mostly use to encrypting data.

The most complex part RSA is the public and private keys. Those keys use large prime

numbers (p and q); which are generating using the Rabin Miller algorithm. A modulus n is

calculated by multiplying p and q. This number is used by both the public and private keys.

Moreover, it provides the link between them. Its length expressed in bits, and it is called

the key length. The public key contains of the modulus n, which is calculated by

19

multiplying p and q; and a public exponent, e, which is normally set at 65537. The private

key consists of the modulus n and the private exponent d, which is calculated using the

Extended Euclidean algorithm to find the multiplicative inverse with respect to the toting

of n (Techtarget, 2017).

2.8 Developing Android Application with Java

Java is one of the most popular language in programing for building and developing

android applications. Since Java contains several of significant features as compared to

other powerful languages, makes it to be a very good choice for application developers.

Java’s main characteristic are:

 Very simple to understand.

 Has very robust and secure platform independent.

 Characterized as an object-oriented programming.

The java libraries, like: graphics, math, networking, and data structure libraries, are exist in

Android SDK, which help developers in developing remarkable Android applications

(Krishna, 2014).

2.8.1 Eclipse

Both eclipse and (ADT) Android Development Tools plugin, offers some important

features for android application developers. Eclipse is an open source integrated

development environment (IDE). It is; mostly; popular for Java development. Also the

users or developers of different development platforms supported by the Android, like

Windows operating system, Macintosh operating system, and Linux operating system, can

download eclipse IDE from the eclipse foundation homepage (O’Reilly, 2004).

Eclipse has many available versions to download for free in their official website, and the

one which chosen to be used in this work is Eclipse Mars 4.5.

20

2.8.2 Android SDK

SDK is an acronym for Android Software Development Kit. It is a set of tool kit which is

used by application developers to develop applications for Android platform. The Android

SDK contains these features:

 The libraries: It contain the libraries that are within the needs and requirements for

developing an android application.

 The Debugger: In Eclipse there is debug perspective to control the debugging for

the written java codes of an application.

 Emulator: In order to test an application program before installing it on an actual

device, an emulator will be needed which a virtual mobile device is used for testing

and running on computer.

 Android application program interfaces (APIs): The identification of API is very

important for mobile application developers when starting to build any application

project. This makes it easier to determine the range of devices that a specific

application could be installed in, which is one of the important point in building

mobile applications.

Whenever a new version of Android released by Google, an equivalent software

development kit also will be released. This enables developers to write programing codes

with the newest features. Hence, developers must install and download each version of

SDK for the specific mobile phone.

It is worth mentioning that Integrated Development Environment (IDE) is the most

common method for writing Android programs. The recommended IDE is Eclipse with the

Android Development Tools (ADT) plug-in. However, other IDEs, such as NetBeans or

IntelliJ, will also work (Alina, 2015).

2.8.4 Genemotion

Genymotion is a virtual machine, in another word an emulator which is very suitable for

testing application, it can be used instead of the default Android emulator. Since

Genemotion has many benefits because of the speed and achievement of this virtual

21

machine, it is a good choice for developers to test their application before installing it in a

real device. (Genymotion, 2017).

�

�

�

�

�

�

�

�

22

CHAPTER 3

DESIGN AND IMPLEMENTATION

In this Chapter, the logical design and implementation of the proposed system will be

described.

The first stage of this thesis is designing and implementing the server side application,

which runs on an android mobile device. The purpose of this stage is to build a server

which provides different and multiple services to the client side applications. The second

stage of this work is to design and implement the clients’ applications; which are access

and use the server side services.

3.1 The Proposed System Architecture

The concepts of client and server are powerful functional abstractions. A server is simply a

unit that provides a service, possibly to one or multiple clients simultaneously, and a client

is a unit that consumes the service, as shown in the following Figure 3.1.

Figure 3.1: Client server diagram

Clients do not need to know the details of how the service is provided, or how the data they

are receiving is stored or calculated, and the server does not need to know how the data is

going to be used. The client-server architecture is a way to dispense a service from a

central source. This proposed system includes a single server that provides services, and

multiple clients that communicate with the server to consume its products. With the

Server Client

Responses

Requests

23

proposed system, android users can use this application suit (client side and service side)

after installing on their devices.

Users with this application send requests to the server service to receive the result back

after execution specific functions on the server side. The following Figure 3.2 shows a very

simple diagram illustrates the procedure of sending requests from a specific client to the

service/server and getting back the result.

Figure 3.2: Proposed system main diagram

24

The above Figure 3.2 shows that the server and multiple clients have different jobs. The

server's job is to respond to service requests from the clients, while a client's job is using

the data provided in response to perform some task through AIDL.

Android interface definition language commonly known as (AIDL), with the inter-process

communication (IPC), these android mechanisms enable activities to communicate in

parallel with objects. In another word, the AIDL and binder provide powerful mechanisms

for object-oriented inter-process communication that basically echo type method

suggestions on java objects.

These mechanisms in the proposed system will be boosted in the term of a bound service

application that uses the AIDL and binder. The main benefit of using them is to interact

with a pair of bounds services for sending and receiving requests from a remote service by

the client; as shown in the following Figure 3.3.

The Figure 3.3 below shows the main flowchart of this work. The start is the binging of the

flowchart, and the number 1, 2, 3, 4, and 5 are the five applications; which were designed

and implemented in the previous chapters.

Number 1 is the RSA application, number 2 is the Addition application, number 3 is the

Multiplication application, number 4 is the MyEncryption application, and number 5 is the

MyDecryption application.

Each application has to connect to the server to start its functions. Each one of those

applications will be explain in detail in the next sections of this chapter.

25

Figure 3.3: Proposed system flowchart

26

3.2 The Proposed System Design

In this part, the logical design of this work will be presented, which includes two parts:

 A server side application: it includes five functions and provides different services

using AIDL, which are: RSA Service, Addition Service, Multiplication Service,

MyEncryption Service, myDecryption Service.

 A client side application: it includes five separated applications, which are able to

connect with the server and use the service; which are already build on the server

side.

Both, the server and client connect and work on the same android device using AIDL. The

reason behind using AIDL is that each android application (for security reasons) runs in its

own process and cannot normally access the data of another application running in a

different process; And to allow one application to communicate with another application

running in a different process, the AIDL is used in this research work.

3.2.1 The server system design

The server side incudes five functions and services; which are: (RSA Service, Additions

Service, Multiplication Service, myEncryption Service, myDecryption Service). At the

beginning, the systems was designed and implemented just with a one server side service,

which was RSA service for encryption and decryption messages. Then, to make this work

clearer and show the advantages of using the AIDL, it is decided to build and add more

services and function to the server side, which are: Addition service, Multiplication

service, myEncryption service, and myDecryption service. These services are well

designed and implemented to enable clients access for using them; and each part of these

services will be described in detail in the next sections of this chapter, as shown in the

following Figure 3.4:

27

Figure 3.4: Java class diagram of the server side

28

Figure 3.4 shows the server side java class diagram. It shows the five different service

which are developed in the same package with different AIDL. Clients can connect with

each one of these services to run separately.

3.2.2 The client system design

The client system includes five different applications which are:

 RSA Service.

 Addition Service.

 Multiplication Service.

 MyEncryption Service.

 MyDecryption Service.

These applications are designed and implemented separately. Each client application has

access to use the server side services and functions through the AIDL. It is important to

assure that in this work another clients like subtraction service, division service, or any

other necessary services can be added to bind to the service and request for the service,

undoubtedly after writing the necessary codes in the both server side and the client side.

3.2.2.1 The RSA service design

As it was mentioned before, RSA is one of the most popular and widely algorithm which

uses for securing data transmission. The most important characteristic of this algorithm is

that the encryption key is public and differs from the decryption key; which is kept secret.

In this part of the work, the RSA service on the client side is designed and implemented,

which enables clients’ applications to access the RSA service on the server side using

AIDL.

29

Figure 3.5: Java class diagram of the client side - RSA service

30

As shown in the above Figure 3.5, the service is designed using different classes and

methods. The main activity of this application includes two EditText box. The first one is

to enter the original message for encryption process, and the second box to get the

encrypted message for decryption process.

3.2.2.2 The addition service design

The server side offers the addition function service for the clients. By this service, clients;

which are needed to call and use this service; connect to server side. Designing this service

needs to create multiple and different Java classes and subclasses; as shown in the below

Figure 3.6.

3.2.2.3The multiplication service design

The server side offers the multiplication function service for unlimited clients, as a

calculator of two numbers. Every client; which needs to use this service; will make a

connection using the AIDL. Designing this service includes many different Java classes

and subclasses; as shown in the below Figure (3.7).

31

Figure 3.6: The client side - Addition Service

32

Figure 3.7: Java class diagram of the client side - Multiplication Service

33

3.2.2.4 The myEncryption service design

This part of the work is designed and implemented to encrypt messages of users. The

reason behind naming (myEncryption) is using a personal simple encryption algorithm do

develop this part of the work like the RSA; as shown in the following Figure 3.8:

Figure 3.8: Java class diagram of the client side - MyEncryption Service

34

3.2.2.5 The myDecryption service design

This client application designed and implemented for decrypting the messages which are

encrypted by the previous application (myEncryption application). In other words, client

users can run the (myEncryption) application for encrypting messages. Then, use the

(myDecryption) application for decrypting the messages. The class diagram for this

application is shown in the Figure 3.9:

Figure 3.9: Java class diagram of the client side - myDecryption Service

35

3.2 The System Implementation

As mentioned in the previous chapter, java program language with some other tools is used

to implement the practical part of this work. The server side services five different client

applications; which are separately implemented and run on the same client. The

implementation of each part will be explained in detail in the next sections of this chapter.

The Android Emulator Samsung Galaxy S4; which support API 17; had been used in the

system implementation, as shown in the Figure 3.10 below:

Figure 3.10: Android emulator samsung galaxy S4

36

3.2.1 The server side implementation

After installing the server application on the android device, the application icon will be

added on the home screen of the android device; as shown in the following Figure 3.11.

Figure 3.11: The client home screen

After running the (AIDL Server) application on the client machine, the server application

will start and ready to serve the other client applications. When the server is successfully

started with no errors, a short message which is “Server is ready” will appear on the main

screen, as shown in the Figure 3.12 below:

37

Figure 3.12: Running the server application

3.2.2 The client side implementation

As mentioned in the previous chapter, the client side includes five different applications

which are:

 RSA Service.

 Addition Service.

 Multiplication Service.

 MyEncryption Service.

 MyDecryption Service.

38

These applications are separately implemented. Each client application has access to the

server application to use the server side services and functions through the AIDL.

Figure 3.13: Clients icons in the home screen

The Figure 3.13 shows the five clients application after installation on the android client

machine.

39

3.2.2.1 The RSA Service Implementation

Part one: After successfully implementing and running the RSA application on the

android client machine, the Client will be ready to request the RSA service of the server

application; which is run on the same Android device. Once the application will be run, a

welcome splash screen will be displayed for 4 seconds, which is the first activity of the

application, as shown in Figure 3.14:

Figure 3.14: Welcome screen of the RSA Application

Part two: after the first activity which was the splash screen, the second activity will be

started, as shown in the following Figure 3.15

The second activity of the RSA application is connecting to the server side. To make sure

that the application is successfully run and connected to the server, a short message

40

“Service Connected” will be showed on the screen for 2 seconds, as we can see in the

following Figure 3.15.

Figure 3.15: Connection of the RSA with the server application

Part three: In the EditText, and as shown in the following Figure 3.15, the android user

will be able to enter a text message for encryption using the RSA algorithm.

41

Figure 3.16: Entering a message for encryption

When the (Encrypting) button is clicked, the message; which already entered will be

encrypted, as shown in Figure 3.16:

42

 Figure 3.17: Encryption process result

In this part, the client has sent the message to server application. The server has done all

the encryption process and encrypted the message. Then the server sent the message back

to client to show as a result.

Part four: When the (Decrypting) button will be clicked the message that had been

encrypted will be returned to the original message, as shown in the following Figure 3.17:

43

Figure3.18: Decryption process result

In this part and the same way, the decrypted message has sent to the server application.

The server application has done all the decrypted process and decrypted the message.

Then, send it back to the RSA client.

3.2.2.2 The addition service implementation

Part one: after installing and running the addition service application on the client

machine, the client will start to connect and request the Addition service that is run the

server side application.

44

Once the application is running, the welcome splash screen will be displayed for 4 seconds,

which is the first activity of the application, as shown in Figure 3.18:

Figure 3.19: Welcome screen of the addition

Part two: The second activity of the Addition application is connecting to the server side.

To make sure that the application is successfully run and connected to the server, a short

message “Service Connected” will be showed on the screen for 2 seconds, as we can see in

the following Figure 3.19.

45

Figure 3.20: Connection of addition with server

Part Three: In the first EditText, as shown from the hint of the EditText. The user of the

application will enter a name. The second and third EditText is for entering two numbers

for addition service, as shown in the following Figure 3.20:

46

Figure 3.21: Entering the application data

Part four: After entering the name and two numbers, those data will send to the server

side application to use the addition service. Then, the server will run the addition function

when the user clicks on the (Addition) button and send back the result of the addition to the

client application. The result will be shown as a name followed by the result of the

addition, as shown in the following Figure 3.21:

47

Figure 3.22: Client gets result back from server

3.2.2.3 The multiplication service implementation

Part one: Once the application is running on the client android machine, the welcome

screen will be displayed, as shown in the following Figure 3.22, for 2 seconds.

48

Figure 3.23: Welcome screen of multiplication application

Part two: The following Figure 3.23, shows the second activity for the same client

connecting to the server, as we can see in this Figure, by showing the message (Service

Connected), the client user will be sure that the application is successfully running, and it

is connected to the server:

49

Figure 3.24: Connection of the multiplication with server

Part Three: In the first EditText, as clear from the hint, the user of the application has to

enter a name. In the second and third EditText will enter two numbers, as shown in the

following Figure 3.24:

50

Figure 3.25: Entering the application data

Part four: After connection, the client with the server and after the data will be entered, by

clicking the (Multiply) button the client gets the Multiplication process result, as shown in

the following Figure 3.25:

51

Figure 3.26: Client gets the result back from the server

The Figure 3.25 shows the result of multiplying two integer numbers, which done by the

server side. Then, the result is sent back to the client to show on the client side screen.

3.2.2.4 The myEncryption service implementation

This service is working as specific message encryption using some String methods and

syntax in java programing language, it is necessary to mention that (myDecryption) does

the decryption process for (myEncryption) service.

Part one: Once the application is running, the welcome screen will be displayed for 2

seconds, which is the first activity of the application, as shown in Figure 3.26:

52

Figure 3.27: Welcome screen of the myEncryption application

Part two: The following Figure 3.27, shows the second activity for the same client

connecting to the server, as we can see in this Figure, by showing the message (Service

Connected), the client will be sure that it is connected to the server with no errors:

53

Figure 3.28: Connection of the myEncryption with the server

Part Three: In the EditText, as clear from the hint the user of the application will enter a

message, as shown in the following Figure 3.28:

54

Figure 3.29: Entering message for encryption

Part four: After connection, the client with the server and after entering the text message,

the server will receive the entered information. The server will encrypt the entered

message; then, the client will get the encryption process result, as shown in the following

Figure 3.29:

55

Figure 3.30: Client gets the result back from the server

3.2.2.5 The myDecryption service implementation

This service is working as a specific message decryption using some String methods and

syntax in java programing language. Through this service, the client user can decrypt the

encrypted message from the (myEncryption) service to get back the original message.

Part one: The Client which is request myDecryption service will be run on the same

Android device. Once the application is running, the welcome screen will be displayed for

2 second, which is the first activity of the application, as shown in the following Figure

3.30:

56

Figure 3.31: Welcome screen of myDecryption client

Part Two: The following Figure 3.31, shows the second activity for the same client; which

is connecting to the server, as we can see in this Figure, by showing the message (Service

Connected), the client will be sure that it is successfully connected to the server with no

problems:

57

Figure 3.32: Connection of the myDecryption with server

Part three: As shown in the following Figure 3.32, the user of the application has to enter

the message; which encrypted by the myEncryption application for decryption.

58

Figure 3.33: Entering the encrypted message for decryption

Part Four: After the message will be entered, the client gets back the decryption process
result, as shown in the following Figure 3.33:

59

Figure 3.34: Client gets the result back from the server

The Figure 3.34 shows the result of the myDecryption application.

60

CHAPTER 4

CONCLUSION AND FUTURE WORK

4.1 Conclusion

This chapter includes two main parts. In the first part, the most important points of

designing and implementing this work will be concluded. In the second part, the future

works will be suggested. The mobile application is becoming advanced day by day, and

becoming increasingly important part of peoples’ daily lifestyle. Now days, people are able

to use smartphones not only for calling and messaging service (SMS), but also for doing

various computing tasks.

One of smartphone development challenges is related with the memory usage. Because

they have a specific memory size compared with other devices such as laptops or desktop

computers. So, running multiple applications on the same device will consume the memory

and negatively affect the mobile performance; which makes software developers take into

account develop applications with small memory usage.

One of the best techniques which help to decrease the memory usage is sharing services.

The main idea of this thesis work is sharing services by designing and implementing a

client server application; which are running on the same mobile device. The application

has been developed for Android operating system using inter-process communication

(IPC) and android interface definition language (AIDL).

The future works can be progressed to include many new parts using updated technologies

and tools. The main future work can be summarized as the following:

 Developing and implementing this work for iOS devices, such as: iPhone and iPad.

 Developing the proposed system to support files and pictures, such as: encrypting

files.

 Developing the proposed system to support faster data entry such as voice data

entry.

61

REFERENCES

Android Application Components. Retrieved December 8, 2016, from

https://www.tutorialspoint.com/android/android_application_components.htm.

Alina Gabaraeva, Presales Consultant Follow. (2015, March 14). THESIS_final_retouch-3.

Retrieved April 13, 2017, from

https://www.slideshare.net/AlinaGabaraeva/thesisfinal retouch3.

Android Developers. (2017). Services. Retrieved January, 19, 2017 from

https://developer.android.com/guide/components/services.html

Android Developers. (n.d.). Retrieved December8, 2016, from

https://www.bing.com/cr?IG=CE7E85548B93499B80863FE30BEF935E&CID=3A2

1FAC772B766501AA8F0A4732767F3&rd=1&h=M1RZlqxmw5Za8dNN

Gs0uOsABM3yF4A7N9DaqfoE_nU&v=1&r=https%3a%2f%2fdeveloper.android.c

om %2findex.html&p=DevEx,5063.1

Android Security: Guide to Android OS. (2016, October 27). Retrieved April 3, 2017, from

https://www.veracode.com/security/android-security

Burd, B. (2012). Android application development all-in-one for dummies. Hoboken: John

Wiley.

Burnette, E. (2015). Hello, Android: introducing Google's mobile development platform.

Dallas, TX: The Pragmatic Bookshelf.

Career Guru. (2017). 50 Android Interview Questions & Answers. Retrieved from

http://career.guru99.com/50-android-interview-questions-answers/

Darcey, L., & Conder, S. (2012). Android Wireless Application Development Volume I:

Android Essentials. Addison-Wesley.

Encryption | Android Open Source Project. (n.d.). Retrieved April 3, 2017, from

https://source.android.com/security/encryption/

Friesen, J. (2014). Learn Java for Android development. Berkeley, CA: Apress.

62

Griffiths, D., & Griffiths, D. (2015). Head First Android Development. " O'Reilly Media,

Inc.". Haseman, C. (2012). Creating Android applications: develop and design.

Berkeley, CA: Peachpit Press.

Gerri, O. (2017, January 19). Generating C Binder Interfaces with aidl-cpp. Retrieved June

26, 2017, from http://www.jianshu.com/p/5f2ae92291af

Holzner, S. (2004). Eclipse cookbook. " O'Reilly Media, Inc.". Implementing Remote

Interface Using AIDL. (n.d.). Retrieved February2, 2017, from

https://newcircle.com/s/post/48/implementing_remote_interface_using_aidl

Isakow, A., & Shi, H. (2008). Review of J2ME and J2MEbased Mobile Application.

International Journal of Communication and Network Security, 8(2), 189-198.

Jeong, K., Kang, H., Lee, K., & Park, S. (2015). Remote Binder: Remote Procedure Call

between Android Devices. KIISE Transactions on Computing Practices,21(5),359-

364.

Kris D. (2014, October 01). Introduction To Java – Learn Java for Android Development –

Medium. Retrieved March5, 2017, from https://medium.com/learn-java-for-android-

development/introduction-to-java-a95d84a681bd.

Lars Vogel. (2014). Android Services-Tutorial. Retrieved January, 22, 2017 from

http://www.vogella.com/tutorials/AndroidServices/article.html#android-services.

Lee, W. M. (2011). Beginning Android Application Development. Indianapolis, Ind.:

Wiley Publishing, Inc.

Liu, J. J. (2002). Mobile map: A case study in the design & implementation of a mobile

application (Doctoral dissertation, Carleton University).

More than an Android emulator, a powerful virtualization platform to address all your

Professional needs. (n.d.). Retrieved April 13, 2017, from https://www.genymotion

.com/

63

Sbirlea, D., Burke, M. G., Guarnieri, S., Pistoia, M., & Sarkar, V. (2013). Automatic

Detection of inter-application permission leaks in Android applications. IBM Journal

Research and Development, 57(6). 10-1.

Singapati, S. (2012). Inter Process Communication in Android. Master thesis, Tampere

university of Technology.

Schreiber, T. (2011, October). Android Binder–Android Interprocess Communication.

In Seminar thesis, Ruhr-Universität Bochum.

Shah, S., & Rahman, K. A. (2013). Android development tools for Eclipse: set up, build,

And publish android projects quickly using Android development tools for Eclipse.

Birmingham:Packt Pub.

Research, C. S. (2012). Creative Android Apps. Retrieved February 14, 2017, from

http://creativeandroidapps.blogspot.com/2012/06/introduction-to-android.html

Reto, M. (2009). Professional android application development. Word Programmer to

Programmer, 6(7), 1794-1797.

What is RSA algorithm (Rivest-Shamir-Adleman)? - Definition from WhatIs.com. (n.d.).

Retrieved April 1, 2017, from http://searchsecurity.techtarget.com/definition/RSA

