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ABSTRACT 

 

 

The thesis introduced the preliminaries of   calculus which is the base of   difference 

equation. We further considered the Picard’s existence and uniqueness theorem for 

ordinary differential equations for which is the base for   analogue of this theorem. We 

therefore define system of q-difference equation and detailed proofs of theorems for first 

order system of    difference equation and the Cauchy problem are provided.  At the end, 

we work on a special case of  -Cauchy problem and later extend this problem to the     

order. The second order of this  -difference equation is studied by the several 

mathematician, we therefore extend this problem to the general form at the last chapter. 

 

Keywords:  -calculus; Jackson Integral; Existence and uniqueness of solutions for 

differential equation; system of   difference equation; successive 

approximation;   Cauchy problem with boundary values 
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ÖZET 

 

Tez, q-fark denkleminin temeli olan q-hesabı öncüllerini tanıtmıştır. Ayrıca, Picard'ın bu 

teoremin   analogu için temel olan adi diferansiyel denklemler için varoluş ve teklik 

teorisi encelendi. Bu nedenle,   fark denkleminin sistemini tanımlıyoruz ve   fark 

denkleminin birinci dereceden sistemi için teoremlerin ayrıntılı delilleri ve Cauchy 

problemi sunuluyor. Sonuçta, özel bir   Cauchy problemi üzerinde çalışıyoruz ve daha 

sonra bu sorunu  . Sınıfa kadar genişlettik. Bu   fark denkleminin ikinci derecesi birkaç 

matematikçi tarafından incelendiğinden, bu problemi son bölümde genel forma 

genişletiyoruz. 

 

Anahtar Kelimeker:   calculus; Jackson Integral; Diferansiyel denklem için özümlerin    

varlığı ve özgünlüğü;   fark denklemi sistemi; ardışık yaklaşım; 

sınır değerli    Cauchy  problemi 
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CHAPTER 1 

INTRODUCTION 

 

 

Much research on Ordinary Calculus has being carried-out by various scholars in different 

fields of studies. This result to evolvement of a new concept of calculus called the 

Quantum Calculus (q - calculus). 

As we earlier knew that the Ordinary Calculus encompasses many terminologies and 

definition(s) of such terminologies, likewise each terminology in Quantum Calculus has its 

own definition and representation which is called “q- analogue of the term”, (Kac and 

Cheung, 2002). However, we shall discuss the terminologies vis-`a-vis the q-calculus in 

detail in this thesis before we add some new concepts on the field. On the other hand, to 

have deep knowledge on the field, one needs to know the following terminologies. 

Now, consider the below mathematical expression: 

                                                                 
          

    
                                                                       

We knew that the limit of the above expression as   tends to    if it exist give us the 

ordinary definition of the derivative 
  

  
 of a given function      at     . Now, suppose 

we substitute       or         where   is a fixed number other than  ,   be a fixed 

number distinct from  , and we do not take the limit, then this lead us to the fascinating 

world of the Quantum Calculus. However, the corresponding expressions are what we 

called the definition of  -derivative in relation to  -Calculus and  -derivative in relation  -

calculus respectively (Kac and Cheung, 2002).  

Been stated above of the two types of Quantum Calculus, that is (the  -Calculus and the  -

calculus), in the course of developing the field along with the traditional lines of ordinary 

calculus some important expressions, equations and results were discovered in the different 

fields of mathematics. Examples of such of the fields are combinatorics, number theory, 

and other fields which we shall later discuss the discoveries made and prove some of the 

results found in detail. 
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Furthermore, due to some similarities of this field with the ordinary calculus, one need not 

to disturb himself or herself cogitating on the field. The most important thing for an 

enthusiastic student of this branch of mathematics is to revise his/ her ordinary calculus. 

1.1  -Derivative and  -Derivative 

  As we mentioned earlier of the two types of Quantum Calculus, we now begin with the 

definitions of the terms associated with each type. 

1.1.1 Quantum Differentials 

Definition 1.1.1.  Ernst (2002); suppose      is an arbitrary function defined on the set of 

real numbers. Then the q- differential of      is defined as: 

                                                                                                                   (1.2) 

And its  -differential is: 

                                                                                                               (1.3) 

For instance, suppose       . Then             and       , results from the 

(1.2) and (1.3) as:  

                                                               , 

and 

                                                               .  

 

1.1.2 Quantum Differential of Product of Two Functions 

Proposition 1.1.1. Kac and Cheung (2002); let      and      be arbitrary functions 

defined on  . Then the  - differentials of the product of      and       are as:  

                     (        )                                                       (1.4)        

                                    (        )                                                        (1.5) 
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Proof.  Kac and Cheung (2002); consider   (        )                       

                                                                   ,                                   

we have:  

              (        )       [          ]      [          ]      

From the above equations, it implies;  

           (        )                         from (1.2).                              

Similarly, suppose we expressed   (        )                       to be equals 

to:  

                                       , 

Then, one can easily show that   

  (        )                      

                                                                              

Furthermore, the  -differentials of product of      and      can also be found in similar 

way as its counterpart. 

Proposition 1.1.2. Kac and Cheung (2002); let      and      be arbitrary functions 

defined on  . Then the  -differentials of the product of      and       are:         

          (        )                                                            (1.6) 

          (        )                                                            (1.7) 

Proof.  Consider    (        )                             

                                                                ,                                   

we have,  

             (        )        [           ]      [           ]      
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From the above equations, it implies;  

   (        )                          from equation (1.3). 

Similarly, suppose we expressed   (        )                         to be 

equals to:   

                                                         , 

then, one can easily show that  

  (        )                        

                                                   . 

From the above proofs of equations (1.4), (1.5), (1.6) and (1.7), one can easily see the lack 

of symmetry in the differential of the product of two functions in quantum calculus; unlike 

the ordinary calculus whereby the differential of the product of two functions are 

symmetric. 

However, by considering the definitions of  -differentials and the  -differentials we can 

now define the corresponding quantum derivative of each as the follows. 

 

Definition 1.1.2. Let       be an arbitrary functions defined on  . Then the  -derivative of 

      is defined as:  

                            {    
                                                            

      

   
  

          

      
                                  

                 (1.8)    

Similarly, the  -derivative of       is defined as:  

                           
      

   
  

           

 
                                 (1.9) 

 

Note that:                                                                                                                                  
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 whenever the function      is differentiable. By considering the Leibniz notation 
     

  
 

which is a ratio of two ‘‘infinitesimals’’, it is difficult to understand it because the notion 

of the differential       needs detailed explanation. But on the other hand, the notion of 

       and        are obvious, and        and        are plain ratios. 

 

 Properties of    and    Operators 

Let      be an arbitrary function and     be any constants. Then we have: 

     (           )                                                   (1.10) 

                  (            )                                                (1.11) 

From the above equations (1.10) and (1.11), one can easily see that the two operators are 

linear operators. 

Example: If         , for        , then one can easily compute the  -derivative and 

 - derivative of the given function using equations (1.8) and (1.9).    

That is to say:    

                           
   

         

      
 

        

      
 

    

   
    ,                                           (1.12) 

By letting   

                              [ ]   
      

     
                                                                 (1.13) 

for        , this is called the  -anologue of  . And it implies that equation (1.12) 

becomes       
  [ ]  

    which looks like the ordinary derivative of   .  As      

[ ]             

 

Similarly,              

                           
   

           

 
 

By using binomial expansion on 
           

 
  we can express    

  as follows: 

                          
   

           

 
        

           

 
                            (1.14) 

However, before we proceed to the derivatives of product of two functions, it is important 

to note that this thesis will mainly focus on  -calculus. 
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1.1.3 Quantum Derivative of Product of Two Functions 

Proposition 1.1.3. Let      and      be two arbitrary functions defined on  . Suppose 

that      . Then from (1.4), (1.5) and (1.8), the  -derivative of the product of      

and       are 

                                     (        )                                                (1.15) 

                                     (        )                                                (1.16) 

(Mansour and Annaby, 2012) 

Proof. By considering the left hand side of (1.15), it implies  

   (        )  
  (        )

   
  

                      

      
                    

and hence, 

                                     (        )                                     

By symmetry, one can interchange   and  , and obtain (1.16) 

                                     (        )                                                 

which is equivalent to (1.15). 

However, we can apply (1.15) and (1.16) to derive the  -derivative of 
    

    
 using some 

technics. 

 

1.1.4 Quantum Derivative of Quotient of Two Functions 

Proposition 1.1.4. Ernst (2002); let      and      be two arbitrary functions defined 

on  . Then from (1.15) and (1.16), the  -derivative of the quotient of      and       are: 

                       (
    

    
)  

                     

         
                   ,                            (1.17) 
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and      

                       (
    

    
)  

                       

         
 ,                                          (1.18)       

The above proposition can be prove by applying (1.15) and (1.16) to differentiate      

     
    

    
   where         

Proof.  Kac and Cheung (2002); consider           
    

    
, by applying (1.15) we have 

         (     
    

    
)  

From (1.15), we have  

         (     
    

    
)         (

    

    
)  (

    

    
)  (    )  

It implies  

       (
    

    
)  (    )         (

    

    
)  

By dividing both sides by        we have 

  (
    

    
)  

      

     
 (

    

         
)         

 
                     

         
 

Similarly, using (1.16) we can obtain the (1.18) by considering the same function      

     
    

    
. 

This means that;           (     
    

    
) 

From (1.16), we have;  
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         (     
    

    
)        (

    

    
)  (

     

     
)         

It implies; 

       (
     

     
)               (

    

    
) 

By dividing both sides by       we have; 

  (
    

    
)  

      

    
 (

     

         
)         

              
                       

         
 

1.1.5 Quantum Version of the Chain Rule  

Not there exists a general chain rule for  - differentiation except for a function that takes 

the form (    ), where            with     being constants. We can demonstrate 

how the role applies by considering   [ (    )]    [ (   )]  

One can easily see that   [ (    )]    [ (   )]  
 (     )  (   )

    
 

      
 (     )  (   )

          
(     ) (   )

    
  

      
 (   )     

     
 
          

    
,                          

and hence, 

                           (    )  (    )(    )                                                         (1.19)  

 

1.2   -Taylor’s Formula for Polynomials 

As we knew in ordinary calculus that if a function      is analytic at      then it 

possesses a Taylor’s series which is given as: 
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                                  ∑     
      

  
                                                                               

 

   

 

Likewise, in quantum calculus such series exist but in different form. Before we state the 

 - Taylor’s formula for polynomial we firstly begin with the definition of the following 

important terms as defined in (Kac and Cheung, 2002) and (Momenzadeh and Mahmudov, 

2014). 

 

 1.2.1   -analogue of     

Let      { }  the  -analogue of    is defined as: 

                       [ ]   {
                                                     

[ ]  [   ]      [ ]                   
                       (1.21)                                                   

 

 1.2.2   -analogue of        for      

Let      { }, the  -analogue of        is a polynomial defined as: 

                       
  {

                                                                         

                                   
                    (1.22) 

 

1.2.3   -analogue of         for     

Let      the  -analogue of         is given as: 

                       
   

 

         
                                                                  (1.23) 

Note that definition (1.22) is an extension of definition (1.21), (Kac and Cheung, 2002). 

 

1.2.4   -analogue of    for     

Let      the  -analogue of   is defined as: 

                                [ ]  
    

   
                                                                          (1.24) 

Note that definition (1.23) is an extension of equation (1.13), (Kac and Cheung, 2002). 

 

Proposition 1.2.1. Kac and Cheung, (2002); for any integers       the following 

properties hold. 

I.       
          

       
 . 
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II.       
          

         
 . 

III.          
  [ ]       

     

IV.   (
 

      
 )  [  ]         

    . 

V.                          
        

   

VI.         
  [  ]        

   . 

VII.   (
 

      
 )  

[ ] 

      
   . 

 

With the above definitions and propositions we have the  -Taylor’s formula for 

polynomials as follows. 

 

Theorem 1.2.1. For any polynomial      of degree   and any number    we have the 

following  -Taylor’s expansion:  

                                   ∑   
 
     

      
 

[ ]  

 

   

                                                                          

 (Kac and Cheung, 2002).  

 

1.3 The Two Euler’s Idendities and Two  - Exponential Functions 

 Before we state the identities and  - exponential functions, let us consider a definition and 

some properties associated to both of them. These properties are called the Properties of  -

Binomial Coefficients. 

 

1.3.1   - Binomial Coefficients 

 Let      for       the  - Binomial Coefficients is defined as:                              

[
 
 ]

 
 

[ ] [   ]    [     ] 

[ ]  
 

[ ]  

[ ]  [   ]  
 

(Kac and Cheung, 2002). 
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Proposition 1.3.1. Kac and Cheung, (2002); let        , then the following 

               hold. 

I. [
 
 ]

 
 [

   
   

]
 

   [
   

 
]
 

                               (1.26) 

II. [
 
 ]

 
     [

   
   

]
 

 [
   

 
]
 

                     (1.27) 

 

Proof. Consider the given condition                                       

           

We have: 

   [ ]              

            (            )                                      

           [ ]    [   ] . 

We now consider (1.26) 

        [
 
 ]

 
 

[ ]  

[ ]  [   ]  
 

[   ]  [ ] 
[ ]  [   ]  

  

                 
[   ]    [ ]    [   ]  

[ ]  [   ]  
 

               
[   ]  

[   ]  [   ]  
   [   ] 

[ ]  [     ]  
 

           [
   
   

]
 

   [
   

 
]
 

, 

also, by consider (1.27), we have 

                   [
 
 ]

 
 [

 
   ] 

 [
   

     
]
 

   [
   
   

]
 

 

                                  [
   

 
]
 
     [

   

   
]
 

 

Note that the symmetric property of the   binomial coefficients “[
 
 ]

 
 

[ ]  

[ ]  [   ]  
 

[
 

   ] 
” gives the above second rule. 
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Corollary 1.3.1. Each   binomial coefficient is a polynomial in   of degree     

    with   as the leading coefficient. 

Proof.  For any nonnegative integer    

[
 
 
]
 
 [

 
 
]
 
  , 

which is of course a polynomial. Now, using the symmetric property of   binomial 

coefficients “[
 
 ]

 
 

[ ]  

[ ]  [   ]  
 [

 
   ] 

” and induction on    for any        , 

[
 
 
]
 
is the sum of two polynomials, thus is itself a polynomial (Kac and Cheung, 2002). 

Now, by definition (1.26) and (1.13), the explicit expression of a   binomial coefficient 

is 

                                    [
 
 ]

 
 

                         

                    
 .                     (1.28) 

Since both the numerator and denominator of (1.28) are polynomials in   with leading 

coefficient    so is their quotient. Finally, the degree of   [
 
 ]

 
 in   is the difference of the 

degree of the numerator and denominator, which is [                 ]  

[           ]                              

Another fact can be deduced from the explicit expression (1.28) of the   binomial 

coefficient. Knowing that it is a polynomial in   of degree         we let 

                   
                 

       

 
(    )         (        )

                    
  

If we replace   by   ⁄  and multiply both sides by          it is easy to check that the right-

hand side will be unchanged, while the left-hand side,  
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has the sequence of coefficients    reversed in order. By comparing coefficients, we 

observe that the coefficients in the polynomial expression of [
 
 ]

 
 are symmetric,    

             

However, to derive the two Euler’s identities and the two   Exponential functions we 

also have to consider the Gauss’s and Heine’s binomial formulas which were derived from 

the  -Taylor’s formula respectively. 

Now consider the Gauss’s binomial formula 

                                                      
   ∑[

 
 ]

 

 

   

        ⁄                                                  

by replacing   and   with   and    respectively, we have 

                                                      
   ∑[

 
 ]

 

 

   

                                                               

Also, consider the Heine’s binomial formula  

  

                                        
 

      
  ∑

[ ] [   ]  [     ] 
[ ]  

 

   

                                    

 

Suppose we let     in (1.30) and (1.31). We knew in ordinary calculus that for     

the result will not be very interesting because it is either going to be infinitely large or 

infinitely small depending on the value of  .  But in quantum calculus the result will be 

totally different because, by considering an example for | |     the expression        
  

will be                      from definition (1.21), and so converges to some 

finite limit. Furthermore, if we let | |     then we have: 

                                          
   

[ ]     
   

    

   
   

 

   
                                               

and 
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[
 
 ]

 
     

   

               (        )

                  
            

                                                          
 

                  
                                             

By considering the q anlogue of integer and binomial coefficients behavior when    is 

large, we can easily see the difference when compared with that of ordinary calculus. 

    

Suppose we apply  (1.32) and (1.33) to equations (1.30) and (1.31), then as     we 

have the following two identities of formal power series in   which are called the Euler 

first and second identities (with the assumption that | |   ). 

                        
    ∑        ⁄

 

   

  

                  
                                      

                  
 

       
  ∑

  

                  

 

   

                                                        

Now consider the second Euler’s identity (1.35), by dividing both the numerator and the 

denominator of it by       we have  

       ∑
  

                  
 ∑

(
 

   )
 

 (
    

   ) (
    

   )

 

   

 

   

 ∑
(

 
   )

 

[ ]  
 

 

   

               

Clearly equation (1.36) looks like Taylor’s expansion of the classical exponential function

  

                                              ∑
  

  
 

 

   

                                                                                        

Definition 1.3.2.  A    analogue of the classical exponential function    is   

                                     
  ∑

  

[ ]  

 

   

          | |  
 

|   |
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(Kac and Cheung, 2002). 

 

Lemma 1.3.1. The interval of convergence of (1.38) is | |  
 

|   |
  

Proof. Using ratio test we have the interval of convergence of (1.38) as, 

                    |
    [   ]  ⁄

  [ ]  ⁄
|        

| |

|[   ] |
       

| ||   |

|      |
  | ||   |       

It implies | |  
 

|   |
  

Also consider the first Euler’s identity (1.34), by dividing the numerator and the 

denominator of it by       we have:  

Definition 1.3.3. Another     analogue of the classical exponential function    is   

                
  ∑         ⁄

  

[ ]  

 

   

             
      | |                               

Lemma 1.3.2. The radius of convergence of (1.39) is infinity. 

Proof. Using ratio test we have the interval of convergence of (1.39) as 

   
   

|
         ⁄       [   ]  ⁄

         ⁄      [ ]  ⁄
|     

   

|   |

|[   ] |
 | |    

   

|  ||   |

|      |
  | |      

Hence the radius of convergence of (1.39) is infinity since   
 

 
 

 

 
 . 

Proposition 1.3.2. The classical exponential functions (1.38) and (1.39) are unchanged 

under differential.  

 

Proof.  Consider the left side of equation (1.38),  

This means that 

  (  
 )  ∑

    
  

[ ]  

 

   

 ∑
[ ]   

    

[ ]  

 

   

 ∑
    

[   ]  
 ∑

  

[ ]  
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and, 

   (  
 )  ∑        ⁄

  ( 
 )

[ ]  

 

   

 ∑         ⁄
[ ] ( 

   )

[ ]  

 

   

                     

 ∑            ⁄     
    

[   ]  
 ∑        ⁄

    

[ ]  
 

 

   

 

   

 

We have  

              (  
 )    

  and    (  
 )    

  
.                                             (1.40) 

Note that the derivative of   
  is not exactly itself. The results in (1.40) may also be 

obtained by letting     in  

                                      

 

           
  

     [ ] 

           
                                                 

and 

                                           
       [ ]             

                                

 

1.4   Antiderivative 

Definition 1.4.1. Let      and       be two functions defined on    then      is called 

a    antiderivative of      if   (    )        and it is denoted by  

                                       ∫                                                                                                

(Ernst, 2002) and (Ernst, 2012). 

          

1.4.1 Jackson Integral 

Definition 1.4.2. Let        be a functions defined on the set of real line    then the 

Jackson integral is defined as 
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                        ∫               ∑        

 

   

                                                                   

However, from (1.44) we can easily derive a more general formula 

∫                    ∑   (   )

 

   

   (   )                                                           

       ∑   (   )

 

   

 (   )          

        
                                   

 ∑ (   ) ( (   )   (     ))                                                               

 

   

 

     

Theorem 1.4.1. Annaby and Mansour, (2012); Suppose        If        is bounded 

on the interval     ] for some        then the Jackson integral defined by (1.4.2) 

converges to a function      on     ]  which is a  -antiderivative of        Moreover, 

     is continuous at     with         

Proof. Suppose |      |    on     ]  For any             then we can substitute 

x by     since then         and            

This means that 

| (   )|   (   )
  

  

Thus, for any         by multiplying both-sides of | (   )|   (   )
  

 by    we 

have  

             |   (   )|     (   )
  

                  (1.46)  

Since       and        we see that the series is majorized by a convergent 

geometric series. Hence, the right-hand side of (1.44) convergences pointwise to some 

function       It follows directly from (1.44) that         The fact that      is 

continuous at      i.e       tends to zero as    , it is clear if we consider (1.46) by 
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using geometric series, taking summation of both-sides for   starts from   to     and 

multiplying each side with        we have 

|∑   (   )

 

   

|  ∑|   (   )|

 

   

  ∑          
 

   

     
         

      
 

          |      ∑        

 

   

  |  
          

      
                                        

To verify that      is a  -antiderivative, we  -differentiate it 

       
 

      
(      ∑        

 

   

         ∑          

 

   

  )                 

 ∑   (   )  ∑     (     )

 

   

 

 

   

               

 ∑   (   )  ∑   (   )      

 

   

   

 

   

 

Note that if       ] and        then        ]  and the  -differentiation is valid. 

Definition 1.4.3. Kac  aand Cheung, (2002). Let        then the definite  -integral is 

defined as   

                                 ∫        
 

 

       ∑        

 

   

                                                         

and 

                            ∫        
 

 

 ∫        
 

 

 ∫         
 

 

                                                     

As seen before in (1.45), we derived from (1.47) a more general formula: 
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                           ∫           
 

 

 ∑ (   ) ( (   )   (     ))  

 

   

                                

Definition 1.4.4. The improper  -integral of     on [      is defined to be  

                           

{
 
 

 
  ∫        

 

 

 ∑ ∫        
  

    

     

 

    

            

 ∫        
 

 

 ∑ ∫        
    

  

                    

 

    

 

                              

 

1.5 Fundamental Theorem of   Calculus and Integration by Parts. 

Theorem 1.5.1. (Fundamental Theorem of   Calculus) 

If      is an antiderivative of      and      is continuous at    , we have 

                                   ∫        
 

 

                                                                              

where         (Kac and Cheung, 2002). 

Proof. Kac and Cheung (2002); Since      is continuous at          is given by the 

Jackson formula, up to adding a constant, that is 

           ∑   (   )       

 

   

 

Since by definition, 

    ∫        
 

 

       ∑   (   ) 

 

   

 

we have  

∫        
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Similarly, we have, for finite    

∫        
 

 

            

and thus  

∫        
 

 

 ∫        
 

 

 ∫        
 

 

            

Putting       or    and      (or        where                 and considering 

the definition of improper  -integral (1.4.8), we see that (1.5.1) is true for      as well if  

           exists. 

Corollary 1.5.1.Annaby and Mansour (2012). If       exists in a neighborhood of   

  and is continuous at      where       denotes the ordinary derivative of       we have 

                                      ∫          
 

 

                                                                          

Proof.  Using L’Hospital’s rule, we get 

   
   

          
   

          

      
    

   

             

     
        

Hence        can be made continuous at     if we define                 and 

(1.5.2) follows from the theorem. 

1.5.1   -Integration by Part Formula 

Let       and      be two arbitrary differentiable functions defined on     Then  

                          ∫           
 

 

                   ∫            
 

 

                   

is called the formula of   -integration by parts. Note that   can be equals to infinity as well 
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Theorem 1.5.2. Suppose   
 
     is continuous at     for any        Then, we have 

a  -analogue of Taylor’s formula with the Cauchy remainder: 

                 ∑(  
 
 )   

      
 

[ ]  

 

   

 
 

[ ]  
∫   

              
    

 

 

                      

Proof. Since       is continuous at      by Theorem (1.51) we have  

          ∫       
 

 

     ∫       
 

 

                               

which proved (1.54) in the case where      Assume that (1.54) holds for     

     ∑(  
 
 )   

      
 

[ ]  

   

   

 
 

[   ]  
∫   

            
      

 

 

 

Using          
  [  ]        

    and applying  -integral by part (1.53), we obtain 

∫   
            

      
 

 

  
 

[ ]  
∫   

             
 

 

 

 

           

                              (  
  )   

      
 

[ ]  
 

 

[ ]  
∫        

   
          

 

 

  

and the proof is complete by induction. 
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CHAPTER 2 

EXISTENCE AND UNIQUENESS OF SOLUTION OF ORDINARY 

DIFFERENTIAL EQUATION 

 

2.1 Existence and Uniqueness of a Solution of an Ordinary Differential Equation 

Before we state the Picard theorem for existence and uniqueness of a solution of a given 

differential equation we found that the following definitions and theorem are important 

from (Rudin, 1976), (Kreyszig, 1978), (Kolmogorov and Fomin, 1957), (Ashyralyev, 

2013), and (Nagle et al, 2012).     

2.1.1 Norm   

A complex norm is a function ‖   ‖       having the following properties: 

I. ‖ ‖    and ‖ ‖     if and only if        For all       

II. ‖  ‖  | |‖ ‖ for all       as         

III. ‖   ‖  ‖ ‖  ‖ ‖ for all           ( triangular equality)    

                                                                                                                                                          

2.1.2 Normed Space 

Let    be a nonempty set. Then, the pair    ‖   ‖  is called a normed space or normed 

vector space. 

 

2.1.3 Complete Normed Space 

A normed space is called complete if every Cauchy sequence contained in it converges to 

some point in it. 

 

2.1.4 Banach Space 

Let    ‖   ‖  be a normed space, then    ‖   ‖   is said to be Banach Space if it is a 

complete normed space.  
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2.1.5 Fixed Point of an Operator 

A fixed point of an operator or a transformation is an element in the domain that the 

operator or transformation maps to itself. 

 

2.1.6 Weierstrass M-Test Theorem 

Let {  } be a sequence of functions defined on a set  . Suppose that for all      there 

exist      such that 

                         |     |           

Then if ∑   converges, then ∑   must converges uniformly on    

 

2.1.7 Banach Fixed Point Theorem for Operators 

Let   be the set of continuous functions on [   ] that lie within a fixed distance     of a 

given function        [   ]       {    [   ]   ‖    ‖   }. Suppose that   is 

an operator mapping   into   and it  is a contraction on    that is 

                    ‖ [ ]   [ ]‖   ‖   ‖           

Then the operator G has a unique fixed point solution in S. Moreover, the sequence of 

successive approximations defined by       [  ]          converges uniformly to 

this fixed point, for any choice of starting function       

 

Proof. Choose any starting function     . Since     is an element of the domain 

of    then     [  ] is defined. Since   maps   to itself,       By induction,      and 

 [  ] is well-defined, for all    . 

 We rewrite  

                                        

so that 

                                         ∑ (             )

   

   

                                                  

We now show that the sequence {  }  converges uniformly to an element in the set  . We 

can do this by using Theorem (2.1.1) which is an extension of the Comparison Test.   

Now we need to find a bound   on the terms of the series (2.1). 
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Claim: ‖       ‖    ‖     ‖  

Then the claim is clearly true for    . Suppose that the claim is true for      where   

      . Then  

     ‖ [    ]   [    ]‖  ‖ [ [    ]]   [ [  ]]‖ 

                                         ‖ [    ]   [  ]‖      ‖     ‖  

proving the claim 

By considering equation (2.1) again, from the claim above it is clear 

that      [   ]|             |  ‖       ‖    ‖     ‖. Let      ‖     ‖. 

Because 

∑  

 

   

 ‖     ‖∑  

 

   

 

converges (since it is geometric series and also with the assumption that      ), then 

the Weierstrass M-Test shows that {  } converges uniformly to a continuous function   . 

Moreover,      because the assumption that ‖     ‖    implies that ‖     ‖  

  not for all  , contradicting the fact that         

Recall that    is a contraction, this mean that‖ [  ]   [  ]‖   ‖     ‖ for any  . 

But we have  ‖     ‖    as    , so ‖       ‖    as    . Of course, 

 [  ]      . 

Thus,            

   
   

‖ [  ]   [  ]‖     
   

‖ [  ]      ‖     
   

 ‖       ‖     

  Finally,  [  ]       [  ]                    

so that by triangular inequality for norm                 

                     ‖ [  ]    ‖  ‖ [  ]      ‖  ‖       ‖                                   (2.2) 

Since both terms on the right side of (2.2) tends to zero as   tends to    it follows that 

‖ [  ]    ‖     or  [  ]      

Thus,    is a fixed point of  . 
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Now suppose that     is any fixed point of     i.e. that   satisfies  [ ]     Then 

‖    ‖   ‖ [  ]   [ ]‖    ‖    ‖  ‖    ‖  which is possible if and only if 

‖    ‖     In other words,       so that    is the unique fixed point of     

 

2.1.8 Picard’s Existence and Uniqueness Theorem 

Consider the initial value problem (IVP) 

              
  

  
                          

Suppose that        and 
  

  
      are continuous functions in some open rectangle 

  {                 }  that contains the point           Then the Initial 

Value Problem has a unique solution in some closed interval   [        

 ]  where      (Nagle et al, 2012). 

  

Proof. Picard’s Theorem is proved by applying the Banach Fixed Point Theorem for 

Operators to the operator T. We the unique fixed point to be the limit of the Picard’s 

Iterations given by 

         [  ]          

Recall that if   is a fixed point of    then         ∫  (      )  
 

  
  which is equivalent 

to the initial value problem. If such a function,      exists, then it is the unique solution to 

the initial value problem         ∫  (      )  
 

  
  

 To apply the Banach Fixed Point Theorem for Operators, we must show that   will map a 

suitable set   to itself and that   is a contraction. This may not be true for all real    Also; 

our information pertains only to the particular intervals for   and   referred to the 

hypothesis of Picard’s Theorem. 

First we find an interval   [         ] and           such that   maps   

{     [ ]   ‖    ‖   } into itself and   is a contraction. Here, [ ]   [        

 ] and we adopt the norm 

 ‖ ‖     
   

| |  

Choose    and    such that 
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     {      |    |     |    |    }      

Because   and 
  

  
 are continuous on the compact set     it follows that both   and  

  

  
 attain 

their supremum (and infimum) on     

 

It follows that there exist     and     such that 

             |      |     and |
  

  
|    . 

Now let   be a continuous function on    [           ] satisfying |       |  

    for all      then  [ ]        ∫  (      )  
 

  
 so that, for all      

| [ ]      |  |∫  (      )  

 

  

|  ∫| (      )|     |∫  

 

  

|   |    |

 

  

  

Now choose   such that        {   
  

 
 
 

 
}   Let        [        

 ]  and   {        ‖    ‖   }. Then   maps   into  ; moreover,  [ ]    is 

clearly a continuous function on   since it is differentiable, and we knew that 

differentiability of a function implies continuity of that function (Rudin, 1976). 

For any      we have for any      

    | [ ]      |   |    |       (
  

 
)      

In other words, ‖ [ ]    ‖      so  [ ]     

 

Now we show that   is a contraction. Let         On    |
  

  
|     so by the Mean Value 

Theorem there is a function      between      and      such that 

| [ ]     [ ]   |  |∫ { (      )   (      )
 

  
}  |  |

  

  
(      )[         ]  |  

                    |∫ { (    )   (      )
 

  
}  |   ‖   ‖ |    |    ‖   ‖    

for all      Thus ‖ [ ]     [ ]   ‖    ‖   ‖  where         so   is a 

contraction on    
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The Banach Fixed Point Theorem for Operators therefore implies that   has a unique fixed 

point in  . It follows that the IVP 
  

  
                 has a unique solution in  . 

Moreover, this solution is the uniform limit of the Picard iterations. 

 

Now we have found the unique solution to the IVP    
  

  
                 in    there 

is one important point that remains to be resolved. We must show that any solution to the 

IVP on   [         ] must lie in    

 

Suppose that      is a solution to the IVP on [         ]  Recall that |      |  

   on the rectangle   . Since           the graph of      must lie in   for   close to   . 

For such an  , we  have  |         |     which implies that |     |  |         |  

   Therefore, for   close to    , the graph of     [ ] must lie within the shaded region. 

Moreover, the graph cannot escape from this region in [         ]  since if it did, 

|     |  |         |    at some point of the region, which is clearly impossible. Thus 

|       |     for all   [         ]  which shows that           

  

Example 1: consider the initial value problem  

          ⁄         

Then we have 

                                              ⁄       
  

  
           ⁄   

By considering            ⁄  we can see that when            is continuous. But at 

    
  

  
 is not continuous. Therefore the hypothesis of Picard’s Theorem does not hold, 

and neither does the conclusion; the initial value problem has two solutions,  

      ⁄       and       

 

Example 2: consider the initial value problem  

                                 

Then we have 
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Clearly        and  
  

  
      are both continuous at the point    . 

However, we have the initial value problem to be     ∫     
 

 
  and so the Picard’s 

iterates are         

        ∫        

 

 

      

        ∫         

 

 

      
     

  
 

and so by induction the     iterate will be, 

                             
     

  
+  

     

  
 ∑

     

  

 
    

which is the     partial sum of the Maclaurin’s series for       

Thus, as                   

2.2 Existence and Uniqueness of a Solution of System of Differential Equation 

In the previous section we mainly focused to understand the Lipschitz condition and its 

connection with existence and uniqueness of solutions of Initial Value Problems (IVP) for 

Ordinary Differential Equations (ODE). Lipschitz condition guarantees uniform continuity 

but it does not ensure differentiability of the function (Rudin, 1976). In 2.0 we have shown 

that continuity is sufficient for existence of solution and locally Lipschitz is a sufficient 

condition for uniqueness of the solution of a IVP of first order ODE.  

We construct the similar theorem for system of differential equation with two equations. 

Assume the following system of differential equation with the given initial values for two 

unknown functions call   and    
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{
 
 

 
                          

                         

           

           

                                                            

In addition, we assume that    and    are two continuous functions with continuous and 

bounded     and    derivatives 
   

   
 , 

   

   
 on the following domains 

  {              [          ]          ℝ} 

By the another words, for some positive real value    we have 

|
   

   
         |                    

Theorem 2.2.1. Suppose that    satisfies the assumption above. Then there is a unique pair 

of functions    and    defined on   [          ]    with continuous first derivative, such 

that the system holds for all     [          ]    (Poria and Dhiman, 2013) 

Proof. The procedure of the proof is as the same as 2.0.3 (Picard Theorem), so we just 

write out the iteration sequences. We assume the following successive approximation, set 

the recurrence relation as 

                               ∫   (                     )    
 

  

 

                              ∫   (                     )    
 

  

 

Under the given assumptions, these two sequences converge to    and    respectively. We 

will discuss about system of q- difference equations in chapter 4. 

Remark: If    and    can be demonstrated as a linear expressions of   and    then the 

system is called linear system of differential equations and we can represent it by using 

matrix. In this case, eigenvalue and eigenvectors of this matrix make an important role.   
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CHAPTER 3 

BRIEF HISTORY OF   DIFFERENCE EQUATION 

 

 Scholarly works on  -difference equations begun at the beginning of the nineteenth 

century in thorough works especially in papers like (Jackson, 19010), (Carmichael, 1912), 

(Mason, 1915), (Adams 1915), (Trjitzinsky, 1933) and by other authors such as Poincare, 

Picard, Ramanujan. Unfortunately, from the thirties up to the beginning of the eighties, 

there was not significant interest in field (Bangerezako, 2008). 

 

However, at eighties a thorough and somewhat astonishing interest in the subject appeared 

again in different areas of mathematics and applications comprising mainly new difference 

calculus,  -combinatorics, orthogonal polynomials,  -arithmetics,  -integrable systems 

and variational  -calculus (Annaby and Mansour, 2012). 

 

Furthermore, despite of the plenteousness of specialized scientific publications and a 

relative classicality of the subject, an insufficiency of popularized publications in the form 

of books that can be accessible to a broad public comprising under and upper graduated 

students is so sensitive (Bangerezako, 2008).  

 

As we earlier mentioned of the research works that were carried-out by different scholars, 

the study of  -difference equations have been introduced by Jackson in (Jackson, 1908). 

The paper (Carmichael, 1913) is the first research of the problem of existence of solutions 

of linear  -difference equations using the technique established by Birkhoff in his text 

(Birkhoff, 1941). Furthermore, in Mason’s paper (Mason, 1915) he studied the existence of 

solutions of entire function relevant to homogeneous       and non-homogeneous linear 

 -difference equations of     order of the following form 

                                                        ∑      ( 
    )      

 

   

                                                   

such that the coefficients     are considered to be entire functions. Then Adams in the 

papers (Adams, 1925), (Adams, 1928/1929) and (Adams, 1928/1929) thoroughly studied 
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the existence of solutions of the equation (3.1) when the coefficients are analytic or have 

pole of finite order at the origin. More recently, (Trjitzinsky, 1933) has brought into 

existence an analytic theory of existence of solutions of homogenous linear  -difference 

equations and their properties. The existence and uniqueness of solutions of first order 

linear  -difference equations in the space  [     and    ℝ    are disclosed in the paper 

(Liu, 1995). Apart from this old history of  -difference equations, the field received a 

significant interest of many mathematicians and from many fields of study in both 

theoretical and practical aspects (Annaby and Mansour, 2012).  

 

However, we want to establish a theory for  -difference equation in the next chapter 

similar to that of that of ordinary differential equation in (Eastham, 1970), (Coddington, 

1913) and (Nagle et al, 2012). In the course of this, we will study the Cauchy problem of 

 -difference equation in the neighborhood of a point say  , where      . Also, we 

will derive the existence and uniqueness theorem for the cases     and      . This 

will be form by the use of a   analogue of the Picard Lindelöf method of differential 

equations and equations with deviating arguments, respectively. Furthermore, the validity’s 

ranges of the solutions are examined in individual case, while the existence and uniqueness 

theorem of the solutions of   difference equations of order   in a neighborhood of zero 

will also be proved. The situation when the initial conditions are given at a point     is 

rather complicated.  In (Exton, 1982), it is stated that the Cauchy problem is 

    {       }                                                                 

Where   and   are continuous functions on [   ]   is an interior point of 

[   ] and      are complex numbers, has only one continuous solution with a continuous 

q-derivative. This is not necessarily true as the following counter example below shows. 

Example 3.1. Suppose that      . Let                     where    

[      ] and    . Also, let   [       for        then for some   [        we 

have        or        

By another word, there exist   ℕ such that             for        
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Now let   {         }  then at least    . Also, let   be maximum of     

        and contrary to the assumption        then          . It implies that 

         but          

Therefore, there exist   ℕ such that  

                 

Now the relation  

                                       , where                

defines a function   on [        Clearly,   is a continuous since it is defined by      and 

is continuous function since it a parabola. Moreover, the discontinuity can only be 

occurred at the endpoints. 

Also   on [       is a q-periodic function since  

       
          

    
 

         

    
                      

Since           it implies   
       ,          and 

                              

Hence the   initial value problem  

    
                       

has the functions 

            and       . 

This implies that the problem has no unique solution. 
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CHAPTER 4  

SYSTEM OF   DIFFERENCE EQUATION 

 

4.1 Existence and Uniqueness of a Solution of System of   Difference Equation 

 In this chapter, we will establish the existence and uniqueness of a solution of the first 

order system of   difference equation in a neighborhood of point    such that     

  by the use of a   analogue of the Picard Lindelöf method of successive 

approximations. However, before we describe the   analogue of the Picard Lindelöf 

method at the point       and       respectively, we realized the following 

definition and theorem are important. 

Definition 4.1.1. Let     and               be element of  ℤ  and let  

                   . 

             

Let                            be real or complex-valued functions where   is a real 

variable lying in some interval   and each    is a complex variable lying in some 

region    of the complex plane. That is    is equivalent to  

                 ,                             

                   

    

                   , 

                   

 If there is a sub-interval         of    and functions            defined in   such that 

a)    has       derivatives in   for           

b)   
    exists and lies in the region    for all              and        for 

which the left-hand side in (4.1) below is defined. 

c) For all       and        the following equations hold 
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         (                    
                    

       )                       

then we say that  {  }   
  is a solution to the system of the   difference equations 

        (                    
                    

       )                          

   (                    
                    

       )               

          

                   (                    
                    

       )   . 

valid in    or that the set  {  }   
  satisfies        in    If there exist such   and 

functions     we say that the system       has no solutions. The system        is said to be 

of order    where      {          }               

However, we will only consider first order system of        where      . If the 

functions     are such that (4.2) can be solved for the    
        in the form 

           
          (                         )                                         

the system (4.3) is called the normal system. The following is example of normal system of 

first order: 

                     (                     )                                                   

Or equivalently, 

          (                     )  

          (                     )  

           

          (                     )  
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4.1.1    Initial Value Problems in a Neighborhood of Zero 

Annaby and Mansour (2012); let   be an interval containing zero and     be disks of the 

form 

     {     |    |   }              

and            Let    (                     ) where             be functions 

defined on                       . By a   initial value problem in a 

neighborhood of zero we mean the problem of finding functions  {  }   
  that are 

continuous at zero,  satisfying system (4.4) and the initial conditions 

                                                                                      (4.5) 

Lemma 4.1.1. Annaby and Mansour (2012); let     such that    . Let     be functions   

defined in the interval     ℕ such that                     for all     and     tends 

uniformly to    on    

Then, 

                                                 
   

∫          

 

 

 ∫         

 

 

                                            

Theorem 4.1.1. Let   be an interval containing zero and     be disks of the form 

     {     |    |   }              

and            Let    (                     ) where             be functions 

defined on                        such that the following conditions hold. 

a) For any               the function   (                             )  is 

continuous at          . 

b) There exist a positive constant   such that for any     and      ̃         

   the following Lipschitz condition hold. 
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      |  (   ̃   ̃     ̃ )    (            )|   (| ̃    |    | ̃    |)    (4.7) 

Then, if zero is not an end point of     there exist      such that       has a unique 

solution which is valid for | |   . Moreover, if zero is the left or right end point 

of    the result holds, except that the interval [    ] is substituted by [   ] or 

[    ] respectively. (Annaby and Mansour, 2012) 

 

Proof. The proof is given in (Annaby and Mansour, 2012) as follows when zero is an 

interior point of  . Also, the proof when zero is the boundary of   is similar. 

Now we define sequence of functions{    }
   

 
             by the equations 

            {

                                                                                               

   ∫   (                           )   
 

 

           
                           

By applying the Lipschitz condition (4.7), we have 

    |  (            )|  |  (            )| 

 |  (            )    (            )|  |  (            )    (            )| 

  ∑|     |

 

   

 |  (            )    (            )|  |  (            )| 

Since the function   (            ) is continuous at zero from the first condition, then 

for     there exist     such that  

         | |    which implies |  (            )    (            )|      

Hence, 

|  (            )|   ∑       
     

|  (            )|

 

   

 

                                                         |  (            )|                    

for all                   and | |   . Define the non-zero constant     to be  

     
     

 |  (            )|   | |   |     |  

         
 

     

                                         {  
 

 
 

 

           
}.  
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We will establish the existence of the solution {  }   
  of (4.4) and (4.5) on   

[    ] using the method of successive approximations. We will consider the sequence 

defined by (4.8). 

Existence: We will prove the existence of the solution in four steps. 

1)  We show that         ℕ  are well defined. First 

                                  ℕ  .               (4.9) 

     Then from the definition of       equation (4.1) we have  

        ∫   (                                 )   
 

 

  

      It implies  

 |       |  ∫ |  (                                 )|    
 

 

 ∫     
 

 

                 

     Thus each          is continuous at zero and (4.8) is well defined. 

2) For all   ℕ     we can prove by induction on    that 

   |                 |             
| | 

      
                                 (4.11) 

    where           

    Now, let     then we have 

|               |  |   ∫   (                           )      

 

 

| 

                                     | |           
| | 

      
                                

(4.12) Suppose the statement is true for    . Then we have  
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|                 |

  |   ∫   (                           )      

 

 

 

 ∫   (                                 )   
 

 

|

            
| | 

      
 

We prove that the statement is true for        

This means that  |                 | becomes      

                |                   |, 

and 

|                 |

 |   ∫   (                                 )      

 

 

 

 ∫   (                           )   
 

 

| 

 |∫   ((                                 )   (                           ))    
 

 

|  

    

It implies from (4.7) we have 

|∫   ((                                 )   (                           ))    
 

 

|  

 ∫  
 

 

(|                 |    |                 |)       

By induction assumption we have 

∫  
 

 

(|                 |    |                 |)       
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   ∫ (                 
| | 

[ ]  
)    

 

 

 

          ∫ (
| | 

[ ]  
)    

 

 

 

This means that 

         ∫ (
| | 

[ ]  
)    

 

 

            
| |   

[ ]  [   ] 
   

It implies 

         
| |   

[ ]  [   ] 
    

| |   

[   ]  
 

            
| |   

        
   

However, note that the inequality 

|∫        
 

 

|  ∫ |    |   
 

 

                  

is not valid always. (Annaby and Mansour, 2012) 

3) We show that       tends to a function    uniformly on  .  

     Now from (4.1.21) we have 

                ∑                    

   

   

  

         (               )  (               )    (                 )  

It implies that 
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|       |  |  |  ∑|                  |

   

   

 |  |  ∑      

   

   

| | 

[ ]  
 

Now as     we have 

 ∑    

 

   

| | 

[ ]  
  ∑    

 

   

        
| | 

[ ]  
  ∑    

 

   

        
          

      
 

  ∑
  

          

 

   

  ∑
 

      

 

   

   ∑
 

      
  

 

   

 

By the Weiestrass m-Test it is uniformly continuous. 

4) Now we show that {  }   
   satisfies (4.4) and (4.5). Indeed, from (4.7) we have 

  |  (                           )    (                     )| 

  (|             |  |             |    |             |) 

for all     and for all   ℕ. Since the right-hand side of number (3) approaches 

uniformly to zero on    as      it follows that, 

   
   

  (                           )    (                     )   

is uniformly on     

By letting     in (4.8) and using Lemma (4.1.1), we have 

            ∫   (                     )   
 

 

                                       

By the use of conditions (a) and (b) of theorem (4.1.1), and the continuity of the function 

{  }   
 

  at zero, one can verify that the functions   (                     ) are 

continuous at the point  (            )  Thus, 

        (                     )                      

Hence, the set  {  }   
 

 is a solution of (4.4), and (4.5) is valid in   since it is satisfied. 
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Uniqueness: To prove the uniqueness of the solution of the system (4.4) we assume 

that {  }   
  is another solution to (4.4) such that the solution is valid in | |     

  and satisfies (4.5). However, for       | |       

                     (                     )    (4.14) 

                                  (                     )                 (4.15) 

 Now consider the equations (4.14) and (4.15), by subtracting (4.14) from (4.15) and 

applying (4.7) we have                           

     |           |  |             |   | ||   |∑|           |

 

   

                     

Now by taking summation of both-sides of (4.16) we have 

∑|           |

 

   

 ∑|             |

 

   

  | ||   |     ∑|           |

 

   

  

Now let       ∑ |           |
 
    | |    . It implies 

∑|           |

 

   

 ∑|             |

 

   

  | ||   |     ∑|           | 

 

   

 

resulting; 

                                   |   || |      

This means that 

                  |   || |                  |   || |        

Since         , then we have 

                                                  
     

    |   || | 
                                                                

By replacing   with      (it is valid for | |      

This means that (4.17) becomes 

                                                   
      

    |   ||  | 
                                                             

By combining the inequalities (4.17) and (4.18) we have 
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    |   || |     |   | | | 
 

In the same manner by induction we have following  

    

     
      

∏     |   |  | |    
   

        | |           

By calculating the limit as      we have 

     
    

∏     |   |  | |  
   

        | |      

According to the definition of      we have         So        which implies 

           

 

Theorem 4.1.2. (Range of validity). Annaby and Mansour (2012); suppose that all the 

condition of theorem (4.1.1) hold with       for all                Then the problem 

(4.4) with initial condition (4.5) a unique solution which is valid for at least in    

( 
 

      
 

 

           
)  

 

Proof.   we will prove the theorem by trying to prove the existence and uniqueness of 

solution of the problem (4.4) with initial condition (4.5) on any subinterval 

                             [    ]        ( 
 

      
 

 

           
)   

for      By considering the strategy used in proving theorem (4.1.1), we can determine a 

constant            approaches uniformly to    on [    ]  such that      are defined 

in equation (4.8). In addition, it is not difficult to verify that      converges to 

    pointwise on [    ]. By the use of Lemma (4.1.1) it can be shown that the solution 

{  }   
  could be extended throughout the interval  [    ]    

 

Remark 4.1.1. Theorem (4.1.1) holds for the other Cauchy problem 

                                  (                         )      
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but the solution is valid only throughout whole interval   whenever the function   ’s satisfy 

the conditions (a), (b) of the theorem 4.1.1 with                  

The below corollary shows that Theorem (4.1.1) can be used to discuss the existence and 

uniqueness of the  th order   initial value problem 

    
       (                   

       )        (4.19)  

     
                                 . 

Corollary 4.1.1. Annaby and Mansour (2012); let           be as in the theorem (4.1.2). 

Let    (           ) be a function defined on                        such 

that the following conditions hold. 

a) For any fixed values of         the function   (           ) at the point zero is 

continuous. 

b) There exist a constant     such that for all     and      ̃            the 

following Lipschitz condition hold. 

      |  (   ̃     ̃ )    (         )|   (| ̃    |    | ̃    |)             (4.20) 

Then, if the point zero is not a boundary point of    , there exist      such that the 

Cauchy problem        has a unique solution   which is valid for | |   . 

Moreover, if zero is the left or right end point of    the result holds, except that the 

interval [    ] is substituted by [   ] or [    ] respectively. 

 

Proof. Suppose that zero is an interior point of  . Then the Cauchy problem is identical to 

the first order   initial value problem 

                                                                 (4.21) 

That is                                                                                                                                       

                                 (                       )                                    

                                  (                       )  
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                                     (                       )  

whereby  {  }   
       a solution to the equation (4.21)  if and only     is a solution to (4.20). 

However, 

                      , 

                      , 

                      , 

      

                        , 

are the functions 

                    {
                                                           

                                               
  

Therefore, by theorem (4.1.1), there exist     such that the system (4.21) has a unique 

solution which is valid for | |   . 

 

Corollary 4.1.2. Annaby and Mansour (2012); consider the   differential equation 

(Cauchy differential equation) below 

         
             

                                        (4.22) 

     
                   

Let the       (for        and      be defined on an interval   containing zero such 

that         for all    . Let the function       and      be continuous at the point 

zero and bounded on  . Then, for all complex numbers     there is a sub-interval    of 

   where zero is an element of     such that (4.22) has a unique solution. 

 

Proof. Consider the Cauchy’s   differential equation (4.22) 

                                
             

                                      

     
                  . 

By dividing the equation through by        and making  
      the subject of the formula 

we have 

               
             

                                                 (4.23) 
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where            ⁄         and               ⁄ .  

By comparing, equation (4.23) is of the form of (4.21), and it implies that;  

 (        
    )         

                          

Since given that all       are continuous at zero and bounded on    it implies that       

and      are continuous at the point zero and also bounded on    The function 

 (        
    ) satisfies the conditions of Corollary (4.1.1). Hence, there exists a sub-

interval   of    where zero is an element of     such that (4.23) has a unique solution that is 

valid in     

Remark 4.1.2. From the above equations, it implies that we can use the method of power 

series to obtain solution of some linear   difference equation. For instance, if we let 

     ∑    
  

    to be the solution of the   initial value problem    

                                                     (4.24) 

by considering     , that is  

               ∑    
 

 

   

                                          

we have  

         ∑   [ ]  
    

 

   

                      

By substituting      and        in (4.24) we have 

∑   [ ]  
   

 

   

 ∑    
 

 

   

                        

This means that  

∑   [ ]  
   

 

   

 ∑    
 

 

   

                        

Furthermore, 
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∑     [   ]  
 

 

   

 ∑   
 

 

   

                        

by the use of Shift of Index of Summation (Boyce and Diprima,1992). 

This means that     [   ]       since        

It also implies that  

                    
  

[   ] 
. 

By considering      
  

[   ] 
  it implies        

         

               
  from definition (1.2.4).  

Now, for      we have 

                                                

        

           
                                                                             

For      we have 

     

     

         
   

            

                 
                                                      

For      we have 

     

     

         
   

                

                      
                                       

For      we have 

     

     

         
   

                     

                            
                         

      

Therefore, we have the generalization of the sequence as  

     

      

         
   

      

         
       ℕ                                          
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It follows that   

          ∑   
  

 

   

                                         

Therefore, 

     ∑  

      

         
  

 

   

                                               

By the given condition         we have 

     ∑  

      

         
  

 

   

                                           

 This means that     , and hence  

     ∑
      

         
  

 

   

                                           

By comparing      with   exponential function we found         
      

  By the 

Theorem (4.1.2), the solution         
      

      is valid in | |         . This 

can achieve using the well-known Ratio test.  

 Another example is the   initial value problem 

                                                  (4.25)

   

The term     of the solution       ∑    
  

    satisfies the given  -initial value problem 

(4.25). However, this can be shown by considering the function      and differentiating it. 

Now, since  

     ∑    
 

 

   

                                          

This means that  
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       ∑   [ ]  
   

 

   

                       

By substituting      and        in (4.1.33), we have 

∑   [ ]  
   

 

   

 ∑       
 

 

   

                        

This means that  

∑   [ ]  
   

 

   

 ∑       
 

 

   

                        

Is equals to 

∑    [   ]  
 

 

   

 ∑   
   

 

   

                        

by the use of Shift of Index of Summation (Bender and Orszag,1978). 

This means that     [   ]         since      . 

It also implies that  

       
  

[   ] 
     

     

        
              

By considering          

[   ] 
  it implies         

     

        
 from definition (1.2.4).  

Now, for      we have 

      
 

        

           
                                                                             

For      we have 
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For      we have 

     

     

         
    

     
                

                      
                                       

For      we have 

      
 

     

         
    

       
                     

                            
                         

      

Therefore, by analyzing the sequence above, we have the generalization of it as  

      
      

 
      

         
   

 
      

       

         
       ℕ                  

It follows that   

          ∑    
  

 

   

                                         

yielding  

     ∑  

 
      

       

         
  

 

   

                                               

By the given condition         we have 

     ∑  

 
      

       

         
  

 

   

                                          

 This means that     , and hence  

     ∑
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By comparing      with the   exponential function we found         

(      )
  By the 

Lemma (1.3.2), the solution              

(      )
 is valid throughout  . This can 

achieve using the well-known Ratio test.  

However, the   initial value problems (4.24) and (4.25) are   analogues of the initial 

value problem 

                         

 

4.1.2   Initial Value Problem in a Neighborhood of Infinity 

 

As we earlier mentioned in the introduction part of this chapter that even if an initial 

condition is given at a point      the uniqueness of solutions of the   initial value 

problem is not guaranteed. However, in this segment we shall examine the problem of 

existence and uniqueness of   initial value problem with initial conditions different from 

zero. Furthermore, in the course of this we will have an initial interval instead of an initial 

point   and instead of     we had, we will have initial   periodic functions. On the other 

hand, there is need to define the Cauchy problems in this case. The two types of the 

problems are the forward and backward problem depending on the   difference equations 

(Annaby and Mansour, 2012).  

 

Definition 4.1.2.  By a Forward value problem at      we mean the problem of finding a 

solution of           (                         )              in an interval 

of the form [       such that the forward conditions               [      are 

satisfied. The arbitrary functions    are called forward initial functions and the interval 

[      is called the initial interval (Annaby and Mansour, 2012). 

 

Definition 4.1.3.  By a Backward value problem at      we mean the problem of finding 

a solution of (4.4) in an interval of the form     ]  such that the backward conditions 

               ]      ] are satisfied. The arbitrary functions    are called backward 
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functions and the interval ]      ] is called the backward interval (Annaby and Mansour, 

2012). 

Theorem 4.1.3. Annaby and Mansour (2012); let   (                     ) be 

functions defined for   [            where          and    . Let {     }   
 

 

be a set of   periodic functions such that the following conditions hold.  

a)  |  (                             )| is bounded on [        

b) There exist a positive constant   such that for any   [      and      ̃      the 

following Lipschitz condition hold for        . 

      |  (   ̃   ̃     ̃ )    (            )|   (| ̃    |    | ̃    |)  (4.26) 

Thus, the forward value problem  

           (                         ) for   [                 (4.27) 

                             [                    

            has a unique solution {  }   
 

 which is valid in [    .  

 

Proof. The proof is given as follows: 

From (a), it implies that there exist a positive constant   such that  

                                   |  (                             )|       
         

     (4.28) 

 

Now we define sequence of functions  {       }
   

 
             by the equations 

         
    {

                                                                                                  

      ∫   (                      )   
    

 

           
               

Where   [        ℕ and       are   periodic functions.   
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In this setting the successive approximation associated with the problem (4.27),           

            ℕ  is the sequence (4.29). In the equation (4.29) above it is clearly 

understood from definition (1.4.1) that the integral over [      ] is   

∫        
    

 

      ∑           

 

   

 

Thus, the successive approximation (4.29) is well defined. We now let   [     and 

  ℕ be fixed. 

Existence: we will prove the existence of the solution in three steps. 

1) For all   ℕ           we can prove by induction on    that 

               |         
              |        

      

 
        

         
                                         

            for all   [     and   ℕ  

  Now, since the proof is by induction then let       

            If      then we have; 

 |       
           

   |  |      ∫   (                      )         
    

 

| 

                   ∫ |  (                      )|   
    

 

   ∫     
    

 

                   

                                                   
        

        
     

  

  
                                                        

Suppose that the statement is true for    . Then we have  
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|         
           

   |

  |      ∫   (                      )       

    

 

    

 ∫   (                          )   
    

 

|

       
      

 
        

         
  

We now prove that the statement is true for       

This means that  |         
              | becomes     

                 |         
             

   | 

And 

|         
              |    |         

             
   | 

 |      ∫   (                                     )     
    

 

      

 ∫   (                               )    
    

 

| 

 |∫   ((                          )   (                      ))   

    

 

| 

 

It implies from (4.26) we have 

|∫   ((                          )   (                      ))   

    

 

|  

 ∫  
    

 

(|                   |    |                   |)    
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By induction assumption we have 

∫  
    

 

(|                   |    |                   |)   

   ∫ (                  
      

 
               

         
)   

    

 

 

           
      

 ∫ (
               

         
)   

    

 

 

This means that 

          
      

 ∫ (
               

         
)   

    

 

 

           
      

      (
         

   [   ]  
 

    

   [   ]  
) 

It implies 

          
         

 (
         

[   ]  
 

    

[   ]  
) 

     
      

 (
         

[   ]  
 

    

[   ]  
) 

Since           

Also, 

    
      

 (
         

[   ]  
 

    

[   ]  
) 

     
      

 
                

       [   ]  
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       [   ]  
 

     
      

 
    

       [   ]  
 

     
      

 
    

       [   ]  
 

     
      

 
            

               
 

     
      

 
            

               
 

 

Note that: the inequality 

|∫        
 

 

|  ∫ |    |   
 

 

                  

is not valid always. (Annaby and Mansour, 2012) 

2) We show that       tends to a function      [     .  

     Now from (4.31) we have 

                  
    ∑          

            
    

   

   

  

             (       
           

   )    (                    
   ) 

It implies that 

|          |  |     
   |  ∑|         

            
   |
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                                |     
   |  ∑    

   

   

 
      

 
            

             
      ℕ 

Now as     we have 

 ∑  

 

   

 
      

 
            

             
  ∑  

 

   

       
      

 
            

             
 

  ∑    

 

   

 
          

 
            

        
 

Now            is a parabola with minimum value at   
   

 
   where   is an arbitrary 

point. So we have 

                
          

     
      

  
 

 
      

 

 

                                     Let       {
 

      
   

 

 
      

 

} 

Then we have 

 ∑    

 

   

 
          

 
            

        
  ∑     

 

   

            

        
 

    

 ∑
 

        

 

   

     
     

By the Weiestrass m-Test it is uniformly continuous. 

3) Now we show that {  }   
   is a solution of the initial value problem (4.25) in [    . 

Indeed, from (4.26) we have 

   |  (                           )    (                    )| 
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  (|             |  |             |    |             |) 

for all   [      and for all   ℕ. Since the right-hand side of number (3) approaches 

uniformly to zero on[       as      it follows that for all   [       

   
   

  (                           )    (                     )   

is uniformly on  [      

By letting     in (4.29), we have 

                         
          ∫   (                  )    

    

 

                              

for all   [        ℕ . By substituting     in (4.32), we can see that the initial 

conditions on (4.27) hold. And that the functions  {     }   
 

 is a solution to the   initial   

Value problem (4.27) which valid in [      

 

Uniqueness:- In order to prove the uniqueness of the solution of the system (4.27) we 

assume that {     }   
  is another solution to (4.27) such that it the solution is valid 

in [   ]  [     and             for all   in [       where         

Thus, 

       (                         )                 [   ]   

Consequently, 

                                   (                         )             (4.33)      

In addition, 

                                    (                         )             (4.34) 

  Now, consider the equations (4.33) and (4.34), by subtracting (4.33) from (4.34) and 

applying (4.26) we have                            
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|           |  |             |   | ||   |∑|             |

 

   

                 

Now by taking summation on both-sides of (4.35) we have 

∑|           |

 

   

 ∑|             |

 

   

  | ||   |     ∑|             |

 

   

 

 

Now let      ∑ |           |
 
      [   ]. It implies 

∑|           |

 

   

 ∑|             |

 

   

  | ||   |     ∑|             |

 

   

 

Will be; 

                 |   || |       

This means that 

                    |   || |  for all   [   ] 

But, for any   [   ], there exist   [      and   ℕ  such that         This can be 

shown by the following proof. 

Let   [   ]   we acclaim that there exist   [      or        and   ℕ  such that 

     or equivalently       . 

Equivalently, we prove that for some   ℕ ,          and by the assumption 

       

Now, let   {        }  ℕ .Since        it implies            which is less 

than       and the set   is not empty.  Let   be       this means that       which is 

contrary to the assumption that       . This means that        which also implies 

         

Thus        contrary to the assumption that   is the minimum element of    It implies 

that there exist   ℕ  such that         . 

Let        , then there exist   [      such that       for some   ℕ  or       . 

Now, by substituting   with      in                    |   || |  for all   

[   ] 
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We have, 

                         |   ||    |  

                                  |   ||    |  

Also, by substituting    with       in the above equation, the relation is valid for all 

  [     .Thus 

                          |   ||     |  

But 

       

         |   ||    | 
          

This means that  

                          |   ||     |  

Will become 

       

         |   ||    | 
                  |   ||     |  

Thus, by transitive property we have 

                          |   ||    |          |   ||     |  

In the same manner by induction we have following  

        ∏(        |   | |  
 

  
|)

 

   

     

But        for        this means that           for all   [      and   

ℕ  such that        [   ]  

     ∏(        |   | |  
 

  
|)

 

   

       [   ]      

According to the definition of      we have         So        which implies 

           

 

Theorem 4.1.4. Let   (                     ) be functions defined for       ] 

      where          and    . Let {     }   
 

 be a set of   periodic functions 

such that the following conditions hold.  
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a)    (                              ) are bounded on     ]   

b) There exist a positive constant   such that for any       ] and      ̃      the 

following Lipschitz condition hold for        . 

      |  (   ̃   ̃     ̃ )    (            )|   (| ̃    |    | ̃    |)  (4.36) 

Moreover, there exists a point         such that the following system 

                 (                     )                                        (4.37) 

                                                      ]                

           has a unique solution {  }   
 

 which is valid in    ].  

 

Proof. The proof of this theorem follows in similar way to that of the previous theorem 

(4.26). 
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CHAPTER 5 

CONLUSION 

 

5.1 Conclusion 

In this thesis we have introduced the  -difference equations and their properties. Recently, 

a lot of mathematicians work on this area and they found several forms of  -difference 

equations. In (Agarwal et al, 2015 ), they consider the following  -difference equation 

                            {
  

       (      )     (      )         [   ]  { } 

                             (    )                                 
                      

which is the second order Cauchy problem and we discussed about this case in a general 

form. In this case some boundary value is changed. They solved this  -difference equation 

by using individual solution in a form of Jackson integral and by using this operator; they 

showed existence and uniqueness of this equation. In (Ahmad et al, 2012.) and (Ahmad et 

al, 2016.), they used similar methods to solve following   difference equation as well. 

                                         {
  

       (      )                                   

                         (    )          
                                     

These investigations motivate us to solve  -difference equation with new boundary points. 

In this case, we will discuss about system of  -difference equation with another boundary 

value such that the above cases can be represented as a special case.      

For instance, let us assume the following system of   difference equation: 

{
 
 
 

 
 
 

                                                                                                        

          
                                                                  

 
 
 

            
                                

           
        

    
         (                  

       )     
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This system of   difference equations is a general form of (5.1) and (5.2). Actually this 

system demonstrates the Cauchy problem in an order  . Following proposition states the 

existence and uniqueness of this system.  

Proposition 5.1.1. Let    be a neighborhood of    
      for a fixed value of   such that 

the radius of this neighbor is less than  , also let   be an interval in around zero, In addition 

let the following statements holds true: 

a) For any fix value of    in    function                 and   
      are continuous at 

zero for          . 

b) g satisfy Lipschitz condition 

|                      ̃   ̃     ̃ |    |     ̃|    |     ̃|  

where              ̃      

Then the given system of q-difference equations has a unique solution in a neighborhood 

of zero.   

Proof.  Procedure of proof is exactly similar to the main theorem in a previous chapter. We 

focus on a sequence of functions that reach to the solution. If we apply the same recurrence 

sequences to find the solution, then we have: 

        {

                                                                                      

   
        ∫   (                      )             

 

 

 

where      and   (             )    
                    . Since the 

fundamental theorem of calculus for Jackson integral is true, we may rewrite this sequence 

by taking integral from q-derivative.  

Let us focus on the special case of this system when the order of   Cauchy problem is n, 

then we have the    difference equation with initial values as follow: 
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{
  

       (                 
       )                                    

                                
         

                   
 

According to Proposition 5.1.1, this equation has unique solution. Actually, this is the 

general forms of 5.2.  

Lemma 5.1.2. Following relation for interchanging the order of Jackson integral holds true 

∫ (∫  (      )
 

 

   )
 

 

    ∫ (∫  (      )
 

  

   )
 

 

    

Proof. We use the definition of Jackson integral to prove this relation. We may write the 

right side of this equation as follow 

∫ (∫  (      )
 

  

   )
 

 

    ∫ (           ∑   (      )

 

   

)
 

 

   

 ∑∑       
 

   

(      )

 

   

     (     (   ))

 ∑       (      )

 

   

   (     (   ))

 ∑        (∑   

 

   

)
    

   
(      )

 

   

   (     (   ))

 ∑∑       
 

   

 

 

   

      (     (   ))

 ∫ (      ∑   (     (   ))

 

   

)
 

 

   

 ∫ (∫  (      )
 

 

   )
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Example 5.1.3. We may solve 5.2 by using the following function. Integrating the 

equation   
               , we get 

                                       ∫  (      )
 

 

                                                                           

Again taking integral from (5.3) lead us to  

                                    ∫ (∫  (      )
 

 

   )
 

 

                                                    

If we change the order of integration, we lead to 

                                  ∫        (      )
 

 

                                                            

By substituting in the equation, we can find    and   .  

Note 5.1.4.  Previous example introduced an operator to make a successive approximation. 

Indeed, the given operator could be fined by the sequences at Proposition 5.1.1.  
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