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ABSTRACT

The thesis introduced the preliminaries of g —calculus which is the base of q —difference
equation. We further considered the Picard’s existence and uniqueness theorem for
ordinary differential equations for which is the base for g —analogue of this theorem. We
therefore define system of g-difference equation and detailed proofs of theorems for first
order system of g — difference equation and the Cauchy problem are provided. At the end,
we work on a special case of g-Cauchy problem and later extend this problem to the nth
order. The second order of this g-difference equation is studied by the several

mathematician, we therefore extend this problem to the general form at the last chapter.
Keywords: g-calculus; Jackson Integral; Existence and uniqueness of solutions for

differential equation; system of q —difference equation; successive

approximation; g —Cauchy problem with boundary values



OZET

Tez, g-fark denkleminin temeli olan g-hesab: onciillerini tanitmistir. Ayrica, Picard'm bu
teoremin g —analogu i¢in temel olan adi diferansiyel denklemler i¢in varolus ve teklik
teorisi encelendi. Bu nedenle, g —fark denkleminin sistemini tanimliyoruz ve q —fark
denkleminin birinci dereceden sistemi i¢in teoremlerin ayrintili delilleri ve Cauchy
problemi sunuluyor. Sonugta, 6zel bir ¢ —Cauchy problemi iizerinde ¢alisiyoruz ve daha
sonra bu sorunu n. Smifa kadar genislettik. Bu g —fark denkleminin ikinci derecesi birkag
matematik¢i tarafindan incelendiginden, bu problemi son boélimde genel forma

genisletiyoruz.

Anahtar Kelimeker: g —calculus; Jackson Integral; Diferansiyel denklem i¢in 6ziimlerin
varlig1 ve 6zgiinliigii; g —fark denklemi sistemi; ardisik yaklasim;

siir degerli ¢ — Cauchy problemi
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CHAPTER 1
INTRODUCTION

Much research on Ordinary Calculus has being carried-out by various scholars in different
fields of studies. This result to evolvement of a new concept of calculus called the
Quantum Calculus (q - calculus).

As we earlier knew that the Ordinary Calculus encompasses many terminologies and
definition(s) of such terminologies, likewise each terminology in Quantum Calculus has its
own definition and representation which is called “q- analogue of the term”, (Kac and
Cheung, 2002). However, we shall discuss the terminologies vis-"a-vis the g-calculus in
detail in this thesis before we add some new concepts on the field. On the other hand, to
have deep knowledge on the field, one needs to know the following terminologies.

Now, consider the below mathematical expression:

fx) — fxo)

x_xO

(1.1)

We knew that the limit of the above expression as x tends to x, if it exist give us the
ordinary definition of the derivative % of a given function f(x) at x = x,. Now, suppose

we substitute x = gqx, or x = x, + h, where q is a fixed number other than 1, h be a fixed
number distinct from 0, and we do not take the limit, then this lead us to the fascinating
world of the Quantum Calculus. However, the corresponding expressions are what we
called the definition of g-derivative in relation to g-Calculus and h-derivative in relation h-

calculus respectively (Kac and Cheung, 2002).

Been stated above of the two types of Quantum Calculus, that is (the g-Calculus and the h-
calculus), in the course of developing the field along with the traditional lines of ordinary
calculus some important expressions, equations and results were discovered in the different
fields of mathematics. Examples of such of the fields are combinatorics, number theory,
and other fields which we shall later discuss the discoveries made and prove some of the

results found in detail.



Furthermore, due to some similarities of this field with the ordinary calculus, one need not
to disturb himself or herself cogitating on the field. The most important thing for an

enthusiastic student of this branch of mathematics is to revise his/ her ordinary calculus.
1.1 g-Derivative and h-Derivative

As we mentioned earlier of the two types of Quantum Calculus, we now begin with the

definitions of the terms associated with each type.
1.1.1 Quantum Differentials

Definition 1.1.1. Ernst (2002); suppose f(x) is an arbitrary function defined on the set of

real numbers. Then the g- differential of £(x) is defined as:
dqf (x) = f(gx) — f(x) (1.2)
And its h-differential is:
dnf(x) = f(x+h) - f(x) (1.3)

For instance, suppose f(x) = x. Thend,x = (¢ — Dx and dpx = h, results from the

(1.2) and (1.3) as:
dgx =qx —x = (q — Dx,
and

dpx=x+h—x=h,

1.1.2 Quantum Differential of Product of Two Functions

Proposition 1.1.1. Kac and Cheung (2002); let f(x) and g(x) be arbitrary functions
defined on R. Then the g- differentials of the product of f(x) and g(x) are as:

dg(f()g(x)) = g(q)dyf (x) + f(x)d,9(x) (1.4)
dq(f()g(x0)) = f(ax)dqg(x) + g(x)dyf (x) (1.5)

2



Proof. Kac and Cheung (2002); consider d, (f(x)g(x)) = f(gx)g(gx) — f(x)g(x)

= fgx)g(gx) — fF(x)g(gx) + f(x)g(gx) — f(x)g(x),

we have:

dq(f(0)g() = g(g0)[f (gx) = F(O] + F()[g(gx) — g(x)]

From the above equations, it implies;
dq(f()g(x)) = g(gx)dyf (x) + f(x)dqg(x) from (1.2).

Similarly, suppose we expressed d, (f (x)g(x)) = f(gx)g(gx) — f(x)g(x) to be equals
to:

f(gx)g(gx) — f(gx)g(x) + f(gx)g(x) — f(x)g(x),
Then, one can easily show that
dg(f(0)g(x)) = flqx)g(gx) — f(x)g(x)
= f(qx)dag(x) + g(x)df (x)

Furthermore, the h-differentials of product of f(x) and g(x) can also be found in similar

way as its counterpart.

Proposition 1.1.2. Kac and Cheung (2002); let f(x) and g(x) be arbitrary functions
defined on R. Then the h-differentials of the product of f(x) and g(x) are:

dn(f(x)g(x)) = g(x + K dpf (x) + f(x)drg(x) (1.6)
dn(f(x)g(x)) = f(x + h)dpg(x) + g(x)dpf(x) (1.7)

Proof. Consider dh(f(x)g(x)) =f(x+h)glx+h)—f(x)gx)

=fx+hgk+h)—f(x)glx+h)+f(x)glx+h) - f)gk),
we have,

dn(f()g(x)) = g(x + D[f (x + B) = FO] + fF()[g(x + k) — g(x)]

3



From the above equations, it implies;
dn(f(x)g(x)) = g(x + K)dyf (x) + f(x)drg(x) from equation (1.3).

Similarly, suppose we expressed d,,(f(x)g(x)) = f(x + R)g(x + h) — f(x)g(x) to be

equals to:

fx+h)gx+h) = flx+h)gl)+ fx+h)gx) - fFx)gx),

then, one can easily show that
dp(f(x)g(x) = f(x + Bg(x + h) — fF(x)g(x)

= fx +h)dpg(x) + g(x)dpf(x).

From the above proofs of equations (1.4), (1.5), (1.6) and (1.7), one can easily see the lack
of symmetry in the differential of the product of two functions in quantum calculus; unlike
the ordinary calculus whereby the differential of the product of two functions are

symmetric.
However, by considering the definitions of g-differentials and the h-differentials we can

now define the corresponding quantum derivative of each as the follows.

Definition 1.1.2. Let f(x) be an arbitrary functions defined on R. Then the g-derivative of
f(x) is defined as:

lim,_,o Dy f (x), x=0
Dof (x) =1 dof@ _ flam-fe  x#0g%1 (1.8)
dgx (g-1)x
Similarly, the h-derivative of f(x) is defined as:
th(x) — dpf(x) — f(x+h)_f(x)’ h=+0 (19)
dpx h

Note that:

. . ar
limg_y Dof (x) = limp_o D f (x) = L



df (x)

whenever the function f(x) is differentiable. By considering the Leibniz notation ™

which is a ratio of two ‘infinitesimals’’, it is difficult to understand it because the notion
of the differential df (x) needs detailed explanation. But on the other hand, the notion of

dqf (x) and dp, f (x) are obvious, and D, f (x) and Dy, f (x) are plain ratios.

Properties of D, and D}, Operators
Let £ (x) be an arbitrary function and a, b be any constants. Then we have:
Dq(af(x) + bg(x)) = aDyf(x) + bDgf (x) (1.10)
Dp(af (x) + bgf (x)) = aDyf (x) + bDyf (x) (1.11)
From the above equations (1.10) and (1.11), one can easily see that the two operators are
linear operators.
Example: If f(x) = x™, for 0 < n € Z, then one can easily compute the g-derivative and
h- derivative of the given function using equations (1.8) and (1.9).

That is to say:

n_ (@"=x™ _ q"x"-x" _q"-1_n_4
Dgx™ = (@-Dx  (g-Dx  g-1 X0 (1.12)
By letting
= —(qn_l) = n-1
o=y =@+ +1 (1.13)

for 0 <neZ, this is called the g-anologue of n. And it implies that equation (1.12)
becomes  D,x™ = [n],x™~! which looks like the ordinary derivative of x™. As g — 1,

], > 1+1+-+1=n

Similarly,

(x+h)™ —x™
Dpx" = ———
h h

(x+h)™ —x™

By using binomial expansion on , we can express D, x™ as follows:

() —x"
- h

n(n-1)x""2

Dpx™ = a1+ Lt pn (1.14)

However, before we proceed to the derivatives of product of two functions, it is important

to note that this thesis will mainly focus on g-calculus.

5



1.1.3 Quantum Derivative of Product of Two Functions

Proposition 1.1.3. Let f(x) and g(x) be two arbitrary functions defined on R. Suppose
that 0 < g < 1. Then from (1.4), (1.5) and (1.8), the g-derivative of the product of f(x)
and g(x) are

Da(F()g(x)) = f(q2)Dqg(x) + g(x)Def () (1.15)
Dg(f(x)g(x)) = f(x)Dgg (x) + g(qx)Dyf (x) (1.16)
(Mansour and Annaby, 2012)

Proof. By considering the left hand side of (1.15), it implies

dg(f0g(®)  flax)dgg(x)+g(x)dqf(x)
De(f(x)g(x)) =~ dgx ; (q-1x ;

, q#+1,x+0.

and hence,
Da(f(x)g(x)) = f(gx)Dag(x) + g(x)Dgf (x)
By symmetry, one can interchange f and g, and obtain (1.16)
Dy(f()g(x)) = f(x)Dag (x) + g(qx)Dyf (x)

which is equivalent to (1.15).

However, we can apply (1.15) and (1.16) to derive the g-derivative of % using some

technics.

1.1.4 Quantum Derivative of Quotient of Two Functions

Proposition 1.1.4. Ernst (2002); let f(x) and g(x) be two arbitrary functions defined
on R. Then from (1.15) and (1.16), the g-derivative of the quotient of f(x) and g(x) are:

Fx)\ _ 9)Dgf (xX)=f(x)Dgg(x)
Dq (g(x)) = 2(09(ax) , 9(x)g(gx) #0, (1.17)

6



and

Dq (f(x)) _ 9(qx)Dqf (x)—f(qx)Dgg(x)

g(x) gx)g(gx) ! g(x)g(qx) #0 (118)

The above proposition can be prove by applying (1.15) and (1.16) to differentiate f(x) =

f®)

e where g(x) # 0.

g(x).

Proof. Kac and Cheung (2002); consider f(x) = g(x).%, by applying (1.15) we have

_ f(x)
Dqf(x) = D, (g(x).ﬁ).

From (1.15), we have

D,f(x) = D, (g(x).%) = g(q0)D, <%> + <@> D,(9(x))-

9(x)
It implies
£(x) _ £(x)
Dqf (x) — <m> Dy(g(x)) = g(gx)D, <m)
By dividing both sides by g(gx) we have
f)\ _ Dof(®) < f(x) )
P <g(x)> = 9@ \gtoglan) P9t

_90G)Def(x) — fF(*)Dag (x)
g(x)g(gx)

Similarly, using (1.16) we can obtain the (1.18) by considering the same function f(x) =

).[®

9036

) . f
This means that; D,f(x) = D, (g(x).ﬁ)

From (1.16), we have;



D,f(x) = D, (g(x).f (x)) = g(0D, <M> 4 <f (qx)> Dy (g(x))

g(x) 9(x) 9(qx)
It implies;
_(fG®) ~ f(x)
qu(x) <g(qx)> D, (gx) = g(x)Dq <g(x)>
By dividing both sides by g(x) we have;
fO\ _ Dof () < f(qx) )
b <g<x>> "9 \glamg) 9D

_ 9(qx)Dyf (x) — f(gx)Dgg(x)
g(x)g(qx)

1.1.5 Quantum Version of the Chain Rule

Not there exists a general chain rule for g- differentiation except for a function that takes
the formf(u(x)), where u = u(x) = ax? with a, B being constants. We can demonstrate
how the role applies by considering D, [f(u(x))] = D, [f (ax?)].

f(aqfxP)-f(axP)
qx-x

One can easily see that Dy [f(u(x))] = Dy[f(axP)] =

_ f(aqPxP)-f(axF) (aqPxF)-(axF)
T aqPxB-axB qx—x

_ f(@Pu)-r@) u(gn)-u)

qBu-u qx—x '

and hence,

Dsf (u(x)) = (Dgsf)(u(x)). Dgu(x). (1.19)

1.2 g-Taylor’s Formula for Polynomials
As we knew in ordinary calculus that if a function f(x) is analytic at x = a, then it

possesses a Taylor’s series which is given as:
8



(x — a)”
flx) = Zf”( )———— (1.20)
Likewise, in quantum calculus such series exist but in different form. Before we state the
q- Taylor’s formula for polynomial we firstly begin with the definition of the following
important terms as defined in (Kac and Cheung, 2002) and (Momenzadeh and Mahmudov,
2014).

1.2.1 g-analogue of n!

Letn € Z* U {0}, the g-analogue of n! is defined as:

[ 1 ifn=0 191
(g = {[n]q x[n—1]gx-x[1], ifn=12 (1.21)
1.2.2 g-analogue of (x —a)" forn >0
Letn € Z* U {0}, the g-analogue of (x — a)™ is a polynomial defined as:
o ifn=0

(x—a)g = { (x—a)(x—qa) (x—q"ta) ifn=1 (1.22)
1.2.3 g-analogue of (x —a)™forne Z
Letn € Z, the g-analogue of (x — a)™™ is given as:

(x—a);" = ——— (1.23)

(x—q"a)g

Note that definition (1.22) is an extension of definition (1.21), (Kac and Cheung, 2002).

1.2.4 g-analogue of a, fora € Z

Let ¢ € C, the g-analogue of « is defined as:

1-q
[a]q = 1-q

Note that definition (1.23) is an extension of equation (1.13), (Kac and Cheung, 2002).

(1.24)

Proposition 1.2.1. Kac and Cheung, (2002); for any integers m,n € Z the following
properties hold.

L (x—a)f™™#(x-a)f(x—a)y.



. (x—a)g™ =x-agx—-qma)y.

. Dy(x —a)} = [n]y(x —a)y ™.

V. Dq( L n) = [-n],(x — q"a)"

(x—a)q

V.  (=D)"q" D2 (x — g a)f = (a - x)}.
VI.  Dy(a—=x)g =[-n],(a—gx)7 "

1 _ [n]q
VIIL. D, ((a—x)g‘) = ot

With the above definitions and propositions we have the g-Taylor’s formula for

polynomials as follows.

Theorem 1.2.1. For any polynomial f(x) of degree N and any number c, we have the
following g-Taylor’s expansion:
(x— o)}

ﬂm—Zw%U K
.

(1.25)

(Kac and Cheung, 2002).

1.3 The Two Euler’s Idendities and Two q- Exponential Functions
Before we state the identities and g- exponential functions, let us consider a definition and

some properties associated to both of them. These properties are called the Properties of g-
Binomial Coefficients.

1.3.1 g- Binomial Coefficients

Letn > j, for 0 < n € Z the g- Binomial Coefficients is defined as:
Pl et ) PR P
i 4! Ul = jq!

(Kac and Cheung, 2002).

10



Proposition 1.3.1. Kac and Cheung, (2002); let1 <j <n—1, then the following

q — Pascal rules hold.

n—1 n—1
I []] []_1 [ q (1.26)
|7 = nl[ 1] ["‘1 (1.27)
Proof. Consider the given condition
1<j<n-1
We have:
[nly=1+q+q""
=(1+qg+-+¢ ) +q¢/A+q+-+q"™)
=[lq + @/[n— g
We now consider (1.26)
[ ] n] b _ [n=1] tn],
J [n=jlgt  Ulgtn—ilg!
— [n_l]q!([j]q+qj[n_j]q)
Flgq!n—Jjlq!
_ [n-1]g4! j [n—1]4
-1lg!n—jlg! Ulg!n—Jj-1]g!
_ [n -1 +q j [n -1
j—1l, q
also, by consider (1.27), we have
n _rn [ n—-1 [n—1
[j]q = [j—l]q = [n—j—l e [n—j]q
[n—l] N n_j[n—l
= . q .
J 1 j— 1,
. o . n [n],!
Note that the symmetric property of the g —binomial coefficients [ ] = =
Jg  Ulgtn—=lg!

n .
[n _ j]q gives the above second rule.

11



Corollary 1.3.1. Each g —binomial coefficient is a polynomial in q of degree j(n —

1), with 1 as the leading coefficient.

Proof. For any nonnegative integer n,

ol =[x, =

which is of course a polynomial. Now, using the symmetric property of g —binomial

[n]q!

. 13 n
coefficients []]q = m

n
= [ _ ] ” and induction on n,for anyl1 <j<n-1,
n—jl,

[rlz] is the sum of two polynomials, thus is itself a polynomial (Kac and Cheung, 2002).
q

Now, by definition (1.26) and (1.13), the explicit expression of a g —binomial coefficient

is

n _(qn—1)(qn—1—1)---(qn—f+1—1)
[]]q - (qj—l)(qj_l—l)...(q_l) ' (128)

Since both the numerator and denominator of (1.28) are polynomials in g with leading

coefficient 1, so is their quotient. Finally, the degree of m in q is the difference of the
q

degree of the numerator and denominator, which is [n+ (n—1)+ -+ (n—j +1)] —

+(G-D++1=m-D+nm-)++Mm—j)=jn—).

Another fact can be deduced from the explicit expression (1.28) of the g —binomial

coefficient. Knowing that it is a polynomial in q of degree j(n — j), we let
o+ a1q + -+ @ion 1T+ 4 yg/ PP

_ (q] _ 1)(qn—1 _ 1) (qn—j+1 _ 1)
(¢ -D@*-1D+@-1

If we replace g by 1/q and multiply both sides by g/®~7, it is easy to check that the right-

hand side will be unchanged, while the left-hand side,

12



aoqj(n_j) + alqj(n_j)_l + + aj(n—j)—lq + aj(n—j)'

has the sequence of coefficients a;reversed in order. By comparing coefficients, we

observe that the coefficients in the polynomial expression of [ j] are symmetric, a; =
q
Aj(n—j)~i-

However, to derive the two Euler’s identities and the two g —Exponential functions we
also have to consider the Gauss’s and Heine’s binomial formulas which were derived from
the g-Taylor’s formula respectively.

Now consider the Gauss’s binomial formula
n
n o . .
(x+a)g = Z []] q/U=D/2qi =, (1.29)
. q
Jj=0

by replacing x and a with 1 and x respectively, we have

n

(140" = z [j]q gIU~D12y), (1.30)

j=0

Also, consider the Heine’s binomial formula

1 i [n] [+ 1], .. [n+j — 1],

a=aor - x/ (1.31)

j=0

Suppose we let n — oo in (1.30) and (1.31). We knew in ordinary calculus that for g = 1
the result will not be very interesting because it is either going to be infinitely large or
infinitely small depending on the value of x. But in quantum calculus the result will be
totally different because, by considering an example for |q| < 1, the expression (1 + x)g
will be (1 +x)(1+ gx)(1 + g2x) ... from definition (1.21), and so converges to some

finite limit. Furthermore, if we let |g| < 1, then we have:

lim[n], = lim = for g #1 (1.32)
K —q

and

13



Jq e (1—q)(1—q2) . (1—q))
1
S (1-9A-¢¥)..(1-q)) (1.33)

By considering the g—anlogue of integer and binomial coefficients behavior when nis

n] (1-qM)(A - g™ (1—qv T+

n—->oo

large, we can easily see the difference when compared with that of ordinary calculus.

Suppose we apply (1.32) and (1.33) to equations (1.30) and (1.31), then as n — oo we
have the following two identities of formal power series in x which are called the Euler
first and second identities (with the assumption that |g| < 1).
AN i(-1)/2 x)
e ;q, oA aa-oy (139
xJ
A-07  &L0-90-¢).0-q)

Now consider the second Euler’s identity (1.35), by dividing both the numerator and the

(1.35)

denominator of it by (1 — q) we have

> B
Y=o &1 (=9)..(=9)

1—g¢q 1-¢q

0 x_\
- z % (1.36)

j=0

Clearly equation (1.36) looks like Taylor’s expansion of the classical exponential function

(o]

xJ
e = i (1.37)
=0
Definition 1.3.2. A g — analogue of the classical exponential function e* is
el = ii for |x| < ! (1.38)
1 = .]q!’ lq — 1|

14



(Kac and Cheung, 2002).

Lemma 1.3.1. The interval of convergence of (1.38) is |x| < |

Proof. Using ratio test we have the interval of convergence of (1.38) as,

gl _ |x| lxllg-1] _ _
W‘ = llmj_)oom llm]_>oo| 1o 1| |X||q 1| <1

limj_,oo

It implies |x| < |

Also consider the first Euler’s identity (1.34), by dividing the numerator and the

denominator of it by (1 — q) we have:

Definition 1.3.3. Another g — analogue of the classical exponential function e* is

X = z q/U-1/2 % = 1+QAQ-qx)y,  forlx| <o (1.39)
< q:

Lemma 1.3.2. The radius of convergence of (1.39) is infinity.

Proof. Using ratio test we have the interval of convergence of (1.39) as

q/U+D/2 X1 /[ + 1]! | /x| ja’lla - 1

— . ——x1m.—= x[.0<1
q](]_l)/z x]/[/']q! ]—>oo|[] | | |j—>oo Iq]+1—1| | |

j—©

Hence the radius of convergence of (1.39) is infinity since R = % = % :

Proposition 1.3.2. The classical exponential functions (1.38) and (1.39) are unchanged

under differential.

Proof. Consider the left side of equation (1.38),
This means that

o) = e =y e =

j=0

15



and,

q:

< eng2Da) O iy Ul
D,(EX) :qu— )/ ‘E](]_’C;):qu )/ %
=0 =

= j-1 - Jxd
=§kwmmwwﬂf ,=2W“Wﬂip
= [] - 1]q- =0 []]q
We have
D,(e¥) = e¥ and D,(E}) = EJ*. (1.40)

Note that the derivative of E7 is not exactly itself. The results in (1.40) may also be

obtained by letting n — oo in

L _ (@ -qinlq
D, (1-01-qx)y S (1-01- q)x)n*1 (1.41)
and
D1+ (1 - 2% = (1 - @nlg(1+q1 - @i, (1.42)

1.4 g —Antiderivative

Definition 1.4.1. Let F(x) and f(x) be two functions defined on R, then F(x) is called
a q —antiderivative of f(x) if D,(F(x)) = f(x), and it is denoted by

F(x) = ff(x)dqx (1.43)

(Ernst, 2002) and (Ernst, 2012).

1.4.1 Jackson Integral

Definition 1.4.2. Let f(x) be a functions defined on the set of real line R,then the

Jackson integral is defined as
16



[ r@dgr=a-ox ) air@. (1.44)
j=0
However, from (1.44) we can easily derive a more general formula
[ F@Pyg@Ider = (- 2 Y @l f(a'%) Dyg(a'x)
j=0

g(g’x) — g(¢’*'x)
(1-q9)q'x

=(1- q)xz q'f(q’x)
=0

=" Fa) (sla'e) — o). (145

Theorem 1.4.1. Annaby and Mansour, (2012); Suppose 0 < g < 1. If f(x)x% is bounded
on the interval (0,A] for some 0 < a < 1, then the Jackson integral defined by (1.4.2)
converges to a function F(x) on (0, A], which is a g-antiderivative of f(x). Moreover,
F(x) is continuous at x = 0 with F(0) =0

Proof. Suppose |f(x)x%| < M on (0,A]. Forany 0 < x < A,j = 0, then we can substitute

X by g/x sincethen0 < g <1, and 0 < g/x < x < A.

This means that
|f(¢’x)| < M(qjx)_a.

Thus, for any 0 < x < 4, by multiplying both-sides of |f(g/x)| < M(q’x)™" by g/ we

have

la7f(a7x)| < Mg/ (¢7x)™" = Mx~%(q*~%)/. (1.46)
Since 1—a>0and0 < g < 1,we see that the series is majorized by a convergent
geometric series. Hence, the right-hand side of (1.44) convergences pointwise to some
function F(x). It follows directly from (1.44) that F(0) = 0.The fact that F(x) is

continuous at x = 0,i.e F(x) tends to zero asx — 0, it is clear if we consider (1.46) by

17



using geometric series, taking summation of both-sides for j starts from 0to oo, and

multiplying each side with (1 — gq)x we have
Jf(g/ Jf(q’ —a(gl-ay] = Myt
Zq £(a%) Zlq £(a%) <MZ @ = Mx

M(1—q)x1~ @
< 1-q)

0<x <A
1_q1—a ’ -

(1 -9x ) a'f @)
=0

To verify that F(x) is a g-antiderivative, we g-differentiate it

DgF (x) =

1 = . o |
=0 Jj=0

I
Ms

’f (¢/x) — Z a1 f(q'1x),

Il
gl

a'f(a'x) - Z @If (/%) = f@).

j=0 Jj=
Note that if x € (0,4A] and 0 < g < 1, then gx € (0, A], and the g-differentiation is valid.

Definition 1.4.3. Kac aand Cheung, (2002). Let 0 < a < b, then the definite g-integral is

defined as
b = . .
| Fedgx = -y drb) (147)
j=0
and
b b a
jf(x)dqx=J f(x)dqx—J fQo)dgx. (1.48)
a 0 0

As seen before in (1.45), we derived from (1.47) a more general formula:
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b oo
| Feadia =) £(a's) (9(as) - a(a’0)). (149)
j=0

Definition 1.4.4. The improper g-integral of f(x)on [0, +0) is defined to be

(fooof(x)dqx = i quj f)dgx, if0<q<1.

i j+1
=—00

(1.50)

qj+1

J
fooof(x)dqx = Z L f(x)dgx, ifg>1.
j=—co

J

1.5 Fundamental Theorem of g —Calculus and Integration by Parts.
Theorem 1.5.1. (Fundamental Theorem of q —Calculus)

If F(x)is an antiderivative of f(x)and F(x)is continuous atx =0, we have

b
[ redgr = r) - F@, (151)

where 0 < a < b < oo (Kac and Cheung, 2002).

Proof. Kac and Cheung (2002); Since F(x) is continuous atx = 0, F(x) is given by the

Jackson formula, up to adding a constant, that is

F) == @x ) ¢/f(a)x) + FO)
j=0
Since by definition,
| rerdgx = -ay d(ala)
=0

we have

J f(x)dgx = F(a) — F(0).
0
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Similarly, we have, for finite b,

b
[ Fedgr=Fo) - F ),
0

and thus

b b a
J. f(x)dgx = f f)dgx — f f@)dgx = F(b) — F(a).

Putting a = g’**or ¢’ and b = g’ (or g’*1), where 0 < g < 1 (or g > 1), and considering
the definition of improper g-integral (1.4.8), we see that (1.5.1) is true for b = oo as well if

lim,_,., F(x) exists.

Corollary 1.5.1.Annaby and Mansour (2012). If f'(x) exists in a neighborhood of x =

0 and is continuous at x = 0, where f'(x) denotes the ordinary derivative of f(x), we have

b
[ Pafrdgr =) - f@ (152)
a
Proof. Using L’Hospital’s rule, we get

@ = f0) | gf' e~ ()
(g —1Dx x>0 (g—1)

= f'(0).

361_1)1(1) Dquf(x) = }CI_I)I(I)

Hence D,f(x)can be made continuous at x = 0if we define (D,f)(0) = f'(0),and

(1.5.2) follows from the theorem.
1.5.1 g-Integration by Part Formula

Let f(x) and g(x) be two arbitrary differentiable functions defined on R. Then

b b
f f(x)dqg(x) =f(b)g(b)—f(a)g(a)—f 9(gx)dqf(x) (1.53)

is called the formula of g-integration by parts. Note that b can be equals to infinity as well
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Theorem 1.5.2. Suppose Dé'f(x) is continuous at x = 0 for any j < n + 1. Then, we have

a g-analogue of Taylor’s formula with the Cauchy remainder:

a)J

b
f DF*f(x)(b — qx)gd,x (1.54)

f(b) = Z(D’f)(a) + o),

Proof. Since D, f (x)is continuous at x = 0, by Theorem (1.51) we have

b b
F(b) - f(a) = f D, f(x)dyx = — f Dof () dy(b — ),

which proved (1.54) in the case where n = 0. Assume that (1.54) holds for n — 1

n+1

( _ a)] 1 b
£b) = z(qu)( ) T, D00 a0

Using D,(a — x)§ = [-n],(a — gx)7~" and applying g-integral by part (1.53), we obtain

b 1 b
| Drreo® - a0 tdgx =~ | DEFCOd, 6 -0
a q*Ja

n 1 b
- 0i)@ TP [ - g0 W,

n]Q' a

[n]g!

and the proof is complete by induction.
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CHAPTER 2
EXISTENCE AND UNIQUENESS OF SOLUTION OF ORDINARY
DIFFERENTIAL EQUATION

2.1 Existence and Uniqueness of a Solution of an Ordinary Differential Equation
Before we state the Picard theorem for existence and uniqueness of a solution of a given
differential equation we found that the following definitions and theorem are important
from (Rudin, 1976), (Kreyszig, 1978), (Kolmogorov and Fomin, 1957), (Ashyralyev,
2013), and (Nagle et al, 2012).

2.1.1 Norm
A complex norm is a function || - || : X = R having the following properties:

I. x|l =0and||x|| =0 ifand only if x = 0. Forall x e X
Il.  ||ax]|| = |a]||x]|| forall x e Xasa € C.

L lx + yll < x|l + |ly]] for all x,y € X. ( triangular equality)

2.1.2 Normed Space
Let X be a nonempty set. Then, the pair (X, || - ||) is called a normed space or normed

vector space.

2.1.3 Complete Normed Space
A normed space is called complete if every Cauchy sequence contained in it converges to

some point in it.
2.1.4 Banach Space

Let (X, ||-1]) be a normed space, then (X, || -||) is said to be Banach Space if it is a

complete normed space.
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2.1.5 Fixed Point of an Operator
A fixed point of an operator or a transformation is an element in the domain that the

operator or transformation maps to itself.

2.1.6 Weierstrass M-Test Theorem
Let {f,,} be a sequence of functions defined on a set E. Suppose that for all n € N, there
exist M,, € R such that

|fn(¥)| < M, Vx € E

Then if }; M,, converges, then ). f,, must converges uniformly on E.

2.1.7 Banach Fixed Point Theorem for Operators
Let S be the set of continuous functions on [a, b] that lie within a fixed distance a > 0 of a
given function yt(x) € Cla,b],i.e.S ={y € Cla,b] : |ly — ¥*|| < a}. Suppose that G is
an operator mapping S into S and it is a contraction on S, that is

JkeR0<k<1, 3 |[GIw]—-G[z]]| <kllw—-2z|]|Vw,z €S.
Then the operator G has a unique fixed point solution in S. Moreover, the sequence of
successive approximations defined by y,.; = G[y,],n = 0,1,2 ... converges uniformly to

this fixed point, for any choice of starting function y, € S.

Proof. Choose any starting functiony, € S. Since y,is an element of the domain
of G, then y; = G[y,] is defined. Since G maps S to itself, y;, € S. By induction, y,, € S and
G[y,] is well-defined, for all n > 0.

We rewrite

Yn=Yo+ 1 +yo) + 2 +y1) + -+ Wy + Yn-1),
so that

n-1
@) = 700 + ) () - 7)) @1)
=0
We now show that the sequence {y,,} converges uniformly to an element in the set S. We

can do this by using Theorem (2.1.1) which is an extension of the Comparison Test.

Now we need to find a bound M on the terms of the series (2.1).
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Claim: ||y;41 — ;|| < k/llys = yoll.
Then the claim is clearly true for j = 0. Suppose that the claim is true for j = q, where q €
N,q = 0. Then

16[yq+2] = 6Lyauilll = |6 [6Lani]] - 6 [61]]

< k[|6[yqs1] = Glyalll < kT lys = yoll,
proving the claim

By considering equation (2.1) again, from the claim above it is clear

that maxxe[a,b]lyj+1(x) - Yj(x)| = ”J’j+1 - Yj” < kj”)’l = ¥oll. Leth = kj||)’1 = ¥oll.

Because
D M=l =yl Dk
j=1 j=1

converges (since it is geometric series and also with the assumption that 0 < k < 1), then
the Weierstrass M-Test shows that {y,} converges uniformly to a continuous function y,,.
Moreover, y., € S because the assumption that ||y, — y*|| > a implies that ||y, — y¢|| >
a not for all n, contradicting the fact that y, € S.

Recall that G is a contraction, this mean that||G[ye] — G[vn]ll < kl|Ve — Yy |l for any n.

But we have |[Voo — yull @ 0 asn - o, S0 [|Ye — Yns1ll @ 0 asn — . Of course,

G [yn] = VYn+1-
Thus,

lm [[Glyeo] = GIyn]ll = im 1G[Yeo] = ynyall < lim kllye, = ynisll = 0.

Finally, G[Yo] — Yoo = (G[Yoo] = Yn+1) + Uns1 — Yoo,

so that by triangular inequality for norm

IG[Yoo] = Yool £ NG [Yeo] = Ynsall + Iyn+1 — Yeoll. (2.2)

Since both terms on the right side of (2.2) tends to zero as n tends to oo, it follows that

IG[Yoo] = Yooll = 0, 0F G[Veo] = Voo
Thus, y,, is a fixed point of G.
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Now suppose that z € Sis any fixed point of G,i.e. that zsatisfies G[z] = z. Then
1Yo — 2|l = IG[Ye] — G[Z]Il < k ||V — z|| < Iy — z|I, which is possible if and only if

l¥s — z|| = 0. In other words, z = y,,, So that y,, is the unique fixed point of G.

2.1.8 Picard’s Existence and Uniqueness Theorem

Consider the initial value problem (I\VVP)
d
Z=f@xy)  y(xo) = o
Suppose that f(x,y)and Z—Jf/(x,y) are continuous functions in some open rectangle

R={(x,y):a<x<b, c<y<d} that contains the point (xy,v,). Then the Initial
Value Problem has a unique solution in some closed interval I =[x, —&,x,+
6], where § > 0 (Nagle et al, 2012).

Proof. Picard’s Theorem is proved by applying the Banach Fixed Point Theorem for
Operators to the operator T. We the unique fixed point to be the limit of the Picard’s
Iterations given by

Y1 = Tlynl, yo(x) = o
Recall that if y is a fixed point of T, then y(x) = y, + f;o f(t,y(t))dt, which is equivalent
to the initial value problem. If such a function, y(x) exists, then it is the unique solution to
the initial value problem y(x) = y, + f;;f(t,y(t))dt.
To apply the Banach Fixed Point Theorem for Operators, we must show that T will map a
suitable set S to itself and that T is a contraction. This may not be true for all real x. Also;
our information pertains only to the particular intervals for x and y referred to the
hypothesis of Picard’s Theorem.
First we find an interval I =[x, — 8, xo + 8] and a € R, @ > 0 such that T maps S =
{geClIl: |ly —yoll < a}intoitself and T is a contraction. Here,C[I] = C[xq — &, xo +
&] and we adopt the norm

Iyll; = max]yl.

Choose §; and a; such that
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Ry ={(,y):lx — x| <6,y -yl <y} SR
Because f and Z—£ are continuous on the compact set R;, it follows that both f and Z—f] attain

their supremum (and infimum) on R;.

It follows that there exist M > 0 and L > 0 such that
2
V(x,y) € Ry, |f(x,y)| <Mand |£| <L.
Now let g be a continuous function on I; = [x, — &1, x, + 6;] satisfying |g(x) — yol <

a, forall x € I, then T[g](x) = y, + f;cof(t,y(t))dt so that, for all x € I,

IT[g] () - yol = f (6 y(®)de| < j F(t,y(®)]dt < M j dt| = Mlx - x|

Now choose § such that 0 < § < min {61%%} Leta = ay,1 =[xy — 6, x0 +

Sl,andS ={geCcD:|lg — yoll; < a}. Then T maps S into S; moreover, T[g](x) is
clearly a continuous function on [Isince it is differentiable, and we knew that
differentiability of a function implies continuity of that function (Rudin, 1976).

Forany g € S, we have forany x € I,
ITIg1() ~ yol < Mlx = xol < M6 <M () = s,
In other words, ||T[g] — yoll < a1,50T[g] € S.
Now we show that T is a contraction. Let u,v € S.On R,, |Z—£| < L, so by the Mean Value
Theorem there is a function z(t) between u(t) and v(t) such that

TR = TIIO1 = |[ 1 (6 u®) - £(6v@)de] = [ (6 20) ) - v(©)]de]

<

f;;{f(u(t)) - f(¢, v(t))}dt| < Lllu —vll;|x = xo| < Lhl[u—7ll;,
for all x € I.Thus ||IT[u](x) — T[v]()Il <kllu—v|,where k=Lh<1,50 Tis a

contraction on S.
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The Banach Fixed Point Theorem for Operators therefore implies that T has a unique fixed
point in S. It follows that the IVPZ—?Z = f(x,y), y(xo) = yo has a unique solution inS.
Moreover, this solution is the uniform limit of the Picard iterations.

dy

Now we have found the unique solution to the IVP — f(x,y), y(xy) = yoin S, there

* —
is one important point that remains to be resolved. We must show that any solution to the
IVPonI =[xy — 8, xo + 8] must liein S.

Suppose that u(x) is a solution to the IVP on [x, — &, x, + 8]. Recall that |f(x,y)| <
M on the rectangle R;. Since u(x,) = y,, the graph of u(x) must lie inR; for x close to x,.
For such an x, we have |f(x,u(x))| < M, which implies that [u’'(x)| = |f(x, u(x))| <
M. Therefore, for x close to x, , the graph of u = T[u] must lie within the shaded region.
Moreover, the graph cannot escape from this region in [x, — &8, x, + &1, since if it did,
lu'(x)| = |f (x,u(x))| > M at some point of the region, which is clearly impossible. Thus

lu(x) — yo| < ay forall x € [xy, — 8, xo + 8], which shows that u(x) € S.

Example 1: consider the initial value problem

y' =3y2/3, y(2) =0
Then we have

fGoy) =3y** and 5 (xy) = 2y7/%,
By considering f(x,y) = 3y?/3 we can see that when y = 0, f(x, y) is continuous. But at
y=0, g—’yc is not continuous. Therefore the hypothesis of Picard’s Theorem does not hold,

and neither does the conclusion; the initial value problem has two solutions,

y/3=x—-2andy=0

Example 2: consider the initial value problem

y' =2y y(0)=1

Then we have

27



f(x,y) =2y and g—i(x,y) =2,

Clearly f(x,y) and Z—J; (x,y) are both continuous at the pointy = 1.

However, we have the initial value problem to be y =1 + fox 2ydt, and so the Picard’s

iterates are y,(x) = 1

P

yix)=1+ f 2y,()dt = 1+ 2x
0

X
3’2(96)=1+12(1+2t)dt=1+2x+
0

(2x)?
2!

and so by induction the nth iterate will be,

(2x)2 20" «n @0t
e = I

1+ 2x+

which is the nth partial sum of the Maclaurin’s series for e?*.
Thus, asn — oo, y,(x) - e?*.
2.2 Existence and Uniqueness of a Solution of System of Differential Equation

In the previous section we mainly focused to understand the Lipschitz condition and its
connection with existence and uniqueness of solutions of Initial VValue Problems (I\VVP) for
Ordinary Differential Equations (ODE). Lipschitz condition guarantees uniform continuity
but it does not ensure differentiability of the function (Rudin, 1976). In 2.0 we have shown
that continuity is sufficient for existence of solution and locally Lipschitz is a sufficient

condition for unigueness of the solution of a I\VP of first order ODE.

We construct the similar theorem for system of differential equation with two equations.
Assume the following system of differential equation with the given initial values for two

unknown functions call y,and y,
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y1'(x) = F1(x,y1(x), y2(x))

y2'(x) = Fo(x, y1(x), y2(x))
y1(X0) = Y10

k V2(X0) = Y20

(2.3)

In addition, we assume that F; and F, are two continuous functions with continuous and

bounded y; — and y, —derivatives ? , ZFi

Y1 Y2

on the following domains
D ={(x%,y1,¥2): x € [xo—a xo+al], y1&y, € R}
By the another words, for some positive real value K, we have

aFi( )
ayj X, Y1,Y2

Theorem 2.2.1. Suppose that F; satisfies the assumption above. Then there is a unique pair
of functions y, and y, defined on [x, — a x, + a], with continuous first derivative, such

that the system holds for all x € [x, —a x, + a]. (Poria and Dhiman, 2013)

Proof. The procedure of the proof is as the same as 2.0.3 (Picard Theorem), so we just
write out the iteration sequences. We assume the following successive approximation, set

the recurrence relation as

X
©01(X) = Y100 Pn1(X) =y10+ J F (t' Pn-11(), Pp_12 (t)) dt,

X0

X
©o2(x) = ¥20, Pn2(x) =yz0+ f F, (t' Pn-11(1), Pn_1.2 (t)) dt.
X

0

Under the given assumptions, these two sequences converge to y; and y, respectively. We

will discuss about system of g- difference equations in chapter 4.

Remark: If F; and F, can be demonstrated as a linear expressions of y,and y, then the
system is called linear system of differential equations and we can represent it by using

matrix. In this case, eigenvalue and eigenvectors of this matrix make an important role.
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CHAPTER 3
BRIEF HISTORY OF q —DIFFERENCE EQUATION

Scholarly works on g-difference equations begun at the beginning of the nineteenth
century in thorough works especially in papers like (Jackson, 19010), (Carmichael, 1912),
(Mason, 1915), (Adams 1915), (Trjitzinsky, 1933) and by other authors such as Poincare,
Picard, Ramanujan. Unfortunately, from the thirties up to the beginning of the eighties,

there was not significant interest in field (Bangerezako, 2008).

However, at eighties a thorough and somewhat astonishing interest in the subject appeared
again in different areas of mathematics and applications comprising mainly new difference
calculus, g-combinatorics, orthogonal polynomials, g-arithmetics, g-integrable systems

and variational g-calculus (Annaby and Mansour, 2012).

Furthermore, despite of the plenteousness of specialized scientific publications and a
relative classicality of the subject, an insufficiency of popularized publications in the form
of books that can be accessible to a broad public comprising under and upper graduated

students is so sensitive (Bangerezako, 2008).

As we earlier mentioned of the research works that were carried-out by different scholars,
the study of g-difference equations have been introduced by Jackson in (Jackson, 1908).
The paper (Carmichael, 1913) is the first research of the problem of existence of solutions
of linear g-difference equations using the technique established by Birkhoff in his text
(Birkhoff, 1941). Furthermore, in Mason’s paper (Mason, 1915) he studied the existence of
solutions of entire function relevant to homogeneous (f = 0) and non-homogeneous linear

q-difference equations of nth order of the following form

n

Z a;()y(q"x) = f(x) (3.1)

j=0
such that the coefficients a; are considered to be entire functions. Then Adams in the
papers (Adams, 1925), (Adams, 1928/1929) and (Adams, 1928/1929) thoroughly studied
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the existence of solutions of the equation (3.1) when the coefficients are analytic or have
pole of finite order at the origin. More recently, (Trjitzinsky, 1933) has brought into
existence an analytic theory of existence of solutions of homogenous linear g-difference
equations and their properties. The existence and uniqueness of solutions of first order
linear g-difference equations in the space C[0, ) and L?(R*) are disclosed in the paper
(Liu, 1995). Apart from this old history of g-difference equations, the field received a
significant interest of many mathematicians and from many fields of study in both
theoretical and practical aspects (Annaby and Mansour, 2012).

However, we want to establish a theory for g-difference equation in the next chapter
similar to that of that of ordinary differential equation in (Eastham, 1970), (Coddington,
1913) and (Nagle et al, 2012). In the course of this, we will study the Cauchy problem of
q-difference equation in the neighborhood of a point say a, where 0 < a < oo. Also, we
will derive the existence and uniqueness theorem for the cases a = 0 and 0 < a < oo. This
will be form by the use of a g —analogue of the Picard Lindel6f method of differential
equations and equations with deviating arguments, respectively. Furthermore, the validity’s
ranges of the solutions are examined in individual case, while the existence and uniqueness
theorem of the solutions of g —difference equations of order n in a neighborhood of zero
will also be proved. The situation when the initial conditions are given at a pointa > 0 is
rather complicated. In (Exton, 1982), it is stated that the Cauchy problem is

De{K(x)Dgy} — G(x)y(qx) =0, a < x < b, y(c) =vo, Dgy(c) =y (3.2)

Where K and G are continuous functions on [a,b],cis an interior point of
[a, b] and y,, y are complex numbers, has only one continuous solution with a continuous

g-derivative. This is not necessarily true as the following counter example below shows.

Example 3.1. Suppose that0 <gq < 1. Letg(t) =—(t—q%c)(t—qc)where te€
[g2c,qc]land ¢ € C. Also, let x € [q%c, ) for x = g2c then for some t € [q%c, qc) we

have x = tqg " or x = tq™;

By another word, there exist n € N such that g%c < xq™ < qc for x > q°c.

31



Now let A = {m /q%c < xq™}, then at least 0 € A. Also, let nbe maximum of A.
q*c = xq™ and contrary to the assumption xq™ > gc then g%c < xq™*1. It implies that

n+1)€eAbut(n+1) >n.

Therefore, there exist n € N such that

Now the relation
B(x) = @(tq™™) = g(t), where gq?c <t <qc < x,

defines a function @ on [g2c, ©). Clearly, @ is a continuous since it is defined by g(t) and
is continuous function since it a parabola. Moreover, the discontinuity can only be

occurred at the endpoints.
Also @ on [g2c, =) is a g-periodic function since

0(g2) — ) _g(®) —g(®) _

qx —x qx —x

Da®(x) = 0.

Since D,@(x) = 0, it implies D7 @(x) = 0, D,®(c) = 0 and
B(c) = B((q*c) %) = g(q*c) = 0.
Hence the g —initial value problem
Diy(x) = 0,y(c) = Dgy(c) = 0,
has the functions

y(x) = @(x) and y(x) = 0.

This implies that the problem has no unique solution.
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CHAPTER 4
SYSTEM OF q —DIFFERENCE EQUATION

4.1 Existence and Uniqueness of a Solution of System of g —Difference Equation
In this chapter, we will establish the existence and uniqueness of a solution of the first

order system of g —difference equation in a neighborhood of point a, such that 0 < a <
o by the use of aq —analogue of the Picard Lindelof method of successive
approximations. However, before we describe the g —analogue of the Picard Lindel6f
method at the point a =0, and 0 < a < o respectively, we realized the following

definition and theorem are important.
Definition 4.1.1. Letr,sand n;,i = 0,1, ..., 7, be element of Z* and let
N=mng+1+ -+ +1)-1.
=nyp+n; +-n.+r

Let F;(x,¥0,¥1,-*¥n),J = 0,1, s, be real or complex-valued functions where x is a real
variable lying in some interval I and eachy;is a complex variable lying in some

region D; of the complex plane. That is F; is equivalent to

Fo(x,y0,¥1,**Yn), X €1, yo € Dy, ¥1 € Dy, Yy € Dy.

Fl(xryO'yl""yN)'

F5_1(x;y0,y1;"'y1v),

Fs(xryO'ylf'"yN)'

If there is a sub-interval J(J < I) of I and functions (@;, 0 < i < r) defined in J such that

a) @; has n; g —derivativesinj fori =0,1,---r.
b) Dg'®; exists and lies in the region D; forallx €/, 0 <m <n;, and0 < i <, for
which the left-hand side in (4.1) below is defined.

c) Forallx € J and 0 <i < s, the following equations hold
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F} (X, Q)O(x)' DqQ)O(x)i Tty DnOQ)O(x)t Y Q)r(x)' T D:Iqu)r(x)) =0, (41)
then we say that {@;}_, is a solution to the system of the g —difference equations

FO (x, yO(x)iquO(x)’ )DnOyO(x)’ :yr(x)' 'Dnryr(x)) = 0' (42)

Fy (%,50(0), Dayo(3), . Dg®yo (), -+, 3 (1), -+, Dy (1)) = 0,

FS (X,yO(X),quO(.X),'“,Dnoyo(.X),'“,yr(X),"',Dnryr(X)) =0.

valid inj,or that the set {@;}i_, satisfies (4.2) inJ.If there exist such Jand
functions @;, we say that the system (4.2) has no solutions. The system (4.2) is said to be

of order n, where n = max{ny, ny, -, n,} = maxo<;<p n;-

However, we will only consider first order system of (4.2) wherer =s =p. If the

functions F; are such that (4.2) can be solved for the D;”yi (x) in the form

Dzlliyi(x) = fi(x,yo(x),quo(x),--~,y1(x),--~) where (l = 0'1'""p) (43)

the system (4.3) is called the normal system. The following is example of normal system of

first order:

Dgyi(x) = f; (%,70(0), 1 (x), ++, 3, (x)) where (i = 0,1,---,p). (4.4)

Or equivalently,
Deyo () = fi (%70 (0), 31 (1), 3, (),

Dey1 () = fi (%, 70 (1), 31 (), -+, 3, (),

DYy (@) = f, (%70 (1), 31 (), -+, 3p ().
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4.1.1 q —Initial Value Problems in a Neighborhood of Zero

Annaby and Mansour (2012); let I be an interval containing zero and E, be disks of the

form
E.={yeC: |y—b.|<pB}, >0, b, eC

andr =0,1,---,p. Let f; (x yo(x),yl(x),---,yp(x)) where (i = 0,1,--,p) be functions
defined on I X Ey, X E; XE, X,-X E,._; X E,.. By a q —initial value problem in a
neighborhood of zero we mean the problem of finding functions {y; fzo that are

continuous at zero, satisfying system (4.4) and the initial conditions
yi(0) = b; where (i =0,1,,p) (4.5)

Lemma 4.1.1. Annaby and Mansour (2012); letJ < I such that 0 € J. Let f, be functions
defined in the interval I,n € N such that lim,,_,, f,(x) = f(x),forall x € I and f;, tends

uniformly to f on].

Then,

rlll_r&f fa(x)dgx =j f)dgx ,VtEL (4.6)
0 0

Theorem 4.1.1. Let I be an interval containing zero and E, be disks of the form
ET:={yE«:: |y_br|<,3}; ,B>O: brE(C

andr =0,1,---,p. Let f; (x, yo(x),yl(x),---,yp(x)) where (i = 0,1,:--,p) be functions

definedon I X Ey X E; X E, X, X E,_; X E,. such that the following conditions hold.

a) Foranyy, € E,,0 <r <p, the function f; (x, yo(x),yl(x),--~,yp_l(x),yp(x)) is
continuousatx =0, 0 <i <p.
b) There exist a positive constant A such that for any x € I and y,, 3. € E,,,0 < i <

p the following Lipschitz condition hold.
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Ifi(x, 50,51, 95) = Fi (6 v0, 1, %) | < A(1F0 — Yol + -+ |9 —w|) (4.7

Then, if zero is not an end point of I, there exist h > 0 such that (4.4) has a unique
solution which is valid for [x| < h. Moreover, if zero is the left or right end point
of I, the result holds, except that the interval [—h, h]is substituted by [0, k] or
[—h, 0] respectively. (Annaby and Mansour, 2012)

Proof. The proof is given in (Annaby and Mansour, 2012) as follows when zero is an
interior point of 1. Also, the proof when zero is the boundary of I is similar.
Now we define sequence of functions{@i,m}:;:l,i =0,1,2,...,pby the equations

bi m=20

@i,m+1(x) = bi n f fi(t, (Dolm(t),@l,m(t), o (Dp,m(t))dqt’ m>1 (4.8)
0

By applying the Lipschitz condition (4.7), we have
|f:(x, v0,¥1, -, %) | < |f(0, bo, by, -+, by)|
+|fi(x;y0;y1,--.;yp) _fi(x, by, bl,..-,bp)| + |ﬁ(x bOlbli"'rbp) —fi(O: bo,b1."',bp)|

p
< AZ|y]- — b| + | fi(x, bo, by, -+, by) — fi(0, bo, by, -+, by)| + |£i(0, bo, by, -+, by)|
j=0

Since the function f;(x, bo, by, -+, by, ) is continuous at zero from the first condition, then
for € = 1 there exist y > 0 such that
x| <y which implies |f;(x, by, by, -+, by) — fi(0, bo, by, -+, b, )| < 1.

Hence,

p
G031, 3p)| <A ) B+ 1+ max|i(0,bo, by, by)|
j=0

=A(p + 1B + 1+ maxog;<p|fi (0, bo, by, -+, by)|

forall y. € E,,r=0,1,...,p, and |x| <y. Define the non-zero constant K,hto be

K := max sub |fi(X'3’O'Y1""'yp)|

0<i<p |x|5)/,|Yj—bj|SB

o B 1
h = min {]/, K’ A(p+1)(1—q)}'
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We will establish the existence of the solution {@;}}_,of (4.4) and (4.5) onj =

[—h, h] using the method of successive approximations. We will consider the sequence
defined by (4.8).

Existence: We will prove the existence of the solution in four steps.

1) We show that @;,,, m € N are well defined. First
Pim(x) EE; (x€]:me N). (4.9)
Then from the definition of @, ,, equation (4.1) we have
x
Oum = bt [ 6 0umes (0 Bumes(©) 2, By (Ot

It implies

X
|®i,m - bi| < f
0

Thus each @;,,,(x) is continuous at zero and (4.8) is well defined.

£: (6 Bom-1(6), B1m-1(8), -+, Bpma (B))| dgt < j Kdgt  (4.10)
0

2) Forallm € N, x € J we can prove by induction on m that

|x|™

[Bims2 () = Bim(0)| < KB™1(1 = )™ 2,

(4.11)
where B := A(p + 1).

Now, let m = 1 then we have

|@i,2(x) - Qi,l(x)l =

b+ f £t 801 (6, B1.1(8), -+, By 1 (6))dgt — by
0

|t
a-9t-°

(4.12) Suppose the statement is true for m = n. Then we have

< K|x| = KB°(1 — q)*
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10041 (%) = Bin(2)]

+ f fi(t' (DO,n(t)l (Dl,n(t)l "ty Q)p,n(t))dqt - bi

f £i(, Bos (6, B mn (6, Brpna (6)) gt

| |™
(q: Dn
We prove that the statement is true for m = n + 1.

< KB™ (1 —q)"

This means that |@; 41 (x) — ;. (x)| becomes

|90 n42(%) = Binsa ()],

and

|41 () — Bim ()]

= ’ f fl(t Don+1(t), D1n41(L), pn+1(t))d t—>b

~ [ (600,010, 00t
0

ﬁ((t Boner (8, 11 (O, Bpna1 () ~fi(t, Don(6), D1 (), -+, Bpin(£)) ) gt

It implies from (4.7) we have

ﬁ((t Bons1(), B1ne1 (6),+, Bpnas () ~fi(t, Bon (), By n(6), ++, Bpn(6))) dgt

X
< j A (|®0,n+1(t) - Q)O,n(t)l + -t |®p,n+1(t) - Q)p,n(t)l)dqt
0
By induction assumption we have

f A (180751 (8) = Bon(O] + -+ | Dy nss () = By (O] dqt
0
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“( yn- n- |tl"
SAKfO <A Ip+1) 1(p+1)[n]q!>dqt

=KA"(p + 1)"]; <[L:]|q!> dgt

This means that

|e|"

“(lt
<Wq') dqt = KAn(p + 1)n+1

|x|n+1

KA™(p + 1)"f

0 [n]g![n+ 1],

It implies

|x|n+1 |x|n+1

KA+ D e v, ~ K

1
= KB"(1— @nﬂﬂ_
(@ Dn1

However, note that the inequality

]a “FOdyt

< fa|f(t)|dqt, (0<a<b< ).

is not valid always. (Annaby and Mansour, 2012)
3) We show that @; ,,, tends to a function @; uniformly on J.

Now from (4.1.21) we have
m-1

Bim(®) = B1a(0) + ) Bypa () = By ()
=1

= 01,00 + (2200 = 0,2 (0) + (8130 = B12(0)) + -+ + (Bi(6) = Bym—s (X))

It implies that
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m-1 m-1

0unCOl S 1011+ D 101102 = 00 O] = b+ ) KB L

|l
q.

Now as m — oo we have

|x| (1-q' '
KZBI ‘I —KZAZ L+ D 1[— KZAl HGRES ey e

o (0] (0]

o LIS NS QI
< = = (0.0]
h=qq &g (4,9,

=1

By the Weiestrass m-Test it is uniformly continuous.

4) Now we show that {@;}"_, satisfies (4.4) and (4.5). Indeed, from (4.7) we have
|fi (t, Bom (), Dy (t), -, (Z)p’m(t)) - fi (t, Bo (1), B, (1), -+, ¢p(t))|

< A(l(ao,m(t) - (DO(t)l + |®1,m(t) - (Dl(t)l + -+ |®p,m(t) - wp(t)D

for all t € J and for all m € N. Since the right-hand side of number (3) approaches

uniformly to zero onJ as m — oo, it follows that,
Tim £, (£ 8o (6, B1.m(®), . Bpm(®)) = £i (£, B0(), 81(8), 8, (1))

is uniformly on J.

By letting m — oo in (4.8) and using Lemma (4.1.1), we have
0; = b + f fi(t, @o(6), 01(8), . 8p(D))dgt, O<i<p; x€)). (413
0

By the use of conditions (a) and (b) of theorem (4.1.1), and the continuity of the function
{p;}0_, at zero, one can verify that the functions f;(t, @o(t), @4 (t), -, D, (t)) are

continuous at the point (0, by, by, -+, by, ). Thus,

Dy®; = fi(x,Bo(x), 01(x),,B,(x)) (0<i<p; x€)).
Hence, the set {(Z)i}fzo is a solution of (4.4), and (4.5) is valid in J since it is satisfied.
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Uniqueness: To prove the uniqueness of the solution of the system (4.4) we assume
that {¢p;}}_, is another solution to (4.4) such that the solution is valid in |x| < h; <

h and satisfies (4.5). However, for 0 < i < p, |x| < h;.

P:i() = 9:(q2) + x(1 = s (%, 90 (), 010, -, 9, (1)) (4.14)
0:(x) = B:(g2) + x(1 — )f; (%, 80 (), 81 (), -+, B, () ). (4.15)
Now consider the equations (4.14) and (4.15), by subtracting (4.14) from (4.15) and

applying (4.7) we have

p
18:(x) — @i ()] < [0:(qx) — @i(qx)| + Alx[|1 - QIZIQ)i(X) = @i()] (4.16)

i=0

Now by taking summation of both-sides of (4.16) we have

14 4 14
D180 = @)1 < ) 10:) — 9@ + Alxl[1 = qI(P + 1) D 18,00 — ()]
i=0 i=0 i=0

Now let a(x) = XP_,10;(x) — @;(x)], |x| < hy. It implies

p p p
D180 = i@ < ) 10:0) — 9i(@0)] + AlxlIL = qlP + 1) ) 18,00 = pi )],
i=0 i=0 i=0

resulting;
o(x) <a(gx) + A(P + 1|1 — ql|x|o(x).
This means that
o(x) <o(gx) + AP + DI1 —qllxlo(x) = o(x)(1 — AP + 1|1 — qllx]) < a(qx)
Since B = A(P + 1), then we have

o(gx)
ox) < 4.17
O =T B —an 17
By replacing x with gx. (it is valid for x| < h;)
This means that (4.17) becomes
2
o(q7x) (4.18)

o) < TR = qllaxD

By combining the inequalities (4.17) and (4.18) we have
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o(0) < o(q*x)
~ (1-BJ1—qllxD(@ - B|1 —qlqlx])

In the same manner by induction we have following

a(q™x)
o(x) £ == (Ix] < hy)
[T75 (1 = BI1 = qlg*|x]) '
By calculating the limit as m — oo, we have
o(0)
(Ix| < hy)

0(x) < =%

) = e A= BIT = qlg¥iD
According to the definition of a(x)we have a(0) = 0. Soa(x) = 0 which implies
@(x) = B(x).

Theorem 4.1.2. (Range of validity). Annaby and Mansour (2012); suppose that all the
condition of theorem (4.1.1) hold with E,. = C forall r; 3 r = 0,1, ..., p. Then the problem

(4.4) with initial condition (4.5) a unique solution which is valid for at least in I N

(-7 o)
Alp+1)’ Alp+1DQ-q)/’

Proof. we will prove the theorem by trying to prove the existence and uniqueness of
solution of the problem (4.4) with initial condition (4.5) on any subinterval

[=h.h]cI"=1n (_ A(p1+1)' A(p+11)(1—q))'
for h > 0. By considering the strategy used in proving theorem (4.1.1), we can determine a
constant y < h 3 @, ,, approaches uniformly to @; on [—y,y], such that @, ,, are defined
in equation (4.8). In addition, it is not difficult to verify that @, converges to
@; pointwise on [—h, h]. By the use of Lemma (4.1.1) it can be shown that the solution

{0.:37_, could be extended throughout the interval [—h, h].

Remark 4.1.1. Theorem (4.1.1) holds for the other Cauchy problem

Dgyi(x) = f; (qx, ¥o(qx), 71(q2), ++, p(qx))

yi(0) = b;, (i =0,1,-,p),
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but the solution is valid only throughout whole interval I whenever the function f;’s satisfy

the conditions (a), (b) of the theorem 4.1.1 with E, =C,0<r,0<i <p.

The below corollary shows that Theorem (4.1.1) can be used to discuss the existence and
uniqueness of the nth order g —initial value problem
DRy(x) = f (x,y(), Dy(x), -, D 'y(x)), (4.19)

Di'y(0)=b;, (bi€C 1<i<n).

Corollary 4.1.1. Annaby and Mansour (2012); letp, I, E,, b, be as in the theorem (4.1.2).
Let f(x,¥0,¥1, - ¥p) be a function defined on I X Eq X Ey X E; X, -+ X E,_; X E, such

that the following conditions hold.

a) For any fixed values of y, € E,, the function f(x, Yo, V1, --~yp) at the point zero is
continuous.
b) There exist a constant A > 0 such that forall x e I and y,, J,. € E,,0 < i < p the

following Lipschitz condition hold.

|ﬂ(x:)70»“’:37p) _fi(x'YO: "':yp)l < A(|370 — Yol + -+ |37p - J’pD (4.20)

Then, if the point zero is not a boundary point of I, there exist A > 0 such that the
Cauchy problem (4.19) has a unique solution @ which is valid for |x| < h.
Moreover, if zero is the left or right end point of I, the result holds, except that the

interval [—h, h] is substituted by [0, k] or [—h, 0] respectively.

Proof. Suppose that zero is an interior point of I. Then the Cauchy problem is identical to

the first order g —initial value problem

qui(x) = fi(x'yO'yl""'yn—l)' Vi = bi; 0<isn-1, (421)
That is

qyo(x) = fo(x,y0(0), y1(x), -+, Yn_1 (x)),
qul(x) = f1(x; Yo(x),y1(x), “';J’n—1(x)),
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qun—l(x) = fn—1(x' Yo (%), y1(x), -, yn—l(x));

whereby {@,;}7-4 is a solution to the equation (4.21) if and only @, is a solution to (4.20).

However,

fO(x’yOIyll""yn—l)’
fl(x’yOIyll'“'yn—l)’
fZ(x’yOIyll""yn—l)’

fa-1(6 Y0, Y15 Yne1),
are the functions
Vit1s 0<i<n-2
f6 Y0, Y10 Yn-1), i=n-1
Therefore, by theorem (4.1.1), there exist h > 0 such that the system (4.21) has a unique

ﬂ(xryOJylr"'!yn—l) = {

solution which is valid for |x| < h.

Corollary 4.1.2. Annaby and Mansour (2012); consider the g —differential equation
(Cauchy differential equation) below
ao(x)Dgy(x) + a;()DG 1y (x) + -+ + an(x)y(x) = b(x) (4.22)
Diy(0)=b;, (0<i<n-—1)
Let the a;(x) (for 0 <j <n) and b(x) be defined on an interval I containing zero such
that ag(x) # 0 for all x € I. Let the function a;(x) and b(x) be continuous at the point
zero and bounded onI. Then, for all complex numbers b;, there is a sub-interval ] of

I where zero is an element of J such that (4.22) has a unique solution.

Proof. Consider the Cauchy’s q —differential equation (4.22)
ag(x)Dgy(x) + al(x)D[Il‘ly(x) + - +a,(x)y(x) = b(x),
Diy(0)=b;, (0<i<n-1).
By dividing the equation through by a,(x) and makingDgy(x) the subject of the formula
we have
DZy(x) = Ay (x)DF ty(x) + - +A4,(x)y(x) + B(x) (4.23)
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where 4;(x) = —a;/ay,1 < j <n,and B(x) = b(x)/aq(x).
By comparing, equation (4.23) is of the form of (4.21), and it implies that;

(3, D~1y) = A (ODF T Y(x) + -+ +A, ()Y (x) + B(x).
Since given that all a;(x) are continuous at zero and bounded on I, it implies that A4;(x)
and B(x)are continuous at the point zero and also bounded onlI. The function
f(x, Y, ---,Dg‘ly) satisfies the conditions of Corollary (4.1.1). Hence, there exists a sub-
interval J of I where zero is an element of ] such that (4.23) has a unique solution that is

valid in J.

Remark 4.1.2. From the above equations, it implies that we can use the method of power
series to obtain solution of some linear g —difference equation. For instance, if we let

f(x) = Yo a,x™ to be the solution of the g —initial value problem
Dyy(x) =y(x), y(0)=1, (4.24)

by considering f(x), that is

fx) = Z a,x™,
n=0
we have
Dof() = ) anlnlgx™"
n=1

By substituting f(x) and D, f (x) in (4.24) we have

Z an[n]gx™t — Z a,x®" =0, y(0)=1.
This means that

Z an[n]gx™t - Z a,x®" =0, y(0) =1

Furthermore,
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Zan+1 [n+1], Zanx"= ,  y(0)=1.

n=0 n=0

by the use of Shift of Index of Summation (Boyce and Diprima,1992).

This means that a,,4[n + 1], — a, = 0 since x™ # 0.
It also implies that

Upiq = —2
n+1 — [n+1]q'

By considering a,,; = [ni—’;]q it implies a,,, = ani_+ from definition (1.2.4).

Now, for n = 0, we have

g gt _(A=-9d=q)
27 1—q2 T 0 1-g)(A-q»

For n = 2, we have

1-g¢q 1-90-g9A-q)

A = Ary——=1Qa .
T 13 T (1-gH(1-g)H(1 - q3)

For n = 3, we have

1-gq A1-90-g9)A -1 —q)

T A T D [ DI DD}

Therefore, we have the generalization of the sequence as

_ -9 d-"
W=y %G, TN
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It follows that

y() = f@) = ) ana™

Therefore,

- A-q"
(x) = ag————x", ; =1.
y n§=0 @D CHAN
By the given condition y(0) = 1, we have
- -
0) = a,———0" =1, (g; = 1.
y(0) E @D CHAN

n=0

This means that a, = 1, and hence

[0e]

1_ n
y(x) = Zﬁx”, (q;9) = 1.

n=0

By comparing y(x) with g —exponential function we found y(x) = e;(l_q). By the

Theorem (4.1.2), the solution y(x) = e;‘(l_q) = f(x) is valid in|x| < (1 —¢)~L. This

can achieve using the well-known Ratio test.
Another example is the g —initial value problem

Dgy(x) =y(gx), y(0)=1. (4.25)
The term b,, of the solution g(x) = Yo, byx™ satisfies the given g-initial value problem
(4.25). However, this can be shown by considering the function g(x) and differentiating it.

Now, since

glx) = Z b,x™.
n=0

This means that
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Deg(®) = ) bylnlgx™™,

By substituting g(x) and D, f (x) in (4.1.33), we have

s

balnlgx™™ = ) ba(@)" =0,  y(0) =1,
1 n=0

S
Il

This means that

s

balnlgx™™ = ) ba(@)" =0,  y(0) =1,
1 n=0

S
Il

Is equals to

D bpaln+ 1gx" = ) byg™x" =0, y(0) =1,
n=0 n=0

by the use of Shift of Index of Summation (Bender and Orszag,1978).
This means that b,,4[n + 1], — q™b,, = 0 since x™ # 0..

It also implies that

bn (1 - Q)
bpyr =q" - =q"by =gy

bO:1'

L. bp ., - . 1- .
By considering b,,,; = q" EYE it impliesb,,., = q"b, (1(_qf+)1) from definition (1.2.4).

Now, for n = 0, we have

1-q
by = byq® ———
1 od 1— ¢t
Forn = 1, we have
1-¢q 1-9)(1-9q)
b, = b1q1— = boql

1-gq? 1-gH(1—-q*
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For n = 2, we have

1-90-9)A-9q)
1-gHA-q¢>)A-q3"

1-¢q
bs = bZTcﬁ = byq°q'q*

For n = 3, we have

A-a o - D0-90 - -q)
1—q* 1T T A oA - - A -q%)

by = b3q3

Therefore, by analyzing the sequence above, we have the generalization of it as

( )n n(n—l)(1 )n
nn-1) (1—gq q 2 —q
b, = byq a=qm b, @ on , n , (@90

It follows that

y() = b() = ) bx”,
n=0

yielding

n(n-1)

[’} . 1— n
y() = Z bo CZD o, (@) =1.
n=0

(@ Dn

By the given condition y(0) = 1, we have

oo nn-1)

ey
Y@ =Y bt =0 =1, @ 1

n=0

This means that b, = 1, and hence

o nn-1)

2 1—g)"
y(X)=nZ;)q (q:(q)n 9 X", (:9) =1
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By comparing g(x) with the g —exponential function we found g(x) = E(gx(l_q)). By the

(x(1-q))

Lemma (1.3.2), the solution y(x) = g(x) = E,

is valid throughout C. This can

achieve using the well-known Ratio test.

However, the g —initial value problems (4.24) and (4.25) are q —analogues of the initial

value problem

y' =y), y0)=1.

4.1.2 q —Initial Value Problem in a Neighborhood of Infinity

As we earlier mentioned in the introduction part of this chapter that even if an initial
condition is given at a point a > 0, the uniqueness of solutions of the g —initial value
problem is not guaranteed. However, in this segment we shall examine the problem of
existence and uniqueness of g —initial value problem with initial conditions different from
zero. Furthermore, in the course of this we will have an initial interval instead of an initial
point ¢ and instead of b;,;we had, we will have initial g —periodic functions. On the other
hand, there is need to define the Cauchy problems in this case. The two types of the
problems are the forward and backward problem depending on the g —difference equations
(Annaby and Mansour, 2012).

Definition 4.1.2. By a Forward value problem at a > 0, we mean the problem of finding a

solution of Dyy;(x) = f; (@x,¥0(qx), y1(q%),~,%,(qx)), (i = 0,1, -, p) in an interval
of the form [a,), such that the forward conditions y;(x) = g;(x), x € [qa, a) are
satisfied. The arbitrary functions g; are called forward initial functions and the interval

[qa, @) is called the initial interval (Annaby and Mansour, 2012).

Definition 4.1.3. By a Backward value problem at b > 0, we mean the problem of finding
a solution of (4.4) in an interval of the form (0, b], such that the backward conditions

yi(x) = g;(x), x € b, bq™ ] are satisfied. The arbitrary functions g; are called backward
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functions and the interval 1b, bq~1] is called the backward interval (Annaby and Mansour,
2012).

Theorem 4.1.3. Annaby and Mansour (2012); Ietﬁ-(x,yo(x),yl(x),---,yp(x)) be

functions defined for x € [qa, ), y; € C,where 0 <j,i <p, anda > 0. Let {g;(t)}}_,

be a set of g —periodic functions such that the following conditions hold.

a) |fi (x, 9o (x), g1(x), ---,gp_l(x),gp(x))| is bounded on [ga, =),
b) There exist a positive constant A such that for any x € [ga, «) and y,, ¥, € C, the

following Lipschitz condition holdfor0 <i <p .

|fi(x:)~’0;3~’1: '”ryp) - fi(nyO'ylﬂ"'lyp)l < A(|370 — Yol + -+ |37p - pr (4.26)

Thus, the forward value problem
Deyi(x) = f; (%, ¥0(qx), y1(q2), -+, yp (@) ) for x € [a,0),  (4.27)
®l'(x) = gi(x) (x € [qa' OO),L =012, 'p)

has a unique solution {(Di}f=0 which is valid in [a, ).

Proof. The proof is given as follows:
From (a), it implies that there exist a positive constant C such that

fi (%9000, 0100, -, (), g ()| (4.28)

sup
xzqa

C= MaXo<i<p

Now we define sequence of functions {(Di,m(x)}::;:l,i =0,1,2,...,p by the equations

ci(t) m=20
tqg™"

Dim1(tq™™) = ¢ (0 +f ﬁ-(qu,(Do,m(qu)"“'Qp,m(qu))dqt' m=1
t

(4.29)

Where t € [ga,a),n € N and c;(t) are g —periodic functions.
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In this setting the successive approximation associated with the problem (4.27), @; ,,+1(x),
i=01,-,p,meN, is the sequence (4.29). In the equation (4.29) above it is clearly

understood from definition (1.4.1) that the integral over [¢t, tq~*] is

.[-tq
t

Thus, the successive approximation (4.29) is well defined. We now let t € [ga, a)and

k € N be fixed.

-k

k
h(Wdqu = (1= q) ) tq h(tg™)
j=1

Existence: we will prove the existence of the solution in three steps.

1) Forallm e N, B = A(p + 1), we can prove by induction on m that

m(m-1) tM(1—q)™

|Bims1(ta™™) = Bim(tq )| < CB™ g > (4.30)

a™(q:q)m
forall t € [qa,a)and k € N.
Now, since the proof is by induction then let m = 1.

If m = 1, then we have;

tq‘k

|®i,2 (tq™) - @i,1(tq_k)| = |¢i(t) + f fi(qu' Bo,1(qu), -+, ¢p,1(qu))dqu —¢i(t)
¢

k tq_k

tq~
< ] (gt B (qu), -, By (qu)|dyre < j Cdgu = Ct(g™* - 1)
t

t

A-a) _ ot

(@@  q* (431)

< CB%°

Suppose that the statement is true for m = n. Then we have
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|0ins1(tq7%) = Bin(tq™)|
tq‘k

@+ [ fi (00 00n (@), By dgu = i 0
t

-k

tq~
_f fl(qu Don- 1(qu), - pn 1(qu))d u

nn-1)t"(1 —g)"
2 A —

< CcB™1! .
1 q(q: Qn

We now prove that the statement is true form =n + 1

This means that |@; m+1(6q7%) — @y, (tq™*)| becomes

|9in+2(ta™) — Binsa (tq™ )|

And

|®i,m+1(tq_k) - Qi,m(tq_k)l = |¢i,n+2 (tq_k) - wi,n+1(tq_k)|

tqk

— (6@ + [ Fi (a0 B0 (@0, Brr (@0, By (a0 de = 1(0)

t

-k

tq
[ (00000, 810 (@), By d
t

-k

tq
[ 7 (0 0omeaau Oy (@) =i, Do qu, =, By (0))) g

It implies from (4.26) we have

-k

tq
f f ((qu @0 n+1(qu) pn+1(qu)) fl(qu Q)O n(qu) p,n(qu))) dq
t

-k

tq
< j A (|@0s1(qU) = Pon (@] + - + |Bp 1 (q10) — B (qu0)] )y
t
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By induction assumption we have

-k

tq
f A(|B00s1(q10) — Bon ()] + -+ |Bp a1 (q) — By ()| )y
t

nn-1) unqn(1+k)(1 _ q)n

tq‘k
< AC[ (A”‘l( + D" (p+1 2 >d u
t P P+ 1a q*(q; Qn 1

np) 47 (ungriHo (1 — g)n
=CA™(p + 1)"q 2 f < )d u
P 1 : q*(q; @)n a

This means that

CAp+ 1T f o <unqn(1+k)(1 — Q)n> du
t q™(q; @n 1

CAn( + 1)n n(n—l) I (tq—k)n+1 tn+1
= 2 —
P 1 74 q*[n+1],!  q™*[n+1],!

It implies

CA"(p + 1"q 2

n(n_1)+2n (tq—k)n+1 tn+1
[n+1],! [n+1],!

B CBn n(n2+n) (tq—k)n+1 tTl+1
-9 m+ 1,0 [n+1],!

Since B = A(P + 1).

Also,

CBn n(n2+1) (tq—k)'l’H'l tTl+1
1 I+ 10, [n+ 1],

. n(n+1) tn+1(q—k(n+1) _ 1)
=CB"q 2 q* D0 + 1]
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. n(n+1) tn+1(1 _ qk(n+1))
<CB"q 2 g+ D[n + 1],!

" nn+1) tntl
<(B"q 2 " [ + 1] !

n nn+1) tntl
= 2
5% q"k*D[n + 1],!

n(n+1) tn+1(1 _ q)n+1
=CB" 2 —ong
gD (q; @)1

< CBn n(n+1) tn+1(1 — q)n+1
< 2
1 gD (q; @) pq

Note that: the inequality

ff(t)dqt Sf If(O)ldgt, (0<a<b< o).

is not valid always. (Annaby and Mansour, 2012)
2) We show that @; ,,, tends to a function @;, x € [qa, ).

Now from (4.31) we have

m-1

Oim(tq™) = B1a(tq™ ) + ) Byua(tg™) = 0y (g7

=1
= Bim(tq™) + (B;2(tq™) = 0;1(tq™)) + - + (P (tq75) = By m-1(tq™"))

It implies that

m—1

|0 m(tq™)| < lei(tq™F)| + Z 0:141(tq™) — 0, (tq79)|
=1
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l(l+1) tl+1(1 q)l+1

c.(ta )| + Z CBlq €N
= le(tq ™Dl g k(g q) 41

Now as m — oo we have

l(l+1) tl+1(1 q)l+1 l(l+1) tl+1(1 q)l+1
Cz Blq = CZAl +1
q* R (q: q) 144 @+ D'q q* R (q: q) 144

< CZBZ ) (l k)(l+1) tl+1(1 )l+1
(4 Di+1

Now (I — k)(IL + 1) is a parabola with minimum value at [ = —1 , Where k is an arbitrary

point. So we have

(I-k)(1+1) (k+1)2
q 2 < q 8 = e

Leth:=min{ ! a ! }

A(p+1)’ 7 (et1)?
q 8

Then we have

Cz Bl—1 q%(l-ﬂ) tl+1(1 _ q)l+1 - CZ h—l—1 hl+1(1 _ q)l+1
(@ D (@ D141

=1 =1

Ci 1 Clel—2)
- = e~ —
=) ORI a

By the Weiestrass m-Test it is uniformly continuous.

3) Now we show that {@;}Y_, is a solution of the initial value problem (4.25) in [a, ©).

i=0

Indeed, from (4.26) we have

i (% Bom (), 1 ()., () — fi(x, B (1), B (x), -+, B ()|
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< A(lq)o,m(x) - Q)O(x)l + |®1,m(x) - Q)l(x)| + -+ |®p,m(x) - Q)p(x)l)

for all x € [ga o) and for all m € N. Since the right-hand side of number (3) approaches

uniformly to zero on[qa o) as m — oo, it follows that for all x € [qa, =),

lim f; (%, 80m (), 81.m (), . Bpm(@)) = i (x,80(), 8:(6), . 8, ()

is uniformly on [a, ).

By letting m — oo in (4.29), we have

tq~k

0:(tq™) =i+ [ i (. 00(qu, -, 0y (@) g, (432)

t

forall t € [qa, a), k € N,. By substituting k = 0 in (4.32), we can see that the initial
conditions on (4.27) hold. And that the functions {@;(x)}!_, is a solution to the g —initial
Value problem (4.27) which valid in [a, o).

Uniqueness:- In order to prove the uniqueness of the solution of the system (4.27) we
assume that {(pi(x)}f=0 is another solution to (4.27) such that it the solution is valid

in[a, b] € [a,) and ¢;(x) = g;(x) forall xin [gqa, a), where 0 < i < p.
Thus,
Dy = fi(qx, po(gx), 91(qx), -, ¢p(qx)) (0 <i<p; x € [a,b]).

Consequently,

@i(x) = ¢i(qx) + x(1 = @) f; (qx. Po(qx), 91(qx), -+, <pp(qx)); (4.33)
In addition,
0:(x) = B:(q%) + x(1 — )f: (a7, B0 (), 01 (q), B, () ). (4.34)

Now, consider the equations (4.33) and (4.34), by subtracting (4.33) from (4.34) and
applying (4.26) we have
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p
10;(x) — @ ()| < 10;(gx) — @i(qx)| + Alx][1 — q] ZI%(CIX) — ¢i(qx)| (4.35)

=0

Now by taking summation on both-sides of (4.35) we have
p 14 p

D180 = i@ < ) 10:) - (@] + AlxlIL = IR + 1) Y 18:(4) = @i(q)]

i=0 i=0 i=0
Now let a(x) == XF_ |10, (x) — ¢;(x)|,x € [a, b]. It implies

p p p
D180 = i@ < ) 10:) - (@] + AlxlIL = IR + 1) Y 18:(4) = @i(q)]
i=0 i=0 i=0

Will be;
o(x) <o(gx) + A(P + 1)|1 — qllx|o(gx).

This means that

o(x) <a(gx)(1+ A(P + 1)|1 — q]|x|) forall x € [a, b]
But, for any x € [a, b], there exist t € [aq,a) and k € N, such that x = tq~*. This can be
shown by the following proof.
Let x € [a, b], we acclaim that there exist t € [aq,a) or ga <t < aand k € N, such that
t = xq or equivalently x = tq~k.
Equivalently, we prove that for some k € Ny, ga < xq* < aand by the assumption
a<x<bh.
Now, let A = {r: xq" < a} € N,.Since 0 < g < 1, it implies lim,_,., g" = 0 which is less
than "a’”’ and the set A is not empty. Let k be min 4, this means that xg* < a which is
contrary to the assumption that ga < xg*. This means that xg* < qa which also implies
xqk 1 < a.
Thus k — 1 € A, contrary to the assumption that k is the minimum element of A. It implies

that there exist k € N, such that ga < xg* < a.

Let xg® = t, then there exist t € [qa, a) such that t = xq* for some k € N, or x = tq %,

Now, by substituting x with tg=* ino(x) < a(gx)(1 + A(P + 1)|1 — q||x|) for allx €
[a, b]
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We have,

o(tq™) < o(qtq ™)1 + AP + DI1 — qlltqg™*|)
=o(tqg" )@ + AP + 1|1 - qlltqg™*])
Also, by substituting t with tq*~* in the above equation, the relation is valid for all
t € [qa,a).Thus
o(tq' ™) < a(tq* )1 + AP + DI1 - qlltq™™"])
But

o(tq™™) _
A+ A0+ DI —alieg #p = ° @)

This means that
o(tq' ™) < o(tqg* )1 + AP + DI1 —qlltq**])
Will become

a(tq™™)
1+ AP +DI1—qlltg™D)
Thus, by transitive property we have
a(tq™) < o(tq* )AL+ AP + DI1 - qlltg D + AP + DI1 — qlltq* ]

In the same manner by induction we have following

<o(tq* )1+ AP + DI1 —qlltg* ]

k

ot = [ [(1+ 40 +p11 - al]e* 5] o

j=1
But o(t) = 0for ga <t < a this means thato(tq™*) = 0 for all t € [qa,a) and k €
N, such that x = tq~* € [a, b].

a(x)Sﬁ<1+A(1+p)|1—q||qk%|)a(0), x € [a, b]

j=1
According to the definition of o(x)we have a(0) = 0. Soa(x) = 0 which implies
@(x) = B(x).

Theorem 4.1.4. Letfi(x,yo(x),yl(x),---,yp(x)) be functions defined for x € (0, b],

y; € C,where 0 <j,i<p, andb > 0. Let {g;(t)}}_, be a set of g —periodic functions

such that the following conditions hold.
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a) f (x, 901(0), 91 (), -+, Gp—1 (%), g (x)) are bounded on (0, b].

b) There exist a positive constant A such that for any x € (0,b] and y,, 3. € C, the
following Lipschitz condition hold for0 < i <p .

|fi(x»}~’0;3~’1» "'ryp) - fi(nyO'yll'")yp)l < A(|3~’0 — Yol + -+ |3~’p - pr (4.36)

Moreover, there exists a point ¢ € (0, b) such that the following system
Deyi(x) = f; (2,006, 31 (), -+, 3, () (437)
Q)l(x) = gl(x) (x € (C! Cq_l])'i = 011121 'p)

has a unique solution {@i}flo which is valid in(0, c].

Proof. The proof of this theorem follows in similar way to that of the previous theorem
(4.26).
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CHAPTER 5
CONLUSION

5.1 Conclusion
In this thesis we have introduced the g-difference equations and their properties. Recently,

a lot of mathematicians work on this area and they found several forms of g-difference

equations. In (Agarwal et al, 2015 ), they consider the following g-difference equation

{Dgu(t) = f(t,u(®) + 1,9(t,u®)), tel, =[0,T]u{0},

5.1
u(0) = nu(T), D, (u(0)) = nDu(T), (>1)

which is the second order Cauchy problem and we discussed about this case in a general
form. In this case some boundary value is changed. They solved this g-difference equation
by using individual solution in a form of Jackson integral and by using this operator; they
showed existence and uniqueness of this equation. In (Ahmad et al, 2012.) and (Ahmad et

al, 2016.), they used similar methods to solve following g —difference equation as well.

{Déu(t) = f(tu@®), tel, (5.2)

u(0) = nu(T), D, (u(O)) = nDyu(T).

These investigations motivate us to solve g-difference equation with new boundary points.
In this case, we will discuss about system of g-difference equation with another boundary

value such that the above cases can be represented as a special case.
For instance, let us assume the following system of g —difference equation:

( Dyu(t) = uy(t), u(0) = nu(T),
Dguy(t) = DZu(t) = u,(t), u;(0) = Dyu(0) = nDqu(T),

Dyuy—»(t) = DI u(t) = u,—4 (1), .un—z (0) = Dg~?u(0) = nDy~*u(T),
DDy~ u(t) = g (&, u(t), Dgu(t), ..., Dp~"u(t)) Dy~ u(0) = Dy~ u(T),
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This system of g —difference equations is a general form of (5.1) and (5.2). Actually this
system demonstrates the Cauchy problem in an order n. Following proposition states the

existence and uniqueness of this system.

Proposition 5.1.1. Let E,, be a neighborhood of nDgu(T) for a fixed value of T such that

the radius of this neighbor is less than 3, also let I be an interval in around zero, In addition

let the following statements holds true:

a) For any fix value of y, in E,, function g(t, v, v5, ..., ¥,) and D(’;u(t) are continuous at

zerofork=1,..,n—1.

b) g satisfy Lipschitz condition

lg(t, y1, Y2, s Y0) — 9@&VLYZ, o0, VD < Ay =il + -+ [yn=Dnl)

wheret € I,A > 0, vy, Vi € E.

Then the given system of g-difference equations has a unique solution in a neighborhood

of zero.

Proof. Procedure of proof is exactly similar to the main theorem in a previous chapter. We
focus on a sequence of functions that reach to the solution. If we apply the same recurrence
sequences to find the solution, then we have:

nu(T), k=1,

t

Pie(6) nDg~ u(T) +f fi (t, Pox-1(0), ---<Pn,k—1(t)) det k= 2.
0

where f, =g and f;(t,u(®), ..u,(t)) = Diu(t) =w; () i =1,..n—1. Since the
fundamental theorem of calculus for Jackson integral is true, we may rewrite this sequence

by taking integral from g-derivative.

Let us focus on the special case of this system when the order of g —Cauchy problem is n,

then we have the g — difference equation with initial values as follow:
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{D:;u(t) = f (£ u(®), Du(®), .. Dy u(®)), tel,
u(0) = nu(T), D¥u(0) = nDfu(T) k=12,..n—1

According to Proposition 5.1.1, this equation has unique solution. Actually, this is the

general forms of 5.2.

Lemma 5.1.2. Following relation for interchanging the order of Jackson integral holds true

fot (va(s,u(s)) dqs> dgv = fot (fqif(s'u(s)) dqv> dys

Proof. We use the definition of Jackson integral to prove this relation. We may write the

right side of this equation as follow

f (f f(s,u(s)) dqv> dgs = f <(t —qs)(1 - q)z qif(s,u(s))> dgs
0 \Jgs 0 pr

_ Z Z t(1— )% (t — qq’t) /*if (¢t u(q’t))
i=0

I
Mg ||

21— (1- ") ¢’f (¢t u(q't))

0

-
Il

I
NgE

o o\ 1—¢g? o .
t2(1 - q)? (Z q”) - _qq (11— g'f (¢tu(e’t))

0 i=0

-
Il

Z t(1 - )? tq**f (gt u(q’t))

j=0

ot (v(l - ‘DZ J'f (a't, u(q’t))>

I
Ms

I
o

i

t

(s,u(s)) dqs> dqv

O
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Example 5.1.3. We may solve 5.2 by using the following function. Integrating the
equation DFu(t) = f(t,u(t)), we get

t
Dqu(t) = f f(s,u(s)) dgs + by. (5.3)
0
Again taking integral from (5.3) lead us to
t v
u(t) = f (f f(s,u(s)) dqs> dqv + byt + b,. (5.4)
0 0
If we change the order of integration, we lead to
t
u(t) = f (t —gs)f(s,u(s)) dys + byt + by. (5.5)
0

By substituting in the equation, we can find b, and b,.

Note 5.1.4. Previous example introduced an operator to make a successive approximation.

Indeed, the given operator could be fined by the sequences at Proposition 5.1.1.
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