

 PATH PLANNING OF INTELLIGENT MOBILE

ROBOT USING SIMPLIFIED SWARM

OPTIMIZATION ALGORITHM

A THESIS SUBMITTED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

RAWAND BASSAM ISMAIL

In Partial Fulfillment of the Requirements for

 The Degree of Master of Science

in

 Software Engineering

NICOSIA, 2017

R
A

W
A

N
D

 B
A

S
S

A
M

 P
A

T
H

 P
L

A
N

N
IN

G
 O

F
 IN

T
E

L
L

IG
E

N
T

 M
O

B
IL

E
 R

O
B

O
T

 N
E

U

 IS
M

A
IL

 U
S

IN
G

 S
IM

P
L

IF
IE

D
 S

W
A

R
M

 O
P

T
IM

IZ
A

T
IO

N
 A

L
G

O
R

IT
H

 2
0

1
7

 PATH PLANNING OF INTELLIGENT MOBILE

ROBOT USING SIMPLIFIED SWARM

OPTIMIZATION ALGORITHM

A THESIS SUBMITTED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES

 OF

NEAR EAST UNIVERSITY

By

 RAWAND BASSAM ISMAIL

In Partial Fulfillment of the Requirements for

 The Degree of Master of Science

in

 Software Engineering

NICOSIA, 2017

Rawand Bassam Ismail: PATH PLANNING OF INTELLIGENT MOBILE ROBOT

USING SIMPLIFIED SWARM OPTIMIZATION ALGORITHM

Approval of Director of Graduate School of

Applied Sciences

Prof. Dr. Nadire Çavuş

We certify this thesis is satisfactory for the award of the degree of Masters of Science in

 Software Engineering

Examining Committee in Charge:

Assist. Prof. Dr. Eser Gemikonakli Computer Engineering Department,

 University Of Kyrenia

Assist. Prof. Dr. Kamil Dimililer Electrical & Electronic Engineering

 Department, NEU

Assist. Prof. Dr. Yöney Kırsal Ever Supervisor, Software Engineering

 Department, NEU

https://neu.edu.tr/academic/faculties/faculty-of-engineering/academic-staff/assist-prof-dr-kamil-dimililer/
https://neu.edu.tr/academic/faculties/faculty-of-engineering/academic-staff/assist-prof-dr-yoney-kirsal-ever/

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by these

rules and conduct, I have fully cited and referenced all material and results that are not original

to this work.

Name, Last name: Rawand Ismail

Signature:

Date:

i

ACKNOWLEGEMENTS

I would like to thank almighty Allah for the grace that he has shown to me in this research. My

special thanks go to my supervisor Assist. Prof. Dr. Yöney Kirsal Ever, for her encouragement

and mentorship, assistance, and advice all through my research, having her as my supervisor

has been wonderful. Eventually, I would like to thank my wife for giving me all the types of

support to get this chance to carry on my education overseas at the Master level in Software

Engineering Department at NEU.

Furthermore, there is a long list of friends that I would like to thank. I can’t mention them all

but I would like to thank them from all of my heart for their valuable help and support since I

was in my early study until now.

ii

To my parents….

iii

ABSTRACT

This study examined how path planning of intelligent mobile robot could be enhanced by

utilizing simplified swarm optimization (SSO) in working environment with irregular obstacles.

The conceptual framework of this study was driven from an inspiration of communal behavior

of birds flocking and fish schooling. This conceptual framework was supported by swarm

intelligence, which is one of the famous research areas in the field of computational swarm

intelligence such as Particle swarm optimization (PSO) algorithm. Based on this, observations

have been made which signified that mobile robots are significantly affected by path planning

problems. However, solutions have been established recently on how to tackle the

aforementioned problems. Nevertheless, such solutions have also been discovered to possess

numerous weaknesses. Therefore, based on these weaknesses, this study tried to propose

effective solutions which can yield a high quality and efficient mobile robots. The technique

this research adopted was SSO. This technique was adapted in order to provide an effective

solution to the weaknesses. After careful simulations, the algorithm result showed that SSO does

not converge in the closed work interface in which there is no path between the initial and the

target point. When particle is updated SSO using social effect term only. Furthermore, the result

displayed that when the particles path falls within an obstacle space, it automatically relocated

to an area of an obstacle free. This showed autonomy and energy efficiency within the particles.

Keywords: Swarm intelligence; path planning; particle swarm optimization; intelligent mobile

robot; simplified swarm optimization

iv

ÖZET

Bu çalışma, düzensiz engeller olan çalışma ortamında ve alanında, basitleştirilmiş sürüler

optimizasyonunu (SSO) kullanarak akıllı mobil robotların yol planlamasının nasıl

geliştirileceğini incelemiştir. Bu çalışmanın kavramsal çerçevesi, kuş sürüleri ve balık sürüleri

için ortak bir davranışın esin kaynağı olmuştur. Kavramsal çerçeve; parçacık sürüsü

optimizasyon (PSO) algoritması gibi, hesaplamalı(analitik) sürü zekası alanındaki ünlü

araştırma alanlarından biri olan sürü uyumu ve aklı tarafından desteklenmiştir. Buna dayanarak,

mobil robotların yol planlama problemlerinden önemli ölçüde etkilendiğini gösteren gözlemler

yapılmıştır. Son zamanlarda yukarıda bahsedilen sorunlarla nasıl başa çıkılacağı üzerine

çözümler belirlenmiş ve saptanmıştır. Bununla birlikte, bu gibi çözümlerin çok sayıda zayıflığa

sahip olduğu keşfedilmiştir. Buradaki zayıflıklara dayanarak, çalışmada yüksek kalitede ve

verimli mobil robotlar üretebilecek etkili çözüm önerileri sunulmaya çalışılmıştır.Bu

araştırmanın benimsediği teknik basitleştirilmiş sürüler optimizasyonudur. Bu teknik zayıf

noktalara etkili bir çözüm getirmek için uyarlanmıştır. Dikkatli bir şekilde simülasyonlar

yapıldıktan sonra, algoritma sonucu, basitleştirilmiş sürüler optimizasyonun (SSO), başlangıç

ve hedef nokta arasında bir yol bulunmadığını kapalı iş ara yüzünde birleşmediğini göstermiştir.

Parçacık(partikül) güncellendiğinde basitleştirilmiş sürüler optimizasyonu (SSO) yalnızca

sosyal etki dönemini kullanmıştır. Dahası, görüntülenen sonuç; parçacık yolu bir engel alanına

düştüğünde otomatik olarak engelin bulunduğu bölgeye taşındığını göstermiştir. Sonuç olarak;

parçacıklar(partiküller) içinde özerklik ve enerji verimliliği olduğu gösterilmiştir.

Anahtar Kelimeler: Sürü zekası; yol planlaması; parçacık sürüsü optimizasyonu; akıllı mobil

robot; basitleştirilmiş sürüler optimizasyonu

v

TABLE OF CONTENTS

ACKNOWLEGEMENTS... i

ABSTRACT ... iii

ÖZET .. iv

TABLE OF CONTENTS .. v

LIST OF TABLES ... vii

LIST OF FIGURES ... viii

LIST OF ABBREVIATIONS ... ix

CHAPTER 1: INTRODUCTION .. 1

1.1 Introduction ... 1

1.2 Background to Study ... 2

1.3 Research Objectives .. 2

1.4 Organization of the Study .. 3

CHAPTER 2: LITERATURE REVIEW .. 4

2.1 Particle Swarm Optimization .. 4

2.2 Literature Review .. 5

2.3 Advantages of the Basic Particle Swarm Optimization Algorithm: 11

2.4 Disadvantages of the Basic Particle Swarm Optimization Algorithm: 12

2.2 Review Summary .. 12

CHAPTER 3: METHODOLOGY AND PROPOSED APPROACH 13

3.1 Proposed Approach ... 13

3.2 Explanation of Each Entity From Flowchart ... 17

3.2.1 Simplified swarm sptimization... 17

3.2.2 Checking for obstacles.. 17

3.2.3 Evaluation fitness function... 18

vi

3.2.4 Finding the individual (particle) and global best location.. 20

3.2.5 Calculate new velocity and position... 21

3.2.6 Check and modify infeasible path... 22

3.3 Numerical Example of One Iteration .. 23

CHAPTER 4: RESULTS AND DISCUSSION ... 27

4.1 Algorithm Parameters .. 27

4.2 The Implementation of SSO in Path Planning .. 27

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS 34

5.1 Conclusion ... 34

5.2 Recommendations ... 35

REFERENCES .. 36

APPENDIX: Source Code .. 39

vii

LIST OF TABLES

Table 3.1: Start and target point, grid size, number of obstacles.. 13

Table 4.1: Algorithm variables... 27

Table 4.2: Simulation results for the working environment using PSO and SSO.............. 28

Table 4.3: Simulation results for the working environment using SSO algorithm............. 33

viii

LIST OF FIGURES

Figure 3.1: Working environment.. 14

Figure 3.2: Main flowchart... 15

Figure 3.3: Flowchart for checking obstacles... 17

Figure 3.4: Flowchart for fitness calculation.. 19

Figure 3.5: Finding the particle and global best location... 20

Figure 3.6: Flowchart for modify feasible path.. 22

Figure 4.1: Using PSO (5 point)... 29

Figure 4.2: Using SSO (5 point)... 29

Figure 4.3: Using PSO (6 point)... 30

Figure 4.4: Using SSO (6 point)... 30

Figure 4.5: Using PSO (7 point)... 31

Figure 4.6: Using SSO (7 point)... 31

Figure 4.7: Using PSO (8 point)... 32

Figure 4.8: Using SSO (8 point)... 32

ix

LIST OF ABBREVIATIONS

ABC: Artificial Bee Colony.

ACO: Ant Colony Optimization.

BFO: Bacteria Foraging Optimization.

AIS: Artificial Immune System.

ANN: Artificial Neural Networks.

FIPS: Fully Informed Particle Swarm optimization algorithm.

FL: Fuzzy Logic.

GA: Genetic Algorithm.

GCPSO: Guaranteed Convergence Particle Swam Optimization.

NF: Neuron-Fuzzy.

SI: Swarm Intelligence.

PSO: Particle Swam Optimization.

SSO: Simplified Swarm Optimization.

MPSO: Multi-start Particle Swarm Optimization.

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

The academic research fraternity has been characterized by vast studies that sought to address

how mobile robots are being impacted by path planning problems. This commenced in the mid-

1970s. Despite the proposition of numerous solutions, discoveries made contend that such

solutions have inherent weaknesses and strengths. Thus, the decision to produce a sound

solution in research hinges on efforts to attain high efficiency and quality (Yun, Ganapathy and

Chong, 2010). Hence, satisfactory results from a path can be obtained when hindrances in local

minimum positions, unrequired procedures and wastage of time are minimized by the robot. In

addition, a satisfactory path is the one that eradicates all obstacles in the area (Han, 2007).

Mohanty and Parhi (2013) contends that there are numerous strategies that can employ in

navigating an intelligent mobile robot. Their study also exhibited that (AIS) an acronym for

Artificial Immune System, Particle Swam Optimization (PSO), Genetic Algorithm (GA),

Neuron-Fuzzy (NF), Artificial Neural Networks (ANN), Ant Colony Optimization (ACO) and

Fuzzy logic (FL) which constitute part of heuristic approaches are capable of offering highly

probable and effective mobile robot navigation results (obstacle-avoidance and target reaching).

Thus, heuristic approaches enable the mobile robots to navigate reliably among the obstructions

without knocking them and thereby moving to their predefined destination point. Such

approaches are indispensable in addressing the local smidgens delinquent. Scholars have

immensely been looking for supplementary productive approaches in order to tackle this issue

relating to accompanying area, prior studies on path planning and robot’s navigation utilizing

molecule swarm are inspected. Raja and Pugazhenthi (2012) gave a review of research progress

about on-line and offline environments and mobile robot path planning.

Ordinarily utilized exemplary and developmental methodologies of path planning of mobile

robots have been deliberated, and demonstrated that the transformative algorithms are

2

computationally proficient. Similarly, challenges required in building up a computationally

effective path planning algorithm are tended to. According to Zhao and Zu (2009), they

proposed a modified particle swarm optimization algorithm for the robot path planning in

vigorous atmosphere; two parameters of distribution degree in relation to particles and

dimension and distance in relation to particle were presented into the recommended algorithm

in order to circumvent untimely conjunction. Furthermore, Ahmadzadeh and Ghanavati (2012)

proposed an understanding way to deal with the triangulation of mobile robots in obscure

situations, the triangulation problem develops to an optimization problem and it was later

comprehended by a PSO algorithm. In view of the position of the objective, an assessment work

for each element in PSO is ascertained. It is accepted that robots can distinguish just hindrances

in a constrained range of its sensors. It is worthy to note that the hindrances can be portable and

dynamic but the environment should be dynamic.

1.2 Background to Study

Path planning algorithms can be categorized into two distinct elements; these are the local

(confined) path planning (on-line) and global (universal) path planning (off-line). Advance

awareness of trajectory of moving obstacles and stationary obstacles is always available in

global path planning of robots in environments such that the robot initially assesses the desired

path and confines to it until it reaches its destination. But in local path planning, all information

is not available in advance.

1.3 Research Objectives

This study examines the use of Simplified Swarm Optimization (SSO) in order to deal with the

issue of mobile robot triangulation (navigation). This issue for ascertainment is the most

productive mode which requires least time and shortest path in order to move from a starting

locus to an objective locus in relation to environment with haphazard circumstances.

3

1.4 Organization of the Study

This study is organized into five chapters:

Chapter 1: Provides introductory insights about the study.

Chapter 2: Deals with related theoretical and empirical literature review.

Chapter 3: The methodological procedures that were employed in this study so to arrive at

study findings and offer recommendations are addressed.

Chapter 4: Simulations and results of study findings is given.

Chapter 5: Concludes this study by looking at conclusions, recommendation and suggestions

for future work.

4

CHAPTER 2

LITERATURE REVIEW

2.1 Particle Swarm Optimization

To understand or have a clear understanding of what particle swam optimization algorithm,

resolution swarm differs and have different criteria with bird swarm optimization process, the

birds’ navigating from point A to point B is employed in the improvement of resolution swarm,

while, ad-hoc communication is necessary in solving most utopian solution, the location of the

target address is equivalent to the most utopian resolution during the whole sequence. Casually,

the main address of the target address or in our case utopian resolution is determined by

controlled collective sustenance which is the main idea of swarm optimization algorithm which

is founded by collective progress to try and achieve a desired goal (Dos Santos et.al., 2011).

According to Trelea 2003, the Particle swarm optimization is a technique in which each node

behavior in the network is aimed at achieving a collective goal of the swarm as a group. In PSO,

a problem is solved by following or moving in a collective manner (Zhao and Zu, 2009). Every

particle or node in the swarm is aware of its location and coordinates regarding to the problem

statement and try to find the best or optimized option to the problem (Shiltagh and Jalal, 2013).

This is termed or referred to as pbest. Similarly, another optimization value that is used in

measuring particle swarm optimization is the best value, also another value is lbest which is

obtained by choosing the best and closest node. And finally, the node or a particle that has the

highest population of neighbors in its topological location is called global best and is termed

gbest (Shiltagh and Jalal, 2013).

The definition of PSO consists of time interval, requires change in velocity and acceleration,

every node is linked to the pbest, lbest. Movement is by nodes is autonomous, which is

distinguished by the figure of nodes at risks of acceleration using the pbest, lbest locations.

When the optimized values are found, the nodes retrieves the velocity, points using the given

equation (see Equation 1.1).

5

Vi(k+1) = Vi(k) + c1* rand() * (Pi(k) - Xi(k)) + c2* rand() * (g(k) - Xi(k)) (1.1)

Xi(k+1) = Xi(k) + Vi(k+1) (2.1)

 where

 Vi(k) is velocity of particle i at iteration k.

 Xi(k) is the position of particle i at iteration k.

 Vi(k+1) is new velocity of particle i at iteration k+1.

 Xi(k+1) is the new position of particle i at iteration k+1.

 rand() is random variable with number between (0,1).

 c1 local acceleration coefficient.

 c2 global acceleration coefficient.

 usually c1 = c2 = 2.

The main idea is designing an algorithm that can effectively address various optimization

problems.

2.2 Literature Review

In this section, existing Particle Swarm Optimization are discussed in detail. One of the existing

studies established by Russell Eberhart and James Kennedy (1995) revealed that the existence

of concept of a particle swarm optimization with reference. However, analyzing the steps of its

advancement from communal simulation to optimization standard, and subsequent presentation

offers some of the limited procedures that can be adopted to execute the concept (Yun,

Ganapathy and Chong, 2010).

The adoption of one model is presented in enhanced detail, accompanied by conclusions

gathered from applications and tests superimposed on the model or criterion and these been

established to operate successfully. Eberhart and Kennedy (1995) further proposed a distinct

model of the particle swarm optimizer and they explored on how shifting in relation to paradigm

transmute the expanse of restatements needed to reach a maximum error that can be handled,

and each node is reused to find a global minimum in the swam (Han, 2007).

6

Based on this context, three accounts were examined, two samples types of lbest form, one node

has two neighbors and the latter node having six neighbors as an assessment criteria. It seems

that the primary GBEST form functions with regards to number of recapitulations to nodes

becoming unified, as the lbest is created by creating two or more repellent nodes in confined

minimal space (Shi, 2001). Observations have been made that the hunt for a PSO procedure

without the initial segment is a procedure where the search space factually declines through the

eras (Zhao and Zu, 2009). Then again, by including the initial segment, the particles tend to

increase the space. That is, they can examine a new area. Along these lines, they have a more

probable potency to undertake a worldwide search capacity by including the initial segment.

Both the global and local searches are important in addressing similar complications.

A trade off exists between universal and confined discovery for diverse situations, a unified

solution to the diverse stabilities among the confined discovery criteria of and universal

discovery ability. In relation to this, Mohanty and Parhi (2013) established that Yuhui et al, 1998

proposed the inertia weight is represented by (w) into the Equation (1.1) as shown in Equation

(1.2).

Vi(k+1)= w * Vi(k) + c1* rand() * (Pi(k) - Xi(k)) + c2* rand() * (g(k) - Xi(k)) (1.2)

Xi(k+1) = Xi(k) + Vi(k+1) (2.2)

Researches has shown that a substantial latency weight encourages worldwide investigation

(snew zones discovery), few among the nodes has a tendency of conducting within searches, i.e.

calibrating the present search point of interest. In PSO, the area merged is termed as local well

comprising a local minimum, initially it may look like a trustworthy as an escape route be a

promise because it is kind of force incorporated into the process by means of the forces within;

periodically, in any case, particles momentum declines reaching a low stage making the swarm

fall into a situation known as stagnation, making it harder for the swarm to breach the algorithm

difficult to escape. Casually, few nodes proceed in this state which triggers a case known as

“solution refinement” or use taking after an underlying period of exploration has elapsed,

empirical observations have been shown that sufficiently with time variant, velocities turn out

to be small at their point of normal rate of reduction, even the closest arrangement might be

7

wiped out of the segment of the space provided for the search, thus particles can for all intents

and purposes be relied upon to achieve the goals in future recapitulations. In conventional

Particle Swarm Optimization, in the absence of a universal algorithm to be established by a node

molecule for quite a while, all nodes focalize broadcast the present universal best, perhaps taking

out which is the closest neighborhood minimizer. Raja and Pugazhenthi (2012) contend that this

has been addressed the Guaranteed Convergence PSO (GCPSO) which utilizes an alternate

speed redesign the algorithm to be suit the best particle, though it has its own particular best,

universal best both lie at a comparative opinion, theoretically in standard Particle Swarm

Optimization employs the limits of the node that the best optimization, since it is unequivocally

drawn toward that specific location, it possess an incapacitating energy, expanding velocities

toward that point keeping it searching by any extend of the creative ability (Raja and

Pugazhenthi, 2012). GCPSO is along these lines said to guarantee joining to a neighborhood

minimizer. There is still an issue, in any case, in which nodes are bound to join a neighborhood

which limits the number of occurrence before encountering a certifiable universal limiter.

Regards to this, Van proposed in give in Bergh made multi-start PSO (MPSO) basically initiate

a restart when stagnation is initiated (Zhao and Zu, 2009).

Restarting in MPSO implies starting another hunt with a substitute assembling of irregular

numbers created so that even beginning positions are not the same as it its initial past ventures.

When restarted, nodes forget their record of its initial past inquiry eventually each inquiry is

self-ruling from those did before. After each node discovery, a universal best tested to compare

its efficiency with the previous global best discoveries. A defined number of restarts is set and

completed, the node with the best universal search is proposed of the test sample. Different

leveled type of PSO metaheuristic was proposed by Stefan et al in 2005 (Ahmadzadeh and

Ghanavati, 2012). With the new proposal termed as H-PSO, the nodes neighborhoods are being

engineered in a newly dynamic chain of significance which is used to describe a zone formation.

Dependent upon how their so-far best is discovered and takes course of action, the node climb

or degrade the dynamic system. Thus, making remarkable nodes that roam in the dynamic

system of greater effect on the swarms at large. Propose a variety of H-PSO, in which the

structure is effectively balanced even with midst of the execution of the optimization. Another

8

variety is how can it be dole out different approach to the each node with regards to its level in

the ascending order.

Propositions thus sought to enhance the performance of H-PSO by examining a progressively

advancing expanding level of the tree topology of a variation of H-PSO (AH-PSO). An

alternative option that can be employed to increase in H-PSO is to utilize particular qualities of

the first weight (w) of the nodes as per each stage in the packing order. This algorithm has

proved that it can be used to accomplish a categorized goal for various test work with exemption

of Rastrigin work progressively than each and every variety of Particle Swarm Optimization.

Yang and Simon (2005) proposed a substitute procedure aimed at a prevalent course of action.

In the proposed New PSO Technique introduced here, each node changes location in perspective

of its own past most exceedingly most noticeably awful answer and its gathering's past most

observably terrible to find perfect esteem. The procedure here is to avoid a particle's past most

exceedingly terrible organization and its grouping's past most observably most exceedingly bad

in light of similar formulae of the general PSO. The condition for position and speed proceeds

as before, nevertheless the term used is more abysmal position instead of the node. Particle

Swarm Optimization has proven to be handy in its quick discovery in a couple of mind boggling

inquiry and enhancement interferences. Moreover, Particle Swarm Optimization usually consist

of neighborhood optimization techniques.

To achieve a superior elucidation, Wang et al. (2007) suggested resistance which is based upon

PSO. OPSO aims in fortifying the haphazard of Particle Swarm Optimization and avert early on

multi-modal capacities. Konar (2000) recommended a procedure that exploits constraint relied

learning on every node and relates ad-hoc Cauchy joining on the best node. A few test shows

that nodes in the Particle Swarm Optimization will permits inside their aforementioned best

node and universal best node by the entire node prior to joining them. One of the differences

that the inquiring about the nodes that are close to the best node are included every hierarchy

will draw out the area within confinement with best node. It is precarious for nodes in the swarm

to broadcast for better positions. This is actualized by having Cauchy's transformation on the

whole node which is regarded as the best node in the swarm. A PSO was proposed by Montes

and Stutzle (2008) as informed particle swarm optimization algorithm (FIPS) as a sensitive to

9

discrepancies in the population network (Atyabi, et.al., 2010). The velocity upgrade rule utilized

as a part of the FIPS considers every one of the nearby nodes to redesign its speed and not just

the one with the highest speed as observed with different results. Tests have shown that an

arbitrary demonstration of the node collectiveness when a completely associated network is

connected. Thus, frequent dispute may portray a frequently obtained low outcome from the

algorithm in accordance to the situation. Also, literature has proven to be appropriate in little

discovery areas. An extended H-PSO (AH-PSO) which possess a rapid changing extensions

level of the tree topology was showcased which improves execution of H-PSO. Similarly,

another augmentation of the H-PSO is the ability to utilize distinctive qualities of the initial

number of nodes with reference to the number in the hierarchy. Test have shown that the said

algorithm can attained a precedent objective for each test function (aside from the Rastrigin

formula) faster than any other variation of Particle Swarm Optimization. Chunming et al. (2005)

built up another ideal approach to optimize results.

In the proposed newly structured new PSO technique suggested herein, every molecule changes

to its position as per its own past most exceedingly bad solution and its group’s past most

exceedingly bad to locate the optimal value esteem. The solution here is to maintain a strategic

distance from a particle's past most noticeably bad solution and its group's past most exceedingly

worst in light of comparative optimization of the consistent Particle Swarm Optimization.

Conditions for speed and location stay unchanged, however the optimization is utilized in worst

position instead of the best one. PSO has showcased the rapid quick discovery in a convoluted

enhancement. Notwithstanding, Particle Swarm Optimization may effectively vary in local

optimization. To obtain superior results, Wang et al. (2007) proposed a PSO which is based on

opposition criteria, thus naming it OPSO, OPSO aims in fastening the merging of Particle

Swarm Optimization and avert early haphazard of its multi-modular abilities. Konar (2000)

show cases techniques that utilizes learning that is funded by opposition for every nodes and

implements unanimous Cauchy commute on the best node. A few tests shows how particles in

Particle Swarm Optimization will bridge across the best node and global best particle found by

all the particles before it merges. On the differences that exists between the discovering closest

to the global best nodes are included in every tree, it would expand the discovery span of the

best node. Carefully, its implemented using the entire node to move to the better locations. This

10

can be refined by obtaining the Cauchy's bridge across the global best node in each tree. Montes

de Oca and Stutzle (2008) developed a fully informed particle swarm optimization algorithm

(FIPS) that was is more prone to variations in population topology (Atyabi, Phon-Amnuaisuk

and Ho, 2010). All the neighbors of a particle expressed by the FIPS and in most variants, it is

presumed to frequent its speed rather than the best as postulated by the velocity update rule.

When subjected to a full topology, this rule will cause the particle swarm to begin to behave

randomly. In line with such an observation, it can be utilized to offer explain about the

algorithm’s observed poor performance. Additionally, it is more applicable to small search

regions. As a result, a particle swarm optimization (PSO) algorithm with numerous variants is

advisable. Divergences among variants are attributed to the presence of an optimized formula

in only one sample.

In consequence, Montes de Oca and Stutzle proposed that refinements be made in 2009 to the

new PSO and this was achieved through research on numerous Particle Swarm Optimization

samples based on component types point of view (Dutta, 2010). Consequently, the composite

algorithm Frankenstein’s PSO was developed and this new PSO algorithm constituted of various

algorithmic components through an investigation on optimization speed and reliability. The

algorithm components had inherent significant benefits in which several changes to the primary

(PSO) algorithm are made. In various occasions, a distinction between two types are caused by

the presence of an algorithmic element being only available in one variant. Ultimately, a new

PSO was established and the acquired ideas and were based on empirical studies of various PSO

samples analyzed (Dutta, 2010). The latter section, therefore offers a new optimized PSO

algorithm which is developed from numerous algorithmic elements. This is what has been

termed the composite algorithm Frankenstein’s PSO and has attracted favor as it offered

significant benefits in experimental investigations. The PSO developed by Frankenstein is made

of three main algorithmic components which are as follows:

 Dynamics in time population tree that diminishes QOS over time.

 FIPS contrivance for renewing node’s speed.

 A decreasing inertial weight.

11

The elements derived are generated from decreasing the initial weight sample, FIPS and

AHPSO. The initial sample is added as a catalyst that enhancing the differences between

velocity, quality characterized by the changes in different connectivity measures. Another

element that was utilized because the examination exhibited in FIPS includes sore optimization

that can supers the performance with regards to various connectivity parameters. Lastly, the

declining weight constituent integrates in an augmented way to support the discoverable

behavior of the optimization process. PSO in recent research has shown how it succumb to

unproductivity when nodes have early convergence to any specific area in the point of discovery.

A new regrouping Particle Swarm Optimization (RegPSO) which averts the implement issue by

dynamically initiating swarm regrouping, although early haphazard is observed was thus

proposed (Saska, Macas, Preucil, and Lhotska, 2006). This tool disengages nodes facilitates

continuous increase towards dynamic positioning. Nodes are rearranged within a specified area

on every width equivalent to the extent of uncertainty suggested with the highest variation nodes

from the collection of best nodes. When discovered, any early occurrence, the numbers in which

nodes are to be rearranged the best is determined when the minimum of:

 An initial amount of the discovery location on dimension.

 The product of the rearranging element with the highest distance along dimension j of

any node from the overall best.

2.3 Advantages of the Basic Particle Swarm Optimization Algorithm:

 Particle Swarm Optimization is based upon intelligence as it backbone, it is implemented

in scientific research point of interest to try and simplify problems that have scenarios

that has to be with group of swarms.

 Particle Swarm Optimization has no evident cases of mutation in it inner algorithms,

optimization can be done using vectors like speed, mobility, communication among

others.

 Particle Swarm Optimization implements a case where codes can be translated into

solutions.

12

2.4 Disadvantages of the Basic Particle Swarm Optimization Algorithm:

 PSO has setbacks which include optimism which arises from less correct guidance of

the nodes speed and direction.

 PSO won’t be able to suffice scenarios where the nodes are dismantled from swarm or

collective optimization.

 PSO can’t be employed when the systems is disfigured, lack of coordination, energy

resources and conservation.

2.5 Review Summary

The conventional techniques frequently fail to solve and provide solutions for optimization

problems that have many local and confined ideals. In order to tackle these problems, there is a

desire to invent more effective optimization techniques. Examples of the most popular

population based optimization techniques include;

 Particle swarm optimization (PSO),

 Genetic algorithm (GA),

 Bacteria foraging optimization (BFO),

 Artificial bee colony (ABC),

 Ant colony optimization (ACO) etc.

For the sake of this research PSO algorithm is going to be chosen for the optimization algorithms

in order to examine its nodes mobility and velocity, path discovery and its autonomy. This is

because the particle’s size has been chosen on the base of experimentation, to study tries to

implement SSO optimization, the recommended optimization technique has traces of connected

workplace to locate an ideal path.

13

CHAPTER 3

METHODOLOGY AND PROPOSED APPROACH

3.1 Proposed Approach

Numerous immobile complications were enunciated by 2D, also known as two dimensional

square guides which was enunciated by a network based model in relation to mobile robot

environment. This is overlaid on an enduring case of framework core interests. Cross section

based model makes the most of the partition and representation of tangle less requesting. To

check the ampleness of the SSO, the reenactment has been associated with the working

environment which is shown in Figure 3.1. As appeared in the figure, the systems network

deterrent where mobile robot can change position freely. The path used has no unit for

measurement which can symbolize individuality within the cells. The blue circle in the

environment shows beginning and end of path. The grid size and the directions of the beginning

and target point with number of obstructions are showed up in Table 3.1.

Table 3.1: A table showing start and target point, grid size, number of obstacles

Start point

[unit]

Target point

[unit]

Grid size

[unit]

Number of

obstacles

X=0 , Y=0

X=23 , Y=30

23 × 30

50

14

Figure 3.1: Working environment

15

Figure 3.2: Main flow chart

Checking for

obstacles

Calculate fitness

value

Calculate new velocity

& position

Check and modify

infeasible path

𝑔𝑏𝑒𝑠𝑡 = Target

Display result

End

No

Yes

Start

Creating point

Find particle and

global best

location

Input: swarm size, number of

particles, number of iteration, number

of obstacles, start and target point

16

Figure 3.2 is a flowchart which shows the detailed steps and process of how an SSO algorithm

operates. A value is assigned for each variable swarm size which contain X and Y axis

respectively (swarm X and swarm Y), while the values for both swarm size were initialize

randomly. Furthermore, the number of particles signifies how many points the swarm have to

pass from the initiation point to the target point. While number of alterations signifies how many

iterations were assigned for the particle swarm to choose the best value among iterations.

The number of obstacles indicates how many obstacles are there within the working

environment, while navigating from the initial point to the target point. Within the working

environment, for the robot to navigate, there is an initial and target point for the navigation.

Subsequently, after inputting the values and defined the variables, a point will be created for the

robot to navigate and find its path within the working environment. A conditional statement will

be use to check, weather there is an obstacle or not at each single point, if there is an obstacle, a

new point has to be provided through the best neighborhood of X_direction (axis) and

Y_direction (axis). The subsequent step is to calculate the distance between each point in which

the robot passes through from the initial to the target point while navigating.

The distance between each point will be the sum of every iteration, while the distance from all

iteration will be compared in order to find the list number for determining the best position

(pbest) for the particle, and that best position with smallest number will be regarded as global

best position (gbest) for swarm. However, there is a need to find a new position. In finding new

positon, there is a need to find new velocity for X_direction and Y_direction which will

determine the new position for each particle. The subsequent step is to check for infeasible path.

This will determine whether the path is feasible for robot or not, this will help to find out either

to increment or decrement X by one point, or increment or decrement Y by one point, vice versa.

Furthermore, point addition will be made for both X and Y swarm. There will be continues

iteration until global best position is equivalent to the target point. After that, the best vale will

be displayed and that will end the process.

17

3.2 Explanation of Each Entity From Flowchart

3.2.1 Simplified swarm optimization

The initial locus of every particle is also the beginning stage of the path. The principal locus and

haste of every particle is produced haphazardly, however constrained to the limits of the search

boundaries. The coordinates of start and goal points are xs, ys and xg, yg respectively.

3.2.2 Checking for obstacles

While particles explores through the pursuit space from existing position to new position, a

conditional statement is utilized to check if the following point is obstacles or not, the condition

check, if the X_direction of point equal to XOPS and Y_direction of point equal to YOPS if the

condition is true then change the position of particle and if condition false add point to swarm

X and swarm Y, are shown in Figure 3.3.

Figure 3.3: Flowchart for checking obstacles

Start

Input: point, XOPS,

YOPS

𝑥𝑛𝑒𝑤==XOPS &&

𝑦𝑛𝑒𝑤==YOPS

Change position of

particle

Add point to swarm X

and swarm Y
End

𝑥𝑛𝑒𝑤=𝑥𝑜𝑙𝑑 +1 or 𝑥𝑛𝑒𝑤=𝑥𝑜𝑙𝑑 −1

Or

𝑦𝑛𝑒𝑤=𝑦𝑜𝑙𝑑 +1 or 𝑦𝑛𝑒𝑤=𝑦𝑜𝑙𝑑 −1

No

Yes

18

3.2.3 Evaluation fitness function

The path of the particles are viewed and surveyed inside each movement. Assessment capacity

is used to give a measure of how particles have implemented in the issue based on space. In the

SSO, dual parameters (the time and an amount space between two points) determined by the

particle are utilized to compute the particle fitness (𝑝_𝑓𝑖𝑡𝑛𝑒𝑠𝑠). Since the fitness should augment

as the partition and time reduce the fitness capacity is assessed as:

𝑝_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1 (𝑤𝑑 ∗ 𝑑(𝑝𝑖, 𝑝𝑖+1) + 𝑤𝑡 ∗ 𝑡(𝑝𝑖, 𝑝𝑖+1))⁄ (1.3)

From the equation; 𝑤𝑑 and 𝑤𝑡 are factor for distance in relation to weight and time of

travel, 𝑑(𝑝𝑖, 𝑝𝑖+1) signifies Euclidean distance concerning point 𝑝𝑖 to then point 𝑝𝑖+1 for same

particle and 𝑡(𝑝𝑖, 𝑝𝑖+1) denotes time taken by the particle to cover from 𝑝𝑖 to 𝑝𝑖+1 :

 𝑑(𝑝𝑖, 𝑝𝑖+1) = √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2 (2.3)

𝑡(𝑝𝑖, 𝑝𝑖+1) = 𝑑(𝑝𝑖, 𝑝𝑖+1) 𝑣𝑖⁄ (3.3)

Where 𝑥𝑖 and 𝑦𝑖 signifies particle’s parallel and perpendicular locus, 𝑥𝑖+1 and 𝑦𝑖+1 are particle’s

next parallel and perpendicular locus, and 𝑣𝑖 means the speed of the particle when venturing out

from 𝑝𝑖 - 𝑝𝑖+1. The computation of fitness amount is assessed by flowchart appeared in Figure

(3.4).

19

Figure 3.4: Flowchart for fitness calculation

Start

Input: two points of particle

(current , next), velocity of particle,

weighting factors

Calculate Current point and next point to find distance,

Using equation (2.3)

Calculate each distance with velocity to find required time,

Using equation (3.3)

Calculate fitness for each particle,

 Using equation (1.3)

End

20

3.2.4 Finding the individual (particle) and global best location

The particle's sum of distance appreciation is considered at amongst present and new area at

every iteration to decide the best position (𝑝𝑏𝑒𝑠𝑡) for every particle and the particle with the best

sum of distance appreciation is allotted as the universal best (𝑔𝑏𝑒𝑠𝑡), as outlined by the flowchart

appeared in Figure (3.5).

Input: sum of distance for each iteration, swarm size, pbest size, gbest size

sum itr i-1 > sum itr i

YES NO

𝑝𝑏𝑒𝑠𝑡= sum itr i 𝑝𝑏𝑒𝑠𝑡= sum itr i-1

𝑔𝑏𝑒𝑠𝑡= 𝑝𝑏𝑒𝑠𝑡 with minimum value

End

Start

Figure 3.5: Finding the particle and global best location

21

3.2.5 Calculate new velocity and position

The algorithm of SSO was introduced with various particles and afterward search for ideal. The

locus of a particle is affected by the finest locus went to without anyone else's input which is

alluded to as particle best “𝑝𝑏𝑒𝑠𝑡”, and the best locus in the entire swarm which is alluded to as

the global best”𝑔𝑏𝑒𝑠𝑡”. A particle overhauls its locus and velocity utilizing the supplementary

Equations (4.3 & 5.3).

𝑣𝑥2 = w ∗ vx1 + c1 ∗ r1(p𝑏𝑒𝑠𝑡 − x1) + c2 ∗ r2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥1) (4.3)

vy2 = w ∗ vy1 + c1 ∗ r1(p𝑏𝑒𝑠𝑡 − y1) + c2 ∗ r2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑦1) (5.3)

From the equation (4.3 and 5.3), the paricle segment (p𝑏𝑒𝑠𝑡 − x1) connotes the particles possess

understanding as to where the best outcome is and the social segments, (p𝑏𝑒𝑠𝑡 − y1) signifies

the conviction of the whole swarm as to where the best arrangement is 𝑣𝑥2 and 𝑣𝑦2 are the

effective particle's velocity. 𝑣𝑥1 , 𝑣𝑦1 and 𝑥1 , 𝑦1 are current particle’s velocity and position

along x and y-direction respectively. Overhauling speeds is the way that empowers the particle

to look around its particular best locus and global best locus.

Individual factor, c1 and swarm certainty factor, c2 makes particles have the function of personal

instantaneous and figure out how to the best of swarm, and draw near to the best position of its

own and also inside the swarm. The inertia weight (w) this term fills in as a memory of past

velocity and it utilized to control the effect of the past velocity on the present velocity. The

estimation of inertia weight (w) is in the scope of [0,1]. r1 and r2 arbitrary numbers inside the

interval [0, 1]. Updated equation (4.3 and 5.3) for SSO to Equation (6.3 and 7.3).

𝑣𝑥2 = w ∗ vx1 + c2 ∗ r2(𝑔𝑏𝑒𝑠𝑡 − x1) (6.3)

vy2 = w ∗ vy1 + c2 ∗ r2(𝑔𝑏𝑒𝑠𝑡 − y1) (7.3)

22

3.2.6 Check and modify infeasible path

After finding a new point a conditional statement is used to check all the points if the point is

obstacles or not if condition true replaces point and path become feasible if condition is false

then the path is feasible.

Figure 3.6: Flowchart for modify feasible path

Start

Input: new point for

particle

𝑥𝑛𝑒𝑤 =XOPS &&

𝑦𝑛𝑒𝑤 =YOPS

Feasible path

No

𝑥𝑛𝑒𝑤=𝑥𝑛𝑒𝑤 +1

𝑥𝑛𝑒𝑤=𝑥𝑛𝑒𝑤 −1

𝑦𝑛𝑒𝑤=𝑦𝑛𝑒𝑤 +1

𝑦𝑛𝑒𝑤=𝑦𝑛𝑒𝑤 −1

Yes

End

23

3.3 Numerical Example of One Iteration

1 18 22 5 6

1

5

14

Start point = (0 , 0)

Target point = (23 , 30)

P1 = (1 , 1) point of swarm x and swarm y

P2 = (18 , 6) point of swarm x and swarm y

P3 = (22 ,11) point of swarm x and swarm y

P4 = (5 ,29) point of swarm x and swarm y

P5 = (6 ,14) point of swarm x and swarm y

1 6 11 29 14

1

1

30

1

2

20

Swarm X Swarm Y

XOPS YOPS

1

2

50

Swarm size

(20 , 5)

Number of

obstacles (50 , 1)

24

 𝑝𝑠𝑡𝑎𝑟𝑡 → 𝑝1 → 𝑝2 → 𝑝3 → 𝑝4 → 𝑝5 → 𝑝𝑡𝑎𝑟𝑔𝑒𝑡

P1 = (1 ,1)

𝑥1 = 1 , 𝑦1 = 1 this point is obstacles

𝑥1𝑛𝑒𝑤 = 𝑥1+1

𝑥1𝑛𝑒𝑤 = 1+1 = 2 then the point changes to (2 , 1)

Or

𝑦1𝑛𝑒𝑤 = 𝑦+1

𝑦1𝑛𝑒𝑤 = 1+1 = 2 then the point changes to (1 , 2)

Now P1 = (2 , 1)

𝑑1(Pstart ,P1) = √(𝑥𝑝1 − 𝑥𝑝start)2 + (𝑦𝑝1 − 𝑦𝑝start)2

𝑑1(Pstart ,P1) = √(2 − 0)2 + (1 − 0)2 = 2.2

𝑑2(P1 ,P2) = √(𝑥p2 − 𝑥𝑝1)2 + (𝑦𝑝2 − 𝑦𝑝1)2

𝑑2(P1 ,P2) = √(18 − 2)2 + (6 − 1)2 = 16.7

𝑑3(P2 ,P3) = √(𝑥p3 − 𝑥𝑝2)2 + (𝑦𝑝3 − 𝑦𝑝2)2

𝑑3(P2 ,P3) = √(22 − 18)2 + (11 − 6)2 = 6.4

𝑑4(P4 ,P3) = √(𝑥p4 − 𝑥𝑝3)2 + (𝑦𝑝4 − 𝑦𝑝3)2

𝑑4(P4 ,P3) = √(5 − 22)2 + (29 − 11)2 = 24.7

𝑑5(P5 ,P4) = √(𝑥p5 − 𝑥𝑝4)2 + (𝑦𝑝5 − 𝑦𝑝4)2

Using equation of

distance to find

distance between

two points

25

𝑑5(P5 ,P4) = √(6 − 5)2 + (14 − 29)2 = 15.03

𝑑6(Ptarget ,P5) = √(𝑥ptarget − 𝑥𝑝5)2 + (𝑦𝑝target − 𝑦𝑝5)2

𝑑6(Ptarget ,P5) = √(23 − 6)2 + (30 − 14)2 = 23.3

𝑝𝑎𝑡ℎ𝑑𝑖𝑠𝑡 = ∑ 𝑑𝑖 = 88.33

For Particle Swarm Optimization (PSO)

New velocity for X

𝑣𝑥1𝑛𝑒𝑤 = 𝑣𝑥1 + 2 ∗ 𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥1) + 2 ∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥1)

𝑣𝑥1𝑛𝑒𝑤 = 1 + 2 ∗ 0.2(30 − 2) + 2 ∗ 0.3(12 − 2) = 18.2

New position for X

𝑥1𝑛𝑒𝑤 = 𝑥1𝑜𝑙𝑑 + 𝑣𝑥1𝑛𝑒𝑤

𝑥1𝑛𝑒𝑤 = 2 + 18.2 = 20.2

New velocity for Y

𝑣𝑦1𝑛𝑒𝑤 = 𝑣𝑦1 + 2 ∗ 𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑦1) + 2 ∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑦1)

30

43.2

93

88.33

28.1

12

30

28.1

12

Path_dist

Itr i-1

Path_dist

Itr i

Pbest

Gbest=12

1

2

20

Sum of distance

between points

Iteration, Particle

best position, Global

best position with

size (20 , 1)

26

𝑣𝑥1𝑛𝑒𝑤 = 1 + 2 ∗ 0.2(30 − 1) + 2 ∗ 0.3(12 − 1) = 19.2

New position for Y

𝑦1𝑛𝑒𝑤 = 𝑦1𝑜𝑙𝑑 + 𝑣𝑦1𝑛𝑒𝑤

𝑦1𝑛𝑒𝑤 = 1 + 19.2 = 20.2

New point (𝑥1𝑛𝑒𝑤 , 𝑦1𝑛𝑒𝑤) = (20.2 , 20.2)

For Simplified Swarm Optimization (SSO)

New velocity for X

𝑣𝑥1𝑛𝑒𝑤 = 𝑣𝑥1 + 2 ∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥1)

𝑣𝑥1𝑛𝑒𝑤 = 1 + 2 ∗ 0.3(12 − 2) = 7

New position for X

𝑥1𝑛𝑒𝑤 = 𝑥1𝑜𝑙𝑑 + 𝑣𝑥1𝑛𝑒𝑤

𝑥1𝑛𝑒𝑤 = 2 + 7 = 9

New velocity for Y

𝑣𝑦1𝑛𝑒𝑤 = 𝑣𝑦1 + 2 ∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑦1)

𝑣𝑥1𝑛𝑒𝑤 = 1 + 2 ∗ 0.3(12 − 1) = 7.6

New position for Y

𝑦1𝑛𝑒𝑤 = 𝑦1𝑜𝑙𝑑 + 𝑣𝑦1𝑛𝑒𝑤

𝑦1𝑛𝑒𝑤 = 1 + 7.6 = 8.6

New point (𝑥1𝑛𝑒𝑤 , 𝑦1𝑛𝑒𝑤) = (9 , 8.6)

27

CHAPTER 4

RESULTS AND DISCUSSION

4.1 Algorithm Parameters

Table 4.1 below is displaying the defined parameters which are signifying the algorithms for the

proposal of the approach.

Table 4.1: Algorithm variables

4.2 The Implementation of SSO in Path Planning

To look at the effect of different swarm dimension on SSO and their execution, several numeral

of particle has been relating (such as 5, 6, 7, and 8). The particle's dimension has been picked

on the base of testing, to explore the execution of SSO. The computation proposed has been

connected with work environment which was showed in Figure 3.1 in order to discover the path

that is perfect. The best gained re-enactment comes to different number of particles (swarm size)

for the work environment which showed up in Table 4.2.

 Variables Size

1 No. of iteration 100

2 Swarm X 5 x 20

3 Swarm Y 5 x 20

4 XOPS 1 x 50

5 YOPS 1 x 50

6 Path_dist 1 x 20

7 P_best 1 x 20

8 G_best 1 x 20

28

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 , 𝑒) = 𝑑𝑖𝑠𝑡𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡

(1,1) (23,30)

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 , 𝑒) = √(30 − 1)2 + (23 − 1)2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 , 𝑒) = 36.4

𝑒𝑟𝑟𝑜𝑟 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 , 𝑒)

Table 4.2: Simulation results for the working environment using PSO and SSO algorithm

NO. of particles Type of algorithm Distance Error

5 PSO 67.1897 30.7897

5 SSO 36.4371 0.0371

6 PSO 88.0187 51.6187

6 SSO 36.4608 0.0608

7 PSO 80.2049 43.8049

7 SSO 36.6457 0.2457

8 PSO 109.0702 72.6702

8 SSO 37.2733 0.8733

29

 Figure 4.1: Using PSO, (5 point) Figure 4.2: Using SSO, (5 point)

The figure 4.1 – 4.2 above are displaying the obtained solution after PSO and SSO algorithms

were used for working environment with X axis (0,23) direction and Y axis (0,30) direction.

The working environment was used as the search space, which was occupied by number of

random obstacles. These obstacles were represented by red square from the graph. Similarly,

blues circles represent the starting and target point of the robot. Black line represents the robots

path distance from starting to target point while navigating in the working environment. Green

line represents the path used by robots to navigate from starting to target point. Figure 4.1 is

showing the PSO algorithm applied using 5 points and a distance of (67.1897). This algorithm

is signifying that, the robot took 5 points to reach its target point from the starting point with the

distance it took to navigate. In figure 4.2 an SSO algorithm was also applied with its 5 points

and a distance of (36.4371). The SSO algorithm was determined to find the minimum path

possible for the robot to navigate without obstacles while navigating, this provides less distance

when compared with PSO algorithms. SSO algorithms was created to make an optimization

algorithm which will be more capable for global path planning, SSO also will make infeasible

paths problems feasible for robots to navigate efficiently and effectively.

30

Figure 4.3: Using PSO, (6 point) Figure 4.4: Using SSO, (6 point)

The figure 4.3 – 4.4 above are displaying the obtained solution after PSO and SSO algorithms

were used for working environment with X axis (0,23) direction and Y axis (0,30) direction.

The working environment was used as the search space, which was occupied by number of

random obstacles. These obstacles were represented by red square from the graph. Similarly,

blues circles represent the starting and target point of the robot. Black line represents the robots

path distance from starting to target point while navigating in the working environment. Green

line represents the path used by robots to navigate from starting to target point. Figure 4.3 is

showing the PSO algorithm applied using 6 points and a distance of (88.0187). This algorithm

is signifying that, the robot took 6 points to reach its target point from the starting point with the

distance it took to navigate. In figure 4.4 an SSO algorithm was also applied with its 6 points

and a distance of (36.4608). The SSO algorithm was determined to find the minimum path

possible for the robot to navigate without obstacles while navigating, this provides less distance

when compared with PSO algorithms. SSO algorithms was created to make an optimization

algorithm which will be more capable for global path planning, SSO also will make infeasible

paths problems feasible for robots to navigate efficiently and effectively.

31

 Figure 4.5: Using PSO, (7 point) Figure 4.6: Using SSO, (7 point)

The figure 4.5 – 4.6 above are displaying the obtained solution after PSO and SSO algorithms

were used for working environment with X axis (0,23) direction and Y axis (0,30) direction.

The working environment was used as the search space, which was occupied by number of

random obstacles. These obstacles were represented by red square from the graph. Similarly,

blues circles represent the starting and target point of the robot. Black line represents the robots

path distance from starting to target point while navigating in the working environment. Green

line represents the path used by robots to navigate from starting to target point. Figure 4.5 is

showing the PSO algorithm applied using 7 points and a distance of (80.2049). This algorithm

is signifying that, the robot took 7 points to reach its target point from the starting point with the

distance it took to navigate. In figure 4.6 an SSO algorithm was also applied with its 7 points

and a distance of (36.6457). The SSO algorithm was determined to find the minimum path

possible for the robot to navigate without obstacles while navigating, this provides less distance

when compared with PSO algorithms. SSO algorithms was created to make an optimization

algorithm which will be more capable for global path planning, SSO also will make infeasible

paths problems feasible for robots to navigate efficiently and effectively.

32

 Figure 4.7: Using PSO, (8 point) Figure 4.8: Using SSO, (8 point)

The figure 4.7 – 4.8 above are displaying the obtained solution after PSO and SSO algorithms

were used for working environment with X axis (0,23) direction and Y axis (0,30) direction.

The working environment was used as the search space, which was occupied by number of

random obstacles. These obstacles were represented by red square from the graph. Similarly,

blues circles represent the starting and target point of the robot. Black line represents the robots

path distance from starting to target point while navigating in the working environment. Green

line represents the path used by robots to navigate from starting to target point. Figure 4.7 is

showing the PSO algorithm applied using 8 points and a distance of (109.0702). This algorithm

is signifying that, the robot took 8 points to reach its target point from the starting point with the

distance it took to navigate. In figure 4.8 an SSO algorithm was also applied with its 8 points

and a distance of (37.2733). The SSO algorithm was determined to find the minimum path

possible for the robot to navigate without obstacles while navigating, this provides less distance

when compared with PSO algorithms. SSO algorithms was created to make an optimization

algorithm which will be more capable for global path planning, SSO also will make infeasible

paths problems feasible for robots to navigate efficiently and effectively.

33

Table 4.3: The simulation results for the working environment using SSO algorithm

Number of particles (4) with the iteration (11) the distance = 36.5689

Number of particles (4) with the iteration (55) the distance = 36.4204

Number of particles (4) with the iteration (99) the distance = 36.4112

Number of particles (9) with the iteration (11) the distance = 66.4912

Number of particles (9) with the iteration (55) the distance = 56.5358

Number of particles (9) with the iteration (99) the distance = 40.0703

Number of particles (40) with the iteration (11) the distance = 171.4331

Number of particles (40) with the iteration (55) the distance = 159.4229

Number of particles (40) with the iteration (99) the distance = 141.9987

Number of particles (90) with the iteration (11) the distance = 442.6258

Number of particles (90) with the iteration (55) the distance = 423.9265

Number of particles (90) with the iteration (99) the distance = 387.5449

The result shows that the distance will increase by increasing particle and the distance will

decrease by increasing iteration.

No. of particles 11 iteration 55 iteration 99 iteration

4 36.5689 36.4204 36.4112

9 66.4912 56.5358 40.0703

40 171.4331 159.4229 141.9987

90 442.6258 423.9265 387.5449

34

 CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 Conclusion

In this study, path planning for mobile robot was investigated using Simplified Swarm

Optimization (SSO). A SSO algorithm was utilized to discover ideal way for the mobile robot

in workplace with irregular complications. Based on the result obtained from simulations, the

fallowing conclusions were drawn:

 The algorithm for the (SSO) that was proposed was proficient of successfully managing

a robot movement from initial locus to the final locus in complex environment at the

same time finding a perfect and shortest path without affecting any obstacles.

 In the SSO algorithm errors element was verified, to guarantee the PSO unites together.

These errors were utilized in altering the particle’s trajectory to move toward the

objective target.

 An adjusted strategy was implemented in the SSO in order to tackle the convenient path

problems. A conditional statement was utilized when the particle path falls within a

problematic environment; then it will transfer it to a locus neighborhood outside of the

deterrent.

 The SSO computation does not take part in the enclosed environment in which there was

no path between the initial and the goal point.

 SSO can legitimately be seen like better than average algorithm in light of its joining

speed and efficient in global search.

35

5.2 Recommendations

Due to timeframe for this study, it is recommended that the study may consider the following

for future development:

 Applying the proposed SSO algorithm on Real-Time environment at which the obstacles

change their position with time.

 Applying the proposed SSO algorithm in dynamic environments.

 Comparing the suggested SSO algorithm with other algorithms, which include, Artificial

Bee Colony (ABC), Ant Colony Optimization (ACO).

36

REFERENCES

Ahmadzadeh, S., & Ghanavati, M. (2012). Navigation of mobile robot using the PSO particle

swarm optimization. Journal of Academic and Applied Studies (JAAS), 2(1), 32-38.

Atyabi, A., Phon-Amnuaisuk, S., & Ho, C. K. (2010). Navigating a robotic swarm in an

uncharted 2D landscape. Applied soft computing, 10(1), 149-169.

Clerc, M. (2010). Particle swarm optimization (Vol. 93). John Wiley & Sons.

Del Valle, Y., Venayagamoorthy, G. K., Mohagheghi, S., Hernandez, J. C., & Harley, R. G.

(2008). Particle swarm optimization: basic concepts, variants and applications in power

systems. IEEE Transactions on evolutionary computation, 12(2), 171-195.

Dorigo, M., de Oca, M. A. M., & Engelbrecht, A. (2008). Particle swarm optimization

Scholarpedia, 3(11), 1486.

Dos Santos, R. P. B., Martins, C. H., & Santos, F. L. (2011). Simplified particle swarm

optimization algorithm-doi: 10.4025/actascitechnol. v34i1. 9679. Acta Scientiarum.

Technology, 34(1), 21-25.

Du, K. L., & Swamy, M. N. S. (2016). Particle swarm optimization. In Search and Optimization

by Metaheuristics (pp. 153-173). Springer International Publishing.

Dutta, S. (2010). Obstacle avoidance of mobile robot using PSO-based neuro fuzzy technique.

International Journal of Computer Science and Engineering, 2(2), 301-304.

Eberhart, R., & Kennedy, J. (1995, October). A new optimizer using particle swarm theory. In

Micro Machine and Human Science, 1995. MHS'95., Proceedings of the Sixth

International Symposium on (pp. 39-43). IEEE.

Han, K. M. (2007). Collision free path planning algorithms for robot navigation problem,

Master Thesis, University of Missouri-Columbia.

Higashi, N., & Iba, H. (2003). Particle swarm optimization with Gaussian mutation. In Swarm

Intelligence Symposium, 2003. SIS'03. Proceedings of the 2003 IEEE (pp. 72-79). IEEE.

Ismail, A. T., Sheta, A., & Al-Weshah, M. (2008). A mobile robot path planning using genetic

algorithm in static environment. Journal of Computer Science, 4(4), 341-344.

Jatmiko, W., Mursanto, P., Kusumoputro, B., Sekiyama, K., & Fukuda, T. (2008). Modified

PSO algorithm based on flow of wind for odor source localization problems in dynamic

environments. WSEAS Transaction on System, 7(3), 106-113.

37

Jiang, Y., Hu, T., Huang, C., & Wu, X. (2007). An improved particle swarm optimization

algorithm. Applied Mathematics and Computation, 193(1), 231-239.

Kennedy, J. (2011). Particle swarm optimization. In Encyclopedia of machine learning (pp. 760-

766). Springer US.

Konar, A. (1999). Artificial intelligence and soft computing: behavioral and cognitive modeling

of the human brain. CRC press.

Li, P., Huang, X., & Wang, M. (2010). A New Hybrid Method for Mobile Robot Dynamic Local

Path Planning in Unknown Environment. JCP, 5(5), 773-781.

Mohanty, P. K., & Parhi, D. R. (2013). Controlling the motion of an autonomous mobile robot

using various techniques: a review. Journal of Advance Mechanical Engineering, 1(1),

24-39.

Moradi, M. H., & Abedini, M. (2012). A combination of genetic algorithm and particle swarm

optimization for optimal DG location and sizing in distribution systems. International

Journal of Electrical Power & Energy Systems, 34(1), 66-74.

Poli, R., Kennedy, J., & Blackwell, T. (2007). Particle swarm optimization. Swarm intelligence,

1(1), 33-57.

Raja, P., & Pugazhenthi, S. (2009, October). Path planning for mobile robots in dynamic

environments using particle swarm optimization. In Advances in Recent Technologies in

Communication and Computing, 2009. ARTCom'09. International Conference on (pp.

401-405). IEEE.

Raja, P., & Pugazhenthi, S. (2012). Optimal path planning of mobile robots: A review.

International Journal of Physical Sciences, 7(9), 1314-1320.

Raquel, C. R., & Naval Jr, P. C. (2005, June). An effective use of crowding distance in

multiobjective particle swarm optimization. In Proceedings of the 7th annual conference

on Genetic and evolutionary computation, (pp. 257-264). ACM.

Sariff, N., & Buniyamin, N. (2006, June). An overview of autonomous mobile robot path

planning algorithms. In Research and Development, 2006. SCOReD 2006. 4th Student

Conference on (pp. 183-188). IEEE.

Saska, M., Macas, M., Preucil, L., & Lhotska, L. (2006, September). Robot path planning using

particle swarm optimization of Ferguson splines. In Emerging Technologies and Factory

Automation, 2006. ETFA'06. IEEE Conference on (pp. 833-839). IEEE.

38

Shi, Y. (2001). Particle swarm optimization: developments, applications and resources.

In evolutionary computation, 2001. Proceedings of the 2001 Congress on (Vol. 1, pp.

81-86). IEEE.

Shiltagh, N. A., & Jalal, L. D. (2013). Path planning of intelligent mobile robot using modified

genetic algorithm. International Journal of Soft Computing and Engineering

(IJSCE), 3(2), 31-36.

Van Den Bergh, F., & Engelbrecht, A. P. (2006). A study of particle swarm optimization particle

trajectories. Information sciences, 176(8), 937-971.

Velagic, J., Lacevic, B., & Osmic, N., (2006). Efficient path planning algorithm for mobile robot

navigation with a local minima problem solving, In Proceedings of IEEE International

Conference on Industrial Technology, IEEE, Mumbai, pp. 2325–2330.

Wang, Y. Q., & Yu, X. P. (2012, January). Research for the robot path planning control strategy

based on the immune particle swarm optimization algorithm. In Intelligent System

Design and Engineering Application (ISDEA), 2012 Second International Conference

on (pp. 724-727). IEEE.

Yun, S. C., Ganapathy, V., & Chong, L. O. (2010, December). Improved genetic algorithms

based optimum path planning for mobile robot. In Control Automation Robotics &

Vision (ICARCV), 2010 11th International Conference on (pp. 1565-1570). IEEE.

Zhan, Z. H., Zhang, J., Li, Y., & Chung, H. S. H. (2009). Adaptive particle swarm optimization.

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(6),

1362-1381.

Zhao, Y., & Zu, W. (2009, April). Real-time obstacle avoidance method for mobile robots based

on a modified particle swarm optimization. In Computational Sciences and

Optimization, 2009. CSO 2009. International Joint Conference on (Vol. 2, pp. 269-272).

IEEE.

Zhihua, C., & Jianchao, Z. (2011). Particle swarm optimization algorithm.

39

APPENDIX : Source Code

1- close all;

2- clc;

3- clear;

4- %===========================

5- % Initialization

6- %===========================

7- N=50; %Number of iteration

8- line_th=0.0;

9- swarm_size=20; %Swarm size

10- number_of_points=6; %Number of particles

11- ob=50; %Number of obstacles

12- x_start = 1;

13- y_start = 1;

14- x_end = 23;

15- y_end = 30;

16- X=0:1:23;

17- Y=0:1:30;

18- XS=round(23*rand(swarm_size,number_of_points));

19- YS=round(30*rand(swarm_size,number_of_points));

20- XYOb=zeros(ob,1);

21- XYOb(:,1)=round(18*rand(ob,1))+3;

22- XYOb(:,2)=round(25*rand(ob,1))+3;

23- save('XY_Ob','XYOb')

24- load('XY_Ob.mat','XYOb');

25- %===========================

26- % Working Environment

27- %===========================

28- for m1=1:ob

29- hold on

30- plot(XYOb(m1,1),XYOb(m1,2),'--rs','MarkerEdgeColor','r',

 'MarkerFaceColor','r','MarkerSize',6);

31- end

32- plot(1,1,'ok','MarkerEdgeColor','k',

 'MarkerFaceColor','b','MarkerSize',10);

33- hold on

34- plot(23,30,'ok','MarkerEdgeColor','k',

 'MarkerFaceColor','b','MarkerSize',10);

35- axis([0,23,0,30])

36- grid on

37- box on

40

38- set(gca,'YTick',0:2:30)

39- set(gca,'XTick',0:1:23)

40- title('Working Environment');

41- xlabel('X');

42- ylabel('Y');

43- %===================================

44- % obstacles checking for feasibility

45- %===================================

46- redo=1;

47- while redo==1

48- redo=0;

49- for i4=1:ob

50- xc=abs(XS-XYOb(i4,1));

51- yc=abs(YS-XYOb(i4,2));

52- xyc=xc+yc;

53- xycn=round(xyc./(xyc+0.01));

54- [ro,co]=find(xycn==0);

55- for i5=1:size(ro,1)

56- XS(ro(i5),co(i5))=round(23*rand(1));

57- YS(ro(i5),co(i5))=round(30*rand(1));

58- redo=1;

59- end

60- end

61- end

62- %Feasibility of line segments%

63- %-----------------------------

64- redo2=1;

65- while redo2==1

66- redo2=0;

67- for i6=1:swarm_size

68- %start segment

69- slope=(YS(i6,1)-1)/(XS(i6,1)-1);

70- for k1=1:ob

71- if abs(slope)==inf

72- if XYOb(k1,1)==XS(i6,1)

73- XS(i6,1)=round(23*rand(1));

74- YS(i6,1)=round(30*rand(1));

75- redo2=1;

76- end

77- else

78- onl=abs((XYOb(k1,2)-1)-slope*(XYOb(k1,1)-1));

41

79- if onl<line_th

80- XS(i6,1)=round(23*rand(1));

81- YS(i6,1)=round(30*rand(1));

82- redo2=1;

83- end

84- end

85- end

86- % in between segments

87- for j=1:number_of_points-1

88- slope=(YS(i6,j+1)-YS(i6,j))/(XS(i6,j+1)-XS(i6,j));

89- for k2=1:ob

90- if abs(slope)==inf

91- if XYOb(k2,1)==XS(i6,j)

92- XS(i6,j+1)=round(23*rand(1));

93- YS(i6,j+1)=round(30*rand(1));

94- redo2=1;

95- end

96- else

97- onl=abs((XYOb(k2,2)-YS(i6,j))-slope*(XYOb(k2,1)-XS(i6,j)));

98- if onl<line_th

99- XS(i6,j+1)=round(23*rand(1));

100- YS(i6,j+1)=round(30*rand(1));

101- redo2=1;

102- end

103- end

104- end

105- end

106- % end segment

107- slope=(30-YS(i6,number_of_points))/

 (23-XS(i6,number_of_points));

108- for k3=1:ob

109- if abs(slope)==inf

110- if XYOb(k3,1)==XS(i6,number_of_points)

111- XS(i6,number_of_points)=round(23*rand(1));

112- YS(i6,number_of_points)=round(30*rand(1));

113- redo2=1;

114- end

115- else

116- onl=abs((XYOb(k3,2)-30)-slope*(XYOb(k3,1)-23));

117- if onl<line_th

118- XS(i6,number_of_points)=round(23*rand(1));

119- YS(i6,number_of_points)=round(30*rand(1));

120- redo2=1;

121- end

42

122- end

123- end

124- end

125- end

126- for i=1:swarm_size

127- hold on

128- plot ([1,XS(i,:),23],[1,YS(i,:),30])

129- end

130- pbest_X=XS;

131- pbest_Y=YS;

132- gbest_X=pbest_X(1,:);

133- gbest_Y=pbest_Y(1,:);

134- D=inf*ones(swarm_size,1);

135- D_pbest=D;

136- D_gbest=inf;

137- c1=2;

138- c2=2;

139- w_min=0.2;

140- w_max=0.9;

141- w=w_max-(w_max-w_min)*(0:1:N-1)./(N-1); %inertia weight

142- v_X=zeros(swarm_size,number_of_points);

143- v_Y=zeros(swarm_size,number_of_points);

144- %---- Constraints -------------------

145- v_X_max=2;

146- v_X_min=-2;

147- v_Y_max=2;

148- v_Y_min=-2;

149- X_min=1;

150- Y_min=1;

151- X_max=23;

152- Y_max=30;

153- hold off

154- %MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

155- %$$$$$$ main loop of algorithm

156- %MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

157- for it=1:N

158- for ks=1:swarm_size

159- dis=0;

160- dis=dis+sqrt((1-YS(ks,1))^2+(1-XS(ks,1))^2);

161- for k4=1:number_of_points-1

43

162- dis=dis+sqrt((YS(ks,k4)-YS(ks,k4+1))^2+

 (XS(ks,k4)-XS(ks,k4+1))^2);

163- end

164- dis=dis+sqrt((30-YS(ks,number_of_points))^2+

 (23-XS(ks,number_of_points))^2);

165- D(ks)=dis;

166- if D(ks)<D_pbest(ks)

167- D_pbest(ks)= D(ks);

168- pbest_X(ks,:)=XS(ks,:);

169- pbest_Y(ks,:)=YS(ks,:);

170- end

171- end

172- [min_D_pbest,idx]=min(D_pbest);

173- if min_D_pbest<D_gbest

174- D_gbest=min_D_pbest;

175- gbest_X=pbest_X(idx,:);

176- gbest_Y=pbest_Y(idx,:);

177- end

178- %UPDATE V and P

179- % ** Update the velocity and Postion vectors_START_ ***

180- for ks2=1:swarm_size

181- r2=rand(1);

182- v_X(ks2,:)=w(it)*v_X(ks2,:)+(c2.*r2.*(gbest_X-XS(ks2,:)))

183- v_Y(ks2,:)=w(it)*v_Y(ks2,:)+(c2.*r2.*(gbest_Y-YS(ks2,:)))

184- % *** Check the velocity constraint_START

185- for kv=1:number_of_points

186- %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

187- if v_X(ks2,kv)<v_X_min

188- v_X(ks2,kv)=v_X_min;

189- else

190- if v_X(ks2,kv)>v_X_max

191- v_X(ks2,kv)=v_X_max;

192- end

193- end

194- %YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

195- if v_Y(ks2,kv)<v_Y_min

196- v_Y(ks2,kv)=v_Y_min;

197- else

198- if v_Y(ks2,kv)>v_Y_max

199- v_Y(ks2,kv)=v_Y_max;

200- end

201- end

44

202- end

203- % ... Check the velocity constraint_END

204- % ** Update the position vector

205- XS(ks2,:)=round(XS(ks2,:)+v_X(ks2,:));

206- YS(ks2,:)=round(YS(ks2,:)+v_Y(ks2,:));

207- % in the searching range

208- %|||

209- %|||||Feasibility TEST||||||||||||||||||||||

210- %-----------------------------

211- redo=1;

212- while redo==1

213- redo=0;

214- for i4=1:ob

215- xc=abs(XS-XYOb(i4,1));

216- yc=abs(YS-XYOb(i4,2));

217- xyc=xc+yc;

218- xycn=round(xyc./(xyc+0.01));

219- [ro,co]=find(xycn==0);

220- for i2=1:size(ro,1)

221- rx=round(4*(rand(1)-0.5));

222- XS(ro(i2),co(i2))=XS(ro(i2),co(i2))+rx;

223- ry=round(4*(rand(1)-0.5));

224- YS(ro(i2),co(i2))=YS(ro(i2),co(i2))+ry;

225- redo=1;

226- end

227- end

228- end

229- redo2=1;

230- while redo2==1

231- redo2=0;

232- % start segment

233- slope=(YS(ks2,1)-1)/(XS(ks2,1)-1);

234- for k3=1:ob

235- if abs(slope)==inf

236- if XYOb(k3,1)==XS(ks2,1)

237- XS(ks2,1)=XS(ks2,1)+1;

238- YS(ks2,1)=YS(ks2,1)+ry;

239- redo2=1;

240- end

241- else

242- onl=abs((XYOb(k3,2)-1)-slope*(XYOb(k3,1)-1));

243- if onl<line_th

45

244- rx=round(4*(rand(1)-0.5));

245- XS(ks2,1)=XS(ks2,1)+rx;

246- ry=round(4*(rand(1)-0.5));

247- YS(ks2,1)=YS(ks2,1)+ry;

248- redo2=1;

249- end

250- end

251- end

252- % in between segments

253- for j=1:number_of_points-1

254- slope=(YS(ks2,j+1)-YS(ks2,j))/(XS(ks2,j+1)-XS(ks2,j));

255- for k3=1:ob

256- if abs(slope)==inf

257- if XYOb(k3,1)==XS(ks2,j)

258- XS(ks2,j+1)=XS(ks2,j+1)+1;

259- redo2=1;

260- end

261- else

262- onl=abs((XYOb(k3,2)-YS(ks2,j))-slope*(XYOb(k3,1)- XS(ks2,j)));

263- if onl<line_th

264- rx=round(4*(rand(1)-0.5));

265- XS(ks2,j+1)=XS(ks2,j+1)+rx;

266- ry=round(4*(rand(1)-0.5));

267- YS(ks2,j+1)=YS(ks2,j+1)+ry;

268- redo2=1;

269- end

270- end

271- end

272- end

273- % end segment

274- slope=(30-YS(ks2,number_of_points))/

 (23-XS(ks2,number_of_points));

275- for k3=1:ob

276- if abs(slope)==inf

277- if XYOb(k3,1)==XS(ks2,number_of_points)

278- XS(ks2,number_of_points)=XS(ks2,number_of_points)+1;

279- redo2=1;

280- end

281- else

282- onl=abs((XYOb(k3,2)-30)-slope*(XYOb(k3,1)-23));

283- if onl<line_th

284- rx=round(4*(rand(1)-0.5));

285- XS(ks2,number_of_points)=XS(ks2,number_of_points)+rx;

286- ry=round(4*(rand(1)-0.5));

46

287- YS(ks2,number_of_points)=YS(ks2,number_of_points)+ry;

288- redo2=1;

289- end

290- end

291- end

292- end

293- % *** Check the X and Y Bounds____START

294- for kp=1:number_of_points

295- %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

296- if XS(ks2,kp)<X_min

297- XS(ks2,kp)=X_min;

298- else

299- if XS(ks2,kp)>X_max

300- XS(ks2,kp)=X_max;

301- end

302- end

303- %YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

304- if YS(ks2,kp)<Y_min

305- YS(ks2,kp)=Y_min;

306- else

307- if YS(ks2,kp)>Y_max

308- YS(ks2,kp)=Y_max;

309- end

310- end

311- end

312- % *** Check the X and Y Bounds_____END

313- % ...Update the velocity and Postion vectors_END_...

314- end

315- %EEE

316- disp(['generation= ',num2str(it)]);

317- disp(['min_D_pbest= ',num2str(min_D_pbest),

 ' at index = ',num2str(idx)]);

318- disp('__________________')

319- disp(['D_gbest= ',num2str(D_gbest)]);

320- disp(['gbest: ',num2str(gbest_X)]);

321- disp('=======================');

322- disp('@@@@@@@@@@@@@@@@@@@@@@@');

323- ax=[1,gbest_X,23];

324- by=[1,gbest_Y,30];

325- clf

47

326- hold off

327- %===========================

328- % Working Environment Plot

329- %===========================

330- for m1=1:ob

331- hold on

332- plot(XYOb(m1,1),XYOb(m1,2),'--rs','MarkerEdgeColor','r',

 'MarkerFaceColor','r','MarkerSize',6);

333- end

334- plot(1,1,'ok','MarkerEdgeColor','k'

 'MarkerFaceColor','b','MarkerSize',10);

335- hold on

336- plot(23,30,'ok','MarkerEdgeColor','k',

 'MarkerFaceColor','b','MarkerSize',10);

337- axis([0,23,0,30])

338- grid on

339- box on

340- set(gca,'YTick',0:2:30)

341- set(gca,'XTick',0:1:23)

342- title('Working Environment');

343- xlabel('X');

344- ylabel('Y');

345- plot(ax,by,'LineWidth',2);

346- axis([0,23,0,30]);

347- text(5,28,['Distance= ',num2str(D_gbest)],'FontSize',18);

348- pause(0.001);

349- end

350- hold on

351- plot(ax,by,'g','LineWidth',2);

352- axis([0,23,0,30]);

353- hold on

354- plot([1,23],[1,30],'k')

48

