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ABSTRACT 

 

This study examined how path planning of intelligent mobile robot could be enhanced by 

utilizing simplified swarm optimization (SSO) in working environment with irregular obstacles. 

The conceptual framework of this study was driven from an inspiration of communal behavior 

of birds flocking and fish schooling. This conceptual framework was supported by swarm 

intelligence, which is one of the famous research areas in the field of computational swarm 

intelligence such as Particle swarm optimization (PSO) algorithm. Based on this, observations 

have been made which signified that mobile robots are significantly affected by path planning 

problems. However, solutions have been established recently on how to tackle the 

aforementioned problems. Nevertheless, such solutions have also been discovered to possess 

numerous weaknesses. Therefore, based on these weaknesses, this study tried to propose 

effective solutions which can yield a high quality and efficient mobile robots. The technique 

this research adopted was SSO. This technique was adapted in order to provide an effective 

solution to the weaknesses. After careful simulations, the algorithm result showed that SSO does 

not converge in the closed work interface in which there is no path between the initial and the 

target point. When particle is updated SSO using social effect term only.  Furthermore, the result 

displayed that when the particles path falls within an obstacle space, it automatically relocated 

to an area of an obstacle free. This showed autonomy and energy efficiency within the particles. 

 

Keywords: Swarm intelligence; path planning; particle swarm optimization; intelligent mobile 

robot; simplified swarm optimization 
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ÖZET 

 

Bu çalışma, düzensiz engeller olan çalışma ortamında ve alanında, basitleştirilmiş sürüler 

optimizasyonunu (SSO) kullanarak akıllı mobil robotların yol planlamasının nasıl 

geliştirileceğini incelemiştir. Bu çalışmanın kavramsal çerçevesi, kuş sürüleri ve balık sürüleri 

için ortak bir davranışın esin kaynağı olmuştur. Kavramsal çerçeve; parçacık sürüsü 

optimizasyon (PSO) algoritması gibi, hesaplamalı(analitik) sürü zekası alanındaki ünlü 

araştırma alanlarından biri olan sürü uyumu ve aklı tarafından desteklenmiştir. Buna dayanarak, 

mobil robotların yol planlama problemlerinden önemli ölçüde etkilendiğini gösteren gözlemler 

yapılmıştır. Son zamanlarda yukarıda bahsedilen sorunlarla nasıl başa çıkılacağı üzerine 

çözümler belirlenmiş ve saptanmıştır. Bununla birlikte, bu gibi çözümlerin çok sayıda zayıflığa 

sahip olduğu keşfedilmiştir. Buradaki zayıflıklara dayanarak, çalışmada yüksek kalitede ve 

verimli mobil robotlar üretebilecek etkili çözüm önerileri sunulmaya çalışılmıştır.Bu 

araştırmanın benimsediği teknik basitleştirilmiş sürüler optimizasyonudur. Bu teknik zayıf 

noktalara etkili bir çözüm getirmek için uyarlanmıştır. Dikkatli bir şekilde simülasyonlar 

yapıldıktan sonra, algoritma sonucu, basitleştirilmiş sürüler optimizasyonun (SSO), başlangıç 

ve hedef nokta arasında bir yol bulunmadığını kapalı iş ara yüzünde birleşmediğini göstermiştir. 

Parçacık(partikül) güncellendiğinde basitleştirilmiş sürüler optimizasyonu (SSO) yalnızca 

sosyal etki dönemini kullanmıştır. Dahası, görüntülenen sonuç; parçacık yolu bir engel alanına 

düştüğünde otomatik olarak engelin bulunduğu bölgeye taşındığını göstermiştir. Sonuç olarak; 

parçacıklar(partiküller) içinde özerklik ve enerji verimliliği olduğu gösterilmiştir. 

 

Anahtar Kelimeler: Sürü zekası; yol planlaması; parçacık sürüsü optimizasyonu; akıllı mobil 

robot; basitleştirilmiş sürüler optimizasyonu 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Introduction  

The academic research fraternity has been characterized by vast studies that sought to address 

how mobile robots are being impacted by path planning problems. This commenced in the mid-

1970s. Despite the proposition of numerous solutions, discoveries made contend that such 

solutions have inherent weaknesses and strengths. Thus, the decision to produce a sound 

solution in research hinges on efforts to attain high efficiency and quality (Yun, Ganapathy and 

Chong, 2010). Hence, satisfactory results from a path can be obtained when hindrances in local 

minimum positions, unrequired procedures and wastage of time are minimized by the robot. In 

addition, a satisfactory path is the one that eradicates all obstacles in the area (Han, 2007).  

 

Mohanty and Parhi (2013) contends that there are numerous strategies that can employ in 

navigating an intelligent mobile robot. Their study also exhibited that (AIS) an acronym for 

Artificial Immune System, Particle Swam Optimization (PSO), Genetic Algorithm (GA), 

Neuron-Fuzzy (NF), Artificial Neural Networks (ANN), Ant Colony Optimization (ACO) and 

Fuzzy logic (FL) which constitute part of heuristic approaches are capable of offering highly 

probable and effective mobile robot navigation results (obstacle-avoidance and target reaching). 

Thus, heuristic approaches enable the mobile robots to navigate reliably among the obstructions 

without knocking them and thereby moving to their predefined destination point. Such 

approaches are indispensable in addressing the local smidgens delinquent. Scholars have 

immensely been looking for supplementary productive approaches in order to tackle this issue 

relating to accompanying area, prior studies on path planning and robot’s navigation utilizing 

molecule swarm are inspected. Raja and Pugazhenthi (2012) gave a review of research progress 

about on-line and offline environments and mobile robot path planning.  

 

Ordinarily utilized exemplary and developmental methodologies of path planning of mobile 

robots have been deliberated, and demonstrated that the transformative algorithms are 
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computationally proficient. Similarly, challenges required in building up a computationally 

effective path planning algorithm are tended to. According to Zhao and Zu (2009), they 

proposed a modified particle swarm optimization algorithm for the robot path planning in 

vigorous atmosphere; two parameters of distribution degree in relation to particles and 

dimension and distance in relation to particle were presented into the recommended algorithm 

in order to circumvent untimely conjunction. Furthermore, Ahmadzadeh and Ghanavati (2012) 

proposed an understanding way to deal with the triangulation of mobile robots in obscure 

situations, the triangulation problem develops to an optimization problem and it was later 

comprehended by a PSO algorithm. In view of the position of the objective, an assessment work 

for each element in PSO is ascertained. It is accepted that robots can distinguish just hindrances 

in a constrained range of its sensors. It is worthy to note that the hindrances can be portable and 

dynamic but the environment should be dynamic. 

 

1.2 Background to Study 

Path planning algorithms can be categorized into two distinct elements; these are the local 

(confined) path planning (on-line) and global (universal) path planning (off-line). Advance 

awareness of trajectory of moving obstacles and stationary obstacles is always available in 

global path planning of robots in environments such that the robot initially assesses the desired 

path and confines to it until it reaches its destination. But in local path planning, all information 

is not available in advance.  

 

1.3 Research Objectives  

This study examines the use of Simplified Swarm Optimization (SSO) in order to deal with the 

issue of mobile robot triangulation (navigation). This issue for ascertainment is the most 

productive mode which requires least time and shortest path in order to move from a starting 

locus to an objective locus in relation to environment with haphazard circumstances. 
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1.4 Organization of the Study  

This study is organized into five chapters:  

Chapter 1: Provides introductory insights about the study.  

Chapter 2: Deals with related theoretical and empirical literature review.  

Chapter 3: The methodological procedures that were employed in this study so to arrive at 

study findings and offer recommendations are addressed.  

Chapter 4: Simulations and results of study findings is given. 

Chapter 5: Concludes this study by looking at conclusions, recommendation and suggestions 

for future work. 
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CHAPTER 2 

LITERATURE REVIEW 

 

2.1 Particle Swarm Optimization 

To understand or have a clear understanding of what particle swam optimization algorithm, 

resolution swarm differs and have different criteria with bird swarm optimization process, the 

birds’ navigating from point A to point B is employed in the improvement of resolution swarm, 

while, ad-hoc communication is necessary in solving most utopian solution, the location of the 

target address is equivalent to the most utopian resolution during the whole sequence. Casually, 

the main address of the target address or in our case utopian resolution is determined by 

controlled collective sustenance which is the main idea of swarm optimization algorithm which 

is founded by collective progress to try and achieve a desired goal (Dos Santos et.al., 2011).  

 

According to Trelea 2003, the Particle swarm optimization is a technique in which each node 

behavior in the network is aimed at achieving a collective goal of the swarm as a group. In PSO, 

a problem is solved by following or moving in a collective manner (Zhao and Zu, 2009). Every 

particle or node in the swarm is aware of its location and coordinates regarding to the problem 

statement and try to find the best or optimized option to the problem (Shiltagh and Jalal, 2013). 

This is termed or referred to as pbest. Similarly, another optimization value that is used in 

measuring particle swarm optimization is the best value, also another value is lbest which is 

obtained by choosing the best and closest node. And finally, the node or a particle that has the 

highest population of neighbors in its topological location is called global best and is termed 

gbest (Shiltagh and Jalal, 2013). 

  

The definition of PSO consists of time interval, requires change in velocity and acceleration, 

every node is linked to the pbest, lbest. Movement is by nodes is autonomous, which is 

distinguished by the figure of nodes at risks of acceleration using the pbest, lbest locations. 

When the optimized values are found, the nodes retrieves the velocity, points using the given 

equation (see Equation 1.1). 
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Vi(k+1) = Vi(k) + c1* rand( ) * (Pi(k) - Xi(k)) + c2* rand( ) * ( g(k) - Xi(k))        (1.1) 

Xi(k+1) = Xi(k) + Vi(k+1)                                                                                       (2.1) 

       where 

 Vi(k) is velocity of particle i at iteration k. 

 Xi(k) is the position of particle i at iteration k. 

 Vi(k+1) is new velocity of particle i at iteration k+1. 

 Xi(k+1) is the new position of particle i at iteration k+1. 

 rand( ) is random variable with number between (0,1). 

 c1 local acceleration coefficient. 

 c2 global acceleration coefficient. 

 usually  c1 = c2 = 2. 

 

The main idea is designing an algorithm that can effectively address various optimization 

problems. 

 

2.2 Literature Review 

In this section, existing Particle Swarm Optimization are discussed in detail. One of the existing 

studies established by Russell Eberhart and James Kennedy (1995) revealed that the existence 

of concept of a particle swarm optimization with reference. However, analyzing the steps of its 

advancement from communal simulation to optimization standard, and subsequent presentation 

offers some of the limited procedures that can be adopted to execute the concept (Yun, 

Ganapathy and Chong, 2010). 

 

The adoption of one model is presented in enhanced detail, accompanied by conclusions 

gathered from applications and tests superimposed on the model or criterion and these been 

established to operate successfully. Eberhart and Kennedy (1995) further proposed a distinct 

model of the particle swarm optimizer and they explored on how shifting in relation to paradigm 

transmute the expanse of restatements needed to reach a maximum error that can be handled, 

and each node is reused to find a global minimum in the swam (Han, 2007). 
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Based on this context, three accounts were examined, two samples types of lbest form, one node 

has two neighbors and the latter node having six neighbors as an assessment criteria. It seems 

that the primary GBEST form functions with regards to number of recapitulations to nodes 

becoming unified, as the lbest is created by creating two or more repellent nodes in confined 

minimal space (Shi, 2001). Observations have been made that the hunt for a PSO procedure 

without the initial segment is a procedure where the search space factually declines through the 

eras (Zhao and Zu, 2009). Then again, by including the initial segment, the particles tend to 

increase the space. That is, they can examine a new area. Along these lines, they have a more 

probable potency to undertake a worldwide search capacity by including the initial segment. 

Both the global and local searches are important in addressing similar complications. 

 

A trade off exists between universal and confined discovery for diverse situations, a unified 

solution to the diverse stabilities among the confined discovery criteria of and universal 

discovery ability. In relation to this, Mohanty and Parhi (2013) established that Yuhui et al, 1998 

proposed the inertia weight is represented by (w) into the Equation (1.1) as shown in Equation 

(1.2).  

 

Vi(k+1)= w * Vi(k) + c1* rand( ) * (Pi(k) - Xi(k)) + c2* rand( ) * ( g(k) - Xi(k))             (1.2) 

Xi(k+1) = Xi(k) + Vi(k+1)                                                                                                 ( 2.2) 

 

Researches has shown that a substantial latency weight encourages worldwide investigation 

(snew zones discovery), few among the nodes has a tendency of conducting within searches, i.e. 

calibrating the present search point of interest. In PSO, the area merged is termed as local well 

comprising a local minimum, initially it may look like a trustworthy as an escape route be a 

promise because it is kind of force incorporated into the process by means of the forces within; 

periodically, in any case, particles momentum declines reaching a low stage making the swarm 

fall into a situation known as stagnation, making it harder for the swarm to breach the algorithm 

difficult to escape. Casually, few nodes proceed in this state which triggers a case known as 

“solution refinement” or use taking after an underlying period of exploration has elapsed, 

empirical observations have been shown that sufficiently with time variant, velocities  turn out 

to be small at their point of normal rate of reduction, even the closest arrangement might be 
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wiped out of the segment of the space provided for the search, thus particles can for all intents 

and purposes be relied upon to achieve the goals in future recapitulations. In conventional 

Particle Swarm Optimization, in the absence of a universal algorithm to be established by a node 

molecule for quite a while, all nodes focalize broadcast the present universal best, perhaps taking 

out which is the closest neighborhood minimizer. Raja and Pugazhenthi (2012) contend that this 

has been addressed the Guaranteed Convergence PSO (GCPSO) which utilizes an alternate 

speed redesign the algorithm to be suit the best particle, though it has its own particular best, 

universal best both lie at a comparative opinion, theoretically in standard Particle Swarm 

Optimization employs the  limits of the node that the best optimization, since it is unequivocally 

drawn toward that specific location, it possess an incapacitating energy, expanding velocities 

toward that point keeping it searching by any extend of the creative ability (Raja and 

Pugazhenthi, 2012). GCPSO is along these lines said to guarantee joining to a neighborhood 

minimizer. There is still an issue, in any case, in which nodes are bound to join a neighborhood 

which limits the number of occurrence before encountering a certifiable universal limiter. 

Regards to this, Van proposed in give in Bergh made multi-start PSO (MPSO) basically initiate 

a restart when stagnation is initiated (Zhao and Zu, 2009). 

 

Restarting in MPSO implies starting another hunt with a substitute assembling of irregular 

numbers created so that even beginning positions are not the same as it its initial past ventures. 

When restarted, nodes forget their record of its initial past inquiry eventually each inquiry is 

self-ruling from those did before. After each node discovery, a universal best tested to compare 

its efficiency with the previous global best discoveries. A defined number of restarts is set and 

completed, the node with the best universal search is proposed of the test sample. Different 

leveled type of PSO metaheuristic was proposed by Stefan et al in 2005 (Ahmadzadeh and 

Ghanavati, 2012). With the new proposal termed as H-PSO, the nodes neighborhoods are being 

engineered in a newly dynamic chain of significance which is used to describe a zone formation. 

Dependent upon how their so-far best is discovered and takes course of action, the node climb 

or degrade the dynamic system. Thus, making remarkable nodes that roam in the dynamic 

system of greater effect on the swarms at large. Propose a variety of H-PSO, in which the 

structure is effectively balanced even with midst of the execution of the optimization. Another 
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variety is how can it be dole out different approach to the each node with regards to its level in 

the ascending order. 

 

Propositions thus sought to enhance the performance of H-PSO by examining a progressively 

advancing expanding level of the tree topology of a variation of H-PSO (AH-PSO). An 

alternative option that can be employed to increase in H-PSO is to utilize particular qualities of 

the first weight (w) of the nodes as per each stage in the packing order. This algorithm has 

proved that it can be used to accomplish a categorized goal for various test work with exemption 

of Rastrigin work progressively than each and every variety of Particle Swarm Optimization. 

Yang and Simon (2005) proposed a substitute procedure aimed at a prevalent course of action. 

In the proposed New PSO Technique introduced here, each node changes location in perspective 

of its own past most exceedingly most noticeably awful answer and its gathering's past most 

observably terrible to find perfect esteem. The procedure here is to avoid a particle's past most 

exceedingly terrible organization and its grouping's past most observably most exceedingly bad 

in light of similar formulae of the general PSO. The condition for position and speed proceeds 

as before, nevertheless the term used is more abysmal position instead of the node. Particle 

Swarm Optimization has proven to be handy in its quick discovery in a couple of mind boggling 

inquiry and enhancement interferences. Moreover, Particle Swarm Optimization usually consist 

of neighborhood optimization techniques.  

 

To achieve a superior elucidation, Wang et al. (2007) suggested resistance which is based upon 

PSO. OPSO aims in fortifying the haphazard of Particle Swarm Optimization and avert early on 

multi-modal capacities. Konar (2000) recommended a procedure that exploits constraint relied 

learning on every node and relates ad-hoc Cauchy joining on the best node. A few test shows 

that nodes in the Particle Swarm Optimization will permits inside their aforementioned best 

node and universal best node by the entire node prior to joining them. One of the differences 

that the inquiring about the nodes that are close to the best node are included every hierarchy 

will draw out the area within confinement with best node. It is precarious for nodes in the swarm 

to broadcast for better positions. This is actualized by having Cauchy's transformation on the 

whole node which is regarded as the best node in the swarm. A PSO was proposed by Montes 

and Stutzle (2008) as informed particle swarm optimization algorithm (FIPS) as a sensitive to 
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discrepancies in the population network (Atyabi, et.al., 2010). The velocity upgrade rule utilized 

as a part of the FIPS considers every one of the nearby nodes to redesign its speed and not just 

the one with the highest speed as observed with different results. Tests have shown that an 

arbitrary demonstration of the node collectiveness when a completely associated network is 

connected. Thus, frequent dispute may portray a frequently obtained low outcome from the 

algorithm in accordance to the situation. Also, literature has proven to be appropriate in little 

discovery areas. An extended H-PSO (AH-PSO) which possess a rapid changing extensions 

level of the tree topology was showcased which improves execution of H-PSO. Similarly, 

another augmentation of the H-PSO is the ability to utilize distinctive qualities of the initial 

number of nodes with reference to the number in the hierarchy. Test have shown that the said 

algorithm can attained a precedent objective for each test function (aside from the Rastrigin 

formula) faster than any other variation of Particle Swarm Optimization. Chunming et al. (2005) 

built up another ideal approach to optimize results.  

 

In the proposed newly structured new PSO technique suggested herein, every molecule changes 

to its position as per its own past most exceedingly bad solution and its group’s past most 

exceedingly bad to locate the optimal value esteem. The solution here is to maintain a strategic 

distance from a particle's past most noticeably bad solution and its group's past most exceedingly 

worst in light of comparative optimization of the consistent Particle Swarm Optimization. 

Conditions for speed and location stay unchanged, however the optimization is utilized in worst 

position instead of the best one. PSO has showcased the rapid quick discovery in a convoluted 

enhancement. Notwithstanding, Particle Swarm Optimization may effectively vary in local 

optimization. To obtain superior results, Wang et al. (2007) proposed a PSO which is based on 

opposition criteria, thus naming it OPSO, OPSO aims in fastening the merging of Particle 

Swarm Optimization and avert early haphazard of its multi-modular abilities. Konar (2000) 

show cases techniques that utilizes learning that is funded by opposition for every nodes and 

implements unanimous Cauchy commute on the best node. A few tests shows how particles in 

Particle Swarm Optimization will bridge across the best node and global best particle found by 

all the particles before it merges. On the differences that exists between the discovering closest 

to the global best nodes are included in every tree, it would expand the discovery span of the 

best node. Carefully, its implemented using the entire node to move to the better locations. This 
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can be refined by obtaining the Cauchy's bridge across the global best node in each tree. Montes 

de Oca and Stutzle (2008) developed a fully informed particle swarm optimization algorithm 

(FIPS) that was is more prone to variations in population topology (Atyabi, Phon-Amnuaisuk 

and Ho, 2010). All the neighbors of a particle expressed by the FIPS and in most variants, it is 

presumed to frequent its speed rather than the best as postulated by the velocity update rule. 

When subjected to a full topology, this rule will cause the particle swarm to begin to behave 

randomly. In line with such an observation, it can be utilized to offer explain about the 

algorithm’s observed poor performance. Additionally, it is more applicable to small search 

regions. As a result, a particle swarm optimization (PSO) algorithm with numerous variants is 

advisable. Divergences among variants are attributed to the presence of an optimized formula 

in only one sample.  

 

In consequence, Montes de Oca and Stutzle proposed that refinements be made in 2009 to the 

new PSO and this was achieved through research on numerous Particle Swarm Optimization 

samples based on component types point of view (Dutta, 2010). Consequently, the composite 

algorithm Frankenstein’s PSO was developed and this new PSO algorithm constituted of various 

algorithmic components through an investigation on optimization speed and reliability. The 

algorithm components had inherent significant benefits in which several changes to the primary 

(PSO) algorithm are made. In various occasions, a distinction between two types are caused by 

the presence of an algorithmic element being only available in one variant.  Ultimately, a new 

PSO was established and the acquired ideas and were based on empirical studies of various PSO 

samples analyzed (Dutta, 2010). The latter section, therefore offers a new optimized PSO 

algorithm which is developed from numerous algorithmic elements. This is what has been 

termed the composite algorithm Frankenstein’s PSO and has attracted favor as it offered 

significant benefits in experimental investigations. The PSO developed by Frankenstein is made 

of three main algorithmic components which are as follows: 

 Dynamics in time population tree that diminishes QOS over time.  

 FIPS contrivance for renewing node’s speed. 

 A decreasing inertial weight.  
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The elements derived are generated from decreasing the initial weight sample, FIPS and 

AHPSO. The initial sample is added as a catalyst that enhancing the differences between 

velocity, quality characterized by the changes in different connectivity measures. Another 

element that was utilized because the examination exhibited in FIPS includes sore optimization 

that can supers the performance with regards to various connectivity parameters. Lastly, the 

declining weight constituent integrates in an augmented way to support the discoverable 

behavior of the optimization process. PSO in recent research has shown how it succumb to 

unproductivity when nodes have early convergence to any specific area in the point of discovery.  

A new regrouping Particle Swarm Optimization (RegPSO) which averts the implement issue by 

dynamically initiating swarm regrouping, although early haphazard is observed was thus 

proposed (Saska, Macas, Preucil, and Lhotska, 2006). This tool disengages nodes facilitates 

continuous increase towards dynamic positioning. Nodes are rearranged within a specified area 

on every width equivalent to the extent of uncertainty suggested with the highest variation nodes 

from the collection of best nodes. When discovered, any early occurrence, the numbers in which 

nodes are to be rearranged the best is determined when the minimum of: 

 An initial amount of the discovery location on dimension.   

 The product of the rearranging element with the highest distance along dimension j of 

any node from the overall best. 

 

2.3 Advantages of the Basic Particle Swarm Optimization Algorithm: 

 Particle Swarm Optimization is based upon intelligence as it backbone, it is implemented 

in scientific research point of interest to try and simplify problems that have scenarios 

that has to be with group of swarms. 

 Particle Swarm Optimization has no evident cases of mutation in it inner algorithms, 

optimization can be done using vectors like speed, mobility, communication among 

others. 

 Particle Swarm Optimization implements a case where codes can be translated into 

solutions. 
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2.4 Disadvantages of the Basic Particle Swarm Optimization Algorithm: 

 PSO has setbacks which include optimism which arises from less correct guidance of 

the nodes speed and direction. 

 PSO won’t be able to suffice scenarios where the nodes are dismantled from swarm or 

collective optimization. 

 PSO can’t be employed when the systems is disfigured, lack of coordination, energy 

resources and conservation. 

 

2.5 Review Summary  

The conventional techniques frequently fail to solve and provide solutions for optimization 

problems that have many local and confined ideals. In order to tackle these problems, there is a 

desire to invent more effective optimization techniques. Examples of the most popular 

population based optimization techniques include;  

 Particle swarm optimization (PSO), 

 Genetic algorithm (GA), 

 Bacteria foraging optimization (BFO), 

 Artificial bee colony (ABC), 

 Ant colony optimization (ACO) etc. 

 

For the sake of this research PSO algorithm is going to be chosen for the optimization algorithms 

in order to examine its nodes mobility and velocity, path discovery and its autonomy. This is 

because the particle’s size has been chosen on the base of experimentation, to study tries to 

implement SSO optimization, the recommended optimization technique has traces of connected 

workplace to locate an ideal path. 
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CHAPTER 3 

METHODOLOGY AND PROPOSED APPROACH 

 

3.1 Proposed Approach 

Numerous immobile complications were enunciated by 2D, also known as two dimensional 

square guides which was enunciated by a network based model in relation to mobile robot 

environment. This is overlaid on an enduring case of framework core interests. Cross section 

based model makes the most of the partition and representation of tangle less requesting. To 

check the ampleness of the SSO, the reenactment has been associated with the working 

environment which is shown in Figure 3.1. As appeared in the figure, the systems network 

deterrent where mobile robot can change position freely. The path used has no unit for 

measurement which can symbolize individuality within the cells. The blue circle in the 

environment shows beginning and end of path. The grid size and the directions of the beginning 

and target point with number of obstructions are showed up in Table 3.1. 

 

Table 3.1: A table showing start and target point, grid size, number of obstacles  

 

 

 

 

Start point 

[unit] 

Target point 

[unit] 

Grid size 

[unit] 

Number of 

obstacles 

 

X=0 , Y=0 

 

X=23 , Y=30 

 

23  ×  30 

 

50 
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Figure 3.1: Working environment  

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 

   

 

 

 

                                                                                                             

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Main flow chart  
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No 
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Creating point 
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global best 
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Input: swarm size, number of 

particles, number of iteration, number 

of obstacles, start and target point 
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Figure 3.2 is a flowchart which shows the detailed steps and process of how an SSO algorithm 

operates. A value is assigned for each variable swarm size which contain X and Y axis 

respectively (swarm X and swarm Y), while the values for both swarm size were initialize 

randomly. Furthermore, the number of particles signifies how many points the swarm have to 

pass from the initiation point to the target point. While number of alterations signifies how many 

iterations were assigned for the particle swarm to choose the best value among iterations. 

The number of obstacles indicates how many obstacles are there within the working 

environment, while navigating from the initial point to the target point. Within the working 

environment, for the robot to navigate, there is an initial and target point for the navigation. 

Subsequently, after inputting the values and defined the variables, a point will be created for the 

robot to navigate and find its path within the working environment. A conditional statement will 

be use to check, weather there is an obstacle or not at each single point, if there is an obstacle, a 

new point has to be provided through the best neighborhood of X_direction (axis) and 

Y_direction (axis). The subsequent step is to calculate the distance between each point in which 

the robot passes through from the initial to the target point while navigating. 

The distance between each point will be the sum of every iteration, while the distance from all 

iteration will be compared in order to find the list number for determining the best position 

(pbest) for the particle, and that best position with smallest number will be regarded as global 

best position (gbest) for swarm. However, there is a need to find a new position. In finding new 

positon, there is a need to find new velocity for X_direction and Y_direction which will 

determine the new position for each particle. The subsequent step is to check for infeasible path. 

This will determine whether the path is feasible for robot or not, this will help to find out either 

to increment or decrement X by one point, or increment or decrement Y by one point, vice versa. 

Furthermore, point addition will be made for both X and Y swarm. There will be continues 

iteration until global best position is equivalent to the target point. After that, the best vale will 

be displayed and that will end the process. 
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3.2 Explanation of Each Entity From Flowchart 

 

3.2.1 Simplified swarm optimization 

The initial locus of every particle is also the beginning stage of the path. The principal locus and 

haste of every particle is produced haphazardly, however constrained to the limits of the search 

boundaries. The coordinates of start and goal points are xs, ys and xg, yg respectively. 

 

3.2.2 Checking for obstacles 

While particles explores through the pursuit space from existing position to new position, a 

conditional statement is utilized to check if the following point is obstacles or not, the condition 

check, if the X_direction of point equal to XOPS and Y_direction of point equal to YOPS if the 

condition is true then change the position of particle and if condition false add point to swarm 

X and swarm Y, are shown in Figure 3.3. 

 

 

 

 

  

                  

 

 

 

 

 

 

 

 

Figure 3.3: Flowchart for checking obstacles 

Start 

Input: point, XOPS, 

YOPS 

𝑥𝑛𝑒𝑤==XOPS && 

𝑦𝑛𝑒𝑤==YOPS 

 

 

 

 

Change position of 

particle 

Add point to swarm X 

and swarm Y 
End 

𝑥𝑛𝑒𝑤=𝑥𝑜𝑙𝑑 +1 or 𝑥𝑛𝑒𝑤=𝑥𝑜𝑙𝑑 −1 

Or 

𝑦𝑛𝑒𝑤=𝑦𝑜𝑙𝑑 +1 or 𝑦𝑛𝑒𝑤=𝑦𝑜𝑙𝑑 −1 

 
No 

Yes 
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3.2.3 Evaluation fitness function  

The path of the particles are viewed and surveyed inside each movement. Assessment capacity 

is used to give a measure of how particles have implemented in the issue based on space. In the 

SSO, dual parameters (the time and an amount space between two points) determined by the 

particle are utilized to compute the particle fitness (𝑝_𝑓𝑖𝑡𝑛𝑒𝑠𝑠). Since the fitness should augment 

as the partition and time reduce the fitness capacity is assessed as: 

𝑝_𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 1 (𝑤𝑑 ∗ 𝑑(𝑝𝑖, 𝑝𝑖+1) + 𝑤𝑡 ∗ 𝑡(𝑝𝑖, 𝑝𝑖+1))⁄                                               (1.3) 

 

From the equation; 𝑤𝑑 and 𝑤𝑡 are factor for distance in relation to weight and time of 

travel,  𝑑(𝑝𝑖, 𝑝𝑖+1)  signifies Euclidean distance concerning point 𝑝𝑖  to then point 𝑝𝑖+1 for same 

particle and 𝑡(𝑝𝑖, 𝑝𝑖+1) denotes time taken by the particle to cover from 𝑝𝑖 to 𝑝𝑖+1 : 

 

            𝑑(𝑝𝑖, 𝑝𝑖+1) = √(𝑥𝑖+1 − 𝑥𝑖)2 + (𝑦𝑖+1 − 𝑦𝑖)2                                                         (2.3) 

𝑡(𝑝𝑖, 𝑝𝑖+1) = 𝑑(𝑝𝑖, 𝑝𝑖+1) 𝑣𝑖⁄                                                                                   (3.3) 

 

Where 𝑥𝑖 and 𝑦𝑖 signifies particle’s parallel and perpendicular locus, 𝑥𝑖+1 and 𝑦𝑖+1 are particle’s 

next parallel and perpendicular locus, and 𝑣𝑖 means the speed of the particle when venturing out 

from 𝑝𝑖 - 𝑝𝑖+1. The computation of fitness amount is assessed by flowchart appeared in Figure 

(3.4). 
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Figure 3.4: Flowchart for fitness calculation 

Start 

Input: two points of particle 

(current , next), velocity of particle, 

weighting factors 

 

Calculate Current point and next point to find distance,  

Using equation (2.3) 

Calculate each distance with velocity to find required time, 

Using equation (3.3) 

Calculate fitness for each particle, 

 Using equation (1.3) 

End 
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3.2.4 Finding the individual (particle) and global best location 

The particle's sum of distance appreciation is considered at amongst present and new area at 

every iteration to decide the best position (𝑝𝑏𝑒𝑠𝑡) for every particle and the particle with the best 

sum of distance appreciation is allotted as the universal best ( 𝑔𝑏𝑒𝑠𝑡), as outlined by the flowchart 

appeared in Figure (3.5). 

 

 

 

   

 

  

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

 

 

 

Input: sum of distance for each iteration, swarm size, pbest size, gbest size 

sum itr i-1 > sum itr i 

YES NO 

𝑝𝑏𝑒𝑠𝑡= sum itr i 𝑝𝑏𝑒𝑠𝑡= sum itr i-1 

𝑔𝑏𝑒𝑠𝑡= 𝑝𝑏𝑒𝑠𝑡 with minimum value 

End 

Start 

Figure 3.5: Finding the particle and global best location 
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3.2.5 Calculate new velocity and position 

The algorithm of SSO was introduced with various particles and afterward search for ideal. The 

locus of a particle is affected by the finest locus went to without anyone else's input which is 

alluded to as particle best “𝑝𝑏𝑒𝑠𝑡”, and the best locus in the entire swarm which is alluded to as 

the global best”𝑔𝑏𝑒𝑠𝑡”. A particle overhauls its locus and velocity utilizing the supplementary 

Equations (4.3 & 5.3). 

 

𝑣𝑥2 = w ∗ vx1 + c1 ∗ r1(p𝑏𝑒𝑠𝑡 − x1) + c2 ∗ r2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑥1)                              (4.3) 

vy2 = w ∗ vy1 + c1 ∗ r1(p𝑏𝑒𝑠𝑡 − y1) + c2 ∗ r2 ∗ (𝑔𝑏𝑒𝑠𝑡 − 𝑦1)                              (5.3) 

 

From the equation (4.3 and 5.3), the paricle segment (p𝑏𝑒𝑠𝑡 − x1) connotes the particles possess 

understanding as to where the best outcome is and the social segments, (p𝑏𝑒𝑠𝑡 − y1)  signifies 

the conviction of the whole swarm as to where the best arrangement is 𝑣𝑥2 and 𝑣𝑦2 are the 

effective particle's velocity. 𝑣𝑥1 , 𝑣𝑦1 and  𝑥1 , 𝑦1  are current particle’s velocity and position 

along x and y-direction respectively. Overhauling speeds is the way that empowers the particle 

to look around its particular best locus and global best locus. 

 

Individual factor, c1 and swarm certainty factor, c2 makes particles have the function of personal 

instantaneous and figure out how to the best of swarm, and draw near to the best position of its 

own and also inside the swarm. The inertia weight (w) this term fills in as a memory of past 

velocity and it utilized to control the effect of the past velocity on the present velocity. The 

estimation of inertia weight (w) is in the scope of [0,1]. r1 and r2 arbitrary numbers inside the 

interval [0, 1]. Updated equation (4.3 and 5.3) for SSO to Equation (6.3 and 7.3). 

 

𝑣𝑥2 = w ∗ vx1 + c2 ∗ r2(𝑔𝑏𝑒𝑠𝑡 − x1)                                                                      (6.3) 

vy2 = w ∗ vy1 + c2 ∗ r2(𝑔𝑏𝑒𝑠𝑡 − y1)                                                                      (7.3) 
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3.2.6 Check and modify infeasible path 

After finding a new point a conditional statement is used to check all the points if the point is 

obstacles or not if condition true replaces point and path become feasible if condition is false 

then the path is feasible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6: Flowchart for modify feasible path 
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Input: new point for 
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𝑦𝑛𝑒𝑤=𝑦𝑛𝑒𝑤 −1 
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End 
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3.3 Numerical Example of One Iteration  
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1 

5 

 

 

 

 

14 

 

 

Start point = (0 , 0) 

Target point = (23 , 30) 

P1 = (1 , 1)                                           point of swarm x and swarm y  

P2 = (18 , 6)                                         point of swarm x and swarm y  

P3 = (22 ,11)                                        point of swarm x and swarm y  

P4 = (5 ,29)                                          point of swarm x and swarm y  

P5 = (6 ,14)                                          point of swarm x and swarm y  
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 𝑝𝑠𝑡𝑎𝑟𝑡 →  𝑝1 →  𝑝2 →  𝑝3 →  𝑝4 →  𝑝5 →  𝑝𝑡𝑎𝑟𝑔𝑒𝑡 

 

P1 = (1 ,1) 

𝑥1 = 1 , 𝑦1 = 1           this point is obstacles 

𝑥1𝑛𝑒𝑤 = 𝑥1+1 

𝑥1𝑛𝑒𝑤 = 1+1 = 2       then the point changes to (2 , 1) 

Or 

𝑦1𝑛𝑒𝑤 = 𝑦+1 

𝑦1𝑛𝑒𝑤 = 1+1 = 2       then the point changes to (1 , 2) 

 

Now    P1 = (2 , 1)  

 

𝑑1(Pstart ,P1) = √(𝑥𝑝1 − 𝑥𝑝start)2 + (𝑦𝑝1 − 𝑦𝑝start)2  

𝑑1(Pstart ,P1) = √(2 − 0)2 + (1 − 0)2  =  2.2 

 

𝑑2(P1 ,P2) = √(𝑥p2 − 𝑥𝑝1)2 + (𝑦𝑝2 − 𝑦𝑝1)2   

𝑑2(P1 ,P2) = √(18 − 2)2 + (6 − 1)2 = 16.7  

    

𝑑3(P2 ,P3) = √(𝑥p3 − 𝑥𝑝2)2 + (𝑦𝑝3 − 𝑦𝑝2)2  

𝑑3(P2 ,P3) = √(22 − 18)2 + (11 − 6)2 = 6.4  

        

𝑑4(P4 ,P3) = √(𝑥p4 − 𝑥𝑝3)2 + (𝑦𝑝4 − 𝑦𝑝3)2   

𝑑4(P4 ,P3) = √(5 − 22)2 + (29 − 11)2 = 24.7  

 

    

𝑑5(P5 ,P4) = √(𝑥p5 − 𝑥𝑝4)2 + (𝑦𝑝5 − 𝑦𝑝4)2   

Using equation of 

distance to find 

distance between 

two points 
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𝑑5(P5 ,P4) = √(6 − 5)2 + (14 − 29)2 = 15.03  

 

𝑑6(Ptarget ,P5) = √(𝑥ptarget − 𝑥𝑝5)2 + (𝑦𝑝target − 𝑦𝑝5)2   

𝑑6(Ptarget ,P5) = √(23 − 6)2 + (30 − 14)2 = 23.3   

 

𝑝𝑎𝑡ℎ𝑑𝑖𝑠𝑡 = ∑ 𝑑𝑖 = 88.33 

 

 

 

   

 

                

 

 

 

 

 

 

For Particle Swarm Optimization (PSO) 

 

New velocity for X 

𝑣𝑥1𝑛𝑒𝑤 = 𝑣𝑥1 + 2 ∗ 𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑥1) + 2 ∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥1) 

𝑣𝑥1𝑛𝑒𝑤 = 1 + 2 ∗ 0.2(30 − 2) + 2 ∗ 0.3(12 − 2) = 18.2 

 

New position for X 

𝑥1𝑛𝑒𝑤 = 𝑥1𝑜𝑙𝑑 + 𝑣𝑥1𝑛𝑒𝑤 

𝑥1𝑛𝑒𝑤 = 2 + 18.2 = 20.2 

New velocity for Y 

𝑣𝑦1𝑛𝑒𝑤 = 𝑣𝑦1 + 2 ∗ 𝑟1(𝑝𝑏𝑒𝑠𝑡 − 𝑦1) + 2 ∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑦1) 
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𝑣𝑥1𝑛𝑒𝑤 = 1 + 2 ∗ 0.2(30 − 1) + 2 ∗ 0.3(12 − 1) = 19.2 

 

New position for Y 

𝑦1𝑛𝑒𝑤 = 𝑦1𝑜𝑙𝑑 + 𝑣𝑦1𝑛𝑒𝑤 

𝑦1𝑛𝑒𝑤 = 1 + 19.2 = 20.2   

 

New point (𝑥1𝑛𝑒𝑤 , 𝑦1𝑛𝑒𝑤) = (20.2 , 20.2) 

 

For Simplified Swarm Optimization (SSO) 

 

New velocity for X 

𝑣𝑥1𝑛𝑒𝑤 = 𝑣𝑥1 + 2 ∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑥1) 

𝑣𝑥1𝑛𝑒𝑤 = 1 + 2 ∗ 0.3(12 − 2) = 7 

 

New position for X 

𝑥1𝑛𝑒𝑤 = 𝑥1𝑜𝑙𝑑 + 𝑣𝑥1𝑛𝑒𝑤 

𝑥1𝑛𝑒𝑤 = 2 + 7 = 9 

 

New velocity for Y 

𝑣𝑦1𝑛𝑒𝑤 = 𝑣𝑦1 + 2 ∗ 𝑟2(𝑔𝑏𝑒𝑠𝑡 − 𝑦1) 

𝑣𝑥1𝑛𝑒𝑤 = 1 + 2 ∗ 0.3(12 − 1) = 7.6 

 

New position for Y 

𝑦1𝑛𝑒𝑤 = 𝑦1𝑜𝑙𝑑 + 𝑣𝑦1𝑛𝑒𝑤 

𝑦1𝑛𝑒𝑤 = 1 + 7.6 = 8.6   

 

New point (𝑥1𝑛𝑒𝑤 , 𝑦1𝑛𝑒𝑤) = (9 , 8.6) 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

4.1 Algorithm Parameters 

Table 4.1 below is displaying the defined parameters which are signifying the algorithms for the 

proposal of the approach. 

 

Table 4.1: Algorithm variables 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2 The Implementation of SSO in Path Planning  

To look at the effect of different swarm dimension on SSO and their execution, several numeral 

of particle has been relating (such as 5, 6, 7, and 8). The particle's dimension has been picked 

on the base of testing, to explore the execution of SSO. The computation proposed has been 

connected with work environment which was showed in Figure 3.1 in order to discover the path 

that is perfect. The best gained re-enactment comes to different number of particles (swarm size) 

for the work environment which showed up in Table 4.2. 

 Variables Size 

1 No. of iteration 100 

2 Swarm X 5 x 20 

3 Swarm Y 5 x 20 

4 XOPS 1 x 50 

5 YOPS 1 x 50 

6 Path_dist 1 x 20 

7 P_best 1 x 20 

8 G_best 1 x 20 
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𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 , 𝑒) = 𝑑𝑖𝑠𝑡𝑛𝑐𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑎𝑟𝑡 𝑎𝑛𝑑 𝑒𝑛𝑑 𝑝𝑜𝑖𝑛𝑡 

 

(1,1)               (23,30) 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 , 𝑒) = √(30 − 1)2 + (23 − 1)2 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 , 𝑒) = 36.4 

𝑒𝑟𝑟𝑜𝑟 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 − 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 (𝑠 , 𝑒) 

 

Table 4.2: Simulation results for the working environment using PSO and SSO algorithm 

 

 

 

 

 

 

 

 

 

 

 

NO. of particles Type of algorithm Distance Error 

5 PSO 67.1897 30.7897 

5 SSO 36.4371 0.0371 

6 PSO 88.0187 51.6187 

6 SSO 36.4608 0.0608 

7 PSO 80.2049 43.8049 

7 SSO 36.6457 0.2457 

8 PSO 109.0702 72.6702 

8 SSO 37.2733 0.8733 
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         Figure 4.1: Using PSO, (5 point)                        Figure 4.2: Using SSO, (5 point) 

 

The figure 4.1 – 4.2 above are displaying the obtained solution after PSO and SSO algorithms 

were used for working environment with X axis (0,23) direction and Y axis (0,30) direction. 

The working environment was used as the search space, which was occupied by number of 

random obstacles. These obstacles were represented by red square from the graph. Similarly, 

blues circles represent the starting and target point of the robot. Black line represents the robots 

path distance from starting to target point while navigating in the working environment. Green 

line represents the path used by robots to navigate from starting to target point. Figure 4.1 is 

showing the PSO algorithm applied using 5 points and a distance of (67.1897). This algorithm 

is signifying that, the robot took 5 points to reach its target point from the starting point with the 

distance it took to navigate. In figure 4.2 an SSO algorithm was also applied with its 5 points 

and a distance of (36.4371). The SSO algorithm was determined to find the minimum path 

possible for the robot to navigate without obstacles while navigating, this provides less distance 

when compared with PSO algorithms. SSO algorithms was created to make an optimization 

algorithm which will be more capable for global path planning, SSO also will make infeasible 

paths problems feasible for robots to navigate efficiently and effectively. 
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Figure 4.3: Using PSO, (6 point)                        Figure 4.4: Using SSO, (6 point) 

 

The figure 4.3 – 4.4 above are displaying the obtained solution after PSO and SSO algorithms 

were used for working environment with X axis (0,23) direction and Y axis (0,30) direction. 

The working environment was used as the search space, which was occupied by number of 

random obstacles. These obstacles were represented by red square from the graph. Similarly, 

blues circles represent the starting and target point of the robot. Black line represents the robots 

path distance from starting to target point while navigating in the working environment. Green 

line represents the path used by robots to navigate from starting to target point. Figure 4.3 is 

showing the PSO algorithm applied using 6 points and a distance of (88.0187). This algorithm 

is signifying that, the robot took 6 points to reach its target point from the starting point with the 

distance it took to navigate. In figure 4.4 an SSO algorithm was also applied with its 6 points 

and a distance of (36.4608). The SSO algorithm was determined to find the minimum path 

possible for the robot to navigate without obstacles while navigating, this provides less distance 

when compared with PSO algorithms. SSO algorithms was created to make an optimization 

algorithm which will be more capable for global path planning, SSO also will make infeasible 

paths problems feasible for robots to navigate efficiently and effectively. 
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         Figure 4.5: Using PSO, (7 point)                      Figure 4.6: Using SSO, (7 point) 

 

The figure 4.5 – 4.6 above are displaying the obtained solution after PSO and SSO algorithms 

were used for working environment with X axis (0,23) direction and Y axis (0,30) direction. 

The working environment was used as the search space, which was occupied by number of 

random obstacles. These obstacles were represented by red square from the graph. Similarly, 

blues circles represent the starting and target point of the robot. Black line represents the robots 

path distance from starting to target point while navigating in the working environment. Green 

line represents the path used by robots to navigate from starting to target point. Figure 4.5 is 

showing the PSO algorithm applied using 7 points and a distance of (80.2049). This algorithm 

is signifying that, the robot took 7 points to reach its target point from the starting point with the 

distance it took to navigate. In figure 4.6 an SSO algorithm was also applied with its 7 points 

and a distance of (36.6457). The SSO algorithm was determined to find the minimum path 

possible for the robot to navigate without obstacles while navigating, this provides less distance 

when compared with PSO algorithms. SSO algorithms was created to make an optimization 

algorithm which will be more capable for global path planning, SSO also will make infeasible 

paths problems feasible for robots to navigate efficiently and effectively. 
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         Figure 4.7: Using PSO, (8 point)                     Figure 4.8: Using SSO, (8 point) 

 

The figure 4.7 – 4.8 above are displaying the obtained solution after PSO and SSO algorithms 

were used for working environment with X axis (0,23) direction and Y axis (0,30) direction. 

The working environment was used as the search space, which was occupied by number of 

random obstacles. These obstacles were represented by red square from the graph. Similarly, 

blues circles represent the starting and target point of the robot. Black line represents the robots 

path distance from starting to target point while navigating in the working environment. Green 

line represents the path used by robots to navigate from starting to target point. Figure 4.7 is 

showing the PSO algorithm applied using 8 points and a distance of (109.0702). This algorithm 

is signifying that, the robot took 8 points to reach its target point from the starting point with the 

distance it took to navigate. In figure 4.8 an SSO algorithm was also applied with its 8 points 

and a distance of (37.2733). The SSO algorithm was determined to find the minimum path 

possible for the robot to navigate without obstacles while navigating, this provides less distance 

when compared with PSO algorithms. SSO algorithms was created to make an optimization 

algorithm which will be more capable for global path planning, SSO also will make infeasible 

paths problems feasible for robots to navigate efficiently and effectively. 
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Table 4.3: The simulation results for the working environment using SSO algorithm 

 

 

Number of particles (4) with the iteration (11) the distance = 36.5689 

Number of particles (4) with the iteration (55) the distance = 36.4204 

Number of particles (4) with the iteration (99) the distance = 36.4112 

Number of particles (9) with the iteration (11) the distance = 66.4912 

Number of particles (9) with the iteration (55) the distance = 56.5358 

Number of particles (9) with the iteration (99) the distance = 40.0703 

Number of particles (40) with the iteration (11) the distance = 171.4331 

Number of particles (40) with the iteration (55) the distance = 159.4229 

Number of particles (40) with the iteration (99) the distance = 141.9987 

Number of particles (90) with the iteration (11) the distance = 442.6258 

Number of particles (90) with the iteration (55) the distance = 423.9265 

Number of particles (90) with the iteration (99) the distance = 387.5449 

 

The result shows that the distance will increase by increasing particle and the distance will 

decrease by increasing iteration. 

 

 

 

No. of particles 11 iteration 55 iteration 99 iteration 

4 36.5689 36.4204 36.4112 

9 66.4912 56.5358 40.0703 

40 171.4331 159.4229 141.9987 

90 442.6258 423.9265 387.5449 
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  CHAPTER 5 

CONCLUSION AND RECOMMENDATIONS 

 

5.1 Conclusion 

In this study, path planning for mobile robot was investigated using Simplified Swarm 

Optimization (SSO).  A SSO algorithm was utilized to discover ideal way for the mobile robot 

in workplace with irregular complications. Based on the result obtained from simulations, the 

fallowing conclusions were drawn: 

 The algorithm for the (SSO) that was proposed was proficient of successfully managing 

a robot movement from initial locus to the final locus in complex environment at the 

same time finding a perfect and shortest path without affecting any obstacles.  

 

 In the SSO algorithm errors element was verified, to guarantee the PSO unites together. 

These errors were utilized in altering the particle’s trajectory to move toward the 

objective target.  

 

 An adjusted strategy was implemented in the SSO in order to tackle the convenient path 

problems. A conditional statement was utilized when the particle path falls within a 

problematic environment; then it will transfer it to a locus neighborhood outside of the 

deterrent.  

 

 The SSO computation does not take part in the enclosed environment in which there was 

no path between the initial and the goal point. 

 

 SSO can legitimately be seen like better than average algorithm in light of its joining 

speed and efficient in global search. 
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5.2 Recommendations 

Due to timeframe for this study, it is recommended that the study may consider the following 

for future development:  

 Applying the proposed SSO algorithm on Real-Time environment at which the obstacles 

change their position with time. 

 

 Applying the proposed SSO algorithm in dynamic environments. 

 

 Comparing the suggested SSO algorithm with other algorithms, which include, Artificial 

Bee Colony (ABC), Ant Colony Optimization (ACO). 
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APPENDIX : Source Code 

 

1-    close all; 

2-    clc; 

3-    clear; 

 

4-    %=========================== 

5-    % Initialization 

6-    %=========================== 

7-    N=50;                                                    %Number of iteration       

8-    line_th=0.0;                    

9-    swarm_size=20;                                    %Swarm size 

10-    number_of_points=6;                           %Number of particles 

11-    ob=50;                                                   %Number of obstacles 

12-    x_start = 1; 

13-    y_start = 1; 

14-    x_end = 23; 

15-    y_end = 30; 

16-    X=0:1:23; 

17-    Y=0:1:30; 

 

18-    XS=round(23*rand(swarm_size,number_of_points)); 

19-    YS=round(30*rand(swarm_size,number_of_points)); 

20-    XYOb=zeros(ob,1); 

21-    XYOb(:,1)=round(18*rand(ob,1))+3; 

22-    XYOb(:,2)=round(25*rand(ob,1))+3; 

23-    save('XY_Ob','XYOb') 

24-    load('XY_Ob.mat','XYOb'); 

 

25-    %=========================== 

26-    % Working Environment  

27-    %=========================== 

28-    for m1=1:ob 

29-    hold on 

30-    plot(XYOb(m1,1),XYOb(m1,2),'--rs','MarkerEdgeColor','r', 

            'MarkerFaceColor','r','MarkerSize',6); 

31-    end 

32-    plot(1,1,'ok','MarkerEdgeColor','k', 

            'MarkerFaceColor','b','MarkerSize',10); 

33-    hold on 

34-    plot(23,30,'ok','MarkerEdgeColor','k', 

            'MarkerFaceColor','b','MarkerSize',10); 

35-    axis([0,23,0,30]) 

36-    grid on 

37-    box on 
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38-    set(gca,'YTick',0:2:30) 

39-    set(gca,'XTick',0:1:23) 

40-    title('Working Environment'); 

41-    xlabel('X'); 

42-    ylabel('Y'); 

 

 

43-    %=================================== 

44-    % obstacles checking for feasibility 

45-    %=================================== 

46-    redo=1; 

47-    while redo==1 

48-    redo=0; 

49-    for i4=1:ob 

50-    xc=abs(XS-XYOb(i4,1)); 

51-    yc=abs(YS-XYOb(i4,2)); 

52-    xyc=xc+yc; 

53-    xycn=round(xyc./(xyc+0.01)); 

54-    [ro,co]=find(xycn==0); 

55-    for i5=1:size(ro,1) 

56-    XS(ro(i5),co(i5))=round(23*rand(1)); 

57-    YS(ro(i5),co(i5))=round(30*rand(1)); 

58-    redo=1; 

59-    end 

60-    end 

61-    end 

 

 

62-    %Feasibility of line segments% 

63-    %----------------------------- 

64-    redo2=1; 

65-    while redo2==1 

66-    redo2=0; 

67-    for i6=1:swarm_size 

 

68-    %start segment 

69-    slope=(YS(i6,1)-1)/(XS(i6,1)-1); 

70-    for k1=1:ob 

71-    if abs(slope)==inf 

72-    if XYOb(k1,1)==XS(i6,1) 

73-    XS(i6,1)=round(23*rand(1)); 

74-    YS(i6,1)=round(30*rand(1)); 

75-    redo2=1; 

76-    end 

77-    else 

78-    onl=abs((XYOb(k1,2)-1)-slope*(XYOb(k1,1)-1)); 
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79-    if onl<line_th 

80-    XS(i6,1)=round(23*rand(1)); 

81-    YS(i6,1)=round(30*rand(1)); 

82-    redo2=1; 

83-    end 

84-    end 

85-    end 

 

86-    % in between segments 

87-    for j=1:number_of_points-1 

88-    slope=(YS(i6,j+1)-YS(i6,j))/(XS(i6,j+1)-XS(i6,j)); 

89-    for k2=1:ob 

90-    if abs(slope)==inf 

91-    if XYOb(k2,1)==XS(i6,j) 

92-    XS(i6,j+1)=round(23*rand(1)); 

93-    YS(i6,j+1)=round(30*rand(1)); 

94-    redo2=1; 

95-    end 

96-    else 

97-    onl=abs((XYOb(k2,2)-YS(i6,j))-slope*(XYOb(k2,1)-XS(i6,j))); 

98-    if onl<line_th 

99-    XS(i6,j+1)=round(23*rand(1)); 

100-    YS(i6,j+1)=round(30*rand(1)); 

101-    redo2=1; 

102-    end 

103-    end 

104-    end 

105-    end 

 

106-    % end segment 

107-    slope=(30-YS(i6,number_of_points))/ 

            (23-XS(i6,number_of_points)); 

108-    for k3=1:ob 

109-    if abs(slope)==inf 

110-    if XYOb(k3,1)==XS(i6,number_of_points) 

111-    XS(i6,number_of_points)=round(23*rand(1)); 

112-    YS(i6,number_of_points)=round(30*rand(1)); 

113-    redo2=1; 

114-    end 

115-    else 

116-    onl=abs((XYOb(k3,2)-30)-slope*(XYOb(k3,1)-23)); 

117-    if onl<line_th 

118-    XS(i6,number_of_points)=round(23*rand(1)); 

119-    YS(i6,number_of_points)=round(30*rand(1)); 

120-    redo2=1; 

121-    end 
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122-    end 

123-    end 

124-    end 

125-    end 

126-    for i=1:swarm_size 

127-    hold on 

128-    plot ([1,XS(i,:),23],[1,YS(i,:),30]) 

129-    end 

 

130-    pbest_X=XS; 

131-    pbest_Y=YS; 

132-    gbest_X=pbest_X(1,:); 

133-    gbest_Y=pbest_Y(1,:); 

134-    D=inf*ones(swarm_size,1);  

135-    D_pbest=D;  

136-    D_gbest=inf; 

 

137-    c1=2;  

138-    c2=2;  

139-    w_min=0.2; 

140-    w_max=0.9; 

141-    w=w_max-(w_max-w_min)*(0:1:N-1)./(N-1);   %inertia weight 

142-    v_X=zeros(swarm_size,number_of_points);  

143-    v_Y=zeros(swarm_size,number_of_points); 

 

144-    %---- Constraints ------------------- 

145-    v_X_max=2; 

146-    v_X_min=-2; 

147-    v_Y_max=2; 

148-    v_Y_min=-2; 

 

149-    X_min=1; 

150-    Y_min=1; 

151-    X_max=23; 

152-    Y_max=30; 

 

153-    hold off 

 

154-    %MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 

155-    %$$$$$$  main loop of algorithm 

156-    %MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM 

157-    for it=1:N 

158-    for ks=1:swarm_size 

159-    dis=0; 

160-    dis=dis+sqrt((1-YS(ks,1))^2+(1-XS(ks,1))^2); 

161-    for k4=1:number_of_points-1 
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162-    dis=dis+sqrt((YS(ks,k4)-YS(ks,k4+1))^2+ 

            (XS(ks,k4)-XS(ks,k4+1))^2); 

163-    end 

164-    dis=dis+sqrt((30-YS(ks,number_of_points))^2+ 

            (23-XS(ks,number_of_points))^2); 

165-    D(ks)=dis; 

166-    if D(ks)<D_pbest(ks) 

167-    D_pbest(ks)= D(ks); 

168-    pbest_X(ks,:)=XS(ks,:); 

169-    pbest_Y(ks,:)=YS(ks,:); 

170-    end 

171-    end 

172-    [min_D_pbest,idx]=min(D_pbest); 

173-    if min_D_pbest<D_gbest  

174-    D_gbest=min_D_pbest; 

175-    gbest_X=pbest_X(idx,:); 

176-    gbest_Y=pbest_Y(idx,:); 

177-    end 

 

178-    %UPDATE V and P  

179-    % ** Update the velocity and Postion vectors_START_ ***    

180-    for ks2=1:swarm_size    

181-    r2=rand(1);  

182-    v_X(ks2,:)=w(it)*v_X(ks2,:)+(c2.*r2.*(gbest_X-XS(ks2,:))) 

183-    v_Y(ks2,:)=w(it)*v_Y(ks2,:)+(c2.*r2.*(gbest_Y-YS(ks2,:))) 

 

184-    % *** Check the velocity constraint_START 

185-    for kv=1:number_of_points 

 

186-    %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

187-    if v_X(ks2,kv)<v_X_min 

188-    v_X(ks2,kv)=v_X_min; 

189-    else  

190-    if v_X(ks2,kv)>v_X_max 

191-    v_X(ks2,kv)=v_X_max; 

192-    end 

193-    end 

 

194-    %YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 

195-    if v_Y(ks2,kv)<v_Y_min 

196-    v_Y(ks2,kv)=v_Y_min; 

197-    else  

198-    if v_Y(ks2,kv)>v_Y_max 

199-    v_Y(ks2,kv)=v_Y_max; 

200-    end     

201-    end 
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202-    end 

 

203-    % ... Check the velocity constraint_END 

 

204-    % ** Update the position vector 

205-    XS(ks2,:)=round(XS(ks2,:)+v_X(ks2,:)); 

206-    YS(ks2,:)=round(YS(ks2,:)+v_Y(ks2,:)); 

207-    % in the searching range 

208-    %||||||||||||||||||||||||||||||||||||||||||| 

209-    %|||||Feasibility TEST|||||||||||||||||||||| 

210-    %-----------------------------         

211-    redo=1; 

212-    while redo==1 

213-    redo=0; 

214-    for i4=1:ob 

215-    xc=abs(XS-XYOb(i4,1)); 

216-    yc=abs(YS-XYOb(i4,2)); 

217-    xyc=xc+yc; 

218-    xycn=round(xyc./(xyc+0.01)); 

219-    [ro,co]=find(xycn==0); 

220-    for i2=1:size(ro,1) 

221-    rx=round(4*(rand(1)-0.5)); 

222-    XS(ro(i2),co(i2))=XS(ro(i2),co(i2))+rx; 

223-    ry=round(4*(rand(1)-0.5)); 

224-    YS(ro(i2),co(i2))=YS(ro(i2),co(i2))+ry; 

225-    redo=1; 

226-    end 

227-    end 

228-    end 

 

229-    redo2=1; 

230-    while redo2==1 

231-    redo2=0; 

 

232-    % start segment 

233-    slope=(YS(ks2,1)-1)/(XS(ks2,1)-1); 

234-    for k3=1:ob 

235-    if abs(slope)==inf 

236-    if XYOb(k3,1)==XS(ks2,1) 

237-    XS(ks2,1)=XS(ks2,1)+1; 

238-    YS(ks2,1)=YS(ks2,1)+ry; 

239-    redo2=1; 

240-    end 

241-    else 

242-    onl=abs((XYOb(k3,2)-1)-slope*(XYOb(k3,1)-1)); 

243-    if onl<line_th 
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244-    rx=round(4*(rand(1)-0.5)); 

245-    XS(ks2,1)=XS(ks2,1)+rx; 

246-    ry=round(4*(rand(1)-0.5)); 

247-    YS(ks2,1)=YS(ks2,1)+ry; 

248-    redo2=1; 

249-    end 

250-    end 

251-    end 

 

252-    % in between segments 

253-    for j=1:number_of_points-1 

254-    slope=(YS(ks2,j+1)-YS(ks2,j))/(XS(ks2,j+1)-XS(ks2,j)); 

255-    for k3=1:ob 

256-    if abs(slope)==inf 

257-    if XYOb(k3,1)==XS(ks2,j) 

258-    XS(ks2,j+1)=XS(ks2,j+1)+1; 

259-    redo2=1; 

260-    end 

261-    else 

262-    onl=abs((XYOb(k3,2)-YS(ks2,j))-slope*(XYOb(k3,1)-  XS(ks2,j))); 

263-    if onl<line_th 

264-    rx=round(4*(rand(1)-0.5)); 

265-    XS(ks2,j+1)=XS(ks2,j+1)+rx; 

266-    ry=round(4*(rand(1)-0.5)); 

267-    YS(ks2,j+1)=YS(ks2,j+1)+ry; 

268-    redo2=1; 

269-    end 

270-    end 

271-    end 

272-    end 

 

273-    % end segment 

274-    slope=(30-YS(ks2,number_of_points))/ 

            (23-XS(ks2,number_of_points)); 

275-    for k3=1:ob 

276-    if abs(slope)==inf 

277-    if XYOb(k3,1)==XS(ks2,number_of_points) 

278-    XS(ks2,number_of_points)=XS(ks2,number_of_points)+1; 

279-    redo2=1; 

280-    end 

281-    else 

282-    onl=abs((XYOb(k3,2)-30)-slope*(XYOb(k3,1)-23)); 

283-    if onl<line_th 

284-    rx=round(4*(rand(1)-0.5)); 

285-    XS(ks2,number_of_points)=XS(ks2,number_of_points)+rx; 

286-    ry=round(4*(rand(1)-0.5)); 
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287-    YS(ks2,number_of_points)=YS(ks2,number_of_points)+ry; 

288-    redo2=1; 

289-    end 

290-    end 

291-    end 

292-    end        

 

293-    % *** Check the X and Y Bounds____START 

294-    for kp=1:number_of_points 

 

295-    %XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

296-    if XS(ks2,kp)<X_min 

297-    XS(ks2,kp)=X_min; 

298-    else  

299-    if XS(ks2,kp)>X_max 

300-    XS(ks2,kp)=X_max; 

301-    end 

302-    end 

 

303-    %YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY 

304-    if YS(ks2,kp)<Y_min 

305-    YS(ks2,kp)=Y_min; 

306-    else  

307-    if YS(ks2,kp)>Y_max 

308-    YS(ks2,kp)=Y_max; 

309-    end     

310-    end 

311-    end 

312-    % *** Check the X and Y Bounds_____END 

 

313-    % ...Update the velocity and Postion vectors_END_...    

314-    end 

 

 

315-    %EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE  

316-    disp(['generation= ',num2str(it)]);    

317-    disp(['min_D_pbest= ',num2str(min_D_pbest), 

            '  at index = ',num2str(idx)]);  

318-    disp('__________________') 

319-    disp(['D_gbest= ',num2str(D_gbest)]);  

320-    disp(['gbest:  ',num2str(gbest_X)]);  

321-    disp('=======================');  

322-    disp('@@@@@@@@@@@@@@@@@@@@@@@');  

323-    ax=[1,gbest_X,23]; 

324-    by=[1,gbest_Y,30]; 

325-    clf 
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326-    hold off 

 

327-    %=========================== 

328-    % Working Environment Plot 

329-    %=========================== 

330-    for m1=1:ob 

331-    hold on 

332-    plot(XYOb(m1,1),XYOb(m1,2),'--rs','MarkerEdgeColor','r', 

            'MarkerFaceColor','r','MarkerSize',6); 

333-    end 

334-    plot(1,1,'ok','MarkerEdgeColor','k' 

            'MarkerFaceColor','b','MarkerSize',10); 

335-    hold on 

336-    plot(23,30,'ok','MarkerEdgeColor','k', 

            'MarkerFaceColor','b','MarkerSize',10); 

337-    axis([0,23,0,30]) 

338-    grid on 

339-    box on 

340-    set(gca,'YTick',0:2:30) 

341-    set(gca,'XTick',0:1:23) 

342-    title('Working Environment'); 

343-    xlabel('X'); 

344-    ylabel('Y'); 

345-    plot(ax,by,'LineWidth',2);                 

346-    axis([0,23,0,30]); 

347-    text(5,28,['Distance=  ',num2str(D_gbest)],'FontSize',18); 

348-    pause(0.001); 

349-    end 

350-    hold on      

351-    plot(ax,by,'g','LineWidth',2);               

352-    axis([0,23,0,30]); 

353-    hold on  

354-    plot([1,23],[1,30],'k') 
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