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ABSTRACT 

 

Biodiesel is considered as an alternative source of energy obtained from renewable materials.  In 

the present paper, the investigation of the applicability of adaptive neuro-fuzzy inference 

system (ANFIS), artificial neural network (ANN), radial basis function neural network 

(RBFNN) and response surface methodology (RSM) approaches for modeling the 

biodiesel blends property including kinematic viscosity and density at various temperatures 

and the volume fractions of biodiesel. An experimental database of kinematic viscosity and 

density of biodiesel blends (biodiesel blend with diesel fuel) were used for developing of 

models, where the input variables in the network were the temperature and volume 

fractions of biodiesel. The model results were compared with experimental ones for 

determining the accuracy of the models. The developed models produced idealized results 

and were found to be useful for predicting the kinematic viscosity and density of biodiesel 

blends with a limited number of available data. Moreover, the results suggest that the 

ANFIS approach can be used successfully for predicting the kinematic viscosity and 

density of biodiesel blends at various volume fractions and temperature compared to 

another models. 

 

Keyword: ANFIS; ANN; Biodiesel; density; kinematic viscosity; RBFNN; RSM 
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ÖZET 

 

Biyodizel yenilenebilir malzemelerden elde edilen alternatif bir enerji kaynağı olarak 

düşünülür. Mevcut yazıda, uyarlamalı nöron bulanık çıkarım sisteminin 

uygulanabilirliğinin araştırılması (ANFIS), Yapay sinir ağı (ANN), Radyal taban 

fonksiyonu sinir ağı (RBFNN), Ve tepki yüzeyi metodolojisi (RSM), Kinematik viskozite 

ve yoğunluk dahil olmak üzere biyodizelkarışımlarının modellenmesi için çeşitli 

sıcaklıklarda ve biyodizelin hacim fraksiyonlarındaki yaklaşımlardır. Kinematik viskozite 

ve biyodizel karışımlarının yoğunluğu deneysel bir veritabanı (Dizel yakıt biyodizel 

karışımı) modellerin geliştirilmesi için kullanılmıştır. Biyodizelin sıcaklık ve hacim 

fraksiyonları ağdaki girdi değişkenleridir. Model sonuçlar modellerin doğruluğunu 

belirlemekıçın deneysel olanlar ile karşılaştırılmıştır. Geliştirilen modeller, sinirli sayıda 

mevcut veri ile biyodizel karışımları kinematik viskozitesini ve yoğunluğunu tahmin etmek 

içinideal sonuçlar üretti ve yararlı olduğu bulundu. Dahası, sonuçlar şunu göstermektedir; 

ANFIS Yaklaşımı, Kinematik viskozite tahmininde farkli hacim 

fraksiyonlarındabiyodizelkarışımlarının yoğunluğu ve sıcaklığı başka bir modelle 

karşılaştırıldığında başarılı bir şekilde kullanılabilir. 

 

Anahtar kelime: ANFIS; YSA; Biyodizel; yoğunluk; kinematik viskozite; RBFNN; RSM 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 Background 

Increasing environmental consciousness such as the concerns about greenhouse gas, global 

warming, and emissions and the soaring price of oil associated with the depletion of the 

world’s oil reserves have drawn researchers’ interest in alternative renewable/ sustainable 

energy sources (Demirbas, 2008; Knothe & Steidley, 2007; Ma & A Hanna, 1999). 

Vegetable oils, non-edible oils and their derivatives such as biodiesel have received 

increasing attention due to their promising characteristics. These renewable sources are 

biodegradable (Ma et al., 1999), carbon neutral (Pinto et al., 2005) and clean-burning fuels 

(Vicente et al., 2004) with almost-zero sulphur content.  

biodiesel is a mixture of mono-alkyl esters of saturated and unsaturated long chain-fatty 

acids obtained by a transesterification of oils and fats from plant, animal sources 

(Demirbas, 2008). Both vegetable oils and biodiesel can be directly used in conventional 

petroleum diesel engine with little modification or fuel modification (Misra & Murthy, 

2010). Moreover, when various blends of petroleum diesel  and vegetable oils (De 

Almeida, 2002) or petroleum diesel and biofuels (Cursaru et al., 2011) are used, the 

engines work without any damage to their parts and without any engine modifications. 

One of the most advantage of biodiesel is reduced the level of pollutants (ElSolh, 2011). In 

addition, biodiesel has become attractive because it is biodegradable (Ma  et al., 1999). 

Biodiesel has higher point, also is non-toxic, and essentially free of sulfur and aromatics 

than petro-diesel fuel. Furthermore, it improves remarkably the lubricity of diesel in 

blends. In addtion, it has some disadvantages such as lower heat of combustion and higher 

cloud point (Benjumea et al., 2008). 

Comparing biodiesel with petro-diesel, the density, density, viscosity, cloud point and 

cetane number of biodiesel is higher than petro-diesel. In general, the main important 

biodiesel properties are density and viscosity because they have a direct effect on the 

atomization process during combustion, 

Accurate prediction methods are of great practical value in predicting the biodiesel 

properties and relevant studies can be found in the recent literature. For instance, in the 



2 
 

middle 1960s Gouw and Vlugter (Gouw & Vlugter, 1964) used the Smittenberg relation to 

estimate the density of saturated methyl esters at 20 ℃and 40 ℃. Allen et al. (Allen et al., 

1999) proposed empirical correlations to estimate the viscosity of saturate and unsaturated 

FAMEs as a quadratic function of their molecular weight. Krisnangkura et al. (2006) fitted 

empirical equations to predict the temperature-dependent kinematic viscosities of saturated 

FAMEs as a function of the carbon number in the corresponding fatty acid. Freitas et al. 

(2011) predicted the kinematic viscosity of biodiesel blends at various temperature using 

different empirical models. Pratas et al. (2011) predicted the density of 10 biodiesel blends 

as a function of temperature using a methodology based on the Kay’s mixing rule and the 

group contribution method. 

1.2 Research Aims 

The aim of this research is to predict the biodiesel properties including the kinematic 

viscosity and density using  

1. ANFIS (Adaptive Neuro Fuzzy Inference System),  

2. ANN (Artificial Neural Network),  

3. RBF (Radial Basis Function) and 

4.  RSM (Response Methodology Surface)  

Moreover, this study aims to develop mathematical equations to calculate the biodiesel 

properties including the density and kinematic viscosity and compare the predicted value 

with predicted values using ANFIS, ANN, RBF and experimental data. 

Furthermore, compare RSM model with Geacai et al., 2015, to show the validation of the 

RSM and to compare the results of the polynomial equation with  mathematical equation 

obtained by Geacai et al., 2015.  

1.3 Thesis Outlines 

This chapter provides a brief introduction to biodiesel and its importance for human life. In 

chapter 2, briefly the empirical models and characteristics of them are discussed in details. 

Chapter 3 is describes the empirical models were used in the work to predict the two 

important biodiesel properties in term of density and kinematic viscosity. All the results of 

the predicted data of biodiesel properties are presented in chapter 4 for, followed by a 

comparison between the experimental data with predicted data of density and kinematic 
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viscosity, which is the main topic of this work. The thesis ends with conclusions and 

suggestions for future work in chapter 5. 
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CHAPTER 2 

EMPIRICAL MODELS 

 

2.1 Radial Basis Function (RBF) 

RBF have been applied to many fields (Nasiri et al., 2013) such as time series forecasting 

and function approximation which were the first application used RBF. 

RBF neural network is a feed forward network which consists of three layers (Figure 2.1) 

1. Input layer 

2. Hidden layer 

3. Output layer 

The determination of number of nodes (basis functions) can be composed by the hidden 

layer. It can be can be selected among several types of functions, but for most applications 

they are chosen to be Gaussian functions 

These types of functions have the property of being local functions, which means that only 

they function with their centers close to the input patterns will give a response. So, the 

hidden layer is composed of a variable quantity of nodes, distributed over all the input 

space. Each node is a Gaussian function, characterized by a centre c and a width r that 

produces a non-linear output. Let’s assume that the inputs of the network are given in a 

vector of d components, x = {x1, . . . , xd},The activation function, gj(x), is of the form: 

g୨(x) = exp ൭−
൫x − c୨൯

ଶ

σ୨ଶ
൱ ; 			j = 1, 2, … . , m																																																										(2.1) 

where cj is the centre of the activation function and rj its width. 

RBF network design and training is divided into two part (Liu et al., 2011; Taylor, 1996) 

1. Number of hidden layer and their structure  

2.  weights of the output layer 

There are several methods for constructing and training a RBF network (Billings & Zheng, 

1995; Sarimveis  et al., 2002), and optimizing the design parameters, but the most common 

case is that the number of basis functions has to be given by complex specifications or by 

means of a trial and error process. 
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Figure 2.1: RBF network structure (xd = input to model: yk = output) 

 

 

 

The design of this network is viewed as a curve fitting approximation problem in a high 

dimensional space. According to this view point, learning is equivalent to finding a surface 

in a multidimensional space that provides the best fit to the training data. In its most basic 

form it involves 3 layers with entirely different roles. Input layer is made of source nodes 

that connect the network to its environment. Second is the hidden layer which applies a 

nonlinear transformation from the input space to the hidden space, which is of high 

dimensionality. Output layer is linear, supplying the response of the network to the 

activation patterns applied to the input layer. Figure 2.1 shows the general architecture of 

the RBF network. An RBF is symmetrical about a given mean or center in a 

multidimensional space.  

Each RBF unit has two parameters, a center xj, and a width σj. This center is used to 

compare the network input vector to produce a radially symmetrical response. The width 

controls the smoothness properties of the interpolating function. 

Response of the hidden layer are scaled by the connection weights of the output layer and 

then combined to produce the network output. In the classical approach to RBF network 

implementation, the basic functions are usually chosen as Gaussian and the number of 
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hidden units is fixed based on some properties of the input data. The weights connecting 

the hidden and output units are estimated by linear least squares method (LMS) (Haykin, 

1995). 

The strategies for designing RBF network depend on how centers of the radial basis 

functions of the network are specified (Srinivasa  et al., 2003; Srinivasa, 2004). 

2.2 Artificial Neural Networks 

ANNs is a numerical approach which is based on processing units of artificial neurons that 

connected together to form a direct graph (Haykin, 2009). Graph nodes is represented the 

biological neurons while the connections between the neurons is represented synapses. 

Whereas, in biological neural networks, connections between artificial neurons aren’t 

usually added or removed after the network was created. As an alternative, the weighted 

which considered as the connection between the neurons are adapted by ANN approach. 

Input signal propagates through the network in the direction of connections until it reaches 

output of the network. In supervised learning, learning algorithm adapts the weights in 

order to minimize the difference between the output of the network and the predicted 

output.  

2.2.1 Artificial Neuron (AN) 

The complex behaviour of biological neurons was clarified to create a empirical model of 

the units. Unit receives its inputs via input connections from other units’ outputs, called 

activations. Then it calculates a weighted sum of the inputs, called potential. Finally, unit’s 

activation is computed from the potential and sent to other units. Weights of connections 

between units are stored in a matrix w, where wij denotes weight of the connection from 

unit i to unit j. Every unit j has a potential pj, which is calculated as weighted sum of all of 

its N input units and bias. 

௝ܲ = ෍ݓ௜௝ܽ௜

ேାଵ

௜ୀଵ

																																																																																																													(2.2) 

Bias term, also known as threshold unit, is usually represented as an extra input unit whose 

activation always equals one, therefore aN+1 = 1. Presence of bias term enables shifting the 

activation function along x-axis by changing the weight of the connection from threshold 

unit. 
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Activation of the unit aj is then computed by transforming its potential pj by a non-linear 

activation function act. 

௝ܽ

= ൫ݐܿܽ ௝ܲ൯																																																																																																																														(2.3) 

Commonly used nonlinear activation function ranging from 0 to 1 is sigmoid function 

thanks to its easily computable derivative which is used by learning algorithms. 

(ݔ)ߪ

=
1

1 + ݁ି௫ 																																																																																																																								
(2.4) 

(ݔ)ߪ݀
ݔ݀

=  (2.5)																																																																																																											൯(ݔ)ߪ−൫(ݔ)ߪ

where (ݔ)ߪ is sigmoid function, and x is the input data 

2.2.2  Feedforward Neural Networks 

Feedforward neural networks are a subset of ANNs whose nodes form an acyclic graph 

where information moves only in one direction, from input to output as shown in Figure 

2.2. As shown in Figure 2.2, on the left, Multilayer perception (MLP) consisting of the two 

inputs, four and three hidden layer and two output layers.  

Multilayer perception (MLP) is a class of feedforward networks consisting of three or 

more layers of units. Layer is a group of units receiving connections from the same units. 

Units inside a layer are not connected to each other. 

MLP consists of three types of layers: input layer (i), one or more hidden layers (h) and the 

output layer (o). Input layer is the first layer of networks and it receives no connections 

from other units, but instead holds network’s input vector as activation of its units. Input 

layer is fully connected to the first hidden layer. Hidden layer i is then fully connected to 

hidden layer i + 1. The last hidden layer is fully connected to the output layer. Activation 

of output units is considered to be output of the network. 

The output of the network is calculated in a process called forward propagation in three 

steps: 

Network’s input is copied to activations of input units 

Hidden layers compute their activations in topological order 

Output layer computes its activation and copies it to network’s output 
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MLPs are often used to approximate unknown functions from their inputs to outputs. 

MLP’s capability of approximating any continuous function with support in the unit 

hypercube with only single hidden layer and the sigmoid activation function was first 

proved by George Cybenko (Cybenko, 1989). 

 

 

 

Figure 2.2: Feedforward neural networks 

 

 

 

2.2.3  Back-propagation 

Back-propagation, or backward propagation of errors, is the most used supervised learning 

algorithms for adapting connection weights of feedforward ANNs. The weights of the 

network are tuned so as to minimize square error 

ܧ =
1
2෍

௜ݐ݁݃ݎܽݐ) − ௜)ଶݐݑ݌ݐݑ݋
ே

௜ୀଵ

																																																																													(2.4) 
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where target denotes desired the output and output are  network’s predictions of the output 

from the corresponding input, both of size N. 

Considering error E as a function of network’s weights w, backpropogation can be seen as 

an optimization problem and a standard gradient descent method can be applied. A local 

minimum is approached by changing weights along the direction of the negative error 

gradient 

−
ܧ߲
																																																																																																																																ݓ߲

(2.6) 

by weight change ∆wij proportionally to α, which is a constant positive value called the 

learning rate (α). Fraction of previous weight change called momentum rate (β) can be 

added to the current weight change, which often speeds up learning process. 

new	∆w୧୨ = w୧୨∆ߚ − α
ܧ߲
௜௝ݓ߲

																																																																																			(2.7) 

௜௝ݓ	ݓ݁݊ = ௜௝ݓ +  (2.8)																																																																																															௜௝ݓ∆

The central part of the algorithm is finding the error gradient. Let there be an MLP with L 

layers in topological order, first being input and last being output layer. Layer k has Uk 

units and holds a weight matrix ݓ௜௝
௞  representing weights of connections from unit i in 

layer k - 1 to unit j in layer k. The input layer has no incoming connections. The 

computation can be then divided into three steps: 

Forward propagation: Input vector is copied to activations ܽ௜ଵ	of input layer units 

i. For every hidden or output layer k in topological order, compute for every unit i 

its potential (weighted input) ௜ܲ
௞ 	and activation ܽ௜௞ 

Backward propagation: Compute ∆௜௅	i.e. the derivative of error E w.r.t. activation 

ܽ௜௅ of output layer unit i as 

∆௜௅= ௜ݐ݁݃ݎܽݐ) − ܽ௜௅)
)ݐ߲ܿܽ ௜ܲ

௅)
߲ ௜ܲ

௅ 																																																																															(2.9) 

For hidden layer h in reverse topological order starting from last hidden layer h = L -1 

down to first input layer h = 2 and its units i compute error term as 

∆௜ = ෍ ∆௜ ାଵ
௎ శభ

௝ୀଵ

௜௝ݓ
ାଵ )ݐ߲ܿܽ ௜ܲ )

߲ ௜ܲ
																																																																														(2.10) 

Weights update: Change weights in layer k according to 
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new	∆ݓ௜௝
௞ = ௜௝௞ݓ∆ߚ − α∆௜௞ାଵ ௝ܽ

௞ 																																																																																(2.11) 

new	∆ݓ௜௝
௞ = ௜௝ݓ

௞ + ௜௝ݓ∆
௞ 																																																																																												(2.12) 

 

2.3 Fuzzy Logic Based Algorithms 

Fuzzy logic system (FIS) is a technique of rule-based decision making used for expert 

system and process control. Fuzzy logic is a structure of many-valued logic in which the 

truth values of variables may be any real number between 0 and 1. Values of one and zero 

represent the membership of a member to the set with one representing absolute 

membership and zero representing no membership.  

Fuzzy logic allows partial membership, or a degree of membership, which might be any 

value along the continuum of zero to one. The idea of fuzzy theory is that an is that an 

element has a degree of membership to a fuzzy set.  

As a particular field of application, in system modeling and control. there are many 

difficulties which are commonly experienced by practicing engineers FIS can be used in 

different branches such as engineering filed .etc. 

In general, FIS consists of three main parts 

Fuzzy rules, 

Membership function of fuzzy rule, and  

Mechanism of Fuzzy interface. 

2.3.1 Analysis with Fuzzy Inference System 

The following steps are described the procedure for analyzing fuzzy system (Nelles, 2001): 

Fuzzification:  Fuzzy logic uses input variables as a substitute of numerical 

variables. The process of converting a numerical variable (real number or crisp 

variable) into a linguistic variable (fuzzy number) is called fuzzification.  

Knowledge Base: This module consists of a data base and a rule base. The data 

base provides the necessary information for the proper functioning of the 

fuzzification module, the rule base, and the defuzzification module. This 

information includes:  
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 Fuzzy sets (membership functions) representing the meaning of the linguistic 

values of the system state and control input variables.  

 Physical domains and their nomalized counterparts together with the 

normalizationl denormalization (scaling) factors. 

 The basic function of the mle base is to represent the control policy in the form of 

a set of IF-THEN rules. 

Inference Mechanism: This module determined  the overall value of the control 

input based on the individual contributions of each rule in the rule base. 

Defuzzification: The reverse of fuzzification is called defuzzification.  

2.3.2 Types of Fuzzy System  

Fuzzy inference system is based on fuzzy set theory. The two main types of fuzzy system 

can classified as: 

Mamdani fuzzy system: The Mamdani-style fuzzy inference method is carried out 

in four steps: fuzzification of the input variables, rule evaluation, output of the rule 

outputs, and finally defuzzification (Castillo & Melin, 2008; Zha & Howlett, 2006). 

Singleton Fuzzy system: A singleton is a fuzzy set with a membership function 

that is unity at a single particular point on the universe of discourse and zero 

everywhere else. Sugeno-style fuzzy inference is very similar to the Mamdani 

method. Sugeno changed only a rule consequent (Castillo & Melin, 2008; Zha & 

Howlett, 2006). 

2.3.4 Adaptive Network based Fuzzy Inference System 

Adaptive network based fuzzy inference system (ANFIS) is neuron fuzzy technique (Jang, 

1993). It has been used as a prime tool in the present work. It is a combination between 

neural network and fuzzy logic system. The parameters of ANFIS which can be estimated 

using to models, Sugeno or Tsukamoto, (Tsukamot, 1979) can be presented in architecture 

of ANFIS. 

Again with minor constraints the ANFIS model resembles the Radial basis function 

network (RBFN) functionally (Jang & Sun, 1993).  The methodology of ANFIS includes 

two techniques 

Hybrid system of fuzzy logic 

Neural network system 
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The adaptive network’s applications are immediate and immense in various areas. In this 

proposed work ANFIS was used to predict the thermo-physical properties of biodiesel 

including kinematic viscosity and density of five biodiesel blends. 

2.4. Response Surface Methodology (RSM) 

RSM can be described as an empirical modeling system employed for developing, 

improving, and optimizing complex processes (Manohar & Divakar, 2005). RSM has the 

advantage of reducing the number of experimental runs, which is sufficient to provide 

statistically acceptable results (Betiku et al., 2012). 

The experimental data obtained from previous studies were analyzed by response surface 

methodology (RSM) by the response surface regression approach of second-order 

polynomial equation (Equation (2.13)). 

ܻ = ଴ܲ + ෍ ௜ܲݔ௜

௡

௜ୀଵ

+ ෍ ௜ܲ௜ݔ௜ଶ
௡

௜ୀଵ

+ ෍ ෍ ௜ܲ௝ݔ௜ݔ௝

௡

௜ୀ௜ାଵ

௡ିଵ

௜

																																																														(2.13) 

where Y represents the predicted response; βo is the offset term; βi is the linear coefficient; 

the second-order coefficient and βij is the interaction coefficient; xi and xj are the 

independent variables (temperature and volume fraction of biodiesel). The method of least 

squares was employed to ascertain the values of the model parameters and analysis of 

variance (ANOVA) was applied to establish their statistical significance at a confidence 

level of 95%. 
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CHAPTER 3 

METHODOLGY 

 

 

The main steps that were followed in this work to develop predictive models of density and 

kinematic viscosity of biodiesel blends as function of temperature and volume fraction of 

biodiesel are presented 

3.1 Experimental database 

The databases of this study were formed from results reported in the literature. A total of 

900 and 520 experimental points for kinematic viscosity and density, respectively, were 

obtained from various scientific publications as shown in Table 3.1 to estimate biodiesel 

properties.  

 

Table 3.1: Biodiesel samples collected from the literature 

 Biodiesel Source  Measuring  References 

1 Castor  Density and kinematic viscosity of biodiesel 

with different volume fraction of biodiesel at 

15℃ and 40℃, respectively.   

Amin et al., 

2016 

2 Corn and 

Hazelnut  

Kinematic viscosity of biodiesel samples 

with different volume fraction of biodiesel in 

temperature ranges from 10℃ to 40℃.   

Gülüm & Bilgin, 

2016 

3 Rapeseed  Kinematic viscosity of biodiesel samples 

with different volume fraction of biodiesel 

for each temperature in temperature ranges 

from 20℃ to 50℃.   

Geacai et al., 

2015 

4 Soybean, 

Rapeseed and 

binary mixture 

(Soybean and 

Rapeseed) 

Kinematic viscosity of biodiesel samples 

with different volume fraction of biodiesel 

for each temperature in temperature ranges 

from 20℃ to 120℃ and pressure ranges from 

0.1 MPa to 100 MPa. 

Freitas et al., 

2014 
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Table 3.1: Continued 

 Biodiesel Source  Measuring  References 

4 Sunflowe Dynamic viscosity and density of biodiesel 

samples with different volume fraction of 

biodiesel for each temperature in 

temperature ranges from 15℃ to 100℃ 

Ivaniš et al., 2016 

5 Rapeseed, 

Sunflower, 

Soybean, 

Palm and Corn 

Kinematic viscosity and density of 

biodiesel samples with different volume 

fraction of biodiesel for each temperature 

in temperature ranges from 10℃ to 140℃ 

Esteban et al., 

2012 

6 Peanut and 

Sunflower 

Kinematic viscosity, density and dynamic 

viscosity of biodiesel samples with 

different volume fraction of biodiesel 

temperature ranges from 15℃ to 100℃ 

Ramírez-Verduzco 

et al., 2011 

7 Soybean, Canola, 

Sunflower, Waste 

cooking oil and 

Edible tallow 

Kinematic viscosity, and density of 

biodiesel samples with different volume 

fraction of biodiesel in temperature ranges 

from 20℃ to 80℃ 

Moradi et al., 2015 

8 Commercially 

available soybean, 

natural soybean, 

modified soybean, 

yellow grease 

Kinematic viscosity of biodiesel samples 

with different volume fraction of biodiesel 

in temperature ranges from 20℃ to 100℃ 

Yuan et al., 2005 

9 Canola and Soy Kinematic viscosity, and density of 

biodiesel samples in temperature ranges 

from 20℃ to 300℃ 

Tate et al, 2006 

10 Soybean and 

Sunflower 

 

 

Dynamic viscosity of biodiesel samples with 

different volume fraction of biodiesel in 

temperature ranges from 0℃ to 100℃ 

 Aksoy et al, 2009 
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Table 3.1: Continued 

 Biodiesel Source  Measuring  References 

11 Sunflower, Corn, 

Soy and Canola 

Kinematic viscosity and density of biodiesel 

samples with different volume fraction of 

biodiesel in temperature ranges from 10℃ to 

50℃ 

Machado et al., 

2012 

12 Soy A, Soy B, 

Sunflower, 

Rapeseed, Palm, 

and mix of Soy A 

and Rapeseed 

Dynamic viscosity of biodiesel samples with 

different volume fraction of biodiesel for 

each temperature in temperature ranges from 

5℃ to 90℃ 

Freitas et al., 2011 

13 Rapeseed and 

Used cooking oil 

Density of biodiesel samples with different 

volume fraction of biodiesel in temperature 

ranges from 0℃ to 100℃ 

Barabás, 2013 

14 Corn, Rapeseed 

and Waste 

cooking oil 

Density and kinematic viscosity of biodiesel 

with different volume fraction of biodiesel at 

15℃ and 40℃, respectively.   

Tesfa et al, 2010 

15 Castor, palm and 

their blends 

Kinematic viscosity of biodiesel with 

different volume fraction of biodiesel at 

40℃.   

Mejía et al., 2013 

16 Sunflower oil, 

corn oil, pomace 

oil, soy oil,sesame 

oil, Jatropha 

curcas, waste 

frying oil 

Kinematic viscosity of biodiesel blends with 

different volume fraction of diesel at 40℃.  

Additionally, kinematic viscosity and density 

of pure biodiesel at 40℃ and 15℃, 

respectively. 

Kanaveli et al. 

2017 
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3.2 Empirical Models 

In this work, the kinematic viscosity and density of biodiesel blends were modeled using 

three empirical models as follow: 

a) Adaptive Neural Fuzzy Interface System (ANFIS) 

b) Artificial Neural Network(ANN) 

c) Radial Basis Function Neural Network (RBFNN)  

d) Response Surface Methodology (RSM) 

The temperature and volume fraction of biodiesel blends were considered as input 

variables for ANFIS, ANN and RBFNN. As the input variables and output variables for the 

ANFIS, ANN and RBFNN have different magnitude, a normalization of them is required. 

A range between 0 and 1 was used as follows 

߶௡ =
߶ − ݉݅݊(߶)

(߶)ݔܽ݉ −݉݅݊(߶) 																																																																																												(3.1) 

where ߶௡  is the normalized input or output variable, the minimum (min) and maximum 

(max) values are shown in Table 3.2. 

 

 

Table 3.2: Limit values for the input and output variables on the three models 

 Limit values Unit 

Input value   

Temperature (T) 300-10 ℃ 

Volume fraction of biodiesel 0-1 % 

Output value   

Density (ρ) 932.5-508.00 kg/m3 

Kinematic viscosity (ν) 119.48-0.687 mm2/s 
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3.3 Appraisal of the developed models 

The developed ANFIS, ANN, RBFNN and RSM models were evaluated comprehensively 

for predictive capability of the response (kinematic viscosity and density) for biodiesel 

blends. The following statistical indicators were employed: R2, R, MSE, and RMSE. The 

results obtained for the three models were compared with one another to determine which 

one was superior to the other. 

ܴ =
∑ ൫ܽ௣,௜ − ܽ௣,௔௩௘൯௡
௜ . ൫ܽ௘,௜ − ܽ௣,௔௩௘൯

ටቂ∑ ൫ܽ௣,௜ − ܽ௣,௔௩௘൯
ଶ௡

௜ ቃ ቂ∑ ൫ܽ௘,௜ − ܽ௣,௔௩௘൯
ଶ௡

௜ ቃ
																																																		(3.2) 

ܴଶ = 1 −
∑ ൫ܽ௘,௜ − ܽ௣,௜൯

ଶ௡
௜ୀଵ

∑ ൫ܽ௣,௜ − ܽ௘ ,௔௩௘൯
ଶ௡

௜ୀଵ 	
																																																																																(3.3) 

ܧܵܯ =
1
݊෍൫ܽ௘,௜ − ܽ௣,௜൯

ଶ
௡

௜ୀଵ

																																																																																										(3.4) 

ܧܵܯܴ = ඩ
1
݊෍൫ܽ௘,௜ − ܽ௣,௜൯

ଶ
௡

௜ୀଵ

																																																																																			(3.5) 

where n is the number of experimental data, ap,i is the predicted values, ae,i is the 

experimental values, ae,ave is the average experimental values, ap,ave is the average predicted 

values and i is the number of input variables. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

 

4.1 Adaptive Neuro–Fuzzy Inference System (ANFIS) Model of Density 

4.1.1 Method of Applications of ANFIS for Density of Biodiesels 

The model was trained with part of the database derived from the experimental results of 

previous studies. The database was first split into training data and testing data. The 

training data set was also split into two parts, a training set and a checking set. The use of 

checking sets in ANFIS learning beside the training set is a recommended technique to 

guarantee model generalization and to avoid over-fitting the model to the training data set. 

In this study, by trial and error (Table 4.1 and Table 4.2), the best number of membership 

functions for each input was determined as 6, the membership grades takes the Gaussian-

shaped membership functions and the output part of each rule uses a constant defuzzifier 

formula. The numbers of the system parameters of the developed ANFIS model are given 

in Table 4.3. As can be seen in this table, the number of rules was significantly reduced. 

Also the optimum method is hybrid. In this research, two methods, hybrid and back 

propagation tested for generation ANFIS that the results is presented in Tables 4.1 and 4.2. 

The results show the training error in the hybrid method is lower of back-propagation 

method. Therefore, the hybrid method has used for simulations. 

 

Table 4.1. The ANFIS information by the hybrid optimum method  

 

 

 

 

 

 
 
 

 

 

Optimum 
Method 

Number of 
MF 

MF type MF type 
(output) 

Training 
error 

Testing 
error 

Hybrid 2 Gaussmf Constant 0.0501 0.0411 
Hybrid 3 Gaussmf Constant 0.0484 0.0397 
Hybrid 4 Gaussmf Constant 0.0466 0.0336 
Hybrid 5 Gaussmf Constant 0.047 0.035 
Hybrid 6 Gaussmf Constant 0.0463 0.0327 
Hybrid 7 Gaussmf Constant 0.04626 0.0338 
Hybrid 6 Gaussmf linear 0.0454 0.034 



19 
 

Table 4.2. The ANFIS information by the back-propagation optimum method  

 

 

Table 4.3: System parameters of the ANFIS model 

ANFIS model parameters 

Number of nodes 101 

Number of linear parameters 36 

Number of nonlinear parameters 24 

Total number of parameters 60 

Number of training data pairs 272 

Number of checking data pairs 91 

Number of fuzzy rules 36 

 

 

The structure (rules) of the tuned FIS is shown in Figure 4.1, which contains 36 rules with 

AND logical connector for all rules. In order to develop ANFIS models for designing the 

density of biodiesel, the available data set from the previous study, which was consisted of 

two input (temperature and volume fraction of biodiesel with diesel) vectors and their 

corresponding output vector (density), was used. This data set was randomly assigned as 

the training set. After training, fuzzy inference calculations of the developed model were 

performed.  

 

Optimum 
Method 

Number 
of MF 

MF type MF type 
(output) 

Training 
error 

Testing 
error 

back-propagation 2 Gaussmf Constant 0.051 0.042 
back-propagation 3 Gaussmf Constant 0.0504 0.0416 
back-propagation 4 Gaussmf Constant 0.0504 0.0417 
back-propagation 6 Gaussmf Constant 0.0503 0.0410 
back-propagation 6 Gaussmf linear 0.0497 0.0397 
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Figure 4.1:  Structure of ANFIS models 

 

 

 

The ANFIS information and errors which used in this study for predicting the density of 

biodiesel blends are shown in Table 4.4 that used for all biodiesel blends. The successful 

training process was accomplished using different training epochs (iterations) for density 

of biodiesel blends. The ANFIS network was able to achieve training and checking the 

lowest RMSE (root mean standard error) for density of biodiesel blends. The Figure 4.2 

shows training plot achieve with ANFIS for density of biodiesel blends. 
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Table 4.4: The ANFIS information used in the predicting density of biodiesel by the 
                  hybrid optimum method 

Biodiesel blend with  Diesel 
Epoch 1000 

RMSE 
Training error 0.0463 
Tasting error 0.0327 

Checking error 0.03272 
 

 

 
Figure 4.2: Training and checking RMSE achieve with ANFIS for density of biodiesel 

 

 

 

Figure 4.3 indicates rule viewers that shows value of the various inputs to the ANFIS 

models and computed output. The density (output) can be predicted by varying the input 

parameters, including temperature and volume fraction of biodiesel to the developed 

ANFIS model.  
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Figure 4.3: Rule viewer of ANFIS model for density of biodiesel blends 

 

 

 

The three-dimensional surface plots of kinematic viscosity of biodiesel blend with benzene 

against temperature and volume fraction of biodiesel is depicted in Figure 4.4 The plot 

suggest strong interaction between the variables with significant influence on the density of 

biodiesel blends. From the Figure, increasing in volume fraction of biodiesel leads to 

increase the density of biodiesel blends, while the lowest temperature leads to decrease the 

density of biodiesel blends as shown in Figure 4.4. 
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Figure 4.4: Surface viewer of ANFIS model for density of biodiesel blends 

 

 

 

4.1.2 Modeling of Density of Biodiesel Blends using ANFIS 

Figure 4.5 shows the change of the density with the increase of the percentage of biodiesel. 

The abscissa represents the fraction of biodiesel, whereas the density values are provided 

on the ordinate as shown in Figure 4.5. It can be observed from the figure that the density 

increased as the percentage of biodiesel blend with diesel increased for each temperature 

considered. Additionally, it can be noticed that increasing temperature leads to decrease the 

density of biodiesel blends. Moreover, the comparisons of experimental values and ANFIS 

values of density are shown in 4.5. It can be noticed that the experimental results and the 

data obtained by ANFIS are very close to each other. Moreover, the maximum absolute 

relative error between these values is about 4.5%, which indicate an excellent agreement 

between the experimental and predicting values.   
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Figure 4.5:  Density and volume fraction of biodiesel relationship obtained by ANFIS 
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Table 4.5: Comparative study between experimental and ANFIS results of biodiesel 
                      density  

Temperature 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

 

Density 
[kg/m3] 

 

Absolute 
error 
[%] EXP ANFIS 

10 0.5 0.5 829.50 835.29 0.70 
1 0 865.80 859.49 0.73 

15 0.5 0.5 884.00 856.52 3.11 
0.2 0.8 860.25 842.08 2.11 
1 0 817.57 818.31 0.09 

0.1 0.9 879.65 898.12 2.10 
20 0.01 0.99 834.90 841.23 0.76 

0.25 0.75 832.25 839.96 0.93 
1 0 852.00 865.01 1.53 

0.6 0.4 783.10 782.65 0.06 
0 1 857.94 843.36 1.70 

25 0.2 0.8 833.50 835.29 0.21 
30 1 0 877.68 887.50 1.12 

0.25 0.75 825.13 859.91 4.21 
0.01 0.99 827.80 832.32 0.55 
0.5 0.5 826.15 828.07 0.23 
0.75 0.25 834.40 841.23 0.82 

35 0.2 0.8 857.00 856.52 0.06 
40 1 0 874.96 879.86 0.56 

0.5 0.5 837.41 839.11 0.20 
0.1 0.9 825.60 822.98 0.32 

50 0.4 0.6 827.00 826.80 0.02 
0.2 0.8 816.50 816.61 0.01 
1 0 631.52 641.72 1.62 

0.8 0.2 879.80 851.85 3.18 
0.25 0.75 785.63 790.29 0.59 

55 0.2 0.8 860.65 859.91 0.09 
60 0.01 0.99 806.80 804.73 0.26 

0 1 806.20 804.73 0.18 
0.2 0.8 810.00 809.82 0.02 
1 0 848.90 828.07 2.45 

0.6 0.4 832.50 808.97 2.83 
65 0.2 0.8 805.15 806.85 0.21 
70 0.6 0.4 825.00 824.25 0.09 

0.4 0.6 813.50 813.64 0.02 
0.8 0.2 859.50 839.54 2.32 
1 0 812.14 813.22 0.13 
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Table 4.5: Continued 

Temperature 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

 

Density 
[kg/m3] 

 

Absolute 
error 
[%] EXP ANFIS 

80 0.8 0.2 826.50 821.28 0.63 
0.2 0.8 796.50 851.85 6.95 
0.15 0.85 871.77 867.98 0.44 

1 0 841.29 846.75 0.65 
85 0.1 0.9 831.50 830.62 0.11 
90 0.2 0.8 795.10 791.14 0.50 

0 1 785.00 784.35 0.08 
0.6 0.4 815.70 811.52 0.51 
1 0 882.42 894.72 1.39 

100 1 0 836.30 845.05 1.05 
0.1 0.9 799.60 795.81 0.47 

120 1 0 850.08 859.06 1.06 
130 1 0 815.00 835.72 2.54 
140 1 0 845.05 853.54 1.01 
180 1 0 656.85 653.61 0.49 
200 1 0 886.43 901.09 1.65 
220 1 0 606.93 611.58 0.77 
280 1 0 545.25 531.78 2.47 

 

 

 

Furthermore, Figure 4.6 shows the comparisons of ANFIS with experimental results for 

density of biodiesel blends, which also show good agreement between ANFIS predicted 

data and experimental data. The R-squared values are also close to unity highlighting 

proper fitting of the predicted values of density with experimental data. 
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Figure 4.6: Fitting of the predicted ANFIS and experimental values for density of  

                         biodiesel blends 
 
 
 
 

4.2 Artificial Neural Network (ANN) Model of Density 

4.2.1 Method of Applications of ANN for Density of Biodiesels 

The development and the training of the network model in this study were carried out 

using the MATLAB Neural Network Toolbox. In this study, the experimental data of 454 

biodiesel samples were randomly split into three data set, 60% in the training set (272 

samples), 20% in the validation set (91 samples) and 20% in the test set (91 samples). The 

inputs and targets are normalized into the range [-1, 1] to make the training procedure more 

efficient (Kalogirou, 2001). Training of the network was performed by using the 

Levenberg–Marquardt, back-propagation algorithms. There is no general rule for the 

determination of the optimum number of hidden layers and usually it is determined 

through trial and error method (Moradi et al., 2013).  Therefore, the number of neurons in 

the hidden layer was determined by trial and error test, where a mean squared error greater 

than 1 ×10-3 and a correlation coefficient higher than 0.9 was obtained.  In addition, with 

the trial and error method, training results showed that the ANN with three hidden layers 

has the best performance. Consequently, the developed ANN model for predicting density 

biodiesel blends is shown in Figure 4.7 and the training parameters can be found in Table 

5.15. The developed network architecture has a 2-3-1 configuration with two neurons in 
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the input layer indicating temperature and volume fraction of biodiesel. Three hidden 

layers with varying neurons and ten neurons in the output layer representing density are 

used.  

 

 
Figure 4.7: Neural network architecture for two inputs and one output 

 
 
 

 

 

Table 4.6: Neural network configuration for the training 

Parameter  
 

Specification  
 

Training Function  
 

Levenberg–Marquardt 
Performance function Mean square error (MSE) 
Activation function Log-Sigmoid 
Number of layers 3 

Number of neurons 10 
Normalized range -1 to 1 

 
 
 
 
Figure 4.8 illustrates a linear relation for the training, validation, testing and performance 

of the network with high correlation coefficients (R) of density. The straight lines in Figure 

4.8 are the linear relationships obtained between the output (predicted) and the target 

(experimental) data of density used in this study. The mean squared error (MSE) for 

density network is 1.16×10-3. The high coefficients of correlation (R) obtained during the 

training, validation and testing of the density network display very good relationship 

between the output and the experimental values of density.  
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Figure 4.8:  Regression plots for density of biodiesel blends network 

 
 
 
 
4.2.2 Modeling of Density of Biodiesel Blends using ANN 

The test values obtained from the ANN model results were compared with experimental 

values as shown in Figures 4.9. As a result, the test values obtained from ANN model were 

quite compatible with experimental values. 

Additionally, the comparisons of experimental values and ANN values of density are given 

in Table 4.7. It is observed that the experimental results and the data obtained by ANN are 

very close to each other. Moreover, the maximum absolute relative error is approximately 
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5% which designate an excellent agreement between the experimental and predicting 

values.   

 

 

Figure 4.9:  Density and volume fraction of biodiesel relationship obtained by ANN 
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Table 4.7: Comparative study between experimental and ANN results of biodiesel density  

Temperature 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

 

Density 
[kg/m3] 

 

Absolute 
error 
[%] EXP ANN 

10 0.5 0.5 829.50 852.68 2.79 
1 0 865.80 868.36 0.30 

15 0.5 0.5 884.00 866.06 2.03 
0.2 0.8 860.25 840.46 2.30 
1 0 817.57 825.32 0.95 

0.1 0.9 879.65 846.38 3.78 
20 0.01 0.99 834.90 831.64 0.39 

0.25 0.75 832.25 833.86 0.19 
1 0 852.00 855.26 0.38 

0.6 0.4 783.10 782.15 0.12 
0 1 857.94 829.82 3.28 

25 0.2 0.8 833.50 835.80 0.28 
30 1 0 877.68 886.77 1.04 

0.25 0.75 825.13 829.85 0.57 
0.01 0.99 827.80 824.31 0.42 
0.5 0.5 826.15 848.73 2.73 
0.75 0.25 834.40 864.78 3.64 

35 0.2 0.8 857.00 830.47 3.10 
40 1 0 874.96 877.99 0.35 

0.5 0.5 837.41 840.66 0.39 
0.1 0.9 825.60 827.52 0.23 

50 0.4 0.6 827.00 826.27 0.09 
0.2 0.8 816.50 820.51 0.49 
1 0 631.52 633.00 0.23 

0.8 0.2 879.80 851.10 3.26 
0.25 0.75 785.63 784.39 0.16 

55 0.2 0.8 860.65 816.61 5.12 
60 0.01 0.99 806.80 805.84 0.12 

0 1 806.20 804.68 0.19 
0.2 0.8 810.00 812.46 0.30 
1 0 848.90 863.59 1.73 

0.6 0.4 832.50 827.09 0.65 
65 0.2 0.8 805.15 808.09 0.37 
70 0.6 0.4 825.00 821.47 0.43 

0.4 0.6 813.50 803.46 1.23 
0.8 0.2 859.50 827.45 3.73 
1 0 812.14 858.51 5.71 
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Table 4.7: Continued 

Temperature 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

 

Density 
[kg/m3] 

 

Absolute 
error 
[%] EXP ANN 

80 0.8 0.2 826.50 810.16 1.98 
0.2 0.8 796.50 794.35 0.27 

0.15 0.85 871.77 872.33 0.06 
1 0 841.29 854.30 1.55 

85 0.1 0.9 831.50 794.83 4.41 
90 0.2 0.8 795.10 785.39 1.22 

0 1 785.00 784.30 0.09 
0.6 0.4 815.70 819.78 0.50 
1 0 882.42 850.31 3.64 

100 1 0 836.30 845.76 1.13 
0.1 0.9 799.60 785.87 1.72 

120 1 0 850.08 831.36 2.20 
130 1 0 815.00 819.19 0.51 
140 1 0 845.05 801.98 5.10 
180 1 0 656.85 690.28 5.09 
200 1 0 886.43 885.30 0.13 
220 1 0 606.93 616.10 1.51 
280 1 0 545.25 534.51 1.97 

 

 

 

To evaluate the performances of the ANN modeling further, Figure 4.10 shows the results 

of fitting the predicted and experimental values for density of biodiesel, using linear 

regression equations. These clearly show the fit values, and variance of the results 

predicted by the ANN models has been expressed in terms of R-squared (R2) values, which 

are quite encouraging. R-squared value is a measure of goodness-of-fit, which means how 

close the data points are to the fitted regression line. These values are close to unity, as 

shown in Figure 4.10, highlighting proper fitting of the predicted values by the adopted 

methodology. 
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Figure 4.10: Fitting of the predicted ANN and experimental values for density of  

                            biodiesel blends 

 

 

 

4.3 Radial Basis Function Neural Network (RBFNN) Model 

4.3.1 Method of Applications of RBFNN for Density of Biodiesels 

The construction of a Radial Basis Function network in its most basic form involves three 

entirely different layers. The input layer is made up of source nodes (sensory units). The 

second layer is a hidden layer of high enough dimension, which serves a different purpose 

from that in a multi-layer perceptron. The output layer supplies the response of the network 

to the activation patterns applied to the input layer. The RBF network is a single hidden-

layer feed forward neural network.  The developed network architecture with two input 

layer indicating temperature and volume fraction of biodiesel and one output (density of 

biodiesel blends) is shown in Figure 4.11. 
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Figure 4.11: RBFNN architecture for two inputs and one output 

 

 

 

The network of RBFNN model was trained using two approaches as follow 

1. Radial basis (few neurons) 

2. Radial basis (exact fit) 

MATLAB 13a toolbox has been used for developing the RBF network implementation. 

Training of the first approach was stopped when either of the performance goals was 

reached. Training of the network has been done with different number of RBF units. 

Training of the network has been done with different number of RBF units. For various 

values of spread (unit) the network error was analyzed it was observed that for a spread of 

1, the error was minimum. The network was trained with optimum number of centers 

determined from the random selection method and a spread of 1. Results for the various 

performances of the two approaches are presented in Figure 4.12 and tabulated in Table 

4.8. It can be seen that it can be observed that R-squared and mean squared error (MSE) of 

RBFNN testing and training results, respectively using two approaches are equal and the 

model of spread of 1 has a maximum R2 comparing to another models as shown in Figure 

4.12 and Table 4.8.  
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Figure 4.12: Fitting of the predicted of two approaches of RBFNN and experimental 

                         values for density of  biodiesel blends using  
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Table 4.8: Radial Basis Function Neural Network configuration for the training and  
                      testing 

Training 
RBFNN (few neurons)  RBFNN(exact fit) 

Spread Goals Neurons MSE 

 

Spread MSE 
1 0.0001 363 0.001982 1 0.001983 
2 0.0001 363 0.00208 2 0.00209 
3 0.0001 363 0.002123 3 0.002130 

Testing 
RBFNN (few neurons)  RBFNN(exact fit) 

Spread  Goals Neurons R2 Spread  R2 
1 0.0001 363 0.917 1 0.917 
2 0.0001 363 0.913 2 0.913 
3 0.0001 363 0.909 3 0.909 

 

 

4.1.2 Modeling of Density of Biodiesel Blends using RBFNN 

The test values obtained from the RBFNN model results were compared with experimental 

values as shown in Table 4.9. As a result, the test values obtained from RBFNN model 

were closed to experimental values of biodiesel blends density. Moreover, the maximum 

absolute relative error is approximately 4% which assigned a good agreement between the 

experimental and predicting values.   
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Table 4.9: Comparative study between experimental and RBFNN results of biodiesel 
                      density 

Temperature 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

 

Density 
[kg/m3] 

 

Absolute 
error 
[%] EXP RBNN 

10 0.5 0.5 829.50 857.11 3.33 
1 0 865.80 856.26 1.10 

15 0.5 0.5 884.00 858.37 2.90 
0.2 0.8 860.25 841.69 2.16 
1 0 817.57 828.01 1.28 

0.1 0.9 879.65 850.88 3.27 
20 0.01 0.99 834.90 835.51 0.07 

0.25 0.75 832.25 836.66 0.53 
1 0 852.00 842.80 1.08 

0.6 0.4 783.10 760.12 2.93 
0 1 857.94 834.65 2.71 

25 0.2 0.8 833.50 834.18 0.08 
30 1 0 877.68 886.34 0.99 

0.25 0.75 825.13 830.74 0.68 
0.01 0.99 827.80 825.24 0.31 
0.5 0.5 826.15 846.74 2.49 

0.75 0.25 834.40 862.17 3.33 
35 0.2 0.8 857.00 826.61 3.55 
40 1 0 874.96 880.52 0.64 

0.5 0.5 837.41 837.44 0.00 
0.1 0.9 825.60 820.65 0.60 

50 0.4 0.6 827.00 825.94 0.13 
0.2 0.8 816.50 817.74 0.15 
1 0 631.52 673.51 6.65 

0.8 0.2 879.80 847.85 3.63 
0.25 0.75 785.63 819.24 4.28 

55 0.2 0.8 860.65 814.83 5.32 
60 0.01 0.99 806.80 808.03 0.15 

0 1 806.20 809.38 0.39 
0.2 0.8 810.00 811.71 0.21 
1 0 848.90 866.05 2.02 

0.6 0.4 832.50 833.36 0.10 
65 0.2 0.8 805.15 808.18 0.38 
70 0.6 0.4 825.00 826.24 0.15 

0.4 0.6 813.50 802.38 1.37 
0.8 0.2 859.50 832.25 3.17 
1 0 812.14 859.33 5.81 
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Table 4.9: Continued 

Temperature 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

 

Density 
[kg/m3] 

 

Absolute 
error 
[%] EXP RBFNN 

80 0.8 0.2 826.50 825.88 0.07 
0.2 0.8 796.50 796.23 0.03 
0.15 0.85 871.77 894.45 2.60 

1 0 841.29 854.23 1.54 
85 0.1 0.9 831.50 790.05 4.99 
90 0.2 0.8 795.10 789.79 0.67 

0 1 785.00 785.81 0.10 
0.6 0.4 815.70 808.00 0.94 
1 0 882.42 850.66 3.60 

100 1 0 836.30 847.43 1.33 
0.1 0.9 799.60 783.67 1.99 

120 1 0 850.08 834.21 1.87 
130 1 0 815.00 820.14 0.63 
140 1 0 845.05 859.35 1.69 
180 1 0 656.85 669.69 1.95 
200 1 0 886.43 880.52 0.67 
220 1 0 606.93 595.96 1.81 
280 1 0 545.25 523.85 3.92 

 
 
 
 

4.4 Response Surface Methodology Model of Density of Biodiesel Blends 

The effect of temperature and volume fraction of biodiesel blends with petro-diesel on the 

density of biodiesel blends was tested using RSM. The experimental runs were randomized 

to minimize the effects of unexpected variability in the observed responses. The 

methodology adopted allows the formulation of a polynomial equation, which describes 

the process.  This study tested several degrees of polynomial equation for two independent 

variables (temperature (T) and volume fraction of biodiesel (w)) and topologies for the 

estimation and prediction of density of biodiesel. Therefore, Table 4.10 presents the best 

degree of polynomial equation.   
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Table 4.10: The effect of different order of polynomial equation of density and topologies  
                     on R2,  SSE and RSME 

Degrees 
R-square 

(R2) 
Squared standard error 

(SSE) 
Root mean squared 

error (RSME) x-data 
(w) [%] 

y-data 
(T) [K] 

3 2 0.9599 5.83E04 11.45 

3 1 0.9717 4.122E04 9.603 

4 1 0.9613 5.63E04 11.25 

4 4 0.951 7.13E04 12.74 

2 1 0.9663 4.911E04 10.46 

 

 

A series of topologies was examined in order to determine the optimum number of degree 

of independent variables and these values were varied from 2 to 4. Besides, R2, SSE and 

RSME were used as a measure of predictive ability of the equation. Hence, the best 

topology i.e. degree of 3 for volume fraction of biodiesel blends and degree of 1 for 

temperature was chosen (Table 4.11) due to the values of R2.  Each response was used to 

develop a mathematical model that correlates the kinematic viscosities to the independent 

reaction variables via polynomial equation as given below: 

,ݓ)ߩ ܶ) = ଴଴݌ + ݓଵ଴݌ + ଴ଵܶ݌ + ଶݓଶ଴݌ + ܶݓଵଵ݌ + ଷݓଷ଴݌ +  (6.1)											ଶܶݓଶଵ݌

where w is normalized by mean 0.6185 and std (standard) 0.3712, T is normalized by mean 

333.8 and std 45.54 and ݌଴଴ ଵ଴݌, , ଴ଵ݌ ,ଶ଴݌, ଵଵ݌ ,  ଶଵ are polynomial coefficients݌ ଷ଴ and݌

(Table 4.11).  
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Table 4.11: Polynomial equation coefficients for kinematic viscosity of biodiesel blends 

Polynomial equation coefficients Value Eq. (6.1) 

 ଴଴ 832.3݌

   ଵ଴ 23.52݌

   ଴ଵ 27.47݌

 ଶ଴ 49.57݌

   ଵଵ -1.786݌

   ଷ଴ -3.395݌

   ଶଵ -3.884݌

 

 

 

Due to interaction effects between the variables, the parameters could not be analyzed 

independently. The significance of the parameters in the model was obtained using Matlab 

2013b toolbox. The contour plots and surface view (3D) of the density of biodiesel blends 

shown in Figure 4 which indicate the interaction effects in a polynomial equation (Eq. 6.1). 

The contour areas help to explain how the density of biodiesel blends varies with a change 

in the temperature and volume fraction of biodiesel. Moreover, the contour plots are useful 

tools for identifying the optimum operating conditions and related response values. The 

points on each contour and surface view area indicate the density value of biodiesel in the 

specified temperature and volume fraction of biodiesel. The residual indicates the 

difference between the predicted data and actual data of the density of biodiesel blends. 
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Figure 4.13: surface view of density using Eq. (6.1) 

 

 

 

4.5 Adaptive Neuro–Fuzzy Inference System (ANFIS) Model of Kinematic Viscosity 

4.5.1 Method of Applications of ANFIS for Kinematic Viscosity of Biodiesels 

The proposed ANFIS methodology to predict the kinematic viscosity of biodiesel blends 

using various biodiesel obtained from vegetable oils or waste vegetable oils. The 

developed ANFIS model for predicting the kinematic viscosity at different temperature and 

volume fraction of petro-diesel is shown in Figure 4.14.  The model was trained with part 
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of the database derived from the experimental results of literature studies.  A total of 934 

experimental points were obtained from various scientific publications to estimate the 

kinematic viscosity of biodiesel blends. The database was first split into training data 

(80%) and testing data (20%). The training data set was also split into two parts, a training 

set (60%) and a checking set (20%).  

 

 

 
Figure 4.14: ANFIS architecture for predicting kinematic viscosity of biodiesel blends 

 

 

 

In this work, the best number of membership functions for each input was determined as 3, 

the membership grades takes the Gaussian-shaped membership functions and the output 

part of each rule uses a constant defuzzifier formula, which found by trial and error 

methods (Table 4.12 and Table 4.13). Moreover, two methods (hybrid and back-

propagation) are tested for generation ANFIS that the results is obtained in Tables 4.1 and 
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4.3. The results show the training error in the hybrid method is lower of back-propagation 

method. Therefore, the hybrid method has used for this study. Table 4.14 shows the 

numbers of the system parameters of ANFIS model for kinematic viscosity of biodiesel 

blends. 

 

Table 4.12. The ANFIS information by the hybrid optimum method  

 

 

 

 

 

 
 
 
 
 
 

 

 

Table 4.13. The ANFIS information by the back-propagation optimum method  

 

 

 

 

 

 

 

 

 

 

Optimum 
Method 

Number of 
MF 

MF type MF type 
(output) 

Training 
error 

Testing 
error 

Hybrid 2 Gaussmf Constant 0.0809 0.03307 
Hybrid 3 Gaussmf Constant 0.0802 0.0348 
Hybrid 4 Gaussmf Constant 0.08127 0.0386 
Hybrid 5 Gaussmf Constant 0.0809 0.0371 
Hybrid 6 Gaussmf Constant 0.0806 00376 
Hybrid 7 Gaussmf Constant 0.0803 0.036 
Hybrid 8 Gaussmf Constant 0.08 0.0367 
Hybrid 9 Gaussmf Constant 0.0801 0.0365 
Hybrid 10 Gaussmf Constant 0.0798 0.036 
Hybrid 11 Gaussmf Constant 0.0803 0.038 
Hybrid 10 Gaussmf Linear  0.0801 0.0365 

Optimum 
Method 

Number 
of MF 

MF type MF type 
(output) 

Training 
error 

Testing 
error 

back-propagation 2 Gaussmf Constant 0.0821 0.0348 
back-propagation 3 Gaussmf Constant 0.0815 0.0341 
back-propagation 10 Gaussmf Constant 0.0811 0.0361 
back-propagation 10 Gaussmf Linear 0.0817 0.0371 
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Table 4.14: System parameters of the ANFIS model 

ANFIS model parameters 

Number of nodes 245 

Number of linear parameters 100 

Number of nonlinear parameters 40 

Total number of parameters 140 

Number of training data pairs 560 

Number of checking data pairs 187 

Number of fuzzy rules 100 

 

 

 

Table 4.15 summarized the ANFIS information and errors which used in this study for 

predicting the kinematic viscosity of biodiesel blends. The ANFIS network was able to 

achieve training and checking the lowest RMSE (root mean standard error) for kinematic 

viscosity of biodiesel blends as shown in Figure 4.15  

 
 
Table 4.15: The ANFIS information used in the predicting kinematic viscosity of biodiesel  
                          by the hybrid optimum method 

Biodiesel blend with  Diesel 
Epoch 1000 

RMSE 
Training error 0.0798 
Tasting error 0.0374 

Checking error 0.0529 
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Figure 4.15: Training and checking RMSE achieve with ANFIS for kinematic viscosity of  
                           biodiesel blends  
 

 

Figure 4.16 indicates rule viewers of kinematic viscosity that shows value of the various 

inputs to the ANFIS models and computed output. The kinematic viscosity (output) can be 

predicted by varying the input parameters, including temperature and volume fraction of 

biodiesel to the developed ANFIS model.  

 

 

 
Figure 4.16: Rule viewer of ANFIS model for density of biodiesel blends 

 

 

The 3D surface plots of kinematic viscosity of biodiesel blend with benzene against 

temperature and volume fraction of biodiesel is depicted in Figure 4.17 The plot suggest 

strong interaction between the variables with significant influence on the kinematic 

viscosity of biodiesel blends. From the Figure, increasing in volume fraction of biodiesel 
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leads to increase the kinematic viscosity of biodiesel blends, while the highest temperature 

leads to decrease the kinematic viscosity of biodiesel blends as shown in Figure 4.17. 

 

 

 

 
Figure 4.17: Surface viewer of ANFIS model for kinematic viscosity of biodiesel blends 

 

 

 

 

4.5.2 Modeling of Kinematic Viscosity of Biodiesel Blends using ANFIS 

Figure 4.18 illustrates the results of fitting the predicted and experimental values for 

kinematic viscosity of biodiesel blends, using linear regression. It can be seen that these 

values are close to unity highlighting proper fitting of the predicted values by the adopted 

methodology. Additionally, Table 4.16 shows the comparison between the experimental 

results with predicted data using ANFIS.  It can be noticed that the experimental results 

and the data obtained by ANFIS are very close to each other. Moreover, the maximum 

absolute relative error between these values is about 19%, which indicate an excellent 

agreement between the experimental and predicting values.   
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Figure 4.18: Fitting of the predicted ANFIS and experimental values for kinematic 

                          viscosity of biodiesel blends 
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Table 4.16: Comparative study between experimental and ANFIS results of kinematic 
                       viscosity of biodiesel 

Temperature 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

Kinematic viscosity 
[mm2/s 

Absolute 
error 
[%] EXP ANFIS 

10 0.5 0.5 4.51 4.30 4.59 
0.25 0.75 3.25 3.20 1.54 

20 0.6 0.4 6.23 6.23 0.06 

 
0.65 0.35 6.40 5.80 9.38 

25 0.5 0.5 5.49 5.22 4.88 
30 0.7 0.3 5.26 5.17 1.79 

 
0.1 0.9 3.29 3.27 0.64 

 
0.65 0.35 5.16 4.95 4.11 

35 0.1 0.9 3.16 3.21 1.64 
40 0.6 0.4 3.84 4.01 4.42 

 
0.65 0.35 4.11 4.16 1.28 

 
0.45 0.55 3.89 3.58 7.76 
0.5 0.5 3.42 3.42 0.11 

45 0.2 0.8 2.70 2.77 2.54 
50 0.35 0.65 2.99 2.85 4.55 

 
0.75 0.25 2.63 2.65 0.61 
0.9 0.1 3.50 3.85 10.03 
0.55 0.45 3.14 3.17 0.78 

60 0.75 0.25 2.88 2.98 3.47 
70 0.4 0.6 2.06 1.95 5.22 

0.1 0.9 1.80 1.79 0.56 
0.15 0.85 1.87 1.88 0.79 

 
0.05 0.95 1.72 1.77 2.84 

80 1 0 11.39 11.78 3.42 
0.15 0.85 1.63 1.57 3.94 
0.4 0.6 1.83 1.78 2.52 

100 0.25 0.75 1.28 1.31 2.34 

 
0.2 0.8 1.32 1.30 1.17 
1 0 1.69 1.58 6.51 

0.05 0.95 1.18 1.21 2.40 
110 1 0 1.51 1.45 3.97 
120 1 0 1.79 1.80 0.67 
260 1 0 0.75 0.79 5.90 
280 1 0 0.71 0.79 10.80 
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4.6 Artificial Neural Network (ANN) Model of Kinematic Viscosity 

4.6.1 Method of Applications of ANN for Kinematic Viscosity of Biodiesels 

The kinematic viscosity of biodiesel blends was estimated considering an input layer with 

two independent variables (temperature and volume fraction of biodiesel) eight neurons in 

the four hidden layer, as well as one response variable in the output layer (kinematic 

viscosity), which made an architecture of 2:4:1 as shown in Figure 4.19. Approximately 

80% of the experimental data was used for training, while the remaining 20% was reserved 

for testing. The observed experimental data were normalized for improving the 

performance of the network. The back propagation algorithm was used for training the 

ANN model.  

 

 
 

 
Figure 4.19: Schematic representation of ANN for predicting kinematic viscosity  

 

 

 

The performance of ANN model is noticeably affected by the number of hidden layers and 

number of neurons in each hidden layer.  The optimum number of neurons in the hidden 

layer was selected as 4. The maximum number of epochs and goal were fixed as 1000 and 

0.000001, respectively, during the training. For the chosen network the training 

performance is achieved with minimum error of 8.6581 × 10−6 error rate, which is shown 

in Figure 4.20. 

 



50 
 

 

 
Figure 4.20: Performance graph of tested ANN model 

 
 
 

 
A linear relation for the training, validation, testing and performance of the network with 

high correlation coefficients (R) of kinematic viscosity of biodiesel blends is shown in 

Figure 4.21. The high coefficients of correlation (R) obtained during the training, 

validation and testing of the kinematic viscosity network display very good relationship 

between the output and the experimental values of kinematic viscosity.  
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Figure 4.21: Regression plots for density of biodiesel blends network 

 

 

 

4.6.2 Modeling of Kinematic Viscosity of Biodiesel Blends using AN N 

The results of fitting the predicted and experimental values for kinematic viscosity of 

biodiesel blends, using linear regression is shown in Figure 4.22. It can be seen that these 

values are close to unity highlighting proper fitting of the predicted values by the adopted 

methodology. In addition, Table 4.17 demonstrates the testing results of kinematic 

viscosity using ANN model. Also, it shows the comparison between the experimental 

results with predicted data of kinematic viscosity of biodiesel blends.  It can be noticed that 

the experimental results and the data obtained using ANN are very close to each other. 
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Furthermore, the maximum absolute relative error obtained is about 19%, which indicate 

an excellent agreement between the experimental and predicting values as shown in Table 

4.17.   

 

 
Figure 4.22: Fitting of the predicted ANN and experimental values for kinematic 

                            viscosity of biodiesel blends 
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Table 4.17: Comparative study between experimental and ANN results of kinematic 
                         viscosity of biodiesel 

Temperature 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

Kinematic viscosity 
[mm2/s] 

Absolute 
error 
[%] EXP ANN 

10 0.5 0.5 4.51 5.68 25.99 
0.25 0.75 3.25 3.39 4.41 

20 0.6 0.4 6.23 6.02 3.38 

 
0.65 0.35 6.40 6.21 2.98 

25 0.5 0.5 5.49 5.11 6.97 
30 0.7 0.3 5.26 5.33 1.26 

0.1 0.9 3.29 3.47 5.47 

 
0.65 0.35 5.16 5.14 0.43 

35 0.1 0.9 3.16 3.21 1.64 
40 0.6 0.4 3.84 4.01 4.42 

0.65 0.35 4.11 4.16 1.28 

 
0.45 0.55 3.89 3.58 7.76 

40 0.5 0.5 3.42 3.72 8.87 
45 0.2 0.8 2.70 2.77 2.54 
50 0.35 0.65 2.99 2.75 7.83 

 
0.75 0.25 2.63 2.75 4.42 

 
0.9 0.1 3.50 4.07 16.23 
0.55 0.45 3.14 3.17 0.78 

60 0.75 0.25 2.88 3.03 5.07 
70 0.4 0.6 2.06 1.95 5.22 

 
0.1 0.9 1.80 1.83 1.54 
0.15 0.85 1.87 1.88 0.79 
0.05 0.95 1.72 1.77 2.84 

80 1 0 11.39 8.17 28.31 

 
0.15 0.85 1.63 1.57 3.94 
0.4 0.6 1.83 1.60 12.45 

100 0.25 0.75 1.28 1.30 1.92 

 
0.2 0.8 1.32 1.30 1.17 

 
1 0 1.69 1.44 14.93 

0.05 0.95 1.18 1.21 2.40 
110 1 0 1.51 1.39 8.14 
120 1 0 1.79 1.29 27.94 
260 1 0 0.75 0.86 15.89 
280 1 0 0.71 0.86 20.13 
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4.7 Radial Basis Function Neural Network Model of Kinematic Viscosity 

4.7.1 Method of Applications of RBFNN for Kinematic Viscosity of Biodiesels 

Training of the first approach was stopped when either of the performance goals was 

reached. Training of the network has been done with different number of RBF units. For 

various values of spread (unit) the network error was analyzed it was observed that for a 

spread of 1, the error was minimum. The network was trained with optimum number of 

centers determined from the random selection method and a spread of 1. Results for the 

various performances of the RBFNN are presented in Table 4.18. It can be seen that it can 

be observed that minimum mean squared error (MSE) of RBFNN training results is equal 

to 3.64× 10-5 obtained when spread number is equal to 11 units. 

 

Table 4.18: Radial Basis Function Neural Network configuration for the kinematic  
                         viscosity training                         

Spread Neurons Goal MSE 
1 143 1 E-7 5.81E-05 
2 143 1 E-7 5.29E-05 
3 143 1 E-7 5.26E-05 
4 143 1 E-7 5.25E-05 
5 143 1 E-7 5.15E-05 
6 143 1 E-7 4.90E-05 
7 143 1 E-7 4.75E-05 
8 143 1 E-7 4.55E-05 
9 143 1 E-7 4.05E-05 

10 143 1 E-7 3.66E-05 
11 143 1 E-7 3.64E-05 
12 143 1 E-7 3.67E-05 
13 143 1 E-7 3.85E-05 
14 143 1 E-7 3.95E-05 
15 143 1 E-7 4.05E-05 

 

 

 

 

 

 

 

 



55 
 

4.7.2 Modeling of Kinematic Viscosity of Biodiesel Blends using RBFNN 

Figure 4.22 shows the results of fitting the predicted and experimental values for kinematic 

viscosity of biodiesel blends. It can be seen that predicted data are too closed to the 

experimental data. The test values obtained from the RBFNN model results were compared 

with experimental values as shown in Table 4.19. As a result, the test values obtained from 

RBFNN model were closed to experimental values of biodiesel blends density. Moreover, 

the maximum absolute relative error is approximately 42% which assigned a good 

agreement between the experimental and predicting values.   

 

 

 
Figure 4.22: Fitting of the predicted RBFNN and experimental values for kinematic 

                          viscosity of biodiesel blends 
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Table 4.19: Comparative study between experimental and RBFNN results of kinematic 
                     viscosity of biodiesel 

Temperature 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

 

Kinematic viscosity 
[mm2/s] 

 

Absolute 
error 
[%] EXP RBFNN 

10 0.5 0.5 4.51 5.84 29.69 
0.25 0.75 3.25 3.21 1.18 

20 0.6 0.4 6.23 6.04 3.19 

 
0.65 0.35 6.40 6.14 4.00 

25 0.5 0.5 5.49 5.17 5.71 
30 0.7 0.3 5.26 5.16 1.92 

0.1 0.9 3.29 3.44 4.40 

 
0.65 0.35 5.16 5.04 2.44 

35 0.1 0.9 3.16 3.16 0.06 
40 0.6 0.4 3.84 3.95 2.87 

0.65 0.35 4.11 4.08 0.70 

 
0.45 0.55 3.89 3.60 7.28 

 
0.5 0.5 3.42 3.72 9.00 

45 0.2 0.8 2.70 2.72 0.65 
50 0.35 0.65 2.99 2.71 9.37 

 
0.75 0.25 2.63 2.97 12.67 

 
0.9 0.1 3.50 4.97 42.12 
0.55 0.45 3.14 3.06 2.71 

60 0.75 0.25 2.88 3.04 5.68 
70 0.4 0.6 2.06 1.91 7.16 

 
0.1 0.9 1.80 1.78 1.14 
0.15 0.85 1.87 1.77 5.54 
0.05 0.95 1.72 1.83 6.40 

80 1 0 11.39 10.57 7.22 

 
0.15 0.85 1.63 1.57 3.89 
0.4 0.6 1.83 1.69 7.29 

100 0.25 0.75 1.28 1.65 28.78 

 
0.2 0.8 1.32 1.54 16.92 

 
1 0 1.69 1.14 32.65 

0.05 0.95 1.18 1.03 12.38 
110 1 0 1.51 1.10 26.84 
120 1 0 1.79 1.66 6.99 
260 1 0 0.75 0.76 2.16 
280 1 0 0.71 0.93 30.81 
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4.8 Response Surface Methodology Model of Kinematic Viscosity 

The influence of temperature and volume fraction of biodiesel blends with petro-diesel on 

the kinematic viscosity of biodiesel blends was tested using RSM. The experimental runs 

were randomized to minimize the effects of unexpected variability in the observed 

responses. The methodology adopted allows the formulation of a polynomial equation, 

which describes the process.  This study tested several degrees of polynomial equation for 

two independent variables (temperature (T) and volume fraction of biodiesel (w)) and 

topologies for the estimation and prediction of kinematic viscosity of biodiesel. Therefore, 

Table 4.20 presents the best degree of polynomial equation.   

 

 

Table 4.20: The effect of different order of polynomial equation and topologies on R2, 
                            SSE and RSME 

Degrees    

x-data 

(w) [%] 

y-data 

(T) [K] 

R-square 

(R2) 

Squared standard error 

(SSE) 

Root mean squared 

error (RSME) 

1 1 0.7883 143.7 0.7675 

2 1 0.8365 111.013 0.6773 

3 1 0.8019 134.51 0.7486 

4 1 0.8054 132.164 0.7452 

4 2 0.9027 66.07  0.5302 

 

 

A series of topologies was examined in order to determine the optimum number of degree 

of independent variables and these values were varied from 1 to 4. Besides, R2, SSE and 

RSME were used as a measure of predictive ability of the equation. Hence, the best 

topology i.e. degree of 4 for volume fraction of biodiesel blends and degree of 2 for 

temperature was chosen (Table 4.20) due to the values of R2.  Each response was used to 

develop a mathematical model that correlates the kinematic viscosities to the independent 

reaction variables via polynomial equation as given below: 
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,ݓ)ߥ ܶ)

= ଴଴݌ + ݓଵ଴݌ + ଴ଵܶ݌ + ଶݓଶ଴݌ + ܶݓଵଵ݌ + ଴ଶܶଶ݌ + ଶܶݓଵଶ݌

+ ଷݓଷ଴݌ + ଶܶݓଶଵ݌ + ସݓସ଴݌ + ଷܶݓଷଵ݌ +  (6.2)													ଶܶଶݓଶଶ݌

,ݓ)ߥ ܶ) = ଴଴݌ + ݓଵ଴݌ + ଴ଵܶ݌ + ଶݓଶ଴݌ +  (6.3)																																														ܶݓଵଵ݌

 

where, ݌଴଴ ,ଵ଴݌, ଴ଵ݌ , ଶ଴݌ , ଵଵ݌ ,଴ଶ݌, ଷ଴݌ ଶଵ݌, ଵଶ݌, ,ସ଴݌,  ଶଶare polynomial coefficients݌ ଷଵ and݌

(Table 4.21). 

 

 

Table 4.21: Polynomial equation coefficients for kinematic viscosity of biodiesel blends 

Polynomial equation coefficients 
Value 

Eq. (6.2) Eq. (6.3) 

 ଴଴ 46.81 13.6݌
 ଵ଴ -12.67 15.24݌
 ଴ଵ -0.2384 -0.03456݌
 ଶ଴ 49.57 -0.7883݌
 ଵଵ 0.08945 -0.0381݌
 ଴ଶ 0.0003112 0.00݌

  ଷ଴ -39.96 0.00݌

 ଶଵ -0.1505 0.00݌

 ଵଶ -0.0001405 0.00݌

 ସ଴ -5.819 0.00݌

 ଷଵ 0.1407 0.00݌

 ଶଶ -3.146E-06 0.00݌

 

 

Due to interaction effects between the variables, the parameters could not be analyzed 

independently. The significance of the parameters in the model was obtained using Matlab 

2013b toolbox. The contour plots and surface view (3D) of the density of biodiesel blends 

shown in Figure 4.25 and 4.26 which indicate the interaction effects in a polynomial 

equation Eq. 6.2 and 6.3, respectively. The contour areas help to explain how the density of 

biodiesel blends varies with a change in the temperature and volume fraction of biodiesel. 

Moreover, the contour plots are useful tools for identifying the optimum operating 
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conditions and related response values. The points on each contour and surface view area 

indicate the density value of biodiesel in the specified temperature and volume fraction of 

biodiesel. The residual indicates the difference between the predicted data and actual data 

of the kinematic visocsity of biodiesel blends. 

 

 

 
Figure 4.25: surface view of kinematic viscosity using Eq. (6.2) 

 

 

 



60 
 

 
Figure 4.26: surface view of kinematic viscosity using Eq. (6.3) 

 

 

 

The correlation model prediction error for kinematic viscosity is illustrated in Figure 4.27.  

It is observed that both the individual single variable (only temperature dependent) model 

and the two-variable (temperature and biodiesel fraction) models for kinematic viscosity 

prediction has excellent agreement with the experimental results.  The predicted data for 

kinematic viscosity are within 0 – 15 low relative error of the experimental data at 280 to 

400K. 
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Figure 4.27: Relative error between experiments data and predicted data using RSM 

 

 

 

4.9 Comparing between ANFIS, ANN and RBF approaches  

Figures 4.28 and 4.29 show a comparison for the calculated density and kinematic 

viscosity data using ANFIS, ANN and RBFNN approaches expressed by their percent 

absolute error,  the results are in the range of 0.2% to 3%, 0.2% to 5%, and 0 % to 6%, for 

predicted density data using ANFIS, ANN and RBFNN, respectively. Moreover, the 

results of kinematic viscosity using ANFIS, ANN and RBFNN are in the range of 0% to 

10%, 0.7% to 25%, and 0.7 % to 30%, respectively as shown in Figure 4.28 and tabulated 

in Table 4.23. Figures 4.28 and 4.29 and Tables 4.22 and 4.23 indicate that ANFIS 

approach gives an excellent agreement between the experimental and predicting values of 

density and kinematic viscosity of biodiesel. 
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Figure 4.28: Absolute error vs temperature for 3 models for predicting density of biodiesel 

 

 

 

 
Figure 4.29: Absolute error vs temperature for 3 models for predicting kinematic viscosity 
                      of biodiesel 
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Table 4.22: Evaluation of predictive models for the density of Biodiesel 

T 
[℃] 

Biodiesel 
fraction 

Diesel 
fraction 

 Density [kg/m3] Absolute error [%]  
EXP ANFIS ANN RBNN ANFIS ANN RBNN 

10 0.5 0.5 829.50 835.29 852.68 857.11 0.70 2.79 3.33 
1 0 865.80 859.49 868.36 856.26 0.73 0.30 1.10 

15 0.5 0.5 884.00 856.52 866.06 858.37 3.11 2.03 2.90 
0.2 0.8 860.25 842.08 840.46 841.69 2.11 2.30 2.16 
1 0 817.57 818.31 825.32 828.01 0.09 0.95 1.28 

0.1 0.9 879.65 898.12 846.38 850.88 2.10 3.78 3.27 
20 0.01 0.99 834.90 841.23 831.64 835.51 0.76 0.39 0.07 

0.25 0.75 832.25 839.96 833.86 836.66 0.93 0.19 0.53 
1 0 852.00 865.01 855.26 842.80 1.53 0.38 1.08 

0.6 0.4 783.10 782.65 782.15 760.12 0.06 0.12 2.93 
0 1 857.94 843.36 829.82 834.65 1.70 3.28 2.71 

25 0.2 0.8 833.50 835.29 835.80 834.18 0.21 0.28 0.08 
30 1 0 877.68 887.50 886.77 886.34 1.12 1.04 0.99 

0.25 0.75 825.13 859.91 829.85 830.74 4.21 0.57 0.68 
0.01 0.99 827.80 832.32 824.31 825.24 0.55 0.42 0.31 
0.5 0.5 826.15 828.07 848.73 846.74 0.23 2.73 2.49 

0.75 0.25 834.40 841.23 864.78 862.17 0.82 3.64 3.33 
35 0.2 0.8 857.00 856.52 830.47 826.61 0.06 3.10 3.55 
40 1 0 874.96 879.86 877.99 880.52 0.56 0.35 0.64 

0.5 0.5 837.41 839.11 840.66 837.44 0.20 0.39 0.00 
0.1 0.9 825.60 822.98 827.52 820.65 0.32 0.23 0.60 

50 0.4 0.6 827.00 826.80 826.27 825.94 0.02 0.09 0.13 
0.2 0.8 816.50 816.61 820.51 817.74 0.01 0.49 0.15 
1 0 631.52 641.72 633.00 673.51 1.62 0.23 6.65 

0.8 0.2 879.80 851.85 851.10 847.85 3.18 3.26 3.63 
0.25 0.75 785.63 790.29 784.39 819.24 0.59 0.16 4.28 

55 0.2 0.8 860.65 859.91 816.61 814.83 0.09 5.12 5.32 
60 0.01 0.99 806.80 804.73 805.84 808.03 0.26 0.12 0.15 

0 1 806.20 804.73 804.68 809.38 0.18 0.19 0.39 
0.2 0.8 810.00 809.82 812.46 811.71 0.02 0.30 0.21 
1 0 848.90 828.07 863.59 866.05 2.45 1.73 2.02 

0.6 0.4 832.50 808.97 827.09 833.36 2.83 0.65 0.10 
65 0.2 0.8 805.15 806.85 808.09 808.18 0.21 0.37 0.38 
70 0.6 0.4 825.00 824.25 821.47 826.24 0.09 0.43 0.15 

0.4 0.6 813.50 813.64 803.46 802.38 0.02 1.23 1.37 
0.8 0.2 859.50 839.54 827.45 832.25 2.32 3.73 3.17 
1 0 812.14 813.22 858.51 859.33 0.13 5.71 5.81 
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Table 4.22: Continued 

T 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

 Density [kg/m3] Absolute error [%]  
EXP ANFIS ANN RBNN ANFIS ANN RBNN 

80 0.8 0.2 826.50 821.28 810.16 825.88 0.63 1.98 0.07 
0.2 0.8 796.50 851.85 794.35 796.23 6.95 0.27 0.03 
0.15 0.85 871.77 867.98 872.33 894.45 0.44 0.06 2.60 

1 0 841.29 846.75 854.30 854.23 0.65 1.55 1.54 
85 0.1 0.9 831.50 830.62 794.83 790.05 0.11 4.41 4.99 
90 0.2 0.8 795.10 791.14 785.39 789.79 0.50 1.22 0.67 

0 1 785.00 784.35 784.30 785.81 0.08 0.09 0.10 
0.6 0.4 815.70 811.52 819.78 808.00 0.51 0.50 0.94 
1 0 882.42 894.72 850.31 850.66 1.39 3.64 3.60 

100 1 0 836.30 845.05 845.76 847.43 1.05 1.13 1.33 
0.1 0.9 799.60 795.81 785.87 783.67 0.47 1.72 1.99 

120 1 0 850.08 859.06 831.36 834.21 1.06 2.20 1.87 
130 1 0 815.00 835.72 819.19 820.14 2.54 0.51 0.63 
140 1 0 845.05 853.54 801.98 859.35 1.01 5.10 1.69 
180 1 0 656.85 653.61 690.28 669.69 0.49 5.09 1.95 
200 1 0 886.43 901.09 885.30 880.52 1.65 0.13 0.67 
220 1 0 606.93 611.58 616.10 595.96 0.77 1.51 1.81 
280 1 0 545.25 531.78 534.51 523.85 2.47 1.97 3.92 
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Table 4.23: Evaluation of predictive models for the kinematic viscosity of Biodiesel 

T 
[�] 

Biodiesel 
fraction 

Diesel 
fraction 

  

Kinematic viscosity [mm2/s] 

  

Absolute error [%] 
EXP ANFIS ANN RBFNN ANFIS ANN RBFNN 

10 0.5 0.5 4.51 4.30 5.68 5.84 4.59 25.99 29.69 
10 0.25 0.75 3.25 3.20 3.39 3.21 1.54 4.41 1.18 
20 0.6 0.4 6.23 6.23 6.02 6.04 0.06 3.38 3.19 
20 0.65 0.35 6.40 5.80 6.21 6.14 9.38 2.98 4.00 
25 0.5 0.5 5.49 5.22 5.11 5.17 4.88 6.97 5.71 
30 0.7 0.3 5.26 5.17 5.33 5.16 1.79 1.26 1.92 
30 0.1 0.9 3.29 3.27 3.47 3.44 0.64 5.47 4.40 
30 0.65 0.35 5.16 4.95 5.14 5.04 4.11 0.43 2.44 
35 0.1 0.9 3.16 3.21 3.21 3.16 1.64 1.64 0.06 
40 0.6 0.4 3.84 4.01 4.01 3.95 4.42 4.42 2.87 
40 0.65 0.35 4.11 4.16 4.16 4.08 1.28 1.28 0.70 
40 0.45 0.55 3.89 3.58 3.58 3.60 7.76 7.76 7.28 
40 0.5 0.5 3.42 3.42 3.72 3.72 0.11 8.87 9.00 
45 0.2 0.8 2.70 2.77 2.77 2.72 2.54 2.54 0.65 
50 0.35 0.65 2.99 2.85 2.75 2.71 4.55 7.83 9.37 
50 0.75 0.25 2.63 2.65 2.75 2.97 0.61 4.42 12.67 
50 0.9 0.1 3.50 3.85 4.07 4.97 10.03 16.23 42.12 
50 0.55 0.45 3.14 3.17 3.17 3.06 0.78 0.78 2.71 
60 0.75 0.25 2.88 2.98 3.03 3.04 3.47 5.07 5.68 
70 0.4 0.6 2.06 1.95 1.95 1.91 5.22 5.22 7.16 
70 0.1 0.9 1.80 1.79 1.83 1.78 0.56 1.54 1.14 
70 0.15 0.85 1.87 1.88 1.88 1.77 0.79 0.79 5.54 
70 0.05 0.95 1.72 1.77 1.77 1.83 2.84 2.84 6.40 
80 1 0 11.39 11.78 8.17 10.57 3.42 28.31 7.22 
80 0.15 0.85 1.63 1.57 1.57 1.57 3.94 3.94 3.89 
80 0.4 0.6 1.83 1.78 1.60 1.69 2.52 12.45 7.29 

100 0.25 0.75 1.28 1.31 1.30 1.65 2.34 1.92 28.78 
100 0.2 0.8 1.32 1.30 1.30 1.54 1.17 1.17 16.92 
100 1 0 1.69 1.58 1.44 1.14 6.51 14.93 32.65 
100 0.05 0.95 1.18 1.21 1.21 1.03 2.40 2.40 12.38 
110 1 0 1.51 1.45 1.39 1.10 3.97 8.14 26.84 
120 1 0 1.79 1.80 1.29 1.66 0.67 27.94 6.99 
260 1 0 0.75 0.79 0.86 0.76 5.90 15.89 2.16 
280 1 0 0.71 0.79 0.86 0.93 10.80 20.13 30.81 
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4.10 Evaluation of Predictive Current Models with Previous Study 

4.10.1 Experimental Data 

Kinematic viscosity data of different biodiesel blends samples at different temperatures 

were gathered from the literature. A total of 315 experimental data was obtained from 

scientific publication of Geacai et al., 2015, to estimate the kinematic viscosity of biodiesel 

blends. The development of the proposed approaches was performed as follows. In the first 

step, the experimental measurement data were separated into input data (independent 

variables, including temperature and volume fraction of biodiesel and output data 

(dependent variable in term of kinematic viscosity). Subsequently, different approaches 

(ANFIS and ANN) were proposed to describe the behavior of the kinematic viscosity, as a 

function of temperature and volume fraction of biodiesel. In this case, the database was 

randomly divided into three groups with 60% to training, 20% to testing and 20% to 

checking or validation. The temperature and volume fraction biodiesel were considered as 

input variables on ANFIS, ANN and RBFNN.  

4.10.2 ANFIS Model 

4.10.2.1 Method of Applications 

The architecture of a two input with four rules ANFIS is shown as Figure 4.30. The ANFIS 

information and errors are shown in Table 4.24 that used for all biodiesel blends. Also the 

optimum method is hybrid. In this research, two methods, hybrid and back propagation 

tested for generation ANFIS that the results is presented in Tables 4.24 and 4.25 The 

results show the training error in the hybrid method is lower of back-propagation method. 

Therefore, the hybrid method has used for simulations. 
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Figure 4.30:  ANFIS architecture of two-input–single-output with twenty seven rules in  

                        biodiesel system 
 
 
 
 

Table 4.24: The ANFIS information used in this study by the hybrid optimum method 

Epoch  

Biodiesel blend with  
Diesel 

Biodiesel blend with  
benzene 

Biodiesel blend with  
toluene 

1000 1000 1000 
Training error 0.037 0.0155 0.0163 
Tasting error 0.0469 0.0194 0.0154 
Checking error 0.0408 0.0166 0.0171 
Number of nodes 21 21 21 
Number of linear parameters 4 4 4 
Number of nonlinear parameters 8 8 8 
Number of training data pairs: 43 43 43 
Number of checking data pairs 20 20 20 
Number of fuzzy rules 4 4 4 
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Table 4.25: The ANFIS information used in this study by back-propagation optimum 
                   method 

  
Epoch  

Biodiesel blend 
with  Diesel 

Biodiesel blend with  
benzene 

Biodiesel blend with  
toluene 

1000 1000 1000 
Training error 0.0384 0.0236 0.0246 
Tasting error 0.0471 0.0227 0.0232 
Checking error 0.0409 0.0229 0.0238 
Number of nodes 21 21 21 
Number of linear parameters 4 4 4 
Number of nonlinear parameters 8 8 8 
Number of training data pairs: 43 43 43 
Number of checking data pairs 20 20 20 
Number of fuzzy rules 4 4 4 

 
 
 

4.10.2.2 ANFIS Model for Kinematic Viscosity of Biodiesel Blends   

The influence of interactions of the two process input variables on the kinematic viscosity 

of biodiesel blends was graphically investigated using three dimensional surface plots as 

shown in Figure 4.31. Plots of the interaction between the temperature and volume fraction 

of biodiesel on kinematic viscosity of biodiesel blend with diesel fuel is described in 

Figure 4.31(a). The plots show that both variables significantly affect kinematic viscosity 

of biodiesel blend with diesel fuel. Also, the plots indicate that highest kinematic viscosity 

of biodiesel blend with diesel fuel can be achieved with increasing volume fraction of 

biodiesel (Figure 4.31(a)). The highest kinematic viscosity of biodiesel blend with diesel 

fuel can also be accomplished with decreasing the temperature (Figure 4.31(a)).   

The three-dimensional surface plots of kinematic viscosity of biodiesel blend with benzene 

against temperature and volume fraction of biodiesel is depicted in (Figure 4.31 (b)). The 

plots suggest strong interaction between the variables with significant influence on the 

kinematic viscosity of biodiesel blend with benzene. From the Fig., increasing in volume 

fraction of biodiesel leads to increase the kinematic viscosity of biodiesel blend with 

benzene, while the lowest temperature leads to increase the kinematic viscosity of 

biodiesel blend with benzene as shown in Figure 4.31 (b).  

The effect of the interaction of temperature and volume fraction of biodiesel on the 

kinematic viscosity of biodiesel blend with toluene is shown in Figure 4.31 (c). The Fig. 

suggests that both variables have significant influence on the kinematic viscosity of 
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biodiesel blend with toluene (Figure 4.31 (c)). Increasing the volume fraction of biodiesel, 

shows the kinematic viscosity of biodiesel blend with toluene increases. Conversely, 

increasing the temperature leads to decrease the kinematic viscosity of biodiesel blend with 

toluene as shown in Figure 4.31 (c).  
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Figure 4.31:  ANFIS prediction of maximal kinematic viscosity of biodiesel blends as 

function  of temperature and volume fraction of biodiesel 
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4.10.3 ANN Models 

In this model, 60% of the dataset were randomly selected as the training data, while the 

remaining 40% of the data was used for the performance test and validation of the ANN 

model. The back-propagation algorithm was chosen to calculate the weight values of the 

network. Choosing the optimum network architecture is one of the challenging steps in 

neural network modeling. A 2:2:1 ANN architecture with neurons in each layer has been 

used in this study as shown in Figure 4.32.  

 
 
 

 
Figure 4.32:  Neural network architecture 

 

 

 

4.10.3.1 Modeling of Properties 

A. Input Parameters 

Figures 4.33, 4.34 and 4.35 show the straight lines for the training, validation, testing and 

performance of the network for biodiesel blends with diesel, benzene and toluene. For the 

trained network for estimating the kinematic viscosity, correlation coefficients (R) and the 

mean squared error (MSE) of biodiesel blends are shown in Table 4.26. The straight lines 

in Figures 4.33, 4.34 and 4.3.5 are the linear relationships obtained between the output 

(predicted) and the target (experimental) data of kinematic viscosity used in this present 
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study. The high coefficients of correlation obtained during the training, validation and 

testing of the kinematic viscosity network display very good relationship between the 

output and the experimental values of kinematic viscosity.  

 

 

 
Figure 4.33:  Regression plots for biodiesel blend with diesel fuel network 
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Figure 4.34:  Regression plots for biodiesel blend with benzene network 



74 
 

 
Figure 4.35:  Regression plots for biodiesel blend with toluene network 
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Table 4.26: Performance of the network using Feed forward propagation for kinematic 
                       viscosity model 

Biodiesel Blends Training Validation Testing Performance MSE 
Biodiesel blend with  
diesel fuel 0.985 0.973 0.984 0.984 0.00163 

Biodiesel blend with  
benzene 0.973 0.995 0.995 0.979 0.000461 

Biodiesel blend with  
toluene 0.989 0.996 0.986 0.990 0.000545 

 

 

 

B. Output Parameters 

The output parameters are the fuel properties (kinematic viscosity, density and dynamic 

viscosity) being predicted by the ANNs. Several ANNs with different hidden layers, 

number of neurons, transfer functions and training parameters are trained in order to 

determine the optimum hidden layer, number of neurons, transfer functions (pair) and 

training parameter's value, which would give the best prediction accuracy for each 

property.  

4.10.3 Results of ANFIS and ANN Models 

The predicted values obtained from the ANFIS and ANN model results were compared 

with experimental values as shown in Tables 4.27, 4.28 and 4.29 for biodiesel blend with 

diesel fuel, benzene and toluene, respectively. It is observed that the experimental results 

and the data obtained by ANFIS and ANN models are very close to each other.  

It can be seen from these tables that as the volume fraction of biodiesel is increased, the 

kinematic viscosity of biodiesel blends is increased, whereas, kinematic viscosity of 

biodiesel blends decreased as the temperature increases. It was observed that the kinematic 

viscosity of biodiesel blends predicted using ANFIS approach is closed to kinematic 

viscosity of biodiesel blends obtained experimentally.  
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Table 4.27: Kinematic viscosity values of Biodiesel blend with diesel fuel using ANFIS 
                           and ANN 

293.15K 

 

298.15K 

V ν [mm2/s] V ν [mm2/s] 
experiment ANFIS ANN experiment ANFIS ANN 

0.55 6.098 6.083 6.089 0.5 5.488 5.492 5.408 
0.5 5.971 5.971 5.841 0.25 5.072 5.056 5.166 
0.2 5.438 5.440 5.441 0.75 6.114 6.107 6.158 
0.6 6.234 6.258 6.335 0.65 5.848 5.862 5.921 
0 5.331 5.346 5.046 0.3 4.522 4.496 5.138 

0.7 6.576 6.662 6.640 0.05 4.878 4.859 5.019 
0.3 5.56 5.540 5.466 0.1 4.925 4.916 5.145 

0.15 5.412 5.427 5.417 0.85 6.429 6.439 6.629 
0.85 7.168 7.181 7.013 0.15 4.968 5.034 5.190 

303.15K 313.15K 

V 
ν [mm2/s] 

V 
ν [mm2/s] 

experiment ANFIS ANN experiment ANFIS ANN 
0.2 4.383 4.353 4.342 0.5 3.929 3.914 4.088 
0 4.187 4.204 4.081 0.25 3.704 3.726 3.709 

0.75 5.37 5.346 5.690 0.7 4.164 4.164 4.132 
0.35 4.603 4.645 4.252 0.15 3.633 3.636 3.580 
0.8 5.498 5.501 5.899 0.45 3.885 3.846 4.064 
0.7 5.262 5.295 5.4708 0.05 3.567 3.603 3.311 

0.25 4.447 4.441 4.291     
0.55 4.93 4.901 4.921   

 
 

323.15K    
V 

ν [mm2/s]     
experiment ANFIS ANN     

0.95 3.553 3.555 3.820     
0.15 2.86 2.814 3.205     
0.2 2.889 2.910 3.189     
0 2.792 2.822 2.986     

0.3 2.946 2.936 3.083     
0.55 3.144 3.166 3.368     
0.85 4.389 4.404 3.917     
0.1 2.832 2.826 3.157     
0.8 4.321 4.310 3.960     

0.65 4.11 4.101 3.804     
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Table 4.28: Kinematic viscosity values of Biodiesel blend with benzene using ANFIS 

                      and ANN 

293.15K 

 

298.15K 

V 
ν [mm2/s] 

V 
ν [mm2/s] 

experiment ANFIS ANN experiment ANFIS ANN 
0.55 3.913 3.865 3.811 0.5 3.631 3.653 3.787 
0.5 3.725 3.704 3.537 0.25 3.198 3.202 3.189 
0.2 3.183 3.186 3.194 0.75 4.651 4.657 5.010 
0.6 4.102 4.127 4.181 0.65 4.177 4.205 4.613 
0 2.939 2.933 3.190 0.3 3.202 3.195 3.212 

0.7 4.530 4.562 4.879 0.05 2.987 2.981 3.179 
0.3 3.349 3.342 3.211 0.1 3.031 3.047 3.177 

0.15 3.130 3.142 3.191 0.85 5.365 5.353 5.709 
0.85 5.688 5.685 5.607 0.15 3.088 3.085 3.177 

303.15K 313.15K 

V 
ν [mm2/s] 

V 
ν [mm2/s] 

experiment ANFIS ANN experiment ANFIS ANN 
0.2 3.070 3.096 3.080 0.5 3.398 3.402 3.307 
0 2.881 2.868 3.139 0.25 3.075 3.108 2.959 

0.75 4.447 4.445 4.439 0.7 3.923 3.930 4.041 
0.35 3.272 3.289 3.160 0.15 2.981 2.999 2.940 
0.8 4.655 4.668 4.870 0.45 3.334 3.330 3.197 
0.7 4.246 4.216 4.114 0.05 2.896 2.876 2.980 

0.25 3.136 3.140 3.084 
0.55 3.680 3.642 3.668 

  
 

 323.15K 
   

V 
ν [mm2/s] 

    experiment ANFIS ANN 
0.95 4.672 4.726 4.842 
0.15 2.909 2.922 2.894 
0.2 2.950 2.948 2.916 

    0 2.792 2.813 2.860 
    0.3 3.061 3.063 2.980 

0.55 3.378 3.366 3.472 
0.85 4.547 4.426 4.570 

    0.1 2.871 2.887 2.877 
    0.8 4.269 4.146 4.398 

0.65 3.785 3.682 3.781 
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Table 4.28: Kinematic viscosity values of Biodiesel blend with toluene using ANFIS 
                       and ANN 

293.15K 

 

298.15K 

V 
ν [mm2/s] 

V 
ν [mm2/s] 

experiment ANFIS ANN experiment ANFIS ANN 
0.55 3.953766 3.96566 4.070596 0.5 3.675616 3.658365 3.746034 
0.5 3.80556 3.796158 3.892921 0.25 3.130556 3.113194 3.054225 
0.2 3.136175 3.105776 2.982933 0.75 4.697605 4.705427 4.671597 
0.6 4.171509 4.171264 4.233708 0.65 4.207331 4.201983 4.150262 

0 2.851001 2.841332 2.818873 0.3 3.136877 3.154626 3.210277 
0.7 4.611912 4.629688 4.60866 0.05 2.891038 2.917392 2.814958 
0.3 3.249261 3.232695 3.202694 0.1 2.937396 2.931292 2.825879 

0.15 3.04978 3.034215 2.901412 0.85 5.374716 5.383436 5.618728 
0.85 5.746284 5.808731 5.760374 0.15 3.002719 3.042517 2.856938 

303.15K 313.15K 

V 
ν [mm2/s] 

V 
ν [mm2/s] 

experiment ANFIS ANN experiment ANFIS ANN 
0.2 2.998505 2.994578 2.931575 0.5 3.388336 3.338269 3.663898 

0 2.846 2.838975 2.81104 0.25 3.002719 2.969135 2.94704 
0.75 4.437 4.451295 4.093624 0.7 3.913026 3.901491 3.968254 
0.35 3.224 3.204333 3.287606 0.15 2.914217 2.909679 2.8396 
0.8 4.685 4.695652 4.410325 0.45 3.284381 3.296302 3.536915 
0.7 4.230 4.246 3.883498 0.05 2.839061 2.862972 2.819026 

0.25 3.063 3.064 3.053055 
    0.55 3.699 3.682 3.557323 
    323.15K 
    

V 
ν [mm2/s] 

experiment ANFIS ANN 
0.95 4.634 4.658 4.618 
0.15 2.873 2.863 2.838 

    0.2 2.91 2.904 2.862 
    0 2.792 2.829 2.821 

0.3 3.013 2.993 2.984 
0.55 3.37 3.382 3.421 

    0.85 4.426 4.356 4.148 
    0.1 2.836 2.853 2.828 

0.8 4.2389 4.252 4.017 
0.65 3.745 3.734 3.696 
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4.10.4 RSM Models 

The influence of temperature and volume fraction of biodiesel blends with diesel fuel, 

benzene and toluene on the kinematic viscosity was tested using RSM approach and 

comparing with the mathematical equation of Geacai et al., 2015, (appendix 1) .  Each 

response was used to develop a mathematical model using RSM that correlates the 

kinematic viscosities to the independent reaction variables via polynomial equation as 

given below: 

(ܶ,ݓ)ߥ

= ଴଴݌ + ଵ଴ܶ݌ + ݓ଴ଵ݌ + ଶ଴ܶଶ݌ + ܶݓଵଵ݌ + ଶݓ଴ଶ݌ + ݓଶଵܶଶ݌

+ ݓଶଵܶଶ݌ + ଶݓଵଶܶ݌ +  (6.4)																																																	ଷݓ଴ଷ݌

where, ݌଴଴, ,ଵ଴݌ ଴ଵ݌ , ଶ଴݌ , ,ଵଵ݌ ,଴ଶ݌ ଵଶ݌ ଶଵ݌, ଵଶ݌, ,	and ݌଴ଷ are polynomial coefficients (Table 

4.29). 

 

 

Table 4.29 Polynomial equation coefficients for kinematic viscosity of biodiesel blends  
                           with diesel fuel 

Polynomial equation 

coefficients 

Value 

Diesel fuel Benzene Toluene 

 ଴଴ 46.09 4.613 -13.15݌

 ଵ଴ -0.1879 -0.01368 0.09767݌

 ଴ଵ 133.9 48.08 135.6݌

 ଶ଴ 0.000167 2.097E-06 -0.0001713݌

 ଵଵ -0.8848 -0.3468 -0.9018݌

 ଴ଶ 23.82 39.33 38.28݌

 ଶଵ 0.00146 0.0006412 0.001514݌

 ଵଶ -0.0715 -0.1394 -0.1294݌

 ଴ଷ -0.3582 6.017 4.379݌

 

 

Figure 4.36, 4.37 and 4.38 present the accuracy of developed RSM predictive model for 

kinematic viscosity of biodiesel blends with diesel, benzene and toluene, respectively. It 
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can be seen that the most of the points fall along the diagonal line for the RSM compared 

to mathematical equations obtained by Geacai et al., 2015, prediction models. 

Consequently, it follows that prediction results using RSM are in very good agreement 

with the actual values of the kinematic viscosity of biodiesel. This observation can be 

confirmed with very high value of coefficient of determination. 

 

 

 

 
Figure 4.36:  Fitting of the predicted ANFIS and experimental values for kinematic  

                            viscosity of  biodiesel blends with diesel 
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Figure 4.37:  Fitting of the predicted ANFIS and experimental values for kinematic  

                           viscosity of  biodiesel blends with benzene 
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Figure 4.38:  Fitting of the predicted ANFIS and experimental values for kinematic  

                           viscosity of  biodiesel blends with toluene 
 
 

 
 

 

 

 

 

 

 

 

 



83 
 

CHAPTER 5 

CONCLUSIONS 

 

 

5.1 Conclusions 

Viscosity and density are the most significant properties of biodiesel because of its major 

effect on the engine performance. For this reason reliable mathematical models that 

accurately describe the kinematic viscosity and density of biodiesel as a function of 

temperature and biodiesel fraction are of great interest for the development of combustion 

models as well as for the design of process equipment. 

This work proves three empirical approaches, which are ANFIS, ANN and RBFNN to 

predict the density and kinematic viscosity of biodiesel blends at various temperatures and 

volume fraction of biodiesel, which is characterized by only three adjustable parameters. 

Additionally, this study develops empirical equations using RSM methods to predict the 

density and kinematic viscosity of biodiesel blends at various temperatures and volume 

fraction of biodiesel as function of temperature and biodiesel fraction. Moreover, the 

results of empirical equations of kinematic viscosities for biodiesel blends with diesel fuel, 

benzene and toluene reported in the literature are compared well with the mathematical 

obtained using RSM approach of this work. The following conclusions can be drawn from 

the study: 

 The densities and kinematic viscosity of diesel fuels are lower than biodiesels. 

Therefore, the density and kinematic viscosity of the blend increases with the 

increase of biodiesel concentration. 

 The ANFIS, ANN, RBFNN and RSM methods used the temperatures and biodiesel 

fraction as inputs and the density and kinematic viscosity of biodiesel blends were 

output. Results indicate that the proposed ANFIS method is able to predict the most 

accurate biodiesel densities and kinematic viscosities with the overall R2 of 0.95 

compared with the other approaches. 

 There is an excellent agreement between the experimental data and estimated 

values for the densities and kinematic viscosities.  

 Overall, the ANFIS method presented the best accuracy with the highest R-

squared. 
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 The statistical indices used in performance assessment of the developed models 

showed that the predictions of ANFIS, ANN and RBFNN models were more 

accurate than RSM model. Because of R-squared of these models is higher than 

RSM approach. 

 According to the results, the mathematical equations obtained using RSM is better 

than mathematical equations obtained by Geacai et al., 2015 for calculating 

kinematic viscosity of blends. However, there is an excellent agreement between 

the experimental data and estimated values. Therefore, mathematical equations 

obtained using RSM can be used for predicting the viscosity of biodiesel blend 

without needing viscosity measurements. 
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