
 
 

     UNIVERSITY STUDENTS’ METACOGNITIVE  

AND PROBLEM  SOLVING SKILLS 

 TOWARDS 

        LEARNING A PROGRAMMING LANGUAGE 

 

 

A THESIS SUBMITTED TO THE GRADUATE        

SCHOOL OF APPLIED SCIENCES 

OF 

          NEAR EAST UNIVERSITY 

 

                  BY 

       RAJAA. JAWADI. H. FOURTI 

 

 

  In Partial Fulfilment of the Requirements for  

 the Degree of Master of Science 

            in 

Computer Information Systems 

 

 

NICOSIA, 2017 

R
A

JA
A

 JA
W

A
D

I . H
              T

H
E

 E
F

F
E

C
T

 O
F

 M
E

T
A

C
O

G
N

IT
IV

E
 S

K
IL

L
S

 T
O

W
A

R
D

S
 P

R
O

B
L

E
M

    

S
O

L
V

IN
G

    IN
  P

R
O

G
R

A
M

M
IN

G
 L

E
A

R
N

IN
G

 

          

 

 

N
E

U
 

2
0
1
7
 



 
 

UNIVERSITY STUDENTS’ METACOGNITIVE AND  

PROBLEM  SOLVING SKILLS 

TOWARDS 

            LEARNING A PROGRAMMING LANGUAGE 

 

A THESIS SUBMITTED TO THE GRADUATE 

SCHOOL OF APPLIED SCIENCES 

                OF 

          NEAR  EAST UNIVERSITY 

 

               BY 

       RAJAA JAWADI.H.FOURTI 

 

In Partial Fulfilment of the Requirements for    

The Degree of Master of Science 

           in   

                          Computer Information Systems 

 

 

 

 

    NICOSIA, 2017 



 
 

I hereby declare that all information in this document has been obtained and presented in 

accordance with academic rules and ethical conduct. I also declare that, as required by 

these rules and conduct, I have fully cited and referenced all material and results that are 

not original to this work. 

  Name, Last name: Rajaa Jawadi Fourti 

  Signature: 

  Date: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



I 
 

ACKNOWLEDGEMTS 
 

My deepest gratitude goes to Prof. Dr. Nadire Çavuş, for her constant encouragement and 

guidance. She has walked me through all the stages of the writing of my thesis. Without 

her consistent and illuminating instructions, this thesis could not have reached its present 

form. 

I would like to thank Prof. Dr. Dogan Ibrahim and Assist. Prof. Dr. Seren Başaran who 

have been very helpful through the duration of my thesis, this thesis could not have been 

achieved without their generous and professional assistance. Also, I want to thank to all 

jury members for their valuable comments. 

 

This thesis is dedicated to my beloved family with unlimited thanks and heartfelt love, for 

they have believed in me and have sustained me throughout my life. A special feeling of 

gratitude to my hero, my brother Faraj Aljwadi who is indeed my inspiration and the man 

who led me into the treasures of knowledge. I would like to thank my husband for his 

unlimited and unconditional love, and to my parents who support me in everything all the 

time. I would like to thank my mother for her unlimited and unconditional love, and to 

my father who taught me how to be a real man before everything, and taught me that 

knowledge must be learned for its own sake. I would like to thank my sisters and brothers 

for their encouragement and constant love they gave me. 

 

Eventually, to that long list of friends who have supported me all over the way from the 

early stage of my study until the last word of this thesis, thank you all for all the love and 

help you gave me, I couldn't be here without your existence in my life, this thesis would 

not have been possible. 

 

 

 

 

 



ii 
 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents... 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

                                                        ABSTRACT     

 

The complexity of the educational processes made it necessary to look for new 

appropriate strategies. It is important that students acquire metacognitive skills so that 

they can keep abreast of the great progress in Science and Technology. Educational 

methods should be questioned about their role in preparing a student to possess not only 

thinking but being able to have metacognitive skills. Computer programming skills 

require a good quality of education through a comprehensive development of the 

educational processes and the knowledge of the latest approaches which require the 

preparation of students’ abilities to choose the most appropriate strategies. 

Metacognitive skills increase students’ abilities to understand how to think positively, 

and how to solve the problems they face in Computer Science. The Thesis attempts to 

provide an understanding of the metacognitive skills towards problem solving in 

programming language learning amongst university students in North Cyprus. Research 

based model and questionnaire were used in the study where data were collected 

randomly from 300 volunteered students. The students were chosen from departments of 

Computer Information Systems, Computer Engineering, Information Technology and 

Management Information Systems during 2016-2017 Fall semester. The dependent 

variable in the study is metacognitive skills for computer programming, and the 

independent variable is problem solving skills. SPSS was used to analyze the data, the 

descriptive statistics were used to analyze the characteristics of the study sample and the 

estimates of their responses. Pearson’s correlation was used to study the effect of use 

metacognitive skills towards problem solving skills that students face when learning 

programming languages. After statistical analysis of the collected data, there was a 

negative correlation between metacognitive skills and problem solving skills. This study 

also showed a strong point among students in the skills of planning and monitoring, and 

a weakness among students in the skills of regulation.  

 

Keywords: Programming learning; programming; metacognitive skills; problem solving; 

problem solving skills 

 

 



iv 
 

ÖZET 

 

Eğitim süreçlerindeki karmaşa, uygun yeni stratejiler aramayı zorunlu kılmıştır. 

Öğrencilerin Bilim ve Teknoloji alanındaki büyük ilerlemelere ayak uydurabilmeleri için 

bilişsel becerileri kazanmaları büyük önem arzetmektedir. Bu nedenle, eğitim metodları 

öğrencileri sadece düşünmeye değil, üstbiliş becerileri geliştirmeye hazırlamalıdır. 

Bilgisayar programlama becerileri, öğrencilerin en yeni ve en uygun stratejiler seçebilme 

becerilerini kazanmalarını sağlayan iyi bir eğitim gerektirir. Üstbiliş becerileri, 

öğrencilerin pozitif düşünme kabiliyetlerini artırır ve bilgisayar bilimindeki konularda 

problem çözebilme becerilerini geliştirir. Tezde, Kuzey Kıbrıs’ta üniversite 

öğrencilerinin bilgisayar programlama dili öğreniminde üstbiliş becerilerinin problem 

çözme becerilerindeki önemi araştırılmıştır. Araştırma tabanlı model ve anket 

kullanılarak 300 gönüllü öğrenciden veri toplanmıştır. Ankete katılanlar, Kuzey 

Kıbrıs’ta 2016-2017 Sonbahar döneminde Bilgisayar Enformatik Sistemleri, Bilgisayar 

Mühendisliği, Bilişim Teknolojileri ve Yönetim Bilişim Sistemleri bölümlerinde eğitim 

gören öğrencilerden seçilmiştir. Çalışmada bağımlı değişken olarak bilgisayar 

programlamada üstbiliş becerileri alınmıştır. Bağımsız değişken olarak ise problem 

çözme becerileri alınmıştır. Toplanan verilerin analiz ve yorumlanmasında SPSS 

programı kullanılmıştır. Üstbiliş becerilerinin programlama dili öğrenirken problem 

çözmedeki katkılarını öğrenmek için Pearson Korelasyonu kullanılmıştır. Toplanan 

veriler istatiksel olarak analiz edildikten sonra üstbiliş ve problem çözme becerileri 

arasında negatif korelasyon olduğu belirlenmiştir. Çalışmada ayrıca öğrencilerin 

planlama ve izleme becerileri arasında yüksek korelasyon olduğu ve düzenleme 

becerilerinde düşük korelasyon olduğu ortaya çıkmıştır. 

 

Anahtar kelimeler: Programlama öğrenme; programlama; üstbiliş becerileri; problem 

çözme; problem çözme becerileri 

 

 
 



v 
 

TABLE OF CONTENTS 
 
 

ACKNOWLEDGEMENTS………………………………………………………….     i 

ABSTRACT…………………………………………………………………..…….....    iii 

ÖZET…………………………………………………………………………………..    iv 

TABLE OF CONTENTS…………………………………………………………….     v 

LIST OF TABLES……………………………………………………………………   viii 

LIST OF FIGURES………………………………………………………………….     ix 

LIST OF ABBREVIATION…………………………………………………………    x 

 

CHAPTER 1: INTRODUCTION…………………………………………………....   1  

1.1 Overview…………………………………………………………………….…….   1 

1.2 The Problem…………………………………………………………………….…   4 

1.3 The Aim of the Study……………………….………………………………….....    4 

1.4  Importance of the Study …………………………………….………..…………..   5 

1.5 Limitations of the Study…………………………….………………………….....    5 

1.6 Overview of the Thesis………………………………………………………….....  6 
 

CHAPTER 2: RELATED RESEARCH ……………………………………………   7  

2.1 Research on Difficulties in Programming ………………...……………………….  7  

2.2 Effects of Metacognitive Skills on Problem Solving……………………………....  8  
  

CHAPTER 3: THEORETICAL FRAMEWORK…………………………………   10 

3.1 Computer Programs………………………………………….…………..……......   10 

3.2  Computer Programming…………………………………………………………..   11 

3.3 Importance of  Learning Programming………………………………...…….……   12 

3.3.1 Advantages of object-oriented programming……………………….............   12  

3.3.2 Disadvantages of object-oriented programming…………….……………....  13 
 

3.4 Programming Difficulites …………….………………………………..………….  13 



vi 
 

3.5 Programming Language Features…………………………………….…...….…....  15 

3.6  Educational Programming Environments……………...………….……………...   16 

3.7 Programming Learning Strategies………………..……………………………….   19 

3.8 Problem Solving Approach………………………………………………..….......    24 

3.8.1 Steps in problem solving………………………………………..………….    24 

3.8.2 Problem solving strategies for programmers…..……………………….......   25 

3.9 Metacognitive Skills ………………………………...............................................   26 

3.9.1 Metacognitive skills for programmer………………………………….........   27 

3.9.2 Metacognitive steps for problem solving ………………………….…….....   29 

3.9.3  Metacognitive components for problem solving……….……….….………   31 

 

CHAPTER 4: RESEARCH METHODOLOGY…………………………………..   35 

4.1 Research Model……………………………………………………………………..  35 

4.2 Participants………………………………………………………………………….  37 

4.3 Data Collection Tools………………………………………………………............   39 

4.4 Data Analysis ………..……………………………..................................................   41 

4.5  Procedure …..…………………………………………………...............................   42 
 

4.5.1 Ethical  considerations……………………………………………………….   43 

4.6 Research Schedule …………………………………………………………….........  44 
 

CHAPTER 5: CONCLUSION AND RECOMMENDATIONS……………….…...  46 

5.1 Know Programming Language of Students ………………………………………..  46 
 
5.2 Difficult of Stuents on Learning Programming Language………………………….  47 

 
5.3 Metacognitive Skills of Students for Computer Programming ……………….........  50 

 
5.3.1 Planning ……………………………........……………………………….......  51  

5.3.2 Monitoring …………………………………………………….......................  52  

5.3.3 Regulation ……………………………... …………………………................  53 
  
5.4 Problem Solving  Skills of Students for Computer Programming…………….........  54 

 
5.4.1 System ……………………………………….. ………………..………….....  56 

5.4.2 Design ……………………………...………………………...…………..…..  56 

5.4.3 Coding ………………………………………………………………....…….   57 



vii 
 

5.4.4 Testing ………………………………………………………………….…......    58 

5.5 Relationship between Sub-Dimensions of Metacognitive and Problem Solving Skills..59 
 
5.6 Relationship between Metacognitive Skills and Problem Solving  Skills……………   62 

 

 

CHAPTER 6: CONCLUSION AND RECOMMENDATIONS……………………....   65 

6.1  Conclusion………………………………………………………………….................  65 

6.2. Recommendations…………………………………………………………….............   66   
 

REFERENCE……………………………………………………………………………   67 

 

APPENDICES……………………………………………………………………………   75 

Appendix A: Rapporteur of the Scientific Research Ethics Committee………………….  76 

Appendix B: The Questionnaire …..……………………………………………………..   77 
 
Appendix C: Similarity Report…………………………………………………………...   81 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

LIST OF TABLES 

 

 

Table 3.1 Showing different metacognitive components and implications in 

problem solving ………………………………………………………… 

 

33 

Table 4.1 Important about chosen universities …………………………………… 37 

Table 4.2 Important demographic data of participants............................................. 38 

Table 4.3  Problem solving skills…………………………………………………… 41 

Table 4.4 Score boundaries of the 5 Likert scale of level of knowledge of 

programming language………………………………………………… 41 

Table 4.5 Score boundaries of the 5 Likert scale of level of difficulties faced by 

student………………………………………………………………….   42 

Table 4.6 Score boundaries of the 5 Likert scale of level of problem solving skills 42 

Table 5.1 Mean and standard deviation programming language that the students 

know……............................................................................................... 

 

47 

Table 5.2 Mean and standard deviation for each items of difficult do students in 

programming language are to learn......................................................... 

 

49 

Table 5.3 Mean and standard deviation for  metacognitive skills of students for  

computer programming questionnaire…………………………............ 51 

Table 5.4 Mean and standard deviation for every item of the planning dimension  52 

Table 5.5 Mean and standard deviation for every item of monitoring dimension..  53 

Table 5.6 Mean and standard deviation for every item of regulation dimension…  54 

 

Table 5.7 Mean and standard deviation for problem solving skills of students for 

computer programming of the questionnaire………………………….. 55 

Table 5.8 Mean and standard deviation for each item of system analysis dimension 56 

 

Table 5.9 Mean and standard deviation for every item of design dimension……… 57 

 

Table 5.10 Mean and standard deviation for every item of coding dimension……...  58 

 

Table 5.11 Mean and standard deviation for every item of testing dimension……..  59 

 

Table 5.12   Relationship between sub-dimensions of metacognitive  skills and  
problem solving skills…………………………………………………. 
 

 

62 

Table 5.13 Relationship between metacognitive  skills and problem solving skills.. 
 

 

63 

 



ix 
 

LIST OF FIGURES 

 

 

Figure 3.1 Object-oriented programming concepts…………………………………... 15 

Figure 3.2 Programming environment for Object Karel……………………………... 17 

Figure 3.3  Screenshoot of Raptor visul programming environment ……………….... 18 

Figure 3.4  An example of  BlueJ project people………………………………........... 20 

Figure 3.5 Shows a screenshot of Alice development environment............................. 22 

Figure 3.6 Screenshot of a source code for calculating compound interest…….......... 24 

Figure 3.7 Stages in metacognitive skills for solving programming problems………. 32 

Figure 3.8 A model of metacognitive skills and how to effectively solve 

problems…………………………………………………………………... 34 

Figure 4.1 The effect of metacognitive skills towards problem solving in 

programming  learning……………………………………………………. 36 

Figure 4.2 Structure of the questionnaire…………………………………………….. 39 

Figure 4.3 Research procedure……………………………………………………….. 43 

Figure 4.4 Research schedule of the study…………………………………………... 44 

Figure 4.5 Gantt chart for the thesis…………………………………………………. 45 

Figure 5.1 Scatter Plot between planning dimension and problem solving skills …...  60 

Figure 5.2 Scatter Plot between monitoring dimensions and problem solving skills... 60 

Figure 5.3 Scatter Plot between regulation dimension and problem solving skills….. 61 

Figure 5.4 Scatter Plot for relationship between metacognitive skills and  problem 

solving skills……………………………………………………………… 

 

63 

 

 

 

 

 

 

 

 

 

 



x 
 

LIST OF ABBREVIATIONS 

 
ANNOVA: Analysis of Variance 

MS: Metacognitive skills 

PS: Problem solving  

OO: Object-oriented 

CIS: Computer information system 

IT Information technology 

CE Computer engineering 

MIS Computer information system  

NEU: Near east university 

CIU: Cyprus international university 

EMU: Eastern mediterranean university 

EUL: European university of lefke 

M Mean 

SD: Standard deviation 

  

  

  

  
 



1 
 

CHAPTER 1 

INTRODUCTION 

 

This chapter describes the problem, aim of the research, importance of the research, 

limitations of the research and overview of the Thesis. 

1.1 Overview  

Programming language is an extremely helpful skill and maybe a rewarding profession, it 

has recently become the interest for software engineers and understudies enthusiasm for 

programming have developed quickly, and basic programming courses are getting well 

known unlike before (Wang  & Hwang, 2017) 

Myers et al. (2016) conducted a research to find out the problems faced by students in 

programming. The results of the study showed that changing the design was more hard to 

comprehend than testing the variables and refreshing them. Strikingly, scientists 

discovered that novices thought that it was simple and easy to compose recursive 

capacities subsequent to finding out about iterative capacities. Other researchers, Luxton-

Reilly and Petersen (2017) discovered that pointers were positioned at the highest 

difficulty in addition to expressions and language differences, particularly in C dialect. 

Also, the scientists additionally found that polymorphism, the giving was additionally 

arranged as difficulty. The one of most complex human conduct is the way toward taking 

care of the problem solving, which requires aptitudes and high subjective abilities to 

control the issue and find proper answers for it. The problem-solving process located at the 

top of the hierarchy of education (Mahmoud, 2013). 

 

Rum and Ismail (2014) computer programming language is a difficult and intricate 

operation for many students which places a heavy burden on students. Studying 

programming courses is the main defy, for students, especially novices because of the 

difficulties in learning programming skills that are out their capacities (Apiola et al., 2011). 

Learning computer programming is not a difficult process because of basic concepts but 

the most difficult aspects lie in planning to write the program (Fu et al., 2017). 

 

The main purpose of solving software problems is to enable students to think and develop 

their skills in front of the problem and to judge these skills and their impact on flexibility 



2 
 

and  refinement of thinking (Avargil et al., 2018). Although, metacognition skills contain 

how an individual can investigate thoughts, locate the perfect strategy for access to a 

suitable way and how to apply them to the learning process. To take care of the issue, the 

students must acknowledge and comprehend their capacities and how to perform 

subjective aptitudes, for example, learning and problem solving skills (Özsoy & Ataman, 

2017). And then point students to efficient strategies for the computer programming 

process (Kasemsap, 2017). The former studies carried out on metacognition and problem-

solving studies have shown that metacognitive education boost students capacity to resolve 

problems best because metacognitive strategies develop students ability to solve 

difficulties that they faced when learning programming (Mokos &  Kafoussi, 2013). The 

problem-solving skills  process don’t demand just that the students know about the helpful 

knowledge components, additionally, should be able to arrange and control these cognitive 

components any assignment to problem solving (Wang & Hwang, 2017). In this, Sarver 

(2006) points out that the knowledge skills include planning, monitoring, and evaluation 

through which the learner can control his knowledge of the good method through 

improving his ability in solving the problem, and the metacognitive skills allow self-

learning as it helps students to Self-perception of their thinking. 

 

The main purpose of educational establishment is teaching students how to make use of 

processes such as planning, how to apply the knowledge, how to monitor, how to regulate 

and reflect (Azevedo, 2009). Metacognition indicates to higher thinking in disposition 

including the active control of the knowledge process involved in learning. Activities such 

as planning how to handle a particular learning task, monitoring the understanding, and 

evaluating progress towards completing the task are beyond the cognitive nature (Flavell, 

1979). Because knowledge skills is a key factor in successful education, it is important to 

identify the activity that goes beyond the cognitive process to reach the ideal way to 

improve students thinking through cognitive control (Avargil & Lavi, 2018). Therefore, 

Ali et al. (2016) stated that metacognitive thinking makes individual think in a state of 

continuous research and investigation and conscious observation that help them to better 

deal with situations and problems. 

 

Tas et al. (2014) defined that  metacognition is a composite activity of skills that refers to 

knowledge  control, and planning for learning through the choice of appropriate strategies, 



3 
 

and monitoring processes, and to evaluate these processes. Other researchers, (Costa and 

Kallick, 2001) a pyramid model was introduced to explain the skills of metacognition 

where they reached a conclusion that metacognition is a composite activity of skills that 

refers to knowing metacognition skills and control it, and planning for learning by 

selecting appropriate strategies, monitoring knowledge processes, and evaluating these 

processes. On the other hand,  Dawson et al. (2008) defined that metacognition as a 

process that co-ordinates data, practices, goals, and plans. Metacognition, which basically 

means thinking, generally includes various skills that are related to acquiring knowledge 

and thinking, which are critical thinking, contemplative thinking, problem solving (PS), 

and making decisions. People, who have skills beyond the most advanced knowledge, are 

also the best problem solvers, decision-makers, and critical thinking of other people in 

general. In fact, the more complex the programming problem, the greater the need for 

metacognitive knowledge, meaningful reflection and positive reactions (Havenga, 2011). 

Montague et al. (2014) pointed out that beyond knowledge means thinking about a 

thinking process, and therefore it is due to a high mental capacity that interferes with the 

process of learning in terms of finding a learning plan, using appropriate skills and 

strategies to solve problems, studies show that meta-knowledge skills are important in 

predicting the academic achievement of learners, it helps them effectively distinguish 

between information they know and do not know. 

  

 Kafadar (2012) Stated that the definition of a problem solving process involves the 

individual's use of all of his practical and cognitive skills, including cognitive activities 

such as planning, evaluation, and monitoring. Solving the problem requires three main 

conditions: Firstly think about the problem and guide the behavior towards the goal, then 

find a law or strategy that can help achieve the desired goal and finally treat these laws or 

strategies by putting them in action. At this stage, it is necessary to identify and define the 

sub-objectives according to the type of problem, then solve the problem and reach the 

objective. Furthermore, Ramesh and Anandaraj (2014) have found out that there is a major 

correlation between students’ metacognition and problem solving skills.  Nevertheless, 

problem solving requires the individual to use all his cognitive and reflective abilities, 

which involve the skills of knowledge such as planning, organization, and exploitation in 

the direction required to overcome the problem (Kafadar, 2012). Problems occur when 

there is a gap between the individual and the goal to be achieved and is also a complex 



4 
 

process in our lives (Baars et al., 2017). Therefore, problem solving is also a complex 

process that exists in everyday practice(Ali et al., 2016). Therefore, solving the problem is 

not only in the field of computer programming but it exists in all areas that affect the daily 

experiences and therefore can be defined as knowledge and mental processes which can be 

directed to arrive at the appropriate strategy to solve the problem  (Marjorie et al., 2014) 

 
In this thesis, we have focused on the effect of metacognitive skills towards problem 

solving in programming learning, and the strategies to use in problem solving and improve 

performance towards thinking and regulation.  Also, enable all students to have strategic 

thinking and examine the relationship between metacognitive knowledge and performance 

on the task to problem solving. 

 
1.2 The Problem  

In the literature, many researchers (Siswati & Corebima, 2017; Anandaraj & Ramesh, 

2014; Safari & Meskini, 2015) have pointed out that metacognition is important when 

dealing with problem solving. Arslan et al. (2013) conducted a research in Turkey to find 

the important factors that lead students to use metacognitive skills in computer 

programming. Despite the proliferation of computer programming, students are still 

encountering difficulties in learning programming languages. Moström (2011) hoped to 

reveal the right solutions that will help students improve their skills on enhancing creative 

thoughts and problem solving within a metacognitive framework and overcoming 

difficulties.  Furthermore, students have the problem to learn programming languages and 

they think is difficulties but learn programming is useful and requirements for real life. 

Therefore, suggestions to improve teaching methods will be helpful for universities 

developing in countries especially in North Cyprus. 

1.3 Aim of the study 

The foremost aim of this study is to find out about the effect of metacognitive skills on 

problem-solving skills in programming among university students. To achieve the main aim, 

we examine the following research questions: 

1. Which programming language do students know? 

2. How difficult do students believe each of the topics in a programming language are 

to learn? 



5 
 

3. What are metacognitive skills of students for computer programming? 

4. What is problem solving skills of students for computer programming? 

5. Are there any relationships between sub dimensions of metacognitive and problem 

solving skills among students? 

6. Is there any relationship between metacognitive and is problem solving skills of 

students? 

 

1.4 Importance of the Study 

Solving problems has always been a challenge as well as teaching students programming 

languages. This study is important to educational institutions mainly targeting computer 

science and other technical disciplines which offer programming courses. Solving 

problems has always been a challenge for teachers teaching students programming 

languages and knowing how to apply their knowledge to improve their programmming 

skills and enhancing critical thinking. One of the biggest problems for programming 

novices is that there is a huge gap between the intuitive way in which they think and the 

way of thinking that has to be suitable for computers. Most students do not have enough 

level of software knowledge and they have difficulties in understanding of programming 

tasks and in designing of appropriate algorithms most students start to learn to programme 

in single context before learning structure and style (Churchill et al., 2013).  Moreover, 

teachers don’t use new technologies or new methods of teaching (Hu, 2004). Most efforts 

are aimed at bringing the user closer to the system and increase students’ performance and 

learn to programme by use new way of thinking to enable them to use a programming 

language in order to solve problems. Therefore, the metacognition is important and proper 

process for solving the problem. In this study, a survey will be carried out to discuss the 

impact of metacognitive education on problem solving in learning programming 

languages. Findings from the study will be beneficial to researchers who are interested in 

the same area of study as well as authors who are keen to address the challenges students 

face in learning programing. 

 

1.5 Limitations of the Study  

There are quite a number of limitations that have been noted in this study. These 

limitations should be considered for future research. The research was conducted over a 

short period of time during the spring semester, a longitudinal research should be 



6 
 

considered in future that is done over a longer period of time. The research only focus on 

four universities in Northern Cyprus namely Near East University (NEU), Cyprus 

International University (CIU), European University of Lefka (EUL), and Eastern 

Mediterranean University (EMU). The study consists of 300 students from four 

universities in North Cyprus and because the study period was not enough to collect data 

from a larger community. A larger target group should be considered for future research to 

yield generalized results of the difficulties in learning programming language in North 

Cyprus as a whole 

 

1.6 Overview of the Thesis 

This study is divided into six chapters as follows: 

Chapter 1: This chapter is the first chapter of the thesis and this chapter includes the 

problem statement, aim of the study, and the importance of the study, research questions 

and an overview of other chapters to follow. 

Chapter 2: It discusses previous research that has been done by other researchers 

interested in understanding the effect of metacognitive skills towards problem solving in 

programming learning. This chapter explains research student’s difficulties, effects of 

metacognitive skills on problem solving. 

Chapter 3: This chapter is designed as a medium to help institutions improve the delivery 

of programming courses. The chapter explains the theoretical framework of the topic under 

research. 

Chapter 4: Research model, participants, sample selection, data collection and tools, data 

analysis and the research procedure were explained in detail in this chapter. Reliability 

tests are also shown for the survey tool used. 

Chapter 5: The chapter reveals the results found. Results are then discussed with respect 

to the fundamental objectives of the research   

Chapter 6: It is about the conclusion of the entire research study and recommendations of 

the thesis, suggestions, and for future studies 

 

 



7 
 

CHAPTER 2 

                                                     RELATED RESEARCH 

 

2.1 Research  on Difficulties in Programming  

Bouvier et al. (2016) emphasized that learning programming skills is generally considered 

hard, and programming courses often have high dropout rates. That  it  takes  about  10  

years  for  a  novice  to  become  an  expert programmers. Kirsti (2004) pointed out that 

students find it difficult to understand program execution since it takes a long time for a 

beginner to understand the mechanism and the operation taking place behind the code. 

Students indicated that they find it difficult to understand that the instructions being 

executed are the ones created in the previous instructions. Milne and Rowe (2003) also 

indicated that students found virtual functions as moderately difficult contrary to what 

teachers perceived. Teachers indicated that it was one of the main challenges students face. 

Madden and Chambers (2002) found out that Java was easier to learn for novices 

compared to C language due to the absence of pointers in Java however, the researchers   

did not phase out the assumption that object oriented programming is difficult. In addition 

to these findings, the researchers conducted a research at Anna University for 

undergraduate students of Engineering and Technology who were doing Java courses. 

Students indicated that they prefer to learn through assignments and tutorials rather than 

class lectures. In the survey, 195 students participated. Findings showed that 67% of the 

students have a personal computer to practice with. Among the ten listed programming 

topics, students were asked to rank the topics in their level of difficulty. Starting from the 

most difficult topic to the least difficult topic, the order was concurrent programming, UI 

components with swings, generic programming, exceptions and assertions, event handling, 

interfaces and inner classes, graphics programming, object oriented access controls, object 

orientation and fundamental programming structure in Java. 

 
Kirsti (2004) conducted a study in Bulgaria to find out challenges that teachers face when 

teaching programming. The majority of the respondents indicated that students who are 

taught procedural programming first find it difficult to switch and understand how object 

oriented programming work. Kunkle (2010) suggested that universities and other academic 

institutions should consider teaching students the principles of object oriented 



8 
 

programming first as an introductory course before they are taught procedural 

programming. Studies have shown that student’s master object oriented programming 

faster when it is introduced first (Kirsti, 2004).  Maheswari et al. (2017) highlighted that 

apart from introducing object oriented programming, it is also crucial for students and 

teachers to understand that programming is for scholars, it requires abstract thinking. 

Milne and Rowe (2002) conducted a study to find out the difficulties of C++ programing 

for teachers and students. Findings revealed that students rated having less difficulties 

compared to the rating that teachers indicated. Analysis of these ratings showed that the 

reason lies in that students tend to believe in themselves that they have understood yet on 

the other hand, teachers see the remaining flaws that in programming coursework and 

examinations. 

 

2.3 Effects of Metacognitive Skills on Problem Solving 

Safari and Meskini (2015) conducted a research in Iran to find out the effect of 

metacognition instruction on problem solving for students doing health sciences. The 

sample size constituted of 40 students in their second semester who were enrolled at 

Kermanshah University of Medical Sciences. Findings revealed that there was a significant 

effect between metacognitive instruction and problem solving skills. Similar findings were 

also found by Ramesh (2014) who also found out that there was a significant correlation 

between metacognition and problem solving. In addition, Mokos and Kafoussi (2013) also 

pointed out that metacognitive approach to learning helps students improve their problem 

solving skills. Harandi et al. (2013) also found out that metacognitive skills have a 

significant effect on problem solving skills, however, the researchers did not found any 

difference between orientation-avoidance and personal control components. 

In the literature, many researchers (Aurah et al., 2014; Hong et al., 2017) also conducted 

studies to find out the effect of metacognitive skills on improving problem solving skills 

among university students. They all found out that in the control group, the effect of 

conventional teaching was evident on problem solving. In addition, they also found out 

that orientation-avoidance and personal control components are part of problem solving 

skills. There was not much difference between the experimental group and the control 

group, however emphasis was put by all the researchers that problem solving confidence in 

the control group was greatly affected by conventional teaching methods. 



9 
 

Annemieke et al. (2012) conducted a study to find an efficient measurement of 

metacognition in mathematical problem solving. The sample constituted of 42 students 

who were randomly selected from a grade 5 class. The study involved a series of steps 

which were measured. Firstly the students were given a word problem and had to rate their 

confidence in tackling the problem first. Secondly, the students had to make a sketch map 

which would help them in solving the problem. Thirdly, the problem had to be solved and 

lastly the student was required to rate his/her performance before the results were shown. 

Results showed that metacognitive was relatively low on all measures which show that 

metacognitive skills are still in the early development stage among elementary students. 

In addition, the literature, many researchers (Arslan, 2014; Arslan & Akin, 2014; Arslan et 

al., 2013) pointed out that important factors that constitute to academic success are 

metacognitive and self-regulation. Arslan (2014) conducted a research in Turkey to 

examine the relationship between metacognition and self-regulation in web based teaching 

environments. Findings revealed that metacognitive skills in web learning environments 

had a positive effect on problem solving skills and overall academic success. In 

conclusion, the researcher pointed out that students with high levels of self-regulation had 

higher levels of metacognition. 

Anandaraj and Ramesh (2014) conducted a study in India to find the relationship that 

exists between metacognition and problem solving among students studying physics. 

Findings revealed that the level of metacognition among students varied between gender 

and college. Furthermore, results also showed that there was a significant difference 

between students studying physics with regard to gender. In addition to that, results also 

showed that female students were better than male students in their level of metacognition 

and urban students had higher metacognition levels compared to rural students. In 

conclusion, the findings showed that there was a significant relationship between the 

metacognition levels of students studying physics and their problem solving ability. 

 

 

 

 

 



10 
 

CHAPTER 3 

THEORETICAL FRAMEWORK 

 

This chapter explains the theoretical construct of this research. The chapter explains 

computer programs, computer programming, importance of learning programming, the 

programming difficulties, Programming Language Features, Educational Programming 

Environments, Programming Learning Strategies, Problem Solving Approach, 

Metacognitive skills. 

3.1 Computer Programs 

Biju (2013) defined a computer program as a list of instructions that are responsible for 

telling a computer what to do. In addition, the researcher stated that all processes done by 

computers and other electronic devices are controlled by computer programs which are 

written in different programming languages. Computer programs are used in our everyday 

life to run and operate different devices as well as view web pages. Notable examples of 

everyday use of computer programs include web browsers such as Google Chrome, 

Mozilla Firefox, spreadsheet documents and video games. Castro et al. (2016) described 

how computer programs function. The researchers, describes a computer program as a file 

that resides in the computer’s hard drive. When users run applications on digital devices, 

the file is read and processors located in the device interprets the instructions and executes 

the desired output. Computer programs are written by programmers using programming 

languages such as C++, Java, Python and many more languages available in the market. In 

order for computers to understand the code written, programmers make use of compilers 

which are responsible for translating the code into machine readable format which is in 

binary form. Furthermore, the researchers pointed out that it is crucial for researchers and 

users to note that there are also bad computer programs that are developed illegally by 

users who plan to destruct the functioning of computer systems which are known as 

malware and spyware used to steal important user information. 

Computer programs have become crucial in every business industry ranging from 

education, finance, manufacturing, agriculture and many other sectors. It is important for 

users to understand that computer programs are not only used in programming classes by 

programmers but they form a part of our everyday life. Crowfoot (2012) focused on 

explaining the four main computer programs that are used in everyday life by users in 



11 
 

different sectors. The 4 common computer programs and their applications are explained in 

detail below: 

 Web browsers: This is the main computer program used every day. Examples 

include Google Chrome, Mozilla Firefox, Internet Explorer and other web browsers 

available. Millions of users access Facebook, Google, Twitter etc. every day, 

without web browser computer programs, users would not be able to access the 

different websites they access on a daily basis. 

 Microsoft Office and Outlook: In order to solve every day problems users make 

use of computer programs such as Microsoft word, PowerPoint, Excel and outlook 

for communication purposes. Spreadsheets are used to save data in different work 

places. 

 Antivirus: Anti-virus are computer programs that are developed to protect 

computers and other devices from viruses that are available on the web. These 

computer programs operate in the background, preventing malicious software from 

entering the computer. 

 PDF Readers: These computer applications include Adobe Reader and many 

others and are the most popular and preferred format of distributing files on email 

platforms. These computer programs are embedded with security features that 

check viruses in documents to be sent via the web. 

 

3.2 Computer Programming  

Computer programming is the evolving process involving the implementation of various 

sets of instructions to permit a computer to do a certain task by means of programming 

language to solve problem. Özgür (2017) explained the classification of programming 

languages as described in the section below: 

 Web languages: Used in creating as well as editing pages on the web which 

involves putting plain text on webpages, to access as well as retrieving data from a 

database. Web languages include HTML XML, JavaScript, VBScript, PHP, Java, 

and ASP. 

 Procedure-oriented: Style of programming in which single operations are used in a 

program and are grouped in logical units which are called procedures or functions 



12 
 

 Object oriented programming: Style of programming involves combining or 

encapsulating data into a solo program entity called object.  Examples of these 

languages include C, C++, Java and PHP.  The programs organize data and is 

collected using a group of interacting objects, each has its very own data space and 

functions. It is possible to make objects reusable through encapsulating the whole 

thing needed to operate. 

 Software development: Languages are used for creating executable programs. In 

addition, these languages are capable of creating simple console programs that are 

capable of printing text to the screen. It varies greatly in terms of power and 

complexity. Such as C, C++, C#, Pascal, Delphi, Visual Basic. 

 

Object-oriented programming languages are the most used programming languages. The 

main advantage for Object-oriented programming is that it is easy to maintain as well as 

modifying existing codes (Henry, 2013). Development time is cut considerably and this 

makes adjustments of program much simpler. 

 

3.3 Importance of Learning Programming 

In the literature many researchers (Todorova & Donchev, 2004; Kirsti, 2008; Kunkle, 

2010) have stated the importance of object-oriented programming and Kunkle (2010) went 

on further to explain the advantage and disadvantages of object-oriented programming as 

follows: 

3.3.1 Advantages of object-oriented programming:  

In the literature, many researchers (Henry, 2013; Butler & Morgan, 2001) explained the 

various benefits that come with using object-oriented programming language. The main 

advantages are described below: 

 Improved software-development productivity: Object-oriented (OO) programming 

is extensible and modular therefore, it provides separation of duties in programs 

and new attributes and behaviours can be added. Compared to procedural 

programming, with object-oriented programming software development is 

improved due to extensibility, reusability and modularity factors that object-

oriented programs exhibit. 



13 
 

 Improved software maintainability: Due to modular properties that object-oriented 

programs exhibit, software is easier to maintain and updates which can be done 

easier without making large-scale changes. 

 Faster development: Reusability properties exhibited in object-oriented programs 

enable faster development through the use of rich libraries of code embedded in 

the programs. 

 Lower cost of development: The overall cost of software development is lowered 

since software can be reused therefore more effort is diverted to object-

orientation analysis and design. 

 Higher quality software: It has been reported that object-oriented programming 

results in high quality software contrary to using procedural languages (Donchev 

& Todorova, 2008). 

 

3.3.2 Disadvantages of object-oriented programming 

 Although Object Oriented (OO) Programming has been seen as a favourable programming 

language by many researcher and developers who have created good systems in the past, 

the same language has pitfalls which are explained bellow: 

 Steep learning curve: Due to the nature of object-oriented programming, many 

programmers find it challenging especially in understanding key programming 

concepts such as polymorphism and inheritance. The interaction of objects 

makes it complex to create programs. 

 Larger program size: Programming using object-oriented languages involves more 

lines of code which is contrary to procedural languages. 

 Slower programs: Due to several lines of code instructions are executed in object-

oriented programming therefore, it makes the programs slower compared to 

procedural based programs. 

 

3.4 Programming Difficulties 

Butler and Morgan (2007) explained that enhancing the programming teaching industry is 

crucial to identify and understand the challenges that learners face in programming 

courses. In addition, it is also important to identify the challenges that teachers encounter 

in teaching programming courses. Gomes and Mendes (2007) explained some difficulties 

to learning programming language in following points: 



14 
 

 Teaching is not personalized:  Personalized supervision is more ideal where there 

is a teacher. Direct feedback explaining the problems which students find difficult 

could help. However, it may be straining to give such feedback.  

 Teacher’s strategies doesn’t apply to all students learning styles: Individuals tend 

to approach new materials in different ways as they learn in several ways. 

Programming techniques tend to differ from student to student as learning styles are 

different and numerous ways can be used to arrive at the same conclusion or solve 

the same problem. The learning style differ from students as students are been 

taught through  several means and tend to have different approach when it comes to 

learning new theory 

 The teaching of dynamic theory with the aid of static materials: Programming 

consists some dynamic perception which are thought with the aid static objects 

such as (projected presentations, verbal explanations, tables, texts, and so on).  

 Students use inaccurate study technique: Most students prefer to answering 

equations from memorized formulas, without a thorough understanding of many 

concepts as well as mastering many study options for programming. 

 Most Students don’t work hard enough to comprehend programming 

proficiency: Intense work is required for programming languages, solo study and 

textbook alone may not be sufficient. 

 Most students lack knowledge in tackling programming: Without knowledge of 

solving problems, it is difficult for students to create algorithms. Finding solutions 

to problems requires adequate knowledge of programming which most student’s 

lack.  

 Many Students lack programming knowledge: It has been observed that many 

students face difficulty in programming due to misconceptions. 

 Students lack mathematical and logical knowledge: The surrounding causes much 

objections which includes tacit or distinct mathematical concepts, particularly the 

theory which are essential for regular programming problems.  

 Students lack insufficent programming knowlegde: Apparently, in most cases 

there is a blank space missing inbetween generic problem solving and 

programming problem solving. So therefore, it is important that the environment 

aids programmer to make this transition phase much lighter. 



15 
 

 Programming demands a high level of abstraction:  The student’s abstraction 

capacity must be developed. 

 Programming languages have very heterogenous structure: The context lessen 

aspects inherent to language structure, stressing the algorithmic and problem 

solving progress. Students are more likely to concentrate basically in solutions 

which do not involve complex syntaxes. 

 

3.5 Programming Language Features 

In the literature the  researchers (Madden & Chambers, 2002) have described the structure 

of object-oriented programs as depicted in Figure 1 below: 

 

Figure 3.1: Object-oriented programming concepts (Madden & Chambers, 2002)  

The structure of object-oriented programs is divided into six elements that Madden and 

Chambers (2002) explained below: 

 Objects: An instance of a class is referred to as an object and form the basic run-

time entity in an object-oriented system. Objects interact with each other by 

sending messages to each other during run-time as well as interaction without 

knowledge of underlying source code. 

 Classes: This refers to group of objects of similar type and forms the basic entity of 

an object-oriented system. It is in this class that methods and variables of an object 

are defined. 



16 
 

 Data Abstraction and Encapsulation: The act of representing essential features is 

called abstraction and it does not include explanations and background details. 

Classes are referred to as a list of abstract attributes and they also use the some 

concept of abstraction. Encapsulation refers to the process of storing data and 

functions in a single unit. Data can only be accessed by functions which are stored 

in a class. 

 Inheritance: This refers to the process whereby properties that objects of other 

classes are exhibit are acquired. Re-usability in inheritance enables additional 

features to be added to existing classes without any modification of the classes. 

Anew class is derived from an existing class and the output will be a new class that 

has features of the combined classes. 

 Polymorphism: This refers to a programs ability to exhibit more than one form. In 

different instances, an operation may have different behaviours based on the data 

type used in the operation. Polymorphism is mainly used in implementing 

inheritance. 

 

3.6 Educational Programming Environments 

Programming environments have been devised as a strategy to help students learn 

programming easier and help eliminate the negative mind set portrayed about 

programming. Jimenez-Peris et al. (2000) highlighted the basic requirements for any 

professional educational programming environment that are listed below: 

 Programming environments must be up-to-date. Compilers, user interface and 

environment functionality must be up-to-date. 

 Programming environments must provide higher working models that do not 

complicate explanations by simply mirroring the implementation. 

 Programming environments must draw attention on understanding not merely 

assistance in development. When errors occur, explanations should be understandable. 

 Programming environments must cater for non-academic activities which include 

group work, written and oral communication.  

On the Internet there are much more environment for programming learning. Some of them 

explained as follows:   

 



17 
 

a. Object Karel Programming Environment 

Xinogalos et al. (2006) described Object Karel as an educational programming 

environment based on a special object-oriented mini-language. The environment has 

several features which are important for analogous environments.  The editor is structured 

in a way that supports program development more than syntactic details. In addition, the 

environment provides a step by step process of program execution as shown on Figure 3.2 

below.  Furthermore, the structure editor supports program development rather than a 

detailed focus on the programming language. It is designed in such a way that supports in 

understanding programming structures and flow of control. In addition, it has built-in 

tutorials to aid as a teaching and learning tool. 

 

Figure 3.2: Programming environment for Object Karel (Xinogalos et al., 2006) 

 

 

  

b. Raptor: An optic programming circumabient for tutoring object-oriented 

programming 

Raptor is programming environment created to assist students in visualizing classes and 

methods by combining UML and flowcharts. Programs can be carried out manually and 



18 
 

then written as an object oriented programming language such as Java.  The environment is 

designed in such a way that help students create algorithms by combining graphical 

symbols. This environment is good for novice programmers who possess little 

programming knowledge. In addition, the environment has built-in features for problem 

solving which are executed when algorithms are created visually as shown on Figure 3.3 

below.  After creating designs in Raptor, the output can be converted to Java language and 

the UML inventor allows students to create interfaces, teaching rooms and enumeration 

types. Comments can also be added on the UML diagram. The environment supports more 

than 80 built-in functions for students to generate random numbers, draw graphical 

designs, perform trigonometric computations and generate random numbers (Carlisle, 

2009). 

 

Figure 3.3: Screenshoot of Raptor visul programming environment (Harrykar, 2015) 

 



19 
 

3.7 Programming Learning Strategies 

In the literature, many researchers (Chetty & Westhuizen, 2014; Kunkle, 2010; Young & 

Fry, 2012) have described the three main approaches that can be used as a teaching aid for 

introductory object-oriented programming. One of the approaches focus on writing source 

code whilst the other two approaches aims at establishing and on creating and shapping 

various classes and objects. The approaches explained by Chetty and Westhuizen (2014) 

are explained as follows:   

a) Objects-First Approach Using BlueJ 

BlueJ is an integrated development environment that allows novice programmers of Java to 

interact and visualise with classes and objects before writing lines of code (Barnes et al., 

2017; Valdecantos, 2017). This approach introduces students to concepts such as classes, 

objects and methods at the introductory lessons and encourages students to interact with 

methods and objects before writing code. BlueJ was developed to run on Sun 

Microsystems’ Java 2 Standard Edition (J2SE) Development Kit and it is an integrated 

development tool for java programmers. Kunkle (2010) pointed out that, by using BlueJ 

the shortcomings of many development environments are addressed which are listed 

below: 

 The object-oriented paradigm is not reflected in other development environments. 

 Most development environments are too complex for novice programmers and this 

makes learning programming difficult for novice programmers since the 

environments are designed for professionals. 

 Other development environments focus mainly on building Graphical User 

Interface at the expense of allowing users to interact with objects and classes. 

To address the above mentioned shortfalls of existing object-oriented development 

environments, the BlueJ development environment was developed (Kunkle, 2010). The 

following are the features of the BlueJ environment: 

 BlueJ enables students doing introductory courses in object-oriented programming 

to interact with objects and classes making it easier for them to visualise what 

happens when programs are executed. 



20 
 

 Embedded UML diagrams support visualization and pop-up menus as well as 

dialogue boxes enable interaction between the environment and the user 

templates are also used to support easy code generation for novice programmers. 

 BlueJ allows instructors to shield/hide more advanced concepts from students until 

a suitable time when the instructor feels it’s now the right time to introduce these 

concepts.  

A screenshot of BlueJ is shown on Figure 3.4 below. The screenshot is one of the default 

projects named “people “ that is embedded in the development environment. 

 

 

Figure 3.4: An example of BlueJ project people (Kunkle, 2010) 

 



21 
 

BlueJ is a tool that enables students to visualize what happens during program execution 

by developing a software environment that enables students to interact with objects and 

classes by building Graphical User Interface. 

b) Objects-First or Objects-Early Approach Using Alice 
 
This second approach uses a development environment called Alice. Alice allows students 

to build virtual world using 3D graphics by dragging and leaving objects, techiques as well 

as restrained structures (Alice, 2015). The distinction between the “objects-first” approach 

and the “objects-early” approach lies in the timeframe that is taken before students are 

actually introduced to coding. Objects-first has a longer time frame compared to the 

objects-early approach. Alice was initially designed    for undergraduate students with no 

programming and 3D experience. Alice has enhanced students’ interest in object-oriented 

programming by providing the following:  

 Less frustration: Syntax errors are minimised by allowing students to create 

programs in 3D without typing a single line of code. Programs, often referred to 

as worlds in Alice are created by dragging and dropping objects and methods. 

 Friendly environment: Novice programmers are provided an environment where 

they can create compelling programs. Computer programs that take the form of 

3D movies and games can be developed by using the storyboard as a metaphor 

and students can test the programs at any point during the design phase. 



22 
 

 

Figure 3.5:  Shows a screenshot of Alice development environment (Alice, 2015) 

In studying about programs most students have difficulties learning to program, most 

students problems with creating algorithms, discovering out how to use problem solving 

techniques in their programs, and making use of simple programming tools. The Alice, a 3-

D tool interactive animation environment. A new construct that prepares a feasible 

approach to actively involving students in increasing their knowledge in many areas 

Alice (2015) is an inventive block-based programming environment that enables user to 

create with easy animations, design interactive narratives, or program simple games in 3D. 

Contradicting many concept of the puzzle-based coding applications, Alice inspires 

learning through creativity expedition. Alice was built to teach logical and computational 

thinking skills, basic principles of programming and exposing first object-oriented 

programming. The Alice Project demands use of supplemental skills and materials for 

tutoring using Alice across a spectrum of ages and subject matter with theorical benefits in 

endulging and retaining different and underserved groups in computer science education 

(Costa & Miranda, 2017). 

 



23 
 

c) Imperative-First Approach Using Python 

This approach has a traditional background in that it introduces programming first using 

python. Python is well known as an object-oriented scripting language used for 

introductory programing courses due to its nature of being simple, it provides flexible 

syntax and supports feedback (Kunkle, 2010). Students are introduced to imperative 

aspects first, which include expressions, control structures, functions and procedures that 

are the basics for procedural programming. Once mastered, students are then introduced to 

object-oriented techniques (Biju, 2013). Python is used when embedded in a host 

environment such as a web page. Below are the features of python that make the language 

more appealing for beginning programmers as stated by Kunkle (2010):  

 Python uses simple syntax that is appropriate for beginners. 

 Programs in python are enforced allowing the python container object to hold 

objects of any type or list. 

 Python provides dynamic typing of variables. 

 Python has embedded built-in types such as lists. 

 Provides a friendly Graphical User Interface 

 Provides an interactive mode where the user can experiment with the code. 



24 
 

 
 

Figure 3.6:  Screenshot of a source code for calculating compound interest  
                                  (Agarwal, 2005) 
 

3.8 Problem Solving Approach 

In the literature many researchers (Krunkle, 2010; Donchev & Todorova, 2008; Kirsti, 

2004) defined an algorithm as a method for solving problems that consists of a defined set 

of instructions usually written in ordinary language. This process of coming with an 

algorithm is usually a trial-and-error process. If there are more ways of solving the same 

programming problem it, also means there are many algorithms. The choice of an 

algorithm to use ids dependent on several factors such as accuracy, reliability and ease of 

modification (Krunkle, 2010). The algorithm that takes the least time to execute is 

considered the best algorithm to use. 

 
3.8.1 Steps in problem solving 

  The section bellows explains the steps that are crucial for solving problems using 

algorithms. The steps below describe checks that must be done before an algorithm is 

executed to make sure that it exhibits certain properties. Below are some steps in problem 

solving as described by Kirsti (2004): 



25 
 

 Generality: An algorithm must be bulit for a full class of problems not just instance 

of a problem. It is crucial to check and verify input specifications if they meet the 

requirements and format that the computer will be able to execute. In addition, 

output specifications should also be checked to see if it complies with the format 

and make of the computer. 

 Finiteness: All algorithms to be executed must have a finite structure that means 

that it must terminate with either the right output or an indication that there is no 

solution. Since computer algorithms repeat instructions, it is very important for 

finiteness to be considered. 

 Non-ambiguity: All operations within an algorithm should be precise which means 

that the algorithm must be clearly stated and one has to know which step follows 

next.  Commands used during execution may be conditional or repeated which 

mean they execute in loops, however for repeated commands, the algorithm should 

be designed to know when to stop. 

 Efficiency: Memory and time resources should be taken into account for the 

algorithms to be considered useful. Useful algorithms are the ones that require a 

reasonable amount of computing resources. 

 

3.8.2 Problem Solving Strategies for Programmers 

Chetty and Westhuizen (2014) explained a sequence of steps that one out to follow in 

solving programming problems. The steps explained are described in detail below: 

1. Defining or specifying the problem: It is crucial for one to understand the problem 

before attempting to solve it. The student should ask him/herself the following key 

questions; what will the computer program do, what tasks must the program 

perform, what will be the output of the program,  what kind of data will be used and 

how will the program interact with the computer user. 

2. Analysing the problem: The idea behind analysis is to find an appropriate solution 

to solve the problem. This phase involves identifying inputs, outputs and other 

requirements or constraints before attempting to solve the problem. 

3. Algorithm development: During this phase an algorithm is designed, that rectifies 

the problem through the use of a pseudocode or a flowchart. A pseudocode 

describes the logic and flow of the program and is written in a plain language that 



26 
 

can be understood by the user. Alternatively, a flowchart can be used during this 

phase as it provides graphic symbols and arrows that aid in expressing the 

algorithm. 

4. Coding: This refers to the process of converting an algorithm into a programming 

language that can be understood by a computer. 

5. Testing and Debugging: Testing refers to the process of executing functions by 

entering data to check output whereas debugging is a process of finding and 

correcting program errors that are produced during program execution. The errors 

that are corrected during debugging are syntax flaw, run-time errors and logic 

errors. 

6. Documenting: It is important to document the program for prospective reference. 

An internal and external document should be kept with a detailed explanation of 

how the problems were solved. This serves as a good reference point for future use 

and program modification. 

3.9 Metacognitive Skills 

Geiwitz (1994) defined metacognitive skills as one’s ability in monitoring and directing 

different operations of coactive skills in order to gain the biggest possible success. In 

addition, the researcher defined a cognitive skill as the usage and manipulation of elements 

that enhance performance. Furthermore, he described problem solving as the generic 

cognitive skill. For problem solving to be a success, the researcher explained 10 

metacognitive skills that lead to effective problem solving as follows:  

 Discovery of a problem 

 Illustration of a problem  

 Adpoting of a problem-solving method  

 Strategic usage of problem solving methods  

 Assestment of solution candidates 

 Recognition of errors  

 Resource distribution 

 Physical monitoring 

 Social monitoring  

 Directing monitoring  



27 
 

Metacognitive is generally described as monitoring and controlling activities of one’s 

cognition. Metacognition has been identified as an important factor to be a successful 

learner in learning computer programming Ramesh (2014). According to Flavell (1979) 

metacognition refers to knowledge about thinking and coactive phenomena and has the 

capability to produce deep and important learning (Garrison & Akyol, 2015; Siswati & 

Corebima, 2017). Metacognition includes the capability to think about mental activities, 

strategies and tasks, implement progress to direct and support coactive thinking, and 

showing on all actions successful, with the goal of establishing deep and important 

learning (Flavell, 1979; Rizk, 2017). 

The reason of metacognition is to direct thinking in a manner that it effectively controls 

mental activities specially when handling real life problems and complex tasks.  A 

distinction is observed amomg metacognitive knowledge and metacognitive control of 

experiences.  Metacognitive knowledge includes knowledge of a person, knowledge of 

distinctive strategies and knowledge of task to complete a task successfully, while 

metacognitive control refers to managerial processes to reflect, plan, monitor, reflect on 

and evaluate activities such as critical thinking and problem solving (Titus & Annaraja, 

2011):  

 Planning is related with goal setting, reading and evaluation of text and of job to 

support understanding.  

  Monitoring include an individual’s attention of state of coactive activity, the skill 

to consult all detailed activities involved (e.g. problem solving), and the ability to 

assess progress.  

  Reflection as part of metacognition demands that learners should reflect in action, 

that is, while doing a task and on action, that is, after completing a task.  

 Evaluation is a metacognitive skill that explains the efficiency at which the task 

was performed and whether the main goals had been achieved. 

 

3.9.1 Metacognitive skills for programmer 

Young and Fry (2012) carried out an investigation to find the relationship that exists 

between metacognitive knowledge and metacognitive regulation, which was measured at a 

local and global level. Findings revealed that it is crucial to measure metacognitive 



28 
 

awareness since it helps in predicting a learner’s academic success, learners can reflect on 

their learning skills and it indicates learners, which need further assistance. 

The enhancement of programming solutions uses a combination of precision and artistic 

dexterity to create the desired program or software product. The need of metacognition in 

the answering of programming problems is imperative (Safari & Meskini, 2015). To do 

well in programming, the usage of more metacognitive management strategies are better 

than lower-performing strategies.The more complicated a programming problem is, the 

more the demand for metacognitive control, purposeful reflection and positive feedback 

(Havenga, 2011).  Most programmers usually apply in-depth reading skills and meta-

comprehension to determine how clear and efficent the programming problem is (Ramesh, 

2014). In additon, programmers need to direct their problem-solving progress, decide on a 

programming approach to apply, correct programming errors, research about their 

programming solutions and test program output (Anandaraj & Ramesh, 2014). These steps 

for problem-solving (PS) demand metacognitive control such as monitoring the design, 

outlinning the solution, and enhancement of the program and testing and reflecting on the 

programming solution (Safari & Meskini (2015). Furthurmore one should develop their 

programming processes, predetermine their decisions, disperse their actions and inspect 

alternative solutions to enhance the quality of their programs. The programmer is 

responsible in developing metacognitive skills and applying these during problem solving 

and program development.    

 Moreover beginners face difficult due to lack of experience and lack of knowlege of the 

object-oriented (OO) approach (Ginat & Shmallo, 2013; Sajaniemi et al., 2008), it essential 

in this regard by applying more metacognitive thinking. Most researchers belief that the 

more complexity of a programming problem is, the bigger the need for metacognitive. 

Inasmuch as programming is complicated, it needs extra thinking skills that exceed just 

knowledge and codification.  Major problems focuseed on the product of programming 

mainly on computer programs, instead of process of programming.  This is proof from the 

experiences in class, as beginner usually start to program without having an overview of 

the problem and planning their solution.  The programming usually focuses on results in 

repetitive actions of debugging, changing of code and addressing of some error messages, 

if possible (Sajaniemi et al., 2007; Stevenson & Wood,  2017). 



29 
 

3.9.2 Metacognitive steps for problem solving  

Geiwitz (1994) defined metacognitive skills (MS) as one’s ability in monitoring and 

directing different operations of coactive skills in order to gain the higher success. In 

addition, the researcher defined a cognitive skill as the usage and manipulation of elements 

that enhance performance. Furthermore, he described problem solving as the generic 

cognitive skill. Also for problem solving (PS) to be a success, many researchers (Safari & 

Meskini, 2015; Erol & Kurt 2017; Geiwitz, 1994) have explained 10 metacognitive skills 

that lead to effective problem solving as follows: 

 Detection of a problem: Safari & Meskini (2015) pointed out that the ability to 

recognize a problem requires a special skill and is correlated with intelligence and 

creativity hence it varies among different people. For one to be able to detect a 

problem, the individual must be in a position to monitor any disparity between the 

present state and the stated goal and identify the problem once stated values are 

exceeded or not reached. Furthermore, the researcher pointed out that intelligent 

problem solvers, not only identify problems but they are also able to rank the 

problems from the least critical to the severe ones. 

 Representation of a problem: After experienced problem detectors have 

recognized a issue, they structure the problem as such, it that makes is solvable 

(Safari & Meskini, 2015) The problem can either be represented using flow charts 

or in any other form that makes it easier to understand and come up with a solution 

to remedy the problem. This skill is important as proper representation of the 

problem may affect its result at the end. 

 Choosine of a problem-solving method: There are many ways of killing a cat, so 

they say when it comes to problem solving (PS). Good problem solvers have a 

variety of methods they use to effectively solve problems. Special skills are 

required in selecting which solution best addresses the problem at hand. 

 Strategic application of problem solving methods: Effective problem solvers use 

different strategies in answering  problems effectively. They constantly monitor the 

changes in the problem to see if they have arrived at the desirable solution.  

 Interpretation of solution candidates: Effective problem solvers use evaluation 

skills in assessing if potential solutions have been fully achieved. Evaluation of all 



30 
 

possible solutions must be done before selecting the most suitable one that fully 

addresses the problem at hand. 

 Recognition of errors: The ability to spot errors is a skill. Good problem solvers 

are known to identify errors quick and more spontanoeously. It is crucial to guard 

against common areas that result from misapplied heuristics and cognitive biases. 

 Resource allocation: The ability to fully allocate resources is crucial in order to 

create the best environment for problem solving. Good problem solvers allocate 

resources wisely, for instance, when the nature of the problem requires memory as 

a resource then good problem solvers are able to determine how much time will be 

required to memorize the material and by so doing they are able to determine the 

duration. 

 Short monitoring: This refers to efficent time allocation and monitoring skills to 

see if the solution is aligned with the proposed schedule. Erol and Kurt(2017) 

pointed out that effective managers are known to use their time effectively and are 

good at managing their schedules. For maximum impact when dealing with 

complex problems, it is crucial to synchronize resources. 

 Social monitoring: This refers to problem solving (PS) in a social context whereby 

human resources are allocated in such a way that a social environment is created 

whereby individuals can interact as they solve problems. Different personalities 

should be taken into considerations before grouping people to avoid unnecessary 

disputes and understand the different goals to be achieved. Interpersonal relations 

are the most important when it comes to solving problems among individuals in 

groups. 

 Executive monitoring: Foe effective problem solving it is critical for executives to 

fully understand their position on the organizational structure. This includes their 

roles, relationship with subordinates, peers and higher authorities. It is crucial for 

executives to be able to have marketing skills and good knowledge of how the 

company operates. Such marketing skills develop over time and most executives 

never become fully accomplished at business development. 

 



31 
 

3.9.3 Metacognitive components for problem solving 

In the literature, many researchers (Safari & Meskini, 2015; Anandaraj & Ramesh, 2014; 

Sterrnberg, 1984) have described the various components of metacognition that are 

important when dealing with problem solving. The researchers point out the importance of 

organizing, sequencing and monitoring cognitive processes to achieve success. Also 

known as meta-components, these are high level effort used in creating, observing and 

calculating one’s ability to solve problems. The researchers came up with the following 

seven components listed below and Geiwitz (1994) also explained in Figure 3.7 below: 

 Decide the problem 

 Select the lower-order components of solving the problem 

 Select information representations 

 Select a strategy for combining lower-order components 

 Decide the allocation of resources 

 Monitor the result 

 Observe Result  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



32 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 3.7 Among the metacognitive skills involved in planning, effective and efficient 

allocation of resources is one that seems to be required at several points in the problem 

solving process such as Caused problems are the type for which the methods are 

appropriate, that is, something is causing a problem for a business, and the identification of 

the cause is accomplished by comparing similar situations with and without problems. 

Problems with multiple solutions include the problems faced by mission planners, who use 

the general method of generating several options. Plan strategy for problem are. Allocate 

resources. 

Safari and Meskini (2015) explained four metacognitive skills that are essential in problem  

solving. Firstly, the problem must be identified and defined. Secondly, the problem must 

be represented in such a way that it can be understood clearly. Thirdly, a plan should be 

put in place on how the problem will be tackled and lastly, performance evaluation must be 

Represent 

problem 

Allocate 

resources 

Outlining strategy for problem 

solving 

Determination of Technique and 

approach 

Gather 

Information 

Analyize the nature of 

the problem 

Source of problems 

Method: determine 

cause 

Eradicate effectiveness of 

cause 

Method: Develop 

options 

Determin

g various  

 option 

Allocate potential 

to options 

Problem with 

many solutions 

Procedural knowledge: 

apply method 

Select problem solving 

method 

Declarative knowledge: 

apply method 

Figure 3.7: Stages in metacognitive skills for solving programming problems  

                                           (Geiwitz, 1994) 
 



33 
 

done to understand how the solution will be reached. Below in Table 3.1 are the 

metacognitive components as described by the researchers: 

 

Table 3.1: Showing different metacognitive components and implications in problem     

solving (Safari & Meskini, 2015) 

Metacognitive components Implications for problem solving 

 

Planning phase: Think 

deeply of all possible 

strategies (planning) 

1. Ask yourself if you have understood what is needed in 

solving the problem? 

2. Disintegration (break down the problem into different 

sections for manageability) 

3. Separate the different sections  

4. Solve the problem components separately 

 

Accomplish a strategy 

(control and monitoring) 

1. Ask yourself if you have determined the patterns and 

paths for solving the problem? 

2. Ask yourself if you are able to write the possible 

solutions to get the correct solution? 

3. Do you have enough time to solve the problem? 

 

 

Revise and regulate 

1. Ask yourself if you are in the right path? 

2. Are you approaching the goal? 

3. Are you still using the strategies you selected? 

4. Do you need to review the problem again and use another 

strategy? 

5. Can you solve the problem using a different method? 

6. Is the solution correct? 

 

 

A model was developed by Geiwitz (1994) that illustrate the relationship that exists 

between different metacognitive skills involved in problem solving as illustrated in Figure 

3.8 below. The model comprises of different essential steps from: 

 problem detection 

 representing the problem 

 strategizing the best solution 

 applying good methods 

 implementing solutions 

 monitoring the solution  

 evaluating the solution to see if the anticipated result has been achieve 



34 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: A model of metacognitive skills and how to effectively solve problems  

  (Geiwitz, 1994) 

 

Figure 3.8 tries to align the metacognitive skills relevant to monitoring and controlling the 

technical process of problem solving (PS). In its present evolution, the conceptual model 

of technical skills identifies seven major capabilities as shown above that focuses on skills 

that facilitate the technical activities in problem solving (PS). The technical aspects of 

problem solving comprise the purely formal operations designed to identify, represent, 

and solve the problem. In addition to the technical aspects, there are temporal, social, and 

organizational aspects of the problem solving (PS) process. 

 

 

 

  

 

 

 

 

Detect 

Problem 

Identify the 

problem 

Describe the 

problem 

Solve the 

problem 

Represent 

the problem 

Plan strategy for 

problem solving 

Apply strategy 

method 

Implement 

solution 

Implement, monitor and 

evaluate the solution 

Evaluate 

solution 

Monitor 

solution 

Monitors 

 

Controls 

 



35 
 

CHAPTER 4 

RESEARCH METHODOLOGY 

 

This chapter explains the research model, participants, sample selection, data collection 

and tools, data analysis and the research procedure. Reliability tests are also shown in this 

chapter for the survey tool used.  

  

4.1 Research Model 

The main aim of this study is to investigate the effect of metacognitive skills towards 

problem solving (PS) in programming learning focusing on four Cyprus universities. 

Figure 4.1 illustrates the research model used in this study. The survey consists of 

independent variables: Metacognitive skills (MS) for computer programming. The 

dependent variables were problem solving skills. The research questions of the study have 

been taken from the figurative view of the research model illustrated below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Research model of the study 

 

 

  

Programming 

learning 

Know 

programming 

language 

Demographic 

information 

 

 Difficulties 
on   

programming  
language 

 

Metacognitive 

skills for 

computer 

programming 

 

Problem 

solving skills 

 

planning 

Monitoring 

Design 

System 
analysis 

Coding Testing 

Regulation 



37 
 

In the survey method, the questionnaire was the best way to acquire data from a large 

group of respondents. The Researcher distributed 300 questionnaires on four universities 

affiliated with north Cyprus. In addition, the random sampling method was used for data 

collection on undergraduate, masters and PhD students of Computer Information System 

(CIS), Information Technology (IT), Computer Engineering (CE), and Management 

Information System (MIS). 

 
4.2 Participants 

The research targeted students currently enrolled in undergraduate, masters and 

postgraduate programs from the four universities in North part of Cyprus namely Near East 

University (NEU), Eastern Mediterranean University (EMU) Cyprus International 

University (CIU) and European University of Lefke (EUL). A total of 300 participants 

were chosen using the purposive sampling method. Ritchie  et al. (2013) in this method, 

the researcher picked out a set of people among population under consideration based on 

research, which was made up of 110 undergraduate and 190 postgraduate students 

(Masters and PhD). These were taken from different departments namely Computer 

Information System, Information Technology, Management Information System, 

Computer Engineering whose students taken a program course. Using Raosoft sample size 

calculator, the populatıon size from four departments was 1000 and the confedence level 

was 95% because the survey questions was more than 20. The Raosoft sample size 

calculator gave the minimum recommended size of the survey to be 278. For this Survey 

the targeted students was 300 which is approximable to the Raosoft calculator 

recommended size.   

Table 4.1: Important about chosen universities  

University name Frequency % 

NEU 100 34 

EMU 70 23 

CIU 70 23 

EUL 60 20 

Total  300 100 

 



38 
 

Higher percentages were from NEU, EMU and CIU with values of 34%, 23% and 23% 

respectively. EUL was the lowest with 20% of undergraduate students. Among the 

Students who joined the study from both faculties, 56.84% were males and 43.16% were 

females. The characteristics of the respondents are presented in Table 4.2. Also as 

illustrated in the table below, 27% of the students were aged from 18-20, 33% from 21-24, 

and 40% were 25years and above (Table 4.2). 

 

 

Table 4.2: Important demographic data of participants  

Characteristic Frequency % 

Gender   

Male 175 58% 

Female 125 42% 

Age 
  

18-20 80 27% 

21-24 100 33% 

25+ 120 40% 

Degree 
  

Undergraduate  110             37% 

Postgraduate (Masters and PhD)      190                 63% 

Faculty 
  

Faculty of Engineering 167  56% 

Faculty of Economics and 

Administrative Sciences 

133   44% 

 

 

 

 

 

 



39 
 

 

4.3 Data Collection Tools  

The questionnaire was in English language and composed of three parts as illustrated in 

Figure 4.2. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Structure of the questionnaire 

 

Section I: Demographic Information: Requested the participant information such as 

gender, age group, level of study, university name, native language, department, 

operating system and programming languages that the students know and their level of 

programming skills. 

Section II: Metacognitive skills for computer programming: The aim of this section 

was to gain an insight of the participants such as knowing the effect of metacognitive 

skills for computer programming. The questionnaire was adapted from Ellis and Stcyn 

(2003). This section comprised of three dimensions namely “Planning”, “Monitoring” 

and  “Regulation” and it had 9 items in total.  In “planning”, 3 items were assigned to it, 

whose goal was to search for the analysis of a programming problem, to identify the 

objects, methods and the application of a strategy necessary to solving the problem and 

Section I: Demographic 

information 

 Demographic  information:  9 items   

 

  

  Planning: 3 items   

  Monitoring: 3 items 

  Regulation: 3 items       

   

   

Section II: Metacognitive 

skills for computer 

 

Section III: Problem 

solving skills 

 

   System analysis: 7 items   

   Design:  10 items   

 Coding:  9 items   

 Testing: 9 items   



40 
 

achieving the goal. In “Monitoring”, 3 items were assigned to it, whose goal was 

discover how the students used observing strategies in order to control their own 

programming activities. In “Regulation”, 3 items were assigned to addresses it. This 

was to determine whether students view regulation of the programming process as 

crucial. In this study, the Cronbach’s Alpha for the whole scale was calculated   0.80. 

Therefore proving that our scale is indeed reliable (Sipahi, Turtkoru & Cinko, 2010). 

With scales  used in which participants were asked to assign a scale measurement based 

on the 4 Likert scale ranked with Always (1 point), Often (2 points), Seldom (3 points), 

Never (4 points).  

    

Section III: Problem solving skills: The aim of this section was to concentrate 

thoroughly on problem solving techniques used in programming and recommend an 

integrated methodology that makes the combination of problem solving and 

programming. The questionnaire was developed by my thesis supervisor based on 

literature and used in the thesis. The section comprised of four dimensions namely; 

system analysis, design, coding, and testing. This had 32 items in total.  In “System 

Analysis”, 7 items α=0.79 were assigned to it, whose goal was to build a full 

understanding of the problem. In “Design”, 10 items α=0.84  were assigned to it and the 

aim was to deduce a programming problem, using former designs (diagrams and cases), 

make analysis, comparisons of the solutions, categorize, combine, modify a design, 

interpret and evaluate the proposed design. In “Coding”, 9 items α=0.85  were assigned 

to it whose aim was to have knowledge and interpret the design, using former solutions 

in a new program, analyze and make comparisons of the outcomes, categorize, 

combine, design and make the program better, interpret and evaluate the outcome. In 

“Testing”, 6 items α=0.85 were assigned to it, whose goal was to understand and 

interpret a solution, analyze and compare solutions, construe and assess the thinking 

and problem solving. According to the findings, the realibility coefficient and the whole 

scale of the sub dimensions are above 0.70 and this clearly shows that the scale is very 

reliable (Sipahi, Yurttkoru & Cinko, 2010).  The Cronbach’s Alpha for these 

dimensions in the scale were calculated 0.94  with ordinal scales  used in which 

participants were asked to assign a scale measurement based on the 5 Likert scale 

ranked with “Strongly Disagree” (1point), “Disagree” (2 point), “Neutral” (3 point), 

“Agree” (4 points), “Strongly Agree” (5 points).   



41 
 

Table 4.3: Problem solving skills 

Dimension  Items Cronbach’s alpha 

System Analysis 7 0.79 

Design 10 0.84 

Coding 9 0.85 

Testing 6 0.85 

Total  32 0.94 

 

4.4 Data Analysis  

The questionnaires were used to collect the data. The data was then analyzed and 

interpreted using SPSS version 20.0. Descriptive analysis and Pearson correlation 

analysis were used during the analysis process. 

The following table can be used for a better understanding of the knowledge level of the 

programming language that the students possess. 

 

Table 4.4: Score boundaries of the 5 Likert scale of level of knowledge of programming 

                    Language 

Value Limit Likert scale 

1 1.00-1.79 Very good 

2 1.80-2.59 Above Average 

3 2.60-3.39 Average 

4 3.40-4.19 Little 

5 4.20-5.00 Don’t know 

 

 

The following table illustrates the knowledge level of students about topics in a 

programming language. 

 

 

 

 

 



42 
 

Table 4.5: Score boundaries of the 5 Likert scale of level of difficulties faced by student   

Value Limits Likert scale 

1 1.00-1.79 Very easy 

2 1.80-2.59 Easy 

3 2.60-3.39 Moderate 

4 3.40-4.19 Difficult 

5 4.20-5.00 Very Difficult 

 

 

Below is a table that shows the knowledge level of students in problem-solving skills. 

 

 

Table 4.6: Score boundaries of the 5 Likert scale of level of problem solving skills 

Value Limits Likert scale 

1 1.00-1.79 Strongly agree 

2 1.80-2.59 Agree 

3 2.60-3.39 Neutral 

4 3.40-4.19 Disagree 

5 4.20-5.00 Strongly Disagree 

 

 

4.5 Procedure 

Research procedure cycle includes the related literature and studies done by the 

researchers. This will also present the theoretical and conceptual framework and the lastly 

related questionaries’ of the study. Item pool: The items of questionnaires were formed by 

looking at a set of survey lists dealt with in the previous studies and extracted a large 

number of questionnaire items that were related to the study. Reliability test determined 

how closely related a set of items are as a group using that Cronbach’s alpha.  A pilot study 

was conducted to check the feasibility of the study and to do necessary modifications of 

questions, validity, and reliability of the questionnaire. IT expert view determined the 

language that was used and the content. For data analysis and interpretation, Descriptive 

Statistics and Pearson Correlation were used and also for report writing. 



43 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Research procedure 

 

 

4.5.1 Ethical  Considerations 
 
In order to carry out the research from four universities in North Cyprus, the Ethical 

Committee for Scientific Research requested that some ethical considerations should not 

be exceeded in this research. These include the confidentiality of information for 

participants   as well as the non-representation of the preliminary results of the data in a 

biased manner. In addition, the data was to be collected specifically from university 

students in computer science departments who study programming languages. Since the 

survey was for computer science students, students who opted to participate are the ones 

whose data will be analysed. Prior to the survey, the researcher informed all participates 

the nature of the survey and that it was voluntary and responses were confidential and were 

to be used for educational purposes only. A sample of the ethical letter is shown in 

appendix 2. 

3. 1. Literature Review 

 Theoretical  

 Framework 

 Related 

Questionaries'  

 

2. 2. IT Expert Panel 

 Evaluation of 

theoretical 

framework 

 Suggestion of items 

 

1. 3.  Item Pool 

 

4. 6. Expert View 

 Language 

 Content 

 

9. 8.  Data Analysis 

 Descriptive Statistics 

 Pearson Correlation  

 

 

5. 5. Pilot Study 

 Checking the 

feasibility of the 

questionnaire 

 

8. 9. Data 

Interpretation and 

reporting 

 

7. 7.  Data Collection 

 Paper based 

 Ethical 

Considerations 

 

6. 4. Reliability Test 

 Cronbach Alpha 

 



44 
 

4.6 Research Schedule 
 
This study started in November 2016 and was completed in October 2017. Figure 4.5 gives 

a detailed description of the tasks and its duration during the course of the research. 

Figure 4.6 shows the Gantt chart for the thesis. All expenses incurred during the study 

were financed by the researcher, hence they have been excluded in the schedule on Figure 

4.5. 

 

Figure 4.4: Research schedule of the study  

 

153d 

 



45 
 

 

Figure 4.5: Gantt chart  for the study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



46 
 

     CHAPTER 5 

RESULTS AND DISCUSSION 

This chapter reflects on the results of the research in directed towards the original aims and 

questions of this research. 

5.1 Programming Language Knowledge Level  of Students  

In order to understand the opinions of the students about knowing a programming 

language, descriptive analysis was employed. For script-based programming language, the 

knowledge level of students seems to be “little level” know and the average score is (M = 

3.81; SD = 1.07). The Knowledge level of students on Object orientated programming 

language seems to be “average level” know and the average score for object orientated 

programming language is (M = 2.77; SD = 1.10). For the script-based programming 

language Ruby, it seems students do not have the knowledge about this programing 

language and for Pear it was “little level” know with; (M=4.34, SD= 0.95, M= 4.00, 

SD=1.07) resectively. For object orientated programming language .NET it was “little 

level” know with (M=3.50, SD= 1.19). Also for web-based programming language ASP it 

was “little level” know and PHP was “average level”  know with (M=3.53, SD= 1.18, 

M=3.04, SD= 1.13) respectively. 

 

 

 

 

 

 

 

 

 

 



47 
 

Table 5.1: Mean and standard deviation programming language that the students 

         Know 

OBJECT ORIENTATED Mean SD 

C++ 2.18 1.01 

C# 2.51 1.06 

Visual basic  2.85 1.14 

Java  2.82 1.08 

.NET 3.50 1.19 

Total average score of  2.77 1.10 

WEB BASED  

ASP 3.53 1.18 

HTML 2.63 1.11 

Java Script  2.90 1.09 

PHP 3.04 1.13 

Total average score of 3.03 1.13 

SCRIPT BASED 

C Language  2.96 1.22 

Pascal 3.46 1.17 

Pear 4.00 1.07 

Fortran 3.97 1.00 

Python 3.93 1.03 

Delphi 3.98 1.03 

Ruby 4.34 0.95 

Total average score  3.81 1.07 

 

 

5.2 Difficulties of Students on Learning Programming Language 

Descriptive analysis was employed in order to understand the opinions of the students’ level 

of learning and their difficulties in different topics of programming languages. We have to 

bear in mind that the responses are subjective, opinions of the students who answered the 

questions in the survey. The students might think that they understand the subjects of 

programming languages while in actual fact they might be difficult for them to understand. 



48 
 

Memory allocation operations seem to be on “difficult level” to be learnt by students, the 

results show that the total mean and standard deviation values for both items is (M = 4.00; 

SD = 0.02) which gave the highest mean value out of the total average score of all 

dimensions. The level for these dimensions are convergent and both are almost the overall 

average. These results can be attributed to the fact that as students’ progress in learning the 

subjects of programming languages, they face more challenges which require a greater 

understanding of the program. Similar results were also found in a study conducted by 

(Milne & Rowe, 2011). Most difficult topics are those related to Memory. Basic operations 

seem to be on  “Very easy level” for students to learn. The results show that the mean and 

standard deviation values for all 5 items is (M = 1.58; SD = 0.84) which gave the least mean 

value out of the total average score of all dimensions since understanding them is not related 

to understanding the recognized ”core” of programming. Basic operations seem to be very 

easy to learn from other dimensions, the results show that the average for all 5 items ranges 

from (1.25-1.91). Similar results were also found in a study conducted by (Milne & Rowe, 

2011) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 
 

Table 5.2: Mean and standard deviation for items 

Basic operations 

 

 

 

Mean SD 

1. Variable/function declarations 1.25 0.64 
2. Mathematical operators and precedence 1.40 0.74 
3. Conditional operations (if, else, etc.)            1.57 0.83 

4. Looping operations (for, while, etc.) 1.91 1.02 

5. Input/output and file handling                       1.79 0.96 

Total Average score of 1-5 1.58 0.84 

MORE COMPLEX OPERATIONS 

6. Arrays                                                           1.76 0.92 
7. Other data structures (trees, linked-lists)    2.21 1.06 

8. String handling 2.64 1.20 

9. Structures 2.69 1.21 

10. Pointers 2.86 1.26 

11. Recursion 2.91 1.16 

Total Average score of 15-17 2.51 1.14 

OBJECT ORIENTED OPERATIONS 

12.  Classes and objects 2.90 1.16 

13.  Casting 3.07 1.18 

14.  Inheritance 3.15 1.07 

15. Encapsulation 3.46 1.10 

16. Polymorphism 3.57 1.08 

17. Passing by reference/passing by value              3.66 1.10 

18. Function overloading/default arguments 3.51 1.04 

19. Function over-riding (in inheritance) 3.69 1.03 
20. Constructors/destructors  3.78 1.01 

21. Templates 3.84 1.03 

22. Copy constructors 3.83 1.05 

23. Operator overloading 3.85 1.05 

24. Virtual functions 3.80 1.02 

Total Average score  3.55 1.07 

MEMORY ALLOCATION OPERATIONS 

25. Dynamic allocation of memory (with new) 3.97 1.02 

26. Dynamic allocation of memory (with mallow)     4.03 1.01 

Total Average score 
 

4.00 1.02 

 

 

 

 

 



50 
 

5.3 Metacognitive Skills of Students for Computer Programming 

In order to understand the effect of metacognitive skills towards problem solving in 

programming learning based on all dimensions, descriptive analysis was employed. 

From the result shown in Table 5.3, the total mean and standard deviation values for all 

9 items were (M = 1.24; SD= 0.49).  These results show that students have higher levels 

of metacognitive thinking by virtue of the nature of their specialization that needs 

planning, monitoring, and regulation. The highest opinion of students was obtained from 

item 6:  “When I program, I trace the program’s implementation with a trace table” 

with (M = 1.33; SD = 0.62)”  which is probably because the students who study 

programming languages have mathematical skills and they use them to easily track 

programs. The lowest opinion of students was obtained from item 1 “I believe in 

planning, I always plan the results of my program  to achieve the desired results (M = 

1.17; SD = 0.45)” which is probably because of the students’ lack of understanding on 

how the programs work and the program code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



51 
 

Table 5.3: Mean and standard deviation for metacognitive skills of students for  

                        computer programming questionnaire 

Planning  Mean SD 

1. I believe in planning, I always plan the results of my          

program to attain the desired results. 

1.17 0.45 

2. I always write down my plans to direct how I think when 

programming. 

1.31 0.52 

3. I always take time to think deeply the steps I should take 

to solve a new programming problem. 

1.31 0.50 

M Monitoring   

4. During programming, I always pause in between coding 

sessions to check what I have already programmed. 

1.19 0.42 

5. I always ask myself questions just to ensure that I 

understand a challenging programming statement or 

question. 

1.25 0.49 

6. When I program, I trace the program’s implementation 

with a trace table. 

1.33 0.62 

Regulation   

7. Even when the program is challenging to write, I go back 

and adjust it until the problem is solved effectively. 

1.20 0.47 

8. I take the programming reports that were done 

erroneously and change them until I have solved the 

problem well. 

1.22 0.46 

9. I read again the report of a challenging problem to ensure 

that I understood it in a proper way and that it is 

programmed correctly. 

1.22 0.50 

Total 1.24 0.49 

 
 

5.3.1 Planning  

In order to understand the effect of metacognitive skills towards problem solving in 

programming learning based on planning, descriptive analysis was employed. According to 

the results, the students gave very clear opinions based on their perspectives and practices 

in terms of metacognitive skills for computer programming over planning. From the results 

shown in Table 5.4, the total mean and standard deviation values for all 3 items are (M = 

1.26; SD = .49). This study showed a highness amongst students in the planning skills 

meaning that the student had to plan from time to time in a comprehensive manner, in 

accordance with the circumstances and conditions during problem solving. In this stage the 

students always wrote down their plans as guidelines when programming. This finding was 

in line with the results of Al-Jarrah and Obeida (2011) in which they found high levels of 



52 
 

planning among university students. Nonetheless, these results differed with those of the 

study (Al-Saleem el al,. 2012) which discovered that the levels of metacognitive thinking 

skills were at the moderate level in three dimensions. The highest  opinion of students were 

obtained from items 2  and 3 “I always write down strategies to direct my thinking when 

programming, I always take time to think deeply the steps I should take to solve a new 

programming problem with (M= 1.31; SD=.52), (M = 1.31; SD = . 50)” respectively. The 

lowest opinion of students was calculated from item 1 “I believe in planning, I always plan 

the solution of my program to attain the desired results (M = 1.17; SD = .45)”. 

 

Table 5.4: Mean and standard deviations for every item of the planning dimension of the   

                   questionnaire 

Planning  Mean SD 

1. I believe in planning, I always plan the solution of my 

program to achieve the desired results. 

1.17 0.45 

2. I always write down plans to direct my thinking when 

programming. 

1.31 0.52 

3. I always take time to think deeply the steps I should take 

to solve a new programming problem. 

1.31 0.50 

Total  1.26 0.49 

 

 

5.3.2 Monitoring  

In order to understand the effect of metacognitive skills towards problem solving in 

programming learning based on monitoring, descriptive analysis was employed. According 

to the results of “Monitoring”, the students gave very clear opinions based on their 

perspectives on their practice in terms of Metacognitive skills for computer programming 

over “Monitoring”. From the results shown in Table 5.5, the total mean and standard 

deviation values for all 3 items are (M = 1.26; SD = 0.51). This means that the level of 

monitoring skill in the study sample had the same planning skill value. The highest opinion 

of students were calculated from item 6 “When I program, I trace the program’s 

implementation with a trace table (M = 1.33; SD = 0.62)”. The lowest opinion of students 

were calculated from item 4 “During programming, I always pause in between coding 

sessions to check what I have already programmed (M=1.19; SD=0.42)”.  

 

 

 

 



53 
 

Table 5.5: Mean and standard deviation for every item of monitoring dimension of the   

                   questionnaire 

M Monitoring Mean SD 

4. During programming, I always pause in between 

coding sessions to check what I have already 

programmed. 

1.19 0.42 

5. I always ask myself questions to ensure that I know a 

difficult programming statement or question. 

1.25 0.49 

6. When I program, I look at the program’s execution 

with a trace table. 

1.33 0.62 

Total  1.26 0.51 

 

 

5.3.3 Regulation  

In order to understand the effect of metacognitive skills towards problem solving in 

programming learning based on regulation, descriptive analysis was employed. According 

to the results of regulation, the students gave very clear opinions based on their 

perspectives on their practices in terms of metacognitive skills for computer programming 

over-regulation. From the results shown in Table 5.6, The total mean and standard 

deviation values for all 3 items are (M = 1.21; SD = .48). This study showed a weakness 

among students in the skills of regulation.  These results do not go in accordance with what 

has been obtained by (Aljaberi & Gheith, 2015) which reflects that there are weaknesses 

among learners in the regulation skills.  The highest score on the opinion of students were 

calculated from items 8 and 9   “I take the programming reports that have mistakes in them 

and change them until I have solved the problem in the correct way” and “ I read again 

the description of a difficult problem to make sure that I fully understood it correctly and 

that it is programmed in the proper way (M=1.22; SD=.47) , (M = 1.22; SD = 0.46)” 

respectively.  The lowest score on the opinion of students was calculated from item 7  

“Even when the program is not easy to write, I go back and change it until the problem is 

solved properly (M = 1.20; SD = .47)”. 

 

 

 

 

 

 

 

 



54 
 

Table 5.6: Mean and standard deviation for every item of regulation dimension of the 

                     questionnaire 

M Regulation Mean SD 

7. Even when the program is not easy to write, I go back 

and change it until the problem is solved properly. 

1.20 0.47 

8. I take the programming statements that are done 

erroneously and change them until I have fixed the 

problem successfully. 

1.22 0.47 

9. I read again the description of a challenging problem to 

ensure that I understood it correctly and that it is 

programmed in a correct way. 

1.22 0.46 

Total  1.21 0.48 

 

 

5.4 Problem Solving  Skills of Students for Computer Programming 

In order to understand the Problem-solving aids of students when learning computer 

programming language on all dimensions, descriptive analysis was employed. From the 

results shown in Table 5.7, the total mean and standard deviation values for all 32 items 

are (M = 4.08; SD= 0.85). The highest opinion of students were obtained from item 22 

“It is difficult to transform a textual problem into a mathematical formula that solves a 

given problem (M = 4.19; SD = 0.82)” which is probably because most students have 

difficulties with mathematical problems solving. The lowest opinion of students were 

obtained from item 1 “It is difficult to understand a program without first deriving its 

algorithm (M = 3.62; SD = 1.02)” which is probably because many students make use 

of algorithms during programming. 

 

 

 

 

 

 

 

 

 

 

 

 



55 
 

Table 5.7: Mean and standard deviation for  problem solving  skills of students for 

                  computer programming of the  questionnaire 

M System analysis Mean SD 

1. It is difficult to understand a program without first deriving its 

algorithm. 

3.62 1.02 

2. It is difficult to understand a given programming problem 3.85 .89 

3. It is difficult to interpret the problem. 3.98 .88 

4. It is difficult to understand what is required for the program. 3.98 .85 

5. It is difficult to write an algorithm for the problem. 4.04 .88 

6. It is difficult to understand what is required by the programming 

problem. 

4.07 .84 

7. It is difficult to understand the logic of a large program. 3.88 .94 

M Design M SD 

8. It is difficult to create suitable database.  4.04 .85 

9. It is difficult to construct software models such as use-case 

diagrams. 

4.01 .95 

10. It is difficult to identify the important steps when   solving a 

problem. 

4.03 .89 

11. It is difficult to identify possible methods. 4.09 .87 

12. It is difficult to understand the logic of an algorithm. 4.12 .81 

13. It is difficult to draw the flow chart of given programming task. 4.13 .85 

14. It is difficult to write pseudocode of given programming task. 4.08 .83 

15. It is difficult to model a software. 4.09 .88 

16. It is difficult to do software documentation. 4.00 .86 

17. It is difficult to simulate complex software. 4.07 .87 

M   Coding  M SD 

18. It is difficult to connect a database to a programming language  4.10 .91 

19. It is difficult to divide functionality into procedures. 4.11 .93 

20. It is difficult to learn the programming language syntax. 4.05 .89 

21. It is difficult to remember programming language syntax. 4.18 .87 

22. It is difficult to develop a program that solves a given task. 4.17 .85 

23. It is difficult to apply the correct logic. 4.15 .88 

24. It is difficult to understand the concepts of programming 

structures. 

4.15 .82 

25. It is difficult to transform a textual problem into a mathematical 

formula that solves a given problem. 

4.19 .82 

26. It is difficult to make a combination of the necessary 

programming statements correctly in a program. 

4.17 .83 

M  Testing  M SD 

27. It is difficult to test programs especially detecting errors in the 

code. 

4.06 .92 

28. It is difficult to find bugs in my own programs. 4.25 .85 

29. It is difficult to test the developed program using test data. 4.23 .83 

30. It is difficult to write programs with no errors. 4.15 .87 

31. It is difficult to test programs using functional test methods.  4.22 .85 

32. It is difficult to test programs syntactically. 4.26 .82 

Total  4.08 0.85 

  



56 
 

5.4.1 System Analysis  

In order to understand the students’ skills on problem-solving computer programming 

languages based on “system analysis”, descriptive analysis was employed. According to 

the results of system analysis, the students gave very clear opinions based on their 

perspectives on their practices in terms of metacognitive skills for computer programming 

over system analysis. From the results shown in Table 5.8, the total mean and standard 

deviation values for all 9 items are (M = 3.92; SD = 0.9). The highest score on the opinion 

of students was obtained from item 6 “It is difficult to understand what is required by the 

programming problem (M = 4.07; SD = 0.84)” This shows that students were having 

problems in understanding what was required by the programming problem. The lowest 

score on the opinion of students was calculated from item 1 “It is difficult to understand a 

program without first deriving its algorithm (M = 3.62; SD = 1.02)”   

Table 5.8: Mean and standard deviation for every item of system analysis dimension of the 

                  questionnaire 
 

M System analysis Mean SD 

1. It is difficult to understand a program without first deriving its 

algorithm. 

3.62 1.02 

2. It is difficult to understand a given programming problem 3.85 .89 

3. It is difficult to interpret the problem. 3.98 .88 

4. It is difficult to understand what is required for the program. 3.98 .85 

5. It is difficult to write an algorithm for the problem. 4.04 .88 

6. It is difficult to understand what is required by the 

programming problem. 

4.07 .84 

7. It is difficult to understand the logic of a large program. 3.88 .94 

Total  3.92 0.9 

 
 

5.4.2 Design  

In order to understand the students’ skills on solving the problems related to computer 

programming languages based on design, descriptive analysis was employed. According to 

the results of “Design”, the students gave very clear opinions based on their perspectives 

on their practices in terms of metacognitive skills for computer programming over 

“Design”. From the results shown in Table 5.9, the total mean and standard deviation 

values for all 10 items are (M = 4.07; SD = .87). The highest score on the opinion of 

students were calculated from item 13 “It is difficult to draw the flowchart of given 

programming task (M = 4.13; SD = .85)” that means that the students “disagree difficult 

level” means that they were having problems while drawing the flowchart,  and the lowest 



57 
 

opinion of students were calculated via items 16 “It is difficult to do software 

documentation (M = 4.00; SD = .86)” that means students “disagree level ” is that that 

they were having problems while doing  software documentation. 

 

Table 5.9: Mean and standard deviation for each items of design dimension of the  

                         questionnaire 

M Design Mean SD 

8. It is difficult to create suitable database.  4.04 .85 

9. It is difficult to construct software models such as use-

case diagrams. 

4.01 .95 

10. It is difficult to identify the important steps when solving 

a problem. 

4.03 .89 

11. It is difficult to identify possible methods. 4.09 .87 

12. It is difficult to understand the logic of an algorithm. 4.12 .81 

13. It is difficult to draw the flow chart of given    

programming task. 

4.13 .85 

14. It is difficult to write pseudocode of given programming 

task. 

4.08 .83 

15. It is difficult to model a software. 4.09 .88 

16. It is difficult to do software documentation. 4.00 .86 

17. It is difficult to simulate complex software. 4.07 .87 

Total  4.07 .87 

 

 

5.4.3 Coding  

In order to understand the students’ skills on problem-solving computer programming 

languages based on coding, descriptive analysis was employed. According to the result of 

“Coding”, the students gave very clear opinions based on their perspectives on what they 

practice in terms of metacognitive skills for computer programming over “Coding”. From 

the result shown in Table 5.10, the total mean and standard deviation values for all 9 items 

are (M = 4.14; SD = .87). The highest  opinion of students were calculated via items 25 “It 

is difficult to transform a textual problem into a mathematical formula that solves a given 

problem (M = 4.19; SD = .82)” that means students “agree level ”  means that they were 

having problems while transforming a textual problem into a mathematical formula that 

solves a given problem, and the lowest opinion of students were calculated via items 20 “It 

is difficult to learn the programming language syntax (M = 4.05; SD = .89)” that means 

students “disagree level ” means that they were having problems while learning the 

programming language syntax. 



58 
 

Table 5.10: Mean and standard deviation for each items of coding dimension of the 

                        questionnaire 
 

M Coding  Mean SD 

18. It is difficult to connect a database to a programming 

language  

4.10 .91 

19. It is difficult to divide functionality into procedures. 4.11 .93 

20. It is difficult to learn the programming language syntax. 4.05 .89 

21. It is difficult to remember programming language syntax. 4.18 .87 

22. It is difficult to develop a program that solves a given task. 4.17 .85 

23. It is difficult to apply the correct logic. 4.15 .88 

24. It is difficult to understand the concepts of programming 

structures. 

4.15 .82 

25. It is difficult to transform a textual problem into a 

mathematical formula that solves a given problem. 

4.19 .82 

26. It is difficult to make a combination of the necessary 

programming statements correctly in a program. 

4.17 .83 

Total  4.14 .87 

 

 

5.4.4 Testing  

In order to understand the students’ skills on problem solving’ computer programming 

languages based on testing, descriptive analysis was employed. According to the result of 

“Testing”, the students gave very clear opinions based on their perspectives on what the 

practices in terms of metacognitive skills for computer programming over “Testing ” were. 

From the result shown in Table 5.11, the total mean and standard deviation values for all 9 

items are (M = 4.20; SD = .86).  The highest  opinion of students were calculated via items 

32 “It is difficult to test programs syntactically (M = 4.26; SD = .82)” that means students 

“Strongly Disagree Level”  means that they were having problems while testing programs 

syntactically, and the lowest  opinion of students were calculated via items 27 “It is 

difficult to test programs especially detecting errors in the code (M = 4.06; SD = .92)”   

that means students “Disagree level” means  that they were having problems while testing  

programs especially detecting errors in the code. 

 

 

 

 

 

 

 

 



59 
 

Table 5.11: Mean and standard deviation for each items of testing dimension of the 

                         questionnaire 

M Testing  Mean SD 

27. It is difficult to test programs especially detecting errors in 

the code. 

4.06 .92 

28. It is difficult to find bugs in my own programs. 4.25 .85 

29. It is difficult to test the developed program using test data. 4.23 .83 

30. It is difficult to write programs with no errors. 4.15 .87 

31. It is difficult to test programs using functional test methods.  4.22 .85 

32. It is difficult to test programs syntactically. 4.26 .82 

Total  4.20 .86 

 

 

5.5 Relationship between Sub-Dimensions of Metacognitive and Problem Solving 

Skills 

For a better understanding of the relationship between sub-dimensions of metacognitive 

skills and problem solving skills, Pearson correlation analysis was also employed. As 

indicated in Table 5.12, in this study there is significant negative relationship between 

planning dimension and problem solving skills. In addition, there is significant negative 

relationship between monitoring dimension and problem solving skills. This therefore also 

indicated that there is significant negative relationship between regulation dimension and 

problem solving skills. For planning and problem solving skills, r = - 0.260**, p = .000, for 

monitoring and problem solving skills, r = -0.265**, p = .000 and for regulation and 

problem solving skills r = -0.262, p = .000. A scatter plot below summarizes this finding: 

 



60 
 

 
 

Figure 5.1: Scatter Plot between planning dimensions and problem solving 

                              skills 

 

There exists a weak linear negative correlation between planning dimensions and 

problem solving skills.  

 

 

 
Figure 5.2: Scatter Plot between monitoring dimensions and problem solving  

                      skills 



61 
 

 

There exists a weak linear negative correlation between monitoring dimensions and 

problem solving skills.  

 

 
 

Figure 5.3: Scatter Plot between regulation dimensions and problem solving 

                        skills 

 

There exists a weak linear negative correlation between regulation dimensions and 

problem solving skills.  

 

 

 

 

 

 

 

 

 



62 
 

Table 5.12: Relationship between sub-dimensions of metacognitive skills and problem  
                       solving skills 

 
Correlation 

Sub-Dimensions Statement  Problem Solving Skills 

Planning Person correlation  -.260
**

 

Sig. (2-tailed) 0.000 

N 300 

Monitoring  Person correlation -.265
**

 

Sig. (2-tailed) 0.000 

N 300 

Regulation Person correlation -.262
**

 

Sig. (2-tailed) 0.000 

N 300 

     Correlation is significant at the 0.01 level (2-tailed). 

 

5.6 Relationship between Metacognitive Skills and Problem Solving  Skills 

For a better understanding of the relationship between metacognitive skills and problem 

solving, Pearson correlation analysis was also employed. The results shown below in Table 

5.13, shows that there is a negative relationship between metacognitive skills and problem-

solving,  the correlation coefficient is -.321-** and its significance at the 0.01 significant 

level. There was a negative correlation between two variables, r =-.321**, n =300, p 

=0.000. The negative correlation means that there is a negative relationship between the 

two variables, meaning that the increase in one of the variables is accompanied by a 

decrease in the second variable, and versa.  A scatter plot in Figure 5.1 below summarizes 

this finding: 



63 
 

 

Figure 5.4: Scatter Plot between metacognitive skills and problem solving skills 

 

There exists a weak linear negative correlation between metacognitive skills and 

problem solving skills.  

 
Table 5.13: Relationship between metacognitive skills and problem solving skills 

 

 Metacognitive   
 skills 

 

Problem 
solving 

 
Pearson  

1 

-.321 

Correlation   
Metacognitive skills 
 
 

  
Sig. (2-tailed)  .000 

N 300 300 

Pearson 
-.321 1 

Correlation   
Problem solving 
 
 

  
Sig. (2-tailed) .000  

N 300 300 

Correlation is significant at the 0.01 level (2-tailed). 

 

These results are not the same as the results of the studies carried out by (Ramesh & 

Anandraj, 2014; Kappa, 2001) where there is a major relationship between metacognition 

and problem solving. However these findings are consistent with (Coutinho, 2006) who 



64 
 

states that metacognitive thinking is not of help to students who are fulfilling the tasks of 

solving the problem, as students who had a advanced level of metacognitive thinking did 

not score any better as compared to the ones who had a lower level of metacognitive 

thinking. This result is not expected since it is rather expected that the way students 

perform in problem-solving should rise if the level of metacognitive rises as well, as those 

with higher levels of metacognitive thinking would be thought to make use of their 

metacognitive strategies in solving problems. This could be due to the problems that were 

too hard for students to solve, even if they knew metacognitive thinking strategies, but had 

not decided to use them in problem solving. This clearly reflects on the importance of 

using cognitive strategies in teaching, which shows an implication for further studies on 

the how important educational programs are and how to motivate students to improve and 

use these cognitive strategies in solving problems. (Pennequin et al., 2010) have put an 

emphasis on the importance of practice on using metacognitive thinking strategies in 

improving the students’ abilities in solving problems, which is in line with (Coutinho, 

2006; Abu- Alia & Alwaher, 2001; Al-Hamouri & Abu Mokh, 2011). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 
 

CHAPTER 6 

CONCLUSION AND RECOMMENDATIONS 

 

This chapter is a summary of the study and contains the conclusion as well as 

recommendations for future studies. 

 

 6.1 Conclusion 

After conducting this study, it was discovered that metacognitive skills are indeed a 

successful learning style in enhancing student’s logical thinking levels in programming 

classes. However, the results came in an unexpected way given the level of the relationship 

within the metacognitive skills and the capability to solving problems, evaluation has been 

conducted among 300 information science students and the results have: 

 

 There is a negative correlation between the skills of sub-dimensions (planning, 

monitoring, regulation) and the ability to solving problems. 

 Reported a negative correlation between students’ metacognition and problem 

solving skills. 

 The students seem not to know much about the script, and also they have average 

knowledge about the object orientated learning. 

 The topic about memory allocation operations seems to be difficult for the students, 

and the topic about basic operations seems to be easy to learn. 

 From the results, it can be inferred that the students’ skills in problem solving skills 

towards computer programming languages based on system analysis, design and 

coding seems to be difficult which means that they have difficulties in issues 

related to making an algorithm to understanding a program, understanding and 

interpreting the problem and understanding and also interpreting design, while in 

testing students have fewer difficulties during the debugging of a program. 

 This study reported that the level of university students’ metacognitive skills was 

high in the monitoring and planning for problem solving in computer programming 

language. 

 

 

 



66 
 

6.2. Recommendations  

Here is a list of suggestions, if enacted would add positively to improve the relationships 

within metacognition thinking and problem solving: 

 Students must work hard to build a mental model to illustrate what is happening in 

the memory during program implementation 

 Focus on practical lessons to help students learn programming languages 

 Developing the student’s capability to tackle mathematical and scientific problems 

and to increase students’ understanding of these problems, and give these problem-

solving skills in other to benefit student profit and alertness towards these skills. 

    Students must learn how to understand programming language syntax, investigate 

programming problems and program debugging and the comprehension of error 

messages through intensive programming courses and collaborative learning that 

can be seen as a new way that can be integrated into programming classes in order 

to achieve better results in programming cycles. 

 Allocation more time to the enhancement of metacognitive thinking skills is highly 

important and utilize these cognitive strategies in problem solving in all academic 

years and in all disciplines at university. 

 

Hence, it is recommended to set up educational courses to enhance problem solving skills 

for students in North Cyprus and further work should look into this subject area. 

 

 

 

 

 

 

 

 



67 
 

Reference 

Abu-Alia, M., Alwaher, M.(2001). Degree of awareness of the Hashemite University 

students with knowledge of the cognitive skills related to preparation for exams, 

delivery and relationship with their level and on cumulative average and college to 

which they belong. Amman-Jordan, 28, 1-14. 

Agarwal, K. (2005). Python for CS1, CS2 and beyond. Journal of Computing Sciences in 

Colleges, 20(4), 262-270. 

Al-Jarrah, A., & Obeidat, A. (2011). Metacognitive thinking level amongst a sample of 

Yarmouk University students in the light of some variables. Jordan Journal of 

Educational Sciences, 7(2), 145-162. 

Aljaberi, N. M., & Gheith, E. (2015). University Students’ Level of Metacognitive 

Thinking and their Ability to Solve Problems. American International Journal of 

Contemporary Research, 5(3), 121-134. 

Al-Saleem, B., Al-Rbabaah, J., & Al-Khawaldeh, K. (2012). The degree of acquiring 

metacognitive skills and its relationship with gender and specialisation and 

academic achievement in Jarash Secondary Schools. The International 

Interdisciplinary Journal of Education, 1(3), 73-87. 

Ali, M., Abd-Talib, C., Ibrahim, N. H., Surif, J., & Abdullah, A. H. (2016). The 

importance of monitoring skills in physics problem solving. European Journal of 

Education Studies. 

Alice (2015). An educational software that teaches students computer programming in 3D 

environment. Retrieved June 10, 2016 from http://www.alice.org/index.php 

Al-Hamouri, F., & Abu Mokh, A. (2011). Level of the need for cognition and metacognitive 

thinking among Yarmouk University Undergraduate Students, Najah University 

Journal for Research, 25(6), 1463-1488. 

Anandaraj, S., & Ramesh, C. (2014). A Study on the relationship between metacognition 

and problem solving ability of physics major students. Indian Journal of Applied 

Research, 4(5), 191-199. 

 

http://www.alice.org/index.php


68 
 

Annemieke, E., Jacobse, J., & Harskamp, E.G. (2012). Towards efficient measurement of 

metacognition in mathematical problem solving. Springer, 7, 133–149. 

Apiola, M., Tedre, M., & Oroma, J. O. (2011). Improving programming education in 

Tanzania: Teachers and students’ perceptions. In Proceedings of the 14st In 

Frontiers in Education Conference (FIE). (pp. 1-7). Tanzania: Tumaini University. 

 
Arslan, S. (2014). An investigation of the relationships between metacognition and self-

regulation with structural equation. International Online Journal of Educational 

Sciences, 6(3), 603-611.  

Arslan, S. & Akın, A. (2014). Metacognition: As a predictor of one’s academic locus of 

control. Educational Sciences: Theory & Practice, 14(1), 1-8.  

Arslan, S., Akın, A. & Çitemel, N. (2013).The predictive role of grit on metacognition in 

Turkish university students. Studia Psychologica, 55(4). 311-320. 

Aurah, C. M., Cassady, J. C., & McConnell, T. J. (2014). Predicting problem solving 

ability from metacognition and self-efficacy believes on a cross validated sample. 

British Journal of Education, 2(1), 49-72. 

Avargil, S., Lavi, R., & Dori, Y. J. (2018). Students’ metacognition and metacognitive 

strategies in science education. In Cognition, Metacognition, and Culture in STEM 

Education, (pp. 33-64). Springer, Cham. 

Baars, M., Van Gog, T., de Bruin, A., & Paas, F. (2017). Effects of problem solving after 

worked example study on secondary school children’s monitoring accuracy. 

Educational Psychology, 37(7), 810-834. 

Barnes, D. J., Kölling, M., & Gosling, J. (2017). Objects first with Java: A practical 

introduction using Bluej. Pearson. 

Biju, S.M. (2013). Difficulties in understanding object oriented programming concepts. 

Retrieved August 28, 2017 from 

http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1440&context=dubaipapers 

Bouvier, D., Lovellette, E., Matta, J., Alshaigy, B., Becker, B. A., Craig, M., & Zarb, M. 

(2016). Novice Programmers and the Problem Description Effect. In Proceedings of 

the 2016 ITiCSE Working Group Reports (pp. 103-118). ACM. 

http://ro.uow.edu.au/cgi/viewcontent.cgi?article=1440&context=dubaipapers


69 
 

Butler, M., & Morgan, M. (2007). Learning challenges faced by novice programming 

students studying high level and low feedback concepts. In Proceedings of ascilite 

Singapore  (pp. 99-107). Narre Warren: Monash University. 

 
Carlisle, M.C. (2009). Raptor: A visual programming environment for teaching object-

oriented programming. Retrieved November 9, 2016 from 

http://www.martincarlisle.com/publications/ccsc_named.pdf  

 
Chetty, J. & Westhuizen, D. (2014). Implementing metacognition skills for learners 

studying computer programming. In Proceedings of EdMedia: World Conference on 

Educational Media and Technology, 1, 726-731. Retrieved June 12, 2016 from   

https://www.learntechlib.org/p/147775 

Churchill, E. F., Bowser, A., & Preece, J. (2013). Teaching and learning human-computer 

interaction: past, present, and future. interactions, 20(2), 44-53. 

 
Costa, J. M., & Miranda, G. L. (2017). Relation between Alice software and programming 

learning: A systematic review of the literature and meta‐analysis. British Journal of 

Educational Technology, 48(6), 1464-1474. 

 
Costa, L., and Kallick, B. (2001). What are Habits of Mind? Retrieved  November 10, 

2017 from http://www.habits-of-mind.net/whatare.htm 

Coutinho, S. A. (2006). The relationship between the need for cognition, metacognition, and 

intellectual task performance. Educational Research and Reviews, 1(5), 162-164. 

 
Crowfoot, S. (2012). Five computer programs we use every day. Retrieved September 28, 

2017 from  http://www.iceni.com/blog/five-computer-programs-we-use-every-day/ 

Donchev, I., & Todorova, E. (2008). Object-oriented programming in Bulgarian 

universities informatics and computer science curricula. Journal of Informatics and 

Education, 7(2), 159-172. 

Ellis, S. M., & Steyn, H. S. (2003). Practical significance (effect sizes) versus or in 

combination with statistical significance (p-values): Research note. Management 

dynamics: journal of the southern african institute for management scientists, 12(4), 

51-53. 

http://www.martincarlisle.com/publications/ccsc_named.pdf
https://www.learntechlib.org/p/147775
http://www.habits-of-mind.net/whatare.htm
http://www.iceni.com/blog/five-computer-programs-we-use-every-day/


70 
 

Erol, O., & Kurt, A. A. (2017). The effects of teaching programming with scratch on pre-

service information technology teachers’ motivation and achievement. Computers in 

Human Behavior, 77, 11-18. 

Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive 

developmental inquiry. American Psychologist, 34(10), 906-911. 

Fu, X., Shimada, A., Ogata, H., Taniguchi, Y., & Suehiro, D. (2017). Real-time learning 

analytics for C programming language courses. In Proceedings of the Seventh 

International Learning Analytics & Knowledge Conference (pp. 280-288). ACM. 

Garrison, D.R., & Akyol, Z. (2015). Toward the development of a metacognition construct 

for communities of inquiry. Internet and Higher Education, 24, 66-71. 

 
Geiwitz, J (1994). Training metacognitive skills for problem solving. U.S. Army research 

institute for the behavioural and social sciences. Retrieved December 27, 2016 from 

http://www.au.af.mil/au/awc/awcgate/army/ari_rn-1995-03.pdf 

Ginat, D., & Shmallo, R. (2013). Constructive use of errors in teaching. SIGCSE Journal, 

1(2), 15-24. 

 
Gomes, A., & Mendes, A. J. (2007). Learning to program - difficulties and solutions. In 

Proceedings of the 3th International Conference on Engineering Education – ICEE 

(Vol 2, 3-7). Coimbra, Portugal. 

Harandi, V., Eslami Sharbabaki H., Ahmadi Deh M., & Darehkordi A. (2013). The effect 

of metacognitive strategy training on social skills and problem solving performance. 

Journal of Psychology & Psychotherapy, 3(4), 121-125.  

Harrykar. (2015). Running with Raptor. Retrieved November 22, 2017 from http://progr-

harrykar.blogspot.com.cy/2015/08/running-with-raptor.html 

Havenga, M. (2011). Problem-solving processes in computer programming: a case study. 

In Southern African Computer Lecturers’ Association (SACLA) Conference 

Proceedings (pp. 91-99). 

 

http://www.au.af.mil/au/awc/awcgate/army/ari_rn-1995-03.pdf
http://progr-harrykar.blogspot.com.cy/2015/08/running-with-raptor.html
http://progr-harrykar.blogspot.com.cy/2015/08/running-with-raptor.html


71 
 

Hong, T. Y., & Chu, H. C. (2017). Effects of a Situated 3D Computational Problem-

Solving and Programming Game-Based Learning Model on Students. In 2017 6th 

IIAI International Congress on Advanced Applied Informatics (IIAI-AAI) (pp. 596-

600). IEEE. 

 
Hu, M., Winikoff, M., & Cranefield, S. (2012). Teaching novice programming using goals 

and plans in a visual notation. In Proceedings of the Fourteenth Australasian 

Computing Education Conference (Vol 12, pp. 43-52). Australian Computer Society, 

Inc. 

Kafadar, H. (2012). Cognitive Model of Problem Solving. In Yeni Symposium (Vol. 50, 

No. 4) 

Kasemsap, K. (2017). Advocating problem-based learning and creative problem-solving 

skills in global education. Handbook of research on creative problem-solving skill 

development in higher education, 351-377. 

Kirsti, A. (2004). Problems in learning and teaching programming: A literature study for 

developing visualizations in the Codewitz-Minerva project. Retrieved on April 9, 

2017 from https://www.cs.tut.fi/~edge/literature_study.pdf  

Kunkle, W. (2010). The impact of different teaching approaches and languages on student 

learning of introductory programming concepts. Retrieved June 9 2016 from 

http://dl.acm.org/citation.cfm?id=2785807 

Kunkle, W. M., & Allen, R. B. (2016). The impact of different teaching approaches and 

languages on student learning of introductory programming concepts. ACM 

Transactions on Computing Education (TOCE), 16(1), 3. 

Luxton-Reilly, A., & Petersen, A. (2017). The Compound Nature of Novice Programming 

Assessments. In Proceedings of the Nineteenth Australasian Computing Education 

Conference (pp. 26-35). ACM. 

Madden, M., & Chambers, D. (2002). Evaluation of student attitudes to learning the Java 

language. In Proceedings of the inaugural conference on the Principles and Practice 

of programming, 2002 and Proceedings of the second workshop on Intermediate 

representation engineering for virtual machines, 2002 (pp. 125-130). National 

University of Ireland.  

https://www.cs.tut.fi/~edge/literature_study.pdf
http://dl.acm.org/citation.cfm?id=2785807


72 
 

Maheswari, T. L., Ahamed, M. S., & Duraisamy, S. (2017). Quality assessment system for 

Object Oriented structure. Journal of Computational and Theoretical Nanoscience, 

14(4), 1993-2014. 

Mahmoud, M., Mhashi, A., & Ali, A. (2013). Difficulties Facing Students in Learning 

Computer Programming Skills at Tabuk University. In Proceedings of the 12th 

International Conference on Education and Educational Technology  (vol 5, pp. 15-

24). Iwate: Japan. 

Matsuzawa, Y., Tohyama, S., & Sakai, S. (2014). A course design to develop meta-

cognitive skills for collaborative knowledge building through tool-assisted 

discourse analysis. International Journal of Organisational Design and 

Engineering, 3(3-4), 260-277. 

Montague, M., Krawec, J., Enders, C., & Dietz, S. (2014). The effects of cognitive strategy 

instruction on math problem solving of middle-school students of varying ability. 

Journal of Educational Psychology, 106(2), 469. 

Mokos, E., & Kafoussi, S. (2013). Elementary students’ spontaneous metacognitive 

functions in different types of mathematical problems. Journal of Research in 

Mathematics Education, 2(2), 242-267. 

Moström, J. E. (2011). A Study of student problems in learning to program. Department of 

Computing Science Umeå University, SE-901 87 Umeå, Sweden. Retrieved 

November 9, 2016 from www.cs.umu.se 

Myers, B. A., Stefik, A., Hanenberg, S., Kaijanaho, A. J., Burnett, M., Turbak, F., & 

Wadler, P. (2016). Usability of Programming Languages: Special Interest Group 

(SIG) Meeting at CHI 2016. In Proceedings of the 2016 CHI Conference Extended 

Abstracts on Human Factors in Computing Systems (pp. 1104-1107). ACM. 

Özgür, Z. (2017). Introduction to computer programming. Retrieved February 16, 2017 

from http://landofcode.com/programming-intro/computer-programming-

languages.php 

Özsoy, G., & Ataman, A. (2017). The effect of metacognitive strategy training on 

mathematical problem solving achievement. International Electronic Journal of 

Elementary Education, 1(2), 67-82. 

http://www.cs.umu.se/
http://landofcode.com/programming-intro/computer-programming-languages.php
http://landofcode.com/programming-intro/computer-programming-languages.php


73 
 

Pennequin, V., Sorel, O., & Mainguy, M. (2010). Metacognition, executive functions and 

aging: the effect of training in the use of metacognitive skills to solve mathematical 

word problems. Journal of Adult Development, 17(3), 168-176. 

 
Ritchie, J., Lewis, J., Nicholls, C. M., & Ormston, R. (Eds.). (2013). Qualitative research 

practice: A guide for social science students and researchers. Sage. 

Rizk, N. M. H., Attia, K. A. M., & Al-Jundi, A. A. H. (2017). The Impact of 

Metacognition Strategies in Teaching Mathematics among Innovative Thinking 

Students in Primary School, Rafha, KSA. International Journal of English 

Linguistics, 7(3), 103. 

Rum, S. N. M., & Ismail, M. A. (2014). Usability evaluation of metacognitive support 

system for novice programmers. Asian Journal of Education and e-Learning, 2(5), 

2321 – 2454. 

Safari, Y. & Meskini, H. (2015). The effect of metacognitive instruction on problem 

solving skills in Iranian students of health sciences. Global Journal of Health 

Science, 8(1), 150-156. 

 
Sajaniemi, J., Kuittinen, M., & Tikansalo, T. (2008). A study of the development of 

students’ visualizations of program state during an elementary object-oriented 

programming course. Journal on Educational Resources in Computing, 7(4), 3. 

Siegfried, R. M., Siegfried, J., & Alexandro, G. (2016). A Longitudinal Analysis of the 

Reid List of First Programming Languages. Information Systems Education Journal, 

14(6), 47. 

Sipahi, B., & Yurtkoru, E. S. ve Çinko, M. (2010). Sosyal bilimlerde SPSS’le veri analizi. 

Istanbul: Bete Yayinlari. 

Siswati, B. H., & Corebima, A. D. (2017). The Effect of Education Level and Gender on 

Students’ Metacognitive Skills in Malang, Indonesia. Advances in Social Sciences 

Research Journal, 4(4). 

Stevenson, J., & Wood, M. (2017). Recognising object-oriented software design quality: a 

practitioner-based questionnaire survey. Software Quality Journal, 1-45. 



74 
 

Tas, C., Brown, E. C., Aydemir, O., Brüne, M., & Lysaker, P. H. (2014). Metacognition in 

psychosis: Comparison of schizophrenia with bipolar disorder. Psychiatry 

Research, 219(3), 464-469. 

Titus, S.V., & Annaraja, P. (2011). Teaching competency of secondary teacher education 

students in relation to their metacognition. International Journal on New Trends in 

Education and their Implications, 2(3), 14-22. 

Valdecantos, H. A., Tarrit, K., Mirakhorli, M., & Coplien, J. O. (2017). An empirical study 

on code comprehension: data context interaction compared to classical object 

oriented. In Proceedings of the 25th International Conference on Program 

Comprehension (pp. 275-285). IEEE Press. 

Vasconcelos, C., & Ravara, A. (2017). From object-oriented code with assertions to 

behavioural types. In Proceedings of the Symposium on Applied Computing (pp. 

1492-1497). ACM.  

Wang, X. M., & Hwang, G. J. (2017). A problem posing-based practicing strategy for 

facilitating students’ computer programming skills in the team-based learning mode. 

Educational Technology Research and Development, 65(6), 1655-1671.   

Xinogalos, S., Satratzemi, M & Dagdilelis, V. (2006). Evaluating object Karel - an 

educational programming environment for object oriented programming. Current 

Developments in Technology-Assisted Education, 2, 148-171. 

 
Young, A., & Fry, J. (2012). Metacognitive awareness and academic achievement in 

college students. Journal of the Scholarship of Teaching and Learning, 8(2), 1-10. 

 

 

 

 

 

 

 

 

 



75 
 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



76 
 

APPRENDIX A 

RAPPORTEUR OF THE SCIENTIFIC RESEARCH ETHICS COMMITTEE 

 

Dear Raja Jwadi H. Fourti,                                                                                    11.09.2017                                                             

 

 

Your application titled “The Effect of Metacognitive Skills Towards Problem Solving 

İn Programming Learning” with the application number YDÜ/FB/2017/8 has been 

evaluated by the Scientific Research Ethics Committee and granted approval. You can start 

your research on the condition that you will abide by the information provided in your 

application form. 

 

 

 

 

 

Assist. Prof. Dr. Direnç Kanol 

Rapporteur of the Scientific Research Ethics Committee 

 

 

 

 

 

 

 

 

 

Note: If you need to provide an official letter to an institution with the signature of the 

Head of NEU Scientific Research Ethics Committee, please apply to the secretariat of the 

ethics committee by showing this document. 

 

 



77 
 

APPENDIX B 

 

UNIVERSITY STUDENTS’ METACOGNITIVE  AND PROBLEM  SOLVING SKILLS 

 TOWARDS LEARNING A PROGRAMMING LANGUAGE 
 

The aim of the questionnaire is to investigating the effect of university students’ metacognitive 

and problem solving skills towards learning a programming language in Computer Science 

students. You are expected to choose the most appropriate option applicable to you. The results 

of this survey will solely be used for analysis in the research report (master thesis) and will not 

be provided to any other institution in any other way. 

Thank you in advance for taking time to answer our survey. 

 

                                                                Rajaa Jawadi .H. Fourti (Master Student) 

                                                         Prof.Dr. Nadire CAVUS (Thesis supervisor) 

  

SECTION I: Personal Information (Please tick the most appropriate option applicable to 

you). 

 1. Gender:           a) Male             b) Female        

 2. Age:                 a) 18-20             b) 21-24            c) 25+ 

3. Nationality:    a) Cypriot         b) Turkish        c) Nigerian       d) Libyan      e) Iraqi    

                            f)     Other 

 4. Your Native Language:  a) Turkish   b) English   c) Arabic   d) Others 

5. Department:    a) Computer Information Systems             b) Computer Engineering  

                              c) Information technology        d) Management Information Systems 

6. GCPA:           a) 2.00 – 2.99         b) 3.00 – 3.49           c) 3.50 – 4.00 

8. What is your level of study?  a) Undergraduate       b) Master       c) PhD  

9. Which operating system do you use?      a) Windows     b) Linux/Unix   c) Macintosh   

10. University name: _______________________________       

 

 

 

 



78 
 

11. Which programming languages do you know?  

 
Very Good Above 

Average 

Average Little Don’t 

Know 

OBJECT ORIENTATED 

C++      

C#      

Visual basic      

Java      

.NET      

WEB BASED  

ASP      

HTML      

JavaScript      

PHP      

SCRIPT BASED 

C language      

Pascal      

Pear      

Fortran      

Python      

Delphi      

Ruby      

 

 

12. How difficult do you believe each of the following topics are to learn? 
 

 

V
er

y
 E

a
sy

  

E
a
sy

 

M
o
d

er
a
te

 

D
if

fi
cu

lt
 

V
er

y
 

D
if

fi
cu

lt
 

BASIC OPERATIONS      

1. Variable/function declarations      

2. Mathematical operators and precedence      

3. Conditional operations (if, else, etc.)                 

4. Looping operations (for, while, etc.)      

5. Input/output and file handling                            

MORE COMPLEX OPERATIONS      

6. Arrays                                                                

7. Other data structures (trees, linked-lists)         

8. String handling      

9. Structures      

10. Pointers      

11. Recursion      

OBJECT ORIENTED OPERATIONS      

12. Classes and objects      

13. Casting      



79 
 

14. Inheritance      

15. Encapsulation      

16. Polymorphism      

17. Passing by reference/passing by value                   

18. Function overloading/default arguments      

19. Function over-riding (in inheritance)      

20. Constructors/destructors       

21. Templates      

22. Copy constructors      

23. Operator overloading      

24. Virtual functions      

MEMORY ALLOCATION OPERATIONS      

25. Dynamic allocation of memory (with new)      

26. Dynamic allocation of memory (with mallow)          
 

 

SECTION II: Metacognitive skills for computer programming 

 

 

 

 

 

 

 A
lw

a
y

s O
ft

en
 

S
el

d
o

m
 

N
ev

er
 

Planning 

1. I believe in planning, I always plan the solution of my program to achieve the 

desired results. 
    

2. I always write down plans to direct my thinking when programming.     

3. I always take time to think deeply the steps I should take to solve a new 

programming problem. 
    

Monitoring 

4. During programming, I always pause in between coding sessions to check what 

I have already programmed. 
    

5. I always ask myself questions to make sure that I understand a difficult 

programming statement or question. 
    

6. When I program, I trace the program’s execution with a trace table.     

Regulation 

7. Even when the program is difficult to write, I go back and modify it until the 

problem is solved successfully. 
    

8. I take the programming statements that have errors in them and adjust them 

until I have solved the problem successfully. 
    

9. I reread the description of a difficult problem to make sure that I understood it 

correctly and that it is correctly programmed. 
    



80 
 

SECTION III:  Problem solving skills (Please tick the most appropriate ones to you) 

 

 

S
tr

o
n

g
ly

 

A
g
re

e
 

A
g
re

e
 

N
eu

tr
a
l 

D
is

a
g
re

e
 

S
tr

o
n

g
ly

 

D
is

a
g
re

e
 

SYSTEM ANALYSIS 

1. It is difficult to understand a program without first deriving its  

algorithm. 

     

2. It is difficult to understand a given programming problem.      

3. It is difficult to interpret the problem.      

4. It is difficult to understand what is required for the program.      

5. It is difficult to write an algorithm for the problem.      

6. It is difficult to understand what is required by the programming  

problem. 

     

7. It is difficult to understand the logic of a large program.      

DESIGN  

8. It is difficult to create suitable database.       

9. It is difficult to construct software models such as use-case diagrams.      

10. It is difficult to identify the important steps when solving a problem.      

11. It is difficult to identify possible methods.      

12. It is difficult to understand the logic of an algorithm.      

13. It is difficult to draw the flow chart of given programming task.      

14. It is difficult to write pseudocode of given programming task.      

15. It is difficult to model a software.      

16. It is difficult to do software documentation.      

17. It is difficult to simulate complex software.      

CODING 

18. It is difficult to connect a database to a programming language       

19. It is difficult to divide functionality into procedures.      

20. It is difficult to learn the programming language syntax.      

21. It is difficult to remember programming language syntax.      

22. It is difficult to develop a program that solves a given task.      

23. It is difficult to understand the concepts of programming structures.      

24. It is difficult to apply the correct logic.      

25. It is difficult to transform a textual problem into a mathematical 

formula that solves a given problem. 

     

26. It is difficult to combine the necessary programming statements 

successfully in a program. 

     

TESTING 

27. It is difficult to test programs especially detecting errors in the code.      

28. It is difficult to find bugs in my own programs.      

29. It is difficult to test the developed program using test data.      

30. It is difficult to write programs with no errors.      

31. It is difficult to test programs using functional test methods.       

32. It is difficult to test programs syntactically.      

Thank you for taking time to participate in the survey    



81 
 

APPENDIX C 

SIMILARITY REPORT 

 

 

 

 

 


