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ABSTRACT 

 

Nowadays Artificial Intelligence usage many applications and researches actively developing. 

Artificial intelligence branch machine learning have another branch inside as named 

reinforcement learning. In recent years Reinforcement learning and deep learning or deep 

neural networks usage of together show us successful performance in video games, robotics, 

natural language process and etc. Especially one of reinforcement learning method Q learning 

implementation with deep learning which is named deep q networks human level performance 

in video games shows us with artificial intelligence research progress how can reach what kind 

of level. In this study Deep q network implemented in 3D video game with artificial 

intelligence bot or agent and tested how can perform with different parameters. This results of 

this tested experiences evaluated, discussed. 

 

Keywords: Deep Learning; reinforcement learning; q learning; neural networks; deep 

reinforcement learning 
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ÖZET 

 

Günümüzde yapay zeka bir çok alandaki uygulamalarıyla ve araĢtırma konuları ile aktif olarak 

geliĢmektedir. Ve yapay zeka dallarından biri olan makina öğrenimin alt dalı sayılan takviyeli 

öğrenmenin derin öğrenme ile birlikte kullanılmasıyla son yıllarda video oyunlarında, 

robotikte ve dil iĢleme gibi vb. alanlarda baĢarı göstermiĢtir. Özellikle takviyeli öğrenme 

methodlarından birisi olan q öğrenmenin derin öğrenme ile birleĢerek  derin q-ağı olaran 

adlandırılan methodun video oyunlarda insan seviyesindeki performansı yapay zekanın 

araĢtırmaların ilerlemesi ile nasıl bir seviyede performans sergileyebilecegini 

göstermektedir.Bu çalıĢmada DQN 3 boyutlu bir video oyundaki yapay zeka botu ile test 

edilip nasıl bir performans sergilediği farklı parametreler ile test sonuçları değerlendirilip 

tartıĢılmıĢtır. 

 

Anahtar kelimeler: Derin öğrenme; takviyeli öğrenme; q öğrenme; yapay sinir ağları; derin 

takviyeli öğrenme  
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CHAPTER 1 

INTRODUCTION 

 

 

 

Nowadays Artificial Intelligence (AI) technologies using at many different area in our lives. 

And AI observed to close as human intelligence performance for solve specific problems with 

researches. AI has been divided into many branches with its development since past. 

Reinforcement learning (RL) is one of the machine learning branch which is machine learning 

AI branch also. RL techniques and methods successfully used in backgammon, Atari games, 

robotic and etc.. In RL we have agent and our agent interact with environment. Agent gain 

experience via trial-and-error and find optimal policies for solve problem. Main purpose of 

agent get maximum reward with interaction environment. So there is no supervisor in 

reinforcement learning. While another machine learning methods have supervisor learning and 

unsupervised learning. 

 

During solving RL problem we formulize mathematically between interaction of agent and 

environment with Markov decision process (MDP). MDP successfully modelled in robot 

control learning, planning problem and game playing problems so standard of sequential 

decision making (Puterman, 1994). RL techniques and methods can solve certain of level 

small state space MDPs. Because with larger state space MDP data of process and learning 

time of agent increasing together. For solve this problem and using computer resources more 

effective we need to better approximation methods. So in RL using neural networks which is 

successful non-linear differentiable approximator. 
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In this study we will use Deep neural network (DNN) and RL method Q learning combination 

of Deep q network (DQN) which is successfully has proven Atari games (Mnih V. , et al., 

2013).  DQN basically use four technique. They are experience replay, target network, 

chipping rewards, skipping frames. We implement DQN in 3D continuous action space. 

Developed 3D space our agent goal is destroy or kill enemies in environment. And agent can 

move 4 direction. When implementation DQN we use 3 technique from 4, experience replay, 

target network, clipping rewards. Reason of unused skipping frames need CNN as mentioned 

in article. While usage of CNN in 2D Atari games get long training time like days in existing 

experimental system. So while getting days in 2D games, 3D must get longer times. For not 

extending we use DQN with 3 techniques and implement 3D environment. In this 

implementation and while experiences we try different parameters and tried to find get 

maximum reward our agent. And results of these experiments shown with graphics. And we 

found better parameters for getting maximum reward in continuous action space without using 

CNN. 

  



3 

 

CHAPTER 2 

BACKGROUND 

 

 

 

2.1 Introduction 

In this chapter, we will give information about methods and techniques used in this thesis. 

Firstly we start with reinforcement learning. Using to solve which problems, bring what kind 

of results, solutions for these problems. And solving or approaching to solution use what kind 

of techniques and methods. But these explained methods and techniques will be focus on this 

thesis purposes. Secondly deep learning techniques and methods explained like reinforcement 

learning. After this chapter we will begin to our founded result from experiments using this 

techniques and methods. 

 

2.2 Reinforcement Learning 

Reinforcement learning (RL) sits in center of many different field like computer science, 

neuroscience, psychology, mathematic and economic. Which they have same branch in 

studied in other fields for example game theory, control theory, optimal control or etc. like all 

this studies main problem is found the way optimal decision making and underlying solution 

for this problem is RL. Of course we will talk about branch of machine learning RL in 

computer science. 

 

If start to explain RL problem with an example. We want to build a machine which is play 

chess board game and this machine trained from a supervisor who is human player. And our 

supervisor train machine with her game experience with in her gaming experience. After finish 

this training phase we want to match our machine against best chess player of the world. From 
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staring to playing game our machine must be stuck to make decision or lose game because 

human player will find a way to win match against our machine. This problem occur from lack 

of move or our supervisor experience is not enough to train machine against champion human 

player (Alpaydın). This examples can be increase.  As understanding from example we solve 

problems like this with RL without any supervisor. 

 

If we start to explain RL roughly, in RL we have an agent and environment our agent make 

decision in this environment. For example environment is chess board, our agent is black or 

white player. Our agent main goal is gain maximum reward in this environment. And use RL 

algorithms, try to find novel ways for reach this goal. For example from popular Alpha Go 

(Silver, et al., 2016) win the match against world champion go player with unique and 

unpredictable strategies. Reward is scalar number feedback signal in main goal of agent. Of 

course, this reward depend agents actions and agent position in environment state. And this 

rewards signals give our agent an idea about how its actions and states good or bad for reach 

the goal. If we need to be clearer with examples, for an artificial intelligence (AI) robot 

positive reward is its move any direction without fall down and bad reward is fall down, for 

power station is produces power positive reward and overheating from high power produce is 

negative reward. Agent interaction with environment illustrated in Figure 2.1. . 

 

Figure 2.1: RL agent environment interaction (Alpaydın 2010) 
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 If we explain this elements in Figure 2.1, our agent make some sequenced of steps in time t = 

0, 1, 2, … N actions At in the environment. And get some rewards after making this actions in 

every time steps, this rewards change in every state St after each actions as positive or negative 

way. As mentioned before our agent’s main goal is get maximum reward. Of course this 

rewards will change in every state with our actions in environment. So agents must select true 

actions for reach the goal. This observations and rewards can store as history sequenced action 

in time step: 

 

Ht = O1, R1, A1, … , At-1, Ot, Rt      (2.1) 

 

And our agent make decision mapping this history Ht. This history function can be called as 

state St: 

 

St = f (Ht)        (2.2) 

 

After define this state there are 3 state environment state which is can know from agent at first 

time but include rewards and observations, agent state which is used in RL algorithms and 

store actions and observations in sequence time steps of agent and last one is information state 

(Markov state) this is can described as formalization of our history in mathematical way. Each 

observation and information got from state is called Markov property or Markov 

 

Major components of a RL agent is policy, value function, model. For solving any RL 

problem algorithms include one or more of these components. If we need to explain them; 
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Policy: we can named as agent’s behaviors of sequenced time steps. Kind of map for state to 

action. This can be deterministic policy a = π (s) or stochastic policy π (a | s). 

 

Value function: is a prediction of future reward from starting state. And give information 

about badness or goodness about state. E.g. 

 

 v π(s) = E π[Rt+1 + γRt+2 + γ
2
Rt+3 + … | St = s]    (2.3) 

 
 

Model: predictions for environment what will do or how to behave and help us to predicts next 

state and next reward. As show popular example from literature grid world Figure 2.2. , 2.3. 

and 2.4. We can see our environment have 2 terminate state with +1 and -1 reward. In Figure 

2.3. We have our agents’ random policies with arrows there for illustrated in mind and Figure 

2.4. Show us value of each state. 
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   +1 

 Wall  -1 

 Wall   

Agent 

Start 

   

Figure 1.2 : Grid world example from literature 

→ ↔ ↓↔ +1 

↑ Wall ↕↔ -1 

↖ Wall →↕ ← 

Agent 

Start 

→ ← ↑↑ 

Figure 2.3: Grid word with random policies π, arrow show as move direction in that state 

0.50 0.75 0.45 +1 

0.22 Wall 0.30 -1 

0.32 Wall 0.75 0.10 

Agent 

Start 

0.32 0.60 0.11 

Figure 2.4: Grid word with random values v 

RL agents can categorized as values based, policy based, action critic, model free and model 

based .RL algorithms make predictions and control perspective for example temporal 



8 

 

difference TD (0) algorithm make predictions with given policy for solve RL problem we can 

think +1 reward in grid world example. On the other hand Q Learning algorithm which is we 

used in this thesis try to find optimal policy for reach to goal (Susson & Barto, 1998). 

 

2.2.1 Markov decision processes 

In RL framework generally decision theory formulized as Markov decision process (MDP) 

(Boutilier, Dean, & Hanks, 1999). And MDP have an important place in modern RL. 

Prediction and Control algorithms use MDP try to find results for RL problems. MDP 

generally include set of states, set of actions, set of rewards state transition probabilities and 

rewards, discount factor this is shown as 5 tuple <S, A, P, R, γ>. If we explain these elements 

of MDP: 

 

States: As explained before describe our position or an information in environment. As a 

Markov property each state connected last state. 

 

P [St+1 | St] = P [St+1 |S1, …. , St]      (2.4) 

 

Transition Probability: Next states can be stochastic and its can be our successor states` and 

defined by 

 

P ss` = P [St+1 = s` | St = s]       (2.5) 

 

These two element create Markov chain which is sequence of random states S1, S2 with 

Markov property. For understanding the Markov chain Figure 2.5. . As seen in figure if our 

student start from class 1 from that state probability of transition the next states which is 
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Facebook or class 2 is 0.5 for each action. And from that point sequence of states episodes can 

occur as probability aspect and we call this Markov process. 

 

Figure 2.5: Markov chain for student 

We try to clear for explain Markov process but there are 2 more element of MDP reward 

function and gamma γ , these two things called as Markov reward processes(MRP) 

 

Reward function: explain us value of existing agent state as seen Figure 2.6. for each transition 

between states we get a reward from that state. 

 

Rs = E [R t+1 | St = s]        (2.5) 

 

Gamma γ: is our discount factor where is γ є [0, 1] and trades off the importance of immediate 

and later rewards for us. 
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With these MRP we get return Gt after time-step t by total discounted. 

 

 

Gt=Rt+1 + γRt+2 + … = ∑    
              (2.6) 

 
 

Discount element gamma change 0 to 1 this is help us to evaluate immediate as acted greed or 

model unknown of environment so we just wait for delayed future reward. This discount used 

for mathematically convenient purpose.  

 

2.2.2 Value function 

Most of RL algorithms evaluating value functions of states. This function give us how state 

good or bad. If we need to define value function v(s) as respected MDP 

 

 ( )   [   |         [∑         
 
    |         (2.7) 

 

For MRP state value function v(s) is return of from started state the current state. Also we can 

define similarly value of taking action in a state which is called action-state value function  

q(s, a). 

 

 (   )   [   |               [∑         
 
    |            (2.8) 

 

2.2.3 Policy 

As we explained before agents’ behaviors of sequenced time steps. A policy π is a distribution 

over actions given states. In MDP policies are depended the each states so policies different 

for every states. Of course if model is known by agent these policies can describe again from 
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earned reward between looking starting state to terminate state. As seen probability of state 

transition, reward can change by given policy and state transitions can move as policy. 

 

     
    ∑  ( | )  

 
          (2.9) 

     
    ∑  ( | )  

 
          (2.10) 

 

Like these two change value functions also can act from give policy and make evaluations. 

 

   (   )    [   |                 (2.11) 

   ( )     [   |            (2.12) 

 

Also these last 2 equation can decomposed as bellman equation (Bellman, 1957) 2.13, 2.14. 

After this point we want to select optimal policies for each value functions and solve the MDP 

problem. Optimality shown as V
*
π(s) for state value and q

*
 π(s, a) for action state value 

function. So far we explain briefly MDP and bellman equation concepts so RL use these tools 

for solve the problems with iterative methods for example value iteration, policy iteration , Q 

learning, Sarsa etc. but we will focus to explain only q learning which is we used in our 

algorithm for solve RL problem.  

 

   ( )       [           (    )               (2.13) 

  (   )       [          (          )                     (2.14) 

 

2.2.4 Q Learning 

First of all Q learning is a model-free RL method so our agent try to solve the problem without 

model of environment. While temporal difference (TD) learning try solve problem with given 
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policy and our agent use this policy as iterative in environment for predict v(s), Q Learning 

algorithm shown below, make this without any policy it called off-policy with his experiences 

(Susson & Barto, 1998). And Q learning defined by (Watkins & Dayan, 1992): 

 

  (     )   (     )   [           (      )   (     )   (2.15) 

Initialize Q(s, a), ∀s ∈ S, a ∈ A(s), arbitrarily, and Q(terminal-state, ·) = 0 

Repeat (for each episode): 

          Initialize S 

          Repeat (for each step of episode): 

                    Choose A from S using policy derived from Q (e.g., e-greedy)  

                     Take action A, observe R, S0 

                     Q(S, A) ← Q(S, A) + αR + γ max a Q(S0, a) - Q(S, A)      

                         S ← S 

          until S is terminal 

Algorithm 2.1: Q Learning Algorithm (Sutton and Andrew 1998) 

With this method or another RL methods can solve small MDP problems without and problem 

but when MDP begin the increase calculated values, states and actions hold a lot of memory 

for these things and calculations begin after increasing of MDP will slowdown. For solve this 

problem and approximation we will use neural networks. We will look it in next titles. 

 

2.3 Deep Neural Networks 

Deep neural networks (DNN) help to progress of AI and machine learning for example self-

driving cars (Mariusz, et al., 2016), image recognition systems (Simonyan & Zisserman, 2015) 

and voice recognition (Hinton, et al., 2012) etc. used with really good performance as state-of-

art. DNNs provide to as a good structure for approximation the non-linear functions. And in 

this section we will explain briefly about architecture and techniques. 
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2.3.1. Neural networks units 

Basically artificial neural networks (ANN) modelled the how human brain works. The human 

brain with complex web of interconnection neurons ability of produce output from given 

information input. ANN have a human brain like architecture. In ANN have neurons like 

human brain. These neurons ordered in layers and produces some output values from entered 

inputs moving in the layers with some calculations as seen in Figure 2.6. . Neuron take vector 

of inputs x and calculate the weighted sum of inputs, weights denoted as w. The weighted 

calculation added to bias term and these are passed from an activation function f and neuron 

produce output y. This calculations equation shown as: 

 

     (∑            )      (2.16) 

 

Figure 2.6: An Artificial Neuron (Tanikic & Despotovic, 2012) 

And there are three activation function for solve non-linearity in output of artificial neuron. 

First one is sigmoid neuron result will be 0 to 1,second is tanh neuron this time our output is 

range between -1 to 1 , another one is restricted linear unit which different from other results 
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look like hockey stick. We will show these function presentation and figures under this 

paragraph. (Buduma, 2017) (Ketkar, 2017) (Samarasinghe, 2006)  

 

Sigmoid: 

 ( )   
 

     
        (2.17) 

 

Figure 2.7: Output of sigmoid function varies (Buduma 2017) 

Tanh: 

       (    )       (2.18) 
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Figure 2.8: Output of tanh function varies (Buduma 2017) 

ReLU: 

 ( )      (      )      (2.19) 
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Figure 2.9: The output of a ReLU neuron (Buduma 2017) 

 

2.3.2. Deep Feedforward networks 

Deep feedforward networks (DFN) actually called as feedforward neural networks (FNN) this 

deep word mean that we have more than one hidden layer inside it and a lot of nodes in this 

hidden layers (Goodfellow, Bengio, & Courville, 2016). So generally as seen Figure 2.10. . 

FNNs consist 3 layer input layer, hidden layer, output layer. We give some vector x values to 

input layer this value passing from hidden layer and make calculation through the output layer. 
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Figure 2.10: Feedforward network layers  

As we explained in section 2.3.1. we give this weights as random in feedforward neural 

network so we need to train this network it’s called as backpropagation (BP) Figure 2.11 in 

literature as named BP make calculations backward from output layer. With BP provide as 

accuracy for our predicted outputs. And solve this problems in neural networks use gradient 

descent algorithms during BP. Many years stochastic gradient descent (SGD) has been popular 

choice for train our feedforward network with BP. But there are developed some other 

methods from this SGD like ADAM (Kingma & Ba, 2015), AdaGrad (Duchi, Hazan, & 

Singer, 2011), and Momentum (Sutskever, Martens, Dahl, & Hinton, 2013). And these 

different methods use learning rate based distribution for training which is we will also 

compare this methods in thesis experiments. 
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Figure 2.11: Backpropagation 

We explain a DNN briefly without any complex formulations for keep to background simple 

understandable to what we used in our problem solving in work. And there are some problems 

include this train in DNN how many hidden layer we need to select , which learning rate for 

gradient descent, which activation function better for algorithm like other parameters have an 

impact to results (Keller, Liu, & Fogel, 2016). Looking from there adding more hidden layer 

not means to us all hidden layers nodes work or effect to results (Srivastava, Hinton, 

Krizhevsky, Sutskever, & Salakhutdinov, 2014). 

 

2.4 Deep Reinforcement Learning 

Deep reinforcement learning (DRL) as understanding name and thinking from last titles DNN 

function approximator usage of in RL value functions and determine the policies. DRL have 

been making many different success in different areas for example Atari games (Mnih V. , et 

al., 2013), robotics (Kober, Bagnell, & Peters, 2012), 3D games (Ratcliffe, Devlin, 
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Kruschwitz, & Citi, 2017) and etc... So as understanding from this examples when we solve 

small problems with RL, we can solve bigger problems with DRP. Also DRL successfully 

applied for Q Learning (Gu, Lillicrap, Sutskever, & Levine, 2016) (Mnih V. , et al., 2015). 

 

2.4.1 Deep Q learning 

As explained in last sections Q Learning is a model-free RL algorithm. Deep Q Networks 

(DQN) is combination of Q Learning algorithm and DNN. With usage of DQN observed 

really good results as human level performance and prove itself (Mnih V. , et al., 2015). 

 

Basically DQN use four main concept while training experience replay, target network, 

clipping rewards and skipping frames. In our experiences we did not use skipping frames, 

main reason is Convolutional neural network (CNN) which is used to solve RL problem in 

Atari games with DQN. Because CNN need really powerful systems to solve problem and 

used system in this study not enough power render CNN. So there would not any usage in our 

scope. 

 

With DQN we use experience replay, target network, clipping rewards for stabilize the action 

value function Q(s, a).  As mentioned before Q learning algorithm try to get more reward from 

experiences. So DQN create some experience replay at buffer for stabilize the q learning 

problem (Long-Ji, 1993).  DQN save RL agents experiences in 4 tuple every time step <St, At, 

Rt+1, St+1 >, and DQN update this experiences with mini batches (or samples) during iteration i. 

And Q network minimizing a loss function in every iteration i, loss function; 

 

  (  )   (        )  ( )[(         (        
 )   (      )

   (2.20) 
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γ is discount factor at loss function.    Define parameters of Q network at iteration i and   
  is 

target network computation at iteration i.   
  target network parameters are updated only with 

   Q network parameters every defined period time step. As understanding DQN maintains 

two separate networks. This loss function minimized with using stochastic gradient descent. 

And behavior policy is use epsilon greedy policy for ensure efficient exploration (Wang, et al., 

2016). 

 

Initialize replay memory D 

Initialize action value function Q with random weights 

Repeat 

     Observe initial state s1 

     For t=1:T do 

            Select an action at using Q (with ε-greedy) 

            Carry out action at 

            Observe reward rt and new state st+1  

            Store transition (st, at, rt , st+1) in replay buffer D 

            Sample random transition (sj , aj, rj, sj+1) from D 

            Calculate target for each transition 

            If sj+1 is terminal then 

                yj  = rj 

            Else 

                yj  = rj + γmaxa’ Q (sj+1, a’; θ) 

            End if 

            Train the Q network on ( yj – Q(sj, aj; θ))
2
  

     End for 

Until terminated 

Algorithm 2.2: Deep Q Network, adapted from Mnih V. and others (2015) 
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CHAPTER 3 

RELATED WORK  

As explained in last chapter RL agents mostly used in video games. And solve problems using 

with DNN as a human level. So In this chapter we will use or implement discussed methods 

and algorithms in our created continuous action space 3D environment  without using CNN so 

from this perspective we look our results and discuss that experienced results. 

 

3.1. Technologies used for in experiments 

3.1.1 Unity ml-agents 

First of all there not a lot of tools for testing your RL algorithms last years without premade 

environments like Open AI, hardcoded environment or some other community created 

environments. Last few years developments in Artificial Intelligence unity game engine 

deploy an open-source plugin that give chance to develop RL agents for developed games 

inside. Or in the other perspective develop better game bots, non-playable character (NPC) by 

developers. Figure 3.1. Shows working principle of this plugin. 

 

Figure 3.1: General working block diagram of Unity ML Agents working Principle 

(https://github.com/Unity-Technologies/ml-agents/blob/master/docs/ML-Agents-Overview.md 

Reached 14/12/2017) 

https://github.com/Unity-Technologies/ml-agents/blob/master/docs/ML-Agents-Overview.md
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In unity game engine use c# or javascript for development but as seen Figure 3.1. we have an 

academy which is help us to communicate environment with our python program create as RL 

algorithms. And this academy control our agents’ brain. There are 4 different types of Brain 

for developer range of training and inference scenarios: 

 

External: This help us to control agent decisions over python. 

 

Internal: This is where decision are made from Tensorflow model. Basically this plugin create 

some data after externally trained agent then you can implement that trained data to use inside 

of developed game. 

 

Player: As understanding control agent as a human when develop environment. 

 

Heuristic: where decision are made using hardcoded behavior of agent. 

 

Briefly Unity ML-Agents help us create different environment for different problems. For 

example we can simulate our python RL algorithms using this which is we make that in this 

thesis. 

 

3.1.2. Python Libraries 

For communicate with environment and for our algorithm we use different python libraries if 

we need to briefly mention them Tensorflow library which is help us high performance 

numerical computations, Numpy library include high-level mathematical functions, Matplotlib 

library for plot our results. 
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3.2. Setup 

First of all we created a 3D environment using unity game engine. And our agent make its 

action in this environment space. This environment include an agent, walls, and enemies as 

our main goal to reach and destroy them. For better understanding environment Figure 3.2.. 

 

Figure 3.2: Created Environment for work 

As seen Figure 3.2. Our agent placed right corner of environment blue cube and it try to 

destroy six white enemies in environment. If we need to explain this environment as technical 

way in RL our agent get -0.005 reward every time step in environment. When our agent touch 

the walls get -0.5 reward for every time step and get +5 point for touching enemies. With 

respect to RL methods our agent will try to get maximum reward. Termination state of every 

episode at 2750 step or destroying all enemies from environment. Then our agent observe 

every step its position and reward at that time step. And our agent have four continuous action 

left, right, forward and back. Our problem is get maximum reward with using DQN Algorithm 
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in of environment without using CNN (Mnih V. , et al., 2013). Also another problem for our 

agent is continuous action space of this environment. So we will try to find best parameters 

and methods when during experiments. 

 

3.3. Experiments 

3.3.1. Experiment 1  

In this experiment we tried to find and compared different SGD variants for training like 

Momentum, AdaGrad, and Adam in our algorithm. Before start we define Maximum 1350 

agents experience replay minimum 850 , 170 batch size , 100 copy period for target network, 

200 episode and 2  hidden layer with 200 nodes each layer for DQN. These maximum and 

minimum replay founded by playing game as human player which is explained in 3.2. Than 

have seen agent finish to destroy all enemies almost at 1300 time step so from this respect 

maximum, minimum, batch and copy period defined in algorithm. First we used standard 

gradient optimizer for training and try 5 from 10e-1 to 10e-5 different learning rate. Figure 11 

shows results of training DQN with gradient optimizer. This results shows standard gradient 

optimization get really bad average rewards during training after 200 episodes with different 

learning rate. And complete 200 episodes around one hour with each different learning rate. 

Also kill maximum 3 enemies during training and there is not any stabile enemy kill Figure 

3.4. . 
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Figure 3.3: Gradient optimizer average reward results in 200 episodes 

 

Figure 3.4: Gradient optimizer average enemy kills in 200 Episodes 
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Secondly we used Momentum optimizer same as gradient Figure 3.5. Show average rewards 

after  

200 episodes. As seen figure our rewards increase with selecting 10e-5 learning rate but again 

this returned average rewards not good. Momentum optimizer results shows as maximum 4 

enemy destroying sometimes Figure 3.6. Shows this as getting average kills in 200 episodes, 

during training and each training take between 40 minute to 56 minutes for 200 episodes. 

 

Figure 3.5: Momentum optimizer average rewards in 200 episodes 
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Figure 3.6: Momentum optimizer average kills in 200 episodes 

Thirdly we used Adam optimizer for training same as other methods. Figure 18 shows this 

results in with this. As seen figure Adam optimizer show us much better results than last 2 

method. After increase learning rate 10e-3 seem our agent get more reward than before. Adam 

optimizer training time decrease by increasing learning rate from 50 minutes to 23 minutes. 

But same as before agent reach really small amount destroy 4 enemy Figure 3.8. Show us 

average kills or destroys of enemies 200 episodes. 
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Figure 3.7: Adam optimizer average rewards in 200 episodes 

And lastly we used Adagrad optimizer in algorithm for training Figure 3.9. Show us average 

rewards during training in 200 episodes. Adagrad optimizer show us better results than first 2 

and little bit from Adam optimizer method. Adagrad calculate this result between 20 minutes 

to around 40 minutes and seems little bit good from others. And shows us much stabilize 

enemy kill then others average of enemy kill shown Figure 3.10. . 
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Figure 3.8: Adam optimizer average kills in 200 episodes 

 

Figure 3.9: Adagrad optimizer average reward in 200 episodes 
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Figure 3.10: Adagrad optimizer kill average in 200 episodes 

3.3.2. Experiment 2 

After some experiments we saw Adagrad provide to reach faster and better average reward in 

200 episodes. So move with Adagrad in experiment 2. Also last section we saw kill average 

are seem really bad in 200 episodes with this parameters. So for find better stabilize kill 

average for change this problem and increase average kill counts of enemies we increase our 

experiment replay as 500 thousand maximum experience, 50 thousand minimum experiment 

170 mini batch size and 100 copy period for target network as seen Figure 3.11. Our agent 

reach better rewards after complete collecting first 500 thousand experiments in 90 episodes 

and its. Also as seen Figure 3.12. Much better average kills after that point same as rewards. 

And this is shows us increasing different parameters make huge effect on training. So with 

bigger experiment replay our agent get better and incremental average reward and kills. This 

parameters find after 9 different try so other results shown at appendix 3 for avoid complexity. 
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Figure 3.11: Average rewards with Adagrad optimizer changing experiment replay 

 

Figure 3.12: Average kills with Adagrad optimizer after changing experiment replay 
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CHAPTER 4 

CONCLUSIONS AND FUTURE WORKS 

 

 

 

In this study we implement reinforcement learning method q learning and deep neural network 

combination named as deep q network successfully 3D environment. Our agent main goal was 

get destroy all enemies in environment. Also our agent was getting some reward positive or 

negative way during searching enemies in environment like negative reward if touch wall or 

positive if destroy enemy. So for reach the goal tried many different parameters like different 

experience replay, gradient methods, learning rates. While changing this parameters collect 

some information to compare our results. When compare Adagrad, Momentum and Adam 

gradient variant methods results shows us our agent get more stabilize average rewards and 

enemy kills during training. So from this aspect continued with Adagrad optimizer for training 

our network. While getting more stabilize average reward and enemy kills with Adagrad there 

was a problem which is when total six enemies in environment our agent stuck to find all 

enemies between 2 and 4 when getting average of enemy kills from episodes. For solve this 

problem tried 9 different experience replay and clipping rewards like increasing reward by +5 

to +500 for each enemy kill or -0.5 to -5 for touching walls but reward changes not effect this 

result and we get same result after training. With experience replay changes make really good 

changes in average enemy kills when we increase it. And our agent has achieved success. 

 

While training we use only 3 methods with DQN when there are 4 method specified in 

articles. Unused method was skipping frames which is use CNN. Main reason of this, 

experiment computer system was not powerful enough. So we can get more successfully result 

with powerful experiment system using with CNN. And solve this problem with that. For 
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example we can change camera view to agent as first person for give agent acting like a 

human perspective in future works. 

 

There are many different approaches with combine different methods like tree search, 

recurrent neural networks, convolutional neural network, imitation learning or etc. if we want 

compare our study. And many research platforms for solving problems or created artificial 

intelligence agents like arcade games, racing games, first-person shooters games, open-world 

games, real-time strategy games and more (Justesen, Bontrager, Togelius, & Risi, 2017). Also 

there are many open challenges in this platforms like multi-agent learning, adoption in the 

game industry, computational resources, creating different types of video games or etc. And 

also this researches with video games will occur new studies and research methods to 

implementation another fields like military, robotics or cinema industry for example movies 

created by artificial intelligence. As future plans this works can extended with convolutional 

neural network, tree search or supervised methods. Also maybe environment can develop like 

real first person game and agent may train with different methods for find better algorithms. 
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APPENDIX 1 

PYTHON CODES 

 

""" 

@author: ahmetakin 

""" 

 

import os 

import sys 

import numpy as np 

import tensorflow as tf 

import matplotlib.pyplot as plt 

from datetime import datetime 

import csv 

 

from unityagents import UnityEnvironment 

 

print("Python version:") 

print(sys.version) 

 

class hidden_layer: 

    def __init__(self,L1,L2,f=tf.nn.tanh,use_bias=True):  

        self.W=tf.Variable(tf.random_normal(shape=(L1,L2))) 

        self.params=[self.W]  

        self.use_bias=use_bias 

        if use_bias:  

            self.bias=tf.Variable(np.zeros(L2).astype(np.float32)) 

            self.params.append(self.bias) 

        self.f=f 

    def forward(self,X): 

        if self.use_bias: 

            a=tf.matmul(X,self.W)+self.bias 

        else: 

            a=tf.matmul(X,self.W) 

        return self.f(a) 

 

class DeepQNetwork: 

    def 

__init__(self,D,K,hiddenlayersizes,gamma,max_exp=50000,min_exp=5000,batch_s

z=750): 

        self.K=K  

 

        self.layers=[]  

        L1=D  

        for L2 in hiddenlayersizes: 

            layer=hidden_layer(L1,L2) 

            self.layers.append(layer) 

            L1=L2 

 

        layer=hidden_layer(L1,K,lambda x:x)  
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        self.layers.append(layer)  

 

        self.params=[] 

        for layer in self.layers: 

            self.params+=layer.params 

 

        self.X=tf.placeholder(tf.float32,shape=(None,D),name='X') 

        self.G=tf.placeholder(tf.float32,shape=(None,),name='G') 

        self.actions=tf.placeholder(tf.int32,shape=(None,),name='actions') 

 

        Z=self.X 

        for layer in self.layers: 

            Z=layer.forward(Z)  

        Y_hat=Z  

        self.predict_op=Y_hat 

 

        selected_act_values=tf.reduce_sum( 

         Y_hat*tf.one_hot(self.actions,K), 

         reduction_indices=[1] 

         ) 

 

        cost = tf.reduce_sum(tf.square(self.G-selected_act_values)) 

        #self.train_o=tf.train.GradientDescentOptimizer(10e-

5).minimize(cost)  

        self.train_o=tf.train.AdagradOptimizer(10e-3).minimize(cost) 

        #self.train_o=tf.train.MomentumOptimizer(10e-

5,momentum=0.9).minimize(cost) 

        #self.train_o=tf.train.AdamOptimizer(10e-5).minimize(cost) 

        self.exp = {'s': [], 'a': [], 'r': [], 's2': [], 'done': []} 

        self.max_exp=max_exp 

        self.min_exp=min_exp 

        self.batch_sz=batch_sz 

        self.gamma=gamma 

 

    def set_session(self,session): 

        self.session=session 

 

    def copy_from(self,other): 

        ops=[] 

        my_params=self.params 

        other_params=other.params 

        for p,q in zip(my_params,other_params): 

            actual=self.session.run(q) 

            op=p.assign(actual) 

            ops.append(op) 

        self.session.run(ops) 

 

    def predict(self,X): 

        X= np.atleast_2d(X)         

        return self.session.run(self.predict_op,feed_dict={self.X: X})  

 

    def train(self,target_n): 

        if len(self.exp['s']) < self.min_exp: 
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            return  

 

        idx = 

np.random.choice(len(self.exp['s']),size=self.batch_sz,replace=False)  

        states = [self.exp['s'][i] for i in idx] 

        actions = [self.exp['a'][i] for i in idx] 

        rewards = [self.exp['r'][i] for i in idx] 

        next_states= [self.exp['s2'][i] for i in idx] 

        dones=[self.exp['done'][i] for i in idx] 

        next_Q = np.max(target_n.predict(next_states),axis=1) 

        targets = [r + self.gamma * next_q if not done else r for 

r,next_q,done in zip(rewards,next_Q,dones)] 

 

        

self.session.run(self.train_o,feed_dict={self.X:states,self.G:targets,self.

actions:actions}) 

 

    def add_experience(self,s,a,r,s2,done): 

        if len(self.exp['s']) >= self.max_exp:  

          self.exp['s'].pop(0) 

          self.exp['a'].pop(0) 

          self.exp['r'].pop(0) 

          self.exp['s2'].pop(0) 

          self.exp['done'].pop(0) 

        self.exp['s'].append(s) 

        self.exp['a'].append(a) 

        self.exp['r'].append(r) 

        self.exp['s2'].append(s2) 

        self.exp['done'].append(done) 

 

    def sample_action(self,x,epsilon): 

        if np.random.random() < epsilon: 

            return np.random.choice(self.K) 

        else: 

            X = np.atleast_2d(x) 

            return np.argmax(self.predict(X)[0]) 

 

def play_one(env,model,tmodel,epsilon,gamma,copy_period):     

    train_mode=True 

    default_brain = env.brain_names[0] 

    env_info = env.reset(train_mode=train_mode)[default_brain] 

    done=False 

    totalreward=0 

    iters=0 

    kill=0 

    obsv=env_info.vector_observations[0] 

    while not done:  

        action=model.sample_action(obsv,epsilon) 

        prev_observation = obsv  

        action1=int(action) 

        env_info = env.step(action1)[default_brain] 

        obsv= env_info.vector_observations[0] 

        reward = env_info.rewards[0] 
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        done = env_info.local_done[0] 

        totalreward +=reward 

        if reward > 4: 

            kill+=1 

        if done: 

            reward = -200 

 

        model.add_experience(prev_observation,action1,reward,obsv,done) 

        model.train(tmodel) 

 

        iters +=1 

 

        if iters % copy_period ==0: 

            tmodel.copy_from(model)          

    return totalreward ,kill 

 

def plot_running_avg(totalrewards): 

  N = len(totalrewards) 

  running_avg = np.empty(N) 

  for t in range(N): 

    running_avg[t] = totalrewards[max(0, t-100):(t+1)].mean() 

  plt.plot(running_avg) 

  plt.title("Running Average") 

  plt.show() 

   

def main(): 

    env_name="shooter"     

    env = UnityEnvironment(file_name=env_name) 

    gamma=0.99 

    copy_period=100 

 

    D = 3  

    K = 4  

    sizes =[200,200] 

    model = DeepQNetwork(D,K,sizes,gamma) 

    tmodel =DeepQNetwork(D,K,sizes,gamma) 

    init=tf.global_variables_initializer() 

    session=tf.InteractiveSession() 

    session.run(init) 

    model.set_session(session) 

    tmodel.set_session(session) 

 

    N=200 

    totalrewards=np.empty(N) 

    epsilons=[] 

    costs=np.empty(N) 

    totalrewards2=[] 

    kills=[] 

    timetaken=[] 

    startTime=datetime.now()     

    for n in range(N): 

        epsilon=1.0/np.sqrt(n+1) 

        epsilons.append(epsilon) 
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        totalreward , 

kill=play_one(env,model,tmodel,epsilon,gamma,copy_period) 

        kills.append(kill) 

        totalrewards[n]=totalreward 

        totalrewards2.append(totalreward) 

        timedif=datetime.now() - startTime 

        timetaken.append(str(timedif)) 

        print("episode:", n, "total reward:", totalreward, "eps:", epsilon, 

"avg reward:", np.mean(totalrewards2),"kill count",kill, "Time taken:", 

datetime.now() - startTime,"\n") 

 

    print("Avg reward for last 100 episodes:", totalrewards[-100:].mean()) 

 

    rewardsfile = open('shooterlogs/rewards.csv','w',newline='') 

    rewardsfilewrite = csv.writer(rewardsfile) 

    rewardsfilewrite.writerows(map(lambda x: [x], totalrewards2)) 

    rewardsfile.close() 

 

    epsilonfile = open('shooterlogs/epsilon.csv','w',newline='') 

    epsilonfilewrite = csv.writer(epsilonfile) 

    epsilonfilewrite.writerows(map(lambda x: [x], epsilons)) 

    epsilonfile.close() 

 

    killsfile = open('shooterlogs/kills.csv','w',newline='') 

    killsfilewrite = csv.writer(killsfile) 

    killsfilewrite.writerows(map(lambda x: [x], kills)) 

    killsfile.close() 

 

    timetakenfile = open('shooterlogs/timetaken.txt','w') 

    for i in range(len(timetaken)): 

        timetakenfile.write(timetaken[i]+"\n") 

    timetakenfile.close() 

 

    plot_running_avg(totalrewards) 

 

 

if __name__ == '__main__': 

    main() 
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APPENDIX 2 

C# CODES USED FOR CREATING ENVIRONMENT 

For Agent 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

using UnityEngine.UI; 

 

 

public class shooteragent : Agent { 

  

 RayPerception rayPer; 

 

 public GameObject bulletExit; 

 public GameObject bullet; 

 public float bulletForwardForce; 

 

 public float agentRunSpeed; 

 

 public GameObject enemyOne; 

 public GameObject enemyTwo; 

 public GameObject enemyThree; 

 public GameObject enemyFour; 

 public GameObject enemyFive; 

 public GameObject enemySix; 

 

 public Vector3 enemy3From; 

 public Vector3 enemy3To; 

 public float enemy3Speed; 

 

 public Text Text; 

 public Text Text1; 

 

 Rigidbody rBody; 

 

 void Start () { 

  rBody = GetComponent<Rigidbody>(); 

  StartCoroutine (MoveEnemy3(enemy3From)); 

 } 

 IEnumerator MoveEnemy3(Vector3 target){ 

  while (Mathf.Abs ((target - 

enemyThree.transform.localPosition).x) > 0.20f) { 

   Vector3 direction = target.x == enemy3From.x ? 

Vector3.left : Vector3.right; 

   enemyThree.transform.localPosition += direction * 

(enemy3Speed * Time.deltaTime); 

   yield return null; 

  } 
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  yield return new WaitForSeconds(0.2f); 

 

  Vector3 newTarget = target.x==enemy3From.x ? enemy3To : 

enemy3From; 

 

  StartCoroutine(MoveEnemy3(newTarget)); 

 } 

 public void MoveAgent(float[] act) 

 {   

  Vector3 dirToGo = Vector3.zero; 

  Vector3 rotateDir = Vector3.zero; 

 

  int action = Mathf.FloorToInt(act[0]); 

 

  switch (action) 

  { 

  case 0: 

   dirToGo = transform.forward * 1f; 

   break; 

  case 1: 

   dirToGo = transform.forward * -1f; 

   break; 

  case 2: 

   dirToGo = transform.right * -0.75f; 

   break; 

  case 3: 

   dirToGo = transform.right * 0.75f; 

   break; 

  case 4: 

   fire (); 

   break; 

  } 

  transform.Rotate(rotateDir, Time.fixedDeltaTime * 200f); 

  rBody.AddForce(dirToGo * 

agentRunSpeed,ForceMode.VelocityChange); 

 

 } 

 

 public float detectLenwall; 

 public float rewardd; 

 public override void AgentAction(float[] vectorAction, string 

textAction) 

 { 

  Text.text = string.Format ("Reward at Step {0}",GetReward()); 

  Text1.text = string.Format ("Step {0}",GetStepCount()); 

  RaycastHit hit; 

  Ray wallDetectorforward = new Ray (transform.position, 

transform.TransformDirection(Vector3.forward)); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(Vector3.forward), Color.red); 

 

  var cross = (transform.forward + transform.right).normalized; 
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  Ray wallDetectorforwardcross = new Ray (transform.position, 

transform.TransformDirection(cross).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross), Color.red); 

 

  var cross2 = (transform.forward - transform.right).normalized; 

  Ray wallDetectorforwardcross2 = new Ray (transform.position, 

transform.TransformDirection(cross2).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross2), Color.red); 

 

  var cross3 = (-transform.forward - transform.right).normalized; 

  Ray wallDetectorforwardcross3 = new Ray (transform.position, 

transform.TransformDirection(cross3).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross3), Color.red); 

 

  var cross4 = (-transform.forward + transform.right).normalized; 

  Ray wallDetectorforwardcross4 = new Ray (transform.position, 

transform.TransformDirection(cross4).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross4), Color.red); 

 

  var cross5 = Quaternion.AngleAxis(22.5f, transform.up) * 

transform.forward; 

  Ray wallDetectorforwardcross5 = new Ray (transform.position, 

transform.TransformDirection(cross5).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross5), Color.green); 

 

  var cross6 = Quaternion.AngleAxis(67.5f, transform.up) * 

transform.forward; 

  Ray wallDetectorforwardcross6 = new Ray (transform.position, 

transform.TransformDirection(cross6).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross6), Color.green); 

 

  var cross7 = Quaternion.AngleAxis(112.5f, transform.up) * 

transform.forward; 

  Ray wallDetectorforwardcross7 = new Ray (transform.position, 

transform.TransformDirection(cross7).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross7), Color.green); 

 

  var cross8 = Quaternion.AngleAxis(157.5f, transform.up) * 

transform.forward; 

  Ray wallDetectorforwardcross8 = new Ray (transform.position, 

transform.TransformDirection(cross8).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross8), Color.green); 

 

  var cross9 = Quaternion.AngleAxis(202.5f, transform.up) * 

transform.forward; 
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  Ray wallDetectorforwardcross9 = new Ray (transform.position, 

transform.TransformDirection(cross9).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross9), Color.green); 

 

  var cross10 = Quaternion.AngleAxis(247.5f, transform.up) * 

transform.forward; 

  Ray wallDetectorforwardcross10 = new Ray (transform.position, 

transform.TransformDirection(cross10).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross10), Color.green); 

 

  var cross11 = Quaternion.AngleAxis(292.5f, transform.up) * 

transform.forward; 

  Ray wallDetectorforwardcross11 = new Ray (transform.position, 

transform.TransformDirection(cross11).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross11), Color.green); 

 

  var cross12 = Quaternion.AngleAxis(337.5f, transform.up) * 

transform.forward; 

  Ray wallDetectorforwardcross12 = new Ray (transform.position, 

transform.TransformDirection(cross12).normalized); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(cross12), Color.green); 

 

 

  Ray wallDetectorback = new Ray (transform.position, 

transform.TransformDirection(Vector3.back)); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(Vector3.back), Color.red); 

 

  Ray wallDetectorleft = new Ray (transform.position, 

transform.TransformDirection(Vector3.left)); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(Vector3.left), Color.red); 

 

  Ray wallDetectorright = new Ray (transform.position, 

transform.TransformDirection(Vector3.right)); 

  Debug.DrawRay (transform.position, 

transform.TransformDirection(Vector3.right), Color.red); 

 

 

  if ((Physics.Raycast (wallDetectorforwardcross8, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross7, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross6, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross12, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross11, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross10, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross9, out hit, 

detectLenwall)  ) || (Physics.Raycast (wallDetectorforwardcross5, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross4, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross3, out hit, 
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detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross2, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforwardcross, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorforward, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorback, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorleft, out hit, 

detectLenwall)) || (Physics.Raycast (wallDetectorright, out hit, 

detectLenwall)) ) { 

   if (hit.collider.tag == "wall") { 

    AddReward (-0.5f);//50 

   } else if (hit.collider.tag == "enemy") { 

    hit.collider.gameObject.SetActive (false); 

    AddReward (5f); 

   }  

 

  } 

  MoveAgent(vectorAction); 

  AddReward(-0.00005f); 

  if (!enemyOne.activeInHierarchy && !enemyTwo.activeInHierarchy 

&& !enemyThree.activeInHierarchy && !enemyFour.activeInHierarchy && 

!enemyFive.activeInHierarchy && !enemySix.activeInHierarchy) { 

   Done (); 

  } else { 

  } 

 } 

 public void spawnEnemies(){ 

   

  enemyOne.SetActive(true); 

  enemyTwo.SetActive(true); 

  enemyThree.SetActive(true); 

  enemyFour.SetActive(true); 

  enemyFive.SetActive(true); 

  enemySix.SetActive(true); 

  enemyOne.SetActive(true); 

  enemyTwo.SetActive(true); 

  enemyThree.SetActive(true); 

  enemyFour.SetActive(true); 

  enemyFive.SetActive(true); 

  enemySix.SetActive(true); 

  enemyOne.SetActive(true); 

  enemyTwo.SetActive(true); 

  enemyThree.SetActive(true); 

  enemyFour.SetActive(true); 

  enemyFive.SetActive(true); 

  enemySix.SetActive(true); 

  enemyOne.SetActive(true); 

  enemyTwo.SetActive(true); 

  enemyThree.SetActive(true); 

  enemyFour.SetActive(true); 

  enemyFive.SetActive(true); 

  enemySix.SetActive(true); 

 } 

 public override void AgentReset(){  

  spawnEnemies(); 
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  transform.position = new Vector3(3.994858f,0.275f,4.061983f); 

 } 

 public float detectLen; 

 public override void CollectObservations() 

 { 

 

  AddVectorObs (transform.position); 

 } 

 

 public void fire(){ 

  GameObject temp_bullet; 

  temp_bullet = Instantiate (bullet, 

bulletExit.transform.position, bulletExit.transform.rotation) as 

GameObject; 

  temp_bullet.transform.Rotate (Vector3.left * 90); 

 

  Rigidbody temp_rigidbody; 

  temp_rigidbody = temp_bullet.GetComponent<Rigidbody> (); 

  temp_rigidbody.AddForce (transform.forward * 

bulletForwardForce); 

  Destroy (temp_bullet, 2.0f); 

 

 } 

 public void OnCollisionEnter(Collision collision){ 

  if (collision.gameObject.tag == "wall") { 

   AddReward (-0.005f); 

  } 

 

 } 

 

} 

 

For Dynamic Enemy 

using System.Collections; 

using System.Collections.Generic; 

using UnityEngine; 

 

public class enemy_dynamic : MonoBehaviour { 

 

 [SerializeField] Vector3 position1; 

 [SerializeField] Vector3 position2; 

 [SerializeField] float speed; 

 // Use this for initialization 

 void Start () { 

  StartCoroutine (Move(position1)); 

 } 

  

 // Update is called once per frame 

 void Update () { 

   

 } 

 



50 

 

 IEnumerator Move(Vector3 target){ 

  while (Mathf.Abs ((target - transform.localPosition).x) > 

0.20f) { 

   Vector3 direction = target.x == position1.x ? 

Vector3.left : Vector3.right; 

   transform.localPosition += direction * (speed * 

Time.deltaTime); 

 

    yield return null; 

  } 

  print ("reacted the target"); 

 

  yield return new WaitForSeconds(0.2f); 

 

  Vector3 newTarget = target.x==position1.x ? position2 : 

position1; 

 

  StartCoroutine(Move(newTarget)); 

 } 

} 
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APPENDIX 3 

OTHER EXPERIEMENT RESULTS WITH ADAGRAD 

Numbers shown as under figure explanation as (Maximum experience replay, Min experience 

replay, Mini-batch, Copy target, Learning rate, Optimization method) 

 

Figure A3.1: (1 Mil., 100 Thousand, 170, 100, 10e-3, Adagrad) 
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Figure A3.2: (1 Mil., 100Thousand, 170, 100, 10e-3, Adagrad) 

 

Figure A3.3: (2 Mil., 250 Thousand, 170, 100, 10e-3, Adagrad)  
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Figure A3.4: (2Mil, 250 Thousand, 170, 100, 10e-3, Adagrad)  

 

Figure A3.5: (25 Thousand, 2.5 Thousand, 170, 100, 10e-3, Adagrad)  
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Figure A3.6: (25 Thousand, 2.5 Thousand, 170, 100, 10e-3, Adagrad)  

 

Figure A3.7: (50 Thousand, 5 Thousand, 170, 100, 10e-3, Adagrad)  
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Figure A3.8: (50 Thousand, 5 Thousand, 170, 100, 10e-3, Adagrad)  

 

Figure A3.9:  (50 Thousand, 5 Thousand, 7.5 Thousand, 100, 10e-3, Adagrad) 
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Figure A3.10: (50 Thousand, 5 Thousand, 7.5 Thousand, 100, 10e-3, Adagrad) 

 

Figure A3.11: (50 Thousand, 5 Thousand, 7.5 Thousand, 100, 10e-3, Adagrad) 
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Figure A3.12: (75 Thousand, 7.5 Thousand, 170, 100, 10e-3,Adagrad) 

 

Figure A3.13:  (75 Thousand, 7.5 Thousand, 170, 100, 10e-3,Adagrad) 
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Figure A3.14: (100 Thousand, 10 Thousand, 170,100,10e-3,Adagrad) 

 

Figure A3.15: (250 Thousand, 25 Thousand, 170, 100, 10e-3, Adagrad) 

. 
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Figure A3.16: (250 Thousand, 25 Thousand, 170, 100, 10e-3, Adagrad) 
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