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ABSTRACT 

 

Concrete’s compressive strength is widely studied in order to understand many qualities 

and the grade of concrete mixture. Conventional civil engineering tests involve time and 

resources consuming laboratory operations which results in the deterioration of concrete 

samples. Proposing efficient non-destructive models for the prediction of concrete 

compressive strength will certainly yield advancements in concrete studies.  

In this study, the efficiency of using radial basis function neural network (RBFNN) which 

is not common in this field, is studied for the concrete compressive strength prediction. 

Complementary studies with back propagation neural network (BPNN), which is widely 

used in this field, has also been carried out in order to verify the efficiency of RBFNN for 

compressive strength prediction. A total of 13 input parameters, including novel ones such 

as cement’s and fly ash’s compositional information, have been employed in the 

predictions models with RBFNN and BPNN, since all these parameters are known to 

influence concrete strength. Three different train:test ratios were tested with both models, 

while different hidden neurons, epochs and spread values were introduced in order to 

determine the optimum parameters for yielding the best prediction results. Prediction 

results obtained by RBFNN are observed to yield satisfactory high correlation coefficients 

and satisfactory low mean square error values when compared with the results in the 

previous studies, indicating the efficient of proposed model. 

 

 

Keywords: Compressive strength of concrete; non-destructive strength prediction; radial 

basis function neural network; back propagation; factor affecting concrete strength 
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ÖZET 

 

Beton basınç dayanımı, beton nitelikleri ve dayanım sınıfının anlaşılması için literatürde 

yürütülen pek çok kapsamlı çalışmaya konu olmuştur. Geleneksel inşaat mühendisliği 

testleri, maliyetli kaynak ve süre kaybına mal olan laboratuvar çalışmalarını içermelerinin 

yanı sıra, test edilen numunenin tahribata uğramasına ve dolayısıyla yeniden 

kullanılamamasına neden olur. Betonun basınç dayanımının belirlenmesi için tahribatsız ve 

etkili tahmin yöntemlerinin önerilmesiyle, bu alandaki beton çalışmalarında önemli bir 

ilerleme kaydedilmesi beklenmektedir.  

Bu tez çalışmasında, beton basınç dayanımı  konusunda literatürde kullanımı yaygın 

olmayan Radyal Tabanlı Fonksiyon Yapay Sinir Ağının kullanıldığı önerilen tahmin 

yönteminin verimliliği araştırılmıştır. Radyal Tabanlı Fonksiyon Yapay Sinir Ağı 

verimliliği ile yapılan basınç dayanımı tespitlerinin verimliliği, bu alanda sıklıkla 

kullanılan Geri Yayılım Algoritması ile hazırlanan ikinci bir model ile kıyaslanarak 

araştırılmıştır. İki modelde de, beton karışımında kullanılan çimento ve uçucu külün 

içeriğindeki kimyasal bileşenler gibi, daha önce benzeri çalışmalarda kullanılmamış yeni 

parametreleri de içeren toplamda 13 giriş parametresi kullanılmıştır. Çalışmalarda, üç 

farklı eğitim:test veri dağılımı, farklı sayılarda gizli nöronlar, farklı dağılım ve iterasyon 

değerleri ile birlikte kullanılarak doğruluğu yüksek basınç dayanımı tahmin sonuçları 

verecek optimum değerler tespit edilmiştir. İlgili literatürdeki çalışmalarının sonuçları ile 

kıyaslandığında, Radyal Tabanlı Fonksiyon Yapay Sinir Ağı ile yapılan beton basınç 

dayanımı tahminlerinde elde edilen korelasyon katsayısı ile karesel ortalama hata 

değerlerinin başarılı düzeyde oldukları tespit edilmiştir.  

 

 

Anahtar Kelimeler: Beton basınç dayanımı; tahribatsız beton dayanım tahmini; radyal 

tabanlı fonksiyon yapay sinir ağı; geri yayılım algoritması; beton dayanımını etkileyen 

faktörler 
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CHAPTER 1  

INTRODUCTION 
 

1.1 Overview on concrete and its Compressive strength 

Concrete is the fundamental construction material around the world due to its important 

advantages such as its strength, easy workmanship for its manufacture, high availability 

and low cost of its constituent materials. Among these, its outstanding performance in 

compression, to withstand the compressive stress makes concrete primary building 

material. Determining the compressive strength of concrete for any structural element is 

also important in design process. Conventional concrete is made of several materials 

including cement water and different types of aggregates. The strength of concrete is 

affected by various factors such as water - cement ratio, types and amount of aggregates as 

well as cement type and content. Cement types are classified mainly according to their 

chemical compositions. Therefore, changing the chemical composition of cement yield to 

the formation of different concrete compounds and hence strength value varies. Therefore, 

chemical composition of all constituents plays important role in concrete strength. 

Measuring the major feature of concrete is a critical stage in design process. Concrete 

compressive strength can be measured using two types of tests. Conventional test is the 

most widely used test for concrete compressive strength and it called as compression test. 

This test is held in laboratory using newly manufactured concrete specimen or extracted 

core from an existing structure. In order to measure the strength of concrete core or 

specimen, this test requires applying compressive stress on concrete sample (specimen or 

core) until the concrete sample fails under load. Thus its destructive and uneconomical. 

Also, the procedure of this test requires a considerable amount time, especially in 

preparing new concrete specimen (casting and hardening concrete specimen) therefore it is 

considered as a time consuming test. The other type of concrete compressive test consists 

of equipment such as ultrasonic pulse velocity device. This type of test measures the 

compressive strength of concrete through defining the amount of cracks, voids, porosity 

and corrosion in concrete structure. However, this test is classified as non destructive but 

its cost effective and time consuming test. 
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1.2 Definition of the problem 

It is seen that an efficient tool to predict concrete compressive strength in non destructive, 

non-time and resources consuming way will be beneficial for both concrete industry and 

researchers working in this field. Artificial neural networks (ANNs) have been used in civil 

engineering by many researchers to various prediction tasks, especially in concrete 

compressive strength estimation task (Douma et al., 2016) (Khashman and Akpinar, 2017). 

ANN is a data processing model which tries to imitate the way of human biological brain 

works. However, the previous ANNs models for compressive strength have observed to 

not considered all critical input parameters. Also the radial basis function neural network 

(RBFNN) is not commonly used in concrete compressive strength prediction, even though 

its training is faster than the conventional neural network learning (Du and Swamy, 2013). 

1.3 Objective and Scope of the Study 

Design Based on previously mentioned problems, this study aims to employ Radial Basis 

Function Network (RBFNN) as an alternative in regression task for studying concrete 

compressive strength prediction in a different way. Detailed dataset based on 326 

experimental cases with comparable conditions are formed from the related-literature. 13 

input parameters including some parameters that will be used for the first time in the 

related literature are considered for prediction concrete compressive strength. Moreover, 

strength prediction will be studied with three selected train: test ratios with varying hidden 

neurons and spread values. 

1.4 Significance of the Study 

The importance of this study is due to the fact RBFNN has not yet been used in prediction 

of concrete compressive strength, thus it is employed for the first time in order to predict 

the concrete compressive strength considering influence of several material and 

manufacture criteria in a detailed and systematical way. This study also considers some 

new input parameters that affects the concrete strength which have not been used before in 

the related literature. These parameters include calcium oxide, silicon dioxide and 

aluminum oxide contents of fly ash and cement. Moreover, this study provides a 

comparison of compressive strength prediction performance of RBFNN with BPNN in a 
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detailed way. In these aspects, a significant contribution will be made to the related 

literature.   

1.5 Structure of the Thesis 

Chapter one describes in detailed the problem that is detected and studies in this thesis, as 

well as the scope, objective and the significance of the study. Chapter two includes 

theoretical background about concrete compressive strength. Chapter three explains 

artificial neural networks and the most common types of these networks. Previous studies 

on concrete compressive strength prediction with artificial neural networks are discussed in 

chapter four, whereas, the proposed models and the procedure of implementation for this 

study are described in chapter five.  

Results and discussion are presented in chapter six, whereas conclusion and 

recommendation are provided in Chapter seven. 
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CHAPTER 2 

LITERATURE REVIEW ON CONCRETE 
 

 

2.1 Overview Concrete as Construction Material 

Concrete and steel are the most commonly used construction materials around the world. 

These materials are considered valuable materials due to their behavior. Concrete is well 

known to have high compressive strength and steel has high resistance to tension. Steel can 

show higher performance than concrete in both compression and tension. Use of steel only 

as construction material is uneconomical thus people are tended to use concrete in 

construction. Concrete has several advantages such as easy workmanship, raw materials of 

concrete are available everywhere and it is economical comparing to other materials such 

as steel. Also, concrete has ability to withstand high temperatures thus can be considered as 

fire resistant material. Conventional concrete is usually composed of cement, water and 

different type of aggregates. Cement is grey powder which is considered as the main 

ingredient of concrete. Aggregates are classified according to their size. If the size of 

aggregate particles is less than five mm then these aggregates are fine, whereas, the 

particles that have bigger size than those of fine are called coarse aggregates. In specific 

types of concrete, in order to have specific properties of concrete, admixtures are added to 

concrete mixture. The most common admixtures are set retarders, plasticizers and 

accelerators. In some cases, fly ash also can be used as admixture. The set retarders 

admixtures are used to provide postponement for the setting of concrete. The accelerators 

are motivating the hydration reaction and cause increasing in hydration temperature, and 

then eventually affect strength of concrete at early age. Plasticizers or water reducer are 

utilized to decrease water content. However, most concrete mixtures contain cementitious 

materials. These materials can be defined as materials that are as fine as the least cement 

particles. Furthermore, these materials can be formed from products from other processes 

or natural materials. Fly ash and silica fume are known as pozzlans. Fly ash does not have 

any cementitious properties except when it uses with Portland cement, it can react and 

form compounds. These compounds influence the strength of concrete (Neville, 2012), 

(Shetty, 2005), (Neville and Brooks, 2010),  (Halstead, 2006) & ( Ramezanianpour, 2014). 
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2.2 Cement and Cementitious Materials 

In production of Portland Cement, clay and limestone are the chief raw materials that are 

fed into the rotary kiln and heated to form a new materials called the clinker. This clinker 

consists of “tricalcium silicate (C3S), dicalcium silicate (C2S), tricalcium aluminate (C3A) 

and tetracalcium aluminoferrite (C4AF)” which are the main compounds. The final product 

of the cement when mixed with water results in stiffening of fresh cement paste. The 

reaction with water yields hydration products responsible for development of cement 

microstructure. The hydration process yields Ettringite first and other hydration products 

Moreover, this product known to have different volume thus it causes expansion. Later on, 

lime (CH) and C-S-H gel start to form. Ettringite converts into monosulfate aluminate 

when the content of C3A exceeds the sulfate in the cement compound. However, C-S-H is 

calcium silicate hydrates gel constitute about 50-60 % of the hydrated cement paste by 

volume, and with large surface area which is responsible for the strength of the concrete. 

The compounds occupy the pore spaces between the particles of cement compounds. The 

portlandite is a long crystal that constitute about 20-25 % of the hydrated cement paste by 

volume and with less contribution to the strength due to it’s low surface area (Neville and 

Brooks, 2010) & (Mehta and Monteiro) Materials that have high fineness as least cement 

cement particles are called cementitious materials. Fly ash, silica fume, ground granulated 

blast-furnace slag and filler are the most common cementitious materials. Fly ash can be 

defined as pulverized-fuel ash. It is the precipitated ash from exhaust gases of power 

plants. Fly ash is considered as one of the most common pozzlans cementitious materials. 

Fly ash known to have no cementitious properties, which reacts with water and precipitate 

portlandite to form denser cementitious compounds and these compounds can affect the 

strength of concrete. Fly ash has very fine particles size. The source of fly ash influences 

its composition. Moreover, fly ash of class C and F are the most used in construction. With 

respect to American Society for Testing and Materials (ASTM C 618) that class F can be 

made by burning anthracite or bituminous coal under normal condition. Class F has 

pozzolanic features.in other words, in itself has no cementitious properties but in the 

existence of moisture it can react with lime and form products that have cementitious 

features. The pozzolanic interaction of fly ash happens slowly at ordinary temperatures. 

Fly ash can be used as admixture or additives for blended cement . In general, fly ash is a 

cementitious material and it can be replaced with a part of the ordinary cement. This 
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replacement can be made in two methods, either by adding a part of blended cement or in 

the concrete mixer. However, the quantity and quality of fly ash influence the concrete in 

both states. In other word, the selection of the appropriate  proportion fly ash and type 

ensure good quality mixture. Furthermore, fly ash can effect fresh and hardened state of 

concrete. In fresh state, the fly ash can be influenced by the following: 

 Workability  

Fly ash particles are very fine and have spherical shape which allow greater workability for 

equivalent W/C ratio. In addition, in fly ash concrete mixture the volume of both cement 

and fly ash are generally greater than the cement content concrete mix with no fly ash. 

Furthermore, increasing the solid over water ratio leads to form a paste that improves the 

plasticity of mixture.  

 Bleeding 

For a given workability, bleeding can be reduced with increase in binder fineness and 

decrease in water to binder ratio. 

 Time of Setting  

The impacts of fly ash on setting time of concrete depend on the type and quantity of used 

fly ash. Generally, all class F fly ashes yield to reduce the temperature of hydration and 

this leads to delay setting time and early gain of concrete strength. Fly ash influences 

hardened concrete through the strength and rate of strength gain. The main reason for using 

fly ash in concrete is due to the fact that at early ages fly ash concrete promotes low heat 

comparing to normal concrete. In fly ash concrete, the pozzolanic interaction starts at a 

slow rate but it provides equal or greater ultimate strength than conventional concrete. Fly 

ash concrete can be defined as replacing a portion of the used cement with fly ash having 

proper pozzolanic features in order to maintain ultimately greater strength than typical 

concrete. The strength of fly ash concrete depends on the properties of the used fly ash. 

The general observance that fly ash concrete has lower early strength than typical concrete 

(Shetty, 2005),(Mehta and Monteiro , 2006), (Halstead, 2006) & (Ramezanianpour, 2014). 
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2.3 Concrete Strength 

The strength scientifically can be defined as it’s the ability of an object to withstand an 

applied force without deformation. Concrete can significantly perform higher in 

compression than tension, so concrete strength is usually represented by the compressive 

strength which is widely considered as the most valuable feature of concrete. Most of 

buildings and other structures are subjected to various types of loads such compression and 

tension. Concrete is mainly used to provide resistance to the compressive stresses. Also, 

it’s used as a measure of other features such as elastic modulus and impermeability. 

Concrete quality usually depends on the concrete compressive strength. The strength of 

concrete is derived from the strength of bond that located between cement paste and 

aggregate particles. There is an inverse relationship between strength and porosity and 

direct relationship between strength and age. Usually when cracks are formed this referrer 

to the occurrence of failure. This failure might be due to various factors (Neville, 2012), 

(Shetty, 2005) & (Neville and Brooks, 2010). 

2.3.1 Factors affecting concrete strength 

Concrete’s strength is influenced by various factors including porosity, water/cement ratio, 

cement type and amount, type and shape of aggregates, humidity, and level of compaction. 

Also the bond that exists between cement paste and aggregates particles has effects on 

concrete compressive and tensile strength. The voids or pores that have not filled by 

hydration products have significant influences on concrete strength, especially those with 

size of larger than 50 nm are widely recognized to increase the permeability (Neville, 

2012) (Neville and Brooks, 2010) & (Mehta and Monteiro, 2006). 

Transition zone is considered as a critical factor, it is also called as interface zone or 

aggregates bond. The presence of pores and its sizes also affects the strength with the zone. 

The strength of this zone is improved within the time and thus concrete strength is 

improved. This improvement is occurred due to the formation of calcium silicate hydrated 

gel in existing voids. Moreover, Calcium Hydroxide (CH) has less surface area compared 

calcium silicate hydrated gel, therefore provide less binding property. Calcium Hydroxides 

are behaved as promote cracking zones because these Hydroxides are formed in oriented 

layers. Also, strength of the interface zone is influenced by size of existing voids, 
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aggregate texture (crashed) and direction of the formed Calcium Hydroxides. (Neville, 

2012), (Shetty, 2005), (Neville and Brooks, 2010) & (Mehta and Monteiro, 2006). 

75 % of the concrete volume is occupied by aggregates, therefore it has major influences 

on concrete strength. The quality of Concrete is affected by aggregate’s size, shape and 

texture. The surface texture has effects on the interface zone. the shape and surface texture 

of aggregates have considerable influences on concrete flexural strength However, the 

interface zone is improved when aggregates particles that have a crashed and tough surface 

are used. (Neville, 2012), (Shetty, 2005) & (Mehta and Monteiro, 2006).  

During consolidation, poor crashed aggregates have potential to be segregated and 

eventually this segregation can affect transition bond negatively. Defining the proper water 

to binder ratio can result in satisfactory ratio of tensile to compressive strength. Moreover, 

use crushed aggregate in concrete mixture may lead to increase the tensile and compressive 

strength (Shetty, 2005). 

2.4 Compressive Strength Test 

Concrete can show a significant performance in compression. Therefor the compressive 

strength is defined as a major feature of concrete. Concrete’s compressive strength is 

studied in order to understand many quantities and the grade of concrete mix. The concrete 

compressive strength is a measure of concrete ability to withstands the applied stress. The 

benefit of defining the concrete’s compressive strength is to determine that the concrete 

mixture and to be used in designing structural members and other purposes. Concrete 

compressive strength test can be made for different purposes but the main two objectives 

of testing are quality control and compliance, now called conformity with specifications. 

However, type and size of test specimen, curing condition, hardness of the testing machine 

and rate of applying load influence the compressive strength test outcomes. Thus testing 

must be carried out according to a single code. The commonest test of concrete 

compressive strength involves using of a destructive machine that requires Applying load 

on the concrete specimen until the specimen break in order to identify the compressive 

strength, see figure 2.1. Furthermore, this test can be held in laboratory by using cylindrical 

specimen or cubic specimen depending on the testing code. in United states, Canada, 

Australia, and New Zealand the test specimen should be cylindrical specimen that mostly 
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have diameter of 150 mm and a height of 300 mm. Whereas in most of the European 

countries the specimen should be in cubic form and must have dimension of 150 mm from 

each side. The most common standard test methods for compressive strength of concrete 

are ASTM C 39 (standard test method for compressive Strength of cylindrical concrete 

specimens) and BS EN 12390-3:2009 it is british and european standard test method for 

compressive strength of cubic concrete specimens. Nevertheless, compressive strength test 

also can be carried out using extracted cores form structure. The standard test method for 

obtaining and testing compressive strength of structural core and others strength is ASTM 

C42/C42M. The compressive strength test might be considered as a destructive test since it 

requires destroying or breaking the specimen. Furthermore, the tested specimen (broken 

specimen) can not be used for other test thus it can also be called uneconomical test 

(Neville, 2012), (Shetty, 2005), (Neville and Brooks, 2010) & (Mehta and Monteiro, 

2006). 
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Figure 2.1: Classical test of concrete compressive strength 
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(a) 

 

 

(b) 

Figure 2.2: (a) Cylindrical and (b) cubical specimens with different types of failure 

 



12 
 

CHAPTER 3 

NEURAL NETWORKS 
 

3.1 Introduction 

The nature of human brain structure is complex and precise and because of these properties 

of brain structure, makes brain to have capability to perform various difficult assignments. 

Scientifically, human brain uses biological neurons to perform these tasks. The exact 

number of neurons is unknown but these neurons can be approximated around billions of 

neurons (linked with each other). The principle of artificial neural networks (ANNs) is 

inspired by the mechanism of human biological brain; thus artificial neural networks can 

be defined as an imitation of the structure and the function of the biological brain. ANN 

can be used for various applications, such as pattern recognition and classification of the 

data by training operations (Haykin, 2009) & (Du and Swamy, 2013). 

3.2 Historical Background  

The first insight of artificial neural networks was emerged in 1943 by McCulloch and Pitts. 

the authors proposed that logic function can be made through modeling the neurons as 

threshold system. After some time, Hebbian learning rule was suggested in 1949 by Hebb, 

who showed that synaptic (weights) that are located between neurons can be influenced by 

learning. Moreover, Hebbian rule defines the amount of weight that must be raised or 

reduced in proportion to the product of their activation (Haykin, 2009) , (Du and Swamy, 

2013) & (Kriesel, 2007). 

The first neural network model (Perceptron) was invented by Rosenblatt in 1957. The 

perceptron consists of only one single neuron and threshold transfer function. Two years 

later, Hoff and Widrow developed a model called as adaline (adaptive linear element) 

which was based on McCulloch and Pitts theory. The proposed model (adaline) brought 

with training or learning method which known as Least Mean Square (LMS) technique. 

The activation function in perceptron was threshold, whereas in Adaline was linear while. 

At the same period, madaline paradigm was developed which was an extension for adaline, 

madaline consists of set of adaline parallel as its input layers. However, multilayer adaline 

or madaline was the first model employed for real problems. Both adaline and madaline 

have the capability of only to find solution for linear separable problem due to the type of 
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transfer function (linear transfer function). Ph.D. student, (Paul J. Werbos), invented back-

propagation algorithm for learning neural network in 1974. John Hopfield proposed new 

model of neural network known as recurrent or Hopfield network which consists of single 

layer use for information storage and for solving optimization tasks in 1982. Hopfield 

works with the hebbian learning rule (Du and Swamy, 2013) & (Kriesel, 2007). 

Rumelhart, Hinton and Williams have suggested back-propagation algorithm to be used 

along with the multilayer perceptron (MLP) model for solving non linear separable 

problems in 1986. Two years later, radial basis function neural network(RBFNN) was 

developed as universal approximator by Broomhead and Lowe. Pearl introduced the 

Bayesian or Bayes neural network was proposed by Pearl in 1985 (Du and Swamy, 2013) 

& (Kriesel, 2007). 

3.3 Human Brain “Biological Neural Network” 

Human brain contains a lot of neurons which can be approximated by billions. and each 

single neuron in human brain is linked to thousands near by neurons. The essential 

anatomic and effective part in human brain is a nerve cell, the nerve cell is also known by 

(nervous system) or neuron. The neuron can be defined as an extension of the normal cell 

with an axon and dendrites. Moreover, the biological neuron composed of dendrites, soma, 

axon, and the weight or  synapse . Figure 3.1 shows the components of the biological 

neuron. As shown in the figure that nucleus is located in middle of the soma. The soma 

generates input through gathering all the arriving signals. Also from the figure it can be 

seen that dendrites are directly related to the cell body (Soma). The function of dendrites is 

to receive signals from other neurons and transmit it to the soma. The output path to other 

neurons is represented by the axon which is branching into main and secondary branches to 

link the dendrites and next neuron’s soma. At the end of each branch of axon there are 

structures known as synapses. These synapses can be referred as the connection points 

between two different neurons. The synapses connections can be inhibitory or excitatory. 

These synapses uses to transit the signal between neurons in two directions. These signals 

are electrochemically transmitted in the junction points. The potential in the synapses 

changes based on the chemical materials being transmitted between the neurons. The 

potential affects soma and causes its activation if the received signals by dendrites are 

strong sufficient to flame the neuron. Moreover, if the received signals by dendrites are 
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strong sufficient to flame the neuron, then the neuron neuron will transmit another signal 

by the axon to near by neurons in the same process. The signal is going also to be received 

by the connected dendrites, so can fire next neurons. (Xiao, 1996). In other words, the 

neurons collect signals from other neurons through fine structures known as dendrites and 

these neurons can be activated or deactivated based on the received electrochemical 

signals. For instance, When the sum passes a threshold or certain value, then the neuron 

will fire (activated) and the signal go along to the neighboring neurons through the axon 

which splits into thousands of branches known as synapses. But in the case that the sum is 

less than the activation value, then no neuron be fired and this results in deactivated 

neurons (Haykin, 2009), (Du and Swamy, 2013) (Kriesel, 2007), (Xiao, 1996)& (Fausett, 

1994). 

 

 

Figure 3.1: Architecture of human biological neuron. (Du and Swamy, 2013) 

3.4  Neural Networks  

Artificial Neural Networks (ANNs) can be defined as a data processing model which tries 

to imitate the way of human biological brain works. There are many nodes (neurons) that 

linked or connected with each other through lines (weight) in ANNs; these neuros work 

with each other to find solution for specific tasks. The processes of neural networks (NN) 

consist of two steps; the first step is training or learning of neural network through use of 



15 
 

data (examples) which can be carried out by using learning algorithm. Whereas, the second 

step is recalling; this step means testing the trained network for new given data (examples). 

However, the structure, properties of neurons and training methods are factors that affects 

classification of neural networks or specify the type of neural network. The most common 

types of neural network are listed below. (Haykin, 2009), (Du and Swamy, 2013), (Kriesel, 

2007), (Tino et al., 2015) & (Gurney, 1997). 

3.5 Neural Networks Types 

1. A Feed-Forward Neural Networks (FFNNs): are the most commonly used type of 

neural networks. FFNNs consist of three type of layers (inputs layer, hidden layer 

and output layer). the structure of FFNNs is sorted by the type of layers, such as the 

first layer is input layer and last layer is the output layer, whereas the middle layers 

(located between input and output layer) can be called as hidden layers, which can 

be one or more layers. Moreover, in FFNs, the neurons are connected to the 

following layer neurons by one-direction lines (weights). In other words, there is no 

feed-back connection in FFNN and the neurons of same layer are not connected 

with each other. The most common types of Feed-Forward neural networks are 

listed below (Haykin, 2009,  (Du and Swamy, 2013), (Kriesel, 2007), (Tino et al., 

2015) & (Gurney, 1997).  

a) Multilayer perceptron 

b) Radial basis function network 

2. Recurrent neural network: is a less conventional type of neural network. The 

architecture of this network allows feed-back connection between neurons. Further, 

minimum amount of feed-back connection between neurons in this network must 

one feed-back connection. Also in this network, the neurons of same layer can be 

connected with each other. The commonly used types of Recurrent neural network 

are listed below (Haykin, 2009), (Du and Swamy, 2013), (Kriesel, 2007), (Tino et 

al., 2015) & (Gurney, 1997).  

a) Hopfield network 

b) Boltzmann machine. 
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3.6 Single Layer Perceptron 

It is artificial neuron model that can be defined as a mathematical model of a biological 

neuron with several inputs (x1, xj1) and one single output (y). Furthermore, McCulloch and 

Pitts model also can be referred as a simple neuron paradigm that gathers input patterns 

and assign them as input parameters through the associated parameters of the weights. In 

other words, linear threshold system is a neuron that can operates all the number of inputs 

from another units and form an actual values, this process is performed in accordance to 

the activation function. The transfer function performs mapping from the input (real 

values) to the output (into interval); this mapping can be a linear or nonlinear. the 

sigmoidal function (hard-limiter) was used in McCulloch and Pitts model as transfer 

function, which referred by (Ø). The synapses in artificial neuron model is referred as 

weights (w) which is the connection lines between inputs and neuron. Moreover, in 

McCulloch and Pitts model the values of the weight (w) and threshold (θ) were fixed. 

Artificial neuron model can easily classify inputs set into two various classes (which 

means the output is binary). The output (y) in artificial neuron or McCulloch and Pitts 

model is specified by summation of the dot product between weight and input parameters 

(wi. xi )  with respect to the activation function Ø. (Haykin, 2009), (Du and Swamy, 2013) 

& (Gurney, 1997). 

                                                N =  ∑ 𝑤𝑖 𝑥𝑖 −  θ = 𝑤𝑇x − θ                                        (1)  

𝐽1

𝑖=1

 

                                                                        y =  Ø (𝑁)                                                      (2) 

 

Figure 3.2: Architecture of artificial-neuron model (McCulloch and Pitts model) (Du and              

                    Swamy, 2013) 
 

N = network of artificial neuron model, whereas, x is the input parameters. 
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w represents the weight or the connection lines between inputs and transfer function. 

Ø is the activation function (sigmoidal).  

θ is the threshold which is an attribute uses to move the decision boundary away from the 

origin.  

In 1957, the first perceptron (single-layer perceptron paradigm) was developed by 

Rosenblatt which was inspired by McCulloch & Pitts model and the idea of Hebb (Hebbian 

learning rule). Rosenblatt’s Perceptron model has the capability to classify inputs set into 

more than two classes unlike artificial neuron (McCulloch & Pitts) model which can only 

classify inputs set into two classes. In single-layer perceptron model, different activation 

functions (Ø) have been used such as a bipolar. Also, the weights (w) and thresholds or 

biases (θ) is calculated analytically or by a learning algorithm. However, the output ('y ) of 

single-layer perceptron can be written as fallowing. (Haykin, 2009), (Du and Swamy, 

2013), (Fausett, 1994) & (Tino et al., 2015). 

 

                                                                𝑁 =  𝑤𝑇𝑥 − 𝜃                                                 (3) 

                                                                  ′y =  Ø (𝑁)                                                   (4) 

 

 

Figure 3.3: Architecture of of Rosenblatt’s Perceptron (Du and Swamy, 2013) 
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Single-layer perceptron has capability only to find solution for linear separable problems. 

the weight between neurons can be adjusted by using learning algorithm (Rosenblatt’s 

perceptron convergence theorem) and this can be driven through error equation (Et, j). 

Moreover, the learning algorithm of perceptron can be written as following: 

                                𝑁𝑡,𝑗  =  ∑  𝑥𝑡,𝑖 𝑤𝑖,𝑗 (𝑡) – 𝜃𝑗 = 𝑤𝑗
𝑇𝑥𝑡 −  𝜃𝑗

𝐽1

𝑖=1

                        (5) 

                                        ′y𝑡,𝑗 =   {
1             𝑁𝑡,𝑗 > 0

 
0         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         ,                                   (6) 

                                          𝐸𝑡,𝑗   =   y𝑡,𝑗 − ′y𝑡,𝑗                                                         (7) 

                                𝑤𝑖𝑗 (𝑡 + 1)  =   𝑤𝑖𝑗(𝑡) −  𝑛   𝑥𝑡,𝑖  𝐸𝑡,𝑗                                  (8) 

 

N = network of single-layer perceptron, whereas, xt,I  is the ith input of the tth example. 

wij is the ith weigh at the tth node (stand for connected lines between neurons). 

θ is the bias or threshold for neuron. while, Ø is the transfer or activation function. 

Et, j  is denote to the error. 

yt, i is referred to the real output (desired). 

'yt, i is the actual output (predicted from network).(Du and Swamy, 2013). 

3.7 Multilayer Perceptrons 

Multilayer Perceptrons (MLPs) are feed-forward neural network which have the ability of 

approximating generic classes of functions and solving linear inseparable problems. MLPs 

structure consist of three different type of layers (inputs, hidden and output) and these layer 

are fully linked forward by connection lines called as weight (w). MLPs can have one or 

more hidden layers. Each layer in MLPs contains a number of neurons. the nodes in inputs 

layer represents the input parameters thus the number of units in inputs layer depend on the 

number of inputs parameters. The nodes in output layer denotes to the output parameter. 
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The number of hidden layer neurons can be identified experimentally (trial and error). The 

amount of layers and neurons of hidden influences the performance of a neural network. 

The neurons or nodes in hidden layer receive and send signals. In the output layer, the 

output of neuron can be generated through employing transfer or activation function to the 

weighted sum, the weighted sum can be calculated by multiplying the input by its related 

weight (w), Thereafter, the results are added to each other in order to form sum. 

Mathematically, the neuron output (y) of MLP can be written as following: 

 

                       Y =  Ø  (∑  𝑥𝑖,𝑗  𝑤𝑖,𝑗   + 

𝐽1

𝑖=1

 𝜃)                                                        (9) 

 

 

 

Figure 3.4: Multilayer perceptron (MLP). 
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3.7.1 Components of Multilayer Perceptrons  

The main parts of Multilayer perceptron are layers, weights, and activation functions. Each 

part has important role in MLP. As shown in figure 3.4 there are three various type of 

layers (input layer, hidden layer & output layer). These layer are fully connected forward 

through lines (weights) which allows to the information to be passed between layers. 

Generally, the Input layer is usually placed at the beginning (considered as the first layer) 

of network. This layer consists of number of nodes and these nodes represents the number 

of inputs parameters. Moreover, input layer has no transfer function but, its allow to the 

information of inputs to be transferred to the hidden layer. Whereas, the hidden layers 

usually located between the input and output layers, and connected to them through lines 

(weights). Moreover, the weights start to be modified or updated constantly at hidden 

layers. The hidden layers are known as processing layers which consist of number of 

neurons and the number these neurons can be defined experimentally. The last layer known 

as output layer, which provide the final output of the all network, thus can be considered as 

processing layer. Figure 3.4 indicated to MLP with two hidden layer, the input layer is fed 

by inputs parameters. While, the first hidden layer is fed by output of input layer and 

second hidden layer is fed by the output of the first hidden layer. Moreover, the input of 

output layer is fed by the output of second hidden layer, whereas the output of output layer 

is uses to forms the output of the network.  

The connection lines between layer are called as weights. These lines play an important 

role in determining the output in neural networks. At the beginning, the weight in the 

neural networks is sets at random, then this weight begins to be updated in order to get 

more accurate results. however, this update can be done through many iterations (epoch) 

(Haykin, 2009), (Du and Swamy, 2013), (Kriesel, 2007), (Tino et al., 2015) & (Shalev-

Shwartz and Ben-David, 2014).  

On the other hand, the purpose of using activation or transfer functions in most of neural 

networks is to provide boundary for the output of nodes. Furthermore, the format of inputs 

data can be influenced by the type of transfer function, in other word, defining the type of 

transfer function can indicate how inputs data must be formatted or arranged. neural 

network can have various types of transfer functions. Most common activation functions 

are listed below: 
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a) Linear or Identity: its the most basic type of activation function, the output 

is linearly, as shown in figure 3.5. The linear transfer function is defined by: 

                                                  Ø(𝑥)  =   𝑥                                                              (10) 

 

Figure 3.5: Linear activation function 

b) Threshold or Step : in 1943, McCulloch and Pitts used this function as an 

activation. In this function, the outputs are 1 if the input (x) equal or grater 

than 0.5, while if the input (x) is less than zero then the outputs can be zero 

or minus one: 

                                           Ø(𝑥) =   {
1 ,          𝑖𝑓   𝑥 > 0

 
0 ,        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

         ,                                        (11) 
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Figure 3.6: (a) Step activation function & (b) Linear threshold between bounds 

 

c) In feed-forward neural networks when the outputs values are positive, 

sigmoid or logistic activation is the most commonly used activation or 

transfer function. The values in this function is limited between zero and 

one. Further, this function can be written as below:  

 

                                   Ø(𝑥) =  
1

1 + 𝑒−𝑥
                                                                  (12) 

 

Figure 3.7: Sigmoid activation function 
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d) The hyperbolic tangent function. this function limited the values between -1 

and 1. hyperbolic tangent function is as follows.  

 

                              Ø(𝑥) = tanh(𝑥)                                                                          (13) 

 

 

Figure 3.8: Hyperbolic tangent transfer function 

Figure 3.9 shows, MLP with N number of hidden layers. And suppose that z need to be 

calculated then the output of z example can mathematically be written as below: 

           ′𝑦𝑧  =  𝑦𝑧
(𝑁) 

                    ,                      𝑦𝑧
(1) 

 = 𝑥𝑧                                      (14) 

 

                 𝑁𝑒𝑡 𝑧
(𝑁)

   =      [ 𝑤(𝑛−1) ]
𝑇

   𝑦𝑧
(𝑛−1 ) +  𝜃(𝑛)                                       (15) 

 

                                            𝑦𝑧
(𝑛) 

=  Ø(𝑛)   ( 𝑁𝑒𝑡𝑧
(𝑛)

)                                                          (16)    

 

Net z
(n) = [ Net z,1

(n), …, Net z, jm
(n)] whereas, N is the number of hidden layers, 

yz
(n-1) = [yz,1

(n-1) …, yz,Jn-1 
(n-1)] 
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θ is the bias. where Ø(n) is the transfer or activation function [Ø1
(n)…, ØJn

(n)]. 

yz 
(N) is referred to the output of the ith neuron in the nth layer. 

'yz 
(N)

, is the actual output (predicted from network) of zth example (Du and Swamy, 2013) 

 

Figure 3.9: Multilayer perceptron (MLP) with N hidden layers 

3.7.2 Learning of Multilayer Perceptrons  

As previously mentioned, neural networks (NN) process involves training (learning) and 

generalization or recalling. The learning or training of neural network is represented by 

reducing the cost function, and can be carried out through locating the optimum weight (w) 

and sometimes, the parameters of other network. This process is also known as learning 

algorithm. Back-propagation algorithm is considering as the most commonly used 

algorithm for training Multilayer perceptron. The training in Neural networks can be 

carried out by epochs. An epoch can be defined as a full cycle when whole the examples in 

training are given to the network and are processed using the learning algorithm only once. 

When training of neural network is completed, the network starts to performs a complex 

relationship, and possesses the capability for recalling (Haykin, 2009), (Du and Swamy, 

2013), (Kriesel, 2007), (Tino et al., 2015) & (Shalev-Shwartz and Ben-David, 2014). There 

are three different type of methods of learning: 
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1. Supervised learning  

This type of learning is known as learning with teacher. In this learning, neural network is 

provided by target output values in order to modify the parameters of network through 

straightforward manner (finding the differences between the desired values and the 

predicted values). The predicted values are those that generate by the network. Training 

process is guided by the differences of error (E) which can be calculated using mean 

squared error (MSE) (Haykin, 2009), (Du and Swamy, 2013), (Kriesel, 2007), (Shalev-

Shwartz and Ben-David, 2014)& (Maillard and Gueriot, 1997).  

                          𝐸 =
1

𝑀
∑‖𝑌𝑧

𝑀

𝑧=1

 −′𝑌𝑧‖2                                                    (17) 

M represents the pattern value in the sample set, where Yz is the predict value of zth 

example and 'Yz is the desired value. Generally, the procedure of gradient descent is 

employed to reduce the errors (E) between the predicted value and the desired value, 

because gradient descent technique always converges to the local minimum. moreover, 

back-propagation algorithm based on gradient descent.  

2. Unsupervised Learning  

In non-supervised learning, the neural networks are only provided with inputs data, where 

real outputs values are not given to the networks. The networks must be able to find 

relationship between information from the inputs data. In other words, the training 

algorithm must be able of finding appropriate subsets of samples of a training set. The 

most common type of unsupervised training is known as clustering which depend on 

similarity for instance Euclidean distance. (Haykin, 2009), (Du and Swamy, 2013), 

(Kriesel, 2007), (Shalev-Shwartz and Ben-David, 2014) & (Maillard and Gueriot, 1997).  

3. Reinforcement learning  

This kind of learning can be referred as a special status of supervised learning, where the 

accurate desirable value of output is unknown. in supervised learning, the instructor 

provides only reaction about success or failure of a result. (Haykin, 2009), (Du and 

Swamy, 2013), (Kriesel, 2007), (Shalev-Shwartz and Ben-David, 2014) & (Maillard and 

Gueriot, 1997).  
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3.7.2.1 Back propagation algorithm  

It is a well-known and widely used training rule which is type of supervised learning. It is 

delta rule generalization which also referred as Least Mean Squares Algorithm (LMS). 

This algorithm aims to reduce the cost function analogous to the mean square error among 

the real and predicted output values through using gradient- descent method. In Back 

propagation algorithm, at the begin of first epoch, the input layer in network is fed by the 

input pattern and then the output is produced. The error (the difference between target and 

actual value) propagates to backward and thus a blocked-loop hold system is formed. The 

gradient-descent algorithm is used to modify the weights. The activation function plays 

important role in allowing to back-propagation rule to be applied. The error can be 

calculated by using mean square error MSE equation.  

            𝐸 =
1

𝑀
∑ 𝐸𝑧 =  

1

2𝑀
∑‖𝑌𝑧

𝑀

𝑧=1

𝑀

𝑧=1

 −′𝑌𝑧‖2                                         (18) 

 

                         𝐸𝑧  =
1

2
‖𝑌𝑧 − ′𝑌𝑧‖2     =   

1

2
  𝑒𝑧

𝑇  𝑒𝑧                                           (19) 

                                         𝑒𝑧 = 𝑌𝑧−′𝑌𝑧                                                                     (20) 

The Error (E) is reduced by employing gradient-descent which allows to the weights to be 

adjusted. This can be done using below equation.  

                                     ∆𝑧 𝑾 = −𝑛
𝜕𝐸𝑧

𝜕𝑊
                                                                   (21) 

η is referrers to rate of learning and represents our step size which ranged between (0-1) 

and this can be chosen manually. W is representing the parameters of networks such as 

weights and bias. Furthermore, equation (22) referred back-propagation algorithm. 

Moreover, the algorithm can be better through involve using of (µ) momentum factor 

which analyze and the provide status for convergence (Haykin, 2009) (Du and Swamy, 

2013), (Kriesel, 2007), (Xiao, 1996), (Tino et al., 2015) & (Shalev-Shwartz and Ben-

David, 2014).  
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                         ∆𝑧(𝑡) 𝑾 = −𝑛
𝜕𝐸𝑧

𝜕𝑊
+ µ∆𝑊(𝑡 − 1)                                              (22) 

 

 

Figure 3.10: Effects of learning rate and momentum parameters on weight updating. 

                     (Du and Swamy, 2013) 
 

3.8 Radial Basis Function Neural Networks  

It is a special type of neural feed-forward neural networks (RBFNN). It can be defined as 

universal approximator. The structure of RBFNN is almost similar to Multilayer 

Perceptrons (MLP), consist of three layers (inputs layer, hidden layer and outputs layer) 

and these layers are linked forward through connection lines (weights). Except that 

RBFNN contains only one single hidden layer and each neuron in hidden layer has basis 

function as shown in figure (3.11). On the other hand, in this type of network, the transition 

of inputs is nonlinearly carry out by the hidden layer, while the output layer performs a 

simple weighted sum with a linear output. The learning of RBFNN is faster than MLP thus 

it is less consuming to the time compared to other conventional networks. RBFNN has 

more parameters comparing to MLP, such as center and in some case spread or sigma(σ). 

The process of hidden layer in RBFNN is quite different to other neural networks. The idea 

is that the patterns in the input space form clusters. If the centers of these clusters are 

known, then the distance from the cluster center can be measured. Moreover, this distance 

can be non- linearly measured, thus if a pattern is in an area that is close to a cluster center 
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it gives a value close to 1. In fact, this area is radially symmetrical around the cluster 

center, so that the non-linear function becomes known as the radial-basis function. Further, 

there are different type of radial basis function such as Gaussian, thin-plate and logistic 

function.   RBFNN can be used in classification and approximation patterns (Haykin, 

2009), (Du and Swamy, 2013), (Tino et al., 2015), (Maillard and Gueriot, 1997), ( Orr, 

1996), (Schwenkar et al., 2000 ),  (Buhmann, 2011), ( Xie et al., 2011), (Khan, 2012), 

(Markopoulos et al., 2016) & ( Wu et al., 2012). 

 

Figure 3.11: Structure of Radial basis function neural network. (Swamy, 2013) 

3.8.1 Components of Radial Basis Function Neural Networks 

RBFNN is feed forward neural network, thus its structure almost same as Multilayer 

Perceptrons architect. As shown in figure (3.11), three layers are connected together and 

arranged respectively as input, hidden and output layer. The values of inputs parameters 

uniformly pass to the hidden layer neuron with no multiplication these value with synaptic 

weights. As above mentioned that conventional feed forward neural networks may have 

more than one hidden layer, while in RBFNN there is only one hidden layer. Also in 

hidden layer of Multilayer Perceptrons network there is no requires of using activation 

function in each neuron, whereas each neuron in hidden layer of RBFNN has basis 

function Ø(r) which is nonlinear transfer function. Each basis function has its own center 

(ci) . the hidden layer of RBFNN implements nonlinearly transformation of the inputs. The 

output of RBFNN can be written as below: 
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    𝑦𝑖(𝑥)  = ∑ 𝑤𝐾𝑖  Ø  (∥ 𝑥 −  𝐶𝐾 ∥)

𝐽2

𝑘=1

     ,        𝑖 =  1, . . . , 𝐽3                              (23) 

yi (x) referrers to the ith output of RBFNN whereas, the linking lines from the kth hidden 

neuron up to the ith output node is represents by wki. The centre of the kth hidden neuron 

is called as (ck ).and ||    || represents the norm of the Euclidean distance. Ø is basis 

function. There is various types of basis functions such as Gaussian, thin-plate spline and 

logistic function. However, Gaussian function is considered as the typical basis function of 

RBFNN Haykin, 2009), (Du and Swamy, 2013), (Tino et al., 2015), (Maillard and Gueriot, 

1997), ( Orr, 1996), (Schwenkar et al., 2000 ),  (Buhmann, 2011), ( Xie et al., 2011), 

(Khan, 2012), (Markopoulos et al., 2016) & ( Wu et al., 2012). 

                          Ø(𝑟) = 𝑒
   −  

 𝑟2

2σ2                  Gaussian function                            (24) 

 

                          Ø(𝑟) =   𝑟2 ln(𝑟)                     thin − plate spline function   (25) 

 

                          Ø(𝑟) =    
1

1 +  e   
 𝑟
σ2  − θ 

 
                        logistic func                (26) 

The difference between data (x) to the center (c) is known as distance and symbolizes by r. 

And this distance always greater than zero. θ indicates the bias. σ represents the spread or 

sigma and its role is to cog the interpolating function smoothness. 

3.8.2 Radial Basis Function Neural Network Learning  

Learning process in radial basis function network is mostly similar to multilayer perceptron 

learning thus the RBFN learning is formulated as the decreasing of mean square error 

function (MSE)   

             𝐸 =
1

𝑀
∑‖𝑦𝑍 − 𝑊𝑇 ‖2   =   

1

𝑀
 ∥ 𝑌 −  𝑊𝑇𝛷 ∥𝑜

2

𝑀

𝑖=1

                 (27) 
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∥ ∥o is the norm and it is defined as ∥A∥𝑜
2   = tr AT A; where the desired value for the zth 

sample in the learning dataset is represents by yz and Y is equal to [y1,…,yN] and it 

represents the summation of y.  Despite that radial basis neural network is type of feed 

forward network and it can be trained as MLP by finding the optimum value of major 

parameter which is the weight based on reducing MSE. The main parameters of network of 

RBFNN are center or prototype, and weights. Thus learning of RBFNN involves two 

process: 

1) Locating the center  

Determining the centre (ci) considers as critical step in performing RBFNN. Also defining 

the width or standard deviations (σi) plays an important role since it influences the bell 

shape spacing of Gaussian function. in other word, width is a measure of the spread of the 

basis function (Gaussian); for instance, if the value of standard deviation is larger than data 

are more spread out, and not near to the average then prediction accuracy will be affected. 

However, the center can be located using different methods  

 Randomly: in this method, the centers of RBFNN are randomly defined. by 

choosing randomly a subset or part of the input samples from the learning dataset. 

Whereas, the width σ can be determined by taking the average of all the Euclidean 

distances, or can be defined by taking the maximum differences between the i th 

RBF center and its nearest neighbor over the root of number of centers. 

 

 Clustering: Clustering is the gathering of a specific group of data based on their 

features in RBFNN, Clustering can be utilized in order to locating the centres of 

RBFNN. The training dataset are arranged in form of suitable groups (prototypes), 

later on, these prototypes turn into centres of RBFNN. There are supervised and 

unsupervised clustering. The most common type of clustering is k-means. 

 

2) Finding the optimum weights W. 

When the parameters of radial basis function neural network (centers of RBFNN and 

widths of the centers) are defined. Then, the weights W can be updated by using the 

gradient-descent or Least Squares techniques Haykin, 2009), (Du and Swamy, 2013), 

(Tino et al., 2015), (Maillard and Gueriot, 1997), ( Orr, 1996), (Schwenkar et al., 2000 ),  
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(Buhmann, 2011), ( Xie et al., 2011), (Khan, 2012), (Markopoulos et al., 2016) & ( Wu et 

al., 2012). 

3.8.2.1 Supervised Learning Algorithm for RBFNN   

It is a well-known and widely used when centres, spread and weights of RBFNN are 

defined, the learning process in radial basis function network can be carried out using a 

supervised training method (gradient-descent technique) that aims to reduce cost function 

E (Du and Swamy, 2013) & (Stanford university, 2017) 

                         𝐸𝑟𝑟𝑜𝑟 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝐸 =
1

𝑁
∑  ∑( 𝑒 𝑛,𝑖 )

2

𝐽3

𝑖=1

𝑁

𝑛=1

                                 (28) 

en,i  (error ) is represents the differences between desired output and actual ith output 

neuron for the nth example. 

 𝑒 𝑛,𝑖 =  𝑦 𝑛,𝑖  = ∑ 𝑤𝑚𝑖  Ø  (∥ 𝑥𝑛 −  𝐶𝑚 ∥)

𝐽2

𝑚=1

=      𝑦 𝑛,𝑖 −  𝑤𝑖
𝑇 Ø𝑛                (29) 

by making derivative to  E with respect to wmi, leads to  

𝜕𝐸

𝜕𝑤𝑚𝑖
= − 

2

𝑁
 ∑ 𝑒𝑛,𝑖  Ø  (∥ 𝑥𝑛 – 𝐶𝑚 ∥)

𝐽2

𝑛=1

, 𝑚 =  1, . . , 𝐽2 , 𝑖 =  1, . . , 𝐽3        (30) 

by making derivative to  E with respect to cm,, yields to  

 
𝜕𝐸

𝜕𝑐𝑚
=

2

𝑁
 ∑ 𝑤𝑚,𝑖 ∑ 𝑒𝑛,𝑖

𝐽2

𝑛=1  

Ø  (∥ 𝑥𝑛 – 𝐶𝑚 ∥)

𝐽3

𝑖=1

 
𝑥𝑛 – 𝐶𝑚

∥ 𝑥𝑛 – 𝐶𝑚 ∥
 , 𝑚 =  1, .  , 𝐽2 (31) 

 

The technique of gradient-descent is specified by the below equations: 

 𝑢𝑝𝑑𝑎𝑡𝑒 𝑓𝑜𝑟  𝑤𝑒𝑖𝑔ℎ𝑡                   ∆ 𝑤𝑚𝑖  = − 𝑛1

𝜕𝐸

𝜕𝑤𝑚𝑖
                                     (32) 

 𝑢𝑝𝑑𝑎𝑡𝑒 𝑓𝑜𝑟  𝑐𝑒𝑛𝑡𝑒𝑟                      ∆ 𝑐𝑚  = − 𝑛2

𝜕𝐸

𝜕𝑐𝑚
                                       (33) 
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CHAPTER 4  

PREVIOUS STUDIES ON CONCRETE COMPRESSIVE STRENGTH 

PREDICTION WITH ARTIFICIAL NEURAL NETWORKS 

 

 

4.1 Recent Studies 

Artificial neural networks have been previously used as prediction tools by many 

researchers in civil engineering topics. In 1997, Sergio & Mauro have predicted the 

compressive strength of concrete using artificial neural networks based back propagation 

algorithm. Cement class, type of sand, type of aggregate, w/c ratio and high range water 

reducer were the input parameters and the data set included around 250 cases. The authors 

used different networks, each of different number of hidden layers. The test has been 

performed and the overall prediction rate was higher than 95 % (Sergio & Mauro, 1997). 

One year later, Yeh applied artificial neural networks in order to estimate the compressive 

strength of high performance concrete. The test involved use of 1000 samples that were 

collected from various sources. Eight inputs parameters have considered (cement, fly ash, 

blast furnace slag, water, high range water reducer (HRWR), coarse aggregate and fine 

aggregate content and age of concrete). The test carried using back propagation network. 

The results of this study indicated a good prediction accuracy. Furthermore, artificial 

neural networks showed low error rate than regression analysis technique (Yeh, 1998). 

Concrete compressive strength have been estimated by Hong-Guang and Ji-Zo  in 2000. 

The authors employed conventional back propagation neural network. The inputs 

parameters involved concrete mixture and curing condition. Tow dataset are obtained; the 

first set involved 65 samples which have been conducted by the authors through 

experiments, whereas the another set contained around 100 samples that have been 

collected form public data base. Furthermore 135 samples have used for training and 30 

samples were used for testing. The consequences of test indicated adequate prediction rate. 

also the results show that use of single data source can led to lower error rate (Hong-Guang 

and Ji-Zong, 2000). 
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In 2003, Chang Lee has predicted the concrete compressive strength at various age by 

using modular neural networks that consists of five ANNs which solved the problem 

existed in single one. The inputs parameters were mix proportion, measurement (slump test 

) and humidity & temperature up to 28 after concrete was casted. The test was performed 

and the prediction rate was around 90%. Furthermore, the author stated that using modular 

neural networks conduct to proper prediction accuracy of concrete strength than single 

network (ChangLee, 2003). 

In the same year, Sebastia et al have employed multilayer neural network based Trajan 

simulator in prediction compressive strength of fly ash concrete. The data used were 

collected from pervious studies. The first neural network model was constructed using 20 

various variables such as six different type of cements, 3 types of fly ash, water in two 

forms, six types of additives, silica fume and fine & coarse aggregates. In order to examine 

the effects of these variables on strength, the authors divided them into different groups 

based on sensitivity analysis and summing of few variables so that can be eliminated form 

input parameters. The sensitivity analysis was widely affected by the additives. other 

neural networks were using various group of input variables regard to sensitivity analysis 

and summing of few variables. One of these group contained five variables (cement, 

aggregate, water, additives and fly ash). The results of neural network that have used these 

five variables show lower regression coefficient comparing to the other models (Sebastia et 

al., 2003). 

Asce et al. (2004) have predicted the compressive strength of concrete at age of four weeks 

using artificial neural networks based back propagation algorithm. The considered inputs 

parameters were w/c ratio, fine aggregate %, unit content of cement, unit content of water 

unit content of fine & coarse aggregate, admixture, and slump. The artificial neural 

networks test results were closely to the actual strength samples (Asce et al., 2004). 

In 2006, Öztaş et al have used Feed-forward network (FFN) in order to predict the 

compressive strength of high strength concrete. FFN consists of one input layer, two 

hidden layers and one output layer. The inputs parameters were water/binder ratio, content 

of water, fine aggregate ratio, content of fly ash, content of air entraining agent, content of 

high range water reducer and silica fume content. 187 samples were gathered from various 
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sources. 169 samples have been trained and eighteen samples were used to be tested. The 

test was conducted and the prediction rate was higher than 99 percent (Öztaş et al., 2006). 

Kewalramani and Gupta. (2006) had estimated concrete compressive strength o. The 

authors used multiple regression analysis and back propagation neural network as 

prediction tools. Two various mixtures of concrete (M20 and M30) and eight hundred 

sixty-four samples were used for this study. The outcomes of the tests illustrated good 

prediction accuracy. Furthermore, the artificial neural networks provided higher prediction 

accuracy than regression analysis (Kewalramani and Gupta, 2006). 

In 2007, Topcu and Sarıdemir had utilized artificial neural networks in prediction the 

strength of waste autoclaved aerated aggregate concrete. The network consisted of four 

layers, one input layer and two hidden layers and one output layer. Seven inputs 

parameters were considered (Cement, water, sand, two type of crushed rock, two types of 

waste autoclaved aerated concrete in fine & coarse form). The data were produced through 

experiment laboratory test. The ANN results indicated an adequate prediction rate (Topcu 

and Sarıdemir, 2007). 

Topcu & Sarıdemir. (2008) employed artificial neural networks (multi-layer feed-forward 

neural networks based back propagation algorithm) and fuzzy logic to predict the 

compressive strength and splitting tensile strength of recycled aggregate concretes that 

contains silica fume at various ages. The network included four layers, one input layer , 

two hidden layers and one output layer. The content of cement, water, sand, aggregate, 

recycled aggregate, superplasticizer and silica fume were as the inputs parameters, whereas 

the outputs parameters were compressive and splitting strength. Around 210 samples were 

collected from public data base. Based on the results of ANN and FL models, the 

prediction rates were above 99 %.In this study, artificial neural networks exhibited slightly 

lower error rate than fuzzy logic (Topcu and Sarıdemir, 2008). 

In 2008,Topcu and Sarıd emir used multilayer perceptron (MLP)and fuzzy logic (FL) in 

prediction fly ash concrete compressive strength. The used ANN was consisted one input 

layer, one hidden layer and one output layer. The input parameters included content of 

cement, water content, sand, content of aggregates, fly ash content, water reducer and 
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calcium oxide content. The prediction accuracy of MLP and FL was satisfactory. The 

prediction rate was around 99 % (Topcu and Sarıdemir, 2008). 

Prasad et al. (2009) estimated the compressive strength of high performance and self 

compacted concrete at age of four weeks using feed forward neural network. The network 

consists of one input layer and two hidden layers and one output layer. The input attributes 

are including constituents of concrete mixture and curing condition. The used samples 

were around 300, gathered from various sources. The authors experimentally examined 

several samples in laboratory to be compared with actual and prediction values. Artificial 

neural networks outcomes exhibited a low error rate (nearly 0.02 %).  Also the predicted 

results were almost similar to experimental outputs (Prasad et al., 2009). 

In 2009, intelligent technique (artificial neural network) has been conducted in concrete 

strength prediction by Trtnik, Kavčič & Turk. The authors used FFNN. The content of 

aggregate, max size of aggregate, kind of aggregate, shape of aggregate, and pulse velocity 

were employed as inputs parameters. Artificial neural network test illustrates a good 

prediction rate. furthermore, the prediction accuracy was around 99 % (Trtnik et al., 2009). 

Light weight concrete (LWC) strength at various ages was predicted by Alshihri et al in 

2009. The authors applied neural networks based back propagation algorithm. The data 

were prepared at laboratory experiments. sand, LW coarse aggregate, LW fine aggregate, 

W/C ratio, silica fume in solution % and silica fume in cement % considered as inputs 

parameters. The values of ANN test results were nearly similar to targets. Furthermore, the 

error rate was less than 0.02 % (Alshihri et al at., 2009)  

Sarıdemir examined neural networks in predicting strength of concretes that contain 

pozzolanic materials (metakaolin powder and silica fume) at different ages. Two ANN 

models were prepared each ANN model with multi hidden layer. Concrete age, cement, 

metakaolin, silica fume, water, sand, aggregate and high range water reducer were used as 

attributed parameters. Data were collected form pervious experimental studies. ANN 

models outcomes show good prediction accuracy. The prediction rate of these models were 

around 99 % (Sarıdemir, 2009). 

Slag - concrete had been predicted by Bilim et al in 2009. The authors used Multilayer 

feed-forward neural network. 225 samples were experimentally designed to be used for 
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ANN train and test. Three basic layers were used in the network. The six inputs parameters 

were involved such as cement, slag, water, aggregate, hyper-plasticizing and concrete age. 

The predicted strengths were slightly different than the actual (Bilim et al., 2009).  

In 2009, Özcan et al had predicted silica fume concrete strength at five different ages; two 

non destructive methods were used fuzzy logic and artificial neural networks based back 

propagation algorithm). Cement content, silica fume, water, aggregate, water reducer and 

concrete age were used as inputs attributes for both techniques. 240 samples were 

empirically obtained. The results illustrated predicted value estimated by artificial neural 

network was higher than the one that produced by Fuzzy Logic (Özcan et al., 2009).  

In 2010, very low or zero slump concrete strength had been predicted by Sobhani et al. 

Linear regression model, artificial neural network and adaptive network-based fuzzy were 

used as prediction tools. The authors prepared 96 samples experimentally. The inputs 

parameters were content of cement, Silica fume, water, Fine aggregate, coarse aggregate, 

filler and water / cementitious material ratio. The result showed that linear regression 

models produce higher rate of error than ANN models (Sobhani et al., 2010). 

Słonski, (2010) employed ANN in predicting strength of high performance concrete. 

cement,  the amount of fly ash,   slag, water, super plasticizer, coarse aggregate, fine 

aggregate and age of concrete samples were the inputs attributes. 1030 samples were 

gathered from pervious studies. The predicted values were close to the actuals (Słonski, 

2010). 

Razavi, Jumaat & EI-Shafie, (2011) have been predicted light weight concrete compressive 

strength by Multilayer perceptron. The authors experimentally designed 288 samples. The 

inputs parameters were scoria, cement and w/c ratio. Neural networks results were almost 

similar to experimental outputs (Razavi et al., 2011). 

In 2011, Atici predicted the compressive concrete containing fly ash and slag at various 

ages. artificial neural networks were used as prediction tool. 6 various models were 

constructed. Each model has different inputs parameters. The author experimentally 

prepared 27 samples. The ANN models results were slightly different to the designed 

values (Atici, 2011). 
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In 2011, Hakim et al employed ANN to predict strength of concrete containing 

cementitious materials. The considered inputs are cement content, water amount , coarse & 

fine aggregate content , Silica fume, fly Ash, slag and superplasticizer. The author 

collected around 368 form data base. Thirty NN models were developed. The prediction 

error was 12.64 percent (Hakim et al., 2011). 

FFNN had been used in prediction the strength of Self compacting (SCC) and normal 

concrete by Siddique et al in 2011. Two data sets were prepared; first data set were 

collected for literature and used for normal concrete. Second set were empirically designed 

in laboratory and used for SCC. Two ANNs models were constructed. The inputs 

parameters of artificial neural network for SCC were cement, sand, coarse aggregate, fly 

ash, water/powder ratio, HRWR, Bottom ash and Water. The inputs attributes of artificial 

neural network for normal concrete were cement, sand, coarse aggregate, fly ash, 

water/powder ratio and high range water reducer (HRWR). The results of these models 

demonstrate that increasing the inputs parameters can result in higher prediction accuracy; 

the accuracy was over 91% (Siddique et al., 2011). 

Uysal & Tanyildizi have studied the strength prediction for self-compacting concrete cores 

that contained powder of limestone and marble. The authors experimentally prepared 168 

samples. cement, fly ash, powder of limestone, powder of marble, natural aggregate, two 

type of synthetic aggregate, HRWR, unit weigh and absorption of water were considered 

as inputs parameters. The used network consisted of four layers, one input layer and two 

hidden layers and one output layer. The ANN outcomes were nearly like the actual results 

(Uysal and Tanyildizi., 2011). 

In 2012, the strength of concrete containing fly ash, slag & silica fume has been predicted 

by Boukhatem et al, through using six neural networks based back-propagation algorithms. 

960 were gathered form previous studies. Principal component analysis technique (PCA) 

was employed to study of correlations between data. The prediction results were very 

similar to the target values. Also the results of using artificial neural networks with 

principal component analysis were more precise than using ANN alone (Boukhatem et al., 

2012).  
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Singh & Kotiyal have employed learning machine namely artificial neural networks (based 

back propagation algorithm) to predict the compressive strength of concrete. The authors 

experimentally prepared 350 cubic samples. The outcomes of ANN models show a good 

prediction accuracy compared to the actual values (Singh & Kotiyal, 2013). 

In 2013, Non destructive technique (artificial neural networks) have used for prediction 

compressive strength of concrete containing recycled aggregate at age of twenty-eight days 

by Duan et al. 168 samples were gathered form various data base. The inputs attributes are 

content of water, cement, sand, natural aggregate, recycled aggregate, impurity, coarse 

aggregate max size, w/c, saturated surface dry specific gravity of coarse aggregate, 

aggregate water absorption, coarse aggregate type and replacement of recycled aggregate. 

The accuracy of the ANN tests found to be higher than 98 % (Duan et al., 2013). 

Dantas et al. (2013) have employed ANNs to predict the compressive strength of concretes 

containing waste of construction and demolition at different ages. The authors collected 

around 1178 samples from pervious studies. The principal component analysis technique 

was used to minimize inputs (24). Seventeen inputs were considered. The results of tests 

were closely to the targets (Dantas et al., 2013). 

The compressive strength of lightweight concrete that subjected to high temperatures has 

been predicted by Bingöl et al in 2013. The authors used artificial neural networks as 

learning machine. The data were obtained from pervious experimental study. Heating 

period, pumice/aggregate ratio and target temperature were considered as inputs 

parameters. The outcomes of ANN models were closely to the actual strength samples 

(Bingöl et al., 2013). 

Sadrmomtazi et al, have predicted the compressive strength of lightweight concrete that 

made with artificial lightweight aggregate (expanded polystyrene beads). The prediction 

tools were artificial neural networks (ANN), adaptive network-based fuzzy inference 

system (ANFIS) and regression modeling. The authors obtained the data experimentally. 

cement, silica fume, water, fine aggregate, coarse aggregate, Expanded polystyrene beads, 

waste carper propylene fiber. The results of ANN & ANFIS models were almost similar to 

the actual values. while regression results were non- reasonable (Sadrmomtazi et al., 2013)  
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In 2014, Yuan, Wang and Ji have predicted four weeks’ compressive strength of 180 

concrete samples using artificial neural networks (ANN) based on back propagation 

algorithm and adaptive network-based fuzzy inference system (ANFIS). In order to reduce 

the error between the real and desired values in ANN, the authors used genetic algorithms. 

Three models were formed (ANN, ANFIS, GA-ANN). The authors considered cement, 

slag, fly ash, water, fine aggregate, coarse aggregate and high range water reducer as inputs 

attributes. ANFIS model showed best prediction accuracy which was about 95 percent. 

While ANN and GA-ANN models prediction rates were 68 % and 81 % respectively 

(Yuan et al., 2014). 

Douma et al., (2016) investigated the compressive strength of self compacting concrete by 

using artificial neural networks (ANN) based back propagation algorithm. 114 samples 

were obtained from public data base. The content of binder, fly ash %, w/b ratio, fine 

aggregates, coarse aggregates and high range water reducer were employed as input 

attributes. The outcomes of this study indicate that increasing the content of the binder and 

reducing the content of fly ash can lead to rise the strength of concrete at age of four weeks 

(Douma et al., 2016)  

Vidivelli and Jayaranjini, (2016) had predicted the compressive strength of high 

performance concrete at various ages. The authors used two models of artificial neural 

networks. The first model was comprised of one input layer, one hidden layer and one 

output layer while the second model had one input layer, two hidden layer and one output 

layer. The considered inputs parameters were cement content, silica fume, metakaolin, fly 

ahs, bottom ash, sand, coarse aggregate and high range water reducer. The error rate 

between the actual and targets were less than 0.01 %. Also the result of first model were 

closer to the targets than first model outcomes values (Vidivelli and  Jayaranjini, 2016).  

Artificial neural networks and regression analysis have been employed in compressive 

strength of high performance concrete that containing nano silica and copper slag by 

Chithra et al in 2016. The authors experimentally obtained 45 concrete samples. Three 

ANNs models were constructed based on inputs parameters and numbers of samples. The 

inputs parameters were cement, nano silica, water, fine aggregate content, copper slag, age 

of specimen, high range water reducer and coarse aggregate. The values of models result 
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were almost similar to the expected values. The accuracy of ANNs models was around 99 

%, which was higher than regression analysis accuracy (Chithra et al., 2016). 

Recently, Khashman & Akpinar had predicted the compressive strength of concrete using 

artificial neural networks based back propagation algorithm. 1030 samples were used from 

public data base. The authors considered eight inputs parameters that were water, cement, 

fly ash, slag, fine aggregate, coarse aggregate, high range water reducer and concrete age. 

ANNs models results were varying from the targets. The lowest error found to be around 

0.26 % (Khashman and Akpinar, 2017).  

Bharathi et al have studied the prediction accuracy of Artificial Neural Networks and 

regression analysis (RA) for self-compacting concrete strength. The authors considered  

various inputs attributes including as water/binder, cement content, fly ash content, amount 

of fine and coarse aggregate and superplasticizer. ANN model exhibited low Mean 

absolute percentage error (MAPE) compared to RA. (Bharathi et al.,2017) 

Rebouh et al. (2017) estimated the compressive strength of concrete containing natural 

pozzolan using Artificial neural networks (ANN) with genetic algorithms (GA). The aim 

of using GA is to minimize the error between the real and desired values in ANN. Two 

models were constructed (ANN) and (ANN - GA). Seven-hundred data were collected 

from various public data bases. Binder, natural pozzlans %, water-binder ratio, 

gravel,  sand, admixtures and age of sample were used as inputs parameters. The targets 

values were closer to the values that obtained by ANN – GA than ANN results (Rebouh et 

al., 2017). 

 

 

 

 

 

. 
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CHAPTER 5  

METHODOLOGY 

 

 

5.1 General Concept 

Concrete is made of various materials such as cement, water and aggregates. The 

compressive strength of concrete is affected by these materials. The right parameters 

should include all types of attributes that can affect the strength of concrete including 

materials compositions and age of concrete. In this work, neural network based models are 

employed in order to be trained to predict the strength of concrete. Multilayer Perceptrons 

neural network and a radial basis function network are both used in this research 

5.2 Developed System 

Concrete is made of various Extended literature review has been carried out on 

compressive strength tests and the factors that influence the compressive strength. Also a 

deep literature review was done on ANNs usage in predicting concrete strength in order to 

understand the types of used neural networks and the utilized parameters. The procedure 

for this study can be summarized by two stages; data collection, and defining the proper 

neural network architecture. In data collection stage, input and output attributes are 

defined. Input parameters are defined based on their influence on the compressive strength 

of concrete. Radial basis function neural network (RBFNN) which was observed to not be 

used in previous studies, is selected as a prediction tool in this study, in order to provide 

insights on its efficiency in potential concrete compressive strength prediction. Multilayer 

perceptrons (MLP) or back prorogation neural (BPNN) network is employed in order to 

examined the efficiency of RBFN. Figure 5.1 shows a flowchart of the presented work. It 

shows that the network is first trained on a part of the data, and once it converges, a new 

set of data that were not seen before is used for testing purposes. 
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Figure 5.1: Flowchart of the developed network system 

5.3 Data Acquisition 

Machine learning systems are data hungry networks. Hence, more data results in better 

prediction and less errors (Haykin, 2009). Therefore, for this study a proper number of data 

was collected from different articles published in Scopus. Table 5.1 shows the data sources 

in addition to the number of samples taken from each source.  

Table 5.1: List of Database Sources 

No Data Source 

 

Number 

of 

obtained 

data 

1 

Ndihokubwayo, A. (2011). Compressive and flexural strengths for 

considerable volume fly-ash concrete. Journal of Civil Engineering 

Research, 1(1), 21-23. 

 

24 

2 

Liu, M. (2010). Self-compacting concrete with different levels of 

pulverized fuel ash. Construction and Building Materials, 24(7), 

1245-1252. 

 

20 

3 

Saha, A. K. (2018). Effect of class F fly ash on the durability 

properties of concrete. Sustainable Environment Research, 28(1), 

25-31. 

 

25 
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4 

Gholampour, A., & Ozbakkaloglu, T. (2017). Performance of 

sustainable concretes containing very high volume Class-F fly ash 

and ground granulated blast furnace slag. Journal of Cleaner 

Production, 162, 1407-1417. 

 

16 

5 

Wongkeo, W., Thongsanitgarn, P., Ngamjarurojana, A., & 

Chaipanich, A. (2014). Compressive strength and chloride resistance 

of self-compacting concrete containing high level fly ash and silica 

fume. Materials & Design, 64, 261-269. 

 

48 

6 

Sounthararajan, V. M., & Sivakumar, A. (2013). Accelerated 

engineering properties of high and low volume fly ash concretes 

reinforced with glued steel fibers. Frontiers of Structural and Civil 

Engineering, 7(4), 429-445. 

 

18 

7 

Ramezanianpour, A. A., & Malhotra, V. M. (1995). Effect of curing 

on the compressive strength, resistance to chloride-ion penetration 

and porosity of concretes incorporating slag, fly ash or silica fume. 

Cement and concrete composites, 17(2), 125-133. 

8 

8 

Atiş, C. D. (2005). Strength properties of high-volume fly ash roller 

compacted and workable concrete, and influence of curing 

condition. Cement and Concrete Research, 35(6), 1112-1121. 

 

69 

9 

Poon, C. S., Lam, L., & Wong, Y. L. (2000). A study on high 

strength concrete prepared with large volumes of low calcium fly 

ash. Cement and Concrete Research, 30(3), 447-455. 

 

8 

10 

Zhang, M. H., & Islam, J. (2012). Use of nano-silica to reduce 

setting time and increase early strength of concretes with high 

volumes of fly ash or slag. Construction and Building Materials, 29, 

573-580. 

 

4 

11 

Choi, S. W., Jang, B. S., Kim, J. H., & Lee, K. M. (2014). Durability 

characteristics of fly ash concrete containing lightly-burnt 

MgO. Construction and Building Materials, 58, 77-84. 

 

10 

12 

Oner, A., Akyuz, S., & Yildiz, R. (2005). An experimental study on 

strength development of concrete containing fly ash and optimum 

usage of fly ash in concrete. Cement and Concrete Research, 35(6), 

1165-1171. 

 

56 

13 

Atiş, C. D. (2003). Accelerated carbonation and testing of concrete 

made with fly ash. Construction and Building Materials, 17(3), 147-

152. 

 

20 

Total 326 
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As seen in the table, 326 samples are collected from different sources to be then used to 

train and test the networks. It should be noted that 266 of dataset are cubic and 60 of them 

are cylindrical, therefore the cylindrical samples are converted to cubic using the following 

relationship: 

Strength of the cylindrical specimen of concrete = 0.8 * strength of the cubic specimen of 

concrete (Neville, 2012). 

It is noteworthy to mention that three different learning schemes are used for training each 

employed network. Those learning schemes include different training and testing ratios in 

addition to different learning parameters settings. Table 5.2 shows learning schemes for 

this study.  

Table 5.2: Learning schemes 

 

Ratio 

Data = 326 

Training Testing 

60 : 40 195 131 

50 : 50 163 163 

40 : 60 131 195 

 

5.3.1 Input coding 

For this study, 13 input parameters that influence the strength of concrete are selected. In 

this study, six input parameters are selected in this work that have not been considered in 

previous studies. These new input parameters are including CaO, SiO2, Al2O3 of cement, 

CaO, SiO2 and Al2O3 of fly ash. However, these parameters are considered because they 

are known to affect the amount of cement hydration products in concrete, and hence they 

have various effect on concrete strength. The cubic specimens have different size of 

specimen; thus the volume of specimen was introduced as an input parameter in order to 

minimize the negative of varying size on the accuracy of strength prediction. Those 

parameters are then used as inputs for the networks that are trained using many examples 

or samples of data that include major oxides of cement and fly ash, in addition to other 
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parameters. Table 5.3 shows a brief description of the input parameters used in this 

research. 

Table 5.3: Database input parameters description 

No Attributes

 

Attribute Description

 

1 
Cement Content 

(kg/m3)

 

The  amount of cement in concrete mixture

 

2 
CaO of Cement 

(%)

 

The amount of calcium oxide in cement.

 

3 
SiO2  of Cement 

(%)

 

The amount of silicon dioxide (silica) in cement.

 

4 
Al2O3 of Cement 

(%)

 

The content of aluminium oxide (alumina) in cement.

 

5 
Fly Ash Content 

(kg/m3)

 

The amount of fly ash in concrete mixture.

 

6 CaO of Fly ash (%)

 

The amount of calcium oxide in fly ash.

 

7 
SiO2 of Fly ash  

(%)

 

The amount of silicon dioxide (silica) in fly ash.

 

8 
Al2O3 of Fly ash  

(%)

 

The content of aluminum oxide (alumina) in fly ash.

 

9 w/c ratio

 

Water – cement ratio in concrete mixture

 

10 

Fine aggregates 

Content 

(kg/m3)

 

Particles that are smaller than 5 mm (sand) in concrete 

mixture

 

11 

Coarse aggregates 

Content 

(kg/m3)

 

Particles that have size greater than 5mm (gravel) in 

concrete mixture

 

12 
Age of Concrete 

(days)

 

Age of concrete specimen; 28 days and 90 days

 

13 
Volume of Cube 

(m3) 
The volume of concrete specimen 

 

Figure 5.2 shows a description of the presented model for the strength prediction of 

concrete. 
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Figure 5.2: Model’s inputs and output 

 

As seen in Figure 5.2, 13 attributes are used as inputs for the network that is trained to 

predict the strength of concrete. Therefore, each network should have 13 neurons in its 

input layer. Note that the input data are first normalized before being fed into network. 

Normalization is a pre-processing stage and it means to transform the input and output data 

values into a range of 0 to 1. The purpose of normalization is make sure that data is 

roughly uniformly distributed between the inputs and the outputs of the network. 

(Markopoulos et al., 2016). The equation 1 shows how the data are normalized. 

 𝑁 =
𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑣𝑎𝑙𝑢𝑒 − min 𝑣𝑎𝑙𝑢𝑒 

𝑅𝑎𝑛𝑔𝑒 𝑜𝑓 𝑎𝑟𝑟𝑡𝑖𝑏𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 
                                                              (34) 

N is the data after normalization. 

5.3.2 Output coding  

The networks are developed to predict the strength of concrete by training them using 

many examples with their corresponding targets, which represent the strength of concrete 
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for each sample or example. Thus, each network should have only one neuron in its output 

layer, to show the strength of concrete.  Note that output values are also normalized to 

values of range 0 to 1 in this layer as they are in different ranges, which makes it difficult 

for the network to perform function approximation. Since the output is a decimal value 

between 0 and 1, which represents the strength of concrete, a linear activation function 

(Purelin) is used in RBFNN and sigmoid in MLP. This activation function is most 

commonly used in the regression tasks as it allows the network to show the output in any 

range, without scaling it.  

5.4 RBFNN Model  

As discussed in section 3.8 that Radial basis function neural network is an exceptional type 

of feed forward neural network. RBFNN consists of on single hidden layer. RBFNN has 

two critical parameters (center and spread) that affect the prediction accuracy. Therefore, 

these parameters must be determined before learning. These parameters can be defined 

using different techniques. Then, RBFNN can be learned using various methods 

(supervised and non supervised). The learning procedure of RBFNN for this study can be 

summarized into two stages;  

1. Define center and spread of RBFNN; selecting the center (c) of the basis function 

randomly, whereas the spread (σ) is manually determined by trial and error.  

2. Supervised learning to optimize the weights and centers; After defining the centers, 

spread and weights, the rest learning process in RBFNN can be carried out using a 

supervised training method (gradient-descent technique) that aims to reduce cost 

function. Learning algorithm for this study is mentioned in section 3.8.2. 

Figure 5.3, shows input, hidden and output layers. In input layer, there are 13 neurons 

which are represents the amount of input parameters are used as inputs for RBFNN. Also 

from figure it can be seen that each neuron in hidden layer has basis function. 
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Figure 5.3: RBFNN Structure 

5.5 MLP Model  

As discussed in section 3.8 multilayer perceptron is a conventional type of neural network 

(feed forward neural network) that includes three layers; input, hidden and output 

respectively, where all these layers are connected forward through lines. These lines are 

called weights see figure 5.4. This network is known as BPNN. The learning process for 

this network is easily implemented using Back Propagation Algorithm which supervised 

learning see chapter 3 section 7.2.1. However, the proposed model of MLP is widely used 

in prediction concrete compressive strength (Chithra et al., 2016) (Khashman and Akpinar, 

2017). 
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Figure 5.4: MLP Structure 
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CHAPTER 6  

RESULTS AND DISCUSSIONS 

 
 

6.1 Networks Training 

As previously mentioned, the two employed models are trained and tested on a set of data 

obtained from pervious experimental works obtained from the related literature. The 

networks performance is investigated through many experiments that are conducted so that 

required parameters were adjusted to yield the best prediction results. Hence, in this work, 

train and test ratio, the learning parameters including the number of hidden neurons, 

spread, the learning rate, and momentum were all varied in order to study effects on the 

neural networks performance and generalization capability during testing on unseen data. 

All experiments were conducted using Matlab environment (Matlab version 2015A). 

studied with three selected train: test ratios with varying hidden neurons and spread values. 

 

6.2 Results of Multilayer Perceptron Neural Networks 

MLP is learned using supervised training method (BPLA). Therefore, its called back 

propagation neural network (BPNN). In this study, BPNN is used to predict the 

compressive strength of concrete. The network performance is experimented through 

different parameters (number of hidden neurons & epochs) and data ratios in order to 

obtain satisfactory prediction accuracy. 

Network is first trained using three different train and test ratios: 

 Ratio 1: 60:40 

 Ratio 2: 50:50 

 Ratio 3: 40:60  

Moreover, network performance is also studied by selecting different number of hidden 

neurons and number of iterations. Its worthy to mention that all networks (MLPs) are 

trained using one training algorithm and one activation function, i.e. Levenberg-Marquardt 

and Log-Sigmoid, respectively. 
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6.2.1 MLP Results for Ratio 1; 60:40 

Table 6.1 shows the training and testing results of the networks through a fixed ratio (ratio 

1), and three different hidden neuron values and epochs. From the Table 6.1, it can be seen 

that the networks trained with ratio 1 achieved good correlation coefficients during training 

in which all networks achieved not less than 91.17 % with not more than 0.00659 as mean 

square error. It is important to note that the network that achieved the highest training 

accuracy (98.88%) could not achieve the same during testing (90.45%). This network uses 

10 neurons in its hidden layer and it was trained using 200 iterations to reach an MSE of 

0.0008428, which is the smallest achieved error between all networks shown in this table. 

Table 6.1: Results of MLP for Ratio 1; 60 : 40 

Ratio Neurons 
R % 

Training 

R % 

Testing 

R % 

Overall 
Epochs MSE 

Learning 

Rate 

1 10 91.17 89.21 90.17 10 0.00659 0.09 

1 10 94.84 93.28 94.23 25 0.00398 0.09 

1 10 95.88 95.45 95.57 50 0.00308 0.09 

1 10 96.56 95.07 95.7 100 0.00266 0.09 

1 10 98.88 90.45 95.51 200 0.0008428 0.09 

1 30 92.85 91.86 92.23 10 0.00527 0.09 

1 30 94.99 93.6 94.31 25 0.00391 0.09 

1 30 98.78 91.82 95.94 50 0.000937 0.09 

1 30 96.77 91.12 94.08 100 0.00252 0.09 

1 30 97.09 92.08 95.09 200 0.0024 0.09 

1 50 93.7 92.47 93.18 10 0.00492 0.09 

1 50 96.42 92.92 94.67 25 0.00285 0.09 

1 50 98.80 92.62 96.25 50 0.0009366 0.09 

1 50 96.11 93.8 94.75 100 0.002967 0.09 

1 50 96.81 85.86 92.77 200 0.0049 0.09 

1 70 95.05 94.7 94.91 10 0.00392 0.09 

1 70 97.46 90.95 94.83 25 0.00196 0.09 
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1 70 96.17 92.87 94.61 50 0.00275 0.09 

1 70 96.57 91.24 93.69 100 0.00242 0.09 

1 70 96.67 82.63 89.78 200 0.0024212 0.09 

 

Moreover, it is seen that the network trained with 50 hidden neurons and 50 epochs 

achieved the highest overall correlation coefficient (R) (96.25%) with an error of 

0.0009366. However, this error is not the least between all networks since another network 

achieved a lower error (0.0008428). respectively. 

6.2.2 MLP Results for Ratio 2; 50:50 

Table 6.2 shows the training and testing results of networks, but with different train/test 

ratio (ratio 2) and five different hidden neuron number and epochs that were defined with 

an earlier stage. 

Table 6.2: Results of MLP for Ratio 2; 50 : 50 

Ratio Neurons 
R % 

Training 

R % 

Testing 

R % 

Overall 
Epochs MSE 

Learning 

Rate 

2 10 91.38 86.35 88.96 10 0.00639 0.09 

2 10 92.58 91.14 91.84 25 0.00571 0.09 

2 10 94.04 92.84 93.42 50 0.00447 0.09 

2 10 96.02 95.35 95.61 100 0.00314 0.09 

2 10 96.81 90.64 93.83 200 0.00262 0.09 

2 30 93.74 89.01 90.98 10 0.00441 0.09 

2 30 93.42 91.62 92.47 25 0.00535 0.09 

2 30 99.15 86.62 92.31 50 0.00059 0.09 

2 30 96.23 90.15 91.33 100 0.00302 0.09 

2 30 99.74 89.77 93.92 200 0.000164 0.09 

2 50 94.1 90.92 92.55 10 0.00487 0.09 

2 50 94.7 92.25 93.31 25 0.00433 0.09 

2 50 99.28 90.05 93.49 50 0.000506 0.09 

2 50 99.06 90.5 94.62 100 0.000698 0.09 
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2 50 99.79 74.7 86.32 200 0.00015 0.09 

2 70 96.72 91.76 93.49 10 0.00251 0.09 

2 70 97.94 91.05 93.52 25 0.00142 0.09 

2 70 99.4 93.62 96.07 50 0.000384 0.09 

2 70 99 84.46 91.78 100 0.000788 0.09 

2 70 97.9 87.78 92.66 200 0.00158 0.09 

 

As seen in table 6.2, the network that achieved the highest training (99.79%) accuracy 

performed unsatisfactory during testing; as it achieved a low testing accuracy (74.7%) 

compared to others. This network was trained on 50 hidden neurons and 200 iterations. 

Note that this network achieved the lowest MSE (0.000150) between all networks. 

Consequently, this shows that high training accuracy does not grant the network a good 

generalization capability during testing. Also, it is found that the network that was trained 

with 70 hidden neurons and 50 iterations has achieved the overall correlation coefficient 

(96.07%), but not the least error (0.000384). 

6.2.3 MLP Results for Ratio 3; 40:60 

Finally, Table 6.3 shows the same networks rained with ratio 3 and experimented with 

different number of hidden neurons and iterations. 

Table 6.3: Results of MLP for Ratio 3; 40 : 60 

Ratio Neurons 
R % 

Training 

R % 

Testing 

R % 

Overall 
Epochs MSE 

Learning 

Rate 

3 10 91.29 84.66 87.19 10 0.00645 0.09 

3 10 93.84 89.21 91.18 25 0.00481 0.09 

3 10 98.42 90.18 93.55 50 0.0012 0.09 

3 10 99.23 89.9 93.5 100 0.000588 0.09 

3 10 99.48 89.07 93.35 200 0.000389 0.09 

3 30 93.72 88.59 90.67 10 0.00517 0.09 

3 30 94.05 91.16 91.96 25 0.00474 0.09 

3 30 98.91 89.4 93.57 50 0.000926 0.09 
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3 30 99.68 90.152 93.92 100 0.000247 0.09 

3 30 99.54 80.49 86.49 200 0.000362 0.09 

3 50 94.62 90.16 91.54 10 0.00349 0.09 

3 50 96.12 90.6 92.73 25 0.0307 0.09 

3 50 95.1 93.6 94.05 50 0.00383 0.09 

3 50 95.63 80.6 85.52 100 0.003378 0.09 

3 50 94.59 93.15 92.8 200 0.00315 0.09 

3 70 96.72 91.76 93.49 10 0.00251 0.09 

3 70 97.94 91.05 93.52 25 0.00142 0.09 

3 70 98.02 88.98 92.14 50 0.001453 0.09 

3 70 96.33 88.34 91.35 100 0.0026398 0.09 

3 70 95.61 81.47 86.31 200 0.00201 0.09 

 

In this table, the same observation can be made; a network that achieved the highest 

training correlation (99.68%) and least error (MSE) (0.000247) could not perform well in 

testing (90.152%) compared to other network that achieved lower training accuracy 

(95.1%) but best performance during testing (93.6%).   

 

 

 

(a) 
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(b) 

 

 

(c) 

 

(d) 
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(e) 

Figure 6.1: Variation of Overall correlation (R%) with respect to different number of   

                    hidden neuron  

 

Figure 6.1 shows the variation of overall correlation (R%) with respect to the number of 

hidden neurons increase in which different number of epochs are used: 10, 25, 50, 100, 

200.i.e. (a), (b), (c), (d), (e) respectively. It is noted that the ratio 1 is the best 

training/testing scheme as the networks achieved the highest overall correlation (96.25%) 

with 50 hidden neurons and 50 epochs. On the other hand, the lowest correlation (85.52%) 

was obtained with ratio 3 by network that have 50 neurons and 100 epochs (Fig. 6.1(c), 

(d)). It is seen that the increase of number of hidden neurons is resulting in an increase of 

the correlation when the epochs are between 10 and 50. In contrast, when epochs are more 

than 50, hidden neurons increasing starts negatively affecting the correlation.  

Similarly, ratio 1 scheme is still the best between the other ratios, even after passing the 

optimum value of epochs as shown in Fig. 6.1(d). Also, ratio 2 exhibited slightly lower 

correlation compared to ratio 1. However, in here the number of hidden neurons needed for 

the network to achieve such high correlation is only 10 neurons. For ratio 3, Note that the 

correlation here decreased to 85.53 % which is lower than the one obtained using 30 

epochs.  

Lastly, Figure 6.1(e) states the same conclusion; ratio 1 is the best scheme regardless of the 

slight decrease in correlation compared to Fig. 6.1(d). This small decrease in correlation is 

more likely due to the increase in number of epochs. In other words, the overall correlation 

starts to decrease after exceeding the optimum value of epochs. (0.0008428). respectively. 
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6.3 Results of Radial Basis Function Network  

A radial basis function neural network for the prediction of concrete strength is also 

experimented in this work. Similarly, many experiments were conducted by checking the 

performance of the network using different train/test ratios, different spread values, and 

number of hidden neurons. Spread was selected to be studied due to its effects on the 

learning process of this network.  

This network is also trained and tested on three ratios: 

 Ratio 1: 60:40 

 Ratio 2: 50:50 

 Ratio 3: 40:60 

Note that Gaussian is used as basis function for all radial basis function neural network see 

equation (24) in section 3.8.1. Also same ratios were experimented with different spread 

values. In addition, different ratios with same spread were also experimented in order to 

find a relation between spread values and train/test ratios.  

 

6.3.1 RBFNN Results for Ratio 1; 60 : 40 

Table 6.4 shows the performance of the network trained with learning scheme (60:40) 

together with five different hidden neuron values and four spread values. By interpreting 

the 6.4 table, it is noted that the network testing correlation is increasing with the decrease 

of spread value. The network that uses spread of 1 achieved a testing correlation of 94% 

with 50 hidden neurons, and this correlation started to increase with respect to the decrease 

of spread value until it reaches a correlation of 96.07% with a spread value of 0.1349. 

Also, it is seen that the number of hidden neurons does not have a serious effect on the 

learning of the network. In contrast, a relation between spread value and hidden neurons 

number is noticed. Each spread value has its own optimum hidden neuron values in which 

the testing correlation starts to decrease after skipping this specific number of hidden 

neuron. For instance, when spread value is 1, the optimum number of hidden neurons is 

observed to be 70, which results in the highest testing correlation, 93.8%.  When the 

number of hidden neurons rises, the testing correlation starts to decrease, with the same 

spread value. However, the best overall correlation (96.784) is archived when the network 

has 104 neurons and spread of 0.1349.  
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When the value of hidden neuron is considered for overall correlation, then it can be 

observed that for high spread values like 1 and 0.154, optimum hidden neuron value is 70, 

whereas for spread value like 0.135 and 0.1349, the optimum hidden neuron is observed to 

be 104, even though overall correlation for hidden neuron value of 70, 100 and 104 are 

observed to be really close. 

Table 6.4: Results of RBFNN for ratio 1; 60 : 40 

Ratio Neuron Spread 

R 

Training 

% 

R  

Testing 

% 

R  

Overall 

% 

MSE 

1 30 1 91.8 92.4 92.04 0.006946 

1 50 1 95 94 94.6 0.004335 

1 70 1 95.5 93.8 94.82 0.0039 

1 100 1 96.3 86.5 92.38 0.003207 

1 104 1 96.41 85.3 91.966 0.00315 

1 30 0.154 94.24 93.87 94.092 0.00499 

1 50 0.154 96.13 95.79 95.994 0.003385 

1 70 0.154 96.7 95.19 96.096 0.002895 

1 100 0.154 97.18 94.06 95.932 0.002485 

1 104 0.154 97.22 83.9 91.892 0.002447 

1 30 0.135 93.8 90.834 92.6136 0.00536 

1 50 0.135 96 93.95 95.18 0.003464 

1 70 0.135 96.76 95.9 96.416 0.00308 

1 100 0.135 97.2 95.7 96.6 0.002439 

1 104 0.135 97.26 95.79 96.672 0.002423 

1 30 0.1349 93.8 90.83 92.612 0.00536 

1 50 0.1349 96 93.9 95.16 0.003469 

1 70 0.1349 96.7 96 96.42 0.002848 

1 100 0.1349 97.23 95.8 96.658 0.002438 

1 104 0.1349 97.26 96.07 96.784 0.002412 
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Figure 6.2 shows the variations of training and testing correlations with respect to the 

increase of number of hidden neurons, each using one spread value. It can be seen that the 

increase of hidden neurons number is contributing to improving the training correlation. 

However, this hidden neurons number has an optimum number with respect to the same 

spread, after which the networks testing correlation starts to decrease. Also, it can be 

noticed that best training and testing correlations for this ratio are archived within 0.1349 

spread.   

 

 

   

                                       (a)                                                                          (b) 

 

   

                                        (c)                                                                     (d) 
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                                       (e)                                                                        (f) 

   

  

                                        (g)                                                                       (h) 

Figure 6.2: Variations of training and testing correlations with respect to hidden neurons 

                    number and fixed spread value using ratio 1; 60: 40 

 

6.3.2 RBFNN Results for Ratio 2; 50 : 50 

Similarly, network was trained using ratio 2 (50:50) with four various spread values (1, 

0.161, 0.16 & 0.159) and hidden neuron values. Table 6.5 shows the networks 

performances with one ratio and different hidden neurons number and spread values.  

Table 6.5: Results of RBFNN for ratio 2; 50 : 50 

Ratio Neuron Spread 

R 

Training 

% 

R  

Testing 

% 

R  

Overall 

% 

MSE 

2 30 1 92.27 93.6 92.935 0.008254 

2 50 1 94.74 93.45 94.095 0.005684 
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2 70 1 96.32 94.02 95.17 0.004014 

2 100 1 97.01 23.07 60.04 0.00327 

2 104 1 97.02 23.2 60.11 0.003258 

2 30 0.161 94.51 93.18 93.845 0.005932 

2 50 0.161 95.97 95.25 95.61 0.0043823 

2 70 0.161 96.77 89.24 93.005 0.003528 

2 100 0.161 97.42 82.82 90.12 0.0028214 

2 104 0.161 97.52 66.05 81.785 0.002723 

2 30 0.16 94.16 92.94 93.55 0.0062976 

2 40 0.16 95.45 93.04 94.245 0.0049387 

2 50 0.16 96.37 87.34 91.855 0.003959 

2 70 0.16 96.92 85.9 91.41 0.0033654 

2 100 0.16 97.47 47.28 72.375 0.002776 

2 104 0.16 97.51 45.2 71.355 0.0027319 

2 30 0.159 94.16 92.92 93.54 0.006301 

2 50 0.159 96.37 87.52 91.945 0.00396 

2 70 0.159 96.91 86.07 91.49 0.0037755 

2 100 0.159 97.35 42.23 69.79 0.0028983 

2 104 0.159 97.54 39.03 68.285 0.0026928 

 

From table 6.5, it is noted that the networks trained with less number of data (i.e, 50 %) are 

ending up with lower testing correlations compared to those which uses ratio 1. This is 

concluded because the highest testing correlation achieved here is 95.25 %, However, in 

ratio 1, testing correlation of 96.07% was achieved. Moreover, it is seen that the spread 

value has a notable effect on the testing correlation. However, each spread value has a 

specific hidden neuron numbers. As the network skips that specific number, the correlation 

starts to decrease as seen in Figure 6.3. 
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        (a)                                                              (b) 

 

        (c)                                                              (d) 

 

 

        (e)                                                              (f) 
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             (g)                                                                       (h) 

Figure 6.3: Variation of training and testing correlations with respect to hidden neurons 
                      number and fixed spread value using ratio 2; 50:50  

6.3.3 RBFNN Results for Ratio 3; 40 : 60 

This ratio is also experimented with three different hidden neurons numbers and spread 

values. Table 6.6 show the network performances when trained on ratio 3 with different 

hidden neurons number and spread values of 1, 0.3, 0.157 and 0.142. 

Table 6.6: Results of RBFNN for ratio 3; 40 : 60 

Ratio Neuron Spread 

R 

Training 

% 

R  Testing 

% 

R Overall 

% 
MSE 

3 30 1 94.21 85.3 88.864 0.003878 

3 50 1 97.61 80.83 87.542 0.0016257 

3 70 1 99.02 53.84 71.912 0.000669 

3 100 1 99.57 39.1 63.288 0.0002926 

3 104 1 99.59 47.54 68.36 0.0002819 

3 30 0.157 97.67 85.07 90.11 0.001589 

3 50 0.157 99.23 86.55 91.622 0.0004669 

3 60 0.157 99.49 88.1 92.656 0.0003483 

3 70 0.157 99.58 84.63 90.61 0.0002888 

3 100 0.157 99.91 29.33 57.562 <0.0001711 

3 104 0.157 99.95 11.28 46.748 <0.0001711 

3 30 0.42 95.34 87.87 90.858 0.003137 
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3 36 0.42 97.22 90.16 92.98 0.001888 

3 50 0.42 98.48 81.86 88.508 0.001036 

3 70 0.42 99.48 75.34 84.996 0.00035324 

3 100 0.42 95.34 63.33 76.134 0.0002016 

3 104 0.42 99.75 11.87 47.022 0.0001711 

3 30 0.3 94.71 90.27 92.046 0.0035544 

3 50 0.3 98.42 78.8 86.648 0.00108 

3 70 0.3 99.44 72.33 83.174 0.000385 

3 100 0.3 99.9 34.7 60.78 <0.0001711 

3 104 0.3 99.9 16.07 49.602 <0.0001711 

 

From this table, it is found that the best testing correlation (90.27 %) was archived when 

when the spread is 0.3 and number of neurons are 40. The highest overall correlation 

(92.98%) for this ratio was archived when the network used 36 neurons and 0.42 as a 

spread value. Also above table indicates that the testing correlations increase with the 

decrease of spread values till specific value of 0.3. Once the spread is reduced to 0.157 the 

testing correlations starts to decrease. This is due to the ratio used, which means that the 

effects of spread on the testing correlations are related to the train/test ratio employed. 

However, in here the spread has an optimum value, once it passes 0.3; the network 

performance starts to be lower.  

 

        (a)                                                              (b) 
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        (c)                                                              (d) 

 

 

                                        (e)                                                                      (f) 

 

     

        (g)                                                              (h) 

Figure 6.4: Variation of training and testing correlations with respect to hidden neurons 

number and fixed spread value using ratio 3; 40:60 
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(a) 

 

 

(b) 

Figure 6.5: Variations of training and testing correlations with respect to hidden neurons 

                    number and fixed spread value (1) using all ratios 

 

Figure 6.5 shows the training and testing correlations with respect to the three different 

employed ratios. From figure 6.5 (a) it is noted that network trained with ratio 3 (40:60) 

and spread 1 has achieved the highest training correlation. Also, it is seen that the training 
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correlation is inversely proportional to the number of hidden neurons after a certain value 

of hidden neuron.   

On the other hand, this relation cannot be applied to the Fig. 6.5(b) which shows the testing 

correlations. During testing, it is seen that the network trained with ratio 2, spread of 1 and 

70 hidden neurons was capable of achieving the highest testing correlations (94.04%) in 

contrast to Fig. 6.5(a) in which the ratio 1 was the best. Furthermore, it can be seen that 

each ratio has a unique hidden neurons number, after which the network performance starts 

to decrease. For instance, the performance of the network trained with ratio 3 starts to 

decrease after passing the hidden neurons number of 50; however, the performance of the 

network trained with ratio 1 starts to decline once the hidden neurons number passes 70.  

6.4 Discussions 

A comparison of the developed networks employed in this work with some earlier works is 

shown in Table 4. Note that only works which provide explicitly achieved accuracies and 

number of data used for train and test are considered for comparison. Our results can show 

that applying backpropagation neural network and radial Basis function network to the 

problem of concrete strength prediction is promising, in a way that correlations achieved in 

some experiments were relatively good.  

 

Table 6.7: Comparison between results of this study with other studies 

Network 
Parameters 

Dataset Train/Test Ratio Overall Accuracy 

BPNN 
326 

 
60:40 96.25% 

RBFNN 
326 

 
60:40 96.78% 

BPNN 

(Khashman & Akpinar., 

2017) 

1030 50:50 86.02% 

BPNN 

(Chithra et al., 2016) 
264 70:30 99.87% 

EANNs 

(Nikoo et al., 2015) 
173 80:10:10 93.5% 
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Firstly, it is seen that the employed backpropagation neural networks achieved higher 

correlation compared to some other works such as (Khashman and Akpinar., 2017) and 

(Chithra et al., 2016) networks. The used nertowrk by Nikoo et al., (2015) is a combination 

of evolutionary algorithm with a backpropagation algorithm that was trained to predict 

strength of concrete. On the other hands, Chithra et al., (2016) networks were 

outperformed our employed network, which can be probably due to the use of higher rate 

of training as compared to the train ratio used in this work.Moreover, the radial basis 

function network was also compared to some related works, in which the concrete strength 

was predicted using RBFN. Wang and Xu., (2013) applied an algorithm for determining 

the spread value in RBF network using a genetic algorithm. the authors concluded that if 

the spread constant is too big, much more neurons are demanded to adapt function’s rapid 

change, and the result will be not accurate enough but can only show the approximate trend 

of function (underfitting); if the spread is too small then more neurons are demanded to 

adapt function’s slow change, the result will be accurate enough but cannot represent 

change trend of function (overfitting). Note that this is the same conclusion that was 

derived through our study on the effects of spread value and hidden neurons number on the 

learning process of the RBFN. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

 
 

7.1 Conclusions 

In this thesis, neural networks are implemented for the task of non-destructive prediction of 

concrete’s compressive strength. Neural networks have shown a good efficacy in 

prediction tasks, depending on the defined ask parameters and their relevance to the 

predicted outcome. Thus, in this study, parameters that are conventionally known to 

influence the strength of concrete were proposed to be used. Some of these parameters 

were selected through a review of many published articles that discussed the parameters 

that determine the strength of concrete. However, the remaining input parameters were 

proposed for very first time, as they are known to affect the final chemical composition of 

concrete mixes; therefore, they are considered to affect the concrete’s strength. These new 

input parameters include CaO, SiO2, Al2O3 of cement, CaO, SiO2 and Al2O3 of fly ash. 

Since neural networks are data-hungry systems, numbers data were collected from 

different articles published in respected literature sources. 326 samples were collected, 

classified systemically according to inputs and normalized to be then used for learning and 

testing purposed of the networks. 

Two different neural networks were selected to be the classifiers behind this prediction 

task.  Radial basis function neural network (RBFNN) and back propagation neural network 

(BPNN) are utilized in order to predict concrete compressive strength. Networks 

performance was evaluated through conducting different experiments.  

Conclusions drawn from the results of the studies made are as the following:  

 Ratio 1 (60:40) achieved best overall correlation in both BPNN and RBFNN. This 

implies increasing train: test ratio yield result in better prediction accuracy. 

 All the networks that archived highest correlation in training dose not necessarily 

have high generalization capability.   

 The best overall correlation of BPNN is achieved with number of epochs of 50. 
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 The training correlation of BPNN and RBFNN improves with the increasing of 

hidden neurons.  

 Each value of hidden neuron in RBFNN has an optimum value of spread. When the 

spread exceeds this value, testing correlation stars to decrease.    

 The best values of hidden neuron and spread in RBFNN are 104 and 0.1349 

respectively. 

 The best prediction accuracy of is 96.78% and it was achieved by RBFNN.  

 The least mean square error was 0.00015 and it was achieved by BPNN.  

The obtained results were all compared with works in literature and it was seen that the 

proposed networks outperformed the other related works in terms of overall correlation. 

 

7.2 Recommendations for Further Studies   

Results found in this study indicate that the network achieved the best when specific 

hidden neuron numbers and spread value are selected. Therefore, it is recommended that 

further hidden neurons and other learning parameter combination are tested in order to 

ensure the optimum values of parameters yielding the further increased accuracy in 

strength prediction. Also, using different learning method of RBFNN (hybrid) is 

recommend for predicting concrete compressive strength.  
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APPENDIX 1 

MATLAB CODE FOR BPNN 

 

%generate inputs and output data 

input=xlsread('Data326all.xlsx', 'allinputs'); 

target=xlsread('Data326all.xlsx', 'alloutputs'); 

%Normalization for inputs and output 

input=mat2gray(input); 

target=mat2gray(target); 

% creating and initiating the network 

net = newff(minmax(input),[70 1],{'logsig','logsig'},'trainlm'); 

% Defining network parameters 

net.trainParam.goal = 0.0000000000000000001; % Sum-squared error goal. 

net.trainParam.lr = 0.09;  % Learning Rate. 

net.trainParam.epochs =25;% Maximum number of epochs to train. 

net.trainParam.mc = 0.5 % Momentum Factor. 

net.trainParam.max_fail = 500; 

net.divideFcn= 'dividerand'; % divide the data randomly  

net.divideParam.trainRatio= 40/100; % for training  

net.divideParam.valRatio= 0/100; % for validation 

net.divideParam.testRatio= 60/100; % for testing 

[net,tr] = train(net,input,target); 

ActualOutput=sim(net, input) 

errors = target-ActualOutput; 

% Mean squared error 

http://net.trainparam.lr/
http://net.trainparam.mc/
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net.performFcn = 'mse';  

% Choose Plot Functions 

net.plotFcns = {'plotperform','plottrainstate','ploterrhist', 'plotregression', 'plotfit'}; 
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APPENDIX 2 

MATLAB CODE FOR RBFNN 
 

%generate train data 

p =xlsread('Data326Ratio2.xlsx', 'traininputs'); 

t =xlsread('Data326Ratio2.xlsx', 'trainoutputs'); 

%generate test data 

p1 = xlsread('Data326Ratio2.xlsx', 'testinputs');  

t1 = xlsread('Data326Ratio2.xlsx', 'testoutputs'); 

%Normalization for p, t, p1 and t1  

p=mat2gray(p); 

t=mat2gray(t); 

p1=mat2gray(p1); 

t1=mat2gray(t1); 

% choose a spread constant 

spread = 0.161; 

% choose max number of neurons 

K = 50; 

% performance goal  

goal = 0; 

% number of neurons to add between displays 

Ki = 1; 

% create a neural network 

net = newrb(p,t,goal,spread,K,Ki); 

% simulate trained network for train inputs (Training) 

Yo = sim(net,p); 

% simulate trained network for test inputs (Testing) 

Y1 = net(p1); 

figure,plotregression(t,Yo,'Train') 

figure,plotregression(t1,Y1,'Test') 
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APPENDIX 3 

REGRESSION PLOT FOR BEST PERFORMED NETWORKS IN THIS STUDY 

 

 

 

 

 

Regression plot for Best BPNN 
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Regression plot for Best RBFNN



 

 

 


