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ABSTRACT 

 

The study focuses on determining whether there are any crashes or failure that are associated with 

the use of climate models when its parameters are induced to simulation. The study also focuses 

on analysing conditions that can cause climate models to fail because climate models are prone to 

failure, it become an important to determine chances of failure of the moodels. For this purpose in 

this thesis the neuro-fuzzy models is designed to determine chances of failure of the models. 

Consequently the aim was to develop solutions can be used to enhance the success or usefulness 

of models. The study used Takagi-Sugeno-Kang (TSK) type fuzzy rules for conducting neuro-

fuzzy model which was used in simulation of climate crashes. For comparative analysis Support 

Vector Machines (SVM) is applied for simulation of the same problem. SVM is modelled using 

LibSVM package. A comparison was made between SVM and neuro-fuzzy model results to 

determine which algorithm offers the best simulation results. Accuracy rates of 94.4% and 95.55% 

were obtained for SVM and neuro-fuzzy model of the simulations. However, the neuro-fuzzy 

model was discovered to be having better performance in modelling climate crashes. Observations 

were also made that the POP2 of the CCSM4 was characterised with simulation failures. Research 

findings revealed that numerical reasons accounted for 8.5% of the simulation failures.  

 

Keywords: Community Climate System Model; Failure Analysis; Neuro-Fuzzy model; Parallel 

Ocean Program; Simulation 
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ŐZET 

 

Çalışma yerleri, parametreleri simülasyona yönlendirildiğinde iklim modellerinin kullanımı ile 

ilgili herhangi bir çökme veya arıza olup olmadığının belirlenmesine odaklanmaktadır. Çalışma 

aynı zamanda iklim modellerinin başarısız olmasına neden olan koşulların analizine odaklandı. 

Bu, iklim modellerinin her zaman başarısızlık eğiliminde olduğu düşünceleri, modellerin 

başarısızlık ihtimalini belirlemek için de nöro bulanık model de kullanıyor. Sonuç olarak, bu, 

modellerin başarısını veya yararlılığını arttırmak için kullanılabilecek çözümler geliştirmeyi 

amaçlıyordu. Çalışma, iklim çökmelerinin simülasyonunda kullanılan nüro-bulanık modeli 

yürütmek için Takagi-Sugeno-Kang (TSK) tipi bulanık kuralları kullanmıştır. Karşılaştırmalı 

analiz için aynı problemin simülasyonu için Support Vector Machines (SVM) uygulanmaktadır. 

SVM, LibSVM paketi kullanılarak modellenmiştir. Hangi algoritmanın en iyi simülasyon 

sonuçlarını sunduğunu belirlemek için SVM ve nöron bulanık model sonuçları arasında bir 

karşılaştırma yapılmıştır. Simülasyonların SVM ve nöronal bulanık modelleri için doğruluk 

oranları sırasıyla 94.4% ve 95.55% bulunmuştur. Bununla birlikte, nöron bulanık modelin iklim 

çökmelerinin modellenmesinde daha iyi performansa sahip olduğu keşfedildi. CCSM4'ün 

POP2'sinin simülasyon hataları ile karakterize edildiği gözlemleri yapıldı. Araştırma bulguları, 

sayısal nedenlerin simülasyon başarısızlıklarının 8,5% 'ini oluşturduğunu ortaya koymuştur. 

 

Anahtar Kelimeler: Topluluk İklimsel Sistem Modeli; Hata Analizi; Nöro-Bulanık Model; Paralel 

Okyanus Programı; Simülasyon 
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CHAPTER 1 

INTRODUCTION 

 

1.1 State of Problem of Climate model Crashes 

Though climate models are considered to be offer huge benefits, they are still attracting a lot of 

criticisms and such criticism is tied to the idea that they suffer from failure which is known as 

crashes or bifurcations. Other researchers have gone to a large extent of attributing such failures 

to complexities that are as a result of their nature (Eastbrook, 2010; Rugaber et al., 2011; Sternsrud, 

2009). 

One of the notable issues surrounding the use of climate models is software challenges. That is, 

scientific representation problems tend to be high when the models involved are considered to be 

too complex (Farrell et al., 2011). However, the National Research Council (2012), established 

that modern tools such as uncertainty quantification (UQ), can be utilized to identify simulation 

model problems. Such is important because the obtained findings can be utilized to further improve 

model development. In climate modelling, primary UQ will be consisting of parameters or 

coefficients whose values are changeable. However, Sternsrud (2009), considers that this normally 

leads to simulating difficulties especially which makes it difficult to undertake at the desired 

resolutions. In most cases, parameterization will be done separately so that their responses are 

independent of each other and the best apparatus of achieving this is using non-linear climate 

models that are linked to other different parameterizations. Huge changes in simulation output are 

attained when the adjustable parameters are amplified using small perturbations but chances are 

high that the simulation is bound to fail (Gent et al., 2011).  

In this study, findings are based on crashes that have been observed during simulation involving 

perturbed parameter UQ ensembles of the Community Climate System Model Version 4 

(CCSM4). An assumption was made that binary outcome flag and input parameter values are 

known and this helped to determine if the simulation was complete or had failed.  

Despite the availability of studies that have used UQ strategies in sought to determine whether 

different crashes can be noticed, the results have to a large extent been similar (Gent et al., 2011; 

Jackson et al., 2008; Webster et al. 2004). However, the frequency at which they occur is 
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established to be high and there exist other cases which have not been documented. Sanderson 

(2011) also contends that there is also an element of reporting bias.  

1.2 Literature Review 

Randall et al. (2007) conducted an evaluation of climate models and their ability to predict future 

climate changes. The credibility of climate models varies between parameters. For instance, the 

findings showed that climate variables such as precipitation tend to have lower predictability 

power as compared to their ability to forecast temperature changes. The results, however 

established that numerous improvements have been made to enhance the use and effectiveness of 

climate models. Such improvements include interactive aerosols and can now simulate essential 

elements such as Madden-Julian Oscillation and the El Nino-Southern Oscillation.  

Jones et al. (2009) have considered the use of climate data to forecast future climate changes using 

a General Circulation Model. The study uses stochastic and generalized downscaling methods to 

generate the data so as to be capable of providing weekly data. Just like global climate models, the 

results revealed that uncertainties tends to affect the extent to which downscaling can be used to 

generate climate model data. The study also recommends that using various simulation models 

and scenarios is important so as to enable potential climate changes and their implications.  

Van Vuuren et al. (2011) conducted a study to examine the extent to which integrated climate 

models simulate climate changes. The study placed focus on integrated assessment models to 

evaluate environmental policies targeted at reducing emissions and combines uncertainty 

quantification methods to simulate carbon components. The findings showed that most simulated 

findings established by climate models do fall within the expected range of forecasts especially 

those of complex models. Thus improvements in climate models extends to cover carbon cycle 

feedbacks, inertia and climate sensitivity.  

Beaumont et al. (2008) undertook a study to examine how the choice of future climate scenarios 

for species distribution modelling important. The study established that modelling uncertainties 

are as a result of using different climate models. As a result, the study used species distribution 

models and the findings showed that careful selection of climate models is an important process 

which must not be done arbitrary. The findings also provide recommendations climate scenarios 
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must be those that relate to the situation under study and if not then uncertainty in assessments 

might trigger different climate change results. 

Koutsoyiannis et al. (2008) did a study to analyze the credibility of climate predictions. Arguments 

were levelled on the idea that climate models are relatively used by little has been done to examine 

their reliability.  Comparisons were made between model outputs collected from eight stations and 

the results showed that local models are not usually correct and that the idea that models have a 

tendency to perform better at a high scale. 

Lamarque et al. (2013) conducted a climate diagnostics, simulation and description of climate 

models drawing examples from the Atmospheric Chemistry and Climate Model Intercomparison 

Project. Modern day climate forecasts (zonal wind, humidity, temperature and precipitation were 

established to be having bias levels that are similar to modern day climate modelling apparatuses. 

Consistent model results were established to exist between zonal winds of 2000 to 21000 and from 

1850 to 2000.  

Jones and Thornton (2013) used data generation and generalized downscaling using general 

circulation model using a combination of weather generalization, climate typing and empirical 

downscaling. A MarkSimGCM software was used and the results showed that certain climate 

models must be manipulated before they can be used to forecast climate changes.  

Haggemann et al. (2013) did an assessment of how climate change influences water resources 

using hydrology and several global climate models. The idea is based on the fact that climate 

change triggers the changes that affect the availability of water and thus uses eight hydrological 

models and three global climate models to assess such effects. The findings showed that climate 

changes in the hydrology were causing changes in water reservoirs and hence conclusions were 

made that climate models are responsible for major uncertainties that are observed with climate 

models. Modellings errors were observed to be as a result of the choice made over models and 

such errors are considered to be smaller for climate models than those caused by hydrology models. 

Several ideas have been given surrounding the use of climate models and such ideas tend to differ 

on complexity and success perspectives. For instance, Gent et al. (2011), posits that prevailing 

climate models are characterized with complexities which are in most cases considered to be 

extraordinary. This was supported by ideas given by Randall et al. (2007), who established that 
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climate models consists of various subroutines, functions, algorithms (geologic, climate and 

biological), tons of lines of codes. All these are utilized to deal with conservative laws and 

equations of state for momentum, energy and flow of matter within the earth’s reservoirs, between 

the land, oceans and atmosphere. All these ideas are based on views that climate models are not 

always reliable and effective, and are bound to fail (Easterbrook & Johns, 2009; Washington & 

Parkinson, 2005). There are no concrete reasons and concurrences about what triggers a failure in 

climate models. For instance, Easterbrook and Johns (2009), strongly believe that the use of 

numerous algorithms of anthropogenic, geologic, chemical and biological nature that are used in 

the simulation of climate related issues and greenhouse gases, ozone, aerosols, Sulphur, nitrogen, 

and cycles of carbon is the main cause of climate model failure. This problem is made worse by 

the idea such algorithms are utilized in a lot of circumstances and time, and have solid, liquid and 

gaseous elements (Edwards et al., 2011). Alternatively, Clune and Rood (2011), revealed that 

software design and implementation problems can also necessitate vulnerability of climate models. 

This is because they are developed through a process that involves agile and huge open source 

software projects. Furthermore, other studies contend that the list of documented cases of crashes 

is high but little has been done to document important crash observations. This follows 

observations that have been made by Webster et al. (2011), that crashes tend to occur at a high rate 

but the number of recorded cases is very low. Hence, this further implies that a new study is 

required to further add and refurbish existing information about crashes in climate models. 

Irrespective of such an observation, ideas are still different and contrasting to each other and 

common consensus about the causes of crashes is still low and not continues to differ by study. 

For instance, bifurcations or crashes are common in any situation irrespective of its complexity 

and went to establish that intermediate climate models are also prone to crashes. To make matters 

worse different reasons behind such bifurcations are still different. For instance, Stainforth et al. 

(2005), attributes the causes to positive model feedbacks while Shiogama et al. (2012), attributes 

such causes to numerical instabilities such as collapse of the Atlantic meridional overturning 

circulation. This study therefore seeks to analyze and examine the failure of parameter-induced 

simulation crashes in climate models. 
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1.3 Research Objectives 

The undertaking of this study follows efforts to attain the following objectives; 

 Modelling of climate crashes using machine-learning algorithm using fuzzy neural 

networks.  

 To determine if there are any crashes or failure that are associated with the use of simulation 

models. 

 To determine chances that parallel ocean program simulation will fail. 

 To develop solutions that can be used to improve climate model development and 

implementation.  

1.4 Research Methodology 

In order to reduce obstacles that are associated with ocean, ice, sea and atmospheric uncertainties 

that are surrounding with the model components of CCSM4. The observed failures were observed 

from a combination of CCSM4 and Parallel Ocean Program (POP2) simulations of perturbed 

parameters. The ice sea model was undertaken in conjunction with the POP2 and analyzing of the 

atmosphere and land elements was done using data based components. The study also involves the 

use of a 10 year integrated simulation and the use of normal year forcing and provides 

climatological air-sea data. Support Vector Machines (SVM) and Neuro-Fuzzy model (NFM) were 

also used to determine chances of failure of the models.   

1.5 Significance of the Study 

The importance and value of climate models lies in their ability to accurately and effectively fulfill 

their mandate. Thus by identifying challenges that may cause failure in climate models, 

improvements can easily be made and new, refined and better climate models can be developed. 

This study also offers significant value to both the academic and professional climate modelling 

institutions as it has to a greater extent managed to identify simulation crashes as well as problems 

that triggered such crashes. In addition, it can also be used as a point of reference upon which 

future studies can be based on. Furthermore, the frequency of crashes has been reported to be high 

but other cases have remained undocumented and thus this study will add to the list of documented 

cases of crashes of climate models.  
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1.6 Organization of the Study 

This study is organized as follows; 

 Chapter One: Gives an outline of this study involves looking at issues that surrounding 

parameter induced simulation crashes in climate models and what it hopes to achieve in 

the process.  

 Chapter Two: Gives a detailed insight about climate modelling.   

 Chapter Three: Deals with the classification of climate models by machine learning. 

 Chapter Four: Looks at the Neuro-fuzzy model and SVM simulations methods that were 

employed to establish the failures, causes as well as solutions that can be used to deal with 

model failures and provides a detailed outline of analysis of the obtained findings. 

 Chapter Five:  Concludes the study by looking at conclusions that have be drawn, 

recommendations and possible suggestions to improve future studies.   
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CHAPTER 2 

CLIMATE MODELLING 

 

2.1 Overview 

Climate models (CM) are basically considered to be apparatus that are used to enhance 

understanding as well the ability to predict future climate changes either on centennial, decadal, 

annual or seasonal time scales (Boer & Yu, 2003). A prominent example is what are termed global 

climate models and these are made up of a combination of mathematical equations or expressions 

of how sea ice, ocean, land surface and atmosphere (climate systems elements) and how they 

interact (Gregory et al., 2002). CMs are interlinked to how human activity, natural changes and or 

a combination of both provides an explanation to variations in climate conditions. The information 

provided by CMs is often of great importance and can be used for local, regional and even national 

programs and  (Allen & Ingram, 2002), established that CMs are a useful tool to any nation or 

continent as they can be utilised for issues or policies that include among others water resources 

management. A notable effort towards the use of CMs has been witnessed by the development of 

long used Geophysical Fluid Dynamics Laboratory. 

The development of CMs has also been linked with efforts to determine climate sensitivity 

(Murphy, 1995), and the impact of climate features (Sausen et al., 2002). This is often characterised 

by the use of two distinct processes and these are prognosis and, attribution and detection 

(diagnosis). 

There is however disagreements that surround the use of CMs. For instance, Cubasch et al. (200) 

contend that CMs provides useful information which is also validated by other researchers and 

modelers through rigorous experiments which helps to curb uncertainties while Boer and Yu, 

(2003), outlined that CMs can be utilised to determine how changes in climate elements such as 

heating and cooling causes responsive effects on climate conditions. Climate models tend to differ 

in terms of their spatial and temporal resolution, degree of simulation and complexity. Basically 

climate models tend to fall into four different groups and these are; 

 General circulation models tend to use discrete equations that are governed by certain 

surface, ocean and atmospheric laws. This study is based on the use of global climate 
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models (GCMs) and will address some of the core elements of the GCM which include 3-

D, surface dynamics and processes, vertically resolved atmosphere and radiation balance.  

GCMS are often made up of a grid that stretches between 100-200km and at its surface it 

tends to deal with energy, water and ground temperature fluxes (Boer & Yu, 2003). GCMs 

can further be utilized to examine mass, momentum and energy conservation. Of most 

importance is the parameterization process which involves the expressing a process into an 

equation form and solving for the model variables so as to provide answers to the 

established questions (Bengtsson et al., 2006). This however requires data collected from 

observations under study. It is important to also note that parametrization is largely 

determined by the time scale. That is, certain types of parameterizations are conducive for 

longer time scales while others are desirable for short time scales (Yoshimura et al., 2006).  

 Statistical dynamical models include an examination tool of which is a combination of 

energy balanced models and how energy is transferred horizontally (Sugi et al., 2002).  

 Radiative-convective models tend to encompass broader simulation of energy and how it 

is transferred through the atmosphere (McDonald et al., 2005).  

 Energy balance models involve the simulation of latitudinal and global radiation balance 

(Durman et al., 2001).  

This chapter describes the characteristics and chaotic behaviour of climate modelling. The 

parameters such as temperature, precipitation, tropical cyclones and an evaluation of contemporary 

climate as simulated by global climate models.  

2.2 Climate modeling and the Chaotic theory  

One of the objective of this study is to determine what causes simulation failure and such an 

instance can be described by the chaotic theory which asserts that weather is chaotic (Evans & 

McCabe, 2010). This has implications on the study of the climate which by definition is the study 

of weather conditions prevailing in a certain place (Artale et al., 2010). This stems from ideas 

which have shown that air has low viscosity and friction and is also light and hence causes chaotic 

effects which affects climate simulations (Leung et al., 2003). As a result, when the wind blows, 

the weather is always in a state of disequilibrium. This also tends to affect the climate as well in 

the sense that equilibrium radiation physics is used to provide explanations to climate changes. 

This is accomplished by looking at changes in global temperatures (Kiehl & Shields, 2005). The 
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chaotic theory thus contends that predictable greenhouse gas forcing are responsible for major 

chaotic effects while smaller chaotic effects are considered to be due to volcanoes, sun and weather 

changes etc. These factors can strongly affect a simulated model as postulated by the chaotic 

theory. This can be supported by ideas given by Watanabe et al. (2010), which shows that climate 

modelling is not an easy thing as weather changes are in a strong position to cause chaotic behavior 

which can undermine the desired and possible outcomes. Such ideas were established by Lorenz 

(1963), whose work through hydrodynamics established that climate changes are characterised 

with non-linearity. This non-linearity is due to unpredictable air oscillation behavior and this can 

be illustrated by figure 2.1. 

 

Figure 2.1: Lorenz phase space equations of air convection, Lorenz (1963) 

Figure 2.1, illustrates that small climate changes are bound to have unpredictable outcomes and 

this implies that climate model simulations can fail in the event that these small climate changes 

have posed huge unpredictable outcomes. When climate change is highly associated with 

unpredictable outcomes simulation can be difficult and bound to fail (Watanabe et al., 2010).  

 

A
ir o

scillatio
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Figure 2.2: Illustration of deterministic chaos, Lorenz (1963) 

Figure 2.2, is based on the idea that two weather systems or patterns with initial conditions are 

bound to follow similar patterns for a certain period of time. The Lorenz attractor thus shows that 

after a certain period of time, the ability to accurately predict them will fall. This is what most 

scholars claim that climate modelling is associated and affected with unpredictable outcomes 

(Kiehl & Shields, 2005; Leung et al., 2003; Watanabe et al., 2010). Such is supported by Evans 

and McCabe (2010)) who established that oceanic indices also have smaller chaotic influences, 

Artale et al. (2010), contends that air and water have different Rayleigh numbers with that of air 

being greater than that of water and hence water cannot is difficult to ascertain its chaotic influence 

in ocean currents while McDonald et al. (2005), established that a lot of climate changes are due 

to heat transfers which can pose chaotic influences of climate simulations.  

Just like simulation failure, the chaotic theory predicts that chaotic weather behavior and outcomes 

is surrounded with some level of uncertainty which declines with time (Kiehl & Shields, 2005). 

This therefore implies that the extent to which a simulation model will fail also tends to decline 

with time. This can be supported by ideas given by Watanabe et al. (2010), which showed that 

simulation model tend to improve with time and hence simulation failures tends to decline with 

improvements made. Furthermore, the chaotic theory of climate change tends to posit that chaotic 

behavior can be determined with equations (Artale et al., 2010). Such is the same with simulation 

failure and equations can be used to determine whether a climate simulation model will fail. This 

can include things such as probability and algorithms to determine both chances success and 

failure.   



11 

Thus the chaotic theory was employed in this study to offer a sound base about what causes 

simulation failure, determine the chances of a simulation model succeeding or failing, what can be 

done to determine the probability of simulation success and failure, and what can be done to 

improve simulation success. Alternatively, it can be said to highlight the importance of uncertainty 

when developing simulation model, the use of mathematical equations (probability and 

algorithms) to conduct climate simulation and the importance of model improvement in dealing 

with simulation failure (chaotic outcomes).  

2.3 Model simulation Extremes 

Extremes have been observed to be dominating climate change headlines in terms of severity and 

frequency. This stems from concerns which have been raised by most scholars citing that climate 

change and variability have increased especially on a high note (Durman et al., 2001). Problems 

have been noted when simulation models were failing to capture these extremes and hence forcing 

model improvements that can address such concerns (Kiktev et al., 2003). However, improvements 

in dealing the simulation of extremes have been made following the introduction of new indices 

and data availability (Yoshimura et al., 2006).  

When dealing with extremes, it is important to note that not all extremes are the same because 

others take place due to local instabilities, higher altitudes or rapid amplification  (Bengtsson et 

al., 2006), have short duration (Sugi et al., 2002) and are smaller in scale (McDonald et al., 2005). 

Long lasting and large scale extremes are most cases caused by continuous weather events that are 

linked with land-air and sea-air interactions. But temperature extremes have been well simulated 

by prevailing models and this is made possible by analyzing tropical cyclones, frequencies and 

precipitation intensity, minimum and maximum temperatures amplitudes etc. That of precipitation 

is conducted by looking at its extreme precipitation rates.  

2.3.1 Extreme Temperature 

Flowing comparisons of Hadley Centre Atmospheric Model version 3 simulations done by Kiktev 

et al. (2003), it was noted that temperature extremes were mainly as a result of anthropogenic 

radiative forces. Such is considered to occur when the number of frost days is declining and at 

large spatial scales (Kiktev et al., 2003). Meehl et al. (2004), outlined that poor simulations can be 

made when the number of warm nights is not captured correctly and that by including 

anthropogenic forcing, model trend features can be improved to a greater degree. This can be 
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supported by observations made by Meehl and Tebaldi (2004), which showed that a 2 days decline 

in frost days is evident when greenhouse, ozone, sulphate aerosol, volcano and solar variations are 

included in the simulation process. However, such results tend to differ with the region or place in 

which the simulations have been made (Meehl et al., 2004). Following AMIP-2 precipitation 

extremes done by Kharin et al. (2005), it was discovered that warm temperature extremes are in 

most cases well simulated. On the other hand, Vavrus et al. (2006), established that the magnitude 

and location of cold air breaks will be prevalent in those prevailing climate conditions. Studies 

have also be done to examine the association between heat waves or cold air breaks and large scale 

air breaks. For instance, it was discovered that for precipitation that exceeds 10mm and 

downstream, cold breaks are more likely to be high (Vavrus et al., 2006) while observations have 

shown that a 500hPa circulation heat wave was common over North America and Europe (Meehl 

and Tebaldi (2004).  

2.3.2 Extreme Precipitation  

Following investigations that have been made by Sun et al. (2006), involving 18 AOGCM 

simulations, heavy events have been noted to be having little precipitation which is less than 10mm 

a day. Community Climate Model version 3 by Iorio et al. (2004), have also showed that accurate 

and real precipitation results are obtainable for high resolution simulations. This can be backed by 

examinations conducted in Japan and the established results by Kimoto et al. (2005), confirmed 

this to be true. The results still point to the same view though different simulations models have 

been used in each extent. For instance, cases involving the use of HadCM2 GCM found the same 

results (Durman et al., 2001) and where a HadAM3 by Kiktev et al. (2003) was used the same 

conclusions were made. Conclusions under this instance can therefore be made that simulation 

models must be in a strong position to accommodate extremes and the best way to do that is by 

including anthropogenic forcing.  

2.3.3 Tropical Cyclones 

Not all models can simulate tropical cyclones and Oouchi et al. (2006) contend that the intensity 

of such climate events is high and this makes it difficult for certain models to simulate them. Thus, 

running on a high resolution an SST boundary method has been established to offer better 

improvements and efforts towards the simulation of tropical cyclones (Camargo et al., 2005). But 

ECHAM5s have been in a strong position to produce better hemispheric or tropical global metrics 
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of tropical cyclones (Allen & Ingram, 2002). Despite the presence of such tools, errors have been 

noticed in some simulated models and are normally high when the intensity and frequency of 

tropical cyclones is very high (Meehl et al., 2004). This can be augmented by ideas given by 

Cubasch et al. (2001), which posit that the simulation of tropical cyclones is also associated with 

high sensitivity of conventional parameterization. Thus a proper tropical cyclone simulation 

requires high resolution models. This can even result in good simulation even if parameterization 

is not undertaken but so long as large convective systems are present.  

2.4 Evaluation of Contemporary Climate as simulated by Coupled Global Models 

Spelman and Manabe (1984), established that the response of a climate system tends to vary and 

this is due to nonlinearities that surround the climate. Thus, the ability of a climate model to 

accurately offer climate forecasts is determined by the extent to which prevailing climate 

conditions are simulated together with the undetermined level of fidelity. Modelling difficulties 

exist either because of lack of knowledge, skills, experience or information etc., can pose 

challenges in simulating prevailing climate conditions. This can also imply that dynamic of 

physical misspecification of processes (Sausen et al., 2002). Hence, Delworth et al. (2006), 

contends that climate models that are capable of simulating diurnal and seasonal cycles, and 

difficult spatial conditions, the greater the assurance that all the concerned elements have been 

covered or addressed. This was further supported by Collins et al. (2006), citing that the 

effectiveness of any developed model is determined by its ability to simulate present climate 

conditions. A multi-model mean field is often used to determine model bias and can deal with 

errors that considered to be pervasive. But climate characteristics are more likely to affect the 

accuracy of models in simulating climate changes. These elements do not only affect the ecosystem 

but also the society and can have a high responsiveness to radiative forcing. These characteristics 

are herein discussed as follows; 

2.4.1 Ocean  

The ocean is also another variable which plays an important role which determines the climate 

models respond transiently. Thus it can be said that ocean elements or characteristics do pose an 

effect on climate response. This can be evidenced by ideas given by Gregory et al. (2002), which 

clearly indicated that oceanic simulation’s fidelity is largely influenced by surface fluxes. This is 

because oceanic simulation is directly impacted by both the ocean and the atmosphere. Modelling 
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problems can sometimes arise because water and surface heat fluxes are deduced from information 

provided by other population samples and hence can be difficult to observe sometimes (Boer & 

Yu, 2003). This is also affected by the problem that the observed estimate is surrounded by a lot 

of uncertainties. This therefore requires that models look at the ocean’s horizontal transports 

(Yoshimura et al., 2006).   

 

Figure 2.3: Ocean heat transport, Durman et al. (2001) 

Figure 2.3, depicts that a lot of models that are simulated do transport large amounts of heat 

towards the north and this tends to differ with cases that involve estimates made from observations. 

This is also similar to ideas that have been made by Ganachaud and Wunsch (2003), which showed 

that at the 0.6 X 1015 model simulations are more concentrated at 45°N. However, as one moves 

from the equator, a lot of observations will be highly concentrated between or within observation 

depicted in figure 2.3.  

2.4.2 Atmosphere 

 It is important to note that models that can correctly capture all the processes are those that can 

deal with compensating errors accurately simulate surface temperatures of diurnal and annual 

cycles (Bengtsson et al., 2006). This is supported by ideas given by the study by (McDonald et al., 

2005), which showed that either energy movements caused by the ocean or atmosphere is 

necessitated by surface heat fluxes, clouds and insolation distribution. Moreover, diurnal and 

annual surface temperature cycles are also determined by diurnal and annual variations. However, 
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the extent to which soil and upper ocean layers store energy tends to affect these variations. 

Atmospheric influences will pose effects on simulation in two ways and this are; 

2.4.2.1 Temperature 

Temperature differences are usually noted among different climate models and a study by Kiktev 

et al. (2003), exhibited that large models are more prone to huge errors. This was also supported 

by observations made by Durman et al. (2001), which showed that at lower attitudes, temperatures 

errors can reach as high as 3°C for individual models. The extent to which errors occur as well as 

the magnitude of errors made has been established to vary with the region in which simulation has 

been made (Sugi et al., 2002). This can be supported by ideas given in figure 2.1, which shows 

that differences between the actual topography and the smoothed model topography can have sharp 

elevations which cause huge errors.  

Cold biases are also a common element that can affect climate model simulation but under this 

case such bias might be insignificant. Towards the eastern tropical basins, huge errors are also 

likely to be evident and this is as a result of having low clouds simulations (McDonald et al., 2005). 

However, a study by Durman et al. (2001), established that the magnitude of effect posed on 

external perturbations by systematic model errors is to some extent very low.  

 

(a) Climatological annual mean SST, 
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 (b) Size of the typical model error, as gauged by the root-mean-square error  

Figure 2.4: Typical model errors and observed climatology, (Rayner et al., 2003) 

From figure 2.4, observations can be made temperature errors do not exceed 2°C in regions that 

do not have accurate data or have poor data and those not in the polar regions tend As noted from 

figure 2.4, SST and surface air temperature experienced over the land are prime determinants of 

the recorded average surface temperatures. Figure 2.4, also shows that there are significant 

differences between the observed field and the multi-model mean field.  

Meanwhile, though these errors can affect climate mode simulations, climate models have been 

established to provide major explanations of global temperature patterns (Kimoto et al., 2005). 

Lorio et al. (2004), contend that recorded spatial patterns of mean temperatures are correlated with 

simulated mean temperatures and is close to 1. This points to the idea that the fidelity of models 

does govern the climatology of surface temperatures.  

 

Figure 2.5: Recorded standard deviation of SST over surface air temperature and land, Rayner et 

al. (2003) 
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On the other hand, the effectiveness and accuracy of a model can be determined by looking at the 

recorded surface temperature cycles. This is denoted in figure 2.5, and it shows that variations in 

monthly average monthly surface temperatures is due to semi-annual and annual elements of the 

annual cycle. Figure 2.5, also shows differences that have been noted between observations’ mean 

and that of the model. The importance of this diagrammatic model is that model errors are within 

the 2°C limit for every 10°C change in surface temperature. These given models do accommodate 

variations between continental and maritime environments.  

2.4.2.2 Balance of Radiation 

It is noted by Vavrus et al. (2006), that at the upper atmosphere the local differences between long 

wave radiation and shortwave radiation is attributed to seasonal and latitudinal changes in the 

incidence of the sunlight. Thus things like surface characteristics and the distribution of the clouds 

can impact insolation distribution. Observations do point that at the poles, annual mean insolation 

tends to be lower as compared to the tropics (Bengtsson et al., 2006; McDonald et al., 2005; Sugi 

et al., 2002). This implies that radiation imbalances have strong implications on climate simulation 

and errors can be high as differences in these two climate characteristics are factored in. thus 

models which does not cover these aspects are more likely to be mis-specified.  

2.4.3 Land Surface  

One of the challenges that can be encountered towards climate simulation especially of the land 

surface is inadequate observations. Kattsov and Källén (2005) noted that modelers can sometimes 

fail to obtain the necessary and sufficient observation to conduct land surface simulations. Things 

such as momentum and carbon fluxes, frozen or melting snow, drying and logged water and 

surface albedo can have a huge interplay on the distribution of energy between latent heat and 

sensible fluxes. Thus not all climate models can be analyzed on long or spatial temporal scales 

(Bengtsson et al., 2006). It also important that when conducting simulation, climate models must 

cover things such as surface fluxes, carbon and land hydrology.  

2.4.4 Sea Ice  

It is well established that sea ice features have huge effects on spatial and magnitude influence of 

high latitude climate variations (Arzel et al., 2006; Walsh et al., 2002). Insufficient observations 

of things such as the thickness of the ice. Bitz et al. (2002), contends that though some sea ice 

errors are measurable, they are to a large extent difficult to separate what causes them. Among the 
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probable reason is the idea that the extent to which sea ice is captured might not be that sufficient 

to adequate enough (Kattsov & Källén, 2005). Other ideas do point that at high latitudes, 

simulations errors in oceanic and atmospheric elements can trigger movements in ice (Walsh et 

al., 2002). Thus, it can therefore be established that climate models that can effectively simulate 

climate changes must capture seasonal variations of sea ice (Kattsov & Källén, 2005). A lot of 

simulation bias of sea ice made by models is with respect to high latitudes (Holland & Bitz, 2003). 

There are also other errors that climate model simulations can suffer from in this respect and this 

includes heat flux errors. Poor atmospheric parameterization and failure to simulate high-latitude 

cloudiness (Arzel et al., 2006).  

2.4.5 Changes in model Performance  

Inter-comparison of models has of lately been made possible by the use of standard experiments 

which provided results that can track the models’ historical performance. Among such are Coupled 

Model Inter-comparison Project (CMIP1&2) and MMD. Thus model output helps to express 

changes in model performance into quantifiable means using the 14 groups that have been 

providing model outputs (Circa, 2000). Information about sea level pressure, precipitation, and 

surface temperature can be provided through CMPIPI & 2 monthly fields. This helps to determine 

the performance of simulation models but CMIPI & 2, and the 20th century MMD simulations 

features are not identical (Lorio et al., 2004). The probability of climate models such as global 

models to simulate climate changes can depicted by figure 2.6. 

 

Figure 2.6: Normalized RMS error in simulation of climatological patterns, Kiktev et al. (2003) 
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Figure 2.6 shows the extent to which models can accurately determine surface temperature, sea 

level pressure and precipitation simulations in comparison to this that have been made in the past. 

After the twelve climatological months, the RMS error can easily be computed for the whole globe 

and it is used to analyse the combined effects of seasonal cycle and spatial pattern errors (Kimoto 

et al. (2005). Figure 2.6, also denotes that temperature simulation is at its best while precipitation 

is less simulated that pressure. It can also be noted that flux adjusted models tend to have better 

mean errors. These results do confirm that current models that are now being used for simulation 

can to a large extent perform well in climate modelling.   
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CHAPTER 3 

MACHINE LEARNING APPROACH FOR MODELLING CLIMATE CRASHES 

 

3.1 Overview  

This chapter presents machine-learning algorithms used for climate modelling. The chapter also 

gives a description of the design of NFM and SVM algorithms and how they will be used to predict 

simulation failure.  

3.2 SVM Classification 

SVM is a machine learning algorithm that is used to build models, analyze data and deal with 

classification challenges (Joachims, 1998). Alternatively, it can be known as a combination of 

various coordinates of a particular observation (Zeng, 2008). The concept of SVM is built on the 

idea and need to choose the best hyper-plane on the basis of accurate classification and 

maximization of margin. The use of SVM is also supported by kernel functions which help to 

transformation of dimensional input space (from low to high dimensional space). One good aspect 

of SVM is that model parameters can be tuned so as to enhance the performance of the model 

(Scholkopf & Smola, 2001). Just like any application, the use of SVM is characterized by both 

benefits and cons and such are outlined as follows; 

 It perfectly incorporates the idea of margin of separation.  

 Effectiveness in high dimensional spaces is always high when  

 It is also compatible with situations that are characterized by that has a mismatch between 

the samples and dimensions (sample size is greater than the number of dimensions) and the 

sample size. 

 It can also be considered to be efficient in terms of memory and this is due to the fact that 

it uses support vectors in dealing training points.  

The SVM approach has been criticized on the basis that it is incapable or ineffective to handle 

large data sources which a lot of training (Zeng, 2008). Joachims (1998) outlined that the 

performance of SVMs is limited and is high when the situation requires a lot of training. In 

addition, its use is also surrounded by the idea that it does not offer direct probability estimates 

(Scholkopf & Smola, 2001). 
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Given an input vector a, simulations can be assigned to classes KS and KF using SVM, that is, 

support vector machines (Bishop, 2007). There are also several methods that can be utilized to 

assign such classes and these include random forests (Hosmer & Lemeshow, 2000), decision trees 

(Bishop, 2007), neural networks decision trees (Breiman et al., 1984), and logistic regression 

(Breiman, 2001). Due to the nature of performance and feasibility in the use of algorithms, this 

study however concentrated on SVMs.  

The SVM approach caters for misspecifications from the soft margins (overlapping data) by 

maximizing the margin area that exists between the classes. For classes that are separable and are 

linear, greater dimensional features can be obtained through the transformation of input spaces. 

Kernel functions provide an easy way of transforming input spaces as denoted by figure 3.3. On 

and within the margin of the classes, separable training points can be found there and these are 

known as support vectors (Gent & McWillimas, 1990). The predictive decision function can be 

used to assign a new input vector x.  

𝑓(𝑥) =  ∑  𝑦𝑖
𝑁𝑠
𝑛=1 𝛽𝑖𝐾(𝑥𝑖 + 𝑥) + 𝑏       (3.1) 

The SVM follows ideas which were developed by Vapnik and improvements were later made by 

Cortes and Vapnik (1995) and they emphasis was to determine the hyperplane with the optimum 

separation with the longest distance between data points. Given (Xi, Yi) data points of a binary 

classification with classes Yi   1,1 and Xi  RP and all the vectors  are denoted by (Xi). The 

two points can be divided in to classes by a maximum margin hyperplane and this can be expressed 

as follows; 

w.x + b = -1 and w.x + b =  1        (3.2) 

In this case the normal vector of the plane will be represented by w and it tries to stop data from 

falling into margin by minimizing ‖w‖ by incorporating a constraint for Xi of the second class 

or w.xi – b ≤ -1 for Xi or w. xi - ≥ 1 for i. samples along the vector hyperplanes are what is known 

as Support Vectors (SVs) which are described by M= 
2

‖w‖ 
 which offers insights about training 

data. The optimization quadratic problem can be applied in this case as follows; 

Maximize ‖v‖ 

Subject to ym(v. xm – b ≥1 for any m=1, ……….n 
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Huge emphasis in SVM is to minimize the error and maximize the margin of operation of the 

training error. We can thus apply Langrage multiplier to the aforementioned expression which 

results in the following expression; 

      

The kernel function that satisfies the Mercer theorem is given by K(𝑥𝑖, 𝑥𝑗) =  (𝜑(𝑥𝑖), 𝜑(𝑥𝑗). The 

best optimal solutions are required to meet complementarity conditions established by the Karush 

Kuhn Tucker (KKT). 

α*i [y(w* 𝜑(𝑥𝑖) + 𝑏 ∗) − 1 = 0, 𝑖 = 1, … … . 𝑛. 

The solution of the dual problem will be given by α*I which gives rise to the following SVM 

function; 

       (3.3) 

The number of support vectors is given by m. the SVM can thus be considered to be an essential 

tool which is used deal with supervised classification issues and this is made possible because of 

its generalization ability.  

Given an input vector a, simulations can be assigned to classes KS and KF using SVM, that is, 

support vector machines (Bishop, 2007). There are also several methods that can be utilized to 

assign such classes and these include random forests (Hosmer & Lemeshow, 2000), decision trees 

(Bishop, 2007), neural networks decision trees (Breiman et al., 1984), and logistic regression 

(Breiman, 2001). Due to the nature of performance and feasibility in the use of algorithms, this 

study however concentrated on SVMs.  

The SVM approach caters for misspecifications from the soft margins (overlapping data) by 

maximizing the margin area that exists between the classes. For classes that are separable and are 

linear, greater dimensional features can be obtained through the transformation of input spaces. 

Kernel functions provide an easy way of transforming input spaces as denoted by figure 3.3. On 
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and within the margin of the classes, separable training points can be found there and these are 

known as support vectors (Gent & McWillimas, 1990). The predictive decision function can be 

used to assign a new input vector x.  

𝑓(𝑥) =  ∑  𝑦𝑖
𝑁𝑠
𝑛=1 𝛽𝑖𝐾(𝑥𝑖 + 𝑥) + 𝑏       (3.4) 

With Eq. (4), CS and CF have respective values of f(x) < 0 and f(x) > 0, langrage and bias multiplier 

are denoted by b and β, kernel function k(xi + x), indicator variable of a binary outcome yi∈{-1,1}  

and support vectors NS. Constrained optimization is used to ascertain both the langrage and bias 

multiplier as taken from Chang and Lin (2011). The challenge with Eq. (1) is that it does not an 

indication of the probability of class membership. As a result, this study had to make extensions 

to the SVM method. This can be made possible by the use of cross validation and training data 

that establishes a two parameter expression by introducing λ to equation 2 (Chang & Lin, 2011). 

Thus, in order to calculate the probability of failure P(Kf /x), LIBSVM was used. The study also 

developed a category of SVM classifiers using an ensemble strategy (Dietrich, 2000). Outcomes 

are obtained for each category and they are in turn utilized to determine how the system performs 

and simulation failures.  

3.3 Neuro-Fuzzy model for Structure Identification  

Neuro-Fuzzy model is a combination of neurace and fuzzy systems which is used to deal with 

pattern recognition, prediction, identification and control problems. Fuzzy sets are in two types, 

type I and II fuzzy sets but the type II was established out of type I fuzzy set (Lamarque et al., 

2013). In the thesis, type I fuzzy sets is applied for the design of NFM model. They use of Gaussian 

membership functions characterized by width and center parameters.  

        (3.5) 

The input vector X, width and center of the membership function are denoted by m and σ,  

Correspondingly.  

The Neuro-Fuzzy model (NFM) realize the fuzzy reasoning process through the structure of neural 

networks. Here, it is necessary to determine the accurate of the Neuro-Fuzzy model. This is 

obtained through evaluation of the error response of the designed classification system. TSK type 
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fuzzy rules are basically used for designing the fuzzy systems. TSK fuzzy rules include fuzzy 

antecedent and crisp consequent parts. These fuzzy systems approximate nonlinear systems with 

linear ones and have the following form: 

 

 

             (3.6) 

 

Here xi is input and yj is output signals of the system, i=1,...,m is the number of input signals, 

j=1…r is number of rules. Aij is input fuzzy sets, bj and aij are coefficients. The structure of (NFM) 

used for classification of liver disorders is given in Figure 3.1. The (NFM) consists of six layers. 

In the first layer, the xi (i=1,…,m) input signals are distributed. The second layer is membership 

functions that describe the linguistic terms. Here, for each input signal entering the system, the 

membership degree to which input value belongs to a fuzzy set is calculated. 

 

Figure 3.1: Topology of the proposed NFM 
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The third layer is a rule layer. Here number of nodes is equal to the number of rules. R1, R2,…,Rr 

represents the rules. The output signals of this layer are calculated using t-norm min (AND) 

operation: 

        
i

ijj xx )(1)(  , i=1,..,m, j=1,...,r                                                                        (3.7)         

where  is the min operation. These j(x) signals are input signals for the fifth layer. Fourth layer 

includes n linear systems. Here the values of rules output are determined.  

      1

1
m

j j ij i

i

y b a x


                                                                                                           (3.8)            

In the next fifth layer, the output of j-th node is calculated as:  

     ( ) 1j j jy x y                                                                                                                  (3.9) 

The output signals of FNS are computed in the sixth layer  
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                                                                                                                     (3.10)                                  

where uk are the output signals of the networks, (k=1,..,n). After calculating the output signal, the 

training of the parameters of the network starts. 

3.4 Learning of Neuro-Fuzzy Model 

Training of NFM is carried out using gradient descent algorithm. For this purpose on the output of 

NFM the error is determined. 

          (3.11) 
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Current and desired output are given by Yd and Y while the number of training samples is given 

by O for an input vector p. Here n is the number of output signals of the network, desired output 

is  and d

k ku u  the current output values of the network (k=1,..,n). The parameters are jijjkw b ,a , , 

(i=1,..,m,  j=1,..,r, k=1,..,n) and ijij  and c  as membership function. Model parameters will be 

adjusted by employing the following function; 

 

 

(3.12) 

 
Here m is the number of input signals and r is the number of fuzzy rules ,  is the learning rate, and 

 is the momentum. 
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CHAPTER 4 

SIMULATION 

 

4.1 Overview 

This part outlines methodological steps that were carried out with efforts to provide answers to the 

established research questions. Deduced conclusions as well as given recommendations are based 

on the results that were obtained following these given procedures. Thus this chapter with look at 

research methodology, how the ensemble simulations are to be conducted, the adopted descriptive 

and probabilistic failure analysis SVM classification and Neuro-Fuzzy model. These steps are 

herein discussed in details. 

4.2 Simulation Design  

The study is based on developed POP2 models which made it easy to select ocean model 

parameters that were used in this study. These model parameters were subjected to different 

parameterizations on a sub-grid scale and this was done six times. The main emphasis behind such 

parameterization was to determine the resultant outcome of vertical and horizontal oceanic 

turbulent after simulation. Table 4.1 provides details of the uncertainty ranges of the model 

parameters used in this study. 

Spatial anisotropic viscosity was used to ascertain the horizontal momentum and was represented 

by the parameters 13 to 18 in line with formulations established by Smith and McWilliams (2003), 

while isopyenal eddy-induced transport of the horizontal mixers were for parameters 10 to 12 and 

these were established from a study by Gent and McWillimas (1990). Information established by 

Fox-Kemper et al. (2008) outlined that parameters 7 to 9 can be used to simulate mixed layer 

eddies and submesoscale while prescribed formulations by Jayne (2009), were used for the abyssal 

tidal mixing. Further prescriptions by Large et al. (1994), were K-profile parameterization 

associated with vertical mixing and convection and these corresponded to parameters 1 to 6. 
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Table 4.1: CCSM4 ocean model parameters 

 Description Module Scale1 (low, default, high) Parameter2 

1 Ration of background diffusivity 

and vertical viscosity 

Vmix_kpp Log (4.0, 10.0, 20.0) Prandt1 

2 Max PSI induced diffusion  Vmix_kpp Log (0.1, 0.13, 0.5) Bckgrnd_vdc_psim 

3 Equatorial diffusivity  Vmix_kpp Log (0.01, 0.01, 0.5) Bckgrnd_vdc_cq 

4 Banda sea diffusivity  Vmix_kpp Lin (0.5, 1.0, 0.5) Bckgrnd_vdc_ban 

5 Base background vertical 

diffusivity  

Vmix_kpp Log (0.032, 0.16, 0.8) Bckgrnd_vdc1 

6 Mixed diffusion coefficients Vertical_mix Log (1.0, 10.0, 50.0) x 

103 

Convect_corr 

7 Convect_visc (momentum) and 

convect_diff (tracer) 

Tidal Log (2.5, 5.0, 20.0) x 

104 

Vertical_decay_scale 

8 Tide induced turbulence’s vertical 

decay scale 

Tidal Log (25.0, 100.0, 

200.0) 

Tidal_mix_max 

9 Tidal mixing threshold  Mix_submeso Lin (0.05, 0.07, 0.01) Efficiency_factor 

10 Submesoscale eddies’ efficiency 

factor 

Hmix_gm Log (0.05, 0.03, 0.03) Slm_corr 

11 Slm_r (redi terms) and slm_b 

bolus’ maximum slope 

Hmix_gm Lin (2.0, 3.0, 4.0) x 107 Ah_bolus 

12 Bolus mixing’s diffusion 

coefficient 

Hmix_gm Lin (2.0, 3.0, 4.0) x 107 Ah_corr 

13 Ah_bkg_srbl (horizontal 

diffusivity within the surface 

boundary) and Ah (redi mixing’s 

diffusion coefficient and 

background) 

Hmix_aniso Lin (30.0, 45.0, 60.0) Vconst_7 

14 Variable viscosity parameter Hmix_aniso Lin (2, 3, 5) Vconst_5 

15 Variable viscosity parameter  Hmix_aniso Log (0.5, 2.0, 10.0) x 

10-8 

Vconst_4 

16 Variable viscosity parameter  Hmix_aniso Lin (0.16, 0.16, 0.02) Vconst_3 

17 Variable viscosity parameter  Hmix_aniso Log (0.25, 0.5, 2.0) Vconst_2 

18 Variable viscosity parameter  Hmix_aniso Lin (0.3, 0.6, 1.2) x 107 Vconst_corr 

1 Logarithmic and linear scales were applied for parameters whose ratios were between the range high/low ≥ 5 and high/low <5, 2 individual 

correlated pair of parameters were denoted by numbers 1, 7, 9 and 13 
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4.3 UQ Ensembles and Sampling Procedures  

The examination of the ensembles was done in three different stages with simulations amounting 

to 180. Table 4.2 provides details of such simulations as well as the success rates of each study. 

The first and second studies were used to program machine learning algorithms so that they can 

track and analyze simulation crashes. The third study was conducted so as to determine their 

potential to forecast simulation crashes. Table 4.2 also shows the rate of failure of the entire 

simulations that were done and reports that 46 failures were observed out of the 540 simulations 

that were done. The recorded failures were observed at different intervals of the integration phase. 

18 POP2 parameter values were examined using a Latin hypercube method. This was also 

important as it resulted in the establishment of an ensemble. In addition, normalized log uniform 

probability functions were also employed to represent the model parameters’ high and low values.  

The adoption of the Latin hypercube method in this study is based on its reduction capabilities 

which are usually lower in than that of the Monte Carlo method (Davis, 2003). Meanwhile, the 

Latin hypercube method is an uncertainty and UQ analysis method that compromises of the Monte 

Carlo variant, space filling and stratified aspects (Stein, 1987). N intervals were obtained from the 

splits of all the D parameter distributions of the Latin hypercube, giving an ensemble size of N. 

thus in this study, N = 180 and D = 18. 

Table 4.2: Conducted Latin hypercube studies 

Study Failures Failure rate Successes Total simulations 

First 20 11.1% 160 180 

Second 12 6.7% 168 180 

Third 14 7.8% 166 180 

Total 46 8.5% 494 540 

 

Parameter values were randomly selected from various bins by carefully ensuring that each interval 

is subjected to sampling once at every parameter dimension. For instance, a possible outcome out 

of the 120 possibilities given 2 parameters whose bins will contain indices like (5,1), (4,3), (3,5), 

(2,2) and (1,4). This is known as a 5-pair or 5-element Latin hypercube ensemble. Figure 3.1 



30 

provide a description of the Latin hypercube sample areas of the 3 ensembles that are used in this 

study.  

Figure 4.1: Latin hypercube sample areas of the study ensembles 

It can be established from figure 4.1 that dense and uniform features are evident in the Latin 

hypercube. The Lawrence Livermore National Laboratory UQ Pipeline was utilized to generate 

the ensembles. This technique that runs on high performance computers and is used to analyze 

work flow systems using a Python system (Tannahill et al., 2011). According to Forester et al. 

(2008), such an apparatus is important as it can be used to develop surrogate models for 

approximating ensemble output and offers a way of sampling dimension spaces that have a high 

element of uncertainty. It can also be used for a number of functions that include using Bayesian 

and Likelihood distributions to estimate parameters, conduct statistical inferences and can 

accommodate huge observations of data. The failure analysis approach that was employed in this 

study utilizes a method for estimating the sensitivity of the parameters and can calculate the values 

of the parameters.    

4.4 Descriptive Failure Analysis 

As noted from figure 4.1, showing the 540 runs that were done of the Latin hypercube, dense and 

uniform features were observed and these were noticed also to be common among the other 

parameters. Figure 4.1 was presented in one-dimensional form because it was difficult to present 

them in three dimensional views. The most important observation that could be made is that a high 

level of failure is high at low points of background_vdcl and high points vconst_2 and vconst_corr 

parameters. On the other hand, convect_corr has being associated with insignificant or weaker 

failures. As noted by Smith et al. (2010), momentum equations can be combined with anisotropic 
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horizontal viscosity parameterization to come up with vconst_2 and vconst_corr, these have also 

been observed with figure 4.1. However, the Reynold’s number has been a major constraints to 

the parameters as their lower bounds have been subject to stability and process challenges. Thus 

according to Jochum et al. (2008), there is a need to incorporate the Munk boundary layer 

constraint which relates diffusion and advection. On the other hand, similar examinations made by 

Griffics (2004), that the Courant–Friedrichs–Lewy (CFL) which is viscous and relies on grid 

resolution and integration step time, has been constraining the upper bounds to diffusion stability. 

Hence, the main reason for the failures can thus be noted to be limits caused by the CFL and are 

triggered by the parameters’ high values. In this study, the integration time was set at 1 hour. 

Meanwhile, the KPP vertical mixing parameterization was set using the background diffusivity for 

diapycnal mixing (that is, the bckgrnd_vdc1), (Griffics, 2004). 

Numerical instability in this case is caused by a surge in the solution’s numerical noise and this is 

as a result of having declining not only bckgrnd_vdc1 values but also of other similar parameters. 

When it comes to the KPP vertical mixing scheme, viscosity and diffusivity will only increase 

when convect_corr increases in value. Smith and McWilliams (2003), established that this will 

cause the vertical density profile to destabilize. On the other hand, it can also be noted that the 

causes of failure are tied to the relationship between simulation outcomes and parameter outcomes 

but Danabasoglu et al., (2012), considers that it is difficult in most cases to determine the causes 

of failures. Observations noted from figure 4.1 do however point that parameter values and failed 

simulations are highly correlated. For example, it can be noted that at low points of bckgrnd_vdc1 

and high point values of vconst_corr there is a strong presence of failures and these are found in 

different sections of POP2. Vmix_kpp is linked with bckgrnd_vdc1 while the hmix_aniso part is 

related to vconst_corr. Thus, POP2 users and developers will to some extent face difficulties in 

determining and simulating failures of such parameters (Smith & McWilliams, 2003). 

Serious difficulties can be noted when at the low dimensional projections of figure 4.1 where 

failures and successes overlap. There is however mixed or various reactions of the failures. For 

instance, other simulations succeeded close to the parameter space while others failed and vice 

versa. High levels of failures and successes are concentrated between vconst_2 and vconst_corr 

on the top right part of the scatterplot and at the lower left part of the scatterplot there are traces of 

isolated failures. This implies that overlaps in the statistical model are more likely to 
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misspecification problems and parameter values are in this case taken as the major determinant of 

failures. Moreover, misspecifications in this case can be in two forms. Firstly, there are what are 

known as false positives and this occurs when models report failures and yet in actual fact there 

are successes (Prati et al., 2004). Type II errors are known as false negatives and they occur when 

it considers to be success yet in actual fact there is going to be failures. In some instances, class 

overlaps will occur when there is a population mismatch between two or more populations (data 

imbalances) and such imbalances will be highly visible in the POP2 outcomes (Prati et al., 2004). 

As a result, robust statistical approaches that are more detailed and can provide more insights about 

the failures are usually required. Thus this study adopted diagnostics and algorithms that can detect 

signals, allow machine learning and recognize patterns. These methods are of significant 

importance as they make it feasible to determine simulation failures before they occur and can also 

allow their causes can to be quantified. This can in turn be used to make improvements to POP2 

thereby causing to cater for huge changes in the parameters (Kotsiantis, 2007).  

4.5 Probabilistic Failure Classification 

POP2 simulations can either fail or succeed for any given combination of model parameters. Such 

outcomes can be presented by what is known as a two-class categorical variable. With such a 

variable, success is denoted by class KS and failure by class KF. Also with this classification, there 

is only one failure class but recognition has been made that simulation failures are bound to occur 

for various reasons. Chang and Lin (2011), outlined that failure can occur as a result of numerical 

instabilities, poor iterative convergences etc. the two-class categorical approach can thus be 

incorporated to deal with various types of failures through class classification.  

The main aim behind probability class classification is to ascertain the chances that the POP2 

simulation is bound to fail given vectors A = (a1, a2, ……a18). This can be expressed using a 

conditional probability ρ(KF/ a1). Applying Bayes principle, the conditional probability can be 

stated as follows; 

ρ(𝐾𝐹/ a1). =   
𝑝 (𝑎/𝐾𝑓) 𝑝(𝐾𝑓 )

𝑝 (𝑎/𝐾𝑓)𝑝 (𝐾𝑓)+𝑝 (𝑎/𝐾𝑠)𝑝(𝐾𝑠)
       (4.2) 

Class priors and class conditional densities are respectively denoted by ρ(CF) and ρ(a/KF).  A 

likelihood ratio can be obtained by incorporating a natural logarithm λ which can be ascertained 

using the formula;  
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λ = [
𝑝(𝑎/𝐾𝑓)

𝑝(𝑎/𝐾𝑠)
 
𝑝(𝐾𝑓)

𝑝(𝐾𝑠)
]         (4.3) 

By taking a logistic sigmoid function, Eq. (4.2) can be expressed as follows; 

ρ(𝐾𝐹/a) =   
1

1+exp(− 𝜆)
        (4.4) 

 

Figure 4.2: Logistic sigmoid function 

The sigmoid function ranges from 0-1 while λ has values that are within -∞ to ∞. However, the 

sigmoid function makes it possible to a probability that can be used to determine the probability 

of success or failure through transformation into an input vector. The logistic sigmoid function of 

Eq. (4.4) is shown in figure 4.2.  

It must be noted that these given statistical approaches can be used in different and broader 

circumstances (Kotsiantis, 2007). However, a geo-scientific model that is associated with 

significant variations is more subject to potential failure by subjecting the output to discretization. 

Meanwhile, both chances of success and failure can occur at various areas of the bins or areas of 

the threshold. For example, when simulation of a climate model is subjected to a 5K change in 

average global temperatures there are high chances of an excessive case. When such occurs success 

or failure can take place when model instances are below or above the threshold (Chang and Lin, 

2011). The chances of a model failing are provided by Eq. (4.4) and this can be established when 

simulated temperatures fall above the 5K par. Figure 4.3 provides a description of the kernel 

transformations in SVMs.  

     
 

 

 

 

 

 

 
Failure       Probability 
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Figure 4.3: Kernel transformations in SVMs 

4.6 Supervised Learning, Training and Testing   

The 3 UQ studies that are shown in table 4.2 were done consequently one after the other and the 

classifiers was trained so that it will be easy to understand simulation failures. The main aim was 

to allow it to predict simulation failure before starting simulation of study 3. The training 

constituted of 328 successes and 32 failures all from the combined 360 simulations of studies 1 

and 2. The study made use of bagging (Dietterich, 2000) also known as the bootstrap aggregation 

approach and this is because the number of classifiers (18) was higher that the number of failures 

recorded (32). Secondly, it was used because it enables one to express the response of the 

classifiers in numerical terms and this is important because it makes it possible to boost the 

performance of the classifiers (Fawcett, 2006). The initial process involved a resampling of the 

data which resulted in duplication of the samples and was done 100 times. As a result, various 100 

versions of training data were utilized to come up with a team of SVM classifiers. In order to make 

failure predictions, equal weights were assigned to the votes made by the SVM team for all the 

classifiers. The standard deviation and mean were also computed out of this process 

𝑈𝐶 =   
1  

𝑁𝑏 
∑ 𝑃𝑖(𝐶𝑓\𝑥)𝑁𝑏

𝑖=1         (4.5). 

α2
c  =   

1  

𝑁𝑏 
∑ 𝑃𝑖(𝐶𝑓\𝑥) −  𝜋2]𝑁𝑏

𝑖=1        (4.6). 
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The study used LIBSVM in the training process because it allows v-support and c-support to be 

computed. This was also done in conjunction with hyperbolic tangent, Gaussian, polynomial and 

linear tangent. Other kernels were tested but a K(xi, x) = exp(-y||xi – x||2) – Gaussian kernel of c-

classification was used because of experience and familiarity. Arlose and Celisse (2010), proposed 

a cross validation method that can be used to determine SVM values of C (misclassification 

penalty), y (kernel width). Classifiers were tested using 20% of the data while the remaining 80% 

of the data for all the repeated training was randomly selected to develop individual classifiers. As 

a result, one huge cross validation test was obtained and it comprised of (100 repeated sample x 

360 simulations x 0.2 test fraction). This was used to estimate AUC score and the ROC curve as 

shown in figure 4.4. The ROC was estimated using maximized values. That is, AUC = 0.94, C = 

3 and y = 0.1.  

 

Figure 4.4: Training classifiers’ SVM ROC 

From figure 4.4, it can be noted that the area under the curve is high above 0.8 and thus conclusions 

can be made that the used training can effectively predict study 3’ simulation crashes. 

The entire analysis was presented through the use of Gaussian kernels but the classifiers were 

retrained using similar cross validation and training data, and applying hyperbolic, cubic and linear 

tangent kernels so as to determine the sensitivity in relation to the nature of SVM kernel. 

Observations can be made that all the kernels had cross validation scores that were above 0.92 but 
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the performance of the Gaussian kernels was way higher. Both non-linear and linear kernels 

showed signs of good performance and CS and CF were established to be linearly separable. 

4.7 Neuro-Fuzzy Model Results 

The four cases of the fuzzy neural algorithm that were conducted, success rates were observed to 

be averaging high above 92%. The highest accuracy rate can be observed to be associated with 

activity 4 with a success rate of 95.55% and is composed of 16 neurons.  

Table 4.3: Neuro Fuzzy model results 

No. Neurons epoch Learn-rate SSETrain RMSETrain RMSEEvaluation SSETest RMSETest Accuracy 

1 8 500 0.003 388.19 0.3791 0.3790 76.920 0.377 92.04% 

2 16 500 0.003 299.91 0.3332 0.3333 59.590 0.332 94.63% 

3 8 500 0.004 388.37 0.3793 0.3781 76.396 0.376 92.22% 

4 16 500 0.004 281.62 0.3229 0.3228 55.781 0.321 95.55% 

Model 4 which had 16 neurons was established to be the best model in terms of accuracy and this 

follows a recorded accuracy rate of 95.55% while model 3 had the lowest accuracy rate of 92.22%. 

Root mean square errors (RMSE) indicate that the difference between the actual values and the 

predicted values of the train and that of the evaluation are the same for cases 1 and 3 and between 

2 and 4. 

Though RMSE can be noted to be declining with the number of increase in the total simulations 

done, it is important to note that case 1 and 3 have higher RMSE score than case 3 and 4 and this 

can suggest a high performance score in case 1 and 3.    

  

Case 1      Case 2 
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   Case 3      Case 4 

Figure 4.5: NFM The cases results 

4.8 SVM Results  

Six cases were used for the SVM algorithm with a 10-fold cross-validation and all the cases have 

attained an accuracy rates that are above 91%. The highest accuracy rate of 94.1% can be noted to 

be in line with a quadratic SVM while the lowest rate of 91.5% is recorded for Fine Gaussian SVM 

and Coarse Gaussian SVM.  

Table 4.4: SVM results 

No Types SVM Cross-Validation Accuracy 

1 Linear SVM 10-Fold 93.1% 

2 Quadratic SVM 10-Fold 94.4% 

3 Cubic SVM 10-Fold 94.1% 

4 Fine Gaussian SVM 10-Fold 91.5% 

5 Medium Gaussian SVM 10-Fold 91.7% 

6 Coarse Gaussian SVM 10-Fold 91.5% 

 

The best one is Quadratic SVM, Accuracy with 10-Fold Cross-Validation is 94.4%. The prediction 

speed is ~3100 obs/sec and training time 5.5387 sec. 

4.8.1 Predicting Simulation Failures  

In order to predict simulation failure, study 1 and 2 SVM classifiers training was utilized prior to 

conducting the 180 simulations. The predictions were emailed to the respondents and they are 
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shown in table 4.5. Equations 7 and 8 were utilized to determine the predictions. The following 

decision criteria was used to assign the simulations to Cf; 

D ≡ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ≤ 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒        (4.9) 

A similar threshold was utilized to select the 2 criteria. The criterion average was utilized for the 

initial criteria denoted by equation 10. 

Davg ≡ 0.5 ≤ 𝜇𝑐          (4.10) 

Dsum ≡  0.5 ≤ 𝜎𝑐 + 𝜇𝑐          (4.11) 

The second criterion utilizes standard deviation and sum of the averages of the committee as shown 

by equation (11).  The use of equation (11) is because of its ability to establish the variability of 

committee members and using a given number of simulations that were assigned as Cf irrespective 

of the fact that they had a mean below 0.5.  

The results of the actual and predicted outcomes are exhibited in table 4.5 and figures 4.6. From 

table 4.2, it can be noted that 166 simulations were recorded as successes and 14 failures. The Dsum 

and Davg classifiers showed signs of good performance. 

Based on the established confusion matrix shown in figure 4.6, it can be noted that 174 correct 

predictions were made with an accuracy of 96.7% (TN + TP). The incorrect predictions were 

spread between the 2 criteria. Incorrect predictions (FN + FP) were established to be 6 but an equal 

number of FP and FN was found to be associated with Dsum while Davg had a lower number of FPs 

than FNs. As a result, Dsum and Davg have different patterns in the ROC. For instance, (3/166, 11/4) 

coordinates are associated with Dsum while (1/166, 9/14) are linked with Davg. 

TP 

Davg = 9 

Dsum = 11 

Dsnr = 12 

FP 

Davg = 1 

Dsum = 3 

Dsnr = 2 

FN 

Davg = 5 

Dsum = 3 

Dsnr = 2 

TN 

Davg = 165 

Dsum = 163 

Dsnr = 164 

Figure 4.6: Confusion matrix for predictions of the 180 simulations 
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Table 4.5: Study 3 simulated outcomes and predictions 

Run σc µc Actual  Predicted* 

Dsnr Dsum Davg 

002 0.13 0.47 Success Success Failure Success 

006 0.14 0.54 Failure Failure Failure Failure 

015 0.10 0.37 Success Success Success Success 

017 0.12 0.42 Failure Success Failure Success 

027 0.09 0.25 Failure Success Success Success 

044 0.02 0.04 Failure Success Success Success 

060 0.10 0.80 Failure Failure Failure Failure 

073 0.15 0.52 Failure Failure Failure Failure 

088 0.11 0.63 Failure Failure Failure Failure 

095 0.15 0.47 Success Success Failure Success 

097 0.09 0.83 Failure Failure Failure Failure 

120 0.13 0.49 Failure Success Failure Success 

141 0.09 0.88 Success Failure Failure Failure 

148 0.12 0.76 Failure Failure Failure Failure 

155 0.08 0.31 Failure Success Success Success 

166 0.11 0.64 Failure Failure Failure Failure 

173 0.12 0.75 Failure Failure Failure Failure 

177 0.14 0.67 Failure Failure Failure Failure 

 

Employing a perfect classifier, [(TPR - 1)2 + FPR2]0.5, conclusions can be made that the 

performance of Davg with an interval of 0.357 is lower than that of Dsum which had an interval of 

0.215.    
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Figure 4.7: Actual and predicted outcomes confusion of the 180 simulations in Study 3 

In order to determine the differences in performance, middle and top panel shown in Figure 4.6 

through the use of σc + µc and µc as shown by the horizontal lines (decision criteria). Runs bellow 

the lines denote success while those above on the lines signify failure. Incorrect predictions are 

also depicted by the red dots while correct predictions are in blue. Figure 4.7 shows that Davg 

classified runs like 17 and 120 due to failure and had lower µc values that are less than 0.5. These 

runs were however classified to the right class by Dsum but the problem was that diagnosis problems 

were noted with runs 2 and 95 as shown. Thus, differences in performance can be attributed to the 

threshold value and if 0.4 was assigned as the threshold value instead of 0.5 similar results with 

Dsum will be attained.   

Using ideas given by Edwards et al. (2001), comparisons in predictive performance was made for 

the second study. Comparisons were not however made with the first study because they made use 

of the same data (evaluation and train). The approach by Edwards et al. (2001), only provides FN 

and TN values used for simulation predicted to fail. FN(TN + FN) was used to predict success and 

by comparison, this study only misclassified 2 and 3% of the successful predictions utilizing Dsum 

and Davg respectively.  
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4.8.2 Retrospective Analysis of Simulation Failures 

Decision variables σc and µc and a signal-to-noise ratio to determine the performance of the 

criterion using an SVM panel. However, simulation failures were not predicted before the decision 

due to limited information of the threshold. However, similar values of σc and µc were used in the 

same manner they were used to the other criteria and tests were conducted to determine if these 

values have a threshold that would reduce failure outcomes as well as the maximize the accuracy. 

As result, the following criterion whose performance is shown in table 4.3, was established; 

Dsnr ≡
𝜇𝑐

𝜎𝑐
 ≥ 3.53           (4.12) 

The performance of Dsum and Davg is lower than that of Dsnr and when incorporated into this study, 

this will give an accuracy of 97.8% with 4 false predictions which are equally distributed between 

2 FPs (runs 15 and 141) and 2 FNs (runs 27 and 44) and 174 correct predictions. An interval of 

0.143 is observed to be associated with Dsnr and lies on (2/166, 12/14) from the perfect classifier 

on the ROC. Differences in performance are illustrated in figure 4.5. Irrespective of the idea that 

successes and failures are better separated by the signal-to-noise ratio but huge misclassification 

can be noted with runs 44 and 141. Neither Dsum nor Davg had more simulations lying closers to 

them as compared to Dsnr. Implications can therefore point to the idea that Dsnr has a high rate of 

variability to changes in the threshold values. In order to determine the TPRs and FPRs of study 

3, different thresholds values were utilized. The criteria’s fixed locations and ROC are exhibited 

in figure 5.5 and it is noted that there is an overlapping between µc + σc and µc. this justifies that 

these variables tend to perform similarly irrespective of the threshold values used. µc + σc can be 

noted to be performing much better than µc as evidenced by the AUC scores. An AUC score of 

0.966 was obtained for the µc/σc ROC curve. This is because it has a lower potential of identifying 

a huge number of TPs and is highly effective when separating classes. Overall conclusions do 

point out that all the 3 decision variables do perform quite well.  

4.9 Sensitivity Analysis of Simulation Failures 

Having successfully illustrated the how successful the study predictions are, the classifier 

committee was utilized to identify, ascertain the quantity and order of the model variables that 

were necessitating failures. This is important because such information will be utilized to improve 

the robustness of the model variables to perturbations by dealing with modules that are highly 
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sensitive. Thus, an 18 POP2 was represented by a 104 Latin hypercube samples which were 

determined using the average probability of failure of the committee SVM of all the points. The 

study then followed propositions made by Helton et al. (2006), to undertake a global sensitivity 

analysis. From the 540 simulations, a new panel of 100 SVM classifiers was used for the retraining 

exercise using methods outline in the methodology part of this study. The sensitivity analysis 

exercise was done using (µc/σc) and µc, a panel response. 

4.10 Polynomial Chaos Expansion of the Failure Probability 

Sobol indices developed by (Sobol, 2001), to determine the sensitivity of the variables. Such 

indices help to separate the variations of µc as contributions made by high order combination 

coefficients and other variables. This was achieved by using polynomial chaos expansions which 

is essential because it gives parameters with proportional squares which is considered to be highly 

convenient (Salteli et al., 2006). A second-order polynomial chaos expansion with the following 

expression was used; 

Log µc = a0 + ∑ [𝑏𝑖𝑃𝑖(ξi) + 𝐶𝑖𝑃2(ξi)] + 𝑁𝑝
𝑖=1 ∑  𝑁𝑝−1

𝑖=1 ∑ 𝑑𝑖𝑗𝑃𝑖(ξi)𝑃𝑖(ξi) 𝑁𝑝
𝑗=𝑖=1      (4.13)  

 

The required coefficients are denoted by a0, bi, ci and dij, n-th order orthogonal polynomial of ξi 

is denoted by Pnξi and the random variability of i is captured by ξi captures random variability. 

This expression was estimated based on ideas given by Xiu and Karnidakis (2002), which 

established that Pnξi will represents shifted Legendre polynomials when standard uniform random 

variables are denoted by ξi and thus resulting in the following expression; 

,                 (4.14) 

1st and 2nd order shifted Legendre polynomials are denoted by;  

P1(ξi) = 6ξi2 – 6ξi + 1                    (4.15) 

P2(ξi) = 2ξi – 1                   (4.16) 

δmn is the Kronecker delta function.  
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The least squares approach was used to determine the coefficient of the eqn. (13). The results 

showed that the model has an R2 = 0.98 translating to changes in the dependent variable being 

explained by the model parameters. The variance is given by; 

           (4.17) 

While the average mean value is computed as follows; 

avg(log µc) = a0,          (4.18) 

Eqn. (14), is developed to establish values of the squared polynomial chaos expansion coefficients 

and the right hand side shows pairs of parameter and linear and quadratic parameters (individual 

parameters). 

4.11 Sensitivity Network of the Failure Probability 

Network graphs with edges and nodes were utilized as a strategy that aids in analyzing complex 

variance linkages. Fractional composition of parameter i, is proportionally related to the magnitude 

of node i.   

Node i =           (4.19)  

Table 4.6: Polynomial chaos expansion of failure probability. 

 

 Expansion Leading terms∗ 

 

 

 

∗ 
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Part of the contribution of the joint variation of the coefficients j and I is proportional node j, 

connecting node i and the thickness of the edge ij.   

Edgeij =            (4.20) 

It must be noted that this method does consist of 3rd order terms and among others edgeijk (higher 

effects) but will not be used in the estimation process. Long nodes are a representation of essential 

parameters of the developed network graph and have a tendency to produce significant linkages 

with other nodes.  

 

Figure 4.8: Network graph showing sensitivity of the probability of simulation failure 

Figure 4.8, is a pictorial description of the variance decomposition of Logµc. When using node 

connectivity and size, the results exhibit that 8 of the 18 coefficients are necessitating major 

simulation failure as denoted by coefficients in red colour. These were responsible for 95% 

changes that were observed with logµc as illustrated by eqn. (18). The four parameters whose 
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results were remarkable are bckgrnd_vdc1, convect_corr, vcost_2 and vcost_corr. They can also 

be concluded to be having highly connected and huge nodes and they constitute 88% of the 

variations observed with Logµc. A strong connection provides evidence that the probability of 

simulation failure is determined by the co-movements that tend to heighten failures. Thus, eqn. 

(18), provides an indication of the impact of the coefficients on simulation failures by ranking 

them. This offers ways that can be used to make improvements to the model. In addition, co-

movements between the simulation failures and the parameters values are shown by the scatterplot 

by they are not adequate enough to distinguish overlapping CS and Cf classes. Moreover, it exhibits 

that at least more than four coefficients are needed to offer explanations and distinguish simulation 

successes from failures. 

4.12 Learner Regression Analysis 

Vconst_3 and vconst_4 can be said to have been accurately predicted by the model and this follows 

the idea that the residuals are almost closely and symmetrically distributed across the lines. Thus 

the model can be said to be poorly capable of predicting Vconst_1 and vconst_2 responses.  

 

Figure 4.9: Simulation outcomes 
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4.13 Model Performance 

After training, model performance of the estimated Leaner regression model was determined using 

prevailing results of the model scores which shows which model has the best overall score. Such 

a score is termed the root mean square error (RMSE) on the validation set alternatively, it can be 

said to be useful in estimating the performance of the trained model on new data. A 10-fold cross 

validation was used for all the SVM models and the results show that the Fine Gaussian SVM 

offers the best simulation performance. This is because it has a lower RMSE of 0.23 compared to 

other SVM types such as Cubic SVM which had RMSE of 0.23. The training time took 17.216 sec 

and the results through R-Squared showed that 0.35 of the simulation failures is explained by the 

estimated SVM. The obtained MAE and MSE were recorded to be 0.15 and 0.05 respectively. 

Table 4.7: Model performance of the SVM types 

No Types SVM Cross-Validation RMSE 

1 Linear SVM 10-Fold 0.27 

2 Quadratic SVM 10-Fold 0.24 

3 Cubic SVM 10-Fold 0.23 

4 Fine Gaussian SVM 10-Fold 0.29 

5 Medium Gaussian SVM 10-Fold 0.23 

6 Coarse Gaussian SVM 10-Fold 0.27 

 

Response plots were used to determine which model offers the best performance in terms of the 

predictability power. The decision criteria is to accept that the model is a good model and can 

forecast or predict the actual actual when the resultant distance or margin between the actual and 

predicted values is small.  

                                      

Figure 4.10: Response plots 
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The response outcome is high for vconst predictions and can be considered to be having a high 

predictability power at lower values but falls as more vconst_corr values are added in to the 

analysis. Meanwhile, the opposite can be said about vconst_7 which low predictive capacity at low 

vconst_7 values but later increases as more because are units are included in the analysis. However, 

the estimated model can be said to be good at predicting vconst_7 response values because its 

residuals (errors) are almost symmetrically distributed across the line. 
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CHAPTER 5. 

CONCLUSIONS AND SUGGESTIONS 

 

The main emphasis of the study was to determine if there are any crashes or failure that are 

associated with the use of simulation models as well as conditions that can cause climate models 

to fail by determining the chances that POP2 simulation will fail. Thus Support Vector Machines 

(SVM) and fuzzy neural were used to determine chances of failure of the models. 

During the process of carrying out Latin hypercube ensemble simulations involving viscosity and 

ocean mixing parameters drawn from POP2 elements of the CCSM4, code crashes were observed 

to be relatively visible. The occurrence of the crashes was established to be due to several 

numerical reasons which were caused by changes in the combination of the parameter values used 

in the simulation process.  

The simulation crashes were based on the idea that they may either succeed or fail (binary problem) 

and failure probabilities were quantified using machine learning classification. The quantification 

process was based on the 18 model parameters and of the 360 simulations that were made, 32 

simulations were recorded as failures while the rest was considered to be successful. The validation 

process was conducted using 180 independent simulations.  

The established confusion matrix it was noted that 176 correct predictions were made with an 

accuracy of 97.8% while incorrect predictions were spread between the 2 criteria. Incorrect 

predictions (FN + FP) were established to be 6 but an equal number of FPs and FNs was found to 

be associated with Dsum while Davg had a lower number of FPs than FNs.  

Based on the classification system that was used, it was discovered that a prediction score above 

0.94 was recorded for AUC with at least 0.94 discrimination competence. From the available four 

modules which had a high potency to fail, eight model parameters were retrieved and the results 

can be utilized to enhance the effectiveness of CCSM4 when exposed to parameter perturbations. 

Such is important because it can be used in different scenarios with complex models.  

Finally, a comparison was made between SVM and neuro-fuzzy model results to determine which 

algorithm offers the best simulation results. Accuracy rates of 94.4% and 95.55% were obtained 
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for SVM and neuro-fuzzy model of the simulations. Thus it can finally be concluded that fuzzy-

neural network performs better in modelling climate crashes as compared to SVM. 
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APPENDIX A 

DATASET OF CLIMATE CRASHES MODEL 
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APPENDIX B 

TSK SOURCE CODE 

 

function [c1,o1,w1,w2]=class_nfuztsk(c1,o1,w1,w2) 

% Fuzzy Neural Networks (Muti-input multi-output networks) MIN 

T-norm operation 

% The NEFUZM is used to create network realising Mamdany type 

fuzzy system.  

%   Rahib H,Abiyev, January 2001 

%   Copyright by Rahib H.Abiyev 

  

%   clustering Multioutput bsisic program, using linear function 

in consequent part => TSK type 

%clases start from 0. For 5 class the output classes should be 

0,1,2,3,4. 

% option1 - train=1,  test=2 

% N1 - number of neurons of input layer 

% N2 - number of neurons of rule (hidden) layer 

% M - number of neurons of output layer 

% a1 - learning rate 

% a2 - Momentum 

% maxc - output classes  

% clustering   1-with clustering,   0- without clustering 

menu1='T' 

if(menu1=='T') load BB.txt; xt=BB(:,:); maxc=2; end    %breast 

tissue 

[row,col]=size(xt); 

for i=1:col-1 

    max1=max(xt(:,i)); 

    xt(:,i)=xt(:,i)/max1; 

end 
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N2=8;  tbeg=0;  tend=row; 

for t=tbeg+1:tend 

    Data(t-tbeg,:)=[xt(t,1:col)]; 

end 

N1=col-1;   M=maxc;   

[N1   N2   M]     

pause 

clc 

disp('0- Initialization of parameters ') 

disp('1- Learning                     ') 

disp('2- Testing                      ') 

disp('3- Exit                         ') 

num=input('Enter number : '); 

switch num 

    case 0, k1=1;k2=1; k3=1; k4=1; 

            [c1,o1,w1,w2]=nfuzTSKgen(N1,N2,M,k1,k2,k3,k4); 

            [c1,o1,w1,w2]=class_nfuztsk(c1,o1,w1,w2) 

    case 1,  epoch =500;    option1=1; clustering=0; a1=0.030;      

a2=0;                     

[c1,o1,w1,w2]=nfuzTSKtrain_crosv(menu1,option1,N1,N2,M,a1,a2,Dat

a,epoch,maxc,clustering,c1,o1,w1,w2);             

            [c1,o1,w1,w2]=class_nfuztsk(c1,o1,w1,w2) 

    case 2, option1=2;epoch =1; clustering=0; a1=0.0; a2=0;    

[c1,o1,w1,w2]=nfuzTSKtrain_crosv(menu1,option1,N1,N2,M,a1,a2,Dat

a,epoch,maxc,clustering,c1,o1,w1,w2); 

             [c1,o1,w1,w2]=class_nfuztsk(c1,o1,w1,w2); 

    case 3, quit cancel; 

end 

end 

 


