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ABSTRACT

In this thesis fractional calculus and its applications to stability for the fractional Basset
equation are studied. Most important properties of fractional order integrals and derivatives
are discussed. In applications, methods for the solutions of initial value problem for
fractional differential equations are considered. Stability of initial value problem is
illustrated with a special type of fractional differential equation.

ADix(t) + BDfFx(t) + Cg(x) = f(t),

where A # 0 and B,C € R, 0 < a < 1 which is known as Basset equation.

Keywords: Fractional calculus; Fractional differential equations; Basset equation; Stability;

Numerical solution



OZET

Bu tezde kesirli kalkiiliis ve Basset denklemi i¢in kararliliga uygulamalari incelenmistir.
Kesirli mertebeden integrallerin ve tiirevlerin en Onemli oOzellikleri tartisilmstir.
Uygulamalarda, kesirli diferansiyel denklemler i¢in baslangi¢ deger probleminin ¢éziimleri
icin yontemler géz Oniine alinmistir. Baslangic deger probleminin kararliligi, A # 0 ve

B,C € R, 0 < a < 1 olarak tizere Basset denklemi olarak bilinir.

ADix(t) + BDfx(t) + Cg(x) = f(t),

0zel bir kesirli diferansiyel denklem i¢in gdsterilmistir.

Anahtar Kelimeler: Kesirli hesap; Kesirli diferansiyel denklemler; Baset denklemi;

Kararlilik; Sayisal ¢6ziim
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CHAPTER 1
INTRODUCTION

The study of fractional calculus achieves a wide range of applications in many areas.
Especially in computer engineering it becomes a popular subject. Moreover, fractional
derivatives have been successfully applied to problems in system of biology, physics,
chemistry and biochemistry [see, e.g, (Liu, Anh, & Turner, 2004; Yuste & Lindenberg,
2001) and the references given therein]. The history of it began with a letter from
L'Hospital to Leibniz in which is asked the meaning of the derivative of order 1/2 in 1695.
In 1738, Euler did the first attempt with observing the result of evaluation of the non -
integer order derivative of a power function x* has a meaning and right after in 1820,
Lacroix repeated the Euler's idea and nearly found the exact formula for the evaluation of
the half derivative of the power function x®. Then, first definition for the derivative of
arbitrary positive order suitable for any sufficiently good function, not necessarily a power

function was given by Fourier (1822) as

d‘;{ch) — % j A% dA J f(©) cos(Ax — tA + am/2) dt. (1.1)

Near all of these studies, the first solution of a fractional order equation was made by Abel

in 1823 with the formulation of the tautochrone problem as an integral equation

j (x(p_(?)u dt = f(x), x >a0<u<l. (1.2)

After 1832, applications of the fractional calculus to the solution of some types of linear
ordinary differential equations were seen in the papers of Liouville. His initial definition
based on the formula for the differentiating an exponential function which may be

expanded as the series



co

flx) = Z ce®* s

k=0
[s)

D%*f(x) = Z crape®™* . for any complex o . (1.3)

k=0

Starting from the definition (1.3), he obtained the formula for the differentiation of a power

function and fractional integration which is known as Liouville's first formula

- — 1 [ a-1
D™ %f(x) = —(_1)6{[,(“)!‘ e(x+ )t dt, (1.4)

—oco<x<oo,Rea>0.

Next, Riemann's expression which was done when he was a student in 1847 has become
one of the main formula with Liouville's construction. Riemann had lastly arrived the

expression:

1 [ e®
o) Oj RO dt, x>0. (1.5)

Studies on fractional calculus achieved a significant and suitable level for modern
mathematicians after 1880's. Being more applicable and veritable greatly enhanced the
power of fractional calculus. Therefore, need of efficient and reliable techniques to solve
the problems which are modelled with fractional integral and differential operators occur.
Liouville was the first person who tried to solve fractional differential equations as
mentioned above. Then, some books written by (Miller & Ross, 1993; Oldham & Spanier,
1974; Podlubny, 1998; Samko, Kilbas, & Marichev, 1993) played a considerable role to
understand the subject and gave the applications of fractional differential equations and

methods for solutions.



In the present study, fractional calculus and it's applications to stability for the fractional
Basset equation are considered. Most important properties of fractional order integrals and
derivatives are discussed. This material was written on the basis notes that were used in a
graduate course at Near East University, Lefkosa, Cyprus. In applications, methods for the
solutions of initial value problem for fractional differential equations are considered.
Stability of initial value problem is illustrated with a special type of fractional differential

equation

ADx(t) + BDFx(t) + Cg(x) = f(t),

whereA#0 and B,C R, 0 <a < 1.



CHAPTER 2
RIEMANN - LIOUVILLE FRACTIONAL INTEGRAL

This chapter contain the definition and some properties of the Riemann-Liouville fractional

integrals.

2.1 Auxiliary Lemma

We start this section by the first order integral operator | defined by the following formula

Um=fMMa
0

From that it follows

x x ¥
i) =1(If(x)) =1 ff(s) ds =fff(s) ds dy.
0 00
Therefore, the second order integral operator I? defined by the following formula

Fﬂ@=j&—ﬂﬂﬂﬁ-
0

Lemma 2.1. The following formula is true

; (x — )1

I"f(x) = =D f(s) ds (2.1)
0

foranyne N.



Proof. Assume that (2.1) is true for n = k. That means

Y k-1
e = [ S0 1) as

Now, we will prove (2.1)forn =k + 1.

Applying the definition of the integral of integer order, we get

: (x — s)k1

1k+1f(X) = I(Ik f(X)) =] [f (k——l)' _f(S) dS]
0

x ¥
( )k 1
= f(s)dsdy.

Changing the order of integration and using

{0<y<x,0<s<y}={0<s<ux,s<y<x} weget

X X

_ k-1 —g)k1
I+ 1f(x) :f % f(s)dyds = ff(s) (y—i)l dy ds
0 s
_ ok —5)k
f 15) oy s = (&9 fgas

So, (2.1) is true for n = k + 1. By the induction it is true for any ne N. Lemma 2.1 is

proved.



2.2 Riemann - Liouville fractional integral

Let us consider some of the starting points for a discussion of classical fractional calculus.
One development begins with a generalization of repeated integration. In the same manner

as Lemma 2.1 if f is locally integrable on (a, ), then n-fold integrated integral is given by

Sn-1

") = f ds, f ds = | o) dsi

i) ds .2)

=(n—11)!af(x—

for almost all of x with -0 <a< X <oo and n €N. Writing (n 1)! = I'(n), an immediate

generalization is the integral of f of fractional order a > 0,

1§, f(x) = f(s)ds (right hand) (2.3)

17 1
F(“)af (x —s)l~@

and similarly for -co <x<b <o

f(s)ds (left hand) (2.4)

S U
10 = 75| G

both being defined for suitable f. When a = -0 Equation (2.3) is equivalent to Liouville's
definition, and when a = 0 we have Riemann's definition. The right and left hand integrals
18, f(x) and I_f(x) are related via Parseval equality (fractional integration by parts) which

we give for convenience fora=0and b=o0:

oo

[ sets 900 dx = [ g s dx. (2.5)
0

0



Proof. Using the definition of 1%, we get

ff(x)10+g<x> dr =75 )ffoc)f( g5 dsdx.

Changing the order of integration and using

{0<x<0, 0<s<x}={0<s< o, s<x < oo}, weget

I‘(a),f ()f(xf(s))1 g dxds
F(a)]guf(sf())la dx

oo

_ f(s)
‘0]9( )r(a>f<s e B

= [ gwrs s ax.
0

The following properties are stated for right handed fractional integrals (with obvious
changes in the case of left handed integrals). We will consider right hand fractional integral

when a = 0 we will use the following notation

1 (x) = ele)ds (26)

I'(a )f(x

for the Riemann-Liouville integral operator I* of order a . We have the following

properties of the Riemann - Liouville integral operator I* of order o .



1) The Riemann - Liouville integral operator [% of order o is a linear operator. That

means
1%(af(x) + bg(x)) = al%f(x) + bI*g(x),a,b € R,a € R*.
Proof. Using the definition of 1%, we get

af(s) + bg(s)
(x —s)t~«

1 X
1%(afCe) + bg()) = s f

B 1 (* f(s)ds 1 * f(s)ds
- “r(oofo G- i@ fo (x—5)i@

=al*f(x) + bI*g(x).
2) The following semigroup properties hold
& (Iﬁf(x)) = 1**B(§(x)), @, B € R*.

Proof. Using the definition of fractional integral operator, we get

ja ([ﬁf(x)) _Ja 1 _f(S) ds ]

I@) G577

1 fx 1 1 [ f(s)ds
TT@) G AB) G-

Changing the order of the integration, we get



P

y
1 1 1
: (’Bf(")):rm)r(mof f G=P -9

d

B 1 X X . .
B I'(a) F(,B)J- Lf (x _y)l—a (y — )1_[3 ] f(S) ds .

Now, we will obtain the integral

fx 1 dy
J (x=y) (v - sF

A(x,s) =

Putting y — s = t, we get dy = dt and

N

dt
(x —s —t)l-at1-F "~

A(x,s) =xf_
0

Putting t = (x —s)u, we get dt = (x — s)du . Then

ACxs) = (x —s)du

1
'of (x =)@ (1 —u)t=*(x — s)1-Byt-F

1
_ 1 du
- (x — s)1-(@+h) f (1 —u)t-a y1-A
0

1

1

— -1 ,,B-1

- (x — 5)1-(@+B) f A~ uf du
0

= (x — S)l—(a+ﬁ) B(O(,ﬁ)

7 f(s) dsdy

2.7)



_ 1 I'(a) T'(B)
T (x=$)"@B T(a+p)

f 1 ['(a) T'(B)
(x —y)t-@ (y )1 F T =) @H T(a+p)

Then

1 1 @I
(10) = tar | Goore Tars 1O ®

B 1 ; f(s) ds
" T(a+p) J (x — 5)1-(@*h)

= 1*F(f(x)) .

3) The following commutative properties hold
19[1Pf(x)] = 1P [1%f(x)], @, B € R*.

Proof. Applying semigroup properties, we get
19[1P§()] = 1948 f(x) = 1P+%§(x)

= IP[1%f(x)] .
4) Introduce the following causal function (Vanishing for x < 0)

a—-1

() = 105

,a>0.

Then, we have that

10



a) a(x) * dp(x) = P(x)qs+p,a, B € R,

b) 17 f(x) = da(x) * f(x), a € R™.

Proof. By the definition of convolution operator , we have that

Pax) * bp(x) = f a(s) bp(x — s)ds
0

ds

B ]xs“‘l (x — )1
~JT(@ TP

0

1 [ ) 1 [ _
= T@r®) Oj s A= ) s = s [yt ey,
0
From 2.7. It follows that
1
g (x) * dp(x) = RORO) A(x,0).
Therefore
1 1 T(@I(p)
bl @60 =TT 8) @B T(a + )
xa+ﬁ—1
“T@+p)

a) is proved. b) follows from the definition of convolution and definition of fractional
integral operator

11



Pa() * F() = f olx — ) f(5) ds

x(x_S)a—l N
= f s f(s) ds = 1o,

b) is proved.
5) For the Laplace transforms of 1% the following formula holds
u 1
LUFEO} = — LU ()

Proof. Applying the definition of the Laplace transform, we get

o [o9]

LU () = f e 19(f (x)) dx = f €5 o () * £ (x) dx
0 0
= L (e (O} L)

Now, we will prove that

o)

L{ba(0)} = f e
0

Putting =p, we get dx = d?p . Then

o p\&1
L 0} = | %i—p
0

12



1 1f°° LR
" I'(a) s¢ “T(a) s¢ Y T s
0

6) Effect on power functions is satisfied.

L+a

6= e

r(B+1) foralla > 0andp > —1,x> 0.

Proof. Using the definition of fractional integral of /% and the property of B(a, B)

function, we get

1 S
6= Of CEDEA

Putting s = xp, we get ds = x dp. Then

(B 1 xFp# xbre B a-1
I (x )_F(a') _I-Xl_a (1_p)1_a xdp_l-(a) j-p (1_p) dp
0 0

_ xPre xP+e T (B + 1) e TB+D
"t Bt L= T it TGiatD
Note.
1) 1°(1) = x* foralla >0, x>0.

F(1 @)

2) Let f(x) be an analytic function, then

13



1 [ 1
() = f o f©ds

a a+1 a+n

X ! n —_ oo
O T 'Oyt -t f )(O)r(n+1+a)Jr

forall a > 0.

Applying this formula, we can obtain the fractional integral of order a > 0 from elementary

functions, for example, we have that

1 ¢ eds
Ia ax — d
€)=t j (x—s)i—a ®
0
xa xa+1 xa+n
= + +otadt———+ ..
r'l+a) aF(2+a) ¢ I'm+1+a)

forala > 0,x>0.

14



CHAPTER 3
CAPUTO FRACTIONAL DIFFERENTIAL OPERATOR

This chapter contain the definition and some properties of the Caputo fractional differential

operator.

Definition 3.1. Suppose that « > 0,x > 0, a, x € R. The fractional operator

™ (s)ds

X
1
F(n—a)f(x—s)““‘”' n—1<a<n €N,
0

(

|

DEF() = |
dTL

L Wf(x), a=né€N,

is called the Caputo fractional derivative or Caputo fractional differential operator of

order a.

Lemma 3.1. letn—1<a<n,ne€N,a € R and f(x) be such that D¥f(x) exists.
Then

DIf(x) = 1'1=*Dlelf (x) .

This mean that the Caputo fractional operator is equivalent to ([a] — a)-fold integration

after [a|-th order differentiation.

We have the following properties of the Caputo fractional differential operator D¢ of

order o.
If f(x) and g(x) are sufficiently smooth function. Then

1) The Caputo fractional differential operator DF of order o is a linear operator. That

means

15



D%(af(x) + bg(x)) = aD*f(x) + bD¥g(x),a,b € R,a € R .
Proof. Using the definition of D¥ , we get

X
1 1 dlel
I'([a] — a)f (x — s)i-lal+a gglal
0

D#(af(x) + bg(x)) = [af(s) + bg(s)] ds

1 f 1 dlal o
IF'(Ja] — a) . (x — 5)1—[a]+a ds[‘ﬂf s)ds

=a

dlal

oyl fx 1
F(fa] = a) ) (x — s)t-lal+a ggla
0

7 9(s) ds

=aD¥f(x) + b D¥g(x).

2) The following non-semigroup properties hold
D DP f(x) £ D**P f(x),a, B € R.

Proof. Let=1, B =% , f(x) = x . Then applying the definition, we get
DiD? (x) = D(D?(x)

1 [ 1 d
olemaee

D2(x) =

_ 1 jx ds =2\/§
Glot

16



VT Vo x’
and
X
3 1 1 dl?l
D:(x) = (s)ds
r@) ] -oi ™
2 0
1 [ 1
= — (1) ds =
W el
r(z)s G-s
We see that

1 1 3
Di(D? (x)) = N #0=Dz(x).

3) The following non-commutative properties hold

Supposethatn —1 <a <n,mmn e N,a € R*and DZf(x) exists. Then in general
D D™ f(x) = D¥*™f(x) # D™DZf(x).

Proof. Using the definition of D , we get

: fla+m(s) ds
(o] — o) ) (x — s)t-lal+a’

DED™ f(x) = DED™f(x)) =

and

X
1 flal+m(s) ds

DEt™Mf(x) = F(([OL] +m) — (a+ m) J (x — s)1-(al+m)+(a+m)

17



fla+m(s) ds .

11
- T(Ja] - G)Of (x — s)t-lal+a

Corollary 3.1. Suppose thatn—1<a<nf=a—-(n—-1),(0<Bf<1),n€EN,
a,B € Rand the function f(x) is such that D& f(x) exists. Then

DZ f(x) = DI D" f(x).
Proof. Substitute 8 for « and n — 1 for m in
DI D™ f(x) = D™ f(x) # D™DIf (x) .
Then
Df D"t f(x) = DEYTVf () = DTV () = D ().
This means
DI D™ f(x) = D™ f(x) # D™DIf (x) .
4) For any constant properties hold
D&(c)=0.

Proof. Using the definition of D, we get

1 i 1 dlel .
F([O(] - (X)! (x — g)l—[a]+a dslal (C)

DZ(c) = s=0.

5) For the Laplace transform of D the following formula holds

18



n—1
LDEFEO} = sL{f () = ) s« R 1F®(0).
k=0

Proof. Applying the definition of Laplace transform, we get

oo

L{DEf(x)} = f e *(DIf(x))dx

0

- [ - - X ! lel(p)dp d
_b[e F([a]_a)!(x—s)l—[ahaf (p)dp dx .

Changing the order of integration and using
f0<x<00<p<x}={0<p<oo,p<x < oo}, weget

1 st ot —SX
L) = e | FU®) | g dx .
0 p

(o] =)

Putting x —p =t ,we getdx = dt

o)

1 < (@l e—st
= —— | =¥ flel(p)d dt.
F([oc]—oc)of eI Of Tt

Now, we will obtain the integral

0o
—st

e
A(0, ) =jmdt.
0

Putting st = y, we get dt = ds—y and

19



A(0,00) = s%lal f e Vyl#l=a=1 gy = ga=lelp([a] — a) .
0

Therefore

1

= m[ e~ Sp f[a](p)dp (Sa—[a]l-‘([a] _ O())
0

= sL{fM(x)}

n-—1
=" {s"ﬁ{f(x)} =) sk f"(O)}
k=0

n—-1
= SCLFCOY = ) sTR FR(0),
k=0

6) The Riemann-Liouville integral operator I* and the Caputo fractional differential

operator DE are inverse operators in the sense that
a) DII%f(x) = f(x).
Proof. Using the definition of DZ, we get
D& [f(x) = [l@1-a plal [lalja=lal £(x) = [lal-a D(D[“]I[“])I“‘[“]f(x)
= [lel=ap ja-lal £ (x).

From that it follows

20



X
1 D114 £ (y)dy

D*a ]af(X) = F([C(] _ C() J (X _ y)l—[a]+a’

X y
B 1 1 1 f(s)ds
- T(Ja] — ) E)[ (x — y)i-lal+a b <F(a — [a]) bI- (y — s)l—a+[a1> dy

x y
_ 1 1 1 f(s)ds
- I(lal - a) Of G —yyrtee (F(a —Tal + 1)0f (v — s)[a]a> dy

Now, we obtain the formula for

y
1 f(s)ds
P <F(a — [a] + 1)! (y — s)[a]a>'

We have that

1 [ fs)ds
F(a+1-[al]) oj (y — s)lal-a

y
_ 1 d(y _ S)—[a]+a+1
__F(a+1—[a])!f(s) a+1-[al

1
" @+ 1l-[aDl(a+1—[a])

y
fO)y~letrart 4 J f($)(y — s)~latrart ds]
0

21



y
! 1ta-|a . —[al+a+1
:r(a+2—[a1)[f(0)y ”+Off(5)(y—s)” ds].

Therefore,
1T fo)d
s)ds
b <F(Of +1- [a])of - s)W“)
_ 1
T T(a+2-a])

y
lf(())(a +1- [a])y—[aHa + ff’(S)(l +q-— [a])(y _ S)—[a]+a ds]
0

- |foy e fy FE)(y = )74 ds
T T(a+1-Ja]) y ) Y '

Applying this formula, we get

DI 19f(x) =

1 Jx 1
I'([a] — a) ) (x — y)i-lal+a

1 f(O) —[a]+a+jyfr(s)( _S)—[a]+a ds d
F(a+1-Tal) Y J y y

1 P y—[a]+a
~ T([a] = )T (a + 1 - [a]) {f(O)Of (x — y)i-lal+a dy}

22



x
( 1
1 f (x _ y)l—[a]+a
0
y

T el =@+ 1=]aD ]

& [ row =9 asay
0 )

Now, we will obtain the integral

[_f@yet
A(0,x) = —— dy
Ju—wﬂ]

Putting = ux , we get dy = x du

(ux)*~ [al

1
= O) | e * = (0) B[] + 1,[a] — @)
0

A0, x) =T(a—[a]l+ 1) T(a] —a)f(0).

Now, we will obtain the integral

x Y
_ f'(s)
A((O, x)(0, y)) = Of ! (x — y)iTalra (y — gylaa dsdy.

Changing the order of integral and using

[0<y<x0<s<y]l=[0<s<xs<y<x], weget

1
y)l—[a]+a (y _ S)[a]—a

4(©.00) = [ 7o) | = dy ds
0 N

Putting y —s = t, we get dy = dt and

23



X X—S d
40000 = [ F©) | =5 ds

S — t)l—[a]+a t[a]—a

N

x x— 4
t
- .ff,(S) f 1-[al+a t 1-[al+a ¢[a]l-a ds-
o s (x—s9) (1- P S) t

Putting t = (x — s)u, we get dt = (x — s)du and
A(O.00.0) = [ £
0

(x —s)du
) (x — S)l—[a]+a (1 — u)l—[a]+a [(x — S)u][a]—a

ds

x 1
= f £(s) f (1 —wlel=a-1 ya-lal gy gs
0 0

[rp0a-aa—rel+1)ds
0

= B(lal - @ a—[a] + 1) j £/(s) ds
0

=TI'([a] = )T (a — [a] + D[f(x) = f(0)].
Therefore,

1

DI = F = T+ T=TaD
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[[(a = [al + DI'([a] = a)f(0) + T(Ja] — a)l(a = [al + Df(x)

—I'([a] = a)l(a = [a] + Df(0)] =f(x).

[a] k
b) 1°DE f() = f() = ) T=D*f(0%),a € R,
k=0

Proof. It is easy to see that

X

IDf(x) = f FO@)de = f(x) - £(0).

0
From that it follows

x t1

I*D*f(x) = @ (t)dt, dt,
/]
I= f(f(l)(h) — @) dt; = f(x) — £(0) — xfP(0),
0

x t1 t2
PD3f(x) = jj j f®(ts) dts dt,dt,
00 0

X

- [roe - 9o - 6@ ©)] d,

0

2
= f@) = x fD©) =5 FD(0) - £(0).
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Suppose it is true for n = k — 1. That means

x t1 t2 tg-1
1Dk 1f (x) = f f f f FED(ty) by .
00 O 0

_ ) ¥ e
=f(x) = f(0) —xf*(0) = — k=11 fH2(0).
Then
x t1 tg-1
IDEF) = | | | f% (t)dty dte_y - dtydty
[]-]
_j‘ FOE) - FO0) == FO0) = L fO0) - o= p00)| de
B J 1 1! 2! (k — 1)! !
x? xk
= f(x) = £(0) — xf 1 (0) —Ef(”(o) - ---—Ef“‘)(o)
k xk
= f0) = ) 9.
k=0
Therefore,

ﬁf(n)(o)

n!

I"D*f(x) = f(x) —

n
k=0
is true for any integer n .

Finally, we have the following formula
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1
(Tal—a+1)

Dif() =5

<xral-a DIl £(0%) + f (x — )= (e f)(s) ds) :

0

Proof. Using the integration by parts

1 A f(s)
a — [a]
DEf () = I'([a] — @) of b (x — s)1-lal+a ds

___ 1t
- I([a] — a)

(x — s)lal-« x [ —(x — s)lal-@
A= DU | e @M d5>
( (fa] — ) 0 of (fa] — )

DifG) = IF(la] —a+1)

(x[al—a plel F(0*) + f(x — s)lal=a (p*lalfy(s) ds).
0

Example. Prove that

0 ifp€eN’andp < |[a],

if € N°and B = [a]or B & N and B > [a].

Df‘(xﬁ) = {F(,B + 1) xf-@
rB+1—a)

Here N° = N U {0}.
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Solution. If € N® and 8 < [«], than D!*I(u#) = 0, and using this formula

P

D&f(x) = s D' f(u)du,a,x € R*, (3.1)

1 1
([a] — o) Of (x — w)i-lal+a
we get DFf(x) = 0.

If B€N°andp = [alorB & N and B > [a], then

r'g+1
D[“](uﬁ) = %uﬁ‘“.

Using formula (3.1), we get

Df‘(xﬁ) = T D[“](uﬁ) du

1 ¢ 1
(fa] — ) Of (x — w)i-lal+a

1 1 g+ 1)
 T(Ja] - Ot)oj G—wi e+ TE+1-o)

B—a

Putting u = xp , we get du = x dp. Then

1
rg+1) X .
(Jal =) T(B+1—a) J [x (1= p)]t-Tal+e (xp)P-1el dp

Df‘(xﬁ) =T

_ r(8+1) o o
_F([a]—a)l“(ﬁ+1—a)0fpﬁ”(1 p)lel=a=1dp

28



B r(B+1)xf-=
" T(Jal —o) T(B+1

—5 A6~ [l + Llal -~ @)

T+ xFe
T +1-a
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CHAPTER 4

RIEMANN-LIOUVILLE FRACTIONAL OPERATOR

This chapter contain the definition and some properties of the Riemann-Liouville fractional

operator.

Definition 4.1. Suppose that ¢ > 0,x > 0, a,x € R. Then

f(s)ds

1 dn
'nh—a) dx”j(x—s)l‘”ﬂ”f%’n_1 <a<nneN,
0

n

(
D“f(x)=!

I d B

k Wf(x), a=neN

is called the Riemann-Liouville fractional derivative or the Riemann-Liouville fractional

operator of order a.

Lemma4.l.Letn—1<a <nné€N,a € R and f(x) be such that D*f (x) exists. Then
D%f(x) = Dlalflal-af(y)

This means the Riemann-Liouville fractional derivative is equivalent to ([a] — a)-fold

integration and [a]-th order differential.

We have the following properties of the Riemann-Liouville fractional differential operator

D% of order a. .

1) The Riemann-Liouville fractional differential operator D% of order o is a linear

operator. That means

D“(af(x) + bg(x)) =aD%f(x) + bD*g(x),a,b € R,a € R*.
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Proof. Using the definition of D* , we get

1 A"l [ af(s)+bg(s)

D“(a f(X) +b g(x)) = F([O(] _ O() dxel (X _ s)l—[aH'a

o dM 7 feds b d9 [ gds
" I'(Ja] — ) dxlal (x — s)i-lel+a " T([o] — ) dxlal | (x — s)1-Tal+a
0 0

=aD* (x)+bD* g(x).

2) The following non-semigroup and non-commutative properties hold
D*DAf(x) = D*Bf(x),a, B € R*.

Supposethatn —1 < a <n, n,m € N, a € R,. Then in general
D™DYf(x) = D**™f(x) # D*D™f (x) .

Proof. Let a = %,f(x) = 1, m = 1 using the definition of D%, we get
D2D(1) = D (0) = 0,

pi(1) -1 -
2 =— X2,
2V

IDI(1) = 0 # —= x2 = D3(1)
D2D (1) =0#—x2 =D2(1).
W

That means
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D%Dl(l) + Dg(l) (non-semigroup)

and
1 1( ) L 1 -1 -1 -3
D D2(1) =D (—x7)= — x 2
r 2\
DIDI(1) = 0 # —=x% = D1DE1)
2 = X2 = 2 .
pAY
That means

1 1
DzD(1) # D1Dz(1) (non-commutative) .
3) For any constant C, the formulas hold

1 -a
D (C):mx .

Proof. Using the definition of D%, we get

1 dial ¢ cds
(Ja] — @) dxlal ) (x — s)t-Tal+a
0

D¥(e) =1

o d[ (x—s5% x
TT1-a) dx| (-0 |ol

3 c d x'¢ 3 c
“TTl-wdr(l-a) TU-w"

-

4) For the Laplace transform of D¢ the following formula holds
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-1

LDEfO}=s“L{f)} = ) s¥[D¥*f(X)]x=0

0

S

&
I

Proof. Applying the definition of Laplace transform, we get

oo

LD ()} = f e~ [Df (x)] dx

0

]esx{ d" [ f@)dp } i
0

'(n—a) dx J (x —p)l-n+e
0

[ —sx{dn A f(p)dp }dx

- I'(n—a) ¢ dx™ ) (x —p)l—nta
0 0

__ 1 [ fdp | 1 gn-t [ f)dp
" T'(n—a) ) (x — p)l-nte '(n—a)

1 {d [ f)dp ]

" Tn—a)|dxt ] (x —p)i-nta
0 x=0

f(p)dp e med ~
F(TL — a’)_f f(x — p)i-nta — s f(X)x=0

—(D*f(X))x=0 -

we obtain formula for the integral
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) = s f f LB

Changing the order of integration and using

[0<x<0,0<p<x]=[0<p<o,p<x< o], we get

T(s) = a)ff(P) fmdx dp .

Putting —p =t , we get dx = dt

00
—St

IO = o f P (p) dp f et

Now, we will obtain the integral

o
—st

e
A(0, ) :ftl—n+adt'

0

Putting st = y, we get dt = ds_y

(o]

e dy
A(o,oo>=0j(z>1w?

S

= s“‘”f e Vy" e ldy =s*"I(n—a).
0

Therefore,
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T = rms | €77 ®) (T - @)dp = 5° [ e=Pf @) dp
0

(n—a) )
=s*L{f(x)}

and

LD} = LY@} = ) s* DT ()] emo
k=0

5) In general the two operators Riemann - Liouville and Caputo, do not coincide.
Actually,

DEf(x) = [1e1=aplal £ (x) = Dlalflel=af () = Dof ().

But, we have the following formula
n-1 xk
DEf(x) = D° <f(x) - rw (O>> .
k=0
Proof. The well-known Taylor series expansion about the point 0 is

2 3
FG) = £(0) +xfD(©) + 5 FO0) + 5 FD(0) + -

n—1

+(n—1)!

F@D0) + R,y

n-1 xk
— ) R
;F(kﬂ)f (0) + Rns,
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where, considering also (2.2)

[ (s)(x — s)m

Rn-1 = (n—1)!

1 »
:mbff()(s)(x—s) ds

= "M (x) .

Now, using the linearity property of the Riemann - Liouville fractional derivative, the
Riemann - Liouville fractional derivative of the power function, the properties of the

fractional integral and representation formula

DIf(x) =1""“D"f(x).

_ xk
a — na § (x)
D f(x) =D (kzo F(k + 1)f k (0) + Rn—1>

n-—1

D%xk

= - f® a

Z ] X f(0) + DI ()

Z - 1)f(")(0) IO ()

Z - 1)f(")(0) +DEf(x).

This means that
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DEf(x) = D*| f(x) — Z ’,i— ) (0)
k=0

Note. Suppose thatn — 1 < @ < n,n € N. Let f(x) be an analytic function, Then

1) DEf(x) = fM(0) =

r(n+1- a)

= OO et F(0)

2) Df(x) = £(0) T

F(l re-a F(n+1 a)

From that it follows that

x xn—a

re-a) ot rn+1-a)

1) Dfe* = + .- forall @ € (0,1).

1-a xn—a

X
r(l-a) ' I'z-a) Tt T(n+i-a)

2) D%* = + ---forall a € (0,1).
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CHAPTER 5

FRACTIONAL ORDINARY DIFFERENTIAL EQUATIONS

This chapter contain methods for the solutions of initial value problem for fractional

differential equations.

First, we consider the Cauchy problem for the fractional differential equation
D%u(t) = f(t,u(®)),0<a<1,t>0,u0) =u.

Assume that (¢, u(t)) be a smooth function. Then

1[0 1
u(t) = I1{D*u(t)} = F(a)f DG (D%u(s)) ds
0

1 g 1
" T(a) Oj (t— S)l‘“f(s'u(s)) s 649

Then, applying the fixed point Theorem, we can write
u(t) = lim u,(t),
m—oo

where u,, (t) is defined by the formula

t

1 1
Uy, (t) = @) Of = S)1—af(5' Un-1(5)) ds,m =1,

(5.1)
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uy(t) is given.

Example 5.1. Solve the Cauchy problem

D%u(t) = t%,t >0,u(0)=0.

8
3Wm
Solution. We will use three different methods. First, we consider the Green's function

method. Using Green's formula (5.1*), we get

t
u(t):[‘ 1 f(t—s)z 3Vn E}
2 0
8 t 3 8 t
_ 3 52 _ _ %—1 g—l
_\/E\/E!(t—s)%ds_3”0f(t s)z tsz'ds

Putting s = tp, we get ds = tdp

Then

u(t) = t2.

Second, we will obtain the solution of this problem by the power series. Actually,
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o

u(t) = z cp tRe .

k=0
Taking = % , We get

[oe]

1 3 5
u(t) = z Cx tha — Co + C1t2 + ot + c3t2 + cyt? + cstz + - .
k=0

u(0) =¢,=0.

Then,
. o r (k + 1) 8t

Dz u(t) = kz=1 ¢ D> {tg} - ; K r é %) o 3‘/;
So,

o (kt2 :

Z Ck F(k—i1) t% - 38\7_

k=1 T (T) '

k-1
Equating the coefficients of t z , we get

re) 81 F(kzj)_
C4F(%)—3 nlckr(% =0k+4.

From that it follows
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cs=1Lc,=0k+4.

Then

k o,
u(t)=2€kt2=c4t2=t :

k=0

Third, applying the Laplace transform, we get
£ {pru(t)} = secfun)}.

Then,

S%L{u(t)} = fe‘“ (% t%) dt.

0

Putting y = st, we get dy = sdt

ot =5z 65
0

Therefore

2 2!
L{u(t)} =5-a

Then
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u(t) =Lt {?} = t2.

Example 5.2. Solve the Cauchy problem

Dhu(t) = =t — b+ L e
2U = — 2 ——t2
v T F(n+%)
t>0,u(0)=1.
Solution.
1 1 2 1 ="
f(t,u(t))=—t‘§——t§+...+—
v v F(n+%)

f(t,u) is the continuous and

1
If(t,u) — f(tuz)l =§|u1 —u| <1,

where a¢ = % <1.
Therefore, there exists
u(t) = lim u,,(t)
m—-0oo

where u,, (t) is defined by formula

(t)—if !
tm _\/EO Vt—s
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572 25%+ +(—1)"s"—%Jr L SR G .
—_— oo —_— cee _um_l S)——e S'm: , 0
FOET ey
uy (t) is given function.
Putting uq(t) = e, we get
t t 1
®) L a2 g5y
u =— s—=— S
N N A A=
t
1 (D" sz 1 uy(s) —e™s
y L D f ds + -+ j("() ) s
\/EF(n+1) Vt—s 2\ Vt—s
0 0
t t 1 t
1f 1 4 Zf sz s+ ot (- fs”“d
=—| ——=—=ds—— S+ s.
_ _ 1 —
m) \t=sVs m)\t=s \/Er‘(n+7)0 t—s

Now, we will obtain the integral

1

t Gkt
1(t)=0] —

ds, k=0,1,2,... .

Putting s = tp,wegetds =t dp

1

1 tk_ kL 1

2 2

= f—plt dp = t" f pFra (1—p)7 " dp
2Vt (1—-p)z .
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D)

=t"B(k+l =)=
2’2 Tk + 1)

Using this formula, we get

wo-et@_ "G, e @)
" & \/EF(TL+7) F(n+7)
=1—t+2—2!+---+(_172|ntn+ et

Assume that

U1 (£) = e7C.

Then

1

(t)—if N : :
T m ) Ve=s [Va

2
+ s Up—1(S) —Ee"s ds=et.

1
S2
NL 2
So, by the induction wu,,,(t) = et for any m.
Then, passing limit when m — oo, we get
u(t) = lim u,(t) = lime*t=e
m—oo m—oo
Second, we consider the Cauchy problem for the Basset fractional differential equation
Du(t) + D%u(t) = f(t,u(®)),0 < a < 1,t > 0,u(0) = u,.
Assume that (¢, u(t)) be a smooth function. Then
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u(t) =uy + f (—D“u(s) +f(s,u(s))) ds.
0

Then, applying the fixed point Theorem, we can write
u(t) = lim uy(t)
m—oo

where

t
Uy (t) =uy + f[—D“um_l(s) + (s, um_1(s))]ds,m = 1,u,(t) is given.
0

Example 5.3. Solve the Cauchy problem

81
Du(t) + Dz u(®t) +u(t) =2t +t> + S5t > 0,u(0) =0
3Vn

for the Basset fractional differential equation.

Solution. First, we will obtain the solution of this problem by the power series. Actually,

oo

u(t) = Z cp tRe

k=0

Taking a = %and u(0) = 0,we getcy, = 0. Then

u(t) = i Ci tg.

k=1

Since
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- . (2
ot =Y et (i) =5 %t

we have that

i gt +§ 2 H+§ P S
— 7 2 = —— t2.
L k7t (kAT E+1 K 3vn

k=1 k=0

k
Equating the coefficients of tz for k = 1, 2, ..., we get

0,¢c, + ¢4 (1) 0,
3 r'c2)
2+C2F(§)+C1 O,
2
5
c4f+c3r(7)+cz—2
2 r(2)
5+ re3) 4 81
Cs GG TG =37
Porp) T
7
6 F(i)
Co=+ C5——= =1
2 YO ’
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(ex

G

It is easy to see that ¢c; =c, = c3=c, = cs =c, =0,c, = 1 and ¢, =0 for k > 7.
Thus,

k
k> 7, Ck§+ Cr-1 + Cr—2 = 0.

2 2
u(t) = cutz = t=.

Second, applying the Laplace transform, we get

, 1 2 8 3
L{w()}+L {Dzu(t)} +L{u(t)} =2L{t}+ L{t*} + ﬁﬁ {tz},

SO} + 55 L) + L0} = o+ =+ =

2 2 2 2 1
(s+sz +1)L{u(t)} =2 S—3+S—%=S—3(s+sz +1).
Therefore
21
uwm———g,
S
2!
u(t) = £71 {—3} = t2.
S
Example 5.4. Solve the Cauchy problem
u(t) et 1 1 2 1 G2 1
Du(t) +D2u(t) t——= ——t—=tz——tz+ - t"7z,
P i)
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u(0)=1.

Solution. We have that

t[ (s)—@—%s ]
u(t) = 1+f + —s %—is%+---+ﬂ5n%+'“ "
LA Vr F(n+%)

Therefore

u(t) = "111_1:20 un(t),

where u,, (t) is defined by the following formula

[ _pt _um-l(S)_e_‘S 1
U (t) = 1+_[| 1 1 2 1 (™ 1 |d$,
0 [+ —s 2——5 R e TN J
F(TL+§)
m=12,..,
U, (t) is given smooth function.
Putting, uy(t) = e, we get
up(s) e™*
l[ ~Diug(s) ~ =5~ ]l
ul(t)=1+jl 12 D" |ds
o |+ ——sf+---+—15“‘5+---
F(Tl'i‘?)

48



ds

I

_

+
o

1
2+...+

‘/_ES F(n+1)s

t
=1—J.e_5d5=1+e_t—e°=e_t.
0

Then
u (b)) = e .
Assume that
Up—1(t) = e~ . Then
-

Um—1(8) _ e

2 2

—D% Uy (s) —

So, by the induction wu,,,(t) = et for any m.
Then, passing limit when m — oo, we get
t — —t.

u(t) = r}ll_r)lgo Uy (t) = T}ll_r)rgo e ‘=e

Third, we consider the Cauchy problem for the fractional differential equation
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D%u(t) = f(t,u(®), w(®),1 < a <2,t>0,u(0) =uy,u(0) =1u.

Assume that f(t,u(t)) be a smooth function. Then

1 g 1
u(t) = F(a)f = S)l_af(s,u(s),u’(s)) ds.

Then, applying the fixed point Theorem, we can write

u(t) = "lll_r:rgo un(t),

where u,, (t) is defined by the formula

Uy (t) = f(s, um_l(s),u’m_l(s)) dsm=1,2,..,

1 1
I'(a) Of (t—s)t-«

uy(t) is given.

Example 5.5. Solve the Cauchy problem
3 4 1
Dzu(t) = —tz,t > 0,u(0) = 0,u’(0) = 0.
Vi

Solution. We will use three different methods. First, we consider the Green's function

method. Using Green's formula (5.1*), we get

t
u(t) = f s% ds
3 1-3
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o~
N[

N[

8 S
=—| —ds.
7T-f(t—s)_ ’

0

Putting s = tp, we getds = t dp

3 3
u(t) = thB (gg) = §tzw

8 (p) R
21

t2.
Then
u(t) = t2.

Second, we will obtain the solution of this problem by the power series. Actually,

(o]

u(t) = Z c the

k=0

1 3
= Z C the = Co+ C1t2 + ot + 3tz + cyt? + -+,
k=0

Applying u(0) = 0,u"(0) = 0, we get
CO = Cl == Cz = O .

Then,

51



and

From that it follows
c,=1Lc,=0k+4.

Then

()
4

k
u(t) = ch tz = cytz = t2.

k=0

Third, applying the Laplace transform, we get
{piu®) = — £{e).
Vr

Then,
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1
_ 4 2 \/E_ 2
N
Therefore
2
L{u(®)} = P
and
2
u(t) = £71 {5—3} =t2.

Example 5.6. Solve the Cauchy problem

S R
Dzu(t) + SU (&) + Eu(t) =7

u(0)=0.

Solution. We have that

1
2t2
4.4

(-1)" tn—%

r(

53

1
n__

2)

t
o, u(0) =0,

“+=rds.



Therefore
u(t) = lim uy(t),
m—0oo

where u,, (t) is defined by the following formula

1 g 1
Uy () = - %)Of(t—s)_%

= 1 253 (—1)" s™3 s|
Tum—l(s)_Eum—1(5)+ﬁ+‘“+m+'"+§ S,
2

m=12,..,
u, (t) is given smooth function.

Putting uy(t) = e~ — 1 + t, we get
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1 3
- 1 2s2 (=D sz
— (e +1)—z(eF-1+s)+ +o et ———
2 2 NG _1
r(n-32)
t
1f 1 2s2 (D" sz 4
= S
3 PR Y= 1
r(z)s =7 r(n-3)

Now, we will obtain the integral

t

1,(t) = fs—ds.

J -9

N| =

Putting s = tp, we getds = t dp

1 1 1
tp)z 1 1
L(t) = jLzl tdp = jtzpf (1—p)zdp
5 (t—tp)2 5

1 3 3
_ 2 j prt (1 — p)%_ldp = 2 r (?15)(7) — t28”
0

Now, we will obtain the integral

t

s
L(t) = f— ds .

G
Putting s = tp, we getds = t dp

55
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1 3 1
tp)" 2
o (t—tp) 2 )

1
= tnfp(n_%)_l (1 _ p)%—l dp
0

Therefore,

ul(t) = iEtZ + -+ (_1)n F(Tl _%) F(%) ¢n

8 F(%)F(n—%) r(n+1)

Assume that

Up_1(t) = et —1+t. Then

S 2 s
— U1 (S) —sup1(8) + —+ -

S
2 2 = +F(—1)+--- 3

L)

e t—1+t.
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So, by the induction u,,(t) = e — 1 + t forany m.
Then, passing limit when m — oo, we get

u(t) = lim u,,(t) = lime*t—14+t=et—1+t.
m—0oo

m—oo

Fourth, we consider the Cauchy problem for the Bagley Torvik fractional differential

equation
D%u(t) + D%u(t) = f(t,u(t)),0 <a < 2,t > 0,u(0) = up,u'(0) = v .

Assume that f(t, u(t)) be a smooth function. Then

t
u(t) =ug+tuy+ f(t —5) (—D“u(s) + f(s,u(s))) ds.
0

Then applying the fixed point Theorem, we can write
u(t) = lim u,,(t),
m-—oo

where

t
Up(t) =ug+tuy+ f(t —5) [—D“um_l(s) + f(s, um_l(s))] ds,
0

m > 1,uy(t) is given .

Example 5.7. Solve the Cauchy problem

3
8tz

Vi

D2u(t) + Dzu(t) + u(t) = 6t + t3 + — ,0 < t,u(0) = 0,u’(0) = 0
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for the Bagley Torvik fractional differential equation.

Solution. First, we will obtain the solution of this problem by the power series. Actually,
k
u(t) = Z ctz .

k=0

We have that

- k «
uw(t) = z Ci Etf‘l .
k=0

Applying initial conditions, we get

C0:C1:C2:O.

Then
u(t) = Z cktg ,u'(t) = Z ckztz Lu'(t) = Z §<§ — 1) cptz™?,
k=3 k=3 k=3
[ee] (o] k
3 3/ k r (1 + 7) k3
Dzu(t) = Z ¢ D2 (tZ) = Z Ce— I’
k=3 = r(z-2)
So,
k(k=2) ks M(*75) e p , 8
ZTthZ +chﬁt2 +Zth2=6t+t +\/_.
=D n

k
Equating the coefficients of tz for k = 3, ..., we get



3 F(z) 5.3 r'(3)
—c3 = 0,2¢4 + 3 =0,—c5+cy4—=—+0=0,

4 ra) 4 r (%)

7
6.4 F(g) 7.5 r'(4) 8
—Ce + Cg +0=6—cy;+cq4 +c3 =

F9
%c +c @+c =09;7c +c E+c =0
4 8 7F(3) 4 '4_ 9 8]"(%) 5 )

108 +69F(7)

~2) =1k 211
4 r(a) T C

—
/N
==
| +
—_

k(k —2)

Tck+ck_1 + Cp_y = 0.

/N
=
N
N
— |—

It is easy to see that cs =c, =c5s=0,c =1,c; =cg =C9=c10=0 and ¢, =0 for
k > 11. Thus,

6
u(t) = cgtz = 3.

Second, applying the Laplace transform, we get

3 8 3
L{D?u()}+ L {Dz u(t)} +L{u(®)) = 6L {t)+ L{t3} + =L {t}

5

3 6 31 8Tl
s2L{u@®)}+szL{u@®)}+ L{u®)}= St = (52)’

S2
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(s +si+ 1) LEu®) = (s + 14 5%).
Therefore

6
L{u®} ==,

S

(6 !
u(t) = L1 {5—4} =G t3.

Example 5.8. Solve the Cauchy problem

D2u(t) + D3 u(t) +~u(t) = > et + ci_2c (e
u 2 U —-Uu =—e _ -
MR )

u(0) =1,u(0) =—-1.

Solution. We have that
[ _Dius)—2 3. ]
. I Dz u(s) > u(s) +ze I
u(t) =1—-t + f(t - S)I S—% 2 S% (_1)1’1 Sn—% |
NN 0
F(n+ 2)

Therefore
u(t) = lim u,,(t),
m-—0oo

where u,, (t) is defined by the following formula
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t I[ D3 um—1(s)_§ um—1(s)+§e_s ]I
un,(t)=1—t+ f(t =) (s 23 (=1)" "3 [ds,
F(n+2)
m=12,..,
uy (t) is given smooth function.
Putting uy(t) = e, we get
[ 1 3 ]
. | —Dz uO(S)_E uo(s)+§e $ |
ul(t)=1—t+f(t—s)i+ s_—%_zs%+ . (—1)" 53 | ids
o ey )
e —Di(e*) + e 1|
=(1—t)+f(t—s)|+ s__%+.-'+(—1)”s”_%+m | ds
CTETT e

t
=[1-t)+ |(t—s)e  ds
!

n!

N {s_; bt (1) s"2 N } ds
vr F(n+7) |

B 1 SZ (_1)11 sh 7
—D2(1—s+or+-+ +

+0j(t—s)

t

=(1—t)+j(t—s)e‘5ds=1+e‘t—1=e‘t.
0
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So,
u (b)) = e,

Assume that

U1 (t) = e7F.

Then

t —DZ Um-— 1(5)

[
um(t)=1—t+0f(t—s)i[+

S

N[ =
NIH

25

Il
®

So, by the induction u,,,(t) = et for any m.

Then, passing limit when m — oo, we get

u(t) = 11m U, (t) = lim et =e7t,

m-—oo
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1
2

S

—Up_1(8)+=- e
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CHAPTER 6
STABILITY OF DIFFERENTIAL AND DIFFERENCE PROBLEMS

In this chapter, we use the Basset equation for the solution of the initial value problem and

differential scheme for the numerical solution on the stability estimates.

6.1 The stability of the initial-value problem for Basset equation

We consider the initial value problem for Basset equation

D,u(t) +% Dt%u(t) +% u(®) =%, 0<t<T, (6.1)
u(0) =0.

Here
D u(t) =u'(t).

Assume that f(t) is the continuous function defined on [0, T].

Theorem 6.1. For the solution of problem (6.1) the following stability estimates hold

1
2 <
Dz u(®)| < e max|f @,

max |u(t max |u'(t max
0< STl ( )l + OStSTI ( )l + 0<t<T

where c; does not depend on f(t).

Proof. From (6.1) it follows the following Cauchy problem

D,u(t) +% u(®) = (o) —% Dfu(t)' 0<t<T, (6.2)
u(0)=0.
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Itis a linear problem and the following formula holds

u(t) = e"%tu(O) + f e 75t [f(s) - —Dzu(s)] ds

0

t
1 21
= fe_%“‘s) [f(s) - EDszu(s)] ds . (6.3)
0
Using the last formula, we can write
g 1
1
2 (6.4)

1 2 1 1,
W (0) = O) 5 Diu(t) j o309 [f(s)—zDszu(s) ds

0

Using the definition of fractional derivative and formula (6.3) and (6.4), we get

u'(s)

Dzu(t) \/_f @ )
—3)z

- 1
mJ (t—s)2 5
1 1 1 1
1 1
+—f 71— Diu(s) +— fe_%(s_y)D;u(y)dy ds
mJ(t—s)? 2 40

t N
1 1 1 1
Of {f(s) -3 f e () dy} ds
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t
11 1 1
J. :DZu(s) ds
o (t—s)2

N

t

1 1 1
f f e 7257y Diu(y) dy ds.
0

1

(=) 4

We denote that
(6.5)

u(t) = Dt%u(t) .

Then, from the last formula it follows that

(6.6)

t
1

f fe_%(s_y)v(y) dy ds.

0

N\
~
I
%}
—~
N
o

First, we will consider the integral

/@=ij L ) ds
Vi) (t - s)z




Changing the order of integration and using
[0<s<t0<y<s]|=[0<y<ty<s<t], weget

1 f L u'(y)dyds 1 f ol
=_ d =— su'(y) dy
”J!a—@uwﬂw ”!Ja—ﬂwwﬂw

t

= f B(t,y)u'(y)dy,
0
where
1 g ds
pey) = Eyf (t—s)2(s—y)?

Putting p = s — y, we get dp = ds and

t-y

B(t,y) = l] ap

(t—y—p)p

1-
2

Putting p = (t — y)u, we get dp = (t — y)du and

1 1
B(t,y) = l] ¢ _1 yz du = lj(l - u)%‘1 wt du
m) (1-whui(t—y) T)

Then
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t

J(O) = f W) dy = u(®).

0

Using formulas (6.3) and (6.5), we obtain

t
1

J@t) = 3= f . S)Z Dzu(s) ds

_%ft PG [f(s) - %v(s)] ds. (6.7)
0

Second, we will estimate the double integral above

— —5(s=y)
I(t) = Oj(t—s)z fe Yu(y)dyds.

<l

Changing the order of integration and using

[0<s<t0<y<s]=[0<y<ty<s<t], weget

t

I(t)=%\/%]
0

t

)
j T dsv(y)dy = J Ct,y)v(y)dy.
y (E=s)2 4

Were

Cty) =

e
=||"‘
!"“_‘_
~ @
-+ |
s
1%}

2
NN

QU

9%}

Putting s — y = p, we get ds = dp and
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. -
_1 b 11 dp
cen=g Of t—y p)zdpg‘*‘/ﬁof (t—y—p)2
iy T (6.8)
2\m 2\n

Applying the triangle inequality, formulas (6.6), (6.7) and estimate (6.8), we get

=

N

{If(S)I +5 f e 2| f(y)] dy} ds

0

(O] <

ﬁl

t

f i+ 3@} ds + [ ce) bl dy
0

0

+

N =

t

4T 1 T
§(1+ﬁ>£i§|f(s)l+of<4+ﬁ> lv(»)| dy .

Applying the integral inequality, we get

1 T
lv(@®)| < <1+ﬂ> max|f(5)|.f3<4 2\/—>
T <s

forany t € [0, T]. From that it follows that

max
0<t<T

1, VT
Dzu(t)| <1 +%T) () max |f(0)] . (6.9)

T 0<t<T

Applying the triangle inequality and estimate (6.9), we get
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t

WO < 1FO]+5 [ 5 1)l ds
0

1 1
thu(t)| + Zf =79
0

1
2

1
Dfu(s)| ds

1
< 2
< 2 max|f(t)| + max Dtu(t)’

0<t<T

<
T Ost=<T

1, 3T\,
1+ <1 +g>e<4 NE) ] max |f(t)] .

Applying the triangle inequality and estimates (6.9) and (6.10), we get

lu(®)] < 2|f (O] + 2|Deu(®)] +

Finally, applying estimate (6.9), (6.10) and (6.11), we get

max |u(t max |u'(t max
OStSTl ( )l + OStSTI ( )I + 0<t<T

Theorem 6.1 is proved.

6.2 The stability of the difference scheme for the Basset equation

Applying the formula

11

1
2 VTT

ﬁ

k o
1 1
DXu(ty) =~ & — Z J thmz et dt (U — Ug—1)
0

=D2uk,
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D u(®)| < €, max|f

1
Dz u()| < & max| ).

(6.10)

(6.11)

(6.12)



and implicit difference scheme, we get the following difference scheme

U — Ug—1 1 1 1
— + > Uk + EDTZuk = @r, 9 = (&), (6.13)
ty =kt,1<k<N,u,=0,Nt=T,
for the numerical solution of the initial value problem (6.1).
We have that
k 1 1
u, = Rfuy + z TRk-iH1 [goi - EDfui] (6.14)
i=1
k
. 11
_ z TRk-i+1 [‘Pl EDrzul k> 1,
=1
where
7\ 1
R=(1+ E)
From formula (6.14) it follows
Uy — U 1 2
= R |01~ Diw
k—
Wy~ wey _ LU T SNV S
f—R (pk—EDTuk —E ' TR (pl-—EDTui )
i=1
k>2. (6.15)

Theorem 6.2. For the solution of difference scheme (6.13) the following stability estimates
hold
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T 1<ksN

1
Diu| < C; max o], (616)

max |u,| + max
1<k<N 1<k<N

where C, does not depend on t and .

Proof. Applying the formulas (6.12), (6.15), we get

k (o)
1 1 1 1
DZu ———z ftk "set dt
k 1"% T (k_n)|
n=2 0

n-1

1 12 T , 1 12
TR ((pn - ED’Z'u"> ) TR ((pl- — EDTZui>

i=1

+1 1 1 ft"‘l‘l ‘tdt{R( 1D% )} k>1
— — 2 — — .
7 Vi (= 1D)! R AN G iy R
0
We denote that
1
v = D2 uy . (6.17)

Then, from the last formula it follows that

k ©o
11 1
k-—n—3 ,—t
U =% —Z T f t ze " dt
12 VT 2=, (k—n) J
n-1 1 1 k By
T
Ry, — —Z TR ™ot +— —Z f th =3 o=t dt
- T2 VT &= (k —Tl)!
i=1 n=2 0
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=L+ L+t i+ Lxt ok (6.17a)

where

11 k-1 © 1n—1
T ,
Ik = _l e (k — )|f tk n %e‘t dt {—EZ TRn_H_l(pi},
12 7Tn=2 n 'o =1
11 k-1 © n-1
T .
Je==—= = )|f th=n—3 o=t 4¢ {—Z TR"_”IUL-},
T2 7Tn=2 n 0 i=1
11 k-1 0o
T _n=-1 _
Le==—F (k_n)thnzetdt{R(Pn},
T2 VU=
11 k-1 0o
T
Jik=—7—F7= j th-"2e-tdt {——Rv },
T% T[n:Z(k—n)' 27

Now, we will estimate |1, |, [, x| Uil |2k | @nd [Jo|, separately.

Applying the triangle inequality, Holder's inequality, we get

k-1 % , 1
|1 |<_1 \/‘E f—t = ~tdt R|ey|
1k| < T — ;¢ On
\TT = (k Tl)
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-dt max |@,|

k- -
_Viy 1 f (e e (P ren
= = 1 <k<
mVk=n) (—m))?  (k—n-11)F
<,\/;k_1 1 tkn 2 ootknle
- Tt Vk —n (k —n)! (k —n—1)!
k-1 t
<=5 o <= [ 2 maxiod
- T k — nlrélka_)l(\l P T t—s lrsnkas)l(\l Pk
n=2 0
<Lovr o
=T e
forany k,k=1,..,N.
Applying the triangle inequality, we can obtain
k-1 1 n-1
1 1 F(k n+7) 1 N
Il £ =) =g 7 . B el
T2 VU= i=1
- o] 1 1 kjf F(k—n+%>
< paled 5 =2 "o
n=2
1
(k —n+§)

= max
1<k<N(pk|\/_Z\/kr—nT\/k nk-n-1"

Applying Holder's inequality, we get

1 o
[‘(k—n+—) 1
2 _
<Vvk-—n ftknzetdt
Vk—n(k—n-1)! (k—n)!o
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IA
==
|
S
Q
Nllhr

~
N
Q
N
U
+

N[

<vVvk—-—n

ph-n o=t k-n-1 -t
(k— Y f n dt ft n=te7tdt
0

k—n (T(k —n + 1))z (C(k — n))z

1
(k —n)!

k—n

.)% ((k—n-— 1)!)% =1. (6.18)

Therefore

k

Il < maxlod — [ ———= < maxiod

k maX Pk S max (@

<ks<N — 1<k<N
\/TL’O Jtk—s Vm

forany k,k=1,..,N.

Now, we will estimate []|.

Applying the triangle inequality and estimate (6.18), we get

1 1w v nol
T

|kl S_l_ k= )|f th—n—3 et dt {—Z R 1y |}

12 7-[n=2 n 0 =1

1 k-1 1 1n—1
< \/?—Z —Z TRy,

T k—n(4¢4

n=2 i=1

since[2<n<k-11<i<n-1]=[1<i<k-2,i+1<n<k-—1],wehave

that
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Therefore,

forany k,k =1, ...,N.
Now, we will estimate |J; ;|- By (6.13), we have that

k-1 ©
11 T : 1
Tl == —= E th_”_ie‘tdt(——>R
Vs 7t v &y (k= m)!) 2)"

n (o]
1

Z m—m)! f "7 @75 dS (U — Umo1) -

m=1 0

Itisclearthat[2<n<k-1,1<m<n]=[1<m<k-1m<n<k-1].

Therefore, changing the order of summation, we get
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k-1
Un — Up—
Jakl = . Blhk,m) 2Ly, (619)
m=1

where

k-1 ©

B(k,m) = %(— %)R 2 = n)!l(n — m)!bf tk=n=3 e~tdt
v . < 1r k + F —m+i
bf sz 7S ds = ( )R;l (Z - (n(n m;l 2).

Applying (6.18), we get

IB(k, m)|<—zmv_

< R Z T
T 2m o) \/kT—TLT\/TLT—mT

kt (k—-m)T

<C =C J 4y
—_ 1 - 1 .
J Nkt —svs—mt . Jk—m)t—y.[y

Puttingy = (k — m)tt,we get dy = (k —m)t dt

(k—m)T

f Wf fvff f“ -t

_B(l 1)_
—P\z2)T

t
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Therefore

Using the triangle inequality formulas (6.15), (6.19) and estimate (6.20), we get

k-1
Uy — Um—
ol < 1B m)| [ 2
m=1

k-1 " k-1 m-1 1 "
<G| . R{loml +5luml}r+ > > SeRm gy + S ol ]
m=1 m=1 i=1
1 k-
<G, [kr max |<pk| 5 Z RlvaT]
m=1
k-1 m-1 1 k-1 m-1 1
2 pm—i+1 - m—i+1y,,.
C; ST R 1r<r1ka<>1<vl<pkl + 2R IleT]
m=1 i=1 m=1 i=1
1 k k-1 m-1
T .
< Z L pm—i+1y,,.
< C,|2T 11;1kas>1<vl<pk| + > Z Rlv, |t + ' 4R |UL|T]
m=1 m=1 i=1

since[1<m<k—-11<i<m-1]=[1<i<k-1,i <m <k — 1], we have that

k-1 m-1 k—1 k—1 =
. T .
R™ ™yt = > tluyl ZRm_Hl < EZ |yl .

i i=1

T
4

m=1 i=1 i

I
3
I

Therefore,
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k-1
Vx| < €, Z 7lvi| + C; 2T max |gy]

i=1

forany k,k =1, ...,N.
Now, we will estimate |I,|.

Appling the triangle inequality, we can obtain

Sl

r 1
I j “Ze tdt Igokl + max Igaklkr}
0

1<ks<N

1
<
< VF marlo {1 +5} = 37 maxlon

forany k,k =1,...,N.
Finally, we will estimate |/ /.

Applying the triangle inequality, we can obtain

Vo] <

Sl

oo k—1
f -3 ‘tdt{ RIvk|+4ZTRk i+1]y, |}
0

i=1

k—

k-1
1o VT AT
< Vil + ZZﬂvil s7|vk|+Ter|ui|,

forany k, k=1,...,N.

Applying formula (6.17a) and estimates for |1,y |, 11|, |Joi | Dkl |Tzx| and [Jo|, we get

k-1

lug| < \/_\/_ max|g0k|+ \/_ZTlvl-I-CZZTlUl

i=1
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2 3 VT
+C;2 T max | + —n\/f max || + =T max [pp] +— vl

\/_

k-1

ZT|U1'|

i=1

+

» 5

<([2¢C,T+4 r 3\/‘
S| 2GT+4 |oH+ovr | max o

k_
+ C+ﬁ+ﬁi| |+\E| |
5 AR '1‘L'Ui > Ukl -
i=
Therefore,
VT T 3
(1—7 lvel <[ 2C,T+4 ;+§‘E max |gy|
k—
VT Vo
+ Cz+m+r Z’L’lvil,

i=1

1 T 3
lug| < 2C2T+4\E+§\E max |y |

1<ks<N
1—

SE

1— i=1

1 VT O\«
+ VG;<C} +'E;E§-F-ZA>ZE:I1UA.
2

forany k,k =1, ...,N.

Applying the discrete analogue of integral inequality, we get
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VT VT
<cz+2 \/E+Tr>k'[

1 T 3 VT
vl < 7 26, T+4 |—+oVT | max |oy| e z
1=
forany k,k = 1, ..., N. From that it follows that
pru|<——(2¢ T+4 T+3«/‘
1ohey |7 te| = VT 2 7 2V
1=
(et tE)ie
VT
2
¢ 12 il (6.21)

Applying formula (6.15), the triangle inequality and estimate (6.21), we get

1
7
D? uy

u1 - uo
| 1<k<N

1
|SR(|<P1|+§ )S C; max |@y/,

k-1
U — U1 1 k—i 1
A P — i+1 . _
[F= 2 < Rloel +3 ) R i + 3R

1=l

1
2
D‘L’ Uy

1
2
D‘L’ ui|

15 1

+— Rk—i+1 _

ZZ t 2
=1

< C; max ol ,k=2. (6.22)

Using the triangle inequality and estimates (6.21), (6.22) and (6.13), we get

Uy — Up— 1
lug| < 2 Ky DZuy| + 2|kl < C; max @] (6.23)
T 1<k<N
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Finally, estimates (6.21), (6.22) and (6.23) we get estimate (6.16). Therefore 6.2 is proved.
Now, for support of theoretical results, we consider the numerical solution of the test initial

value problem

3

tz,

1 2 1
w(t) + > DZu(t) + > u(t) =4t +t2 +

8
31
0<t<1u(0)=0 (6.24)

for the Basset equation. The exact solution of this test example is u(t) = 2t2.

We get the following difference scheme of first order of accuracy for the numerical

solution of the initial value problem (6.24)

k
We—wey 1 11 1
EE g D e () e =
n:

8
O = 4t + tF +—(tk)§,tk =kt,1 <k <N,uy, =0,

3Vr
Nt =1. (6.25)

For solving difference scheme (6.25), we will transform it in following matrix form:

ATut = q)r’
where
[ 1 0 0 0 0 0 0 0 ]
@20 Q21 0 0 0 0 0 0 |
AT = ag‘o a3‘1 a3’2 0 0 0 0 0
nyo Qana1 Ay QAy3z - Ayn-3 QAyn-2 OAyn-1 Ann
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where

1 0 0 0 o 0 - 0 0 0 0
b c 0 0 o 0 - 0 0 0 0
b3 c 0 o o0 - 0 0 0 0
aFZ(F) b c 0 O 0 0 0 0
5 3
aFB(F) aFZ(F) b c 0 0 0 0 0
a(w-3) a(-) w-y) @l
(N —2)! (N = 3)! (N — 4)! 2!
a(v-3) a(w-3) a@w-) ) a@)
(N—D!  (N=2)! (N=3)! 3! 2!
u
|[ u(l) } |[ P1 ]|
T e A e
L | -
4] [2-1]

are unknown and given grid functions.

Solving it, we get

ur — (Ar)—l (PT-

We obtain the following table for the error Ey of solution of difference scheme defined by

formula

Ey = max |u, — u(ty)

Difference scheme N 30 60 120
(6.25) 0.0473 0.0237 0.0119
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As it is seen in this table, we get some numerical results. If N are doubled, the value of
errors Ey decrease by a factor of approximately % for first order of accuracy difference
scheme.
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CHAPTER 7
CONCLUSIONS

This work is dedicate to study fractional calculus and its applications for the fractional

Basset equation.

The following results are obtained:

= =_ =4 =4

Study properties of fractional integral.
Study properties of Caputo fractional differential operator.
Study properties of Riemann - Liouville fractional differential operator.

Methods for the solutions of initial value problems fractional differential

equations are applied.

The theorem on the stability estimates for the solution of the initial value problem

for the fractional Basset equation is established.

The theorem on the stability estimates for the solution of the first order of
accuracy differential scheme for the numerical solution of the initial value

problem for the fractional Basset equation is proved.

The MATLAB implementation of the difference scheme for the numerical

solution of the test Basset problem is presented.

The theoretical expressions for the solutions of the difference scheme are

supported by the results of numerical examples.

84



REFERENCES

AA Kilbas, Srivastava, H., & Trujillo, J. (2006). Theory and Applications of Fractional
Differential Equations Amsterdam: Elsevier.

Ashyralyev, A. (2009). A note on fractional derivatives and fractional powers of operators.
Journal of Mathematical Analysis and ApplicatipBS7(1), 232-236.

Ashyralyev, A., & Sharifov, Y. A. (2012). Existence and uniqueness of solutions for the
system of nonlinear fractional differential equations with nonlocal and integral
boundary conditions. In Abstract and Applied AnalysigVol. 2012). Hindawi
Publishing Corporation.

Barkai, E., Metzler, R., & Klafter, J. (2000). From continuous time random walks to the

fractional Fokker-Planck equation. Physical Review B61(1), 132.

Benson, D. A., Wheatcraft, S. W., & Meerschaert, M. M. (2000). Application of a
fractional advection-dispersion equation. Water Resources Resear@6(6), 1403—
1412.

Benson, D. A., Wheatcraft, S. W., & Meerschaert, M. M. (2000). The fractional-order
governing equation of Lévy motion. Water Resources Resear86(6), 1413-1423.

Diethelm, K. (2010). The analysis of fractional differential equations: Application

oriented exposition using differential operators of Caputo.t$panger.

Ishteva, M. (2005). Properties and applications of the Caputo fractional operator.

Department of Mathematics, University of Karlsruhe, Karlstuhe

Kreui, S. G. (2011). Linear differential equations in Banach spa@#ol. 29). American

Mathematical Soc.

85



Liu, F., Anh, V., & Turner, I. (2004). Numerical solution of the space fractional Fokker—
Planck equation. Journal of Computational and Applied Mathematit66(1), 209-
219.

Lovoie, J. L., Osler, T. J., & Tremblay, R. (1976). Fractional derivatives and special
functions. SIAM Review18(2), 240-268.

Metzler, R., & Klafter, J. (2000). Boundary value problems for fractional diffusion
equations. Physica A: Statistical Mechanics @its Applications2781), 107-125.

Munkhammar, J. (2004). Riemann-Liouville fractional derivatives and the Taylor-Riemann

series.

Oldham, K., & Spanier, J. (1974). The fractional calculus theory and applications of

differentiation and integration to artsary order (Vol. 111). Elsevier.

Othman, A. R., & Mazli, M. A. M. (2012). Influences of Daylighting towards Readers’
Satisfaction at Raja Tun Uda Public Library, Shah Alam. ProcediaSocial and
Behavioral Science$8, 244-257. https://doi.org/10.1016/j.sbspro.2012.12.224

Podlubny, 1. (1998). Fractional differential equations: an introduction to fractional
derivatives, fractional differential equations, to methods of their solution and some of

their applicationgVVol. 198). Academic press.

Saichev, A. |, & Zaslavsky, G. M. (1997). Fractional kinetic equations: solutions and
applications. Chaos: An Interdisciplinary Journal of Nonlinear Sciené@t), 753—
764.

Samko, S. G, Kilbas, A. A., & Marichev, O. I. (1993). Fractional integrals and derivatives.
Theoryand Applications, Gordon and Breach, Yverdb®93

Tarasov, V. E. (2007). Fractional derivative as fractional power of derivative. International
Journal of Mathematigsl8(3), 281-299.

86



Yuste, S. B., & Lindenberg, K. (2001). Subdiffusion-limited A+ A reactions. Physical
Review Letters87(11), 118301.

Yuste, S. B., Acedo, L., & Lindenberg, K. (2004). Reaction front in an A+ B— C reaction-
subdiffusion process. Physical Review E59(3), 36126.

Zaslavsky, G. M. (2002). Chaos, fractional kinetics, and anomalous transport. Physics
Reports 371(6), 461-580.

87



APPENDIX

MATLAB implementation of the difference scheme

N=120;
tau=1/N;
a=- 1/(4*(tau*pi)N(1/2));
b=- (Ltau) - (1/(2*(tau)(1/2)))+(1/(4*(tau)(1/2)));
c=( l/tau)+(1/2)+(1/(2*(tau)(1/2)));
A=zeros(N+1,N+1);
for i=2:N+1;
for j=2:N+1;
A(i,i)=c;
if i>j;
Aij)=b;
end;
if i>j+1;
A(i,j)=(@*(gamma(i - j - 0.5))/factorial(i
end;
end;
end;
A(1,1)=1;
A;
fii=zeros(N+1,1) ;
for k=1:N+1;
t =(k - 1)*tau;
fii(K)=4*t+(t"2)+(8/(3*(pi*(1/2))))*t"(3/2);
end;
fii;
G=inv(A);
u=zeros(N+1,1);
u=G*(fii);

u;

% % % % % %'EXACT SOLUTION OF THIS DDE'
eu=zeros(N+1,1);

for k=1:N+1;

t=(k - 1)*tau;

eu(k)=2*(t"2);

end;

eu

% ABSOLUTE DIFFERENCES ;
absdiff=max(abs(eu - u))

88

-

\ % % % % % % % %



