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ABSTRACT 
 

 

In this thesis fractional calculus and its applications to stability for the fractional Basset 

equation are studied. Most important properties of fractional order integrals and derivatives 

are discussed. In applications, methods for the solutions of initial value problem for 

fractional differential equations are considered. Stability of initial value problem is 

illustrated with a special type of fractional differential equation. 

 

     ( )     
  ( )    ( )   ( )   

 

where      and             which is known as Basset equation. 

 

Keywords: Fractional calculus; Fractional differential equations; Basset equation; Stability; 
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ÖZET 
 

 

Bu tezde kesirli kalkülüs ve Basset denklemi için kararlılığa uygulamaları incelenmiştir. 

Kesirli mertebeden integrallerin ve türevlerin en önemli özellikleri tartışılmştır. 

Uygulamalarda, kesirli diferansiyel denklemler için başlangıç değer probleminin çözümleri 

için yöntemler göz önüne alınmıştır. Başlangıç değer probleminin kararlılığı,      ve 

            olarak üzere Basset denklemi olarak bilinir. 

 

     ( )     
  ( )    ( )   ( )   

 

özel bir kesirli diferansiyel denklem için  gösterilmiştir. 

   

Anahtar Kelimeler: Kesirli hesap; Kesirli diferansiyel denklemler; Baset denklemi; 

Kararlılık; Sayısal çözüm 
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CHAPTER 1 

INTRODUCTION 

 

 

 

The study of fractional calculus achieves a wide range of applications in many areas. 

Especially in computer engineering it becomes a popular subject. Moreover, fractional 

derivatives have been successfully applied to problems in system of biology, physics, 

chemistry and biochemistry [see, e.g, (Liu, Anh, & Turner, 2004; Yuste & Lindenberg, 

2001) and the references given therein]. The history of it began with a letter from 

L'Hospital to Leibniz in which is asked the meaning of the derivative of order 1/2 in 1695. 

In 1738, Euler did the first attempt with observing the result of evaluation of the non - 

integer order derivative of a power function    has a meaning and right after in 1820, 

Lacroix repeated the Euler's idea and nearly found the exact formula for the evaluation of 

the half derivative of the power function   . Then, first definition for the derivative of 

arbitrary positive order suitable for any sufficiently good function, not necessarily a power 

function was given by Fourier (1822) as 

 

    ( )

   
  

 

  
∫       ∫  ( )    (           )   

 

  

 

  

   (1.1) 

 

Near all of these studies, the first solution of a fractional order equation was made by Abel 

in 1823 with the formulation of the tautochrone problem as an integral equation  

 

∫
 ( )

(   ) 
   

 

 

 ( )                                   (1.2) 

 

After 1832, applications of the fractional calculus to the solution of some types of linear 

ordinary differential equations were seen in the papers of Liouville. His initial definition 

based on the formula for the differentiating an exponential function which may be 

expanded as the series  
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 ( )  ∑       

 

   

      

 

 

   ( )  ∑     
     

 

   

                            (1.3) 

 

Starting from the definition (1.3), he obtained the formula for the differentiation of a power 

function and fractional integration which is known as Liouville's first formula  

 

    ( )  
 

(  )  ( )
∫  (   )        

 

 

  (1.4) 

 

                

 

Next, Riemann's expression which was done when he was a student in 1847 has become 

one of the main formula with Liouville's construction. Riemann had lastly arrived the 

expression: 

 

 

 ( )
∫

 ( )

(   )   
                    

 

 

 (1.5) 

 

Studies on fractional calculus achieved a significant and suitable level for modern 

mathematicians after 1880's. Being more applicable and veritable greatly enhanced the 

power of fractional calculus. Therefore, need of efficient and reliable techniques to solve 

the problems which are modelled with fractional integral and differential operators occur. 

Liouville was the first person who tried to solve fractional differential equations as 

mentioned above. Then, some books written by (Miller & Ross, 1993; Oldham & Spanier, 

1974; Podlubny, 1998; Samko, Kilbas, & Marichev, 1993) played a considerable role to 

understand the subject and gave the applications of fractional differential equations and 

methods for solutions.  
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In the present study, fractional calculus and it's applications to stability for the fractional 

Basset equation are considered. Most important properties of fractional order integrals and 

derivatives are discussed. This material was written on the basis notes that were used in a 

graduate course at Near East University, Lefkoşa, Cyprus.  In applications, methods for the 

solutions of initial value problem for fractional differential equations are considered. 

Stability of initial value problem is illustrated with a special type of fractional differential 

equation 

 

     ( )     
  ( )    ( )   ( )    

 

where      and            . 
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CHAPTER 2 

RIEMANN – LIOUVILLE FRACTIONAL INTEGRAL 

 

 

 

This chapter contain the definition and some properties of the Riemann-Liouville fractional 

integrals. 

  

2.1  Auxiliary Lemma 

We start this section by the first order integral operator  I  defined by the following formula 

 

  ( )  ∫  ( )    

 

 

  

 

From that it follows  

 

   ( )   (  ( ))   (∫  ( )

 

 

  )  ∫ ∫  ( )        

 

 

 

 

  

 

Therefore, the second order integral operator     defined by the following formula 

 

   ( )  ∫(   )  ( )    

 

 

   

 

Lemma 2.1. The following formula is true  

 

   ( )  ∫
(   )   

(   )  
   ( )    

 

 

 (2.1) 

 

for any        
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Proof. Assume that (2.1) is true for    . That means  

  

   ( )  ∫
(   )   

(   )  
   ( )    

 

 

   

 

Now, we will prove (2.1) for         

 

Applying the definition of the integral of integer order, we get  

 

     ( )   .    ( )/   [∫  
(   )   

(   )  
   ( )    

 

 

]  

 

 ∫ ∫  
(   )   

(   )  
   ( )        

 

 

 

 

  

 

Changing the order of integration and using  

*           +  *           +  we get  

 

     ( )  ∫ ∫  
(   )   

(   )  
   ( )        ∫  ( ) ∫

(   )   

(   )  
       

 

 

 

 

 

 

 

 

 

 

  

 

 ∫  ( ) 
(   ) 

 (   ) 
    ∫  

(   ) 

   
  ( )   

 

 

 

 

    

 

So, (2.1) is true for         By the induction it is true for any         Lemma 2.1 is 

proved. 
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2.2 Riemann - Liouville fractional integral 

Let us consider some of the starting points for a discussion of classical fractional calculus. 

One development begins with a generalization of repeated integration. In the same manner 

as Lemma 2.1 if   is locally integrable on (   ), then n-fold integrated integral is given by 

 

   ( )  ∫     ∫    

  

 

 ∫  (  )    

    

 

 

 

   

 

 
 

(   ) 
∫

 

(   )    
 ( )    

 

 

 (2.2) 

 

for almost all of x with ˗∞ ≤   < x < ∞ and n   N. Writing (n ֒ 1)! = Г(n),  an immediate 

generalization is the integral of   of fractional order α > 0, 

 

   
  ( )   

 

Г( )
∫

 

(   )   

 

 

 ( )     (          ) (2.3) 

 

and similarly for ˗∞ < x < b < ∞  

 

   
  ( )   

 

Г( )
∫

 

(   )   

 

 

 ( )     (         ) (2.4) 

 

both being defined for suitable  . When   = ˗∞ Equation (2.3) is equivalent to Liouville's 

definition, and when   = 0 we have Riemann's definition. The right and left hand integrals 

   
  ( ) and    

  ( ) are related via Parseval equality (fractional integration by parts) which 

we give for convenience for   = 0 and b = ∞ : 

 

∫  ( )   
   ( )     ∫  ( )   

  ( )     

 

 

  

 

 

 (2.5) 
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Proof. Using the definition of    , we get  

 

∫  ( )

 

 

   
   ( )    

 

 ( )
 ∫  ( ) ∫

 

(   )   

 

 

 

 

 ( )          

 

Changing the order of integration and using 

 *           +  *           +, we get  

 

 
 

 ( )
∫  ( )

 

 

∫
 ( )

(   )   

 

 

        

 

 
 

 ( )
∫  ( )

 

 

∫
 ( )

(   )   

 

 

        

 

 ∫  ( )

 

 

 

 ( )
 ∫

 ( )

(   )   

 

 

        

 

 ∫  ( )   
 

 

 

  ( )       

 

The following properties are stated for right handed fractional integrals (with obvious 

changes in the case of left handed integrals). We will consider right hand fractional integral 

when   = 0 we will use the following notation 

 

   ( )   
 

Г( )
∫

 

(   )   

 

 

 ( )   (2.6) 

 

for the Riemann-Liouville integral operator    of order α . We have the following 

properties of the Riemann - Liouville integral operator    of order α . 
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1) The Riemann - Liouville integral operator     of order α is a linear operator. That 

means  

 

  (  ( )     ( ))       ( )       ( )              

                                                                                           

Proof. Using the definition of    , we get  

 

  (  ( )     ( ))  
 

Г( )
∫

  ( )     ( )

(   )   
   

 

 

  

 

  
 

Г( )
∫

 ( )    

(   )   
   

 

ɻ( )
 ∫

 ( )    

(   )   
 

 

 

 

 

  

 

      ( )      ( )    

 

2) The following semigroup properties hold  

 

  .   ( )/       ( ( ))          

 

Proof. Using the definition of fractional integral operator, we get  

 

  .   ( )/    [
 

Г( )
∫  

 ( )    

(   )   
  

 

 

]  

 

 
 

Г( )
∫  

  

(   )   
 

 

ɻ( )
∫

 ( )    

(   )   
 

 

 

 

 

 

      

 

Changing the order of the integration, we get 
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  .   ( )/  
 

Г( ) Г( )
∫  ∫  

 

 

  

(   )   
  

  

(   )   
  ( )      

 

 

  

 

 
 

Г( ) Г( )
∫ [∫  

  

(   )  α
  

  

(   )   
  

 

 

]   ( )   

 

 

    

 

Now, we will obtain the integral   

 

 (   )  ∫  
 

(   )   
  

  

(   )   
  

 

 

 (2.7) 

 

Putting         we get       and  

 

 (   )  ∫  
   

(     )        
  

   

 

 

 

Putting    (   )     we get    (   )     Then 

 

 (   )  ∫  
(   )   

(   )    (   )    (   )         
  

 

 

  

 

 
  

(   )  (   )
 ∫  

   

(   )          
  

 

 

  

 

 
  

(   )  (   )
 ∫  (   )               

 

 

  

 

 
  

(   )  (   )
  (    )  
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(   )  (   )
  
Г( ) Г( )

Г(   )
   

 

∫  
   

(   )    (   )    
 

  

(   )  (   )
  
Г( ) Г( )

Г(   )

 

 

    

 

Then 

 

  .   ( )/  
 

Г( ) Г( )
∫  

  

(   )  (α  )
  
Г( ) Г( )

Г(   )
  ( )    

 

 

  

 

 
 

Г(   )
∫  

 ( )    

(   )  (   )
  

 

 

      ( ( ))    

 

3) The following commutative properties hold 

 

  [   ( )]     ,   ( )-           

 

Proof. Applying semigroup properties, we get  

 

  [   ( )]       ( )       ( )  

 

    ,   ( )-    

 

4) Introduce the following causal function (Vanishing for x < 0) 

 

  ( )   
  

   

 ( )
         

 

Then, we have that 
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a)   ( )    ( )   ( )               

 

b)     ( )     ( )   ( )         

 

Proof. By the definition of convolution operator , we have that 

 

  ( )    ( )  ∫   ( )

 

 

   (   )    

 

 ∫
    

 ( )

 

 

 
(   )   

 ( )
    

 

 
 

 ( ) ( )
∫     (   )      

 

 

  
 

 ( ) ( )
∫     (   )        

 

 

  

 

From 2.7. It follows that  

 

  ( )    ( )  
 

 ( ) ( )
  (   )    

 

Therefore  

 

  ( )    ( )  
 

 ( ) ( )
 

 

   (   )
 
 ( ) ( )

 (   )
  

 

 
      

 (   )
    

 

a) is proved. b) follows from the definition of convolution and definition of fractional 

integral operator  
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  ( )   ( )  ∫   (   )

 

 

 ( )     

 

 ∫
(   )   

 ( )

 

 

  ( )       ( )    

 

b) is proved. 

 

5) For the Laplace transforms of     the following formula holds 

 

  *   ( )+   
 

  
   *  ( )+    

 

Proof. Applying the definition of the Laplace transform, we get  

 

 (   ( ))  ∫        ( ( ))   

 

 

  ∫     

 

 

  ( )   ( )    

 

   *   ( )+   * ( )+   

 

Now, we will prove that  

 

  *  ( )+  ∫      
    

 ( )
   

 

 

 
 

  
    

 

Putting    ,  we get    
  

 
 . Then 

 

  *   ( )+  ∫  
   .

 
 /

   

 ( )
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 ( )
 

 

  
 ∫          

 

 

 
 

 ( )
  

 

  
  ( )  

 

  
    

 

6) Effect on power functions is satisfied. 

 

  (  )   
    

 (     )
  (   )                                     

 

Proof. Using the definition of fractional integral of    and the property of B(α,  )  

function, we get 

 

  (  )   
 

 ( )
  ∫

  

(   )    
   

 

 

   

 

Putting      , we get        . Then  

 

  (  )  
 

  ( )
 ∫

    

     (   )   
     

 

 

 
    

  ( )
 ∫    (   )       

 

 

  

 

 
    

 ( )
    (      )  

    

  ( )
 
  (   ) ( )

  (      )
       

 (   )

 (     )
    

 

Note.  

 

1)    ( )   
 

 (   )
                         

 

2) Let  ( ) be an analytic function, then 
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   ( )   
 

 ( )
  ∫

 

(   )   
  ( )  

 

 

  

 

  ( )
  

 (   )
    ( )

    

 (   )
      ( )( )

    

 (     )
      

 

 for all       

 

Applying this formula, we can obtain the fractional integral of order α > 0 from elementary 

functions, for example, we have that 

 

  (   )   
 

 ( )
  ∫

   

(   )   
   

 

 

  

 

 
  

 (   )
   

    

 (   )
      

    

 (     )
     

 

for all           
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CHAPTER 3 

CAPUTO FRACTIONAL DIFFERENTIAL OPERATOR 

 

 

 

This chapter contain the definition and some properties of the Caputo fractional differential 

operator. 

 

Definition 3.1. Suppose that              . The fractional operator  

 

  
  ( )  

{
 
 

 
  

 (   )
∫

 ( )( )   

(   )     
            

 

 

  

   
 ( )       

  

 

is called the Caputo fractional derivative or Caputo fractional differential operator of   

order α. 

Lemma 3.1. Let                     and  ( ) be such that   
  ( ) exists. 

Then  

 

  
  ( )   ⌈ ⌉   ⌈ ⌉ ( )    

 

This mean that the Caputo fractional operator is equivalent to (⌈ ⌉   )-fold integration 

after ⌈ ⌉-th order differentiation. 

 

We have the following properties of the Caputo fractional differential operator   
  of   

order α.  

If  ( ) and  ( ) are sufficiently smooth function. Then  

1) The Caputo fractional differential operator   
  of order α is a linear operator. That 

means  
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 (  ( )    ( ))     

  ( )     
  ( )               

 

Proof. Using the definition of   
  , we get  

 

  
 (  ( )    ( ))  

 

Г(⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  
 

 ⌈ ⌉

  ⌈ ⌉
,  ( )    ( )-   

 

 

 

 

  
 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  

 

 

 
 ⌈ ⌉

  ⌈ ⌉
 ( )     

 

  
 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  

 

 

 
 ⌈ ⌉

  ⌈ ⌉
  ( )    

 

    
  ( )      

  ( )   

 

2) The following non-semigroup properties hold  

 

  
    

 
 ( )    

   
  ( )          

 

Proof. Let       
 

 
    ( )    . Then applying the definition, we get  

 

  
   

 
  ( )   (  

 
 ( ))  

 

  

 
 ( )  

 

Г .
 
 

/
 ∫

 

(   )
 
 

 
 

  
( )   

 

 

  

 

 
 

Г .
 
 /

 ∫
  

(   )
 
 

 
 √ 

√ 
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 (  

 
  ( ))    

 4
 √ 

√ 
5   

 

√   
    

 

and 

  

 
 ( )   

 

Г .
 
 /

 ∫
 

(   )
 
 

 
 ⌈ ⌉

  ⌈ ⌉
( )   

 

 

  

 

 
 

Г .
 
 /

 ∫
 

(   )
 
 

 
 

  
( )   

 

 

     

 

We see that  

 

  
 (  

 
  ( ))   

 

√   
     

 
 ( )    

 

3) The following non-commutative properties hold  

Suppose that                        and    
  ( ) exists. Then in general  

 

  
      ( )    

    ( )      
  ( )   

 

Proof. Using the definition of   
  , we get  

 

  
      ( )    

 (   ( ))  
 

 (⌈ ⌉   )
∫

 ⌈ ⌉  ( )   

(   )  ⌈ ⌉  

 

 

   

 

and  

 

  
    ( )  

 

 ((⌈ ⌉   )  (   )
∫

 ⌈ ⌉  ( )   

(   )  (⌈ ⌉  ) (   )
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 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  

 

 

 ⌈ ⌉  ( )       

 

Corollary 3.1. Suppose that             (   )  (     )     

        and the function  ( ) is such that   
   ( ) exists. Then  

 

  
   ( )    

 
       ( )    

 

Proof. Substitute   for   and     for    in  

 

  
      ( )    

    ( )      
  ( )    

 

Then 

 

  
 

       ( )    
  (   )

 ( )    
  (   ) (   )

 ( )    
   ( )    

 

This means 

 

  
      ( )    

    ( )      
  ( )    

 

4) For any constant properties hold  

 

  
 ( )       

 

Proof. Using the definition of   
 , we get  

 

  
 ( )  

 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  

 

 

 ⌈ ⌉

  ⌈ ⌉
( )         

 

5) For the Laplace transform of   
  the following formula holds 
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  *  
  ( )+       *  ( )+  ∑        ( )( )

   

   

   

 

 

Proof. Applying the definition of Laplace transform, we get  

 

  *  
  ( )+  ∫     (  

  ( ))  

 

 

  

 

 ∫     
 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  
 ⌈ ⌉( )      

 

 

 

 

   

 

Changing the order of integration and using 

 *           +  *           +, we get  

 

  *  
  ( )+  

 

 (⌈ ⌉   )
∫  ⌈ ⌉( )

 

 

∫
    

(   )  ⌈ ⌉  

 

 

          

 

Putting        , we get       

 

 
 

 (⌈ ⌉   )
∫     

 

 

 ⌈ ⌉( )   ∫
    

   ⌈ ⌉  

 

 

       

 

Now, we will obtain the integral  

 

 (   )  ∫
    

   ⌈ ⌉  

 

 

     

 

Putting     , we get    
  

 
 and 
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 (   )     ⌈ ⌉ ∫     ⌈ ⌉    

 

 

      ⌈ ⌉ (⌈ ⌉   )    

 

Therefore 

 

 (
 

 (⌈ ⌉   )
∫     

 

 

 ⌈ ⌉( )  ) .   ⌈ ⌉ (⌈ ⌉   )/  

 

       *  ( )+  

 

     {   * ( )+  ∑       

   

   

   ( )}  

 

    * ( )+  ∑       

   

   

   ( )   

 

6) The Riemann-Liouville integral operator    and the Caputo fractional differential 

operator   
  are inverse operators in the sense that 

 

a)   
     ( )   ( )     

 

Proof. Using the definition of    
 , we get  

 

  
     ( )   ⌈ ⌉    ⌈ ⌉  ⌈ ⌉   ⌈ ⌉ ( )   ⌈ ⌉    ( ⌈ ⌉ ⌈ ⌉)   ⌈ ⌉ ( ) 

 

  ⌈ ⌉       ⌈ ⌉ ( )   

 

From that it follows  
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     ( )  

 

 (⌈ ⌉   )
∫

    ⌈ ⌉  ( )  

(   )  ⌈ ⌉  

 

 

  

 

 
 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  

 

 

 (
 

 (  ⌈ ⌉)
∫

 ( )  

(   )    ⌈ ⌉

 

 

)    

 

 
 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  
 (

 

 (  ⌈ ⌉   )
∫

 ( )  

(   )⌈ ⌉  

 

 

)

 

 

      

 

Now, we obtain the formula for  

 

 (
 

 (  ⌈ ⌉   )
∫

 ( )  

(   )⌈ ⌉  

 

 

)    

 

We have that  

 

 

 (    ⌈ ⌉)
∫

 ( )  

(   )⌈ ⌉  

 

 

  

 

  
 

 (    ⌈ ⌉)
∫  ( )

 (   ) ⌈ ⌉    

    ⌈ ⌉

 

 

  

 

 
 

(    ⌈ ⌉) (    ⌈ ⌉)
 

 

* ( )  ⌈ ⌉     ∫   ( )(   ) ⌈ ⌉    

 

 

   + 
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 (    ⌈ ⌉)
* ( )     ⌈ ⌉  ∫   ( )(   ) ⌈ ⌉    

 

 

   +    

 

Therefore, 

 

 (
 

 (    ⌈ ⌉)
∫

 ( )  

(   )⌈ ⌉  

 

 

)  

 

 
 

 (    ⌈ ⌉)
 

 

* ( )(    ⌈ ⌉)  ⌈ ⌉   ∫   ( )(    ⌈ ⌉)(   ) ⌈ ⌉  

 

 

   + 

 

 
 

 (    ⌈ ⌉)
* ( )  ⌈ ⌉   ∫   ( )(   ) ⌈ ⌉  

 

 

   +    

 

Applying this formula, we get 

 

  
     ( )  

 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  

 

 

  

 

,
 

 (    ⌈ ⌉)
* ( )  ⌈ ⌉   ∫   ( )(   ) ⌈ ⌉  

 

 

   +-     

 

 
 

 (⌈ ⌉   ) (    ⌈ ⌉)
 { ( ) ∫

  ⌈ ⌉  

(   )  ⌈ ⌉  
   

 

 

} 
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 (⌈ ⌉   ) (    ⌈ ⌉)
 

{
 
 

 
 

∫
 

(   )  ⌈ ⌉  

 

 

∫   ( )(   ) ⌈ ⌉  

 

 

      
}
 
 

 
 

   

 

Now, we will obtain the integral  

 

 (   )  ∫
 ( )    ⌈ ⌉

(   )  ⌈ ⌉  

 

 

       

 

Putting     , we get         

 

  ( ) ∫
(  )  ⌈ ⌉

(    )  ⌈ ⌉  

 

 

      ( )  (  ⌈ ⌉    ⌈ ⌉   )  

 

 (   )   (  ⌈ ⌉   )  (⌈ ⌉   ) ( )    

 

Now, we will obtain the integral  

 

 ((   )(   ))  ∫ ∫
  ( )

(   )  ⌈ ⌉   (   )⌈ ⌉  

 

 

 

 

         

 

Changing the order of integral and using  

,           -  ,           -, we get  

 

 ((   )(   ))  ∫   ( )

 

 

∫
 

(   )  ⌈ ⌉   (   )⌈ ⌉  

 

 

         

 

Putting       , we get       and 
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 ((   )(   ))  ∫   ( )

 

 

 ∫
  

 (     )  ⌈ ⌉    ⌈ ⌉  

   

 

    

 

 ∫   ( )

 

 

 ∫
  

 (   )  ⌈ ⌉   (  
 

   )  ⌈ ⌉    ⌈ ⌉   

   

 

      

 

Putting    (   ) , we get    (   )   and 

 

 ((   )(   ))  ∫   ( )

 

 

  

 

∫
(   )  

 (   )  ⌈ ⌉   (   )  ⌈ ⌉   ,(   ) -⌈ ⌉   

 

 

   

  

 ∫   ( )

 

 

 ∫(   )⌈ ⌉     

 

 

   ⌈ ⌉        

 

 ∫   ( )

 

 

 (⌈ ⌉      ⌈ ⌉   )     

 

  (⌈ ⌉      ⌈ ⌉   ) ∫   ( )

 

 

     

 

  (⌈ ⌉   ) (  ⌈ ⌉   ), ( )   ( )-    

 

Therefore, 

 

  
     ( )  

 

 (⌈ ⌉   )  (    ⌈ ⌉)
 



25 
 

, (  ⌈ ⌉   ) (⌈ ⌉   ) ( )   (⌈ ⌉   ) (  ⌈ ⌉   ) ( ) 

 

  (⌈ ⌉   ) (  ⌈ ⌉   ) ( )-    ( )   

 

 )       
   ( )   ( )  ∑

  

  

⌈ ⌉

   

   (  )        

 

Proof. It is easy to see that 

 

    ( )  ∫  ( )(  )     ( )   ( )

 

 

   

   

From that it follows   

 

     ( )  ∫ ∫  ( )

  

 

(  )   

 

 

     

 

  ∫(

 

 

 ( )(  )   ( )( ))     ( )   ( )    ( )( )   
 

 

     ( )  ∫ ∫ ∫  ( )(  )            

  

 

  

 

 

 

  

 

 ∫[ ( )(  )   ( )( )     ( )( )]

 

 

      

 

  ( )     ( )( )  
  

 
  ( )( )   ( )    
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Suppose it is true for       . That means  

 

         ( )  ∫ ∫ ∫  

  

 

  

 

 

 

 ∫  (   )(    )

    

 

          

 

  ( )   ( )    ( )( )    
    

(   ) 
  (   )( )   

 

Then  

 

     ( )  ∫ ∫  ∫  ( ) (  )   

    

 

 

  

 

 

 

               

 

 ∫ 6 ( )(  )   ( )( )  
 

  
 ( )( )  

  

  
 ( )( )    

    

(   ) 
 ( )( )7

 

 

     

 

  ( )   ( )    ( )( )  
  

  
 ( )( )    

  

  
 ( )( )  

 

  ( )  ∑
  

  
 ( )( )

 

   

    

 

Therefore, 

 

      ( )   ( )  ∑
  

  
 ( )( )

 

   

   

 

is true for any integer   . 

 

Finally, we have the following formula  
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  ( )  

 

 (⌈ ⌉     )
 

 

( ⌈ ⌉    ⌈ ⌉  (  )  ∫(   )⌈ ⌉  

 

 

(   ⌈ ⌉ )( )   )   

 

Proof. Using the integration by parts  

 

  
  ( )  

 

 (⌈ ⌉   )
∫  ⌈ ⌉

 

 

 ( )

(   )  ⌈ ⌉  
     

 

 
 

 (⌈ ⌉   )
 

 

( 
(   )⌈ ⌉  

(⌈ ⌉   )
 ⌈ ⌉ ( ) |

 

 
 ∫

 (   )⌈ ⌉  

(⌈ ⌉   )

 

 

 (   ⌈ ⌉ )( )   ) 

 

 

  
  ( )  

 

 (⌈ ⌉     )
 

 

( ⌈ ⌉    ⌈ ⌉  (  )  ∫(   )⌈ ⌉  

 

 

(   ⌈ ⌉ )( )   )   

 

 

Example. Prove that  

 

  
 (  )  ,

                    ⌈ ⌉ 

 (   )     

 (     )
               ⌈ ⌉              ⌈ ⌉ 

 

 

Here      * +. 
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Solution. If      and   ⌈ ⌉, than  ⌈ ⌉(  )   , and using this formula 

  

  
  ( )  

 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  

 

 

 ⌈ ⌉ ( )             (3.1) 

 

we get   
  ( )      

 

If       and   ⌈ ⌉ or     and   ⌈ ⌉, then 

  

 ⌈ ⌉(  )  
 (   )

 (     )
       

 

Using formula (   ), we get  

 

  
 (  )  

 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  
 ⌈ ⌉(  )   

 

 

  

 

 
 

 (⌈ ⌉   )
∫

 

(   )  ⌈ ⌉  
  

 (   )

 (     )
     

 

 

    

 

Putting      , we get        . Then 

 

  
 (  )  

 (   )

 (⌈ ⌉   )  (     )
∫

 

,  (   )-  ⌈ ⌉  
(  )  ⌈ ⌉   

 

 

  

  

 
 (   )

 (⌈ ⌉   )  (     )
∫    ⌈ ⌉

 

 

(   )⌈ ⌉        
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 (   )     

 (⌈ ⌉   )  (     )
 (  ⌈ ⌉    ⌈ ⌉   )  

 

 
 (   )     

  (     )
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CHAPTER 4 

RIEMANN-LIOUVILLE FRACTIONAL OPERATOR 

 

 

 

This chapter contain the definition and some properties of the Riemann-Liouville fractional 

operator. 

 

Definition 4.1. Suppose that              . Then 

 

   ( )  

{
 
 

 
  

 (   )
 

  

   
∫

 ( )  

(   )     
  

 

 

              

  

   
 ( )          

  

  

is called the Riemann-Liouville fractional derivative or the Riemann-Liouville fractional 

operator of order α. 

Lemma 4.1. Let                 and  ( ) be such that    ( ) exists. Then  

 

   ( )   ⌈ ⌉ ⌈ ⌉   ( )    

 

This means the Riemann-Liouville fractional derivative is equivalent to (⌈ ⌉   )-fold 

integration and ⌈ ⌉-th order differential. 

 

We have the following properties of the Riemann-Liouville fractional differential operator 

   of order α . 

1) The  Riemann-Liouville fractional differential operator    of order α is a linear 

operator. That means  

 

  (  ( )    ( ))      ( )      ( )               
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Proof. Using the definition of    , we get  

 

  (   ( )     ( ))  
 

 (⌈ ⌉   )
 

 ⌈ ⌉

  ⌈ ⌉
 ∫

   ( )     ( )

(   )  ⌈ ⌉  

 

 

    

 

 
 

 (⌈ ⌉   )
 

 ⌈ ⌉

  ⌈ ⌉
 ∫

  ( )  

(   )  ⌈ ⌉  

 

 

 
 

 (⌈ ⌉   )
 

 ⌈ ⌉

  ⌈ ⌉
 ∫

  ( )  

(   )  ⌈ ⌉  

 

 

  

 

      ( )        ( )   
 

 

2) The following non-semigroup and  non-commutative properties hold  

 

     ( )       ( )          

 

Suppose that                   . Then in general  

 

     ( )       ( )       ( )    

 

Proof. Let   
 

 
  ( )        using the definition of   , we get  

 

 
 
   ( )   

 
  ( )      

 

 
 
 ( )  

  

 √ 
  

  
    

 

 
 
   ( )    

  

 √ 
  

  
   

 
 ( )    

 

That means 
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   ( )   
 

 ( ) (non-semigroup)  

 

and  

 

   
 
 ( )    (

 

√ 
  

  
 )   

  

 √ 
  

  
   

 

 
 
   ( )    

  

 √ 
 

  
     

 
 ( )    

 

That means  

 

 
 

   ( )     
 

 ( ) (non-commutative) .  

 

3) For any constant  C, the formulas hold  

 

  ( )  
 

 (   )
       

 

Proof. Using the definition of    , we get  

 

  ( )  
 

 (⌈ ⌉   )
 

 ⌈ ⌉

  ⌈ ⌉
∫

    

(   )  ⌈ ⌉  

 

 

  

 

 
 

 (   )
 

 

  
6 

(   )   

(   )
 |

 

 
7  

  

 
 

 (   )
 

 

  
 

    

(   )
 

 

 (   )
       

 

4) For the Laplace transform of     the following formula holds  
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  *   ( )+      * ( )+  ∑   

   

   

,       ( )-       

 

Proof. Applying the definition of Laplace transform, we get  

 

  *   ( )+  ∫     

 

 

,   ( )-     

 

 ∫     

 

 

{
 

 (   )
 

  

   
 ∫

 ( )  

(   )     

 

 

}     

 

 
 

 (   )
∫     

 

 

{
  

   
∫

 ( )  

(   )     

 

 

 }     

 

 
 

 (   )
    {∫

 ( )  

(   )     

 

 

 }  
 

 (   )
{    ∫

 ( )  

(   )     

 

 

}

   

 

 

   
 

 (   )
{

    

     
 ∫

 ( )  

(   )     

 

 

}

    

 

 

 
  

 (   )
∫     

 

 

 ∫
 ( )  

(   )     

 

 

              ( )      

 

 (     ( ))      

 

we obtain formula for the integral  

 



34 
 

 ( )  
  

 (   )
∫     

 

 

 ∫
 ( )  

(   )     

 

 

       

 

Changing the order of integration and using  

,           -  ,           -, we get 

 

 ( )  
  

 (   )
∫  ( )

 

 

 ∫
    

(   )     

 

 

         

 

Putting      ,  we get       

 

 ( )  
  

 (   )
∫      ( )

 

 

   ∫
    

      

 

 

      

 

Now, we will obtain the integral 

 

 (   )  ∫
    

      

 

 

      

  

Putting     , we get    
  

 
  

 

 (   )  ∫
   

.
 
 /

     

 

 

 
  

 
  

 

     ∫    

 

 

                (   )    

 

Therefore, 

 



35 
 

 ( )  
  

 (   )
∫      ( )

 

 

 (     (   ))     ∫      ( )

 

 

   

 

     * ( )+ 

 

and  

 

  *   ( )+      * ( )+  ∑   

   

   

,       ( )-       

 

5) In general the two operators Riemann - Liouville and Caputo, do not coincide. 

Actually, 

 

  
  ( )   ⌈ ⌉   ⌈ ⌉ ( )   ⌈ ⌉ ⌈ ⌉   ( )     ( )    

 

But, we have the following formula  

 

  
  ( )    ( ( )  ∑

  

  

   

   

  ( )( ))    

 

Proof. The well-known Taylor series expansion about the point 0 is 

  

 ( )   ( )    ( )( )  
  

  
 ( )( )  

  

  
 ( )( )    

 

 
    

(   ) 
 (   )( )       

 

 ∑
  

 (   )

   

   

 ( )( )          
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where, considering also (2.2) 

 

     ∫
 ( )( )(   )   

(   ) 
    

 

 

 
 

 ( )
∫  ( )( )(   )     

 

 

 

 

    ( )( )   

 

 

Now, using the linearity property of the Riemann - Liouville fractional derivative, the 

Riemann - Liouville fractional derivative of the power function, the properties of the 

fractional integral and representation formula  

 

  
  ( )         ( )    

 

   ( )    (∑
  

 (   )

   

   

 ( )( )      )  

 

 ∑
    

 (   )

   

   

 ( )( )         
 

 

 ∑
    

 (   )

   

   

 ( )( )       ( )( )  

 

 ∑
    

 (   )

   

   

 ( )( )       ( )( )  

 

 ∑
    

 (   )

   

   

 ( )( )    
  ( )    

 

This means that  
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  ( )    ( ( )  ∑

  

  

   

   

 ( )( ))    

 

Note. Suppose that            . Let  ( ) be an analytic function, Then 

  

1)   
  ( )   ( )( )

    

 (     )
    

 

2)    ( )   ( )
   

 (   )
  ( )( )

    

 (   )
    ( )( )

    

 (     )
     

 

From that it follows that  

 

1)   
    

    

 (   )
   

    

 (     )
   for all   (   )  

 

2)      
   

 (   )
 

    

 (   )
   

    

 (     )
   for all   (   )  
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CHAPTER 5 

FRACTIONAL ORDINARY DIFFERENTIAL EQUATIONS 

 

 

 

This chapter contain methods for the solutions of initial value problem for fractional 

differential equations. 

 

First, we consider the Cauchy problem for the fractional differential equation 

 

    ( )   (   ( ))            ( )        

 

Assume that  (   ( )) be a smooth function. Then 

 

 ( )    *   ( )+  
 

 ( )
∫

 

(   )   

 

 

(   ( ))     

 

 
 

 ( )
∫

 

(   )   

 

 

 (   ( ))      (5.1*) 

 

Then, applying the fixed point Theorem, we can write 

 

 ( )     
   

  ( )   

 

where   ( ) is defined by the formula 

 

  ( )  
 

 ( )
∫

 

(   )   

 

 

 (      ( ))         

 

(5.1) 
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  ( )            

 

Example 5.1. Solve the Cauchy problem 

 

 
 
   ( )  

 

 √ 
 

 
       ( )       

 

Solution. We will use three different methods. First, we consider the Green's function 

method. Using Green's formula (5.1*), we get 

 

 ( )  
 

 .
 
 /

∫
 

(   )
 
 

 

 

{
 

 √ 
 

 
 }      

 

 

 
 

√ √ 
∫

 
 
 

(   )
 
 

 

 

   
 

  
∫(   )

 
 

  

 

 

 
 
 

        

 

Putting     , we get        

 

 ( )  
 

  
∫(   )

 
 

  

 

 

  
 
 

    
 
 
    

 
 

        
 

  
  (

 

 
 
 

 
)  

 

    
 

  
 
 .

 
 /   .

 
 /

 .
 
  

 
 /

    
 

  
 
√  

 
  

 
  √ 

 ( )
      

 

Then 

 

 ( )      

 

Second, we will obtain the solution of this problem by the power series. Actually, 
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 ( )  ∑   

 

   

      

 

Taking  
 

 
 , we get  

 

 ( )  ∑   

 

   

          
 
         

 
          

 
      

 

 ( )          

 

Then, 

 

 
 
   ( )  ∑   

 

   

 
 
  2 

 
 3  ∑   

 

   

 
 .

 
   /

 .
 
  

 
 /

  
 
 

 
 
  

  
 
 

 √ 
    

 

So,  

 

∑   

 

   

 
 .

   
 /

 .
   

 /
  

   
  

  
 
 

 √ 
    

 

Equating the coefficients of  
   

 , we get 

 

  

 ( )

 .
 
 /

 
 

 

 

√ 
    

 .
   

 /

 .
   

 /
          

  

From that it follows  
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Then  

 

 ( )  ∑   

 

   

 
 
     

 
       

 

Third, applying the Laplace transform, we get  

 

  2 
 
  ( )3   

 
  * ( )+    

 

Then, 

 
 
  * ( )+  ∫     

 

 

(
 

 √ 
 

 
 )        

 

Putting      , we get        

 

 
 
  * ( )+  

 

 √ 
∫    

 

 

.
 

 
/

 
 
 
  

 
  

 

 
 

 √ 
 

  
 ∫    

 

 

 
 
     

 

 √ 
 

  
   (

 

 
)    

  
     

 

Therefore  

 

  * ( )+  
 

  
 

  

  
    

 

Then  
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 ( )      {
  

  
}       

 

Example 5.2. Solve the Cauchy problem 

 

 
 
   ( )  

 

√ 
  

 
  

 

√ 
 

 
    

(  ) 

 .  
 
 /

    
    

 

 
 ( )  

 

 
     

 

      ( )      

 

Solution.  

 

 (   ( ))  
 

√ 
  

 
  

 

√ 
 

 
    

(  ) 

 .  
 
 /

    
    

 

 
 ( )  

 

 
    

 

 (   ) is the continuous and 

 

| (    )   (    )|  
 

 
|     |       

 

where   
 

 
     

 

Therefore, there exists 

 

 ( )     
   

  ( )  

 

 where   ( ) is defined by formula 

 

  ( )  
 

√ 
∫

 

√   
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*
   

 

√ 
 

   
 
 

√ 
   

(  )      
 

 .  
 
 /

   
 

 
    ( )  

 

 
   +           

 

  ( ) is given function. 

 

Putting    ( )     , we get  

 

  ( )  
 

 
∫

 

√   √ 
   

 

 

 
 

 
∫

 
 
  

√   
  

 

 

   

 

 
 

√ 

(  ) 

 .  
 
 /

∫
    

 

√   
  

 

 

   
 

 √ 
∫

(  ( )     )

√   

 

 

    

 

 
 

 
∫

 

√   √ 
  

 

 

 
 

 
∫

 
 
  

√   
  

 

 

   
(  ) 

√   .  
 
 /

∫
    

 

√   
  

 

 

   

 

Now, we will obtain the integral  

 

 ( )  ∫
    

 

√   
  

 

 

              

 

Putting      , we get         

 

 ∫
    

      
 

√  (   )
 
 

    

 

 

   ∫     
 

   (   )
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    (  
 

 
 
 

 
)    

 .  
 
 /  .

 
 /

 (   )
    

 

Using this formula, we get  

 

  ( )    
  .

 
 /

 
  

  .
 
 /

 
   

(  ) 

√   .  
 
 /

  
 .

 
 /  .  

 
 /

 .  
 
 /

   

 

     
  

  
   

(  )    

  
         

 

 

Assume that 

 

    ( )        

 

Then  

  ( )  
 

√ 
∫

 

√   

 

 

[
   

 

√ 
 

   
 
 

√ 
   

 

 
    ( )  

 

 
   ]          

 

So, by the induction   ( )      for any m.  

 

Then, passing limit when    , we get  

 

 ( )     
   

  ( )     
   

          

 

Second, we consider the Cauchy problem for the Basset fractional differential equation 

 

  ( )     ( )   (   ( ))            ( )       

 

Assume that  (   ( )) be a smooth function. Then  
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 ( )     ∫ .    ( )   (   ( ))/

 

 

      

 

Then, applying the fixed point Theorem, we can write 

 

 ( )     
   

  ( ) 

 

where  

 

  ( )     ∫,       ( )   (      ( ))-

 

 

         ( )           

 

Example 5.3. Solve the Cauchy problem 

 

  ( )   
 
   ( )   ( )        

 

 

 

√ 
 

 
       ( )    

 

for the Basset fractional differential equation. 

 

Solution. First, we will obtain the solution of this problem by the power series. Actually, 

 

 ( )  ∑   

 

   

      

 

Taking   
 

 
 and  ( )   , we get     . Then  

 

 ( )  ∑   

 

   

 
 
    

 

Since  
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  ( )  ∑   

 

   

 

 
 

 
 

   ∑
   

 

 

   

 
   

    

 

 
 
  ( )  ∑   

 

   

 
 
 2 

 
 3  ∑   

 

   

 .
   

 /

 .
   

 /
 

   
   

 

we have that  

 

∑   

 

   

 

 
 

   
  ∑   

 

   

 .
   

 /

 .
   

 /
 

   
  ∑   

 

   

 
 
        

 

 

 

√ 
  

 
    

 

Equating the coefficients of  
 

  for          we get  

 

          

 .
 
 /

 ( )
    

 

  

 

 
   

 ( )

 .
 
 /

       

 

  

 

 
   

 .
 
 /

 ( )
       

 

  

 

 
   

 ( )

 .
 
 /

    
 

 

 

√ 
  

 

  

 

 
   

 .
 
 /

 ( )
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 .
   

 /

 .
 
 /

         

 

It is easy to see that                             and      for    . 

Thus,  

 

 ( )     
 
       

 

Second, applying the Laplace transform, we get  

 

  *  ( )+    2 
 
  ( )3    * ( )+     * +    *  +  

 

 √ 
  2 

 
 3   

 

   * ( )+   
 
    * ( )+    * ( )+  

 

  
 

 

  
 

 

 √ 

 .
 
 /

 
 
 

   

 

.   
 
   /   * ( )+  

 

  
 

 

  
 

 

 
 
 

 
 

  
.   

 
   /   

 

Therefore 

 

  * ( )+  
 

  
 

  

  
   

 

 ( )     {
  

  
}      

 

Example 5.4. Solve the Cauchy problem 

 

  ( )   
 
  ( )  

 ( )

 
  

   

 
 

 

√ 
   

  
 

√ 
 

 
    

(  ) 

 .  
 
 /
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 ( )      

 

Solution. We have that 

 

 ( )    ∫

[
 
 
 
 
   

 
   ( )  

 ( )

 
 

   

 

 ,
 

√ 
   

  
 

√ 
 

 
    

(  ) 

 .  
 
 /

    
   -

]
 
 
 
 
 

   

 

 

   

Therefore  

 

 ( )     
   

  ( )   

 

where   ( ) is defined by the following formula  

 

  ( )    ∫

[
 
 
 
 
   

 
      ( )  

    ( )

 
 

   

 

 ,
 

√ 
   

  
 

√ 
 

 
    

(  ) 

 .  
 
 

/
    

   -

]
 
 
 
 
 

  

 

 

  

 

           

 

  ( ) is given smooth function. 

 

Putting,   ( )     , we get 

 

  ( )    ∫

[
 
 
 
 
   

 
    ( )  

  ( )

 
 

   

 

 ,
 

√ 
   

  
 

√ 
 

 
    

(  ) 

 .  
 
 /

    
   -

]
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   ∫

[
 
 
 
 
 
 

 ,
   

 

√ 
 

   
 
 

√ 
   

(  ) 

 .  
 
 /

    
 -     

 ,
 

√ 
   

  
 

√ 
 

 
    

(  ) 

 .  
 
 /

    
   -

]
 
 
 
 
 
 

  

 

 

 

 

   ∫       

 

 

                

 

Then 

 

  ( )       

 

Assume that 

 

    ( )        Then 

 

  ( )    ∫

[
 
 
 
 
   

 
      ( )  

    ( )

 
 

   

 

 ,
 

√ 
   

  
 

√ 
 

 
    

(  ) 

 .  
 
 /

    
   -

]
 
 
 
 
 

  

 

 

      

 

So, by the induction   ( )      for any m.  

 

Then, passing limit when    , we get  

 

 ( )     
   

  ( )     
   

          

 

Third, we consider the Cauchy problem for the fractional differential equation 
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   ( )   (   ( )   ( ))            ( )       ( )       

  

Assume that  (   ( )) be a smooth function. Then  

 

 ( )  
 

 ( )
∫

 

(   )   

 

 

 (   ( )   ( ))      

 

Then, applying the fixed point Theorem, we can write 

 

 ( )     
   

  ( )   

 

where   ( ) is defined by the formula 

 

  ( )  
 

 ( )
∫

 

(   )   

 

 

 (      ( )      ( ))               

  

  ( ) is given. 

 

Example 5.5. Solve the Cauchy problem 

 

 
 
  ( )  

 

√ 
 

 
       ( )      ( )     

 

Solution. We will use three different methods. First, we consider the Green's function 

method. Using Green's formula (5.1*), we get 

 

 ( )  
 

 .
 
 /

∫
 

(   )   
 

 

 

 
 

√ 
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∫

 
 
 

(   )  
 

   

 

 

   

 

Putting     , we get         

 

 ( )  
 

 
   (

 

 
 
 

 
)  

 

 
  

 .
 
 /  .

 
 /

 ( )
 

 

 
     .

 
 /

 

(√ )
 

  
     

 

Then  

 

 ( )      

 

Second, we will obtain the solution of this problem by the power series. Actually, 

 

 ( )  ∑        

 

   

 

 

 ∑       

 

   

       
 
         

 
          

 

Applying  ( )      ( )   , we get 

 

             

 

Then, 
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 ( )  ∑     
 
  

 

   

 

 

and  

 

 
 
   ( )  ∑   

 

   

  
 
  0 

 
 1  ∑   

 

   

 
 .  

 
 /

 .
 
  

 
 /

  
 
 

 
 
  

 

√ 
 

 
    

 

Equating the coefficients of  
 
  for        we get 
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From that it follows  
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Third, applying the Laplace transform, we get  
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Example 5.6. Solve the Cauchy problem 
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Therefore  
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where   ( ) is defined by the following formula 

 

  ( )  
 

 .
 
 /

∫
 

(   )  
 

 

 

  

 

,
  

 
     ( )  

 

 
    ( )  

   
 
 

√ 
   

(  )      
 

 .  
 
 /

   
 

 
-         

 

           

 

  ( ) is given smooth function. 
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Now, we will obtain the integral  

 

  ( )  ∫
 

 
 

(   )  
 

  

 

 

   

 

Putting     , we get         

 

  ( )  ∫
(  )

 
 

(    )  
 

     

 

 

 ∫    
 
 

 

 

 (   )
 
     

 

   ∫  
 
 

  

 

 

(   )
 
 

       
 .

 
 /  .

 
 /

 ( )
 

    

 
   

 

Now, we will obtain the integral 
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Putting     , we get         



56 
 

  ( )  ∫
(  )   

 

(    )  
 

 

 

       ∫     
 

 

 

 (   )
 
     

 

   ∫  (   
 

)  

 

 

 (   )
 
 

      

 

   
 .  

 
 /  .

 
 /

 .  
 
  

 
 /

   
 .  

 
 /  .

 
 /

 (   )
   

 

Therefore, 

 

  ( )  
 

 

 

 
     

(  ) 

 .
 
 /  .  

 
 /

 
 .  

 
 /  .

 
 /

 (   )
      

 

 
  

 
   

(  )    

  
             

 

Assume that  

 

    ( )           Then  

 

  ( )  
 

 .
 
 /

∫
 

(   )  
 

 

 

 

 

,
  

 
     ( )  

 

 
    ( )  

   
 
 

√ 
   

(  )      
 

 .  
 
 /

   
 

 
-    

 

           



57 
 

So, by the induction   ( )          for any m.  

 

Then, passing limit when    , we get  

 

 ( )     
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Fourth, we consider the Cauchy problem for the Bagley Torvik fractional differential 

equation 
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Assume that  (   ( )) be a smooth function. Then  
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Then applying the fixed point Theorem, we can write 
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Example 5.7. Solve the Cauchy problem 
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for the Bagley Torvik fractional differential equation. 

Solution. First, we will obtain the solution of this problem by the power series. Actually, 
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Applying initial conditions, we get 
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Equating the coefficients of   
 

  for        we get 

 



59 
 

 

 
           

 .
 
 /

 ( )
   

   

 
     

 ( )

 .
 
 /

      

 

   

 
     

 .
 
 /

 ( )
     

   

 
     

 ( )

 .
 
 /

    
 

√ 
 

 

   

 
     

 .
 
 /

 ( )
      

   

 
     

 ( )

 .
 
 /

       

 

    

 
      

 .
  
 /

 ( )
            

 

 
 (   )

 
       

 .
   

 /

 .
   

 /
          

 

It is easy to see that                                and      for        
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Second, applying the Laplace transform, we get  
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Example 5.8. Solve the Cauchy problem 
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where   ( ) is defined by the following formula 
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So, 
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So, by the induction   ( )      for any m.  

 

Then, passing limit when    , we get  
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CHAPTER 6 

STABILITY OF DIFFERENTIAL AND DIFFERENCE PROBLEMS 

 

 

 

In this chapter, we use the Basset equation for the solution of the initial value problem and 

differential scheme for the numerical solution on the stability estimates. 

 

6.1 The stability of the initial-value problem for Basset equation  

We consider the initial value problem for Basset equation 

 

{
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  ( )  

 

 
  ( )   ( )        

 ( )     
 (6.1) 

 

Here 
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Assume that  ( ) is the continuous function defined on ,   -.  

Theorem 6.1. For the solution of problem (6.1) the following stability estimates hold 
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where    does not depend on  ( )  

Proof. From (6.1) it follows the following Cauchy problem 
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 (6.2) 

 



64 
 

It is a linear problem and the following formula holds  
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Using the last formula, we can write  
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Using the definition of fractional derivative and formula (6.3) and (6.4), we get  
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We denote that  
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First, we will consider the integral  
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Changing the order of integration and using  

,           -  ,           -, we get 
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Using formulas (6.3) and (6.5), we obtain  
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Second, we will estimate the double integral above 
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Changing the order of integration and using  
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Putting      , we get       and 
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Applying the triangle inequality, formulas (6.6), (6.7) and estimate (6.8), we get  
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Applying the integral inequality, we get  
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Applying the triangle inequality and estimate (6.9), we get  
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Applying the triangle inequality and estimates (6.9) and (6.10), we get  
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Finally, applying estimate (6.9), (6.10) and (6.11), we get  
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Theorem 6.1 is proved. 

 

6.2 The stability of the difference scheme for the Basset equation 

Applying the formula 
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and implicit difference scheme, we get the following difference scheme 
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 (6.13) 

 

for the numerical solution of the initial value problem (6.1). 

We have that  
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Theorem 6.2. For the solution of difference scheme (6.13) the following stability estimates 

hold  
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where    does not depend on   and     

Proof. Applying the formulas (6.12), (6.15), we get  
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We denote that 
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Then, from the last formula it follows that  
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                                (6.17a) 

 

where 

  

   
 

 
 
 

 
 

√ 
∑

 

(   ) 

   

   

∫       
 

 

 

       { 
 

 
∑          

   

   

}   

 

   
 

 
 
 

 
 

√ 
∑

 

(   ) 

   

   

∫       
 

 

 

       {
 

 
∑          

   

   

}   

 

     
 

 
 
 

 
 

√ 
∑

 

(   ) 

   

   

∫       
 

 

 

       *   +   

 

     
 

 
 
 

 
 

√ 
∑

 

(   ) 

   

   

∫       
 

 

 

       { 
 

 
   }   

 

     
 

 
 
 

 
 

√ 
  ∫    

 

 

 

        {     
 

 
∑         

   

   

   }   

 

     
 

 
 
 

 
 

√ 
  ∫    

 

 

 

        { 
 

 
      

 

 
∑         

   

   

  }   

 

Now, we will estimate |    | |  | |    | |  | |    | and |    |, separately. 

Applying the triangle inequality, Holder's inequality, we get  
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Applying the triangle inequality, we can obtain  
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Applying Holder's inequality, we get 
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Now, we will estimate |  |  

Applying the triangle inequality and estimate (6.18), we get  
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Now, we will estimate |    |. By (6.13), we have that  
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It is clear that ,             -  ,               -. 

Therefore, changing the order of summation, we get  
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Therefore  
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Using the triangle inequality formulas (6.15), (6.19) and estimate (6.20), we get  
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Now, we will estimate |    |. 

Appling the triangle inequality, we can obtain  
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Finally, we will estimate |    |. 
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Applying formula (6.17a) and estimates for |    | |  | |    | |  | |    | and |    |, we get 
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Applying the discrete analogue of integral inequality, we get  
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Applying formula (6.15), the triangle inequality and estimate (6.21), we get  
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Using the triangle inequality and estimates (6.21), (6.22) and (6.13), we get  
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Finally, estimates (6.21), (6.22) and (6.23) we get estimate (6.16). Therefore 6.2 is proved. 

Now, for support of theoretical results, we consider the numerical solution of the test initial 

value problem  
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for the Basset equation. The exact solution of this test example is  ( )     . 

We get the following difference scheme of first order of accuracy for the numerical 

solution of the initial value problem (6.24)  
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For solving difference scheme (6.25), we will transform it in following matrix form: 
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where  
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are unknown and given grid functions. 

Solving it, we get  
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We obtain the following table for the error    of solution of difference scheme defined by 

formula  

 

      
     

|    (  )| 

 

Difference scheme N 30 60 120 

(6.25) 0.0473 0.0237 0.0119 
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As it is seen in this table, we get some numerical results. If N are doubled, the value of 

errors    decrease by a factor of approximately 
 

 
 for first order of accuracy difference 

scheme. 
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CHAPTER 7 

CONCLUSIONS 

 

 

 

This work is dedicate to study fractional calculus and its applications for the fractional 

Basset equation. 

 

The following results are obtained: 

¶ Study properties of fractional integral. 

¶ Study properties of Caputo fractional differential operator. 

¶ Study properties of Riemann - Liouville fractional differential operator. 

¶ Methods for the solutions of initial value problems fractional differential 

equations are applied. 

¶ The theorem on the stability estimates for the solution of the initial value problem 

for the fractional Basset equation is established. 

¶ The theorem on the stability estimates for the solution of the first order of 

accuracy differential scheme for the numerical solution of the initial value 

problem for the fractional Basset equation is proved. 

¶ The MATLAB implementation of the difference scheme for the numerical 

solution of the test Basset problem is presented. 

¶ The theoretical expressions for the solutions of the difference scheme are 

supported by the results of numerical examples.  
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APPENDIX 

 

MATLAB implementation of the difference scheme 
 

N=120;  

 tau=1/N;  

a=- 1/(4*(tau*pi)^(1/2));  

b=- (1/tau) - (1/(2*(tau)^(1/2)))+(1/(4*(tau)^(1/2)));  

c=( 1/tau)+(1/2)+(1/(2*(tau)^(1/2)));  

A=zeros(N+1,N+1);  

for i=2:N+1;  

for j=2:N+1;  

     A(i,i)=c;  

     if i>j;  

      A(i,j)=b;  

     end;  

  if i>j+1;  

  A(i,j)=(a*(gamma(i - j - 0.5))/factorial(i - j));  

  end;  

end;  

end;  

A(1,1)=1;  

A;  

fii=zeros(N+1,1) ;  

for k=1:N+1;  

t =(k - 1)*tau;  

fii(k)=4*t+(t^2)+(8/(3*(pi^(1/2))))*t^(3/2);  

end;  

fii;  

G=inv(A);  

u=zeros(N+1,1);  

 u=G*(fii);  

u;  

%\ %\ %\ %\ %\ %'EXACT SOLUTION OF THIS DDE' \ %\ %\ %\ %\ %\ %\ %\ %  

eu=zeros(N+1,1);  

for k=1:N+1;  

t=(k - 1)*tau;   

eu(k)=2*(t^2);  

end;  

eu 

% ABSOLUTE DIFFERENCES ;  

absdiff=max(abs(eu - u))  

 

 

 


