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ABSTRACT 

 

Leaf is a part of the vascular plant that represents principal lateral adjunct of the plant 

trunk. Plant leaf contains multiple features that create the difference between plant and 

another plant. Main features of the leaf are the margins, shape, and structure of the leaf. 

Each plant leaf has its different features that are extinctive from other plants’ leaves. The 

classification of plants based on their leaves is used since long time by humans. This work 

focuses on the classification of plants leaves using computerized approaches and neural 

networks. The work will consider the segmentation of the plant leaves prior to the 

application of neural networks classifiers to classify leaves into sub-categories. Beginning 

with the final representation of leaves, the work will apply the neural network algorithms 

to classify different plant leaves. The algorithm will initially train the neural network using 

large number of available images. Upon the end of the training process of the proposed 

system, a test process will start using other images to clarify whether the system is learned 

or not. Different comparisons will be applied during the work to verify the effect of 

different parameters and processes on the classification quality. 

 

Keywords: Artificial neural networks; back propagation; Leaf recognition; plant 

classification; segmentation 
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ÖZET 

 

 

Yaprak, bitki gövdesinin temel lateral tamamlayıcısını temsil eden damarlı bitkinin bir 

parçasıdır. Bitki yaprağı, bir bitkiyle diğer bitki arasındaki farkı oluşturan çeşitli özelliklere 

sahiptir. Yaprağın temel özellikleri kenarlar, şekil ve yaprak yapısıdır. Her bitki yaprağı 

diğer bitki yapraklarından farklı, kendine ait özellikler taşımaktadır. İnsanlar, uzun bir 

süredir, bitkileri yapraklarına göre sınıflandırmaktadır.  Bu çalışma, bitkilerin bilgisayar 

donanımlı yaklaşımlar ve nöral ağlar kullanılarak yapraklarına göre sınıflandırılması 

üzerine yoğunlaşmaktadır. Çalışmada, yaprakları alt kategorilere göre sınıflandırmak için 

nöral ağ sınıflandırılması uygulanmadan önce bitki yapraklarının segmentasyonu 

değerlendirilecektir. Çalışma yaprakların son hallerinin gösterilmesiyle başlayarak,  farklı 

yaprak çeşitlerinin sınıflandırılması için yapay nöral geri yayılma uygulanacaktır. 

Algoritma, ilk olarak, mevcut olan resimleri kullanarak nöral ağ yapısını öğretecektir. 

Sunulan sisteme ait eğitim sürecinin sonuna doğru, sistemin öğrenilip öğrenilmediğini 

belirlemek için farklı resimler kullanılarak bir test süreci başlatılacaktır. Sınıflandırma 

kalitesine ilişkin olarak farklı parametre ve süreçlerin etkisini doğrulamak için çalışma 

boyunca farklı karşılaştırmalar yapılacaktır. 

 

Anahtar kelimeler: Bitki sınıflandırması, geri yayılma, yapay nöral ağlar,  yaprak tanıma 
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CHAPTER 1  
 

INTRODUCTION 

 

 

1.1 Introduction 

Identification of plant species using their leaves and stems is a task that needs special 

experience. Manual identification of plant species is a very difficult task that requires a lot 

of experience in addition to huge books that shows the different types of plants and their 

leaves. However, the increasing capabilities of the new cameras and mobile phones gives 

opportunity for picturing plant leaves and using automatic ways to identify them. The aim 

is give the opportunity for people to be able to identify all types of plants in real life using 

the power of their mobiles’ cameras. A small application that is equipped with a well 

trained algorithm can be able to offer such a great job and to make people avoid many 

losses due to bad identification of plants, especially, the poisonous plants.  

Plant identification is very important also to help in the development of automated farms 

where machines can do the whole job (Kadir, Nugroho, Susanto, & Santosa, 2013). 

Planting, cleaning, and harvesting the crops using automated machines is no longer science 

fiction. Many developed countries use machines nowadays in harvesting the agriculture 

products. These automated machines need to identify the crop and separate the wrong parts 

or grasses while harvesting. This classification needs to be improved to give the best 

results without any human intervention.  

Different approaches use segmentation methods in the identification of plants leaves. One 

of the main disadvantages of these approaches is that any error in the segmentation will 

lead to a wrong identification of the subject leaf (Amin & Khan, 2013). The wrong 

segmentation can be the reason of overlapping leaves, sick plants, or broken parts of the 

plant leaves.  

In this work, an approach is proposed for the identification of plant leaves based on image 

processing techniques and artificial neural networks. Image processing techniques help 

improving the quality of images to separate any noise or disturbances. The use of image 
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processing can increase the performance of the identification process and reduce the rate of 

error. After the application of image processing techniques, an artificial neural network 

will be applied on the images to train it for the different plant types. By the end of training 

process, the network will be ready to classify and identify the different types of leaves even 

if there were not presented before.  

Artificial neural networks are human brain like networks. They have been implemented 

and used to imitate the shape and function of brain structure. Neural networks are very 

flexible and can change their structure to simulate the way of real brain. Many fields of 

science nowadays use the artificial intelligence of neural networks in their development.     

1.2 Methodology of the Work  

The proposed work aims to investigate the use of artificial neural network of many hidden 

layer in the classification of leaves specimen (Mallah, Cope, & Orwell, 2013). The work 

will start initially by collecting database of leaves images from different sources in RGB 

image form. The collected images will be then converted to gray images to simplify the 

computer processing tasks. The converted images will then be filtered and resized to be 

suitable for neural network applications. By the end of image processing phase, the neural 

network will be built and trained using a large amount of database images. Then the 

network will be tested and generalized. 

1.3 Dataset Description  

The dataset consists approximately of 761 images of leaf specimens for 19 different 

samples of plants. These images were all taken as JPG format. Figure 1.1 below shows an 

example of the captured images for one of the plants. This image will be treated using 

image processing methods and converted to gray scale. The next step will be to scale down 

this image so that it will be less size to be fed to neural networks.  
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Figure 1.1: Plant leaf image RGB 

The flowchart below represents the steps proposed in this work to acheive the required 

goal of the work.  
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Convert RGB images to gray scale images

Apply filter on images 

Resize images using MATLAB

Apply edge detection

End of work

Database collection

Convert images to vectors

Build the neural network

Train the neural network 

using back propagation

Test the neural network

 

Figure 1.2: flowchart of the proposed work 

 

1.4 Contribution of the Thesis 

The work done in this thesis can be considered as a positive effort added to the previous 

works in the environmental studies. The proposed methods and application for ANN in the 

plant classification and recognition are promising for the automated recognition of 

different plant types including the rare and strange families of plants.  
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CHAPTER 2  
 

IMAGE PROCESSING 

 

 

2.1 Introduction 

Image processing has been one of the important fields of science in the twentieth and 21
st
 

century. The use of image processing techniques and digital images has given a great 

revolution for the fields of communication and telecommunication. As a result of the 

revolution in the science of image processing, we can watch our TV’s with high density 

videos and clear images. Internet images are also presented at very high resolutions with 

help of all great image processing techniques. In fact, all our life is surrounded by images.  

Vision in human eye is nothing but a biological representation of an analogue image 

processing with all its detailed processes. The human eye is a great biological camera that 

has the ability to continuously capture infinite number of images, transfers them to the 

brain which can analysis and process these images. The brain then translates these images 

into meaningful things for us. The digital image processing is the digital counterpart of the 

analogue image processing in the human (Gonzalez & Woods, 2001). Digital image 

processing; abbreviated mostly DIP, is the mathematical processing of images that are 

represented digitally using computers. The fields of DIP applications are very vast and 

can’t be easily covered in one topic. In this work, some of the important DIP processes will 

be presented and discussed briefly preparing to be introduced in the practical application 

for leaf recognition. The discussion will cover mainly the image representation, image 

filtering, image segmentation, and image conversion processes. All these topics will be 

covered in this chapter in order to give an idea about the proposed work.  

2.2 How Images are Represented 

When you capture an image using your camera, mobile or computer; the machine captures 

the analogue information of the image and translates it to tinny blocs of digital values. 

These tinny blocs that contain the digital values are called pixels. The collection of pixels 
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constructs all types of the digital images. Digital images are represented using different 

methods and can be classified as follow: 

1- 1 bit images that can contain binary values like 0 and 1 in each pixel. These images 

contain tow colours and can give fewer details. Such images are famous in some 

arts where details need to be defined sharply or some medical images where sharp 

details are needed.  

2- 8 bit images where each pixel value is defined using an 8 bit number. This type is 

known also as indexed colour (Sekeroglu & Khashman, 2004). Gray scale images 

and most of internet images are main examples of indexed colour images. Each 

pixel in an 8 bit images can contain 256 different colour levels.  

3- 16 bit images where each pixel is represented using word space in the computer. 2 

bytes of data are reserved for each pixel in this type of images. This type of images 

is normally known by high colour images (Sekeroglu & Khashman, 2004). This is 

due to the fact that it contains millions of colour grades.  

The digital image is then represented in a structure of blocs of data arranged such that they 

show colour grades in the frame. Images can be stored in different formats as it is well 

known. RAW images, JPEG, PNG, JIF, and BMP images are all types of images 

represented using different compression methods (Boran Sekeroglu, 2004). 

  

  

Figure 2.1: JPEG image of leaf 
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Figure 2.1 above shows the JPEG image version of a plant leaf. Jpg image is a compressed 

version of raw image. Figure 2.2 presents the indexed version of the JPG image shown 

above. The binary image of the leaf is generated and shown in Figure 2.3 below. Finaly, 

the gray scale version of the image is represented in Figure 2.4. it can be considered as the 

best choice for ANN application. 

 

 

Figure 2.2: Indexed version of the leaf image 

 

Figure 2.3: Binary version of leaf image 
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Figure 2.5 shows the difference between pixels in the binary image and the gray scale 

image. Gray scale image can contain more details about each pixel of the image and offer a 

description of the grades of light in it.  

 

 

Figure 2.4: Gray scale version of the leaf image 

 

 

Figure 2.5: (a) Binary image pixels vs. (b) gray scale image pixels 

 

2.3 Conversion from Coloured Image to Gray Scale Image 

The conversion from RGB image to gray scale image is the process of representing the 

coloured image in form of the scale of white and black image. The gray scale image 



 

9 

 

contains all information of the image except from the colours which are less important in 

computer applications. Gray scale images remind us with the old white and black TVs in 

the beginning of the 90s of the last century. Although the formula (1.1) looks logical for 

the conversion from RGB to gray scale, however, the researches show that the human eye 

has different sensitivity levels for each one of the main colours. The formula (1.2) was 

found to be more realistic in the conversion between the RGB and the gray images 

(Zollitch, 2016).  

 

    
 

 
  

 

 
  

 

 
        (2.1) 

 

     
 

    
  

 

   
  

 

    
          (2.2) 

 

 

Where, Gs refers to the gray scale image, R refers to the red colour, G refers to the green 

colour, and B refers to the blue colour (Santra, 2013). The next figure shows the RGB 

image along with the gray scale images created using the two previous formulas.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: RGB image vs. gray scale images using the two previous formulas 

 

(a) RGB image

(b) Gray scale image 1 (c) Gray scale image 2
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2.4 Edge Detection in Digital Images 

Edge detection is the process in which significant object properties in digital images are 

being detected and captured. These properties include discontinue lines in the 

characteristics of the object. The main aim of edge detection is to identify and separate 

these variations in the property of objects within the image. Efficient edge detection is able 

to focus on the important objects or regions of interest in the images. it is very useful to 

detect and identify the ROI’s in an image. To perform better edge detection the derivative 

of the image pixel is calculated. However, derivatives are subject to be affected by 

different types of noise of different sources, hence; smoothening the image prior to the 

application of derivative is a must to improve the quality of image edge detection.  

Edge detection is a very difficult and sensitive process in image processing. Each different 

application requires different edge detection method that is designed to accomplish its task. 

in this work, different general famous edge detection methods will be discussed briefly and 

explored. Famous edge detection methods like Sobel, Canny, Prewitt and other edge 

detection methods will be presented. Results of all discussed methods will be also 

presented and compared. 

2.4.1 Sobel edge detection 

Sobel operator applies a two dimensional space gradient calculation to highlight the high 

frequency regions in the special domain. It finds the gradient of each pixel in gray scale 

images. Sobel edge detection method employs two kernels of 3*3 matrixes. The two 

matrixes are shown as follow (Robert, Simon, Ashley Walker;, & Wolfart, 2003):  

 

 

    [
    
    
    

]        (2.3) 

 

    [
   
   
      

]       (2.3) 
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These two matrixes are constructed specifically to respond the best for image variations in 

the horizontal and vertical directions. The two kernels are applied separately to ensure the 

calculation of the horizontal and vertical gradients. The two gradients are then used to find 

the absolute gradient value of the image. The magnitude of the gradient of the image can 

be found by (Robert et al., 2003): 

 

      √  
     

        (2.5) 

 

Where; the calculation of the gradient magnitude can be costly and slow, therefore, an 

approximation of the gradient can be accepted in a faster manner without affecting the final 

result: 

 

                         (2.6) 

 

Sobel edge detection is less affected by the noises that appear in the image.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: Application of Sobel operator for leaf image segmentation 

 

 

(a) Gray scale image (b) Sobel edge image



 

12 

 

2.4.2 Prewitt edge detection 

Prewitt edge detection is similar to the Sobel method as it also uses similar kernel to find 

the gradient in an image. The kernel in Prewitt method is isotropic as shown in the next 

equations defining the horizontal and vertical kernels (Chaple, Daruwala, & Gofane, 

2015). 

 

    [
    
    
    

]        (2.7) 

 

     [
   
   
      

]       (2.3) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.8: Prewitt edge detection algorithm 

 

2.4.3 Canny edge detection 

Canny edge detection is one of the famous edge detection and segmentation methods. 

Canny segmentation method is the distinction of parts of image into areas. It highlights the 

important areas of the image to identify these areas. The feature areas are very important 

for processing targets. The edges are defined in most of cases in term of zones where the 

pixels change sharply.  Canny edge detector is a common edge detection algorithm. This 

(a) Gray scale image (b) Prewitt edge image
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algorithm is employed to increase the signal to noise ratio and identify the different 

features of the image. Generally, Canny edge detection algorithm is composed of different 

steps (Shen & Tang, n.d.).   

At the beginning, the image is smoothed to remove any kind of noises or blur from it. This 

is then an application of filter to the image. Filtering process is carried out by convolving a 

Gaussian filter with the image. After filtering the image, the gradient of each column and 

line of the image is found. The more the change in the image pixels the higher the gradient 

is. This fact is used to identify the sharp changes in the mage pixels. The gradient of a pixel 

in the image can be given using the next formula:  

 

      √  
     

        (2.9) 

 

Where; Gx and Gy are the horizontal and vertical gradients of the image. Canny edge 

detection uses threshold to eliminate the unwanted regions of the image and highlight the 

regions of interest.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: Application of Canny edge detection 

 

(a) Gray scale image (b) Canny edge image
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2.4.4 Roberts edge detection 

The Robert operator is used to approximate the gradient of image using discrete 

differentiation. Robert mask is a 2*2 matrix that convolve with the whole image using its 

horizontal and vertical versions (Chaple et al., 2015). These masks give the horizontal and 

vertical derivative approximation of an image. Suppose the image matrix shown in next 

equation, and the two masks of Roberts.  

 

   [
    

    
]        (2.10) 

 

       [
   
  

]       (2.11) 

 

        [
   
  

]       (2.12) 

 

 

From the image matrix and the Roberts masks, the horizontal and vertical derivative 

approximations can be given by (Chaple et al., 2015): 

 

            

                  (2.13) 

  

 

At this stage, a threshold is applied to the image to highlight the high gradient values and 

eliminate the unwanted image regions. Figure 9 below shows the results of applying 

Roberts edge detection algorithm on the leaf images.  
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Figure 2.10: Roberts edge detection 

 

2.4.5 Logarithmic and zero cross edge detection method 

These are the last two algorithms applied in our work for image segmentation. Application 

of these two methods has given the images shown in the next two figures.  

  

 

Figure 2.11: Logarithmic segmentation results 

(a) Gray scale image (b) Roberts edge image

(a) Gray scale image (b) Logarithmic edge image
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Figure 2.12: Zero cross segmentation process 

 

2.5 Wiener Filter  

Wiener filter is an adaptive filter type which uses the error minimization formulas to reject 

the noise from images. It is based on the mean squared error approximations. It is 

considered as a frequencies filter that can be used with discrete Fourier transform of the 

image. The convolution of the Wiener filter with the image can generate the spectrum of 

the image. The reconstruction of the image is carried out by applying the inverse version of 

discrete wavelet transform. (Khajwaniya & Tiwari, 2015; Wang, Peng, Wang, & Peng, 

2015) have proposed Wiener filter as a best fit for the image filtering and restoration in 

different applications (Mohan, Mridula, & Mohanan, 2016).   

Wiener filter is a type of low pass filters that can work with gray scale images. It shows 

high efficiency in the removal of additive noise types from these images. Wiener filter 

finds some statistical information around each pixel in the image and generate an 

estimation of the correct new value of the pixel based on these statistical results. The mean 

of the Wiener filter is given by:   

 

   
 

  
∑          

          (2.14) 

 

(a) Gray scale image (b) Zerocross edge image



 

17 

 

Where M and N are the dimensions of the Wiener window, “p” is the pixel value, “m” is 

the mean value of the window pixels. The standard deviation is also a well known term in 

statistics that is given by:  

 

    
 

  
∑           

           (2.15) 

 

The new pixel value is then generated with help of the variance of the noise that is either 

estimated or supposed. The new value is given by: 

 

              
      

  
              (2.16) 

  

Where; the term “v” refers to the noise variance. The new pixel value is a filtered version 

of the original pixel value. Wiener filter has proven high ability to remove additive noise 

types and restore the original images. Figure 2.13 below presents the result of applying 

Wiener filter on the noisy image “a”. The figure shows that the filter has reduced the noise 

in the area of interest in the image (leaf). 

  

 

Figure 2.13: Application of Wiener filter to noisy image 

 

 

 

 

(a) Gray noisy image (b) Wiener filtered image
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CHAPTER 3  

ARTIFICIAL NEURAL NETWORKS 

 

 

3.1 Overview of the Chapter 

In this chapter, the concept of artificial neural networks will be discussed and the basic 

elements of the neural network structure will be discussed as well. Many artificial neural 

networks related topics will be highlighted in this chapter such as the similarity between 

human brain and artificial networks, learning in artificial neural networks, and different 

mathematical representation of transfer function. 

At the end of this chapter, back propagation algorithm which is considered as one of the 

most effective learning algorithms will be presented and discussed. 

3.2 Introduction 

The human brain is one of the most important organs that is characterized by complexity. 

This organ performs many important and accurate tasks such as decision making, learning, 

logical thinking, and memorizing information (Mehrotra, Mohan, & Ranka, 2001). 

Scientists studied the human brain accurately and tried to understand the principle of the 

work of nervous system, especially in the process of learning and decision-making. 

Historically it can be said that artificial neural networks started as a paper by McCulloch 

and Pitts in 1943, they provided a formal mathematical model describing the simplest 

structure of a human brain, in 1949 Hebb wrote a paper in which the Hebbian learning rule 

was proposed, this paper became one of the cornerstones for the development of training 

algorithms in the field of neural networks. The first perceptron  model which is consider as 

the simple single layer networks was introduced by Rosenblatt in 1958 and  based on this 

model, Werbos introduced his model as the three-layered perceptron network and wrote 

about back propagation algorithm in 1974. However in 1982 Hopfield published a series of 

papers on Hopfield networks, while Kohonen developed a totally unique kind of network 

model so-called self-organizing maps in the same year (Cios & Shields, 1997).  
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The research on artificial neural networks has remained active which led to the emergence 

of many developments in networks such as the sub-field of radial basis function networks 

in 1990s. However, in the current decade the power of neural networks is apparent, leading 

to many new network types, such as hybrid algorithms and hardware for neural 

information processing (G. Anderson & McNeill, 1992). 

In the following sections the idea of neural networks will be adequately explained where 

the artificial neural networks will be defined and compared with the principle of the 

functioning of the nervous system in human. The most important components of the 

networks such as the concept of weights, layers and transfer function will be clarified. 

3.3 Artificial Neural Networks Analogy  

Artificial neural network is a computer technology that attempt to build models which are 

biologically inspired rather than an exact copy of how the brain is working. 

In order to understand the idea of artificial neural networks, a general overview of the real 

human brain will be explained. Human brain is a huge network consisting of thousands of 

billions of neurons which are interconnected in a complex network in order to perform all 

complex tasks, Figure 2.1 demonstrates a biological neural network which consist of a 

simplified form of two neurons, each neuron consists of soma, dendrites, axon and synapse 

(D. Anderson & McNeill, 2010). 

  

 

 

 

 

 

 

 

 

 

Figure 3.1: A schematic diagram of biological neurons 
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Dendrites receive signals from other neurons or the external environment, to the cell body; 

whereas, axons act as the output of neuron which take signals away from the cell body. 

However, neurons do not physically touch each other, the spaces between the sending 

neuron and the receiving neuron are called synapses , this synapses is permit a neuron to 

pass an electrical or chemical signal to another neuron or to the target. Moreover, the 

synaptic connections between cells are malleable and constantly changing. 

The Figure 2.2 shows the similarities between the structure of the biological neuron and 

the artificial neuron, where it can be considered that the soma is similar to artificial neuron 

in the mechanism of action while dendrites act as inputs in artificial neuron. Moreover it 

can be considered that the function of the axon is similar to output function, whereas, the 

synapses in biological neurons simulate the weights in artificial neural network (G. 

Anderson & McNeill, 1992). 


f
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Figure 3.2: The similarity between biological neuron and artificial neuron 

 

The biological neuron receive many signals from neighboring neurons through the 

dendrites, this signals reach the neuron's body only if it has enough energy to activate it. 

The same way in which artificial neurons work, the neuron receive the input signals and 

https://en.wikipedia.org/wiki/Neuron
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each input signal is linked to its own weight that reflect the power of signal to activate the 

output of neuron; otherwise, the output from the neuron will not be generated and 

transmitted to the next neuron. 

3.4 Artificial Neural Network Structure 

Artificial neural networks (ANNs) which are inspired by biological neural networks are 

considered as learning models consisting of interconnected neurons, these connections 

between neurons have numeric weights and  responsible for activating neuron output by 

multiplying its value with input signals (A.D.Dongare, R.R.Kharde, & D.Kachare, 2012). 

In general, it can be said that ANNs consist of processing units called neurons, theses 

neurons are distributed within the system structure in the form of layers. The following 

sections will explain the most important components of the artificial neural network 

structure. 

3.4.1 The layers  

In artificial neural network, many different models and designs can be formed depending 

on the number of neurons and the number of layers in addition to the number of neurons 

within a single layer. Typically, the network consists of input layer, output layer and at 

least one hidden layer. 

In the input layer the received data will be transferred to the first hidden layer, by using 

mathematical operation the data will be processed and transferred to the next hidden layer. 

The simple model of the neural network consists of the input layer responsible for 

receiving the input signals; this layer passes the information coming from the surrounding 

environment to the next layers in the networks without performing any mathematical 

operations on that data (Seiffert, 2002). 

The hidden layers are named because they do not have a direct contact with the 

environment surrounding the network, these layers perform computations and transfer 

information that received from the input layer and then passed to the next layer in the 

network. However, the number of hidden layers in the network varies depending on 

network's design, where in feed-forward network is possible to have one hidden layer at 

least or zero hidden layer. 
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The final layer which is responsible for delivering information to the outside world is 

called the output layer. 

In feed-forward networks where data flows in one direction, from input to output layer 

without any loops or reverse flow, the networks are divided according to the number of 

layers into single layer perceptron and multi-layer perceptron. 

3.4.2 Single layer perceptron 

The single layer perceptron is the simplest model in ANNs, Figure 2.3 illustrate the 

structure of single layer perceptron which is consist of input layer connects directly to the 

output layer where there is no hidden layers in this type of feed-forward network. 

In SLP, the neuron is connected typically to all input signals, however all neurons is 

allocated in parallel form in order to create single layer perceptron model (Colin, 1996). 

 f
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Figure 3.3: structure of single layer perceptron (SLP) 

 

Mathematically, assuming there is n input signals (x1, x2, x3,…….xn) , then the neuron 

performs a linear combination process of all input signals after multiplying each input 

signal with its associated weight (w1,w2, w3, ……wn.), the result is given in the following 

equation (Bataineh, 2012): 
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    ∑      
 
    (3.1) 

 

In order to generate the suitable output y for each input set, the activation function which 

has different equations is applied on the sum of the inputs as the following: 

 

            ∑       
 
    (3.2) 

 

3.4.3 Multi-layer perceptron 

A multi-layer perceptron (MLP) is the other type of ANNs which is formed by one or more 

hidden layers, in this type the perceptron can also learn non – linear functions, whereas in 

the SLP the perceptron can only learn linear functions. However, this type of ANNs is 

more useful than single layer perceptons for practical applications today. 
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Figure 3.4: Structure of multi-layer perceptron (MLP) 
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As the Figure 2.4 shows that in MLP the neurons are connected in parallel way in the same 

layer while the layers are connected in series form. In this example there is one hidden 

layer consisting of j neurons and f1 is used as an activation function for the outputs of 

hidden layer, while f2 activation function is used as the function of the final outputs in 

networks. The types of the activation function will be discussed later in this chapter. 

There are different learning methods used in order to train the MLP network, and the back 

propagation algorithm can be considered as one of the most famous algorithms in today 

applications. 

3.4.4 The synaptic weights 

In artificial neural networks the weights can be defined as an adaptive factor which are 

associated with signals and reflect the importance of the signal in the effect in the output of 

the system. In other words, whenever the lower the value of weight allocated and 

associated with input signals, the less importance of that signal impact in the result of the 

output network. Moreover, in order to adjust the value of weights, various learning 

methods are used. 

3.5 Neural Network Activation Function 

Activation function or transfer function is one of the most essential parameter in ANNs. 

However, In artificial neural networks applying the activation function is the process that 

follows the input summing process and act as decision making units in ANNs, the primary 

purpose of applying activation function is to determine if the neuron is activated or not, in 

addition to its ability to squash or reduce the output of the neural network depending on the 

used type of activation function. 

In this section, we will explain the most popular and commonly used function in the field 

of artificial neural networks. 

3.5.1 Step function 

Step function is considered as the simplest type of activation function that is commonly 

used in binary classification studies especially in single layer perceptrons. This activation 

function is also called binary step function since its output is 0 or 1. In other words, the 

input signals are accumulated in the neuron, and if the strength or the value of the resulting 
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signal is above a certain threshold, the neuron passes the signal .Otherwise; the signal is 

killed by the neuron and is not propagated further (G. Anderson & McNeill, 1992). 

The following equation expresses the fundamental idea of this activation function while the 

curve chart is shown in Figure 2.5. 

 

       {
                
                

     (3.3) 
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Figure 3.5: The curve chart of step activation function 

 

 

3.5.2 Linear function 

In this type the output of the weighted sum of the inputs is a linear function of its input; 

with limited output within some band in order to avoid divergence as it shown in Figure 

2.6. However, this linear activation function continuous and can have infinite number of 

outputs. The function of this type is defined by: 

 

               (3.4) 

 

Where; the value “a” is the slope of the function that controls the output.  
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Figure 3.6: The curve chart of linear activation function 

 

3.5.3 Sigmoid function 

In the previous section the linear activation function was explained and it was clear that 

linear function passes the input signals without any significant change, since artificial 

neural networks perform complex tasks; they need nonlinear activation function in order to 

make a non-linear decision especially in classifications tasks. One of the most common 

non-linear functions is sigmoid activation function which is squashes the real-valued 

number into a range between 0 and 1as it shown in Figure 2.7. Moreover, sigmoid 

activation function is derivable and continuous in the period of the inputs and it is 

represented mathematically as (G. Anderson & McNeill, 1992): 

 

      
 

              (3.5) 
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Figure 3.7: The curve chart of sigmoid activation function 

 

The main drawback of this type of activation function is that sigmoid function can cause a 

neural network to get “stuck” during training. This problem occurs because the output of 

the sigmoid function is close to zero in case of strongly-negative input. 

3.5.4 The hyperbolic tangent activation function  

This type of activation function can be considered as two sigmoid functions together, since 

the hyperbolic tangent activation function squashes the real-valued number into a range 

between -1 and 1as it shown in Figure2.8, this characteristic is featured by the hyperbolic 

tangent activation function can addresses the zero-centered problem in sigmoid activation 

function. The following formula expresses this type mathematically: 

 

 

      
 

                 (3.6) 
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       Figure 3.8: The curve chart of the hyperbolic tangent activation function   

activation  function 

 

3.6 Artificial Neural Network Learning and Adaptation  

Generally, the term of learning refers to the gaining knowledge activity in order to improve 

the awareness of studied subjects, this activity is possessed by humans, some animals, and 

artificial intelligence systems, while the term of learning in the field of machine learning 

refers to the ability to adapt and change in self-manner depending on environment changes 

and without being explicitly programmed (Clabaugh, Myszewski, & Pang, 2000). 

An artificial neural network is considered as a complex adaptive system which has the 

ability to change its internal structure in order to adapt with any new environment or 

parameters. However, this task is performed by adjusting the weights values which are 

associated with signals to generate the desired output if the networks fed with a given input 

(Cios & Shields, 1997).  

3.7 Types of Learning in ANNs 

Basically, learning methods can be categorized into basic methods: supervised learning, 

unsupervised learning and reinforcement learning which will be explained in the next 

sections. 

3.7.1 Supervised learning 

Supervised learning method is considered as dependent learning process, since it takes 

place under the supervision of a teacher. In this method the artificial neural networks are 

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x)



 

29 

 

learned by providing them with input vector in order to generate its output vector, where 

each example is consisting of a pair of input vector and its desired output value, for further 

clarification, during this training phase, the used learning algorithm will help the neural 

networks in adjusting the weights values in each cycle of training, and this is done through 

the process of producing an error signal which represents the difference between the 

desired output and the actual output as it is shown in the Figure 2.9. 
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Figure 3.9:  Block diagram of supervised learning. 

 

3.7.2 Unsupervised learning  

Unsupervised learning method is considered as independent learning process, since it 

is learning without the supervision of a teacher. However, in this type of learning there is  

no feedback from the environment as the error signals, that is mean the neural network is 

required to learn itself depending on some features in the input data in order to adjusting 

their weights. The figure bellow illustrates the simplest block diagram of unsupervised 

learning. 
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Figure 3.10: Block diagram of supervised learning. 

 

 

3.7.3 Reinforcement learning 

Reinforcement learning and supervised learning methods are similar in that some feedback 

is given during learning phase, however, in reinforcement learning a target output will be 

provided instead of the desired output. 

This method in learning state that in order to increase the likelihood of the same response 

of the networks in the right direction, the reward is given based on how well the system 

performed. In other words, this approach for learning machine bases on affirmation 

learning feedback; that evaluates the learner's performance without providing standards of 

correctness in the form of behavioral targets. 

3.8 Learning Rules in ANNs 

Learning is one of the most important and fundamental characteristics of an artificial 

neural network that give network their importance in many fields and applications. 

Basically, this task is performed by adjusting the weights values in order to change the 

input/output behavior. However, the methods and algorithms used to perform that task are 

called learning rules. 

The most important rules in ANNs learning will be explained in the following sections and 

the basic ideas will be clarified by equations as well. 
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3.8.1 Hebbian learning rule 

This type of learning rule which is called Hebbian learning rule is considered as one of the 

oldest learning algorithms, which is simulating the dynamics part in biological nervous. 

This type of learning rule determines how to alter the weights between neurons. 

In 1949 Donald Hebb claimed that if two neurons on either side of a synapse connection 

are activated simultaneously, then the strength of that synapse between these two neurons 

will increase selectively, similarity, in ANNs the weight is increased with high correlation 

between two sequential neurons. However, this rule is adjusting the weights by the 

following formula which is describing the increment by which the weight of connection 

increases at time step t (Colin, 1996): 

                         (3.7) 

 

Where        represents the value of pre-synaptic input at time step t while yi(t) is the value 

of pre-synaptic output at same time step t; and  is a control variable that control the size 

of variation in the weights. 

3.8.2 Perceptron learning rule 

In machine learning this learning rule is considered as supervised learning algorithm of 

single layer feed-forward networks with linear activation function, which is invented in 

1957 by Rosenblatt. 

This algorithm is used in case if the problem is linearly separable, in the beginning, the 

training patterns is provided to the network as inputs, then the output is calculated. In this 

method Random small values of weights and threshold will be specified in order to 

modify the weights according to the following formula: 

 

                                        (3.8) 

  

 

https://en.wikipedia.org/wiki/Machine_learning
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Otherwise there will be no weight adjustment, ωi+1 is the new weight value while ωi is the 

old weight value. In order to compute the output y the activation function will be applied 

over that net input which can be expressed as follows (Colin, 1996): 

 

 

      {
                
                

     (3.9) 

  

 

3.8.3 Delta learning rule (Widrow-Hoff Rule) 

In 1960 Widrow and Hoff developed one of the most common learning rules in machine 

learning field which is called delta learning rule. This learning rule can be considered as 

supervised learning method with continuous activation function, However delta rule is 

a gradient descent learning rule that reducing the error for each pattern by minimizing the 

difference between the net input to the output unit and the target value in order to update 

the weights. Mathematical the updating of synaptic weight can be done by using in the 

following equation (G. Anderson & McNeill, 1992; Clabaugh et al., 2000): 

 

                   (3.10) 

 

Where     expresses the change in weight for 
i
th pattern, α is the learning rate, xi is the 

input value from pre-synaptic neuron, d is the desired output while y represents the actual 

output. 

In the case of there is a difference between the desired and actual output, then updating of 

synaptic weight is given by: 

 

 

                  (3.11) 

 

Otherwise, there will be no weight adjustment. 

 

 

https://en.wikipedia.org/wiki/Gradient_descent
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3.8.4 Back propagation algorithm 

The back propagation algorithm is a learning algorithm in ANNs which uses the gradient 

descent method with respect to weights in order to minimize the error function and 

modifying the weights. 

In machine learning field, the back propagation algorithm based on Hebb learning rule can 

be considered as supervised learning. Moreover, this learning algorithm was named 

because of its method in updating the values of weights where the error is propagated 

between layers of the network backwards. Basically, in the training phase the training pairs 

which are consist of the input and its correspondent desired output are provided to the 

networks in forward iteration. After the activation function is applied, the actual output is 

calculated and the comparison process is performed between the desired output and the 

actual output in order to calculate the error. 

Multi-layer perceptron networks can be trained by back propagation algorithm in order to 

solve several types of problems that include classification, function estimation, and time-

series prediction. 

3.9 Mathematical Representation of Back Propagation Algorithm 

The back-propagation algorithm is a learning algorithm of multilayer feed forward neural 

network which is based on the gradient descent theory in order to calculate least square 

error and minimize the LMS between the network output values and the target values for 

those outputs. Figure 2.12 shows the simplest structure three-layer feed-forward back 

propagation neural network. The input layers consist of p inputs where these income 

signals (x1, x2, ……., xp) are sent without any change to the hidden layer as In which 

represent the vector of all inputs. Mathematically, in the hidden layer, the sum of 

multiplied inputs is calculated as the following (Colin, 1996): 

 

   ∑               (3.12) 

Where W is the wights matrix and bn is a vector of bias values. Assuming that f1 is a 

sigmoid activation function which applied to the output of hidden layer then,the output of 

the applied activation function is expressed as : 

https://en.wikipedia.org/wiki/Machine_learning
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                        (3.13) 

The output of the function f is considered as the active output of the concerned neuron. 

This output is ready to be submitted to the next neuron that collects its input from all the 

previous neurons. Same formulas are applied to that neuron also. The process continues 

until reaching the output layer that generates the actual output of the neural network. At 

this stage, the actual output is compared with the expected result to generate the error 

signal. The error signal is used to update the weights of the network as follows: 

 

              (3.14) 

Where; O is the actual output of the network, T is the expected output, and E is the error 

signal. The error signal is the main part of the learning process in the back-propagation 

algorithm. The value and direction of the error is used in the update formula of the weights 

of the neural network layers. 

The error function is generated based on the error value of the output. This function is used 

to generate the new weight value for the next iteration: 

 

                                 (3.15) 

Where;  is the learning rate value,  is the momentum factor, and old is the previous 

variation in the weight value. The second term of the previous equation is the change in the 

weight value that guarantees the error minimisation. The value of the learning rate controls 

the speed of the learning of the network. The third term on the right hand of the equation is 

the effect of momentum factor that is very useful to ensure the continuous decrease of the 

error signal.  
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CHAPTER 4  

RESULTS AND DISCUSSIONS 

 

 

 

4.1 Introduction 

This chapter discusses the practical implementation of the proposed methods and 

topologies in addition to the results of these methods. All proposed and discussed methods 

in this work were applied and results were obtained using MATLAB environment.  

MATLAB 2015a has a powerful image processing set and artificial neural network 

toolbox. After the implementation of all methods, obtained results will be presented and 

discussed in this chapter of this work. The experiments were applied using Sony Vaio core 

i7 microprocessor with 8G ram card using windows 10.  

4.2 Processing of Database Images 

Our database is composed of the leaves images of 11 different types of plants. Each one of 

these plants has 20 different images in jpg format. These images were all collected from 

internet (Inc, 2016). All database images were obtained in RGB format after being 

manually processed and treated. The total of 220 database images were all put in separate 

files in the MATLAB data file preparing for the beginning of their processing.  

Images of the plant leaves were all converted to gray scale images and segmented using 

different segmentation methods prior to the application of the neural networks. The next 

section will discuss in details the application of ANN with the processed database images.  
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Figure 4.1: Sample of the used plant leaves 

Figure 4.1 presents sample of the used plant leaves in this work. These plant leaves can be 

classified using the outer shape and specie of their leaves.  

4.3 Image Segmentation (Edge Detection) 

The process of image recognition implies the intervention of different image processing 

techniques to increase the efficiency of the system. These methods include the image 

filtering, extraction of special regions of interest, image size reduction, and normalization 

of image pixels. Different methods of edge detection were applied in this work to test the 

effect of each of them on the efficiency of our system. Figure 4.2 shows the results of edge 

detection using the different edge detection methods.  

 

Figure 4.2: Edge detection results 

(a) Sobel edge detection (b) Canny edge detection (c) Prewitt edge detection

(d) Roberts edge detection (e) Gaussian edge detection (f) Zerocross edge detection
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From the figure above, it is noticed that the edge detection using Sobel method has given 

the best region of interest detection. It will be used as the main edge detection method in 

this work. The other methods will be used in the purpose of comparing their performance 

in terms of image detection. The threshold in the different edge detection methods was 

chosen automatically using the built in MATLAB functions.  

4.4 Image Processing Stage 

The image processing stage is the first stage in the leaves detection process. This stage 

includes reading the images in jpg format, converting these images into gray scale format, 

filtering the image to suppress the noise or any unwanted signal in the image, and finally 

applying different edge detection processes to identify special areas that contain the main 

features of the image. Figure 4.3 below presents the different images that result from the 

application of these different image processing techniques. The first image presents the 

original image in RGB format. The second image “b” is the gray scale converted image. 

The image “c” shows the filtered image using Wiener filter. The last part “d” is the 

segmented version of the leaf showing the edges of the leaf.    

 

Figure 4.3: Image processing stage of the work 

(a) Original Image (b) Gray Image

(c) Wiener Image (d) Segmented Image
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After the end of the image segmentation, all database images are going to be resized to 

small size. This resizing process is very useful in reducing the size of the processed data 

and the processing time and cost. Generally, images are resized to sizes between 20*20 and 

100*100 pixel range. This means that each image can be represented to computer in form 

of 400-10000 pixels. The choice of the image size is dependent on the training process of 

the neural network and can differ from application to another. In this work, the image size 

of 50*50 was chosen as final size for all database images. Figure 4.4 shows the original 

image and the resized image of the leaf. It is obvious that the resized image has less density 

and less clear than the original image from the point of human view. However, the 

computer is less affected by the image density as it deals with pixel values rather than by 

the scene in the image.  

 

Figure 4.4: Original image size vs. resized image 

 

After resizing the images to the suitable size, all image pixels are being normalized such 

that they contain values in the range 0-1. The normalized images are then converted to 

vectors so that they can be fed to the neural network successively. This is considered the 

last step in the stage of image processing. In the following part, the structure and details of 

the used neural network is going to be presented and discussed.  

4.5 Artificial Neural Networks Results 

The application of the ANN in the recognition process is the last step of the work. This 

step is composed of two main parts:  

(a) Original size image (b) Resized image 50*50
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- Training of the ANN 

- Test of the ANN 

The training of the neural network is the process in which the structure of the network is 

created arbitrarily and then updated continuously to find the best solution that connects the 

inputs and the outputs successfully.  

 

 

4.5.1 Structure of the used ANN 

The structure of the used artificial neural network is presented in Figure 4.5 below. The 

network consists of 1 input layer, three hidden layers, and 1 output layer.  

 

 

Figure 4.5: Structure of the used ANN 

Hidden layers are all sigmoid transfer functions while the output layer is a linear transfer 

function. Table 4.1 presents all the details of the neural network implemented in this work.  

 

Table 4.1: Parameters of the used ANN 

Parameter Value Parameter Value 

Input size 2500 Learning rate 0.01 

Output size 11 Momentum factor 0.1 

Hidden size 1 250 MSE 0.0002 

Hidden size 2 280 Maximum epochs 28000 

Hidden size 3 200   
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4.5.2 Training of network using canny edge detection 

This network was trained after using the canny edge detection method. The ANN tool of 

MATLAB is shown in Figure 4.6. The training has stopped after 78 epochs during 16 

seconds. 

 

 

Figure 4.6: ANN tools during the training of network 

The training reached MSE of 0.000157. Figure 4.7 presents the curve of the MSE of the 

training process. It shows that the curve is decreasing fast until it reaches the desired 

output. The overall performance of this network was 75% during the test and training 

process.  

 

Figure 4.7: MSE curve during the training process 
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4.5.3 Training of network using sobel edge detection 

In this part, the neural network is applied with the images segmented using Sobel edge 

detection. The parameters of the network are the same as shown in Table 4.1. The overall 

performance of the network reached 89.5% in this experiment. The training details are 

depicted in Figure 4.8 below. The training took 1613 iterations to reach MSE of 0.00019 

during 4 minutes and 36 seconds.  

 

 

Figure 4.8: Training details of the ANN, Sobel edge method 

Figure 4.9 presents the training MSE curve of this network. The curve is showing 

continuous decrease in the MSE with the training development. Based on the results, it was 

found that 197 images out of the 220 image were correctly identified in this experiment.  

 

 

Figure 4.9: MSE curve during the training of the network, Sobel 
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4.6 Comparison of the ANN Results Using Different Parameters 

The results obtained by neural network are subject to change at every experiment 

dependent on the experiment conditions. Any change in the parameters of the ANN can 

change the obtained results and affect the overall performance of any neural network 

application. The training of the neural network is a search for best combination of 

parameters that can give the highest performance out of the applied network. In this part, 

the parameters of the network are going to be varied one at a time to test the performance 

of the network. 

 

4.6.1 Varying the momentum factor 

The parameters of the neural network will be kept unchanged and the momentum factor 

was varied to find the performance of the network.  

Table 4.2: Performance change in function of Momentum factor 

Momentum value Performance Momentum value Performance 

0.1 87.3% 0.05 89% 

0.01 91% 0.02 90% 

0.001 85% 0.008 92% 

 

 

4.6.2 Varying the learning rate 

Learning rate is varied in this experiment while all other parameters where kept constant. 

The momentum factor is fixed to 0.008. The hidden layer sizes are 200, 280, and 280 

neurons. Table 4.3 presents the obtained results using different learning rate values. It was 

found that the learning rate of 0.09 has given best performance. This value will be used in 

the next experiments.  
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 Table 4.3: Performance of ANN in function of the learning rate 

Learning rate performance Learning rate performance 

0.001 90% 0.05 91.8% 

0.08 93.6% 0.01 88% 

0.1 93.2% 0.09 94% 

0.5 93.5% 0.002 91% 

 

 

 

4.6.3 Varying the hidden layers sizes 

Hidden layers are very important in the determination of the behavior of the neural 

network during the training and the test processes. Choice of the size of the hidden layer is 

an accurate process because the larger the size of hidden layers the slower the program is 

different combinations of hidden layer sizes were experimented to test the performance of 

the network. Table 4.4 shows the performance results with different layer sizes.  

Table 4.4: Performance of network in function of hidden layer size 

Layer sizes performance Time (s) iterations 

[200 , 280 , 280 ] 94% 185 2250 

[20, 280, 280] 91.2% 120 2500 

[20, 20, 280] 85% 124 3878 

[100, 100, 180] 90.5% 136 1653 

[300, 300, 300] 93.6% 366 1587 

[300, 100, 300] 92.3% 397 1832 

 

After finding the best values for the parameters of the neural network, the network is going 

to be trained based on these parameters.  
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CHAPTER 5  

CONCLUSIONS AND FUTURE WORKS 

 

 

 

 

The plant leaves identification is an important process in different fields from medical 

plants collection and classification to the study of the environmental life. The use of 

computerized systems for the identification of different types of plants can reduce the 

efforts done by scientists and experts in the environmental sciences. Some plants are very 

rare and can’t be identified without the presence of huge books and experienced experts. 

Neural networks can be implemented to identify the different plants with high performance 

and less effort. Neural networks can store huge data about these plants and restore them 

whenever they are needed.  

Back propagation artificial neural network algorithm has gained a great importance since 

the last two decades. It has proven great capability to perform well in different fields like 

image processing, security, data analysis, and forecasting weather and products prices. 

They are working in similar way the human brain works. Neural networks are consisted of 

interconnected processing units called neurons. Information is passed between these 

neurons in a manner that gives them the ability to generate results and learn patterns of 

data. 

This work is concerned by the study of the application of neural network in the 

identification of plants specimen. The application is carried out using the back propagation 

algorithm to classify 220 images of 11 different plants. Different image processing 

techniques were used to simplify the processing of the images using ANN. Image types 

conversion, image filtering, and image segmentation were all used in this work. The 

implementation of this classification system using neural network was applied and tested 

using different parameters.  

The image segmentation using different segmentation methods was discussed in this work. 

Results of segmentation have shown that Sobel segmentation method gives the best 

performance in terms of finding the region of interest in leaves images. Canny edge 
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detection has also shown good performance in finding the edges of the leaf; however Sobel 

method was chosen to be used as the main segmentation method.  

Parameters of the back propagation and neural network have been proven to have an 

important effect on the performance of the neural network. The modification of learning 

rate and momentum factor has increased the efficiency of the network in the plant 

classification. 

Obtained results have shown that the back propagation algorithm and the neural network is 

capable to classify the leaves images with high performance and minimum error. The 

proposed system can be extended for larger amount of data and different types of plants. 

As a future work, it is recommended to use natural database from the field and to extend 

the research to include more classification criterions such that its performance can be 

ensured to be higher. 
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APPENDIX 

LIST OF PROGRAM 

 

 

 

 
clc 

clear all 

close all 

folders = {'a','b','c','d','e','f','g','h','i','j','k'}; 

progpath = cd; 

datapath = strcat(progpath,'\data'); 

% if(exist('edge','dir')),  rmdir('edge'); end 

% if(exist('smallsize','dir')),  rmdir('smallsize'); end 

% if(exist('wiener','dir')),  rmdir('wiener'); end 

% if(exist('gray','dir')),  rmdir('gray'); end 

%cd(datapath); 

clc 

cont = {'gray' , 'wiener' , 'smallsize' , 'edge' , 'canny' , 

'prewitt' , 'roberts' , 'log' , 'zerocross'}; 

for i=1:length(cont) 

    if(exist(char(cont(i)),'dir')==7) 

        rmdir(char(cont(i)) , 's'); 

    end 

end 

 

for i=1:length(cont) 

    mkdir(char(cont(i)));  

    cd(char(cont(i))); 

    for k=1:length(folders), 

        clc; mkdir(folders{k});  

        clc;  

    end  

    cd(progpath); 

end 

 

 

for i = 1:length(folders) 

    for j = 1:20 

         

         

        imagepath{i, j} = 

strcat(progpath,'\data','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 

        graypath{i, j} = 

strcat(progpath,'\gray','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 
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        wienerpath{i, j} = 

strcat(progpath,'\wiener','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 

        edgepath{i, j} = 

strcat(progpath,'\edge','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 

        edge1path{i, j} = 

strcat(progpath,'\canny','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 

        edge2path{i, j} = 

strcat(progpath,'\prewitt','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 

        edge3path{i, j} = 

strcat(progpath,'\roberts','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 

        edge4path{i, j} = 

strcat(progpath,'\log','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 

        edge5path{i, j} = 

strcat(progpath,'\zerocross','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 

         

         

        smallsizepath{i, j} = 

strcat(progpath,'\smallsize','\',folders{i},'\',folders{i},' 

(',num2str(j),').jpg'); 

 

    end 

end 

 

 

[iend jend] = size(imagepath); 

count=0; 

generalInput  = zeros(2500, jend*iend); 

Tmat = eye(11); 

generalOutput = zeros(iend, jend); 

for j=1:jend 

    for i=1:iend 

        a = imread(imagepath{i, j}); 

        b = rgb2gray(a); 

        c = wiener2(b,[3 3]); 

        d = edge(c,'sobel'); 

        ed1 = edge(c,'canny'); 

        ed2 = edge(c,'prewitt',0.2); 

        ed3 = edge(c,'roberts',0.2); 

        ed4 = edge(c,'log',0.2); % L^place of gaussian 

        ed5 = edge(c,'zerocross'); 

         

         

        x = figure(1) ; 

        set(x,'OuterPosition',[50 50 650 650]) 
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        subplot(231); imshow(d); 

xlabel('Sobel','fontsize',12,'fontname','times'); 

        subplot(232); imshow(ed1); 

xlabel('Canny','fontsize',12,'fontname','times'); 

        subplot(233); imshow(ed2); 

xlabel('prewitt','fontsize',12,'fontname','times'); 

        subplot(234); imshow(ed3); 

xlabel('roberts','fontsize',12,'fontname','times'); 

        subplot(235); imshow(ed4); xlabel('Logarithm of 

Gaussian','fontsize',12,'fontname','times'); 

        subplot(236); imshow(ed5); 

xlabel('zerocross','fontsize',12,'fontname','times'); 

 

         

        e = imresize(c,[50 50]); 

        ee = imresize(d,[50 50]); 

        f  = reshape(e,1,2500); 

        ff = reshape(ee,1,2500); 

        y = figure(2); 

        set(y,'OuterPosition',[720 50 650 650]) 

        subplot(221); imshow(a); xlabel('Original 

Image','fontsize',12,'fontname','times'); 

        subplot(222); imshow(b); xlabel('Gray 

Image','fontsize',12,'fontname','times'); 

        subplot(223); imshow(c); xlabel('Wiener 

Image','fontsize',12,'fontname','times'); 

        subplot(224); imshow(d); xlabel('Segmented 

Image','fontsize',12,'fontname','times'); 

        imwrite(b,graypath{i,j},'jpg'); 

        imwrite(c,wienerpath{i,j},'jpg'); 

        imwrite(d,edgepath{i,j},'jpg'); 

        imwrite(ed1,edge1path{i,j},'jpg'); 

        imwrite(ed2,edge2path{i,j},'jpg'); 

        imwrite(ed3,edge3path{i,j},'jpg'); 

        imwrite(ed4,edge4path{i,j},'jpg'); 

        imwrite(ed5,edge5path{i,j},'jpg');    

         

  

         

        imwrite(e,smallsizepath{i,j},'jpg'); 

        count = count+1; 

        perc = 100*count/(iend*jend); 

        clc 

        fprintf('                       %2.0f%% finished\n',perc); 

        generalInput(:,count) = f ;  

        generalOutput(:,count) = Tmat(:,i);    

        pause(0.1); 

    end 

end 

 

cd(progpath); 
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end  

    clc 

momentum = 0.1; 

learning_rate = 0.01; 

transfer_functions = {'tansig','tansig','logsig'}; 

layer_size = [250 280 200];  

g = newff(generalInput,generalOutput,layer_size, 

transfer_functions ,'traingdx'); 

nets = init(g); 

nets.trainParam.lr = learning_rate; 

nets.trainParam.show = 1000; % Frequency of progress displays (in 

epochs). 

nets.trainParam.epochs = 100000; % Maximum number of epochs to 

train.  

nets.trainParam.mc = momentum; % Momentum Factor.( for change 

************* 

nets.trainParam.min_grad = 0; 

nets.trainParam.max_fail = 10000 ; 

nets.trainParam.mu_max=1e20; 

nets.divideParam.valRatio=0; 

nets.divideParam.trainRatio=0.6; 

nets.divideParam.testRatio=0.4; 

nets.performFcn ='mse'; 

nets.trainParam.goal = 0.0002;  

nets.trainParam.epochs = 28000; 

[netR,TR] = train(nets,generalInput,generalOutput); 

out = sim(netR,generalInput); 

out = out>0.3; 

count = 0 ; co = 0;  

for i=1:20 

    for j=1:size(out,1) 

        count = count+1; 

        if(out(j,count) == 1) 

            co = co+1; 

        end 

    end 

end 

fprintf('                 Overall performance is : %2.1f%% 

\n',100*co/220); 

 


