
A
L

I ID
R

E
S

S
 R

A
H

E
L

B

U
G

H
N

E
D

A

A
N

N
 F

O
R

 L
E

A
F

 S
P

E
C

IM
E

N
 C

L
A

S
S

IF
IC

A
T

IO
N

N

E
U

2
0
1
8

ANN FOR LEAF SPECIMEN CLASSIFICATION

A THESIS SUBMITTED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES

OF

NEAR EAST UNIVERSITY

By

ALI IDRESS RAHEL BUGHNEDA

In Partial Fulfillment of the Requirements for

The Degree of Master of Science

in

Electrical and Electronic Engineering

NICOSIA, 2018

ANN FOR LEAF SPECIMEN CLASSIFICATION

A THESIS SUBMITTED TO THE GRADUATE

SCHOOL OF APPLIED SCIENCES
OF

NEAR EAST UNIVERSITY

By

ALI IDRESS RAHEL BUGHNEDA

In Partial Fulfillment of the Requirements for

The Degree of Master of Science

in

Electrical and Electronic

Engineering

NICOSIA, 2018

Ali Idress Rahel BUGHNEDA : ANN FOR LEAF SPECIMEN CLASSIFICATION

Approval of Director of Graduate School of

Applied Sciences

Prof. Dr. Nadire ÇAVUŞ

We certify this thesis is satisfactory for the award of the degree of Master of Science in

Electrical & Electronic Engineering

Examining Committee in Charge:

Assist.Prof. Dr. Eser Gemikonekli

Committee Chairman, Department of

Computer Engineering, UOK

Assist.Prof.Dr. Yoney Kirsal Ever

Assoc.Prof.Dr. Kamil Dimililer

Department of Software Engineering, NEU

Supervisor, Department of Electrical and

Electronic Engineering, NEU

i

I hereby declare that all information in this document has been obtained and presented in

accordance with academic rules and ethical conduct. I also declare that, as required by

these rules and conduct, I have fully cited and referenced all material and results that are

not original to this work.

Name, Last name: Ali Bughneda

Signature:

Date:

ii

ACKNOWLEDGEMENTS

I am happy to be in the end point of this thesis work and to be able to write these words.

First of all, I would like to thank my great supervisor; Assoc. Prof. Dr. Kamil Dimililer for

his patience and support. I would also like to thank all the members of my family.

Last but not least, I would like to express all my sincere feelings to my friends and

university colleagues for the times we have spent together. I also express my deep feelings

to the Professors, doctors and staff members at Near East University for their continuous

support.

iii

To my parents and family….

iv

ABSTRACT

Leaf is a part of the vascular plant that represents principal lateral adjunct of the plant

trunk. Plant leaf contains multiple features that create the difference between plant and

another plant. Main features of the leaf are the margins, shape, and structure of the leaf.

Each plant leaf has its different features that are extinctive from other plants’ leaves. The

classification of plants based on their leaves is used since long time by humans. This work

focuses on the classification of plants leaves using computerized approaches and neural

networks. The work will consider the segmentation of the plant leaves prior to the

application of neural networks classifiers to classify leaves into sub-categories. Beginning

with the final representation of leaves, the work will apply the neural network algorithms

to classify different plant leaves. The algorithm will initially train the neural network using

large number of available images. Upon the end of the training process of the proposed

system, a test process will start using other images to clarify whether the system is learned

or not. Different comparisons will be applied during the work to verify the effect of

different parameters and processes on the classification quality.

Keywords: Artificial neural networks; back propagation; Leaf recognition; plant

classification; segmentation

v

ÖZET

Yaprak, bitki gövdesinin temel lateral tamamlayıcısını temsil eden damarlı bitkinin bir

parçasıdır. Bitki yaprağı, bir bitkiyle diğer bitki arasındaki farkı oluşturan çeşitli özelliklere

sahiptir. Yaprağın temel özellikleri kenarlar, şekil ve yaprak yapısıdır. Her bitki yaprağı

diğer bitki yapraklarından farklı, kendine ait özellikler taşımaktadır. İnsanlar, uzun bir

süredir, bitkileri yapraklarına göre sınıflandırmaktadır. Bu çalışma, bitkilerin bilgisayar

donanımlı yaklaşımlar ve nöral ağlar kullanılarak yapraklarına göre sınıflandırılması

üzerine yoğunlaşmaktadır. Çalışmada, yaprakları alt kategorilere göre sınıflandırmak için

nöral ağ sınıflandırılması uygulanmadan önce bitki yapraklarının segmentasyonu

değerlendirilecektir. Çalışma yaprakların son hallerinin gösterilmesiyle başlayarak, farklı

yaprak çeşitlerinin sınıflandırılması için yapay nöral geri yayılma uygulanacaktır.

Algoritma, ilk olarak, mevcut olan resimleri kullanarak nöral ağ yapısını öğretecektir.

Sunulan sisteme ait eğitim sürecinin sonuna doğru, sistemin öğrenilip öğrenilmediğini

belirlemek için farklı resimler kullanılarak bir test süreci başlatılacaktır. Sınıflandırma

kalitesine ilişkin olarak farklı parametre ve süreçlerin etkisini doğrulamak için çalışma

boyunca farklı karşılaştırmalar yapılacaktır.

Anahtar kelimeler: Bitki sınıflandırması, geri yayılma, yapay nöral ağlar, yaprak tanıma

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS……………………………………………………………. ii

ABSTRACT…………………………………………………………………………….. iv

ÖZET……………………………………………………………………………………. v

TABLE OF CONTENTS………………………………………………………………. vi

LIST OF TABLES……………………………………………………………………… ix

LIST OF FIGURES…………………………………………………………………….. x

LIST OF ABBREVIATIONS………………………………………………………….. xi

CHAPTER 1: INTRODUCTION

1.1 Introduction ... 1

1.2 Methodology of the work ... 2

1.3 Dataset Description... 2

CHAPTER 2: IMAGE PROCESSING

2.1 Introduction ... 5

2.2 How images are represented .. 5

2.3 Conversion from coloured image to gray scale image .. 8

2.4 Edge detection in digital images .. 9

2.4.1 Sobel edge detection ... 10

2.4.2 Prewitt edge detection .. 12

2.4.3 Canny edge detection .. 12

2.4.4 Roberts edge detection .. 14

2.4.5 Logarithmic and zero cross edge detection method .. 15

2.5 Wiener Filter .. 16

CHAPTER 3: ARTIFICIAL NEURAL NETWORKS

3.1 Overview of the chapter .. 18

3.2 Introduction ... 18

3.3 Artificial Neural Networks Analogy ... 19

vii

3.4 Artificial Neural Network Structure .. 21

3.4.1 The Layers ... 21

3.4.2 Single layer perceptron .. 22

3.4.3 Multi-layer perceptron ... 23

3.4.4 The Synaptic weights ... 24

3.5 Neural Network Activation Function ... 24

3.5.1 Step function ... 24

3.5.2 Linear function ... 25

3.5.3 Sigmoid function ... 26

3.5.4 The hyperbolic tangent activation function ... 27

3.6 Artificial Neural Network Learning and Adaptation ... 28

3.7 Types of learning in ANNs .. 28

3.7.1 Supervised learning .. 28

3.7.2 Unsupervised learning .. 29

3.7.3 Reinforcement learning ... 30

3.8 Learning Rules in ANNs .. 30

3.8.1 Hebbian learning rule ... 31

3.8.2 Perceptron Learning Rule ... 31

3.8.3 Delta learning rule (Widrow-Hoff Rule) ... 32

3.8.4 Back propagation algorithm .. 33

3.9 Mathematical representation of back propagation algorithm 33

CHAPTER 4: RESULTS AND DISCUSSIONS

4.1 Introduction .. 35

4.2 Processing of database images ... 35

4.3 Image Segmentation (Edge Detection) ... 36

4.4 Image Processing Stage .. 37

4.5 Artificial neural networks results ... 38

4.5.1 Structure of the used ANN ... 39

4.5.2 Training of network using Canny edge detection .. 40

4.5.3 Training of network using Sobel edge detection ... 41

viii

4.6 Comparison of the ANN results using different parameters 42

4.6.1 Varying the momentum factor ... 42

4.6.2 Varying the learning rate .. 42

4.6.3 Varying the hidden layers sizes .. 43

CHAPTER 5: CONCLUSIONS

Conclusion………………………………………………………………………………. 44

REFERENCES………………………………………………………………………… 46

APPENDIX: LIST OF PROGRAM.. 49

ix

LIST OF TABLES

Table 4.1: Parameters of the used ANN……………………………………………… .. 39

Table 4.2: Performance change in function of Momentum factor.................................... 42

Table 4.3: Performance of ANN in function of the learning rate………………………. 43

Table 4.4: Performance of network in function of hidden layer size…………………... 43

x

LIST OF FIGURES

Figure 1.1: Plant leaf image RGB ... 3

Figure 1.2: flowchart of the proposed work .. 4

Figure 2.1: JPEG image of leaf ... 6

Figure 2.2: Indexed version of the leaf image ... 7

Figure 2.3: Binary version of leaf image ... 7

Figure 2.4: Gray scale version of the leaf image ... 8

Figure 2.5: (a) Binary image pixels vs. (b) gray scale image pixels 8

Figure 2.6: RGB image vs. gray scale images using the two previous formulas 9

Figure 2.7: Application of Sobel operator for leaf image segmentation 11

Figure 2.8: Prewitt edge detection algorithm ... 12

Figure 2.9: Application of Canny edge detection ... 13

Figure 2.10: Roberts edge detection ... 15

Figure 2.11: Logarithmic segmentation results .. 15

Figure 2.12: Zero cross segmentation process ... 16

Figure 2.13: Application of Wiener filter to noisy image .. 17

Figure 3.1: A schematic diagram of biological neurons... 19

Figure 3.2: The similarity between biological neuron and artificial neuron. 20

Figure 3.3: structure of single layer perceptron (SLP). .. 22

Figure 4.1: Sample of the used plant leaves ... 36

Figure 4.2: Edge detection results .. 36

Figure 4.3: Image processing stage of the work ... 37

Figure 4.4: Original image size vs. resized image.. 38

Figure 4.5: Structure of the used ANN ... 39

Figure 4.6: ANN tools during the training of network ... 40

Figure 4.7: MSE curve during the training process .. 40

Figure 4.8: Training details of the ANN, Sobel edge method .. 41

Figure 4.9: MSE curve during the training of the network, Sobel 41

xi

LIST OF ABBREVIATIONS

ANN: Artificial neural networks

BP: Back propagation

LR: Learning rate

MF: Momentum factor

1

CHAPTER 1

INTRODUCTION

1.1 Introduction

Identification of plant species using their leaves and stems is a task that needs special

experience. Manual identification of plant species is a very difficult task that requires a lot

of experience in addition to huge books that shows the different types of plants and their

leaves. However, the increasing capabilities of the new cameras and mobile phones gives

opportunity for picturing plant leaves and using automatic ways to identify them. The aim

is give the opportunity for people to be able to identify all types of plants in real life using

the power of their mobiles’ cameras. A small application that is equipped with a well

trained algorithm can be able to offer such a great job and to make people avoid many

losses due to bad identification of plants, especially, the poisonous plants.

Plant identification is very important also to help in the development of automated farms

where machines can do the whole job (Kadir, Nugroho, Susanto, & Santosa, 2013).

Planting, cleaning, and harvesting the crops using automated machines is no longer science

fiction. Many developed countries use machines nowadays in harvesting the agriculture

products. These automated machines need to identify the crop and separate the wrong parts

or grasses while harvesting. This classification needs to be improved to give the best

results without any human intervention.

Different approaches use segmentation methods in the identification of plants leaves. One

of the main disadvantages of these approaches is that any error in the segmentation will

lead to a wrong identification of the subject leaf (Amin & Khan, 2013). The wrong

segmentation can be the reason of overlapping leaves, sick plants, or broken parts of the

plant leaves.

In this work, an approach is proposed for the identification of plant leaves based on image

processing techniques and artificial neural networks. Image processing techniques help

improving the quality of images to separate any noise or disturbances. The use of image

2

processing can increase the performance of the identification process and reduce the rate of

error. After the application of image processing techniques, an artificial neural network

will be applied on the images to train it for the different plant types. By the end of training

process, the network will be ready to classify and identify the different types of leaves even

if there were not presented before.

Artificial neural networks are human brain like networks. They have been implemented

and used to imitate the shape and function of brain structure. Neural networks are very

flexible and can change their structure to simulate the way of real brain. Many fields of

science nowadays use the artificial intelligence of neural networks in their development.

1.2 Methodology of the Work

The proposed work aims to investigate the use of artificial neural network of many hidden

layer in the classification of leaves specimen (Mallah, Cope, & Orwell, 2013). The work

will start initially by collecting database of leaves images from different sources in RGB

image form. The collected images will be then converted to gray images to simplify the

computer processing tasks. The converted images will then be filtered and resized to be

suitable for neural network applications. By the end of image processing phase, the neural

network will be built and trained using a large amount of database images. Then the

network will be tested and generalized.

1.3 Dataset Description

The dataset consists approximately of 761 images of leaf specimens for 19 different

samples of plants. These images were all taken as JPG format. Figure 1.1 below shows an

example of the captured images for one of the plants. This image will be treated using

image processing methods and converted to gray scale. The next step will be to scale down

this image so that it will be less size to be fed to neural networks.

3

Figure 1.1: Plant leaf image RGB

The flowchart below represents the steps proposed in this work to acheive the required

goal of the work.

4

Convert RGB images to gray scale images

Apply filter on images

Resize images using MATLAB

Apply edge detection

End of work

Database collection

Convert images to vectors

Build the neural network

Train the neural network

using back propagation

Test the neural network

Figure 1.2: flowchart of the proposed work

1.4 Contribution of the Thesis

The work done in this thesis can be considered as a positive effort added to the previous

works in the environmental studies. The proposed methods and application for ANN in the

plant classification and recognition are promising for the automated recognition of

different plant types including the rare and strange families of plants.

5

CHAPTER 2

IMAGE PROCESSING

2.1 Introduction

Image processing has been one of the important fields of science in the twentieth and 21
st

century. The use of image processing techniques and digital images has given a great

revolution for the fields of communication and telecommunication. As a result of the

revolution in the science of image processing, we can watch our TV’s with high density

videos and clear images. Internet images are also presented at very high resolutions with

help of all great image processing techniques. In fact, all our life is surrounded by images.

Vision in human eye is nothing but a biological representation of an analogue image

processing with all its detailed processes. The human eye is a great biological camera that

has the ability to continuously capture infinite number of images, transfers them to the

brain which can analysis and process these images. The brain then translates these images

into meaningful things for us. The digital image processing is the digital counterpart of the

analogue image processing in the human (Gonzalez & Woods, 2001). Digital image

processing; abbreviated mostly DIP, is the mathematical processing of images that are

represented digitally using computers. The fields of DIP applications are very vast and

can’t be easily covered in one topic. In this work, some of the important DIP processes will

be presented and discussed briefly preparing to be introduced in the practical application

for leaf recognition. The discussion will cover mainly the image representation, image

filtering, image segmentation, and image conversion processes. All these topics will be

covered in this chapter in order to give an idea about the proposed work.

2.2 How Images are Represented

When you capture an image using your camera, mobile or computer; the machine captures

the analogue information of the image and translates it to tinny blocs of digital values.

These tinny blocs that contain the digital values are called pixels. The collection of pixels

6

constructs all types of the digital images. Digital images are represented using different

methods and can be classified as follow:

1- 1 bit images that can contain binary values like 0 and 1 in each pixel. These images

contain tow colours and can give fewer details. Such images are famous in some

arts where details need to be defined sharply or some medical images where sharp

details are needed.

2- 8 bit images where each pixel value is defined using an 8 bit number. This type is

known also as indexed colour (Sekeroglu & Khashman, 2004). Gray scale images

and most of internet images are main examples of indexed colour images. Each

pixel in an 8 bit images can contain 256 different colour levels.

3- 16 bit images where each pixel is represented using word space in the computer. 2

bytes of data are reserved for each pixel in this type of images. This type of images

is normally known by high colour images (Sekeroglu & Khashman, 2004). This is

due to the fact that it contains millions of colour grades.

The digital image is then represented in a structure of blocs of data arranged such that they

show colour grades in the frame. Images can be stored in different formats as it is well

known. RAW images, JPEG, PNG, JIF, and BMP images are all types of images

represented using different compression methods (Boran Sekeroglu, 2004).

Figure 2.1: JPEG image of leaf

7

Figure 2.1 above shows the JPEG image version of a plant leaf. Jpg image is a compressed

version of raw image. Figure 2.2 presents the indexed version of the JPG image shown

above. The binary image of the leaf is generated and shown in Figure 2.3 below. Finaly,

the gray scale version of the image is represented in Figure 2.4. it can be considered as the

best choice for ANN application.

Figure 2.2: Indexed version of the leaf image

Figure 2.3: Binary version of leaf image

8

Figure 2.5 shows the difference between pixels in the binary image and the gray scale

image. Gray scale image can contain more details about each pixel of the image and offer a

description of the grades of light in it.

Figure 2.4: Gray scale version of the leaf image

Figure 2.5: (a) Binary image pixels vs. (b) gray scale image pixels

2.3 Conversion from Coloured Image to Gray Scale Image

The conversion from RGB image to gray scale image is the process of representing the

coloured image in form of the scale of white and black image. The gray scale image

9

contains all information of the image except from the colours which are less important in

computer applications. Gray scale images remind us with the old white and black TVs in

the beginning of the 90s of the last century. Although the formula (1.1) looks logical for

the conversion from RGB to gray scale, however, the researches show that the human eye

has different sensitivity levels for each one of the main colours. The formula (1.2) was

found to be more realistic in the conversion between the RGB and the gray images

(Zollitch, 2016).

 (2.1)

 (2.2)

Where, Gs refers to the gray scale image, R refers to the red colour, G refers to the green

colour, and B refers to the blue colour (Santra, 2013). The next figure shows the RGB

image along with the gray scale images created using the two previous formulas.

Figure 2.6: RGB image vs. gray scale images using the two previous formulas

(a) RGB image

(b) Gray scale image 1 (c) Gray scale image 2

10

2.4 Edge Detection in Digital Images

Edge detection is the process in which significant object properties in digital images are

being detected and captured. These properties include discontinue lines in the

characteristics of the object. The main aim of edge detection is to identify and separate

these variations in the property of objects within the image. Efficient edge detection is able

to focus on the important objects or regions of interest in the images. it is very useful to

detect and identify the ROI’s in an image. To perform better edge detection the derivative

of the image pixel is calculated. However, derivatives are subject to be affected by

different types of noise of different sources, hence; smoothening the image prior to the

application of derivative is a must to improve the quality of image edge detection.

Edge detection is a very difficult and sensitive process in image processing. Each different

application requires different edge detection method that is designed to accomplish its task.

in this work, different general famous edge detection methods will be discussed briefly and

explored. Famous edge detection methods like Sobel, Canny, Prewitt and other edge

detection methods will be presented. Results of all discussed methods will be also

presented and compared.

2.4.1 Sobel edge detection

Sobel operator applies a two dimensional space gradient calculation to highlight the high

frequency regions in the special domain. It finds the gradient of each pixel in gray scale

images. Sobel edge detection method employs two kernels of 3*3 matrixes. The two

matrixes are shown as follow (Robert, Simon, Ashley Walker;, & Wolfart, 2003):

 [

] (2.3)

 [

] (2.3)

11

These two matrixes are constructed specifically to respond the best for image variations in

the horizontal and vertical directions. The two kernels are applied separately to ensure the

calculation of the horizontal and vertical gradients. The two gradients are then used to find

the absolute gradient value of the image. The magnitude of the gradient of the image can

be found by (Robert et al., 2003):

 √

 (2.5)

Where; the calculation of the gradient magnitude can be costly and slow, therefore, an

approximation of the gradient can be accepted in a faster manner without affecting the final

result:

 (2.6)

Sobel edge detection is less affected by the noises that appear in the image.

Figure 2.7: Application of Sobel operator for leaf image segmentation

(a) Gray scale image (b) Sobel edge image

12

2.4.2 Prewitt edge detection

Prewitt edge detection is similar to the Sobel method as it also uses similar kernel to find

the gradient in an image. The kernel in Prewitt method is isotropic as shown in the next

equations defining the horizontal and vertical kernels (Chaple, Daruwala, & Gofane,

2015).

 [

] (2.7)

 [

] (2.3)

Figure 2.8: Prewitt edge detection algorithm

2.4.3 Canny edge detection

Canny edge detection is one of the famous edge detection and segmentation methods.

Canny segmentation method is the distinction of parts of image into areas. It highlights the

important areas of the image to identify these areas. The feature areas are very important

for processing targets. The edges are defined in most of cases in term of zones where the

pixels change sharply. Canny edge detector is a common edge detection algorithm. This

(a) Gray scale image (b) Prewitt edge image

13

algorithm is employed to increase the signal to noise ratio and identify the different

features of the image. Generally, Canny edge detection algorithm is composed of different

steps (Shen & Tang, n.d.).

At the beginning, the image is smoothed to remove any kind of noises or blur from it. This

is then an application of filter to the image. Filtering process is carried out by convolving a

Gaussian filter with the image. After filtering the image, the gradient of each column and

line of the image is found. The more the change in the image pixels the higher the gradient

is. This fact is used to identify the sharp changes in the mage pixels. The gradient of a pixel

in the image can be given using the next formula:

 √

 (2.9)

Where; Gx and Gy are the horizontal and vertical gradients of the image. Canny edge

detection uses threshold to eliminate the unwanted regions of the image and highlight the

regions of interest.

Figure 2.9: Application of Canny edge detection

(a) Gray scale image (b) Canny edge image

14

2.4.4 Roberts edge detection

The Robert operator is used to approximate the gradient of image using discrete

differentiation. Robert mask is a 2*2 matrix that convolve with the whole image using its

horizontal and vertical versions (Chaple et al., 2015). These masks give the horizontal and

vertical derivative approximation of an image. Suppose the image matrix shown in next

equation, and the two masks of Roberts.

 [

] (2.10)

 [

] (2.11)

 [

] (2.12)

From the image matrix and the Roberts masks, the horizontal and vertical derivative

approximations can be given by (Chaple et al., 2015):

 (2.13)

At this stage, a threshold is applied to the image to highlight the high gradient values and

eliminate the unwanted image regions. Figure 9 below shows the results of applying

Roberts edge detection algorithm on the leaf images.

15

Figure 2.10: Roberts edge detection

2.4.5 Logarithmic and zero cross edge detection method

These are the last two algorithms applied in our work for image segmentation. Application

of these two methods has given the images shown in the next two figures.

Figure 2.11: Logarithmic segmentation results

(a) Gray scale image (b) Roberts edge image

(a) Gray scale image (b) Logarithmic edge image

16

Figure 2.12: Zero cross segmentation process

2.5 Wiener Filter

Wiener filter is an adaptive filter type which uses the error minimization formulas to reject

the noise from images. It is based on the mean squared error approximations. It is

considered as a frequencies filter that can be used with discrete Fourier transform of the

image. The convolution of the Wiener filter with the image can generate the spectrum of

the image. The reconstruction of the image is carried out by applying the inverse version of

discrete wavelet transform. (Khajwaniya & Tiwari, 2015; Wang, Peng, Wang, & Peng,

2015) have proposed Wiener filter as a best fit for the image filtering and restoration in

different applications (Mohan, Mridula, & Mohanan, 2016).

Wiener filter is a type of low pass filters that can work with gray scale images. It shows

high efficiency in the removal of additive noise types from these images. Wiener filter

finds some statistical information around each pixel in the image and generate an

estimation of the correct new value of the pixel based on these statistical results. The mean

of the Wiener filter is given by:

∑

 (2.14)

(a) Gray scale image (b) Zerocross edge image

17

Where M and N are the dimensions of the Wiener window, “p” is the pixel value, “m” is

the mean value of the window pixels. The standard deviation is also a well known term in

statistics that is given by:

∑

 (2.15)

The new pixel value is then generated with help of the variance of the noise that is either

estimated or supposed. The new value is given by:

 (2.16)

Where; the term “v” refers to the noise variance. The new pixel value is a filtered version

of the original pixel value. Wiener filter has proven high ability to remove additive noise

types and restore the original images. Figure 2.13 below presents the result of applying

Wiener filter on the noisy image “a”. The figure shows that the filter has reduced the noise

in the area of interest in the image (leaf).

Figure 2.13: Application of Wiener filter to noisy image

(a) Gray noisy image (b) Wiener filtered image

18

CHAPTER 3

ARTIFICIAL NEURAL NETWORKS

3.1 Overview of the Chapter

In this chapter, the concept of artificial neural networks will be discussed and the basic

elements of the neural network structure will be discussed as well. Many artificial neural

networks related topics will be highlighted in this chapter such as the similarity between

human brain and artificial networks, learning in artificial neural networks, and different

mathematical representation of transfer function.

At the end of this chapter, back propagation algorithm which is considered as one of the

most effective learning algorithms will be presented and discussed.

3.2 Introduction

The human brain is one of the most important organs that is characterized by complexity.

This organ performs many important and accurate tasks such as decision making, learning,

logical thinking, and memorizing information (Mehrotra, Mohan, & Ranka, 2001).

Scientists studied the human brain accurately and tried to understand the principle of the

work of nervous system, especially in the process of learning and decision-making.

Historically it can be said that artificial neural networks started as a paper by McCulloch

and Pitts in 1943, they provided a formal mathematical model describing the simplest

structure of a human brain, in 1949 Hebb wrote a paper in which the Hebbian learning rule

was proposed, this paper became one of the cornerstones for the development of training

algorithms in the field of neural networks. The first perceptron model which is consider as

the simple single layer networks was introduced by Rosenblatt in 1958 and based on this

model, Werbos introduced his model as the three-layered perceptron network and wrote

about back propagation algorithm in 1974. However in 1982 Hopfield published a series of

papers on Hopfield networks, while Kohonen developed a totally unique kind of network

model so-called self-organizing maps in the same year (Cios & Shields, 1997).

19

The research on artificial neural networks has remained active which led to the emergence

of many developments in networks such as the sub-field of radial basis function networks

in 1990s. However, in the current decade the power of neural networks is apparent, leading

to many new network types, such as hybrid algorithms and hardware for neural

information processing (G. Anderson & McNeill, 1992).

In the following sections the idea of neural networks will be adequately explained where

the artificial neural networks will be defined and compared with the principle of the

functioning of the nervous system in human. The most important components of the

networks such as the concept of weights, layers and transfer function will be clarified.

3.3 Artificial Neural Networks Analogy

Artificial neural network is a computer technology that attempt to build models which are

biologically inspired rather than an exact copy of how the brain is working.

In order to understand the idea of artificial neural networks, a general overview of the real

human brain will be explained. Human brain is a huge network consisting of thousands of

billions of neurons which are interconnected in a complex network in order to perform all

complex tasks, Figure 2.1 demonstrates a biological neural network which consist of a

simplified form of two neurons, each neuron consists of soma, dendrites, axon and synapse

(D. Anderson & McNeill, 2010).

Figure 3.1: A schematic diagram of biological neurons

20

Dendrites receive signals from other neurons or the external environment, to the cell body;

whereas, axons act as the output of neuron which take signals away from the cell body.

However, neurons do not physically touch each other, the spaces between the sending

neuron and the receiving neuron are called synapses , this synapses is permit a neuron to

pass an electrical or chemical signal to another neuron or to the target. Moreover, the

synaptic connections between cells are malleable and constantly changing.

The Figure 2.2 shows the similarities between the structure of the biological neuron and

the artificial neuron, where it can be considered that the soma is similar to artificial neuron

in the mechanism of action while dendrites act as inputs in artificial neuron. Moreover it

can be considered that the function of the axon is similar to output function, whereas, the

synapses in biological neurons simulate the weights in artificial neural network (G.

Anderson & McNeill, 1992).

f

x0

x1

x2x3

xn

Output

Summation

and activation

Inputs

Figure 3.2: The similarity between biological neuron and artificial neuron

The biological neuron receive many signals from neighboring neurons through the

dendrites, this signals reach the neuron's body only if it has enough energy to activate it.

The same way in which artificial neurons work, the neuron receive the input signals and

https://en.wikipedia.org/wiki/Neuron

21

each input signal is linked to its own weight that reflect the power of signal to activate the

output of neuron; otherwise, the output from the neuron will not be generated and

transmitted to the next neuron.

3.4 Artificial Neural Network Structure

Artificial neural networks (ANNs) which are inspired by biological neural networks are

considered as learning models consisting of interconnected neurons, these connections

between neurons have numeric weights and responsible for activating neuron output by

multiplying its value with input signals (A.D.Dongare, R.R.Kharde, & D.Kachare, 2012).

In general, it can be said that ANNs consist of processing units called neurons, theses

neurons are distributed within the system structure in the form of layers. The following

sections will explain the most important components of the artificial neural network

structure.

3.4.1 The layers

In artificial neural network, many different models and designs can be formed depending

on the number of neurons and the number of layers in addition to the number of neurons

within a single layer. Typically, the network consists of input layer, output layer and at

least one hidden layer.

In the input layer the received data will be transferred to the first hidden layer, by using

mathematical operation the data will be processed and transferred to the next hidden layer.

The simple model of the neural network consists of the input layer responsible for

receiving the input signals; this layer passes the information coming from the surrounding

environment to the next layers in the networks without performing any mathematical

operations on that data (Seiffert, 2002).

The hidden layers are named because they do not have a direct contact with the

environment surrounding the network, these layers perform computations and transfer

information that received from the input layer and then passed to the next layer in the

network. However, the number of hidden layers in the network varies depending on

network's design, where in feed-forward network is possible to have one hidden layer at

least or zero hidden layer.

22

The final layer which is responsible for delivering information to the outside world is

called the output layer.

In feed-forward networks where data flows in one direction, from input to output layer

without any loops or reverse flow, the networks are divided according to the number of

layers into single layer perceptron and multi-layer perceptron.

3.4.2 Single layer perceptron

The single layer perceptron is the simplest model in ANNs, Figure 2.3 illustrate the

structure of single layer perceptron which is consist of input layer connects directly to the

output layer where there is no hidden layers in this type of feed-forward network.

In SLP, the neuron is connected typically to all input signals, however all neurons is

allocated in parallel form in order to create single layer perceptron model (Colin, 1996).

 f

x0

x1

x2

x3

xn

Output

Summing and

activation functions

Figure 3.3: structure of single layer perceptron (SLP)

Mathematically, assuming there is n input signals (x1, x2, x3,…….xn) , then the neuron

performs a linear combination process of all input signals after multiplying each input

signal with its associated weight (w1,w2, w3, ……wn.), the result is given in the following

equation (Bataineh, 2012):

23

 ∑

 (3.1)

In order to generate the suitable output y for each input set, the activation function which

has different equations is applied on the sum of the inputs as the following:

 ∑

 (3.2)

3.4.3 Multi-layer perceptron

A multi-layer perceptron (MLP) is the other type of ANNs which is formed by one or more

hidden layers, in this type the perceptron can also learn non – linear functions, whereas in

the SLP the perceptron can only learn linear functions. However, this type of ANNs is

more useful than single layer perceptons for practical applications today.

Input layer

Y1

x1

x2

xn

Y2

Y3

Hidden layer Output layer

Figure 3.4: Structure of multi-layer perceptron (MLP)

24

As the Figure 2.4 shows that in MLP the neurons are connected in parallel way in the same

layer while the layers are connected in series form. In this example there is one hidden

layer consisting of j neurons and f1 is used as an activation function for the outputs of

hidden layer, while f2 activation function is used as the function of the final outputs in

networks. The types of the activation function will be discussed later in this chapter.

There are different learning methods used in order to train the MLP network, and the back

propagation algorithm can be considered as one of the most famous algorithms in today

applications.

3.4.4 The synaptic weights

In artificial neural networks the weights can be defined as an adaptive factor which are

associated with signals and reflect the importance of the signal in the effect in the output of

the system. In other words, whenever the lower the value of weight allocated and

associated with input signals, the less importance of that signal impact in the result of the

output network. Moreover, in order to adjust the value of weights, various learning

methods are used.

3.5 Neural Network Activation Function

Activation function or transfer function is one of the most essential parameter in ANNs.

However, In artificial neural networks applying the activation function is the process that

follows the input summing process and act as decision making units in ANNs, the primary

purpose of applying activation function is to determine if the neuron is activated or not, in

addition to its ability to squash or reduce the output of the neural network depending on the

used type of activation function.

In this section, we will explain the most popular and commonly used function in the field

of artificial neural networks.

3.5.1 Step function

Step function is considered as the simplest type of activation function that is commonly

used in binary classification studies especially in single layer perceptrons. This activation

function is also called binary step function since its output is 0 or 1. In other words, the

input signals are accumulated in the neuron, and if the strength or the value of the resulting

25

signal is above a certain threshold, the neuron passes the signal .Otherwise; the signal is

killed by the neuron and is not propagated further (G. Anderson & McNeill, 1992).

The following equation expresses the fundamental idea of this activation function while the

curve chart is shown in Figure 2.5.

 {

 (3.3)

0

1

θ

NET

out

Figure 3.5: The curve chart of step activation function

3.5.2 Linear function

In this type the output of the weighted sum of the inputs is a linear function of its input;

with limited output within some band in order to avoid divergence as it shown in Figure

2.6. However, this linear activation function continuous and can have infinite number of

outputs. The function of this type is defined by:

 (3.4)

Where; the value “a” is the slope of the function that controls the output.

26

0

NET

Out

Figure 3.6: The curve chart of linear activation function

3.5.3 Sigmoid function

In the previous section the linear activation function was explained and it was clear that

linear function passes the input signals without any significant change, since artificial

neural networks perform complex tasks; they need nonlinear activation function in order to

make a non-linear decision especially in classifications tasks. One of the most common

non-linear functions is sigmoid activation function which is squashes the real-valued

number into a range between 0 and 1as it shown in Figure 2.7. Moreover, sigmoid

activation function is derivable and continuous in the period of the inputs and it is

represented mathematically as (G. Anderson & McNeill, 1992):

 (3.5)

27

Figure 3.7: The curve chart of sigmoid activation function

The main drawback of this type of activation function is that sigmoid function can cause a

neural network to get “stuck” during training. This problem occurs because the output of

the sigmoid function is close to zero in case of strongly-negative input.

3.5.4 The hyperbolic tangent activation function

This type of activation function can be considered as two sigmoid functions together, since

the hyperbolic tangent activation function squashes the real-valued number into a range

between -1 and 1as it shown in Figure2.8, this characteristic is featured by the hyperbolic

tangent activation function can addresses the zero-centered problem in sigmoid activation

function. The following formula expresses this type mathematically:

 (3.6)

-8 -6 -4 -2 0 2 4 6 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

f(
x

)

1/(1+exp(-x))

28

 Figure 3.8: The curve chart of the hyperbolic tangent activation function

activation function

3.6 Artificial Neural Network Learning and Adaptation

Generally, the term of learning refers to the gaining knowledge activity in order to improve

the awareness of studied subjects, this activity is possessed by humans, some animals, and

artificial intelligence systems, while the term of learning in the field of machine learning

refers to the ability to adapt and change in self-manner depending on environment changes

and without being explicitly programmed (Clabaugh, Myszewski, & Pang, 2000).

An artificial neural network is considered as a complex adaptive system which has the

ability to change its internal structure in order to adapt with any new environment or

parameters. However, this task is performed by adjusting the weights values which are

associated with signals to generate the desired output if the networks fed with a given input

(Cios & Shields, 1997).

3.7 Types of Learning in ANNs

Basically, learning methods can be categorized into basic methods: supervised learning,

unsupervised learning and reinforcement learning which will be explained in the next

sections.

3.7.1 Supervised learning

Supervised learning method is considered as dependent learning process, since it takes

place under the supervision of a teacher. In this method the artificial neural networks are

-8 -6 -4 -2 0 2 4 6 8
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x)

29

learned by providing them with input vector in order to generate its output vector, where

each example is consisting of a pair of input vector and its desired output value, for further

clarification, during this training phase, the used learning algorithm will help the neural

networks in adjusting the weights values in each cycle of training, and this is done through

the process of producing an error signal which represents the difference between the

desired output and the actual output as it is shown in the Figure 2.9.

Experimental or

Numerical Data

Neural Network

Training Algorithm

xInput d

z

e

Desired

output

Output

error

+

-

Figure 3.9: Block diagram of supervised learning.

3.7.2 Unsupervised learning

Unsupervised learning method is considered as independent learning process, since it

is learning without the supervision of a teacher. However, in this type of learning there is

no feedback from the environment as the error signals, that is mean the neural network is

required to learn itself depending on some features in the input data in order to adjusting

their weights. The figure bellow illustrates the simplest block diagram of unsupervised

learning.

30

Figure 3.10: Block diagram of supervised learning.

3.7.3 Reinforcement learning

Reinforcement learning and supervised learning methods are similar in that some feedback

is given during learning phase, however, in reinforcement learning a target output will be

provided instead of the desired output.

This method in learning state that in order to increase the likelihood of the same response

of the networks in the right direction, the reward is given based on how well the system

performed. In other words, this approach for learning machine bases on affirmation

learning feedback; that evaluates the learner's performance without providing standards of

correctness in the form of behavioral targets.

3.8 Learning Rules in ANNs

Learning is one of the most important and fundamental characteristics of an artificial

neural network that give network their importance in many fields and applications.

Basically, this task is performed by adjusting the weights values in order to change the

input/output behavior. However, the methods and algorithms used to perform that task are

called learning rules.

The most important rules in ANNs learning will be explained in the following sections and

the basic ideas will be clarified by equations as well.

31

3.8.1 Hebbian learning rule

This type of learning rule which is called Hebbian learning rule is considered as one of the

oldest learning algorithms, which is simulating the dynamics part in biological nervous.

This type of learning rule determines how to alter the weights between neurons.

In 1949 Donald Hebb claimed that if two neurons on either side of a synapse connection

are activated simultaneously, then the strength of that synapse between these two neurons

will increase selectively, similarity, in ANNs the weight is increased with high correlation

between two sequential neurons. However, this rule is adjusting the weights by the

following formula which is describing the increment by which the weight of connection

increases at time step t (Colin, 1996):

 (3.7)

Where represents the value of pre-synaptic input at time step t while yi(t) is the value

of pre-synaptic output at same time step t; and is a control variable that control the size

of variation in the weights.

3.8.2 Perceptron learning rule

In machine learning this learning rule is considered as supervised learning algorithm of

single layer feed-forward networks with linear activation function, which is invented in

1957 by Rosenblatt.

This algorithm is used in case if the problem is linearly separable, in the beginning, the

training patterns is provided to the network as inputs, then the output is calculated. In this

method Random small values of weights and threshold will be specified in order to

modify the weights according to the following formula:

 (3.8)

https://en.wikipedia.org/wiki/Machine_learning

32

Otherwise there will be no weight adjustment, ωi+1 is the new weight value while ωi is the

old weight value. In order to compute the output y the activation function will be applied

over that net input which can be expressed as follows (Colin, 1996):

 {

 (3.9)

3.8.3 Delta learning rule (Widrow-Hoff Rule)

In 1960 Widrow and Hoff developed one of the most common learning rules in machine

learning field which is called delta learning rule. This learning rule can be considered as

supervised learning method with continuous activation function, However delta rule is

a gradient descent learning rule that reducing the error for each pattern by minimizing the

difference between the net input to the output unit and the target value in order to update

the weights. Mathematical the updating of synaptic weight can be done by using in the

following equation (G. Anderson & McNeill, 1992; Clabaugh et al., 2000):

 (3.10)

Where expresses the change in weight for
i
th pattern, α is the learning rate, xi is the

input value from pre-synaptic neuron, d is the desired output while y represents the actual

output.

In the case of there is a difference between the desired and actual output, then updating of

synaptic weight is given by:

 (3.11)

Otherwise, there will be no weight adjustment.

https://en.wikipedia.org/wiki/Gradient_descent

33

3.8.4 Back propagation algorithm

The back propagation algorithm is a learning algorithm in ANNs which uses the gradient

descent method with respect to weights in order to minimize the error function and

modifying the weights.

In machine learning field, the back propagation algorithm based on Hebb learning rule can

be considered as supervised learning. Moreover, this learning algorithm was named

because of its method in updating the values of weights where the error is propagated

between layers of the network backwards. Basically, in the training phase the training pairs

which are consist of the input and its correspondent desired output are provided to the

networks in forward iteration. After the activation function is applied, the actual output is

calculated and the comparison process is performed between the desired output and the

actual output in order to calculate the error.

Multi-layer perceptron networks can be trained by back propagation algorithm in order to

solve several types of problems that include classification, function estimation, and time-

series prediction.

3.9 Mathematical Representation of Back Propagation Algorithm

The back-propagation algorithm is a learning algorithm of multilayer feed forward neural

network which is based on the gradient descent theory in order to calculate least square

error and minimize the LMS between the network output values and the target values for

those outputs. Figure 2.12 shows the simplest structure three-layer feed-forward back

propagation neural network. The input layers consist of p inputs where these income

signals (x1, x2, ……., xp) are sent without any change to the hidden layer as In which

represent the vector of all inputs. Mathematically, in the hidden layer, the sum of

multiplied inputs is calculated as the following (Colin, 1996):

 ∑ (3.12)

Where W is the wights matrix and bn is a vector of bias values. Assuming that f1 is a

sigmoid activation function which applied to the output of hidden layer then,the output of

the applied activation function is expressed as :

https://en.wikipedia.org/wiki/Machine_learning

34

 (3.13)

The output of the function f is considered as the active output of the concerned neuron.

This output is ready to be submitted to the next neuron that collects its input from all the

previous neurons. Same formulas are applied to that neuron also. The process continues

until reaching the output layer that generates the actual output of the neural network. At

this stage, the actual output is compared with the expected result to generate the error

signal. The error signal is used to update the weights of the network as follows:

 (3.14)

Where; O is the actual output of the network, T is the expected output, and E is the error

signal. The error signal is the main part of the learning process in the back-propagation

algorithm. The value and direction of the error is used in the update formula of the weights

of the neural network layers.

The error function is generated based on the error value of the output. This function is used

to generate the new weight value for the next iteration:

 (3.15)

Where; is the learning rate value, is the momentum factor, and old is the previous

variation in the weight value. The second term of the previous equation is the change in the

weight value that guarantees the error minimisation. The value of the learning rate controls

the speed of the learning of the network. The third term on the right hand of the equation is

the effect of momentum factor that is very useful to ensure the continuous decrease of the

error signal.

35

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

This chapter discusses the practical implementation of the proposed methods and

topologies in addition to the results of these methods. All proposed and discussed methods

in this work were applied and results were obtained using MATLAB environment.

MATLAB 2015a has a powerful image processing set and artificial neural network

toolbox. After the implementation of all methods, obtained results will be presented and

discussed in this chapter of this work. The experiments were applied using Sony Vaio core

i7 microprocessor with 8G ram card using windows 10.

4.2 Processing of Database Images

Our database is composed of the leaves images of 11 different types of plants. Each one of

these plants has 20 different images in jpg format. These images were all collected from

internet (Inc, 2016). All database images were obtained in RGB format after being

manually processed and treated. The total of 220 database images were all put in separate

files in the MATLAB data file preparing for the beginning of their processing.

Images of the plant leaves were all converted to gray scale images and segmented using

different segmentation methods prior to the application of the neural networks. The next

section will discuss in details the application of ANN with the processed database images.

36

Figure 4.1: Sample of the used plant leaves

Figure 4.1 presents sample of the used plant leaves in this work. These plant leaves can be

classified using the outer shape and specie of their leaves.

4.3 Image Segmentation (Edge Detection)

The process of image recognition implies the intervention of different image processing

techniques to increase the efficiency of the system. These methods include the image

filtering, extraction of special regions of interest, image size reduction, and normalization

of image pixels. Different methods of edge detection were applied in this work to test the

effect of each of them on the efficiency of our system. Figure 4.2 shows the results of edge

detection using the different edge detection methods.

Figure 4.2: Edge detection results

(a) Sobel edge detection (b) Canny edge detection (c) Prewitt edge detection

(d) Roberts edge detection (e) Gaussian edge detection (f) Zerocross edge detection

37

From the figure above, it is noticed that the edge detection using Sobel method has given

the best region of interest detection. It will be used as the main edge detection method in

this work. The other methods will be used in the purpose of comparing their performance

in terms of image detection. The threshold in the different edge detection methods was

chosen automatically using the built in MATLAB functions.

4.4 Image Processing Stage

The image processing stage is the first stage in the leaves detection process. This stage

includes reading the images in jpg format, converting these images into gray scale format,

filtering the image to suppress the noise or any unwanted signal in the image, and finally

applying different edge detection processes to identify special areas that contain the main

features of the image. Figure 4.3 below presents the different images that result from the

application of these different image processing techniques. The first image presents the

original image in RGB format. The second image “b” is the gray scale converted image.

The image “c” shows the filtered image using Wiener filter. The last part “d” is the

segmented version of the leaf showing the edges of the leaf.

Figure 4.3: Image processing stage of the work

(a) Original Image (b) Gray Image

(c) Wiener Image (d) Segmented Image

38

After the end of the image segmentation, all database images are going to be resized to

small size. This resizing process is very useful in reducing the size of the processed data

and the processing time and cost. Generally, images are resized to sizes between 20*20 and

100*100 pixel range. This means that each image can be represented to computer in form

of 400-10000 pixels. The choice of the image size is dependent on the training process of

the neural network and can differ from application to another. In this work, the image size

of 50*50 was chosen as final size for all database images. Figure 4.4 shows the original

image and the resized image of the leaf. It is obvious that the resized image has less density

and less clear than the original image from the point of human view. However, the

computer is less affected by the image density as it deals with pixel values rather than by

the scene in the image.

Figure 4.4: Original image size vs. resized image

After resizing the images to the suitable size, all image pixels are being normalized such

that they contain values in the range 0-1. The normalized images are then converted to

vectors so that they can be fed to the neural network successively. This is considered the

last step in the stage of image processing. In the following part, the structure and details of

the used neural network is going to be presented and discussed.

4.5 Artificial Neural Networks Results

The application of the ANN in the recognition process is the last step of the work. This

step is composed of two main parts:

(a) Original size image (b) Resized image 50*50

39

- Training of the ANN

- Test of the ANN

The training of the neural network is the process in which the structure of the network is

created arbitrarily and then updated continuously to find the best solution that connects the

inputs and the outputs successfully.

4.5.1 Structure of the used ANN

The structure of the used artificial neural network is presented in Figure 4.5 below. The

network consists of 1 input layer, three hidden layers, and 1 output layer.

Figure 4.5: Structure of the used ANN

Hidden layers are all sigmoid transfer functions while the output layer is a linear transfer

function. Table 4.1 presents all the details of the neural network implemented in this work.

Table 4.1: Parameters of the used ANN

Parameter Value Parameter Value

Input size 2500 Learning rate 0.01

Output size 11 Momentum factor 0.1

Hidden size 1 250 MSE 0.0002

Hidden size 2 280 Maximum epochs 28000

Hidden size 3 200

40

4.5.2 Training of network using canny edge detection

This network was trained after using the canny edge detection method. The ANN tool of

MATLAB is shown in Figure 4.6. The training has stopped after 78 epochs during 16

seconds.

Figure 4.6: ANN tools during the training of network

The training reached MSE of 0.000157. Figure 4.7 presents the curve of the MSE of the

training process. It shows that the curve is decreasing fast until it reaches the desired

output. The overall performance of this network was 75% during the test and training

process.

Figure 4.7: MSE curve during the training process

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

M
S

E

Time (s)

41

4.5.3 Training of network using sobel edge detection

In this part, the neural network is applied with the images segmented using Sobel edge

detection. The parameters of the network are the same as shown in Table 4.1. The overall

performance of the network reached 89.5% in this experiment. The training details are

depicted in Figure 4.8 below. The training took 1613 iterations to reach MSE of 0.00019

during 4 minutes and 36 seconds.

Figure 4.8: Training details of the ANN, Sobel edge method

Figure 4.9 presents the training MSE curve of this network. The curve is showing

continuous decrease in the MSE with the training development. Based on the results, it was

found that 197 images out of the 220 image were correctly identified in this experiment.

Figure 4.9: MSE curve during the training of the network, Sobel

0 50 100 150 200 250 300
10

-4

10
-3

10
-2

10
-1

10
0

10
1

Time (s)

M
S

E

42

4.6 Comparison of the ANN Results Using Different Parameters

The results obtained by neural network are subject to change at every experiment

dependent on the experiment conditions. Any change in the parameters of the ANN can

change the obtained results and affect the overall performance of any neural network

application. The training of the neural network is a search for best combination of

parameters that can give the highest performance out of the applied network. In this part,

the parameters of the network are going to be varied one at a time to test the performance

of the network.

4.6.1 Varying the momentum factor

The parameters of the neural network will be kept unchanged and the momentum factor

was varied to find the performance of the network.

Table 4.2: Performance change in function of Momentum factor

Momentum value Performance Momentum value Performance

0.1 87.3% 0.05 89%

0.01 91% 0.02 90%

0.001 85% 0.008 92%

4.6.2 Varying the learning rate

Learning rate is varied in this experiment while all other parameters where kept constant.

The momentum factor is fixed to 0.008. The hidden layer sizes are 200, 280, and 280

neurons. Table 4.3 presents the obtained results using different learning rate values. It was

found that the learning rate of 0.09 has given best performance. This value will be used in

the next experiments.

43

 Table 4.3: Performance of ANN in function of the learning rate

Learning rate performance Learning rate performance

0.001 90% 0.05 91.8%

0.08 93.6% 0.01 88%

0.1 93.2% 0.09 94%

0.5 93.5% 0.002 91%

4.6.3 Varying the hidden layers sizes

Hidden layers are very important in the determination of the behavior of the neural

network during the training and the test processes. Choice of the size of the hidden layer is

an accurate process because the larger the size of hidden layers the slower the program is

different combinations of hidden layer sizes were experimented to test the performance of

the network. Table 4.4 shows the performance results with different layer sizes.

Table 4.4: Performance of network in function of hidden layer size

Layer sizes performance Time (s) iterations

[200 , 280 , 280] 94% 185 2250

[20, 280, 280] 91.2% 120 2500

[20, 20, 280] 85% 124 3878

[100, 100, 180] 90.5% 136 1653

[300, 300, 300] 93.6% 366 1587

[300, 100, 300] 92.3% 397 1832

After finding the best values for the parameters of the neural network, the network is going

to be trained based on these parameters.

44

CHAPTER 5

CONCLUSIONS AND FUTURE WORKS

The plant leaves identification is an important process in different fields from medical

plants collection and classification to the study of the environmental life. The use of

computerized systems for the identification of different types of plants can reduce the

efforts done by scientists and experts in the environmental sciences. Some plants are very

rare and can’t be identified without the presence of huge books and experienced experts.

Neural networks can be implemented to identify the different plants with high performance

and less effort. Neural networks can store huge data about these plants and restore them

whenever they are needed.

Back propagation artificial neural network algorithm has gained a great importance since

the last two decades. It has proven great capability to perform well in different fields like

image processing, security, data analysis, and forecasting weather and products prices.

They are working in similar way the human brain works. Neural networks are consisted of

interconnected processing units called neurons. Information is passed between these

neurons in a manner that gives them the ability to generate results and learn patterns of

data.

This work is concerned by the study of the application of neural network in the

identification of plants specimen. The application is carried out using the back propagation

algorithm to classify 220 images of 11 different plants. Different image processing

techniques were used to simplify the processing of the images using ANN. Image types

conversion, image filtering, and image segmentation were all used in this work. The

implementation of this classification system using neural network was applied and tested

using different parameters.

The image segmentation using different segmentation methods was discussed in this work.

Results of segmentation have shown that Sobel segmentation method gives the best

performance in terms of finding the region of interest in leaves images. Canny edge

45

detection has also shown good performance in finding the edges of the leaf; however Sobel

method was chosen to be used as the main segmentation method.

Parameters of the back propagation and neural network have been proven to have an

important effect on the performance of the neural network. The modification of learning

rate and momentum factor has increased the efficiency of the network in the plant

classification.

Obtained results have shown that the back propagation algorithm and the neural network is

capable to classify the leaves images with high performance and minimum error. The

proposed system can be extended for larger amount of data and different types of plants.

As a future work, it is recommended to use natural database from the field and to extend

the research to include more classification criterions such that its performance can be

ensured to be higher.

46

REFERENCES

Amin, A. H. M., & Khan, A. I. (2013). One-shot Classification of 2-D Leaf Shapes Using

Distributed Hierarchical Graph Neuron (DHGN) Scheme with k-NN Classifier.

Procedia Computer Science, 24, 84–96. https://doi.org/10.1016/j.procs.2013.10.030

Anderson, D., & McNeill, G. (2010). Artificial Neural Networks Technology A DACS

State-of-the-Art Report. NewYork.

Anderson, G., & McNeill, D. (1992). Artificial Neural Networks Technology.

Bataineh, M. (2012). Artificial neural network for studying human performance.

University of Iowa.

Boran Sekeroglu. (2004). Intelligent Banknote Identification System (IBIS). Near East

University.

Chaple, G. N., Daruwala, R. D., & Gofane, M. S. (2015). Comparisions of Robert, Prewitt,

Sobel operator based edge detection methods for real time uses on FPGA. In 2015

International Conference on Technologies for Sustainable Development (ICTSD) (pp.

1–4). IEEE. https://doi.org/10.1109/ICTSD.2015.7095920

Cios, K. J., & Shields, M. E. (1997). The handbook of brain theory and neural networks.

Neurocomputing, 16(3). https://doi.org/10.1016/S0925-2312(97)00036-2

Clabaugh, C., Myszewski, D., & Pang, J. (2000). Neural Networks. Retrieved May 1,

2017, from http://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-

networks/index.html

Colin, F. (1996). Artificial Neural Networks (1.1). University of Paisly.

https://doi.org/10.1016/j.procs.2013.10.030
https://doi.org/10.1109/ICTSD.2015.7095920
https://doi.org/10.1016/S0925-2312(97)00036-2
http://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/index.html
http://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/index.html

47

Dongare, A., Kharde, D. & Kachare, A. (2012). Introduction to Artificial Neural Network.

International Journal of Engineering and Innovative Technology, 2(1), 2277–3754.

Gonzalez, R. C., & Woods, R. E. (2001). Digital Image Processing (2nd Editio). New

Jersey: Prentice-Hall.

Inc, K. (2016). Leaf Classification. Retrieved January 20, 2018, from

https://www.kaggle.com/c/leaf-classification

Kadir, A., Nugroho, L. E., Susanto, A., & Santosa, P. I. (2013). Leaf Classification Using

Shape, Color, and Texture Features. Retrieved from http://arxiv.org/abs/1401.4447

Khajwaniya, K. K., & Tiwari, V. (2015). Satellite image denoising using Weiner filter with

SPEA2 algorithm. In 9th International Conference on on Intelligent Systems and

Control (pp. 1–6). India. https://doi.org/10.1109/ISCO.2015.7282324

Mallah, C., Cope, J., & Orwell, J. (2013). Plant Leaf Classification using Probabilistic

Integration of Shape, Texture and Margin Features. In Computer Graphics and

Imaging / 798: Signal Processing, Pattern Recognition and Applications.

Calgary,AB,Canada: ACTAPRESS. https://doi.org/10.2316/P.2013.798-098

Mehrotra, K., Mohan, C., & Ranka, S. (2001). Elements of Artificial Neural networks.

Mohan, R., Mridula, S., & Mohanan, P. (2016). Speckle Noise Reduction in Images using

Wiener Filtering and Adaptive Wavelet Thresholding. IEEE, 2860–2863.

https://doi.org/10.1109/TENCON.2016.7848566

Robert, F., Simon, P., Ashley Walker;, & Wolfart, E. (2003). Hypermedia Image

Processing Reference. Retrieved from

http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm

https://www.kaggle.com/c/leaf-classification
http://arxiv.org/abs/1401.4447
https://doi.org/10.1109/ISCO.2015.7282324
https://doi.org/10.2316/P.2013.798-098
https://doi.org/10.1109/TENCON.2016.7848566
http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm

48

Santra, A. K. (2013). Denoising Images Under Multiplicative Noise. National Institute of

Technology, India.

Seiffert, U. (2002). Artificial Neural Networks on Massively Parallel Computer Hardware.

In European Symposium on Artificial Neural Networks Bruges (pp. 319–330).

Belgium.

Sekeroglu, B., & Khashman, A. (2004). Intelligent Banknote Identification System. Near

East University.

Shen, D., & Tang, Z. (n.d.). Canny Edge Detection Algorithm for Image Processing Using

FPGA. In Second International Conference on Electric Information and Control

Engineering (pp. 419–442). Washington. https://doi.org/10.1109/ICEICE.2012.110

Wang, J., Peng, Y., Wang, X., & Peng, Y. (2015). Study on algorithm of image restoration

based on Stochastic Resonance and Weiner filtering. In 5th International Conference

on Electronics Information and Emergency Communication (pp. 244–247).

Zollitch, C. (2016). Grey scale image. Retrieved April 2, 2017, from http://www.stemmer-

imaging.co.uk/en/knowledge-base/grey-level-grey-value/

https://doi.org/10.1109/ICEICE.2012.110
http://www.stemmer-imaging.co.uk/en/knowledge-base/grey-level-grey-value/
http://www.stemmer-imaging.co.uk/en/knowledge-base/grey-level-grey-value/

49

APPENDIX

LIST OF PROGRAM

clc

clear all

close all

folders = {'a','b','c','d','e','f','g','h','i','j','k'};

progpath = cd;

datapath = strcat(progpath,'\data');

% if(exist('edge','dir')), rmdir('edge'); end

% if(exist('smallsize','dir')), rmdir('smallsize'); end

% if(exist('wiener','dir')), rmdir('wiener'); end

% if(exist('gray','dir')), rmdir('gray'); end

%cd(datapath);

clc

cont = {'gray' , 'wiener' , 'smallsize' , 'edge' , 'canny' ,

'prewitt' , 'roberts' , 'log' , 'zerocross'};

for i=1:length(cont)

 if(exist(char(cont(i)),'dir')==7)

 rmdir(char(cont(i)) , 's');

 end

end

for i=1:length(cont)

 mkdir(char(cont(i)));

 cd(char(cont(i)));

 for k=1:length(folders),

 clc; mkdir(folders{k});

 clc;

 end

 cd(progpath);

end

for i = 1:length(folders)

 for j = 1:20

 imagepath{i, j} =

strcat(progpath,'\data','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

 graypath{i, j} =

strcat(progpath,'\gray','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

50

 wienerpath{i, j} =

strcat(progpath,'\wiener','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

 edgepath{i, j} =

strcat(progpath,'\edge','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

 edge1path{i, j} =

strcat(progpath,'\canny','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

 edge2path{i, j} =

strcat(progpath,'\prewitt','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

 edge3path{i, j} =

strcat(progpath,'\roberts','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

 edge4path{i, j} =

strcat(progpath,'\log','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

 edge5path{i, j} =

strcat(progpath,'\zerocross','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

 smallsizepath{i, j} =

strcat(progpath,'\smallsize','\',folders{i},'\',folders{i},'

(',num2str(j),').jpg');

 end

end

[iend jend] = size(imagepath);

count=0;

generalInput = zeros(2500, jend*iend);

Tmat = eye(11);

generalOutput = zeros(iend, jend);

for j=1:jend

 for i=1:iend

 a = imread(imagepath{i, j});

 b = rgb2gray(a);

 c = wiener2(b,[3 3]);

 d = edge(c,'sobel');

 ed1 = edge(c,'canny');

 ed2 = edge(c,'prewitt',0.2);

 ed3 = edge(c,'roberts',0.2);

 ed4 = edge(c,'log',0.2); % L^place of gaussian

 ed5 = edge(c,'zerocross');

 x = figure(1) ;

 set(x,'OuterPosition',[50 50 650 650])

51

 subplot(231); imshow(d);

xlabel('Sobel','fontsize',12,'fontname','times');

 subplot(232); imshow(ed1);

xlabel('Canny','fontsize',12,'fontname','times');

 subplot(233); imshow(ed2);

xlabel('prewitt','fontsize',12,'fontname','times');

 subplot(234); imshow(ed3);

xlabel('roberts','fontsize',12,'fontname','times');

 subplot(235); imshow(ed4); xlabel('Logarithm of

Gaussian','fontsize',12,'fontname','times');

 subplot(236); imshow(ed5);

xlabel('zerocross','fontsize',12,'fontname','times');

 e = imresize(c,[50 50]);

 ee = imresize(d,[50 50]);

 f = reshape(e,1,2500);

 ff = reshape(ee,1,2500);

 y = figure(2);

 set(y,'OuterPosition',[720 50 650 650])

 subplot(221); imshow(a); xlabel('Original

Image','fontsize',12,'fontname','times');

 subplot(222); imshow(b); xlabel('Gray

Image','fontsize',12,'fontname','times');

 subplot(223); imshow(c); xlabel('Wiener

Image','fontsize',12,'fontname','times');

 subplot(224); imshow(d); xlabel('Segmented

Image','fontsize',12,'fontname','times');

 imwrite(b,graypath{i,j},'jpg');

 imwrite(c,wienerpath{i,j},'jpg');

 imwrite(d,edgepath{i,j},'jpg');

 imwrite(ed1,edge1path{i,j},'jpg');

 imwrite(ed2,edge2path{i,j},'jpg');

 imwrite(ed3,edge3path{i,j},'jpg');

 imwrite(ed4,edge4path{i,j},'jpg');

 imwrite(ed5,edge5path{i,j},'jpg');

 imwrite(e,smallsizepath{i,j},'jpg');

 count = count+1;

 perc = 100*count/(iend*jend);

 clc

 fprintf(' %2.0f%% finished\n',perc);

 generalInput(:,count) = f ;

 generalOutput(:,count) = Tmat(:,i);

 pause(0.1);

 end

end

cd(progpath);

52

end

 clc

momentum = 0.1;

learning_rate = 0.01;

transfer_functions = {'tansig','tansig','logsig'};

layer_size = [250 280 200];

g = newff(generalInput,generalOutput,layer_size,

transfer_functions ,'traingdx');

nets = init(g);

nets.trainParam.lr = learning_rate;

nets.trainParam.show = 1000; % Frequency of progress displays (in

epochs).

nets.trainParam.epochs = 100000; % Maximum number of epochs to

train.

nets.trainParam.mc = momentum; % Momentum Factor.(for change

nets.trainParam.min_grad = 0;

nets.trainParam.max_fail = 10000 ;

nets.trainParam.mu_max=1e20;

nets.divideParam.valRatio=0;

nets.divideParam.trainRatio=0.6;

nets.divideParam.testRatio=0.4;

nets.performFcn ='mse';

nets.trainParam.goal = 0.0002;

nets.trainParam.epochs = 28000;

[netR,TR] = train(nets,generalInput,generalOutput);

out = sim(netR,generalInput);

out = out>0.3;

count = 0 ; co = 0;

for i=1:20

 for j=1:size(out,1)

 count = count+1;

 if(out(j,count) == 1)

 co = co+1;

 end

 end

end

fprintf(' Overall performance is : %2.1f%%

\n',100*co/220);

