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ABSTRACT

In this thesis, we investigate on the highly accurate finite-difference approximation of the
solution of Laplace’s equation and its derivatives on a rectangle and on a rectangular

parallelepiped.

The approximation of first and second order pure and mixed derivative of the solution of
Dirichlet problem on a rectangular parallelepiped, will be examined. It is assume that the p —
th order derivatives, p € {4,5} of the functions which are given on the boundary satisfy Holder
condition. On the edges the compatibility conditions hold for continuity, and for second and
fourth order derivatives which follow from the Laplace equation. The uniform estimations of
the approximate solution and its first order derivative are of order O(hP~1) with step size h.
Also, it is proved that the obtained approximate values for the second order pure and mixed
derivatives of the solution of Laplace equation have estimations with the order of 0(hP=2*%)

and 0 (hP~2), respectively.

The multi stage method is constructed and justified to obtain a high order approximation of the
solution and its derivatives of the Dirichlet problem for Laplace’s equation on a rectangular
domain. For the sufficiently smooth boundary values, it is proved that the constructed functions
for the solution, and for the first and second order pure derivatives are convergent of order,
0(h®) uniformly.

In the case of problem for the Laplace equation with the mixed boundary condition on a
rectangular domain, it is assumed that the fourth order derivatives of the function given on the
boundary satisfy the Holder condition. On the edges the compatibility conditions hold for the
second and fourth order derivatives which follow from the Laplace equation. The solutions of
the finite-difference problem and it the first order derivative are of order O(h*) and 0(h3),

respectively.

The numerical experiments are presented to support the obtained theoretical results.



Keywords: Approximation of derivatives; uniform error; finite difference method; Laplace’s

equation; mixed boundary condition; Dirichlet problem; error estimation
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OZET

Bu tezde, Laplace denkleminin dikdortgensel bolgede ve dikdortgenler prizmasi iizerinde cesitli

sinir sartlart géz oniinde bulundurularak ¢éziimii ve tiirevleri incelenmistir.

Laplace denkleminin dikdortgenler prizmasi iizerinde Dirichlet probleminin ¢éziimii, birinci
mertebeden tiirevi, ikinci mertebeden saf ve karigik tiirevlerinin yaklagimi tartisilir. Prizmanin
yiizlerinde verilen smir fonksiyonlarinin p. tiirevlerinin Holder sartin1 sagladigi kabul edilir,
burada p € {4,5} olarak kabul edilecektir. Kenarlarda siireklilik sartinin yani sira ikinci ve
dordiincii mertebeden tiirevleri Laplace denkleminden sonuglanan uyumluluk kosulunu saglar.
Onerilen fark semalarinin ¢dziimiiniin kiip 1zgaralar iizerinde h 1zgara uzunlugu oldugunda
Laplace denkleminin ¢oziimiiniin ve birinci tiirevinin O(hP~1) mertebesinden diizgiin
yakinsadigi, ikinci dereceden piire tiirevinin O(hP~2*%) ve karisik tiirevinin ise O(hP~2)

mertebesinden yakinsadigi ispatlanmistir.

Laplace denkleminin dikdortgensel bolge iizerinde Dirichlet probleminin ¢oziimii, birinci
mertebeden tiirevi ve ikinci mertebeden saf tiirevleri i¢in ¢ok asamali yontem olusturularak
kullanild1i. Dikdortgenin  kenarlarinda verilen smur fonksiyonunun yeterince diizgiin
secildiginde, Dirichlet probleminin kare 1zgara iizerinde ¢oziimii i¢in ve ¢0ziimiin birinci
mertebeden ve ikinci mertebeden saf tiirevleri igin O(h®) diizgiin yakisaklig: sade bir fark

semasi ile elde edildi.

Ayn1 zamanda dikdortgensel bolge lizerinde Laplace denkleminin karigik sinir sart1 problemi de
incelenmistir. Dikdortgenin kenarlarinda verilen smir fonksiyonunun dordiincii tiirevlerinin
Holder sartini sagladiklart kabul edildi. Koselerde stireklilik sartinin yani sira ikinci ve dordiincii
tirevlerinin de uyumluluk sartlarini sagladigi kabul edildi. Bu sartlar altinda karigik sinir
probleminin kare 1zgara iizerinde ¢dziimii icin O (h*) ve ¢oziimiin birinci mertebeden tiirevi igin

0(h?), h adim uzunlugu olmak iizere saglandig1 ispatland.

Elde edilen teorik sonuglar1 desteklemek i¢in sayisal sonuclar da sunulmustur.
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CHAPTER 1
INTRODUCTION

Elliptic equations are widely used in many applied sciences to represent equilibrium or steady-
state problems. Laplace’s equation in particular, which is one of the most encountered elliptic
equations, has been used to model many real-life situations such as the steady flow of heat or
electricity in homogeneous conductors, the irrotational flow of incompressible fluid, problems
arising in magnetism, and so on. In many applied problems most interesting is not only to find
the solution itself but also its derivatives as in the problems: (i) in the electrostatics the first
derivatives of electrostatic potential function define electric field. Furthermore, for the

calculation of ray tracing in electrostatic fields by the interpolation methods require the

specification at each mesh point not only the potential & but also the gradients {Z—i, Z—:} and

the mixed derivative :;_:;' The accuracy of interpolation depends on the accuracy of potentials
and derivatives which are specified (see, Chmelfk and Barth, 1993); (ii) in the fracture problem

the first derivative of the intensity function defines the stress intensity factor which is a

fundamental problem of fracture mechanics.

For the numerical solution of this equation, a highly accurate method becomes a powerful tool
in reducing the number of unknowns, which is the main problem in the numerical solution of
differential equations, to get reasonable results. This becomes more valuable in 3D problems
when we are looking for the derivatives of the unknown solution by the finite difference or finite

element methods for a small discretization parameter h.
It is known that if we have an approximation of a function f (x) by the function ¢(x) as

f(x) = () + R(x), (1.1)

with small residual term R(x) of this approximation, then by differentiating of (1.1)

for the k — th order derivatives



F®(x) = ® (x) + R®(x), (1.2)
the residual term R™ (x) can be very large (see (Berezin and Zhidkov, 1965)).

Therefore, a highly accurate approximation for the derivatives of the solution of above

mentioned problems become important.

As is well known, an accuracy of the Domain Decomposition or Combined Methods for the
solution of partial differential equations depends on the accuracy of a numerical solution on the
standard subdomains covering the given domain of the exact solution (see (\Volkov 1968; 1976),
(Dosiyev 1992; 1994; 2002), (Li, 1998)). Therefore, an error analysis of the Finite Difference
or Finite Element Methods on standard domains becomes important. It is also known that, to
enlarge a class of problems to apply theoretical results, the maximum possible order of accuracy

should be obtained by minimum requirements on the functions given in the boundary conditions.

The investigation of approximate derivatives started in (Lebedev, 1960), where it was proved
that the high order difference derivatives uniformly converge to the corresponding derivatives
of the solution for the 2D Laplace equation in any strictly interior subdomain, with the same
order h with which the difference solution converges on the given domain. The uniform
convergence of the difference derivatives over the whole grid domain to the corresponding
derivatives of the solution for the 2D Laplace equation with the order O (h?) was proved in
(Volkov, 1999).

In (Dosiyev and Sadeghi, 2015), for the first and pure second derivatives of the solution of the
2D Laplace equation special finite difference problems were investigated. It was proved that the
solution of these problems converge to the exact derivatives with the order 0(h*). In (Volkov,
2005) for the 3D Laplace equation the convergence of order 0 (h?) of the difference derivatives
to the corresponding first order derivatives of the exact solution was proved. It was assumed
that on the faces the boundary functions have third derivatives satisfying the Holder condition.
Furthermore, they are continuous on the edges, and their second derivatives satisfy the
compatibility condition that is implied by the Laplace equation. Whereas in (Volkov, 2004)

when the boundary values on the faces of a parallelepiped are supposed to have the fourth



derivatives satisfying the Holder condition, the constructed difference schemes converge with

order O(h?) to the first and pure second derivatives of the exact solution. The mixed second

2
derivative of the solution to the Dirichlet problem is found on a grid with accuracy O (pi:h),

where p is the distance from the current mesh node to the parallelepiped boundary, by the
numerical differentiation of the approximate first derivative. The appearance of the distance
function p in the error estimation of the approximation of the second order mixed derivatives
just because of unboundedness of the fourth order mixed derivatives with respect to odd number
of times to each variable. In (Dosiyev and Sadeghi, 2016) it is assumed that the boundary
functions on the faces have sixth order derivatives satisfying the Holder condition, and the
second and fourth order derivatives satisfy some compatibility conditions on the edges.
Different difference schemes with the use of the 26-point averaging operator are constructed on
a cubic grid with mesh size h, to approximate the first and pure second derivatives of the

solution of the Dirichlet problem with order 0 (h*).

One of the effective methods of increased accuracy with a simplest finite difference
approximation by correcting the right hand term using the high order differences of the
numerical solution of 2D Laplace’s equation without justification was proposed by L. Fox
(1947). Some modification of Fox's approach was given by L.C. Woods (1950). A theoretical
justification of Fox's method was done by Volkov in (1954; 1965). From the Volkov's results in
the case of Dirichlet problem for Poisson's equation on a rectangular domain I7 follows that the
approximate solution obtained by the g — th correction of the right hand side of the 5 —point
scheme, the convergence order in the uniform metric is 0 (h?%), h is the mesh step, when the
exact solution u has (2q + 2) — th derivatives on IT satisfying a Hélder condition with

exponent A € (0,1), i.e., u € C24+24().

In (Volkov, 2009) a two-stage difference method for solving the Dirichlet problem for 3D
Laplace's equation on a rectangular parallelepiped was proposed. It was assumed that the given
boundary functions on the faces of a parallelepiped are supposed to have the sixth derivatives
satisfying the Holder condition, and on the edges, besides the continuity they satisfy the

compatibility condition for second derivatives, which results from the Laplace equation. It was

3



proved that by using a simple 7—point scheme in two stages the order of uniform error can be
improved up to O(h*In h™"). From the conditions imposed on the boundary functions in
(Volkov, 2009) does not follow, as it was declared in (Berikelashvili and Midodashvili, 2015)
that the exact solution belongs to C®*(IT) (see (Volkov, 1969)).

In this thesis, we investigate of the approximation of a solution of the Dirichlet problem for
Laplace's equation, and its first and second order derivatives in a rectangular parallelepiped.
Furthermore, we construct a three stage (9—point, 5—point, 5—point) difference method for
approximating of the solution and its first and second derivatives of the mixed boundary value

problem for Laplace’s equation on a rectangle.

In Chapter 2, we consider the Dirichlet problem for the Laplace equation on a rectangular
parallelepiped. It is assumed that the boundary values on the faces have p — th order, p €
{4,5} derivatives satisfying the Holder condition, and the second and fourth order derivatives
satisfy some compatibility conditions on the edges. Four different schemes with the 14 —point
averaging operator, are constructed on a cubic grid with mesh size h, whose solutions separately
approximate; (i) the solution of the Dirichlet problem with the order O(h*pP~%), (ii)
approximates its first derivatives with the order O(hP~1), (iii) approximates its pure second
order derivatives with the order 0(hP~2**) and the second order mixed derivatives with the
order O(hP~2).

In Chapter 3, a new three-stage difference method for the solution, and its first and second
order pure derivatives of the Dirichlet problem for Laplace’s equation on a rectangular domain
is proposed. At the first stage the 9—point scheme, and at the second and third stages the 5—point
schemes are used. For the error of the approximate solution a pointwise estimation of order
0(ph?®) is obtained, where p = p(x, y) is the distance from the current grid point (x,y) € 11"
to the boundary of the rectangle I1. Then, at the first stage, to approximate of order O (h®) of the
first derivative of the sum of pure fourth derivatives the 9-point scheme is used. At the second
stage, approximate values of the first derivative of the sum of the pure eighth derivatives is
approximated of order 0(h?%) by the 5 —point scheme. At the final third stage, the system of

simplest 5 —point difference equations approximating the first derivative of the solution is

4



corrected by introducing the quantities determined at the first and second stages. It is proved
that, when the exact solution is from the Holder classes C1%4(IT) the uniform error of the

approximate values of the first derivatives and second order pure derivatives are of order 0 (h®).

In Chapter 4, in a rectangular domain, we discuss an approximation of the first order derivatives
for the solution of the mixed boundary value problem. The boundary values on the sides of the
rectangle are supposed to have the fourth derivatives satisfying the Holder condition. On the
vertices besides the continuity condition, the compatibility conditions which result from the
Laplace equation for the second and fourth derivatives of the boundary values given on the
adjacent sides are satisfied. Under these conditions for the approximate values of the first
derivatives of the solution of the mixed boundary problem on a square grid, as a solution of the
constructed difference scheme a uniform error estimation of order 0(h3) (h is the grid size) is

obtained.

In Chapter 5, the numerical experiments, to justify the obtained theoretical results in each
Chapters are demonstrated.

The results of the dissertation are published in (Dosiyev and Sarikaya, 2017; 2018; 2018,
2019).



CHAPTER 2

14-POINT DIFFERENCE OPERATOR FOR THE APPROXIMATION OF THE
SOLUTION, FIRST AND SECOND ORDER DERIVATIVES OF LAPLACE’S
EQUATION IN A RECTANGULAR PARALLELEPIPED

In this chapter, we consider the Dirichlet problem for the Laplace equation on a rectangular
parallelepiped. It is assumed that the boundary values on the faces have p — th order derivatives
satisfying the Holder condition, and the second and fourth order derivatives satisfy some
compatibility conditions on the edges. Four different schemes are constructed on a cubic grid
with mesh size h, whose solutions seperately approximate the solution of the Dirichlet problem
with the order O(h*pP~*), where p = p(x4,x,,x3) is the distance from the current point
(x1,x,,x3) € R to the boundary of the rectangular parallelepiped R, boundary fuctions on the
faces are from CP*, approximates its first derivatives converges uniformly with order
O(hP~1),wherep € {4,5}. It is proved that the proposed difference schemes for the
approximation of the pure and mixed second derivatives converge uniformly with order

0(hP~2*%), 0 < 1 < 1 and O(hP~2), respectively.

2.1 Some Properties of a Solution of the Dirichlet Problem on a Rectangular Parallelepiped

Let R = {(x1,%x2,%3): 0 < x; < a;,i = 1,2,3} be an open rectangular parallelepiped; Ij, j =
1,2,...,6 be its faces including the edges; I} for j = 1,2,3 (j = 4,5,6) belongs to the plane
xj = 0 (xj_3 = aj_3),and let I' =U [} be the boundary of R; y,,, = I, N I, be the edges of the
parallelepiped R. C**(E) is the class of functions that have continuous k — th derivatives

satisfying the Holder condition with an exponent 4 € (0,1).



Consider the boundary value problem

Au=0onRu=g¢jonl,j=12,..6 (2.1)
2 62 2

_ @ . :
where 4 = ox7 + ox + o2’ 9 are given functions.

Assume that

0, €CP*([), 0<1<1, j=12,...6, p€ {45} (2.2)

Pu = Pv ON Yy, (2.3)
oy 8%, 62%) _

( oty ) + ( at2 ) + (atfw =0onyu, (2.4)
*ou *ou \ _ (0% o,

( ack ) + (Mﬁatﬁv) - ( ack ) + (81&561&5#) on Yvp, (2.5)

where 1 < u <v <6,v—pu # 3,t, isanelementiny,,, t, and t, is element of the normal to

Yuv On the face I, and I3, respectively.

Lemma 2.1 Under conditions (2.2)-(2.5) the solution u of the Dirichlet problem (2.1) belong
to the Holder class CP*(R),0 < A < 1,p € {4,5}.

The proof of Lemma 2.1 follows from Theorem 2.2 in (Volkov, 1969).m

Lemma 2.2 Let p(x4, x2, x3) be the distance from the current point of the open parallelepiped

R to its boundary and let (%) = (i) + a, (i) + as (i) a? + a3+ as = 1.

6x1 axz ax3
Then the next inequality holds

|66u(x1,x2,x3)
a16

< cpPtA=0(xy, x5, %3), (x1,%,,%3) ER andp € {45} (2.6)

where u is the solution of the problem (2.1), c is a constant independent of the direction of

derivative (%).



Proof. We choose an arbitrary point (x10, X20, X30) € R. Let po = p(x10, X20, X30) and G C

R be the closed ball of radius p, centered at (xy0, X20, X30)-

Consider the harmonic function on R

0Pu(xq,x2,x3) _ 0Pu(x10,%20X30)
alp aip

v(xly X2, x3) =
By Lemma 2.2, u € CP*(R) for 0 < A < 1. Therefore,

max _ |v(xy, x2,x3)| < clp{}, 2.7)
(x1,%2,X3)€ET0

where ¢, is a constant independent of the point (x10, X20, X30) € R or the direction of d/dl.
Using estimate (2.7) and applying Lemma 3 from (Mikhailov, 1978) (see Chapter 4, Section 3),

we obtain

0%u(x10,%20,X30) p+1-6
(Pt s, s

where c is a constant independent of the point (x10, X20, X30) € R or the direction of d/dl.

Since the point (x10, x20, X30) € R is arbitrary, inequality (2.6) holds true.m

2.2 Finite Difference Problem

We introduce a cubic grid with a step h > 0 defined by the planes x; = 0, h, 2h,..., i = 1,2,3.
It is assumed that the edge lengths of R and h are such that (%) >4 (i = 1,2,3) are integers.
Let D, be the set of nodes of the grid constructed, R, = R N Dy, R, = R N Dy, R¥ c Ry, be the
set of nodes of R;, lying at a distance of kh away from the boundary I of R, and I}, = I" N Dy,.
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Figure2.1: R, = RN Dy
The 14-point difference operator S on the grid is defined as (Volkov, 2010)

6 14

1
Su(xq, x5, x3) = (%) 8 Z u, + Z ug |, (xq,x2,x3) €Rp, (2.9)
p=1(1) p=6(3)

where ¥, is the sum extending over the nodes lying at a distance of v'mh away from the point
(x1, X2, x3) and u,, and u, are the values of u at the corresponding nodes.

Let's give the image of 14-point operator on coordinate axis below.

_ {Black Points, distance between h,
~ |Blue Points, distance between v3h,

away from the current point which is green node.



Figure 2.2 : 14-point operator around center using in operator S. Each point has

distance of +/mh from the point (x;, x,, x3)

On the boundary I" of R, we define the continuous function ¢, on the entire boundary including

the edges of R as follows

{(pl e (2.10)
? =19, on\(UZIT), j=2,..6 .

Obviously,
p=@;jonl;, j=12,...6.
We consider the finite difference problem approximating Dirichlet problem (2.1):
u, = Sup on Ry, up, = @ only, (2.11)

where S is the difference operator given by (2.9) and ¢ is the function defined by (2.10). By

maximum principle, the system (2.11) has a unique solution (see Samarskii (2001) in Chap. 4).

In what follows and for simplicity, we denote by c, c4, ¢, ... constants, which are independent

of h and the nearest factors, the identical notation will be used for various constants.

10



Consider two systems of grid equations below
vy = Svp+ gn, on Ry, v, = 0o0n I}, (2.12)
Uy = SUp+ gn, on Ry, vy =0o0n 1y, (213)

where g, and g are given functions and |g,| < g, On Ry,.

Lemma 2.3 The solutions v, and v, 0f systems (2.12) and (2.13) satisfy the inequality |7}, | <

v, on Ry,.

Proof. The proof of Lemma 2.3 is similar to the comparison theorem in (Samarskii, 2001)
(Chap.4, Sec.3).m

Define

N(h) = [FHeuetl], (2.14)

where [a] is the integer part of a.

For a fixed k,1 < k < N(h) consider the systems of grid equations,

vl =Svk+ gk onRE, vF=0o0np, (2.15)
where
Kk _ {1, p(x1, X, %3) = kh,
n 0, ,D(Xl, X2, Xg) # kh.

Lemma 2.4 The solution v¥ of the system (2.15) satisfies the following inequality

max vKk<5k, 1<k<N(). (2.16)

(x1,X2,X3)ERN

11



Proof. Let the function w be defined on R, U I, as follows

0) (x11x21x3) € Fh)
wf =< 5m,  (x1,x3,x3) €ERDE, 1<m<k, (2.17)
5k, (x4, X5, %3) € R}, k<1< N(h.

It is obvious that

max  wy < 5k, (2.18)

(xl,xz,x3) ERh

We have wf —Swf > gF on R,, k=1,2,...,N(h). Consider two cases to show the

correctness of inequality (2.18).

Figure 2.3: The selected plane Ry,

12



Case 1:

Figure 2.4:  The selected plane R, for Case 1 contains points which are blue ones
R}, red ones R? and grey ones R;

i) If m = k then,

Swy, = %{S(Z.S(k —1) 4 4.(5k)) + 6.5(k — 1) + 2(5k))}

1
= = (8(30k — 10) + 40k — 30)

_ 280k — 110
56
— 110
56
We have,
110 110
SW,’: = wp —E thenSw,'f—w,’f =¥=gﬁ > 1.

13



i) If m # k and m > k then,

Swy, = 5_16{8(2_ (5k) + 4. (5k)) + 6.(5k) + 2(5k))}

1
— (280k
56(80)

= 5k.
We have,

Swf = wk then Swf —wff =0 = gF.

11)) If m # k and m < k then,

= 1
SWh %{B(Z.S(k —1)+4.(5k)) + 6.5(k—1) + 2.5(k + 1))}
= 1
%(8(30k —10) + 40k — 20)
= 280k —100
56
= 100
56
We have,
100 100
Swf =W,’f—¥ then Swff — wk =¥=g,'f > 1.

14



Case 2:

Figure 2.5: The selected plane R;, for Case 2 contains points which are blue ones
R}, red ones R? and grey ones R}

) If m = k then,
Swp, = %{8(1.5(k — 1) + 4.(5k) + 1. (5k))
+4.5(k — 1) + 4(5k))}

1
= =2 (8(30k —5) + 40k — 20)

280k —60
56
I 60
56
We have,
Swf =W,’f—% then Sw¥ — wk =%=g,’f > 1.

15



i) If m # k and m > k then,

SWh = 1
%{8(1. (5k) + 4. (5k) + 1. (5k)) + 4. (5k) + 4(5k))}
= L 280k
%( )
= b5k.
We have,
wk = Swk.

i) If m # k and m < k then,
Swy, = %{B(S(k — 1) + 4.(5k) + 5(k + 1))
445k — 1) + 45k + 1))
- 1 280k
= g (280k)

= b5k.
We have,
Swk = wk then Swf —wk =0 = gk.
Then by Lemma 2.3, and by (2.18), we obtain
vl <wf <5konRy,

which proves the inequality (2.16).m

16



Let xo = (x10, X20, X30), fOr brevity we use Taylor formula to represent the solution of the

Dirichlet problem around some point x, € Ry:

u(x1, X2, x3) = ps(x1, X2, X3; X0) + 16(X1, X2, X3; X0), (2.19)

where ps is fifth-degree Taylor polynomial and r¢ is remainder. Here,

Ps(X10, X20, X305 X0) = U(X1, X2, X3), 76(X10, X20, X30; X0) = 0.

Lemma 2.5 It is true that

Su(x10, X20, X30) = Ds(X10, X20, X30) + S716(X10, X20, X30) € Rp,

where u solves the Dirichlet problem, r¢ is the remainder in the Taylor formula, and S is the
averaging operator defined by (2.9).

Proof. Let ps(xy, x2, x3; x0) be a Taylor polynomial and u is a harmonic function and S is

linear, by taking into account that,
1

Sps(X10, X20, X305 Xo) = (%) {8[ps(x10 + R, ¥20, Z30)
+D5(X10, Y20 + h, Z30) +P5(X10, Y20, Z30 + 1) + Ds(X10 — I, Y20, Z30)
+D5(X10, Y20 — M Z30) + D5 (X10, V20, Z30 — h)]
+p5(x10 + R, Y20 + h, 230 + h) + ps(x19 — h, Y20 + h, 2390 + h)
+p5(x10 + R, Y20 — h, 230 + h) + Ds(x10 + R, Y20 + h, 230 — h)
+p5(x10 + R, Y20 — h, 230 — h) + ps(x10 — h, Y20 — h, 230 + h)

+p5(x10 — R, Y20 + h, 2390 — K)+ps(x10 — h, Y20 — h, 239 — h)}

17



= u(xq9, X20, X30)

3

3
3 Zazu(xm»xzo’xso) +h4 64u(x10,x20,x30)

—h? —
+ 4 ¢ ox} 56 ¢ ox}
i=1 i=1

h_4 64u(x10,x20,x30) 04u(x10,x20,x30) 64u(x10,x20,x30)
28 dx20x2 d0x20x2 0x20x2

Since u is harmonic function,

3

z azu(x1o:x20;x3o) —0
0x?

l

i=1

the second term on the right-hand side of this equality vanishes. By taking derivative of the

above function twice with respect to x;, x, and x3, we have

0" u(x10, %20, x30) | 0*u(x10, %20, X30) 04u(x10,x20,x30)_

0
4 273+2 23,2 ’
0xy 0x;0x5 0xi0x3
4 4 4
0"u(x10, %20, x30) . 0"ulx10, %20, x30) = 0“u(x10, %20, X30) -0
23,2 4 23,2 =Y
0x70x5 0x; 0x50x35
4 4 4
0"u(x10, %20, x30) . 0"ulx10, %20, x30) = 0“u(x10, X20, X30) -0

2 2 2 2 4
0x;0x3 0x50x35 0x3

The sum of the above three equations gives us the following result

3
Z 64u(x10, X20,X30) {6411(3510' X20, X30) 64u(x10, X20, X30)

4 2 2 2 2
" ox; 0x70x5 0x;0x3

0" u(x10, %20, *30) ~0
0x20x2

while the third and fourth terms cancel each other.

18



Thus,

Sps(x10, X20, X30; Xo) = U(X10, X20, X30) (2.20)
from (2.20) follows

Su(x10, X20, X30) = U(X10, X20, X30) + ST5(X10, X20, X30; X0). W (2.21)
Lemma 2.6 It is true that

max _|Su —u| < ch?*4,p € {4,5}, (2.22)

1
(x1,x2,%X3)€Rp,

where u is the solution of the Dirichlet problem (2.1) , with conditions (2.2)-(2.5) and S is the
averaging operator defined by (2.9), R} is the subset of R, lying at a distance of h away form

the boundary of the parallelepiped R .
Proof. Let (x10, X20, X30) b€ a node of the grid R;: < R;, and let
O = {(xq1, x2,x3): |x; — x30] < h,i = 1,2,3} (2.23)

be an elementary cube some of whose faces lie on the boundary of R. The nodes of the operator
S calculating the averaged value Su(x10, X20, X30) Of u lie at the vertices of the cube of and the

centers of its faces.

Let us estimate the remainder r¢ in (2.19) at the point (x1¢ + h, x20 + h, x30 + h) Which is one
of the nodes of S.

Consider the function

S S

009 = (0 (35) 0+ (G5 o+ () ) ~Bh 252 V3n 22

of single variable s, which is the arc length along the straight line through the points (x10 —
h,x20 — h,x30 — h) and (x10 + h, x20 + h, x30 + h). Regardless of whether or not (x;o+
h, x30 + h, x30 + h) lies on the boundary of R, by Lemma 2.2, we have
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A—

u©(s)| < c(V3h—s)’ "0<1<1,0< s <V3h, (2.25)
where c is a constant independent of the chosen point (xy0, X0, X30) € R}.
By using the Taylor formula, function (2.24) around the point s = 0 can be represented as

u(s) = Ps(s) + (s,

where ps(s) is the fifth-degree Taylor polynomial (in single variable s) and r¢(s) is the
remainder. Since

55(5) = PsCrao + (52 X0 + (52, X0 + (52); Xo)

S) = X —), X —), X —); Xo),
Ps Ps(X10 NE 20 NE 30 NE 0

where ps(x1, X2, x3; X) IS the Taylor polynomial in (2.19), we have

r° (xw + (%),xzo + (%),xw + (%),xo) = 76(s),0 < |s| < V3h.(2.26)

Since the remainder r¢ in (2.19) is continuous on the closure of cube (2.23) and 74(s) is
continuous on the interval [—v/3h, /3R], it follows from (2.26) that

V3h-¢
Ire(V3h — £)| < (%) j (V3h — & — )5[@©(0)|de
0

V3h-¢
< g j (V3h—e—t)°(V3h —t)" " Cat
0

V3h-¢
< czj (V3h -t

0

3h
< hP*, 0<e< (V_T) (2.27)

20



Thus, combining (2.25)-(2.27) yields
|T'6(X10 + h, X290 + h, X30 + h, x0)| < C4hp+l, (228)
where c is a constant independent of the point (x40, X20, X30) € R},.

Similarly, we can get the same estimates (2.28) of r¢ at the remainder 13 nodes of come (2.27).

Then form (2.9), we have
|ST6(X10, X20, X305 X0)| < Cshpﬂl;

where ¢ is a constant independent of the point (x40, %20, X30) € Ry. Combining this with

equality (2.21) in Lemma 2.5 vyields inequality (2.22).m

Lemma 2.7 It is true that

hp+l

max  |Su—u|<c (o) k=12, N(h),p € (45},  (229)

6—p—A71
(x1'x2'x3)€R;f ko~P

where u is the solution of the Dirichlet problem (2.1) and S is the averaging operator defined by
(2.19) and N (h) is given by (2.14).

Proof. For k = 1, inequality (2.29) holds by Lemma 2.6. Let x, € R,’f" be an arbitrary point for
arbitrary ko such that 2 < ko < N(h).

Let r¢(x1, X2, X3; X0) be the Lagrange remainder corresponding to this point in Taylor formula
(2.19).

Then Sre(x10, X20, X30; Xo) Can be expressed linearly in terms of a fixed number of sixth

derivatives of u at some points of open cube

Ko = {(x1,x2,x3): |x; — x;0l < h,i =1,2,3} (2.30)
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which is a distance of at least koh/2 away from the boundary of R. The sum of the absolute

values of the coefficients multiplying the sixth derivatives does not exceed ch® which is

independent ko (2 < ko < N(h)) or the point x, € R,’f". By Lemma 2, we have

h6
|ST6(X10, X20, X305 X0)| < €4 <W>

hp+l
= Cy <W>, (231)
0

where c is a constant independent of ko (2 < ko < N(h)) and of the point x, € R,’f". On the

basis of (2.21), (2.28), and (2.31) estimation (2.22) holds.m

Theorem 2.1 Assume that the boundary functions ¢; satisfy conditions (2.2)-(2.5). Then at each

pOint (xl, X2, x3) € Rh
lup, — u| < ch*p?~*,p € {4,5},

where u,, is the solution of the finite difference problem (2.11), and u is the exact solution of
problem (2.1) and p = p(x4, X2, x3) is the distance from the current point (x4, x2, x3) € Ry, t0

the boundary of the rectangular parallelepiped R.
Proof. Let
&, =u, —uonR,. (2.32)
By (2.11) and (2.12) the error function satisfies the system of equations
en=Sep+(Su—u)onRy, e, =00n1}. (2.33)

We represent a solution of the system (2.33) as follows

&p = z ek, (2.34)
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where N (h) is defined by (2.14) and €f, 1 < k < N(h), is a solution of the system
ef =Sef +ofonR,, e =00nr, (2.35)
where

k _ Su —u on Rf
b7 | 0on Ry|RE

Then on the basis of Lemma 2.7 and Lemma 2.6, for the solution of (2.34), we have

N(h) N(h)

len] < Z|£h|<25k max  |Su—u|
(x1,x2, x3)eRh

p/h—1 N(h)

k p/h
p+A 6
<SP ) et Serh e
k=1 k=p/h
p/h—1 N(h)
< Sclhp+/1 Z k—5+p+l+5C1hp—1+lp 2 k—6+p+l
k=1 k=p/h
p/h-1
< 5¢,hP+A |1 + J x T3P gy
1
N(h)
+5¢c,hP~ 1+ p (1 + f x~OTPHAqx
p/h
< Czh4p—4+p+)t + C3h4p
< c,h*pP~*, p ={4,5}. (2.36)

On the basis of (2.32), (2.34) and (2.36), we obtain

lup, —u|l = max |ey| < ch*pP~t =
(x1 X2, X36Rh
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2.3 Approximation of the First Derivative
2.3.1 Boundary function is from €54

Let the boundary functions ¢;,j = 1,2,...,6, in problem (2.1) on the faces I; be satisfied by the

conditions
@; €CO([}),0<A<1,j=12,...6 (2.37)

I.e., p = 51in(2.2). Let u be a solution of the problem (2.1) with the conditions (2.37) and (2.3)-

(2.5). We give the following Lemmas and Theorem related to the function w.

u u , -
Let v = (6_x1) and let ¢; = (a_xl) on I;,j=1,2,...,6, and consider the boundary value
problem:
Av=00onR,v=¢;onl,j=12,..,6, (2.38)

where u is a solution of the boundary value problem (2.1) for p = 5.

We define the following operators ¢,,, p = 1,2,...,6,

1
¢1h(uh) = - [_25§01(x2,X3) + 4‘8uh(h, .XZ, X3) —_ 36uh(2h, .XZ, X3)

12h
+16uy, (3h, x5, x3)—3uy, (4h, x5, x3)] on I}, (2.39)
1
Pan(up) = oh [25¢4(x2, x3) — 48up(a; — h, x2, x3)

+36uy(a; — 2h, x5, x3) — 16u,(a; — 3h, x2,x3)

+3up(a; — 4h, x5, x3)] on I, (2.40)
¢
bpn(un) = (a—x”) onr,p=2356 (2.41)

where u,, is the solution of the finite difference problem (2.11).
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Let v, be the solution of the following finite difference problem

Vp = Svp on Ry, vy, = ¢y on I}h,j =1,2,...,6, (2.42)
where ¢, j = 1,2,...,6, are defined by (2.39)-(2.41)
Lemma 2.8 The following inequality is true

|Prn(Un) — Prn (W < ch™ k= 1,4, (2.43)

where u,, is the solution of the finite difference problem (2.11) and u is the solution of problem
(2.2).

Proof: It is obvious that ¢, (up) — ¢pp(u) = 0 forp = 2,3,5,6. For k = 1, by (2.39) and

Theorem 2.1, we have

1

i) = b1r (] < (5

) (25 [up (h, %, x3) — w(h, %3, X5)]
+48|up(2h, x2,x3) — u(2h, x2, x3)| + 16|up(3h, x2, x3) — u(3h, x2, x3)|

+3|up (4h, x2, x3) — u(4h, x2,x3) |}

A

< (%) [25(ch)h* + 48(c2h)h* + 16(c3h)h* + 3(cah)h"]

< ch*

It is also shown that the same inequality is true when k = 4.

1
|Pan(Uupn) — Pan ()| < (m) {25lup(ay — h, x2,x3) —u(a; — h, x3, x3)|

+48|uy(ay — 2h, x2,x3) —u(ay — 2h, x2,x3)| + 16|up(a; — 3h, x2,x3) — u(a; — 3h, x2, x3)|

+3|up(a, — 4h, x2,x3) — u(a, — 4h, x2,x3)|}
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IA

(%) [25(ch)h* + 48(c2h)h* + 16(c3h)h* + 3(c4h)h’]

< cht. =m

Lemma 2.9 The following inequality holds

max |ppn(up) — drl < ch* k = 1,4, (2.44)
(x1,%2,%3)EN
where ¢, k = 1,4 are defined by (2.39), (2.40), and ¢, = (;7”) on I, k = 1,4.
1

Proof. From Lemma 2.1 it follows that u € C>*(R). Then, at the end points (0, vh, wh) € I}*

and (ay, vh, wh) € I} of each line segment {(x1,x2,%x3):0 < x; < a;,,0 < x, =vh < a,,0 <

x3 = wh < as}, expressions (2.39) and (2.40) give the third order appriximation of (;—u),

X1

respectively. From the truncation error formulas it (Burden and Douglas, 2011) follows that

h* 2°u

max |¢p(u) =Pl < c¢;|=—| max |—

(xl'x2'x3)erlil * 1 5 (xl,xz,x3)€l"]? axf
< cht k=14 (2.45)

On the basis of Lemma 2.8 and inequality (2.43), (2.45) follows,

max h|¢kh(uh) — Pl = max h|¢kh(uh) = Prn(w) + Ppn(w) — Pil
(x1,X2,x3)€El, (xx1,x2,X3)€ED,
< max h|¢kh(uh) — Prn(W)|

(x1,%X2,x3)€El,

+  max ¢y (u) — ¢kl

(x1,%2,X3)€El,

IA

csh* + c,h*

IA

csh* n
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Theorem 2.2 The following estimation is true

ou
max _ |v,—(—
(x1,%2,X3)ERN 0x1

< ch*, (2.46)

where u is the solution of the problem (2.1), v, is the solution of the finite difference problem
(2.42).

Proof. Let
g, = v, — v on R¥, (2.47)

where v = (%). From (2.42) and (2.47), we have
1

e = Sep + (Sv—v) on R",
en = ¢rn(up) —vonlLk=14,¢ =00nL}p=2356.
We represent
e = &} + &2, (2.48)
where
et = Sef on R™, (2.49)
&r = Gn(up) —von ik =14, ef =0onL),p =2356; (2.50)
& = Sep+(Sv—v)onR" et =00on[",j=12,...6. (2.51)
By Lemma 2.9 and by the maximum principle, for the solution of system (2.49), (2.50), we have

max _ |&i| < max  max h|¢>qh(uh) —v| < ¢ h* (2.52)

(xl'x2'x3)EEh q=14 (xl;xz;x3)erq

The solution & of system (2.51) is the error of the approximate solution obtained by the finite

difference method for problem (2.38), when on the boundary nodes [}y, the values of the
functions ¢; in (2.38) are used. It is obvious that ¢, j = 1,2,...,6, satisfy the conditions
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¢; €C*[),0<21<1,j=12,...6

¢u = ¢, on Yuv,

%y 0%y az¢u> _
(atﬁ )+(at,2, ) + (atfw =00n .

(2.53)

(2.54)

(2.55)

Therefore, for the error &7 of the finite difference problem for the continuous problem (2.42),

on the basis of Theorem 1 in (Volkov, 2010) we have;

max _ |&7| < c k.
(xl,xz,x3)ERh

By (2.48), (2.52) and (2.56) inequality (2.46) holds. =

2.3.2 Boundary function is from ¢**

Let the boundary functions ¢; € C**(I})),0 <A< 1,j = 1,2,

(2.1), and let v = (:7”) and let ¢; = (:—;) onl,j=12,.

1

value problem:
Av=00onR,v=¢;onl},j=12,...6,

where u is a solution of the boundary value problem (2.1).

(2.56)

...,6,in (2.1)-(2.5),i.e.,p =4in

..,6, and consider the boundary

(2.58)

We define the following third order numerical differentiation operators ¢, k = 1,4

1
b1n (Up) = (_> [—11¢4(x2, x3) + 18up (h, X2, X3)

6h

—9uy, (2h, X2, x3) + 2up (3, x2,x3)] on I, (2.59)
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1
ban(up) = (a) [11¢4(x2, x3) — 18up(as — h, x2, x3)

+9up,(a; — 2h, x3, x3) — 2up(a, — 3h, x5, x3)] on I,

(2.60)
bon (i) = (Z%’),on Ihp=2356, (2.61)
where u,, is the solution of the finite difference problem (2.11).
It is obvious that ¢;,j = 1,2,...,6, satisfy the conditions
¢; € C3MI}),0<A<1,j=12,...6 (2.62)
by =y onyy, (2.63)
(a;j;”) + (a;j;”) + (?;t(f”) =0 0onyy. (2.64)
i v %
Let v, be the solution of the following finite difference problem
Vp = Svp on Ry, vy, = ¢y on I}h,j =1,2,...,6, (2.65)
where ¢, j = 1,2,...,6, are defined by (2.59)-(2.61).
Lemma 2.10 The following inequality is true
|Prcn(Un) — Prn (W < ch® k = 1,4, (2.66)

where u,, is the solution of the finite difference problem (2.11), u is the solution of problem
(2.2).

29



Proof. It is obvious that ¢, (up) — ¢ppp(w) = 0 for p = 2,3,5,6. For k = 1, by (2.59) and

Theorem 2.1, we have

1
1) = bin(O] < () [18JunCh %2, x5) = ulh, 32,2 |

+9|upn (2h, x2, x3) — u(2h, x2, x3)

+2|u, (3h, x2,x3) — u(3h, x2, x3)|]

IA

(%) [29¢,h*]

cyh3.

IA

The same inequality is true when k = 4 also, as follows;

1
s = $an(O] < () [18lun(as = by x25) = @y = hyxz, )|

+9|up(ay — 2h, x2,x3) —u(ay — 2h, x3, x3)

+2|up(ay — 3h, x2,x3) —u(ay — 3h, x2,x3)|]

IA

(%) [29¢;h]

cih. n

AN

Lemma 2.11 The following inequality holds

max |¢ygn(un) — il < ch’ k=14, (2.67)

(x1.%2,%3)€l},

where ¢, k = 1,4 are defined by (2.59), (2.60), and ¢ = (:7“) on I,k =1,4.
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Proof. From Lemma 2.1 it follows that u € C**(R). Then, at the end points (0, vh, wh) € I}*

and (a4, vh, wh) € I}* of each line segment {(x1,x2,x3):0 < x; < a;,0 < x, =vh < a;,0 <

x3 = wh < as}, expressions (2.59) and (2.60) give the third order approximation of (;—u),

X1

respectively. From the truncation error formulas it (Burden and Douglas, 2011) follows that

h3 0*u

max |¢w)— ¢k | < ¢ || max |z

(%1,%2,%3)ETP k '\ 4 (x1,%2,X3)EN axf
< ,h® k=14 (2.68)

On the basis of Lemma 2.10 and estimation (2.68), (2.67) follows,

max |y (un) — ¢rl = max |y (Un) = Pren (W) + Prn (W) — Pi|
(x1,%2,x3)€ED, (x1,%2,x3)€El,
< max  |@yn(un) — prn (W]

(x1,%2,x3)€El

+  max Fh|¢kh(u) — ¢l

(x1,%2,%3)€l,
< c3h® +c,h® < cshd. n

Theorem 2.3 The following estimation is true

Ju
max _ |v, — (E) | < ch3, (2.69)
1

(x1,%2,%3)ERN

where u is the solution of the problem (2.1), v, is the solution of the finite difference problem
(2.57).

Proof. Let
&, = vy, — v on R¥, (2.70)
du
where v = (5) From (2.57) and (2.70), we have
1

en = Sep + (Sv—v) onR",
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en = ¢rn(up) —vonlLk=14,¢ =00nL}p=23546.

We represent

&y = & + &2, (2.71)
where

gt = Sef on R™, (2.72)

er = drn(up) —von ik =14,¢f =0on L p =2356; (2.73)

& = Sep+(Sv—v)onRM el =00n"j=12,...6. (2.74)

By Lemma 2.11 and by the maximum principle, for the solution of system (2.72), (2.73), we

have

max _ |&i| < max  max (w,) —v| < ¢, h3. 575
(x1,%2,%3)ERN h q=1,4 (xl.xz.X_o,)EFJle)qh h | 1 ( )

The solution &} of system (2.74) is the error of the approximate solution obtained by the finite

difference method for problem (2.65), when on the boundary nodes [}y, the values of the

functions ¢; in (2.65) are used. It is obvious that ¢;, j = 1,2,...,6, satisfy the conditions

¢; € C3MI}),0<A<1,j=12,...6 (2.76)
by = by 0Ny, (2.77)
P0u) | (L) 4 (o) g 2.78

at2 +(at5)+ atZ, ) o Yuv - (2.78)

Therefore, for the error 7 of the finite-difference problem for the continuous problem (2.74),

on the basis of Theorem 2 in (Volkov, 2010) we have;

max _ |eZ| < c,h** ,0< A< 1. (2.79)

(x1,%2,%3)ERN

By (2.71), (2.75) and (2.79) inequality (2.69) holds. m
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Remark 2.1: We have investigated the method of high order approximations of the first
derivative du/dx;. The same results are obtained for the derivatives ou/dx;, l = 2,3, by using

the same order forward or backward formulae in the corresponding faces of the parallelepiped.

2.4 Approximation of the Pure Second Derivatives

2
We denote w = (671;) The function o is harmonic on R, on the basis of Lemma 2.1 is
1

continuous on R, and is the solution of the following Dirichlet problem

Aw =00nR,w=y;onl,j=12,..,6, (2.80)
where
329,
e = (55) 7 =2356 (2.81)
2oy, (920
w == ((52)+ (5)w=1s @e

Let wy, be the solution of the finite difference problem
wp = Swp on Ry, wy = xj on I}h,j =1,2,...,6, (2.83)

where x;,j = 1,2,...,6 are the functions defined by (2.80) and (2.81).

Theorem 2.4 The following estimation holds

rr}%axlwh — w| < ch?P~?*4, where p € {4,5}, (2.84)
h

2
where w = (‘;71;) ,u is the solution of problem (2.1) and wy, is the solution of the finite
1

difference problem (2.83).
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Proof. From the continuity of the function w on R, and from (2.81), (2.82) it follows that

Xj €CUI),0<A<1,j=1.2,...6whereq € {2,3}, (2.85)

X[,L = XV on y‘uvr (286)
2%x %y, AN

( 6fﬁﬂ) + ( atz ) + (atf:) = 00n Y. (2.87)

The boundary functions y;,j = 1,2,...,6, in (2.80) on the basis of (2.85)-(2.87) satisfy all

conditions of Theorem 2 in (Volkov, 2010) in which follows the proof of the error estimation
(2.84).m

Remark 2.2: If the boundary function ¢; € C(""l(l}), 0<1A<1,j=1,2,...,6, the second and

fourth order derivatives satisfy some compatibility conditions on the edges then the finite

difference solution for the pure second derivatives with order O (h*).

2.5 Approximation of the Mixed Second Derivatives.
2.5.1 Boundary function from €54

Let the boundary functions ¢;,j = 1,2,...,6, in problem (2.1) on the faces I; be satisfied by

the condition
@; €COMI}),0<A<1,j=12,...6 (2.88)

i.e., p =5in(2.2). Let u be a solution of the problem (2.1) with the conditions (2.88) and
(2.2)-(2.5).

Letw = ( 0%u ) = (a—”) and let¥; = ( o%u ) = (:—;) onl;, j=1,2,..,6, where u is a

6x16x2 axz axlax2
solution of the boundary value problem (2.1) and v is a solution of the boundary value

problem (2.38).
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Consider the boundary value problem:
Aw =0onR,@=%¥onl;,j=12,...6. (2.89)

We define the sets

L = {o < <2 x = tk} NGk k=14, (2.90)
And
L= {% +h<x,<a, x = tk} NGk k=14, (2.91)

where t; = 0 and t, = a,.

We define the following operators ¥, q = 1,2,...,6,

1
Yen(vp) = (a) [—11vy, (tk, x5, x3) + 18vy, (tg, X2 + h, x3)

—9vp, (g, X5 + 20, x3) + 20, (t, X5 + 3, x3)] on L, (2.92)

1
Yin(vn) = (@) [11vp, (ty, X2, X3) — 18V (Ek, X2 — h, X3)

+9vy, (ty, x5 — 2h, x3) — 2vp(tg, X, — 3h,x3)] on [}*~, (2.93)

where k = 1,4.

1
Won(vp) = (@) [—11¢h5 (21, X3) + 18V (e, b, x5) — 90p (X1, 2h, x3)

+2vy(x1,3h,x3)] on T, (2.94)

1
Vin(n) = (=) [1195(rsx5) — 180, 0or, 2 — b x5)

+9vy (x4, a2 — 2h, x3) — 2up (x4, a2 — 3h,x3)] on Fsh,

(2.95)
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2

0°¢
ll’ph(vh) = <ax1a§;2> ,on th; D= 3,6, (296)

where ¢, and ¢ are functions defined in (2.38), @5 and @5 are the given functions in (2.1),

vy, is the solution of the finite difference problem (2.42).
Let @y, be the solution of the following finite difference problem
@y, = Swy on Ry, @y, = ¥y on ", j = 1,2,...,6, (2.97)
where ¥, j = 1,2,...,6, are defined by (2.92)-(2.96).
Lemma 2.12 The following inequality is true
¥ (Vn) — Prn(W)| < ch®k=12,...,6 (2.98)

where vy, is the solution of the finite difference problem (2.42), v is the solution of problem
(2.38).

Proof. Itis obvious that ¥y, (vy) — W,p(v) = 0 for p = 3,6.

For t = 1,4, by using the inequality (2.92) and applying the Theorem 2.2, we have

1
|Yin(vn) — P (V)| < (a) [11|vp (tk, X2, x3) — V(Eg, X2, X3)|

+18|vh(tk, X2 + h, X3) - V(tk, X + h, X3)|
+9|vh(tk, Xy + Zh, X3) — U(tk,XZ + Zh, X3)|

+2|vp (t, xo + 30, x3) — v(tg, x5 + 30, x3)]]

IA

(%) [40¢,h*]

c,h3on LM,

IA
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The same inequality is obtained on I;*~ by using (2.93). We have

1
|Yen(vn) — Pen(v)| < (a) [11|vy, (tk, X2, X3) — V(Eg, X2, X3) |

+18|vy, (tk, X2 — h, X3) — v(ty, X, — h, X3)|
+9|vp, (ty, x; — 2h, x3) — V(t, X3 — 20, x3)|

+2|vp (tg, x; — 3h, x3) — v(tg, x; — 3h, x3)]]

< (i) [40c5h*]
6h
< chPon .
Since I} = [ u L™, we have,
W, (V) — W, (W)| < ch3, k=1,4 on T (2.99)

For k = 2, by (2.94) and Theorem 2.2, we have

Pon () = Wor 0 < () (1810, b, x3) = e, )]

+9|vh(x1, Zh, X3) — V(xl, Zh, X3)|

+2|vp (x4, 3k, x3) — v(x4, 3R, Xx3)|]

IA

(%) [29¢5h*]

coh®. (2.100)

IA
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The same inequality is true when k = 5,

1
|¥sn(vn) — Psn(W)] < (@) [18|vy (1, az — b, x3) — (X1, a; — h, x3)|

+9|vy (x4, a; — 2h, x3) — v(x1,a; — 2h, x3)|

+2|vp (%1, a; — 3h, x3) — v(xq,a, — 3h, x3)|]
< (1) 29¢,h*
= \en [29¢7h"]
< cgh’. (2.101)

The inequality (2.98) follows by virtue of (2.99)-(2.101). m

Lemma 2.13 The following inequality holds

max [¥n(vp) — il < ch® k =1,2,4,5 (2.102)

(x1,%2,x3)El,

where ¥, k = 1,2,4,5 are defined by (2.92)-(2.96), and ¥}, = ( o%u ) = (a_u) on I, k =

axlaxz sz

1,2,4,5.

Proof. From Lemma 2.1 it follows that u € C3*(R). From (2.92)-(2.96) follows that
Yar(v),q = 1,2,4,5 are the third order forward (¢ = 1,2) and backward (q = 4,5) formulae
for the approximation of ((0%w)/(0x10x,)). Since the solution u of problem (2.1)-(2.5) is

from €5 (R), from the truncation error formulas (Burden and Douglas, 2011), we have

max [P (v) — ¥l < ch®, k=1,24,5. (2.103)

(x1,x2,x3)€ED,
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On the basis of Lemma 2.12 and estimation (2.103), (2.102) hold as follows,

max  |Pgp(vp) — ¥i| = max  |Pen(Wp) = Pen(v) + Pien(v) — i
(x1,X2,X3) €l (x1,X2,%3)€El,
< max  |¥ien(vp) = Pien (v)|

(x1,%2,X3)€El,

+  max [P (v) — Py

(x1,%2,x3)€l},
< ok k=1245 = (2.104)

From the conditions (2.2)-(2.5), it follows that the solution of the problem (2.1) belongs to the
class C>*~(R) for any ¢ € (0,1) (see Theorem 2.1 in (Volkov, 1969)). Then, its any second
order derivatives belongs to C>1~¢:(R), for any &, € (0,1). Since any order derivatives of
harmonic functions are harmonic, the following Lemma follows from Lemma 1.2 in (Volkov,
1979), (see Lemma 3, Chap. 4, Sec. 3 in (Mikahilov, 1978), also).

Lemma 2.14 Let p(x4, x2, x3) be the distance from the current point of the open parallelepiped
R to its boundary. Then for any derivative @ of the solution of the problem (2.89) of order m,

(m > 3) with respect to x4, x,, x3 satisfy the inequality
|@™ (%1, X2, X3)| < Mpyp™ ™3, (2.105)

where M,,, > 0 is constant dependent on m only.

2
Let ¥;(h) be the trace of @ = ( 0Tu ) on I’ and let @, be the solution of the following
6x10x2 J
problem
wy, = Swp on R, wy, = ‘Pjh on I}h,j =1,2,...,6. (2.106)

Lemma 2.15 The following estimation holds

max_|a}, — (50) | < I, (2.107)

(x1.X2,%3)ERY 0x10x3

where @y, is a solution of the finite difference problem (2.106).
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Proof. From the definition of the boundary grid function ¥;(h) and from (2.106) for the error

function

& =wp,—@ (2.108)
we have

& =Sé, + (Sw—w)onRy, &, =00nL"j=12,...6 (2.109)

where @ is the solution of problem (2.89). By virtue of (2.105), by analogy with the proof of
Lemma 3 (Volkov and Dosiyev, 2012) it follows, that

max_|Sw - | < ¢ (%), k =12,...,N(h). (2.110)

(xl,XZ,X3)ERh k
On the basis of Lemma 2.1 and (2.110) for the solution of problem (2.109), we obtain

N(h)

_ 1
i o (1)

k=1
< c;him
Theorem 2.5 The following estimation is true

0%u

6x10x2

max_|@, — (55—) | < ch® (2.111)

(x1,X2,X3)ERp,

where u is the solution of the problem (2.1), @, is the solution of the finite difference problem
(2.97).

Proof. Let
& = @y, — @ on R¥, (2.112)
2%u v
where @ = (6x16x2) = (a_xz) From (2.97) and (2.112), we have
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ep = Sep + (Sw — @) on Ry,
en = Yn(vp) —won [k =1245¢, =00on,p =36.
We represent
gp = €} + 7, (2.113)
where
gt = Sef on Ry, (2.114)
& = Yrn(vp) —won Lk =1,245,¢f =0on LM p = 3,6; (2.115)
&f = Seh+ (Sw—w) onRy, &f =0o0n " j=12,....6. (2.116)

By Lemma 2.13 and by the maximum principle, for the solution of system (2.114), (2.115), we
have

max _ |ef| < max max ¥ (vp) — @] < o 1. (2.117)

(x1,%2,X3)ERp q=1,2,...6 (x1,%2,%3)€ly

The solution 7 of system (2.116) is the error of the approximate solution obtained by the
finite difference method of problem (2.89), when it is assumed that on the boundary nodes I}h,

the exact values of the functions ¥;,j = 1,2,...,6 are used.
From Lemma 2.15, it follows that

max _ |e?| < c,hd. 2.118
(Xl,XZ,X3)EEh| hl 2 ( )

By (2.112), (2.13), (2.117) and (2.118) yields the estimation (2.111).m
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2.5.2 Boundary function from c*4

Let the boundary functions ¢;,j = 1,2,...,6, in problem (2.1) on the faces I; be satisfied by

the condition
@; ECHMI}),0<A<1,j=12,...,6 (2.119)

I.e., p = 41in(2.2). Let u be a solution of the problem (2.1) with the conditions (2.119) and
(2.3)-(2.5).

Letw = ( oTu ) = (a_v) and let ¥; = ( o"u ) = (a—”) on T}, j=1,2,....6, where u is a

6x16x2 axZ 6x16x2 axZ

solution of the boundary value problem (2.1) and v is a solution of the boundary value
problem (2.57).

Consider the boundary value problem:
Aw =00onR,@=%¥onl;,j=12,...6. (2.120)

We define the sets

ht= fos <2 x=t)nnt k=14 (2.121)

and
™ = {% thsx,<a; x = tk} Nt k=14, (2.122)
where t; = 0 and t, = a,.

We define the following operators ¥, q = 1,2,...,6,

1
Yien(vn) = (g) [—3vn (i, X2, X3) + 4V (ti, X2 + R, X3)

—vp (ty, Xz + 2, x3)] on L[, (2.123)
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1
Yen(vp) = (—> [3vp (tr, X2, X3) — 4vp (tg, X3 — h, X3)

2h
+vp, (ty, X — 2h, x3)] on 1™, (2.124)
where k = 1,4.
Yn(vy) = (%) [—3¢2(x1, x3) + 4vp,(x1, h, x3) — v, (x4, 2, x3) on L1,
(2.125)
1
Ysp(vp) = (ﬁ) [3¢ps(x1, x3) — 4vy (x4, az — h, x3)
+v,(xy, a5 — 2h, x3)on I, (2.126)
0%¢
Y = P rhp= 2.127
ph(vh) <axlax2> , 0N P p 3'6' ( )

where ¢, and ¢ are the functions defined in (2.65), ¢ and ¢ are the given functions in
(2.1), vy, is the solution of the finite difference problem (2.65).

Let @y, be the solution of the following finite difference problem,
@y = Swp on Ry, @y = Wy on ", j = 1,2,...,6, (2.128)
where ¥,,j = 1,2,...,6, are defined by (2.123)-(2.127).
Lemma 2.16 The following inequality is true,
¥ (Vn) — Prn(W)| < ch®,k=1,2,...,6 (2.129)

where vy, is the solution of the finite difference problem (2.65), v is the solution of problem
(2.57).
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Proof. It is obvious that ¥, (vy) — Wpp(v) = 0 for p = 3,6.

For t = 1,4, by using the inequality (2.123) and applying the Theorem 2.3, we have

1
Pen () = Pin ()] < (57 319t %2, %3) = 0t %0, %3)

+4|vp (tg, X5 + h,X3) — v(tg, Xz + h, X3)|

+|vp (te, X2 + 2h, x3) — v(tg, x5 + 20, x3)]]

< (%) [8c,h]

< c,h%on LM,

A

The same inequality is obtained on I;*~ by using (2.124). We have

1
Pen () = Pn ()] < (57 1319t %2, %3) = Dt %0, %3)

+4|vh(tk,x2 — h, X3) - V(tk,XZ - h, X3)|

+|vh(tk, Xy — Zh, X3) - V(tk,XZ - Zh, X3)|]

(e

< c,h?ont,

AN

Since I} = [ u L™, we have,

¥ (V) — P ()| < csh?, k= 1,4 on LM (2.130)
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For k = 2, by (2.125) and Theorem 2.3, we have

1
12000 = ¥an )] < (57) (419 ey 25) = v, b x5)

+|vh(x1) Zhl x3) - v(xll Zhl x3)|]

IN

(%) [5¢sh3] < cgh?. (2.131)

The same inequality is true when k = 5,

1
Wen (V) — Psn(v)] < (ﬁ) [4]vp, Gy, @y — hy x3) — v (1, @ — h, x3))|

+|vp(xq,a; — 2h, x3) — v(x1, a; — 2h, x3)|]

IN

(%) [5¢,h3] < cgh?. (2.132)

By virtue of (2.130)-(2.132) the inequality (2.129) is obtained. m

Lemma 2.17 The following inequality holds

max h|‘l’kh(vh) - lIUkl < Chz,k = 1,2,4‘,5 (2133)

(x1,%2,x3)€ED,

where ¥, k = 1,2,4,5 are defined in (2.123)-(2.126), and ¥, = ( oTu ) = (ﬂ) on I, k=

6x16x2 6x2

1,2,4,5.

Proof. From Lemma 2.1 it follows that u € C**(R). From (2.123)-(2.126) follows that
Yer(v),q = 1,2,4,5 are the second order forward (¢ = 1,2) and backward (q = 4,5)
formulae for the approximation of ((9%u)/(dx,9x5)). Since the solution u of problem (2.1)-

(2.5) is from C** (R), from the truncation error formulas (Burden and Douglas, 2011), we

have
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max [P (v) — ¥ < ch?, k=1245. (2.134)

(x1,%2,%3)€l},

On the basis of Lemma 2.16 and estimation (2.134), (2.133) follows,

max  |Wip(vp) — ¥ | = max  |Pen(Wp) = Pen(v) + Ppen(v) — ¥
(x1,%2,x3)€l}, (x1,X2,%3)€ED,
< max [¥p(vp) — Pin (V)]

(x1,x2,x3)€El,

+  max ¥ (v) — ¥l

(X1,%2,X3)€ER]
< k% k=1245 = (2.135)
From the conditions (2.2)-(2.5), it follows that the solution of the problem (2.1) belongs to
the class C*1~¢(R) for any € € (0,1) (see Theorem 2.1 in (Volkov, 1969)). Then, its any
second order derivatives belongs to C%*~¢:(R), for any &, € (0,1). Since any order derivatives

of harmonic functions are harmonic, the following Lemma follows from Lemma 1.2 in
(Volkov, 1979) (see Lemma 3, Chap. 4, Sec. 3 in (Mikahilov, 1978), also).

Lemma 2.18 Let p(x4, x2, x3) be the distance from the current point of the open parallelepiped
R to its boundary. Then for any derivative @ of the solution of the problem (2.120) of order m,

(m > 2) with respect to x4, x,, x3 satisfy the inequality
|@™ (%1, X2, X3)| < Mypp™ ™42, (2.136)
where M,,, > 0 is constant dependent on m only.

Let ¥;(h) be the trace of @ = ((0%u)/(9x10x2)) on 1}", and let @y, be the solution of the

following problem

wy, = Swp on R, wy, = ‘Pjh on I}h,j =12,...,6. (2.137)
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Lemma 2.19 The following estimation holds

max__|a}, — (52) | < ch?, (2.138)

(xl;xz.X3)Eﬁh 6x16x2
where @y, is a solution of the finite difference problem (2.137).

Proof. From the definition of the boundary grid function ¥;(h) and from (2.137) for the error

function

& =0, —@ (2.139)
we have

& =S& +(Sw—w)onRy, & =00nl"j=12,...6 (2.140)

where @ is the solution of problem (2.120). By virtue of (2.136), by analogy with the proof of
Lemma 3 (Volkov and Dosiyev, 2012) it follows, that

max_ |Sw - | < c; (%), k =12,...,N(h). (2.141)

(x1,X2,X3)ERp k

On the basis of Lemma 2.1 and (2.141) for the solution of problem (2.140), we obtain

N(h) .
iz oS
k=1
< c;him

Theorem 2.6 The following estimation is true

%u
6x16x2

max_[@y, — (5oa) | < ch? (2.142)

(x1.X2,%3)ERY

where u is the solution of the problem (2.1), @, is the solution of the finite difference problem
(2.128).
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Proof. Let

&, = W, — @ on R¥, (2.143)
where w = (6:261; ) = (867”). From (2.128) and (2.143), we have
1 2 2

ep = Sep + (Sw—w) on Ry,
en = Yn(p) —won [k =1245¢, =00onl,p =36
We represent
ep = €} + &7, (2.144)
where
gt = Sef on Ry, (2.145)
& = Yen(vp) —won Lk = 1,245, et =0on Ll p = 3,6; (2.146)
&f = Seh+ (Sw—w) on Ry, &f =00n " j=12,....6. (2.147)

By Lemma 2.17 and by the maximum principle, for the solution of system (2.145), (2.146), we
have

1 2
max _ |&;| < max max v . (vy,) —w| < ¢ h”. 2.148
(x1.x2.x3)ERh| hl q=12,..,6 (xl,xz,x3)el"l{l| qh( n) | ! ( )

The solution &7 of system (2.147) is the error of the approximate solution obtained by the
finite difference method for problem (2.120), when it is assumed that on the boundary nodes

I}h, the exact values of the functions ¥;,j = 1,2,...,6 are used.
From Lemma 2.19, it follows that

2 2
max g7l < c,h”. 2.149
(x1.x2.x3)€§h| hl 2 ( )

By (2.143), (2.144), (2.148) and (2.149), the estimation (2.142) holds. m
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Remark 2.3: We have investigated the method of high order approximations of the second

0%u

. . 92 .
~ and pure derivative #. The same results are obtained for the
2 1

order mixed derivative
x4

second order mixed derivatives 9*u/dx,,dx,, (m # n) and pure derivative 0*u/d?x;, where
m,n = {1,2,3}and | = {2,3}, analogously, by using the same order forward and backward

formulae in appropriate faces of the parallelepiped.
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CHAPTER 3

A HIGHLY ACCURATE DIFFERENCE METHOD FOR APPROXIMATING OF THE
FIRST DERIVATIVES OF THE DIRICHLET PROBLEM FOR LAPLACE'S
EQUATION ON A RECTANGLE

In this chapter, we concentrate highly accurate difference method for approximation of the first
derivatives of the Dirichlet problem for Laplace’s equation. O (h8p), where p is the distance
from the current grid point to the boundary of the rectangle and h is the mesh size, order of
accurate three-stage difference method on a square grid for the approximate solution of the
Dirichlet problem for Laplace's equation on a rectangle is proposed and justified without taking
more than 9 nodes of the grid. At the first stage, by using the 9-point scheme the sum of the pure
fourth derivatives of the desired solution is approximated of order O (h®p). At the second stage,
approximate values of the sum of the pure eighth derivatives is approximated of order
0 (h?p) by the 5-point scheme. At the final third stage, the system of simplest 5-point difference
equations approximating the Dirichlet problem is corrected by introducing the quantities
determined at the first and second stages. By using this error estimation it is proved that the
proposed three stage method constructed to find an approximate value of the first and second

order pure derivatives of the solution converges uniformly with an order of 0 (h®).

3.1 Some Differential Properties of the Solution to the Dirichlet Problem

Let IT = {(x,¥):0 <x < a,0 < y < b} be rectangle, a/b be rational, y;(y;), j=1,2,3,4, be the
sides, including (excluding) the ends, enumerated counterclockwise starting from the left side
Yo=yay1=Vs) and lety = Uj*zlyj be the boundary of I1. Denote by s the arclength,
measured along y, and by s; the value of s at the beginning of y;. We say that f € ckA (D), if f

has k —th derivatives on D satisfying a Holder condition with exponent A € (0,1).
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We consider the boundary value problem
Au=0 onll,u = @;(s) onyj, j=1234, (3.1)
where A = 9%/0x* + 8%/0dy?, @; are given functions of s. Assume that
@; € CY* 2 (y),0<1<1,j=1234, (3.2)
97(s;) = (D% (s, 9 = 0,1,2,3,4,5. (3.3)

Lemma 3.1 Under the conditions (3.2) and (3.2) the solution u of the Dirichlet problem (3.1)
belongs to the class (1), 0 < A < 1.

Proof. Lemma 3.1 follows from Theorem 3.1 in (Volkov, 1965). m

Lemma 3.2 The following type of partial derivatives of the solution u to problem (3.1) satisfy

the next inequality

012y
9x2P9yl2-2p

max sup

< oo, (3.4)
0<p<6 (x,y)eN

. . } alOu alOu
Proof. From the conditions (3.2) and (3.3) follows that the derivatives ( ) and (

5710 6y10) of the

010y
9x10

solution u of problem (3.1) are continuous on I1. We put w = ( ) The function w is

harmonic in I1, and is the solution of the problem
Aw =0 on II, W='Pj onyj,j=1,...,4,

where

610(p1_
Y, = _<6x1°>' =13

610¢H
¥, =<6x10>' V=24
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From conditions (3.2)-(3.3) it follows that
Y € C**(y;),0<A1<1,
lP](S]) = lej_l(Sj), ] = 1,...,4‘.

Hence, on the basis of Theorem 4.1 in (Volkov, 1969), we have

sup  |0%u|  sup |0*w
(ny) ell axlz B (X,J’) €ll axz <% (35)
sup 0%%u sup 0w - 36
— | = _— 0, .
(x,y) € II'gx109y2| ~ (x,¥) € IT|9y2 (3.6)
Similarly, it is proved that,
sup 0%%u 0%%u
(x,y) €T ||ayt2|’ |0y100x2 <@ 3.7
Whenw = (2;011;) the function w is harmonic on 11, and is the solution of the problem

Aw =0 on II, W=®j ony;,j=1,..4

where

From conditions (3.2)-(3.3) it follows that,
9; €C**y;),0<A<1,

QJ(S]) = ¢j_1(5j), ] =1,...,4.
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sup  |0%u|  sup  |0%w

(,y) €T |3y12| = (x,y) € 1T [3yZ| < (3.8)
sup 0%u | sup |0*w

(x, ) € T [5y10952| ~ (x,y) € I |gx2 < oo, 3.9

From (3.5)-(3.9), estimation (3.4) holds.m

3.2 Finite Difference Problem For 3-Stage Method

Leth > 0,and a/h > 4,b/h > 4 be integers. We assign IT", a square net on II, with step size

h, obtained by the lines x,y = 0, h, 2h,.... Let yjh be a set of nodes on the interior of y; , and let
Yt =uyty = vis vyt =u G uy) It =1t uyh

Let the operators A and B be defined as follows:
Au(x,y) = [u(x+ h,y) +u(x —h,y) +u(x,y + h)

+u(x,y — h)]/4 (3.10)

Q® i+,

I, J+1

i, -1

-.)—T—(.r
!

X

i-1,]

Figure 3.1: four points around center using the operator A. Each point has a distance

of h from the point (x, y)
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Bu(x,y) = {4lu(x+h,y) +u(x—h,y)+u(lx,y+h)
+u(x,y—h)]+u(x+hy+h)+ul(x—hy+h)

+u(x+h,y—h) +u(x—h,y—h)}/20 (3.11)

_li-l.j-l li.j-l li+l.j-|

i1 i+,

i+l i+1,j+1

-1 j+1

S

Figure 3.2: eight points around center using the operator B. Blue point has a distance

of h and red point has a distance of v2h from the point (x, )

To simplicity, we will denote by c, c4, ¢z, ... as constants which are independent of h and the

nearest factor, and identical notation will be used for various constants.

We present two more lemmas. Consider the following systems:

qn = Aqn + gp,onIl", q, = 0ony,, (3.12)

Gn = AQp + gp,on 1", g, = 0 onyp, (3.13)
and

Prn = Bpp+ fr,on Il p, =0onyy, (3.14)

Prn = Bpn + fr,on 1", 5, = 0 onyy, (3.15)

where g, gn, f» and f;, are given functions, and |g,,| < g, and |f;,| < f,, on IT™.
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Lemma 3.3 The solutions qy, g5, pr and p;, of systems (3.12)-(3.15) satisfy the inequality
|qn| < G on 11",
and
|pn| < pp on 1"

Proof. The proof of Lemma 3.3 follows from the comparison theorem (see Chapter 4 in
Samarskii, 2001).m

3.3 0(h®) Order of Accurate Approximate Solution
Let u be a solution of the following finite difference problem
u=Auonll®,u, =g¢;onl, j=1234,

where ¢;, j = 1,2,3,4, are functions (3.1). A is five point operator defined by (3.10). Taking

into account that the function u is harmonic, by exhaustive calculations, we have

dy = +1 h? 62u+62u +h4 64u+64u +h6 66u+66u
YRR 2\ ax2 dy?)  41\ox*  ay*) 6!\dx6 o0y

+h8 68u+68u ++h10 61°u+610u N 1 012

8! \dx8  0Jy8 0x10 ~ gylo ] " 12! (R

10!

Since u is harmonic so

0%u  9%u 0%u = 9%u 00y 910y
(5 +555) = 0and (55 +55%) = 0.and (S5 + 555) = 0.

Then we have,

oy — +1 h* 04u+04u +h8 68u+68u N 1 02
u=ut N w\ant Tayt) Tar\axe Taye) T O
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3.3.1 First stage for the solution

Onyy, set

. )_1 64u+64u 316
w=utwy) =5\gat ) (3.16)

where u is the solution of the Dirichlet problem (3.1).

The function (3.16) is the solution of the following boundary value problem

Mt =0 onTLu*=¥tony! Uy, j=1234 (3.17)
where
Wi =54, j=24
P = \ gf(p]_ ' . (3.18)
Y =25 J=13

On the basis of the Lemma 3.1 solution u of problem (3.1) belongs to the class C***(I1),0 <

A < 1. Let us show that u* is a harmonic

At — 9% (1 64u+64u N 0% (1 64u+64u
T oxz\ 2\ ox% dy* dy?\2\ox* ady*

1 66u+ 0%u N 0%u +66u
0x6  0dx20y* 0dx*dy? 0dy®)

Aut ==
=y

A L 1 66u+66u+ 04 62u+62u
T2\ 0x6 T oy T ax2ay? |ayz T axz|)

Since u harmonic, we have

2%u 3 a%u q a%u 3 0%u
ax6  Ox20y* an dys  dx*dy?

then
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A L 1 86u+66u 1 9t 62u+62u “ o
=2\ 0xe ays) 20x2dy%|ay?  oxz|

Let us show that boundary functions of u* are

4

Q; .
u41h=q’4=l<64—<p+64_<p)= 709 dxt ’

14 J 2\ ox* oyt d4<ﬂj
dy*’

|70 = j=13

Furthermore, as follows from Lemma 3.2 the following 8 — th order derivatives are bounded

on II:

08u*

0x2PQy8-2p < .

max sup
0=p=4 (x,y)en

We consider the following system of difference equation for the approximation of problem
(3.17) and (3.18):

up = Buy on " up =¥} ony/uy;,j =1234, (3.19)

by the maximum principle, problem (3.19) has the unique solution, where le“ are functions

(3.18) and B averaging operator defined by (3.11).
Lemma 3.4 For the solution of the problems
pn = Bp, +h8onil" q, =0ony,, (3.20)
the following inequality holds:
pn < G) pdh® on 11",

where d = max{a, b},p = p(x,y) is the distance from the current point (x,y) € IT" to the

boundary of the rectangle 17"
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Proof. We consider the functions
| 5 _ 5 =
p,(ll)(x, y) = (5) hé(ax — x?) > 0, p,(lz)(x, y) = (5) hé(bx — x?) = 0 onII.
Let =py,” h
et pp(x,y) = p, " (x,¥), then

— 1 _ _
Bpn(x0,¥0) = T (Pn(xo + h,y0) + Pn(xo — h,yo) + Pr(x0,y0 + h)

1
+Pp (%0, Y0 — h)) + %(m(xo + h,yo + h) + pp(xo + h,yo — h)

Pr(xo — h,yo — h) + Pr(xo — h,yo + h))
6
= ?(ax0+ah—x§—2x0h—h2+ax0—ah—x§

6
+2xoh — h? + axy — x& + axy — x&) + ' (axy + ah — x% — 2xyh

—h? + axy + ah — x2 — 2xoh — h? + ax, — ah — x2 + 2xoh — h?

+ax, — ah — x3 + 2xoh — h?)
6 h6
= 3 (4ax, — 4x% — 2h?) + T (4ax, — 4x% — 4h?)

h6
= ﬁ(ZOaxo — 20x5 — 12h?)
— 5 6 2 8
= §h (axy —x5) —h
= pn(x0,¥0) — h®.
Similarly let 5, (x, y) = p2 (x, ), then

., 1 _ _ _
Bpp(x0,y0) = E(Ph(xo + h,yo) + Dr(xo — h,yo) + DPr(x0,y0 + h)

1
+pn (x0, ¥ — 1)) + %(ﬁh(xo + h,yo + h) + pr(xo + h,yo — h)

Pr(xo — h,yo — h) + pr(xg — h,yo + h))
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6
= ?(bx0+bh—x§—2x0h—h2+bx0—bh—x§

h6
+2xoh — h% + bxy — x2 + bxy — x3) + E(bxo + bh — x5 — 2x,h

—h? 4+ bxy + bh — x3 — 2xoh — h? + bxy — bh — x& + 2xqh — h?
+bxy — bh — x% + 2xoh — h?)

6 h6
= 3 (4bxy — 4x& — 2h?) + ' (4bx, — 4xs — 4h?)

h6
= ﬁ(ZObXO - ZOxg - 12h2)
— 5 6 2 8
= §h (bxy —x5) —h

= ﬁh(x(,)ly(l)) - h8’
which are solutions of the equation p, = Bp, + h® on IT". By virtue of Lemma 3.3 we obtain

pr < ,m}r%ﬁ;'l(x,y) < gpth on " m
=1,

Let @ be a solution of the problem
Aw =0 onll,w = 6;(s) ony;, j = 1,234, (3.21)
where 6;,j = 1,2,3,4 are given functions and

6, € C®4(y),0<A<1,j=1234, (3.22)

6 (s) = (D (5).9 =0,..3. (3.23)

Lemma 3.5 The estimation holds
max |Bw — w| < ch®,
(xy)enn

where @ is the of problem (3.21)-(3.23) on 11"

59



Proof.

Bw

{4[m(x+ h,y)+w(x —h,y)+w(x,y + h)
+w(x,y—h)]+ow(x+hy+h)+@(x—hy+h)
+w(x+hy—h) +o(x—h,y—h)}/20

= 1 h*( 0*w 0*w 0*w
—| 20w +—|( 3 + 6 + 3

20 6 \ Jdx* d0x?*dy? dox*
G070 g 000 50 0T g 0T
8! 0x8 0x6dy? dx*dy* d0x?dy®
LA I
Py

Since @ harmonic so

307 6 00 30T
ox* 0x20y? ax*+ )
We have
bo—w=t (300,05 07 159 00 45 0@ ,300@
e AT 9x60y2 " axtayr | “Cox2ays O 9xe )

Since Bw — @ contains only eighth order derivatives of @ of the form

(aas—w) 0<k<4

xzkays—zk

are bounded the proof of Lemma 3.5 becomes true.m

Lemma 3.6 The following estimation holds

4 _ 4 6
(xgl)aeﬁh |luy, —u*| < ch®p, (3.24)

where uj is the solution of the system (3.19), u* is the trace of exact solution of problem (3.17),

(3.18) and p is the distance from the current grid point to the boundary of the rectangle on I1".
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Proof. Let

g = up —ut on [ (3.25)
Then

Bey, = Bup — Bu* = Buj = Bg, + Bu*.
Moreover,

up = &, +ut.
By considering problem (3.19) it is obvious that
en = Bep + (Bu* —u*) on 11", &, = 0 on y". (3.26)

By virtue of Lemma 3.5 for (Bu* — u*) and applying Lemma 3.3 to the problem (3.20) and

(3.26), on the basis of Lemma 3.4 we obtain
len| < cph®. (3.27)

From (3.25) and (3.27) the proof of Lemma 3.6 can be done. m

3.3.2 Second stage for the solution

On yy, set

o o 1/0%u 08%u

where u is the solution of Dirichlet problem (3.1).
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The function (3.28) is the solution of the following boundary value problem

M =0 onTLul =¥ ony! Uy, j=1234 (3.29)
where
l,Ujs(x) — dg";i’ j=24
po = . j;‘(p]_ _ . (3.30)
lluj(y):dygl .]:1’3

On the basis of Lemma 3.1 solution u of the problem (3.1) belongs the class C***(I1),0 < A <

1. Let us show that u8 is a harmonic

Au® = 0% (1 08u+68u N 0% (1 68u+68u
T2\ 2\ 0k T ays dy2\2\ox8 = 0y

A g 1 61°u+ 0% N 0% +61°u
=2\ axt0 0x20y8  0x8dy?  oyl0)

2

A g 1 61°u+610u+ 0% 66u+66u
=2\ axt0 dy10 ~ 0x20y?|dy® = 0x®

)

Since u harmonic, we have

0%u 0%u 0%u 0%u
= and =

d0x® O0x?0y* dy® 0x*0dy?

66u+66u _ ot 62u+62u

9x6  dy® 9x20y?|ox?  0y?

alOu alOu alOu alOu
=— and =—

d0x10 dx*dy® dy® dx°ady*

then

A g 1 61°u+610u 1 08 62u+62u — o
=2\ axt0 ay10) 2\ oax*ay*|oxz  ayz|)
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Let us show that boundary functions of u? are

8

Q; .
u81h=‘1"-8=1 68_('04_68_('0 — ;) e’ T .
4 J 72\ 0x8 " ay8 8 d’p; '

Furthermore, as follows from Lemma 3.2 the following 4 — th order derivatives are bounded

on II:

0*u8

ax2p0y4—2p <

max sup
0sp=<2 (x,y)eN

We consider for the approximation of problems (3.29) and (3.30) the following system of

difference equation:
up = Aup on 1", uf = ¥;® onyl,j = 12,34, (3.31)

by the maximum principle, problem (3.31) has the unique solution, where 'Pjs are functions

(3.30) and A averaging operator defined by (3.10).

Lemma 3.7 For the solution of the problems

qn = Aqn+h*on ", q, = 0 ony,, (3.32)
the following inequality holds:

qn < 2pdh?on ™,

where d = max{a, b}, p = p(x,y) is the distance from the current point (x,y) € I1" to the

boundary of the rectangle 17"
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Proof. We consider the functions

g () = 2h*(ax —x?) 20, ;”(x,y) = 2h*(bx —x?) 2 0 on L.

Let g,(x,y) = qfll)(x, y), then

Agh(x(,b 3’(’)) =

1

2 (@n(xo + h,¥0) + gn(x0 — b, o) + qn(x0,¥0 + h)
+C—1h(x0i Yo — h))

2h%(axy + ah — x — 2xoh — h? + ax, — ah — x&

+2xoh — h? + axy — x3 + axg — x3)
2
> (4ax, — 4x% — 2h?)

2h%(axy — x&) — h*
ﬁh(x(’)' y(’)) - h4'

Similarly let g, (x,y) = 32 (x,y), then

Aqp(xp,¥0) =

1

P (qn(xo + h,y0) + qn(xo — h, o) + Gn(x0,y0 + )
+C—Ih(xo,)’0 - h))

2h?(bxy + bh — x3 — 2xoh — h? + bxy, — bh — x?

+2x0h - hZ + bXO - xg + be - xg)
hZ
= (4bx, — 4x% — 2h?)

2h?(bxy — x2) — h*
Gn(x0,¥0) — h*.

which are solutions of the equation g, = Aq, + h* on IT*. By virtue of Lemma 3.3 we obtain

qn < Min gi(x,y) < 2pdh®on 1" m
i=1,
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Let w be a solution of the problem

Aw =0 onll, w = ¥;(s) ony;, j = 1,234, (3.33)
where ¥}, j = 1,2,3,4 are given functions and

Y e C*M(y;),0<A1<1,j=1234, (3.34)

w20 (s) = (D) (s),q = 0.1, (3.35)

Lemma 3.8 The following estimation holds

(;gzjlgnlAw — w| < ch?,
where w is the of problem (3.33)-(3.35) on 11",

Proof.

Aw = {w(x+hy)+wkx—hy)+w(xy+h)
+w(x,y —h)}/4

= 1 A +2h2 02w+02w +2h4 64w+64a) N
2\ "¢ 2! \0x? = 0y? 41 \ 9x* = dy*

Since w harmonic so

62w+62w ~ 0o
ax2 = ady?)

We have

4 3 h* 64a)+64’w
CTO= o4\ axt Ty )

Since Aw — w contains only fourth order derivatives of w of the form

(""}—“’),osksz

6x2k6y4_2k

are bounded the proof of Lemma 3.8 becomes true.m
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Lemma 3.9 The following estimation holds

8 _ ,,8 2
(xg/l)aé)élh |lu;, — u®| < ch®p, (3.36)

where u$ is the solution of the system (3.31), u® is the trace of exact solution of problem (3.29),

(3.30) and p is the distance from the current grid point to the boundary of the rectangle on I1".
Proof. Let
gp = ud —ub on 1" (3.37)
Then
Agp, = Aub — Au® = Aud = Agy + Aud.
Moreover,
up =g, +ub.
By considering problem (3.32) it is obvious that
e, = Agp, + (Aud —u®) on 11", &, = 0 on y". (3.38)

By virtue of Lemma 3.8 for (Au® — u®) and applying Lemma 3.3 to the problem (3.32) and

(3.38), on the basis of Lemma 3.7 we obtain

len| < cph®. (3.39)
From (3.37) and (3.39) the proof of Lemma 3.9 can be determined. m
3.3.3 Third stage for the solution

Let uy and uf be the solution of the difference problem (3.19) and (3.31) respectively. We
approximate the solution of the given Dirichlet problem (3.1) on the grid 1" as a solution u;, of
the following difference problem

8
R . R
24 " 40320

u, = Auy, — upon ™ up = @; onyl,j=1,..4  (3.40)
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Lemma 3.10 For the solution of the problems
qn = Aqn, +h*on ", q, = 0onyy,
the following inequality holds:
qn < 2pdh®onih,

where d = max{a, b}, p = p(x,y) is the distance from the current point (x,y) € I1" to the

boundary of the rectangle I7".

Proof. We consider the functions
E[,(ll)(x, y) = 2h8(ax — x%) = 0, E[flz)(x,y) = 2h8(bx — x?) > 0 on 1.
Let g, (x,y) = ci,(f)(x, y), then

- ! ! 1 — - p—
Aqn(xo,yo) = Z (@n(x0 + h,yo) + gn(xo — h,¥o) + Gn(xo, yo + h)
+C_1h(x0J Yo — h))
= 2h8(ax, + ah — x3 — 2xqh — h? + ax, — ah — x3

+2xoh — h? + axy — x& + axy — x&)

h8
= 7(4ax0 — 4x2 — 2h?)

= 2h8(ax, — x2) — h1°
= pn(xg,y0) — h®.
Similarly let g, (x,y) = 72 (x,y), then

— ., 1 _ _
Aqp(xg,¥0) = 7 (@n(xo + hyo) + qn(xo — h, o) + gn(x0,y0 + h)

+qn(x0,¥o — h))
= 2h8(bxy + bh — x3 — 2xoh — h? + bxy — bh — x?
+2xoh — h? + bxy — x2 + bxy — x2)
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8
= > (4bx, — 4x5 — 2h?)

= 2h8(bx, — x2) — h1°
= C_Ih(x(’); 3’(,)) - hlo'
which are solutions of the equation g, = Aqp, + h® on IT". By virtue of Lemma 3.5 we obtain

qn < min gi(x,y) < 2pdh®on 1" m
=1,

Theorem 3.1 On IT", it holds that

max |u, —u| < ch®p, (3.41)
(eyenh

where u is the trace of the exact solution of problem (3.1) on 1%, u, is a solution to
system (3.40), p is the distance from the current grid point to the boundary of the

rectangle.

Proof. On the basis of Lemma 3.6 and Lemma 3.9 by using Taylor's formula, we have

u(r,y) = Auxy) - () utey) - (5) ud@y) — (o y) (342)

where (x,y) € 11", u is the solution to Dirichlet problem (3.1), u* and u® are the
functions defined in (3.16) and (3.28),

h12 02u(x+64,y) 0 2u(x,y+6;) .
o) = () (Ft) + (e o < 1= 12, @49

and by Lemma 3.2

I7(x,v)| < c;h12 (3.44)
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We put
& =up —u on " (3.45)

where u is the solution to Dirichlet problem (3.1) and wu,, is the solution of the system
(3.40).

From (3.40), (3.42) and (3.45), we have

4 8

&= Agp + <Z> [ur Ce, y) —u(x, W] + <§> [uh Cx, ¥) — u®(x, ¥)]

+r onll", e, =0 ony/" (3.46)

By virtue of Lemma 3.6 and Lemma 3.9 from (3.44) follows

h* h®
<E> lu* —up| + <§> [u® —ul| + Ir| < c,h° on 1T, (3.47)
Now, from (3.46) and (3.47) we have

&, = A&, + c3h* on %,

& =0onyh
Then, by Lemma 3.3, Lemma 3.6 and Lemma 3.9, we obtain

len] < 1&,] < 2c,dhBp  oF len| < ch®p,

where ¢ = 2c¢,d,d = max{a, b}, and p is the distance from the current point

(x, y)elT™ to the boundary of the rectangle I7. n
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3.4 Establish Of The First Derivative Problem
We denote x; = (‘;—Z) onvy;,j = 1,2,3,4, and consider the boundary value problem:
Av=0onll,v=yxjony;j=1234, (3.48)

where u is the solution of the boundary value problem (3.1).

On I1, we introduce the functions v™, m = 4,8 as

o= v = (3 [(2)  (Z2)] 349

where v is the solution to Dirichlet problem (3.48).

We put xi* = v™(x,y) ony;,j = 1,2,3,4. It is easy to check that the functions (3.49) are

unique bounded solution of the following boundary value problem
Av™ = 0 onll, (3.50)
v = xit ony;,  j=1234 m=48. (3.51)

From (3.2), (3.3), (3.49)-(3.51), and Theorem 3.1 in (Volkov, 1965) follows that the boundary

functions xj",j = 1,2,3,4 satisfy the conditions
xJt € CUMA(y),0< A< 1, (3.52)

(X}”)zq(sj) = (—1)"()(,-"11)2q,m =4,8; ¢=0,1,...,(m/2). (3.53)

On the basis of Theorem 3.1 in (E.A. Volkov, 1965) by taking (3.52) and (3.53) into account, it

follows that v™ € C11=™A(1T),m = 4,8.
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3.5 3 Stage Method for the First Derivative
Let v be a solution of the following finite difference problem
v=AvonTl",v, = y;only,  j=1234,
where y;,j = 1,2,3,4, are functions (3.48). A is five point operator defined by (3.10).
Av(x,y) = %(v(x +hy)+vix—hy)+v(x,y+h)+vix,y— h))

Taking into account that the function v is harmonic, by axhaustive calculations, we have
Ay = +1 h? 62v+62v +h4‘ 64‘v+64v +h6 66v+66v
VEVTN 2\ axz T ayz ) T ar\ax® T oyt ) T et \ax6 T aye
+h8 68v+68v N 1 0(h10
8!'\ox8 dy8/ 10! (R
Since u is harmonic so v = Z—Z is also harmonic, then

(a—zv+2—;§)=0and (6—6"+Z—;Z)=0.

dx2 dx6

Then we have,

Ay = +1 h* 64v+64v +h8 68v+68v N 1 0(h)
VEVT 4 \0x% T ayd) T \axe T aye) T 10! '

3.5.1 First stage for the first derivative

On yy, set

1/0%v 0d*v
, (3.54)

”4=”4<x'y>=5<w+a—w
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Letv = (Z—Z) and put equation (3.54), we have

. )_1 0* (au)+a4 (6u> 10 64u+64u
VoS VY=o 0xr \ox dy*\ax/) | 20x\ox*  oy*

0

_ 4
=—u
0x

where u* is the solution to Dirichlet problem (3.17).

)

(3.55)

We denote y;* = v* ony;,j = 1,2,3,4, and consider the boundary value problem:

— — 4 C—
vt =0onll,v* = xjony;j=1234,
X €CTMy),0<1<1,j=1234,
2q 2q
()(f) (sj) = (—1)‘1()(;-’_1) (sp),q =0,1,2,3.
where v* is the solution of the boundary value problem (3.55).

We put

4 4 1 4 4
xtn(id) = (z57) (21479 (0,) + 360u ()
— 450u;(2h,y) + 400uz (3h,y) — 225uj (4h,y)

+72uf(5h,y) — 10uz (5h,y) Jon vyl
X = (o) [147%4(a,y) — 360uf(a — h,y)
+450uy(a — 2h,y) — 400uz (a — 3h,y)
+225up(a — 4h,y) — 72up(a — 5h,y)

+10uf(a — 6h,y)] onyl
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(3.57)

(3.58)

(3.59)

(3.60)



4

oy
Xpn(up) = ( a;) onyy,p =24, (3.61)

where u; is the solution of the finite difference boundary value problem (3.19) and BU]-“, j=

1,2,3,4 are boundary functions of problem (3.20).

Lemma 3.11 The following inequality is true
Xk (un) = Xien (| < ch® k = 1,3,
where uj is the solution of the problem (3.19), u* is the solution of problem (3.17).

Proof. On the basis of (3.59), (3.60) and Lemma 3.6, if k = 1, we have

i)~ a9 = (g57) CH00RECh ) — ')
+450|uz (2h, y) — u*(2h,y)| + 400|ug (3h,y) — u*(3h, y)|
+225|uz (4h,y) — u*(4h, y)| + 72|uz (5h, y) — u*(5h, y)|
+10|uf(6h,y) — u*(6h,y)|)
< (ﬁ) (360(ch)hS + 450(c2h)hS + 400(c3h)hS

+225(c4h)h® + 72(c5h)h® + 10(c6h)h®)

< (L> (3780c,h”) < c,h®
= \60n 1=

Similarly if k = 3,

1
i (ud) — xda (u®)] < (m) (360Jut(a — h,y) — u*(a — h,y)|

+450|uz(a — 2h,y) — u*(a — 2h,y)| + 400|up(a — 3h,y) — u*(a — 3h,y)|
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+225|uz(a — 4h,y) — u*(a — 4h,y)| + 72|ui(a — 5h,y) — u*(a — 5h,y)|

+10|up(a — 6h,y) —u*(a — 6h,y)|)

1
< (60h) (360(ch)h® + 450(c2h)hS + 400(c3h)h®

+225(c4h)h® + 72(c5h)hS + 10(c6h)h®)

1 7 6
Hence
Lxin(up) — xen(W®)| < ch® k = 1,3, n

Lemma 3.12 The following inequality holds

max |)(kh(uh) Xinl < ch® k =1,3. (3.62)
Y)EVE

Proof. From Lemma 3.1 it follows that uj € C7*(IT). Then, at the and points (0, vh) € ¥} and
(a,vh) € y¥ of each line segment {(x,y): 0 < x < a,0 < y = vh < b}, (3.59) and (3.60) give
the sixth order approximation of ( ) respectively. From the truncation error formulas

(Burden and Douglas, 2011) it follows that

374

Hence,

67 4
max
. Gey)eyf 1 9x7
max |(th(u ) — okl < 7
(XY)EVk

h(2h)(3h)(4h)(5h)(6h)
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o’u*
dx7

< ¢h% k=1;3. (3.63)
On the basis of Lemma 3.11 and estimation (3.63) follows (3.62),

h6
— Imax
7 (x,y)eN

max |pin(up) — @il = max |@i, ) — i, ) + 9, (u*) — @]
(xry) Eyk (x'y) EYk

< maXh|<P1%h(u;{) — Pien W)
(xJ:V)EVk

+ max gy () - @il
(y)EY,

< cyh% + c5h®
< ch® m
We consider the finite difference boundary value problem

vy = Buj on l1", vt = xj, ony/',j = 1,234, (3.64)

where x7,,j = 1,2,3,4, are defined by (3.59)-(3.61).

Lemma 3.13 The estimation is true

ou*
4 _ [
(%)
where v* is the solution of problem (3.56) and v} is the solution of the finite difference problem
(3.64).

max < ch®, (3.65)

(x,y)enh

Proof. Let

g, = vy —vtonll, (3.66)
where v* = (%). From (3.64) and (3.66), we have
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&, = Bey + (Bv* —v*) on 1T,
en = @i (u) —vionyl, k=13,
en=0onyl,p=24

We represent

&y = & + &2, (3.67)
where

&t = Bej (3.68)

& = g —vtonyp, k=13, e =0ony}, p=24, (3.69)

er = Bep + (Bv* —vYonll", & =0o0ny/',j=1234. (3.70)

By Lemma 3.12 and by the maximum principle, for the solution of system (3.68), (3.69), we

have

max_|&t| < max

kn(un) = v < ch®. 3.71
(x,y)ell k=1 xmixglgpkh(uh) v |_C ( )

xy)ey

The solution & of system (3.70) is the error of the approximate solution obtained by the finite

difference method of problem (3.56), when the boundary values satisfy the conditions below;

o € C"M(y),0<1<1,j=1234, (3.72)

(2q) 2q)
@) (s) = DUeta) " (5).a =012 (3.73)
Since the function v* = (’2—’?) is harmonic on [T with the boundary functions (p]‘-‘,j = 1,2,3,4,
on the basis of (3.72), (3.73), and Theorem 12 in (Dosiyev, 2003), we have

2 6
(xgl)aE%h leq| < ch®. (3.74)

By (3.67),(3.71) and (3.74) follows the proof of Lemma 3.13. m
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3.5.2 Second stage for the first derivative

Onyy, set
1(0%v 0%
8 _ ,,8 - e —
v =7 (x;Y) - 2 <ax8 + ayg)) (375)
Letv = (z—z) and substitute it to (3.75), we have
1( 08 ,0u 08 (ou
8 _ ,,8 = — [ — - | —
vi=viny) =3 <0x8 (6x) AP (0x>>
190 08u+68u G 376
~2ax\ax® T ays) " ax" (3.76)

where u?8 is the solution of the Dirichlet problem (3.29).

We denote )(}3 =v®ony;,j = 1,2,3,4, and consider the boundary value problem:

Av® =00onll, v®=yjony, j=1234, (3.77)

X ECH(y), 0<A<1, j=1234 (3.78)
2q 2q

()" (s) = EDU(x-0) " (5), 9 = 0.1 (3.79)

where v8 is the solution of the boundary value problem (3.76).

We put

1
A @) = (57) (23980, + 4uf(h,y) ~uf@hylony!,  (3:80)

2h

8 (,,8) — 1
X3n(Uy) (ﬁ) [3¥8(a,y) — 4u;‘l (a—h,y)

+ud(a — 2h,y)] onyk, (3.81)
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8

oY,
Xpn(uh) = (a—xp) onyy,p =24, (3.82)

where uj, is the solution of the finite difference boundary value problem (3.31) and ¥, j =

1,2,3,4 are boundary functions of problem (3.30).
Lemma 3.14 The following inequality is true
|Xen (i) = xxn(W®)| < ch?, k = 1,3,
where u? is the solution of the problem (3.31) and u® is the solution of problem (3.29).

Proof. On the basis of (3.80), (3.81) and Lemma 3.13, if k = 1, we have
1 8 o
Lxih(up) — xp (®)| < (ﬁ) (4[u(h,y) — ud(hy)|
+|uf (2h, y) — u®(2h,y)|)

1

< (ﬁ) (4(ch)h? + (c2h)h?)
1 3

< (3)6em®

< Czhz.

Similarly if k = 3,

1
D) ~ 5@ < (55) Gluba - hy) = u(a— )

+|ub(a — 2h,y) —uB(a — 2h,y)|)

IA

(%) (4(ch)h? + (c2h)h?)

1 3
< (ﬁ) (6¢c3h?)
< C4h2.
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Hence

|X]§h(u’}$l) - th(us)l S Chzlk = 1131 |

Lemma 3.15 The following inequality holds

max | xien (uR) — Xicn| < ch? k= 1,3. (3.83)
y)EVR

Proof. From Lemma 3.1 it follows that u8 € C3*(IT). Then, at the and points (0, vh) € ¥ and

(a,vh) € ¥} of each line segment {(x,y):0 < x < a,0 <y = vh < b}, (3.80) and (3.81) give
8

the second order approximation of (%), respectively. From the truncation error formulas

(Burden and Douglas, 2011) it follows that

38
(xrill)ae))(/;? Oa? ﬁ(xj_xk)
n+1)!
R
Hence,
93u8
(0l () — il < <—x?fl€);£, " hizhy
h? i 93u8
- ?(g?é(n 6x3|
< oh? k=13 (3.84)
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On the basis of Lemma 3.14 and estimation (3.84) follows (3.83),

max |pgn(up) — k| = max |pg,uR) — 0 @®) + 0in(w®) — of|
ey)eyy (xy)eyy

< maXh|<P1§h(u;81) — Pkn (u8)|
(x'y)Eyk

+ max_ [pf,(u®) - o]
(xry)e)/k

< cyh? + c3h?
< ch®’ =
We consider the finite difference boundary value problem
vy = Avg on 1", v = x5 onyl,j = 1,2,3,4, (3.85)
where x5, j = 1,2,3,4, are defined by (3.80)-(3.82).

Lemma 3.16 The following estimation is true

ous
8 _ [
(%)
where v is the solution of problem (3.77) and v is the solution of the finite difference problem
(3.85).

< ch?, (3.86)

max
(x,y)emh

Proof. Let

g =v8 —vionll, (3.87)

8 __ 6u8
where v° = (E) From (3.85) and (3.87), we have

en = Aep + (Av® —v®) on 1",
en = Pin(W®) —vlonyy, k=13,

en=0onyl,p=24
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We represent

ep = &f + €2, (3.88)
where

ep = Agj, (3.89)

e = ppnW®) —vlonyl, k=13, e =0ony}, p=24, (3.90)

g2 = A2 + (Av® —v®on ", 2 =00n yjh ,j = 1,2,3,4. (3.91)

By Lemma 3.15 and by the maximum principle, for the solution of system (3.89), (3.90), we
have

max_|et| < max max |g0kh(uh) —v8| < ch?. (3.92)
(x,y)el =13 (x,y)ey

The solution &? of system (3.91) is the error of the approximate solution obtained by the finite

difference method of problem (3.77), when the boundary values satisfy the conditions below

@} € CMy),0<1<1,j=1234, (3.93)

(02)%(s) = D02 )*(s;).a = 0,1 (3.94)

8
Since the function v8 = (aaix) is harmonic on IT with the boundary functions (pf,j = 1,2,3,4,

on the basis of (3.93), (3.94), and Theorem 2.1 in (Volkov, 1976), we have

(xrjr/l)aeﬁ |e?| < ch?. (3.95)

By (3.88),(3.92) and (3.95) follows the proof of Lemma 3.16. m
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3.5.3 Third stage for the first derivative

Let the boundary functions ¢;,j = 1,2,...,6, in problem (3.1) on the sides y; be satisfied by the

conditions
@; €CY* (y;),0<21<1,j=12,..4 (3.96)

Let u be a solution of the problem (3.1) with the conditions (3.2) and (3.3). We give the

following Lemmas and Theorem related to the function w.
Let v = (a—”) and let y; = (a—”) on y;,j =1,2,...,4, and consider the boundary value
axl XJ axl y]l] )=y Yy y
problem:
Av=0onllL,v=yx;ony;,j=12../4, (3.97)
where u is a solution of the boundary value problem (3.1).

We define the following operators x,,, p = 1,2,...,4,

Xan(un) = ) [—22830, (0, ) + 6720uy, (b, y)

(840h

—11760u,(2h, y) + 15680u,(3h, y)
—14700uy (4h,y) + 9408u;,(5h,y)
—3920u,(6h,y) + 960u,(7h,y)

—105uy,(8h,y) Jon yt, (3.98)
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1
Xan(up) = (m) [2283¢5(a,y) — 6720u,(a — h,y)

+11760uy(a — 2h,y) — 15680u;(a — 3h,y)
+14700u,(a — 4h,y) — 9408uy(a — 5h,y)

+3920uy(a — 6h,y) —960u,(a — 7h,y)

+105u,(a — 8h,y) JonyZ, (3.99)
0¢,
Xph(uh) = (W) on Vz?;p = 2)4; (3100)

where u,, is the solution of the finite difference problem (3.47).

Lemma 3.17 The following inequality is true
e () — xen @) < ch®, k=14, (3.101)

where u,, is the solution of the finite difference problem (3.40), u is the solution of problem
(3.2).

Proof: It is obvious that y,,(up) — xpn(u) = 0 forp = 2,3. For k =1, by (3.98) and

Theorem 3.1, we have

anCn) = 21n @0 < (357) (672000, (h, ) — u(h )]

+11760|uy,(2h,y) — u(2h,y)| + 15680|u,(3h,y) — u(3h,y)|
+14700|up(4h,y) — u(4h,y)| + 9408|u,(5h,y) — u(5h,y)|

+3920uy (61, ) — u(6h, )| + 960wy (7h, ) — u(7h, )|
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< [—— 8 8
< (840h) [6720(ch)h® + 11760(c2h)h

+15680(c3h)h® + 14700(c4h)h® + 9408(c5h)h® + 3920(c6h)h®

+960(c7h)h® + 105(c8h)h®]

9
(840h).c.214200.h

— ¢,213361h°
= C2h8.

It is shown the same inequality is true when k = 3 also.

1
on(un) = 250 (] < (5] (67200un (@ = b y) = u(a = b, )]

+11760|up(a — 2h,y) —u(a — 2h,y)| + 15680|u,(a — 3h,y) —u(a — 3h,y)|

+14700|up(a — 4h,y) —u(a — 4h,y)| + 9408|uy(a — 5h,y) —u(a — 5h,y)|

+3920|up(a — 6h,y) —u(a — 6h,y)| +960|up(a — 7h,y) —u(a — 7h,y)|

+105|up(a — 8h,y) —u(a — 8h,y)|}
< (L) [6720(ch)R® + 11760(c2h)h®
= \8aon

+15680(c3h)h® + 14700(c4h)h® + 9408(c5h)hE + 3920(c6h)h®

+960(c7h)h® + 105(c8h)h®]

(L) c.214200.h° = c,h8. m
840h . . . 2 .
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Lemma 3.18 The following inequality holds

max_|xen(up) — Xkl < ch®, k=13, (3.102)
(x,y)el'[ﬁ

where yin, k = 1,3 are defined by (3.98), (3.99), and y; = (:Tu) on I, k =1,3.

Proof. From Lemma 3.1 it follows that u € C*%*(R). Then, at the end points (0, vh) € ¥y and

(a,vh) € y* of each line segment {(x,y):0 < x < a,0 <y = vh < b}, expressions (3.98)

and (3.99) give the eighth order approximation of (;7”), respectively. From the truncation error
1

formulas it (Burden and Douglas, 2011) follows that

0°u

max_[x(w) — x| < %u
0x°

h8
(x,¥)El, “ [?l (xr;I)a(lE)l(_[Z

< ,h8 k=1.;3. (3.103)
On the basis of Lemma 3.17 and estimation (3.101), (3.103) holds,

max h|th(uh) — Xkl = max h|)(kh(uh) = Xien (W) + xrn () — il
(x,y)EI, (xy)el,

< max h|)(kh(uh) — Xren (W]
(xy)el,

+ max |xen (W) — Xl
(x'y)enk

< c3h®+c,h8
< cchd u
Let v, be the solution of the following finite difference problem
vy = Avp onlly, vy, = xjp on nhj=1.2,...,4, (3.104)

where x;n, j = 1,2,...,4, are defined by (3.98)-(3.100).
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Let v and v¥ be the solution of the difference problem (3.64) and (3.85) respectively.

We approximate the solution v = (Z—Z) of the Dirichlet problem (3.97) on the grid /1" as a

solution v,, of the following difference problem
h* h®
v, =Av, — | — |vi — = | v8 on ",
o (4!) " <8!> ! (3105)
vp=x; onylj=1,..4,

where vy and v? are the solution of problem (3.64) and (3.85), respectively.

Theorem 3.2 The following estimation is true

max [y, — (22)
(2
(ey)enf 0x1

< ch®, (3.106)

where u is the solution of the problem (3.1) and v, is the solution of the finite difference
problem (3.105).
Proof. On the basis of (3.10), (3.49) and Taylor's formula, for the solution of problem (3.48) at

any grid (x,y) € IT", we have

h4 h8
v(x,y) = Av(x,y) — <—> vi(x,y) — <—> v8(x,y) —r(x,y), (3.107)

4! 8!
where
h10 0% (x + 64,y) 0% (x,y + 6,)
r(x,y) = + )
2 % 10! 0x10 dy1o

16;] < 1,i = 1,2. (3.108)

By Lemma 3.1
[r(x,y)| < ch™®. (3.109)
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We put
g =v,—v on II" (3.110)
where v is the solution to Dirichlet problem (3.48) and vy, is the solution of the system (3.104).

From (3.105), (3.107) and (3.110), we have

en = Aey + (%) WExY) — vH(x, 1)

h®\ o 8 h
+ 3l (v, (x,y) —v°(x,y)) + r onII", (3.111)
en = Qrn(w) —v onyl, k=13, (3.112)
en = Oonyl, 1=24 (3.113)

By virtue of (3.102) and Lemma 3.13 and Lemma 3.16 it follows that

h* h®
<E> lv* —vg| + <§> [v® —vE| + || < c,h° on [T, (3.114)

On the basis of (3.109), estimation (3.114) by analogy with the proof of Theorem 3.1 from
(3.111)-(3.113), we obtain

max _|ep| < ch®. m
(x,y)€elh
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3.6. Approximation of the Second Order Pure Derivatives

2
We denote by w = (ZTZ)' The function w is harmonic on I1, on the basis of Lemma 3.1 is

continuous on I1, and is the solution of the following Dirichlet problem
Aw =0onll,w =9;ony;,j=12,..4 (3.115)

On I1, we introduce the functions w™, m = 4,8 as

m _ ., m _ 1 0" w(x,y) ™ w(x,y)

where w is the solution of Dirichlet problem (3.115).

Lemma 3.19 Functions (3.116) coincide with the unique bounded solution to the boundary

value problems

Aw™ = 0 onll, (3.117)
w™ = 9 =9 (y) onvyy, k=13, (3.118)
wm = 9" =9"(x) ony,, [ =24, (3.119)

where

dm+2§0k
) = (Gt ) k=13

;m=4,8. 3.120
dm+2¢l m ( )

It (x) = (dxm+2>'l = 2,4}
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Proof. It is easy to check that the functions (3.116) are harmonic on IT and satisfy the boundary
conditions (3.118) and (3.119). From (3.2), (3.3) and (3.120), it follows that the boundary

functions 9;", j = 1,...,4 satisfy the conditions

9t € CO*(y;), 0<a<1, 1am
() = ~DU0)" g =0123 '
and
97 € C*M(y;), 0<2<1, } : |
3.122

On the basis of Theorem 3.1 in (Volkov, 1965) by taking (3.121) and (3.122) into account, it
follows that w* € C®*(IT),w® € C*A/(I1),0 < 1< 1. m

9-point difference approximation, when m = 4,

wi =Bwi onll",  wi=9} onyluy, j=1234 (3.123)
and the 5-point difference approximation, when m = 8,

wg = Aw? on 1", wi = 19]8 on yjh uy;, j=1234, (3.124)

By the maximum principle, problems (3.123) and (3.124) have the unique solution.

Lemma 3.20 The following estimation holds

4 4 6
(x%ae%hlw" w*| < ch (3.125)

where wjr is the solution of the system (3.123) and w* is the trace of exact solution of problem
(3.117)-(3.119) when m = 4, on 11",
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Proof. From (3.2), (3.3) and (3.120) it follows that 19]4 € C“(yj). By virtue of the conjugation

conditions (3.121), for m = 4, at the vertices and on the basis of Theorem 12 in (Dosiyev,
2013) the inequality (3.125) holds.m

Lemma 3.21 The following estimation holds

8 _ ,,,8 2
(xfg)%)ﬁhlwh w | <ch (3.126)

where w is the solution of the system (3.124) and w? is the trace of exact solution of problem
(3.117)-(3.119) when m = 8, on IT".

Proof. From (3.2), (3.3) and (3.120) it follows that 19]8 € C“(yj). By virtue of the conjugation
conditions (3.122), for m = 8, at the vertices, on the basis of Theorem 1.1 in (Volkov,
1976) follows the inequality (3.126).m

Let wy and w? be the solution of the difference problem (3.123) and (3.124) respectively. We
approximate the solution of the given Dirichlet problem (3.115) on the grid /1" as a solution wy,

of the following difference problem

h* h8
wy, = Awy, — <I> wp — <§> wy on 1", w, =9; on yjh,j =1,...,4. (3.127)

Theorem 3.3 On IT", it holds that

_ 8
(xfg)aeﬁhlwh w| <ch (3.128)

where w is the trace of the exact solution of problem (3.115) on IT*, wy, is a solution to system
(3.128).
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Proof. On the basis of Lemma 3.2 and Lemma 3.19 by using Taylor's formula, we have

h* h8
w(x,y) = Aw(x,y) — (E) wi(x,y) — <§> wi(x,y) —r(x,y) (3.129)

where (x,y) € IT", w is the solution to Dirichlet problem (3.115), w* and w® are the functions
defined in (3.116),

o) = (o) () + (Lo )

0] <1,i=12, (3.130)

and by Lemma 3.2
lr(x,¥)| < c3h™. (3.131)
We put
gn=wp—w on II" (3.132)

where w is the solution to Dirichlet problem (3.115) and wy, is the solution of the system
(3.128).

From (3.127), (3.129) and (3.132), we have

4 8

h h
en = Aep + (Z) [wi (x, y) —w*(x, )] + <§> [wi (x, ) = wB(x, y)]

+r onll" e, =0 ony/. (3.133)
By virtue of Lemma 3.20 and Lemma 3.21 from (3.133) it follows that;

4 8
(h—) Iw* — wi| + (Z—) IW® — w8| + |r| < csh!® on ITM, (3.134)
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On the basis of (3.133), (3.134) and comparison theorem (see in (see Chapter 4., Section 3 in
(Samarskii, 2001), we obtain

max |&,| < ch®. n
(x,y)erh
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CHAPTER 4

A HIGHLY ACCURATE DIFFERENCE METHOD FOR APPROXIMATING
OF THE FIRST DERIVATIVES OF THE MIXED BOUNDARY VALUE
PROBLEMFOR LAPLACE’S EQUATION ON A RECTANGLE

In a rectangular domain, we discuss about an approximation of the first order derivatives for the
solution of the mixed boundary value problem. The boundary values on the sides of the rectangle
are supposed to have the fourth derivatives satisfying the Holder condition. On the vertices,
besides the continuity condition, the compatibility conditions, which result from the Laplace
equation for the second and fourth derivatives of the boundary values, given on the adjacent
sides, are also satisfied. Under these conditions for the approximate values of the first derivatives
of the solution of mixed boundary problem on a square grid, as the solution of the constructed

difference scheme a uniform error estimation of order 0(h?), (h is the grid size) is obtained.

4.1 Finite Difference Approximation

Let IT = {(x,¥):0 < x < a,0 <y < b} be rectangle, a/b be rational, y;(y/),j = 1,2,3,4, be
the sides, including (excluding) the ends, enumerated counterclockwise starting from the side
which is located on the x —axis (y° = y*,¥! = ¥>). Denote by s the arclength, measured
along y, and by s; the value of s at the beginning of y; and by y = U}*zl ¥;, the boundary of 11,

by v; a parameter taking the values O or 1, and 7, = 1 — v;.

We consider the boundary value problem

Au =0 onll, (4.1)
vju + 17]u1(11) =vj@; + yY; ony;, j=12,34, (4.2)
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where u,(ll) is the derivative along the inner normal, ¢; and i; are the given functions at the

arclength taken along y,
4
13217,-34, v, = 1. (4.3)

Definition 4.1 We say that the solution u of the problem (4.1) and (4.2) belongs to C;, ; (TD), if
vi@; + 0eCia(y;), 0<A<1,  j=1234, (4.4)

and at the vertices A; = y; N y;_, the conjugation conditions
vj(pj?qwf_z + ﬁj¢;q+8f — (_1)q+5r+51_1 (vj—1¢?2:6r_1
+5,_ 010, (4.5)
are satisfied, except may be the case when q = gfor T =3,wheret = vj_; + 2v;, 6, = 1

forw=0;8,=0forw+0,g=01,..,0,0 = [@]_&_

Leth > 0,and a/h > 2,b/h > 2 be integers. We assign IT", a square net on II, with step Size

h, obtained by the lines x,y = 0, h, 2h,.... Let yjh be a set of nodes on the interior of y; , and let

V' =vi0ve YU @fUyh, Ot =ntuyh

We consider the system of finite difference equation (see Dosiyev, 2003)
u, = BuyonIl®, (4,6)
Uup = @B]uh + E]h((pj'lp]) on yjh, (47)

U = G Buy + Ep(@ 940 ¥ i) Ny, j = 1,234 (48)

where
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Bu(x,y) = %{u(x +hy)+ulx—hy) +ulx,y+h)+ulx,y—h)}

+%{u(x+h,y+ h) +u(x +h,y—h) +u(x —h,y + h)
+u(x — h,y — h)}, (4.9)
the operators B;, Ejp, Bj, Ejh in the right coordinate system with the axis x;, directed
along y;4, and the axis y;, directed along y; have the expressions below:
Bu(0,y)) = (2u(h,y;) +u(0,y; + h) + u(0,y; — h))/5
+(u(h,y; + h) + u(h, y; — h))/10, (4.10)

3h 2h°
%wwws%%ﬂﬁf%—gyﬁ) (4.11)
B;j(0,0) = (2u(h,0) + 2u(0,h) + u(h, h))/5, (4.12)

) 3h
Ein(@0), jx1, ), Wjs1) = Vj@; + UjVj 1 Pjr — VjUjsq {? W +¥js1)
h? 2h°
@ ) (4)
+? ll}j+1—ﬁ(l/}j +Yi5 } (4.13)
The system of finite difference equations (4.6)-(4.8) which has nonnegative coefficients, with
the conditions (4.3) is uniquely solvable.

For simplicity, we will denote constants which are independent of h by c.

Theorem 4.1. Let u be the solution of problem (4.1), (4.2). If ueC, (1) and the
condition (4.3) holds, then

r%%xluh —ul| < ch?, (4.14)

where u, is the solution of the system (4.6)-(4.8).

Proof. The proof of Theorem 4.3 follows from the Remark 15 in (Dosiyev, 2003).m

Let us prove a theorem for the proof of the necessary theorems before examining the first

derivative.
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Let w be a solution of the problem
Aw = 0onll, w=®;ony; j=12,34, (4.15)
where ®;, j = 1,2,3,4, are the given functions, and
;€ C3(y),0<1<1,j=1234, (4.16)
®7(s;) = (=190, (s;),q = 0,1. (4.17)
Consider the following system of grid equations approximating Dirichlet problem (4.15)
wp = Bwy, onll",  w, =®; onyy, j=12,34, (4.18)

where B is the averaging operator given by (4.9) and @ is the function defined by (4.16). By the

maximum principle, which obviously holds for this system, system (4.18) has a unique solution.

Lemma 4.1 The solution w of problem (4.15) is from C3*(IT).
The proof of Lemma 4.1 follows from Theorem 3.1 by (Volkov, 1969).

Lemma 4.2 Let p(x,y) be the distance from the current point of open rectangle IT to its
boundary and let 8/9l = a« d/0x +  0/dy, a? + f? = 1. Then the inequality below holds

08w (x,y)

10 < cp*3(x,y), (x,y) €1l, (4.19)

where ¢ is a constant independent of the direction of differentiation d/dl, and w is a solution of
problem (4.15).
Proof. We choose an arbitrary point (x,, y,) € II. Let py = p(x,, Vo), and &, < II be the closed

circle of radius p, centered at (x,, yo). Consider the harmonic function on II

3 3
0 w(x' y) _ 0 w(xO' yO) (422)
al3 al3
By Lemma 4.2, w € C3*(IT), for 0 < A < 1. Then for the function (4.22) we have

v(x,y) =

max_|v(x,y)| < copl, (4.23)

(x,y)€0y
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where c, is a constant independent of the point (x,, y,) € II or the direction of d/dl. Since w

is harmonic on I1, by using estimation (4.23) and applying Lemma 3 from (Mikhailov, 1978)

we have
9 (Poy) ey . rb
al a3 al3 = o
or
2%w(x,y) _
T Sclpg S(XO'yO);

where c;is a constant independent of the point (x,, y,) € II or the direction of d/dl. Since the
point (x,,yo) € Il is arbitrary, inequality (4.21) holds true. m
Let IT*" be the set of nodes of grid IT"* whose distance from y is kh. It is obvious that 1 < k <
N(h), where

N(h) = [%min{a, b}], (4.24)
[d] is the integer part of d.
We define for 1 < k < N(h) the function

fk — {1' ,D(X,y) = kh:

00, plx,y) # kh. (4.25)
Consider the following systems

qn = Bqn, + g, onTI*, g, =0 ony™, (4.26)

dn = Bgn, + g, onIl*, g, =0 ony", (4.27)

where g, and g, are given function, and |g,,| < g, on IT".
Lemma 4.3 The solution g;, and g, of systems (4.26) and (4.27) satisfy the inequality

lgn| < gn onII"™.

The proof of Lemma 4.3 follows from comparison Theorem in Chapter 4 (Samarskii, 2001).
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Lemma 4.4 The solution of the system

vk =Bvf + fiF onTl", vf =0 ony” (4.28)
satisfies the inequality

v, y) <QF, 1<k <N, (4.29)
where QF is defined as follows

6p
—_, 0< ,y) < kh,
0k = Qk(x,y) = { h plx) (4.30)

6k, p(x,y) > kh.
Proof. Two different cases should be examined for the roof of Lemma 4.4. Each cases contains

three different cases as well.

Case 1:

Figure 4.1: For case 1, we selected region in II

) By virtue of (4.9) and (4.29) and by considering of Fig. (4.1), for 0 < p = kh

we have
1
BQk = 70 [4(6k + 6(k— 1) + 6(k — 1) + 6k)

+6(k — 1) + 6k + 6(k — 1) + 6(k — 1)]
66

= 6k ——,
20

which leads to

66
k_Bok=—>1=fk
Qn Qn 20> fr
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i) Consider Fig. (4.1), for p > kh we have,

1
BQ,’f:E[4(6k+6k+6k+6k)+6k + 6k + 6k + 6k = 6k,

which leads to
BQs = Q.

i) For p < kh we have,
BQk = % [4(6(k—1)+6(k—2)+6(k—2)+6(k—1))

+6(k—2)+6k+6(k—2)+6(k—2)]
=6k —9,
which leads to

QF—BQf=9>1=fF

Case 2:

Figure 4.2: For case 2, we selected region in II

i) Consider Fig. (4.2), for 0 < p = kh we have,
1
BQk = 20 [4(6k + 6(k — 1) + 6k + 6k)
+6(k — 1) + 6k + 6(k — 1) + 6k]
36

= 6k — —,
20
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which leads to

36
k _ pok _ _ fk

i) Consider Fig. (4.2), for p > kh we have

1
BQ§=%[4(6k+6k+6k+6k)+6k + 6k + 6k + 6k = 6k,

which leads to

BQf = QF.

11)) For p < kh we have
1
BQk = 70 [4(6k + 6(k—2)+6(k—1) +6(k — 1))

+6k + 6k + 6(k — 2) + 6(k — 2)]
= 6k — 6,

which leads to
Qn —BQr =6>1=f
From the above calculations we have
Q¥ =BQFK +gFf on1*, Qf =0 ony", k=1,..,N(h), (4.31)
where |gf| = 1. On the basis of (4.25), (4.28), (4.31) and the Comparison Theorem (see
(Samarskii, 2001), Chap. 4), we obtain
|vk| < Qk forallk, 1<k <N(h). m

Lemma 4.5 It is true that

Bp7(x0,¥0) = w(xo, ¥0)
where p; is the seventh order Taylor’s polynomial at (x, y,), w is a harmonic function.
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Proof. The seventh order Taylor’s polynomial at (x,, y,) has the form
6w+6w)+h2 62w+2 02w +62w +h3 3w
dx  dy 2!\ 0x? dxdy  0y? 31\ 0x3
3 3w 3 3w +63w +h4 64a)+4 0*w p 0*w 4 0*w
dx?dy dxdy? = dy3 41\ ox* d0x3dy d0x?*dy? dxdy3
+64w h® 65w+5 0w 20 0°w 20 0w e 0°w +65w
dy* x5 dx*dy d0x30y? 0x2dy3 ~ 0xdy* 0y®
g (e g 000 g 00 50 000 15 00 | 0
6! \ 0x° dx°dy dx*dy? dx30y3 0x20y* d0xdy>
0°w\ A’ 67w+7 0w o1 07w L35 07w L35 L)
dy® dx7 0x%0dy d0x50y? dx*dy3 0x30y*
0w 7 07w +07a)
0x20y> dxdy® ady’ )
Then according to (4.9) and (4.32) we have

pa(5,) = wxy) +h(

t3

+

+7!

+21

(4.32)

Bp;(x0,¥0) = 4(p;(x0 + h,y0) + p7(x0 — h, o) + D7(x0,¥0 + h)

%[
+p7(x0, Yo — h)) +p;(xo + h,yo + h) + p;(xo + h,yo — h)
+p7(xo — h,yo + h) + p;(xg — h,yo — h)]

_ ( )+h4 0% (0%w(xy,¥0) = 07w (X0, Yo)
- VYT a2\ axz 9y?

+h4 02 azw(xo’YO)_l_azw(xo»J’o) 3h® 0* azw(xo'YO)_l_azw(on’o)
40 dy? 0x? dy? 5% 6!dx* 0x? dy?

n 3h® 0* aza)(xo,yo)+62w(xo,y0) n 2h° a* azw(xo,YO)_l_azw(xo'}’o)
5% 6!dy* 0x?2 dy? 5 X 5!9x20y? 0x? dy? '

Since w is harmonic, we obtain

Bp;(x0,¥0) = w(xg,y,) ™

Lemma 4.6 The inequality holds

3+A4
k=12, .., Nh), (4.33)

max |Bw—w|<c
(x,y)€enkh k5-4’

where w is a solution of problem (4.15).
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Proof. Let (x,,y,) be a point of IT**, and let

Mo = {Cx,¥):Ix —xol <h,ly —yol <h}, (4.34)
be an elementary square, such that some sides of it lie on the boundary of the rectangle I1. On
the vertices of I1,, and on the mid points of its sides lie the nodes of which the function values
are used to evaluate Bu(x,,y,). We represent a solution of problem (4.15) in some
neighborhood of (x,,y,) € M*" by Taylor’s formula as;

w(x,y) =p;(x,y) + 13(x, ), (4.35)
where p,(x,y) is the seventh order Taylor’s polynomial, rg(x,y) is the remainder term, by
Lemma 4.4 we have

Bp7(x0,¥0) = w(xq, yo)- (4.36)
Now, we estimate rg at the nodes of the operator B. We take node (x, + h, y, + h) which is

one of the eight nodes of B, and consider the function

o(s)=w (xo + —V2h < s <+2h (4.37)

S S
ﬁd’o + ﬁ) ,
of one variable s. By virtue of Lemma 4.2, we have
8@ (s)

ds8

A—
<,(VZh—s)"", 0<s<V2h. (4.38)

We represent function (4.37) around the point s = 0 by Taylor’s formula

i(s) = p;(s) + 7(s), (4.39)
where
5.(s) = S S
p7(s) = py <x0 + \/7:3’0 + \/7) (4.40)

is the seventh order Taylor’s polynomial of the variable s, and

S
7g(s) =1y <x0 + 0<|s| <V2h (4.41)

S
_l + _) )
vz "z
is the remainder term. On the basis of continuity of 73(s) on the interval [—v2h,V2h], it

follows from (4.41) that
S s
15| X + —, +—)=limf V2h = €). 4.42
8( 0 \/E Yo \/E Parriry 8( ) ( )
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Applying an integral representation for 73 we have
VZh—€
75(V2h — €) _1 (\/Eh—e—t)7ﬁ8(t)dt 0<e <i
8 7 ’ V2
0

Using estimation (4.38), we have
V2h—e
|7s(V2h — €)| < c5 f (VZh—e—t) (VZh - t)Hdt
0

VZh—e
1 y)
<z f (Vzh—1t) e
0

<ch*3, 0<e< % (4.43)

From (4.41)-(4.43) yields

lrg(xo + h, Vo + h| < c; A3, (4.44)
where ¢, is a constant independent of the taken point (x,, y,) on IT**. Proceeding in a similar
manner, we can find the same estimates of ry at the other vertices of square (4.34) and at the
centers of its sides. Since the norm of B in the uniform metric is equal to unity, we have

|Brg (%0, ¥0)| < csh?*3. (4.49)
where cs is a constant independent of the taken point (x,,y,) on IT**. From (4.35), (4.36),
(4.45) and linearity of the operator B, we obtain

|Bw (xo,Y0) — (X0, ¥o)| < ch*3, (4.46)
for any (x,,y,) € M.
Now let (xo, Vo) € I¥", 2 < k < N(h) and rg(x, y) be the Lagrange remainder corresponding
to this point in Taylor’s formula (4.35). Then Brg(xy, ¥o) can be expressed linearly in terms of
a fixed number of eighth derivatives of u at some point of the open square II,, which is a
distance of kh/2 away from the boundary of I1. The sum of the coefficients multiplying the
eighth derivatives does not exceed ch®, which is independent of k (2 < k < N(h)). By Lemma

4.2, we have
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8 h/1+3
|Br8(x0'y0)| S c (kh)s_/l = CkS—A’ (4'47)

where c is a constant independent of k (2 < k < N(h)). On the basis of (4.35), (4.36), (4.46),
and (4.47) follows estimation (4.33) at any point (x,,y,) € T¥", 1 <k < N(h). m

Theorem 4.2 The following estimation holds

max|w, — w| < ch?+4,
Hh

where w is the exact solution of problem (4.15), w,, is the solution of the finite difference
problem (4.20).

Proof. Let
Eh(ny) = wh(x,y) - w(x,y), (X,y) € ﬁh' (448)
Putting w, = €, + w into (4.20), we have
€n, = Bep + (Bw —w) onTl*, ¢, =0 ony" (4.49)
We represent a solution of system (4.48) as follows
N(h) )
€p = z ef, N(h) = [ﬁmin{a, b}], (4.50)
k=1
where ef is a solution of the system
eX =Bef +of onTl"*, ¢,=0 ony", k=12, ..,N(h); (4.51)
Bw — nk
gk =)@« on P (4.52)
0 on Hh/nh .

By virtue of (4.51), (4.52) and Lemma 4.4, foreach k, 1 < k < N(h), we can find the
inequality

k k Th
max |en(x, < X, max Bw—w)|onlIl".
(x,y)enkhl n( Y)l Qn(x,y) (x,y)el'[khl( |

h3+l

< 6k 5

Ch3+/1

= . l1<ksN®. (4.53)
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According to (4.48)-(4.52),

N(h
wh—w=£h=8ﬁ+---+eh().

Comparing this with (4.53) produces

N(h)
1
max |w, — w| < ch®** Z =3 = ch3*4,
(xy)ent £ k-

Theorem 4.2 is proved. =

4.2 Approximation of the First Derivatives

We will calculate for the approximate values of the first derivatives of the solution of mixed

boundary problem on a square grid of the Laplace equation in this section. Denote by v; a

parameter taking the values O or 1, and v, = 1 — v;.

Let u be a solution of problem (4.1), (4.2). Letv = g—z and ¢; = g—z ony;, j =1,2,3,4,and

consider the boundary value problem:

Av =0onll,v =¢;ony;j=1234 (4.54)

yit = fo<x<Z y=blny} (4.55)
and

Vi = {§+h5xSa, yzb}ny_i}. (4.56)

We define the following operator ¢, p = 1,2,...,4,

ou(x,0
Sunun) = 2o on yf (4.57)
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1
Gon(up) = T, + v, o [11¢,(a) — 18up(a — h,y)

+9up,(a — 2h,y) — 2(a — 3h,y)] onyL, (4.58)

du(x,b) _ 1
o + U5 o [-11u,(x, b) + 18u,(x + h, b)

P3p(up) = V3

—9up,(x + 2h, b) + 2uy, (x + 3h, b)] on y2+, (4.59)

du(x,b) _

o + U5 oh [11u,(x, b) — 18uy(x — h, b)

bsn(up) = vy

+9uy, (x — 2h, b) — 2up,(x — 3h,b)] ony2~, (4.60)

1
Gan(un) = Tphy + vy on [—11¢4(0) + 18uy(h,y)

—9u, (2h,y) + 2uy, (3h,y)] onyl, (4.61)
uy, is the solution of the finite difference problem (4.6)-(4.8).
Let v, be the solution of the following finite difference problem
Vp = Bvp onlly, vy, = ¢j on yjh,j =1,2,....4, (4.62)

where ¢, j = 1,2,...,4, are defined by (4.57)-(4.61).

Lemma 4.7 The following inequality is true

|pen(un) — den (W) < ch?, (4.63)

where u;, is the solution of the finite difference problem (4.6)-(4.8) and u is the solution of

problem (4.1).
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Proof: It is obvious that, ¢,n(up) — ¢,n(u) = 0, if the Dirichlet condition is given on y; or
if the Newman condition is given on y; for j = 2,4, i.e., v, = v, = 0.. Assume that Dirichlet

condition is given on y,, By (4.58) and Theorem 4.1, we have

Bann) = ] < () (18lun(a— hy) ~u(a = h,y)]

+9|uy(a — 2h,y) —u(a — 2h,y)|

+2|uy, (a —3h,y) —u(a —3h,y)|}

IA

1
(@) [18ch* + 9ch* + 2ch*]

< ¢ghi .

Lemma 4.8 The following inequality holds

maXh|¢2h(uh) — ¢,| < ch?, (4.64)
(x,y)€lly

where ¢, is defined by (4.62) and ¢, = g—:‘ on y,.

Proof. ueC, ;(T1). Then, at the end point (a,vh) € y} of each line segment {(x,y):0 < x <
a,0 <y =vh <b,}, expressions (4.58) give the third order approximation of (Z—Z),

respectively. From the truncation error formulas it (Burden and Douglas, 2011) follows that

h3
max (]5 u ¢ <
' )E]/%ll ( ) 2| Cc1 max

4 (xy)eyk

0%u

( Jdx*

< chd (4.65)
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On the basis of Lemma 4.7 and estimation (4.65) follows (4.64),

m)axh|¢2h(uh) — ¢, = ( m)anh|¢2h(uh) — P2 (W) + P2p (W) — @5l

(x.¥)€y, X,Y)EY;

< max |¢zn(up) — dan (Wl
(x,¥)€Y;

+ max |¢on(w) — ¢
(x¥)ey,
< c3h3+c,h3

< C5h3. [ |

All the remaining case are solved in the similar way as Lemma 4.7 and Lemma 4.8.

Theorem 4.3 The following estimation is true

Ju
vy — —| < ch3, (4.66)

max
0x

(x,y)elh

where u is the solution of the problem (4.54) and v, is the solution of the finite difference
problem (4.62).

Proof. Let

& = v, —vonmk, (4.67)
where v = Z—Z. From (4.61) and(4.66), we have

&n = Bep + (Bv —v)onlt,

e, = ¢Ppp(up) —von yjh, j=1,234.
We represent

&y = €} + &7, (4.68)

108



where

gt = Bej on ", (4.69)
en = Pn(up) —vonyl,  j=1234 (4.70)
& = Bef + (Bv—v)onll", ek = 0onyl',j =1234. (4.71)

By Lemma 4.10 and by the maximum principle, for the solution of system (4.69), (4.70) we
have

; = m d) — 3
(x,J’)Eth a q=1234 (x.y)eyﬁll an(n) —v| < & (4.72)

The solution &2 of system (4.71) is the error of the approximate solution obtained by the finite
difference method for problem (4.62), when on the boundary nodes on yjh, the exact values of

the functions ¢; in (4.62) are used. It is obvious that ¢;, j = 1,2,3,4, satisfy the conditions
¢ €C3My;),0<2<1,j=12,..4, (4.73)

Since the function v = Z—Z is harmonic on I1, where u is the solution of (4.1), (4.2), the

boundary functions ¢; = g—z on y; satisfy the conjunction conditions at the vertices of

I1:
¢7(s;) = (=), (s;),q = 0,1. (4.74)

Therefore on the basis of Theorem 4.2, for the error function &2 as the solution of the finite

difference problem (4.71), we have estimation

max |eZ| < c,h3A, (4.75)
(xy)Evy

The inequality (4.66) follows by (4.67), (4.72) and (4.75). m

109



CHAPTER 5

NUMERICAL EXPERIMENTS

In this chapter we present the numerical results obtained in support of the theoretical part. Our
aim is to show the high order accurate approximation of the first, second order pure and mixed

derivatives of the Laplace equation on a rectangle and a rectangular parallelepiped.
Numerical Examples

The following part, supports the theoretical part by numerical results are which obtained in a
rectangle by using Gauss—Seidel iterative method and rectangular parallelepiped by using

Discreate Fourier method.
The results on rectangular parallelepiped have four parts:

e The approximate results for the solution of the Dirichlet problem of Laplace’s equation
e The approximate results for the first derivative of the solution
e The approximate results for the pure second derivative of the solution

e The approximate results for the second order mixed derivative of the solution.

The results for the solution of the Dirichlet problem on a rectangle domain have three parts:

e The approximate results for the solution of Laplace’s equation
e The approximate results for the first derivative of the solution

e The approximate results for the pure second derivative of the solution

The results for the solution of the mixed boundary value problem on a rectangle domain have

two parts:

e The approximate results for the solution of Laplace’s equation

e The approximate results for the first derivative of the solution
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The grid spacing (difference step size) h is defined by h = = n= 4,..,7.

an’

5.1 Domain in the Shape of a Rectangular Parallelepiped

Let R = {(x1,%2,%3): 0 <x; <1,i =123}, and letI},j = 1,...,6 be its faces. We consider

the following problem:
Au =0 onR, u = @(xy,x,x3) 0N I,j=1,...,6, (5.1)
where ¢ is the exact solution of this problem.

Let U denote the exact solution and U,, be its approximate values on R (contains the nodes of
the cubic grid formed in R) of the Dirichlet problem of Laplace’s equation on the rectangular

parallelepiped domain R. We denote

lu-v,mll,

U, —Ullg, =max|U,—U|, EJ} = :
U ”Rh B |Un l, Ey ||U_U2_(m+1)||Rh
In the following examples the results are demonstrated in four tables. The first table is related

to the approximate of problem (5.1), the second, third and fourth tables are corresponds to the

approximate values of v = ou w = tu and w = iy respectivel
pp T oax’ T ax2 ~ 9xdy’ P y:

These results are obtained for different boundary functions which are given below.

5.1.1 Boundary function from €54

In the following examples, the forward and backward formulae are used for fourth order
accuracy to find a new boundary value on faces when x; = 0 or x; = 1 for the first derivative
problem. For the find the second order mixed derivative of the solution of the Laplace equation
we used the third order forward and backward numerical differentiation formula on faces when
x;=0,1 orx, =0,1.
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The results show that the approximate solutions and approximation of the first derivative
converge as 0(h*), for the approximation of the second order pure and mixed derivatives

converges uniformly with order 0(h3**) and 0(h®), respectively.

1
Example 5.1 : Let peC>35,0n I}, j = 1,2, ...,6, where

1\*  x% 4+ x? 151 151
000 y) = (x5 —3) ~ 252+ (xf +x) o cos (50

where 68 = arctan (i—z)

1

Table 5.1: The approximate of solution of problem (5.1) when the boundary

1
function is in C>30

h [l — u| Ey
1
— 2,34E-10 32,68
16
1
— 7,16E-12 32,69
32
1
— 2,19E-13 32,78
64
L 6,68E-15
128
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Table 5.2: First derivative approximation results of the solution of problem (5.1)

with the fourth-order accurate formula

h llv — vyl E}
1
= 3,39E-04 14,76
16
1
- 2 30E-05 15,42
32
1
2 1,49E-06 15,67
64
1 9,51E-08
128

Table 5.3:  The approximate results for the pure second order derivative
of the solution of (5.1)

h o — @ || Ey
1

— 3,68E-07 8,20
16
1

— 4,49E-08 8,18
32
1

— 5,49E-09 8,19
64

L 6,70E-10

128
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Table 5.4: The approximation results for the second order mixed

1
derivative with the third-order accurate formula when @eC >3

h lw — wp || Ey
1
— 6,92E-03 7,35
16
1
— 9,41E-04 7,71
32
1
= 1,22E-04 7,92
64
L 1,54E-05
128

In Table 5.1-Table 5.4 the maximum error are given. Table 5.1 shows that the solution of the
Laplace equation converges with order more than 4 which corresponds to the product p in
Theorem 2.1 when p = 5. Table 5.2 justifies approximation of the first derivative when 4 —
th order accuracy forward backward formula is used in Theorem 2.2, the fourth order converge.
Table 5.3 shows that convergence order of the approximations of the pure second derivatives
0(h3) in Theorem 2.4 and Table 5.4 shows that convergence order O (h3) of the second order
mixed derivative when 3 — th order accurate forward backward formula is used in Theorem 2.5
of the problem (5.1).
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5.1.2 Boundary function from €44

In the following examples forward and backward formulae is used for third order accuracy to
find a new boundary value on faceswhen x; = 0 or x; = 1. For the find the second order mixed
derivative of the solution of the Laplace equation we used the second order forward and

backward numerical differentiation formula on faces when x; = 0,1 or x, = 0,1.

The results show that the approximate solutions converge as 0(h*), and approximation of the
first derivative converges uniformly with order 0(h?), for the approximation of the second
order pure and mixed derivatives converges uniformly with order O(h?**) and 0(h?),

respectively.

1
Example 5.2 : Let peC*30, on I;,j =12,..,6, where

1\ x}+x2 21 121
<p(x,y)=<x3—§) — +(x12+x§)60005<¥9>

where 68 = arctan (z_z)
1

Table 5.5: The approximate of solution of problem (5.1) when the boundary

1
when the boundary function is in C*30

h |l — | EVW
1

= 2 15E-09 17,77
16
1

= 1,21E-10 15,00
32
1

2 8,02E-12 16,37
64

1 4.90E-13

128
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1
Table 5.6: The approximate results for the first derivative when @eC*3o,

using the third-order accurate formula

h lv — vyl EY
1
1 1,32E-03 7.29
16
1
1 1,81E-04 7.67
32
1
2 2 36E-05 7.84
64
1 3.01E-06
128

Table 5.7: The approximate results for the pure second order derivative

4L
when @eC ™30

h @ — @ | EG
1

— 3,11E-07 4,09
16
1

— 7,61E-08 4,09
32
1

— 1,86E-08 4,10
64

L 4,54E-09

128
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Table 5.8: The approximate results for the second order mixed derivative

1
with the second order accurate formula when @eC*30

h lw — wp || Eyw
1

il 8,59E-03 3,87
16
1

— 2,22E-03 3,96
32
1

— 5,61E-04 3,98
64

L 1,41E-04

128

In Table 5.5, the approximate results for the solution of the Dirichlet problem for the Laplace’s
equation are presented. Table 5.6 shows the maximum errors and convergence order of the first
derivative when 3 — th order accuracy forward bacward formula is used, and in Table 5.7, the
maximum errors and the convergence order of the approximations of the pure second
derivatives, Table 5.8 shows the maximum errors and convergence order of the first derivative
when second order accuracy forward bacward formula is used of the problem (5.1) for different

step size h are present.

117



5.2 Domain in the Shape of a Rectangle

Let T={(x,y):0<x<1 0<y<1} and lety;,j =1,..,4 be the boundary of IT. We

consider the following problem:
Au =0 onl], u=¢(xy) ony,j=1,..4 (5.2)
where ¢ is the exact solution of this problem.

Let U denote the exact solution and U,, be its approximate values on TI" (contains the nodes of
the cubic grid formed in IT) of the Dirichlet problem of Laplace’s equation on the rectangular
parallelepiped domain I1. We denote

lu-Uy-mll,,,

U, —Ullg. = Up = U|, Eg* = '
U, I, rl%%xl h |, Eg Hu—uz_(mu)”r[h

5.2.1 Three stage method
In the following examples the results are demonstrated in three tables. The first table
is related to the approximate values of u, the second and third tables is corresponds to

. ou 0%u .
the approximate values of v = Pl e respectively.

1
Example 5.3 : Let peC'?3 ony;,j = 1,2,3,4, where

361

361 y
(2 e y
p(x,y) = (x* + y*)eocos (—30 arctan (x))

118



Table 5.9: The approximate results of u in problem (5.2) by using a three

1
stage difference method when the boundary function is in %30

ho Jut—uf]  EN |uf-ul| E% lu-—uul  ED
1_16 7,62E — 12 63,98 2,51F — 04 4,00 2,56E —16 256,12
1

3—2 1,19F — 13 64,03 6,28E — 05 4,00 1,39E — 18 256,46
1

a 1,86E — 15 64,14 1,57E — 05 4,01 542E — 21 256,87
1

— 2,90E —17 3,93E — 06 2,11F — 23

128

In Table 5.9, the values of E}. and Els show that the functions u* (the first
stage for the solution) and u® (the second stage for the solution) are approximated with
the order of 0O(h®) and 0(h?); respectively. The values of ET shows
that the accuracy of the proposed method (the third stage for the solution) is
of order 0(h®).
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Table 5.10: The approximate results for the first derivative by using a three
1
stage difference method when the boundary function is in ¢**30

h bt —will  En [P -vil Enw llw-wll BT
1

— 317608 5428 649E—03 363 1BIE—11 18737
1

— 5B4E-10 5917 179E-03 383 9665 —14 21049
1

— 9BTE-12 6169 467E-04 391 459E—16 22611
1

—_ 1,60E — 13 1,20 — 04 2,03E — 18

128

In Table 5.10, the values of EJ» and Ejs show that the functions v* (the first
stage for the first derivative) using sixth-order accurate numerical differentiation
formulae and v® (the second stage for the first derivative) using second-order formulae
are approximated with the order of 0(h®) and O(h?); respectively. The values of E
shows that the accuracy of the proposed method (the third stage for the first derivative)

is of order O (h®).
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Table 5.11: The approximate results for the second order pure derivative by using a

1
three stage difference method when the boundary function is in C*?30

hewt—wil B [wt—whl| E

g3

lw —w| Ey

— 1,35E-10 63,61 4,40E—03 3,95 2,27E —15 257,52

i 2,12E —12 6397 1,12E — 03 3,99 8,82E — 18 255,37

32

6i4 331E —14 64,00 2,80E — 04 4,03 3,45E —20 256,06
1

—— 517E - 16 6,96E-05 1,35E — 22

128

In Table 5.11, the values of E;. and E)s show that the functions w* (the first
stage for the second order pure derivative) and w (the second stage for the second
order pure derivative) are approximated with the order of O(h®) and O(h?);
respectively. The values of EJ} shows that the accuracy of the proposed method (the

third stage for the second order pure derivative) is of order 0 (h®).
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5.2.2 Mixed boundary conditions

In the following examples the results are demonstrated in a table. The third column is

related to the approximate values of u, the last column is corresponds to the

. du .
approximate values of v = F™ respectively.

In this section, we solve the problem with a mixed boundary condition on the sides,
an approach was developed for the first derivative by using the third order

differentiation formula. It is showed as cases which consist all possible problems.

In this section we have examined four different cases:

e Case 1: The Neumann condition on the left side is given;

e Case 2: The Neumann condition on the left and right sides are given;

e Case 3: The Neumann condition on the left and up sides are given;

e Case 4: The Neumann condition on the left, right and up sides are given.

All other possibilities are thought in the same way.

Case 1: The Neumann condition on the left side is given;

Example 5.4 : Let Il = {(x,y):0 <x < 1,0 <y < 1}, and let y be the boundary of

I1. We consider the following problem :

ou(0,y) _
ax

Au=0onll,u=¢;jxyony;,j=123, u® = W, (y) ony,

where
2 o2k 181 y .
<pj(x, y) = (x* + y*) 9o cos (Earctan (;)) ony;, j=123

and

181 136 (181n

Y, () = EJ"“‘ Sin 90 )on Va

is the exact solution of this problem.
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Table 5.12:  The approximate results for Case 1 for the solution and first

1
derivative when ¢ € C*%s

h llu — upll E} v — vl EV'
1

T3 6,08 — 06 16,21 1,54E — 03 7,99
1

= 3,75E — 07 16,23 1,93E — 04 7,98
1

= 2,31E — 08 16,27 2,41E — 05 8,01
1

— 1,42E — 09 3,02E — 06

128

Table 5.12 shows that order of the solution of the problem given in Example 5.4 is
0(h*) when the given Neumann condition on the left side and order of the first
derivative O(h3®) when used the third order forward backward numerical

differentiation formula on the right side.

Case 2: The Neumann condition on the left and right sides are given;

Example 5.5 : Let I = {(x,y):0 <x < 1,0 < y < 1}, and let y be the boundary of

I1. We consider the following problem :

Au=0onll,u=g@;(x,y)ony;j=13, u® = Z—Z =W (y)ony, k=24

where

181 181 )
@;(x,y) = (x* + y*)o cos (E arctan (%)) ony;,j =13
123



and

v, () 181 a+ 2)2{ . (181 tan( ))+ (181 tan( ))}
= — 90 —_— _—
2 45 y ysin a5 arctan(y cos s arctan(y

181 136 (1817‘[

v, (y) = EY‘“ sin 90 )on Ya

Is the exact solution of this problem.

Table 5.13: The approximate results for Case 2 for the solution and first

1
derivative when ¢ € C*%s

h llu — uy| E™ lv — wall EY
1

e 6,08E — 06 16,22 4,97E — 08 8,12
1

= 3,75E — 07 16,24 6,12E — 09 8,12
1

6_4 2,31E — 08 16,25 7,54E — 10 8,12
1

— 1,42F — 09 9,27E — 11

128

Table 5.13 shows that order of the solution of the problem given in Example 5.5 is
0(h*) when the given Neumann condition on the left and right sides and order of the
first derivative 0 (h3).
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Case 3: The Neumann condition on the left and up sides are given;

Example 5.6 : LetIT = {(x,y):0 < x < 1,0 <y < 1}, and let y be the boundary of

I1. We consider the following problem :

Au=0onll,u=g;(x,y)ony;,j=12,

ou(x, 1)

u® = % = W;(x) onys,
du(0,

u® = J =W, (y) ony,,

0x

where

181 181 .
@j(x,y) = (x* + y*)o cos (Earctan G)) onyj, j =12

and

181 o1 181 1 /181 1
Y3 (x)=—7(1+ x2)90 {COS (E arctan (;)) — X Sln (— arctan (;))}

45 45
181 136 /181w
Y, (y) = E)”"S sm( 90 )0” Va

IS the exact solution of this problem.
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Table 5.14:  The approximate results for Case 3 for the solution and first

1
derivative when ¢ € C*as

h llu — uy| E™ lv — wall E}
1

e 6,10E — 06 16,25 1,54E — 03 8,00
1

= 3,75E — 07 16,25 1,93E — 04 8,00
1

o 2,31E — 08 16,25 2,41E — 05 8,00
1

— 1,42E — 09 3,02E — 06

128

Table 5.14 shows that order of the solution of the problem given in Example 5.6 is
0(h*) when the given Neumann condition on the left and up sides and order of the first
derivative O(h®) when used the third order forward backward numerical

differentiation formula on the right and up sides.

Case 4: The Neumann condition on the left, right and up sides are given;

Example 5.7 : Let IT = {(x,¥):0 < x < 1,0 <y < 1}, and let y be the boundary of
1. We consider the following problem :

Au=0onll, u=¢@(xy)ony;,

_ Ou(x,1)
=%

u® =Y;(x) onys,

ou
u® = % = W (y) on yy, k=24
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where

ﬂ
@1(x) = x'45 onyy,

and
W, () =~ (1+ 2)9_1{ ; (—181 tan( ))+ (—181 tan( ))}
= - 90
2y 45 y ysin 45 arctan(y CosS 30 arctan\y

w, () 181 a+ 2)2{ (181 " (1)) _ (181 . (1))}
= — 90 —_— —_ —_ — —_
3 (x s X cos s arctan 2 x sin s arctan 2

181 136 (181n)

¥, 0) =5y sin (55

is the exact solution of this problem.

Table 5.15:  The approximate results for Case 4 for the solution and first

1
derivative when ¢ € C*%s

h llu — uyll E™ lv — wall Ey
1

1 6,11EF — 06 16,28 1,54E — 03 7,99
1

37 3,76E — 07 16,26 1,93E — 04 8,00
1

o 2,31F — 08 16,26 2,41E — 05 8,00
1

—_— 1,42E — 09 3,00E — 06

128
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Table 5.15 shows that order of the solution of the problem given in Example 5.7 is
0(h*) when the given Neumann condition on the left, ride and up sides and order of
the first derivative O(h3®) when used the third order forward backward numerical

differentiation formula on the up side.

On the based all this results, by using third-order accurate numerical differentiation
formula, we obtain estimation of error the of the derivative of the function which is

order of O(h®) as it is seen in cases.
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CHAPTER 6
CONCLUSION

For the approximate solution of the Laplace equation in a rectangular parallelepiped R, a new
pointwise error of order O (h*p?~*) is obtained, where p € {4,5} and p is the distance from the
current point to the boundary of R. This estimation shows the additional downturn of the error
near the boundary as p, which is used to get O(hP~1) order of accuracy for the approximate
value of the first derivatives of the solution of Laplace’s equation. For the approximation of the
second order pure and mixed derivatives the obtained rate of convergence are
0(hP~%*%) and O (hP~2), respectively.

The multy stage method is constructed and justified to obtain a high order approximation of the
solution and its derivatives of the Dirichlet problem for Laplace’s equation on a rectangular
domain. It is assumed that the boundary functions on the sides are from €124, 0 < A < 1, and
at the vertices satisfy the compatibility conditions for the even derivatives up to tenth order,
which result from the Laplace equation. Under these conditions, the constructed approximate
value of the first derivatives by the proposed method converge to the exact derivatives of the
solution in the uniform metric of order O(h®). To obtain this estimation, for the error of the
approximate solution of the given problem by the three stage method a new pointwise estimation
0(ph?®) is proved, where p = p(x,y) is the distance from the current grid point (x,y) € I1" to
the boundary of the rectangle I1. Then, at the first stage, by using the 9-point scheme the first
derivative of the sum of the pure fourth derivatives of the desired solution is approximated of
order O(h®), and at the second stage, approximate values of the first derivative of the sum of
the pure eighth derivatives is approximated of order 0 (h?%) by the 5-point scheme. At the final
third stage, the system of simplest 5-point difference equations approximating the Dirichlet
problem for the first derivative of the solution is corrected by introducing the quantities

determined at the first and second stages which converges at rate of 0 (h®).
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In a rectangular domain, we investigate an approximation of the first order
derivatives for the solution of the mixed boundary value problem. The boundary values on the
sides of the rectangle are supposed to have the fourth derivatives satisfying the Holder
condition. On the vertices besides the continuity condition, the compatibility conditions,
which result from the Laplace equation for the second and fourth derivatives of the boundary
values, given on the adjacent sides are satisfied. For the approximate values of the first
derivatives of a solution of the mixed boundary value problem the constructed difference

scheme on a square grid a uniform error estimation of order 0 (h3®) is obtained.

The obtained results can be applied for the approximation of a solution and its derivatives of
problems in more complicated domains, when different version of domain decomposition
methods are used (see for 2D problem (Dosiyev, 1992), (Dosiyev, 1994), (Dosiyev, 2003),
(Dosiyev, 2004), (Dosiyev, 2012), (Dosiyev, 2013), (Dosiyev, 2014) (Volkov, 1976), see for 3D
(Smith et at ., 2004), (Volkov, 1979), (Volkov, 2003)). Moreover the constructed difference
schemes can be used to get a highly accurate results in many applied problems in electrostatics

and fracture mechanics.
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